1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       // Disable the smallest fractional LMUL types if ELEN is less than
116       // RVVBitsPerBlock.
117       unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
118       if (VT.getVectorMinNumElements() < MinElts)
119         return;
120 
121       unsigned Size = VT.getSizeInBits().getKnownMinValue();
122       const TargetRegisterClass *RC;
123       if (Size <= RISCV::RVVBitsPerBlock)
124         RC = &RISCV::VRRegClass;
125       else if (Size == 2 * RISCV::RVVBitsPerBlock)
126         RC = &RISCV::VRM2RegClass;
127       else if (Size == 4 * RISCV::RVVBitsPerBlock)
128         RC = &RISCV::VRM4RegClass;
129       else if (Size == 8 * RISCV::RVVBitsPerBlock)
130         RC = &RISCV::VRM8RegClass;
131       else
132         llvm_unreachable("Unexpected size");
133 
134       addRegisterClass(VT, RC);
135     };
136 
137     for (MVT VT : BoolVecVTs)
138       addRegClassForRVV(VT);
139     for (MVT VT : IntVecVTs) {
140       if (VT.getVectorElementType() == MVT::i64 &&
141           !Subtarget.hasVInstructionsI64())
142         continue;
143       addRegClassForRVV(VT);
144     }
145 
146     if (Subtarget.hasVInstructionsF16())
147       for (MVT VT : F16VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.hasVInstructionsF32())
151       for (MVT VT : F32VecVTs)
152         addRegClassForRVV(VT);
153 
154     if (Subtarget.hasVInstructionsF64())
155       for (MVT VT : F64VecVTs)
156         addRegClassForRVV(VT);
157 
158     if (Subtarget.useRVVForFixedLengthVectors()) {
159       auto addRegClassForFixedVectors = [this](MVT VT) {
160         MVT ContainerVT = getContainerForFixedLengthVector(VT);
161         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
162         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
163         addRegisterClass(VT, TRI.getRegClass(RCID));
164       };
165       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168 
169       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
170         if (useRVVForFixedLengthVectorVT(VT))
171           addRegClassForFixedVectors(VT);
172     }
173   }
174 
175   // Compute derived properties from the register classes.
176   computeRegisterProperties(STI.getRegisterInfo());
177 
178   setStackPointerRegisterToSaveRestore(RISCV::X2);
179 
180   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
181                    MVT::i1, Promote);
182 
183   // TODO: add all necessary setOperationAction calls.
184   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
185 
186   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
187   setOperationAction(ISD::BR_CC, XLenVT, Expand);
188   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
189   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
190 
191   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
192 
193   setOperationAction(ISD::VASTART, MVT::Other, Custom);
194   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
195 
196   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197 
198   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
199 
200   if (!Subtarget.hasStdExtZbb())
201     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
202 
203   if (Subtarget.is64Bit()) {
204     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
205 
206     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
207                        MVT::i32, Custom);
208 
209     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
210                        MVT::i32, Custom);
211   } else {
212     setLibcallName(
213         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
214         nullptr);
215     setLibcallName(RTLIB::MULO_I64, nullptr);
216   }
217 
218   if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) {
219     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
220   } else {
221     if (Subtarget.is64Bit()) {
222       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
223     } else {
224       setOperationAction(ISD::MUL, MVT::i64, Custom);
225     }
226   }
227 
228   if (!Subtarget.hasStdExtM()) {
229     setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
230                        XLenVT, Expand);
231   } else {
232     if (Subtarget.is64Bit()) {
233       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
234                           {MVT::i8, MVT::i16, MVT::i32}, Custom);
235     }
236   }
237 
238   setOperationAction(
239       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
240       Expand);
241 
242   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
243                      Custom);
244 
245   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
246       Subtarget.hasStdExtZbkb()) {
247     if (Subtarget.is64Bit())
248       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
249   } else {
250     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
251   }
252 
253   if (Subtarget.hasStdExtZbp()) {
254     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
255     // more combining.
256     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
257 
258     // BSWAP i8 doesn't exist.
259     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
260 
261     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
262 
263     if (Subtarget.is64Bit())
264       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
265   } else {
266     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
267     // pattern match it directly in isel.
268     setOperationAction(ISD::BSWAP, XLenVT,
269                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
270                            ? Legal
271                            : Expand);
272     // Zbkb can use rev8+brev8 to implement bitreverse.
273     setOperationAction(ISD::BITREVERSE, XLenVT,
274                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
275   }
276 
277   if (Subtarget.hasStdExtZbb()) {
278     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
279                        Legal);
280 
281     if (Subtarget.is64Bit())
282       setOperationAction(
283           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
284           MVT::i32, Custom);
285   } else {
286     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
287 
288     if (Subtarget.is64Bit())
289       setOperationAction(ISD::ABS, MVT::i32, Custom);
290   }
291 
292   if (Subtarget.hasStdExtZbt()) {
293     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
294     setOperationAction(ISD::SELECT, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit())
297       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   static const unsigned FPLegalNodeTypes[] = {
303       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
304       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
305       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
306       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
307       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
308       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
309 
310   static const ISD::CondCode FPCCToExpand[] = {
311       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
312       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
313       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
314 
315   static const unsigned FPOpToExpand[] = {
316       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
317       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
318 
319   if (Subtarget.hasStdExtZfh())
320     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
321 
322   if (Subtarget.hasStdExtZfh()) {
323     setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
324     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
325     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
326     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
327     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
328     setOperationAction(ISD::SELECT, MVT::f16, Custom);
329     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
330 
331     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
332                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
333                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
334                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
335                         ISD::FLOG2, ISD::FLOG10},
336                        MVT::f16, Promote);
337 
338     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
339     // complete support for all operations in LegalizeDAG.
340 
341     // We need to custom promote this.
342     if (Subtarget.is64Bit())
343       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
344   }
345 
346   if (Subtarget.hasStdExtF()) {
347     setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
348     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
349     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f32, Custom);
351     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
352     setOperationAction(FPOpToExpand, MVT::f32, Expand);
353     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
354     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
355   }
356 
357   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
358     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
359 
360   if (Subtarget.hasStdExtD()) {
361     setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
362     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
364     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
365     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
366     setOperationAction(ISD::SELECT, MVT::f64, Custom);
367     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
368     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
369     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
370     setOperationAction(FPOpToExpand, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
373   }
374 
375   if (Subtarget.is64Bit())
376     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
377                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
378                        MVT::i32, Custom);
379 
380   if (Subtarget.hasStdExtF()) {
381     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
382                        Custom);
383 
384     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
385                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
386                        XLenVT, Legal);
387 
388     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
389     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
390   }
391 
392   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
393                       ISD::JumpTable},
394                      XLenVT, Custom);
395 
396   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
397 
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::Constant, MVT::i64, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
407   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408   if (Subtarget.is64Bit())
409     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
410 
411   if (Subtarget.hasStdExtA()) {
412     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
413     setMinCmpXchgSizeInBits(32);
414   } else {
415     setMaxAtomicSizeInBitsSupported(0);
416   }
417 
418   setBooleanContents(ZeroOrOneBooleanContent);
419 
420   if (Subtarget.hasVInstructions()) {
421     setBooleanVectorContents(ZeroOrOneBooleanContent);
422 
423     setOperationAction(ISD::VSCALE, XLenVT, Custom);
424 
425     // RVV intrinsics may have illegal operands.
426     // We also need to custom legalize vmv.x.s.
427     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
428                        {MVT::i8, MVT::i16}, Custom);
429     if (Subtarget.is64Bit())
430       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
431     else
432       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
433                          MVT::i64, Custom);
434 
435     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
436                        MVT::Other, Custom);
437 
438     static const unsigned IntegerVPOps[] = {
439         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
440         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
441         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
442         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
443         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
444         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
445         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
446         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
447         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
448         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
449 
450     static const unsigned FloatingPointVPOps[] = {
451         ISD::VP_FADD,        ISD::VP_FSUB,
452         ISD::VP_FMUL,        ISD::VP_FDIV,
453         ISD::VP_FNEG,        ISD::VP_FMA,
454         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
455         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
456         ISD::VP_MERGE,       ISD::VP_SELECT,
457         ISD::VP_SITOFP,      ISD::VP_UITOFP,
458         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
459         ISD::VP_FP_EXTEND};
460 
461     static const unsigned IntegerVecReduceOps[] = {
462         ISD::VECREDUCE_ADD,  ISD::VECREDUCE_AND,  ISD::VECREDUCE_OR,
463         ISD::VECREDUCE_XOR,  ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
464         ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
465 
466     static const unsigned FloatingPointVecReduceOps[] = {
467         ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
468         ISD::VECREDUCE_FMAX};
469 
470     if (!Subtarget.is64Bit()) {
471       // We must custom-lower certain vXi64 operations on RV32 due to the vector
472       // element type being illegal.
473       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
474                          MVT::i64, Custom);
475 
476       setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
477 
478       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
479                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
480                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
481                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
482                          MVT::i64, Custom);
483     }
484 
485     for (MVT VT : BoolVecVTs) {
486       if (!isTypeLegal(VT))
487         continue;
488 
489       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
490 
491       // Mask VTs are custom-expanded into a series of standard nodes
492       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
493                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
494                          VT, Custom);
495 
496       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
497                          Custom);
498 
499       setOperationAction(ISD::SELECT, VT, Custom);
500       setOperationAction(
501           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
502           Expand);
503 
504       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
505 
506       setOperationAction(
507           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
508           Custom);
509 
510       setOperationAction(
511           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
512           Custom);
513 
514       // RVV has native int->float & float->int conversions where the
515       // element type sizes are within one power-of-two of each other. Any
516       // wider distances between type sizes have to be lowered as sequences
517       // which progressively narrow the gap in stages.
518       setOperationAction(
519           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
520           VT, Custom);
521 
522       // Expand all extending loads to types larger than this, and truncating
523       // stores from types larger than this.
524       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
525         setTruncStoreAction(OtherVT, VT, Expand);
526         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
527                          VT, Expand);
528       }
529 
530       setOperationAction(
531           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
532           Custom);
533       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
534 
535       setOperationPromotedToType(
536           ISD::VECTOR_SPLICE, VT,
537           MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
538     }
539 
540     for (MVT VT : IntVecVTs) {
541       if (!isTypeLegal(VT))
542         continue;
543 
544       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
545       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
546 
547       // Vectors implement MULHS/MULHU.
548       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
549 
550       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
551       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
552         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
553 
554       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
555                          Legal);
556 
557       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
558 
559       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
560                          Expand);
561 
562       setOperationAction(ISD::BSWAP, VT, Expand);
563 
564       // Custom-lower extensions and truncations from/to mask types.
565       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
566                          VT, Custom);
567 
568       // RVV has native int->float & float->int conversions where the
569       // element type sizes are within one power-of-two of each other. Any
570       // wider distances between type sizes have to be lowered as sequences
571       // which progressively narrow the gap in stages.
572       setOperationAction(
573           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
574           VT, Custom);
575 
576       setOperationAction(
577           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
578 
579       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
580       // nodes which truncate by one power of two at a time.
581       setOperationAction(ISD::TRUNCATE, VT, Custom);
582 
583       // Custom-lower insert/extract operations to simplify patterns.
584       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
585                          Custom);
586 
587       // Custom-lower reduction operations to set up the corresponding custom
588       // nodes' operands.
589       setOperationAction(IntegerVecReduceOps, VT, Custom);
590 
591       setOperationAction(IntegerVPOps, VT, Custom);
592 
593       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
594 
595       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
596                          VT, Custom);
597 
598       setOperationAction(
599           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
600           Custom);
601 
602       setOperationAction(
603           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
604           VT, Custom);
605 
606       setOperationAction(ISD::SELECT, VT, Custom);
607       setOperationAction(ISD::SELECT_CC, VT, Expand);
608 
609       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
610 
611       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
612         setTruncStoreAction(VT, OtherVT, Expand);
613         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
614                          VT, Expand);
615       }
616 
617       // Splice
618       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
619 
620       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
621       // type that can represent the value exactly.
622       if (VT.getVectorElementType() != MVT::i64) {
623         MVT FloatEltVT =
624             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
625         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
626         if (isTypeLegal(FloatVT)) {
627           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
628                              Custom);
629         }
630       }
631     }
632 
633     // Expand various CCs to best match the RVV ISA, which natively supports UNE
634     // but no other unordered comparisons, and supports all ordered comparisons
635     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
636     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
637     // and we pattern-match those back to the "original", swapping operands once
638     // more. This way we catch both operations and both "vf" and "fv" forms with
639     // fewer patterns.
640     static const ISD::CondCode VFPCCToExpand[] = {
641         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
642         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
643         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
644     };
645 
646     // Sets common operation actions on RVV floating-point vector types.
647     const auto SetCommonVFPActions = [&](MVT VT) {
648       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
649       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
650       // sizes are within one power-of-two of each other. Therefore conversions
651       // between vXf16 and vXf64 must be lowered as sequences which convert via
652       // vXf32.
653       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
654       // Custom-lower insert/extract operations to simplify patterns.
655       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
656                          Custom);
657       // Expand various condition codes (explained above).
658       setCondCodeAction(VFPCCToExpand, VT, Expand);
659 
660       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
661 
662       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
663                          VT, Custom);
664 
665       setOperationAction(FloatingPointVecReduceOps, VT, Custom);
666 
667       // Expand FP operations that need libcalls.
668       setOperationAction(ISD::FREM, VT, Expand);
669       setOperationAction(ISD::FPOW, VT, Expand);
670       setOperationAction(ISD::FCOS, VT, Expand);
671       setOperationAction(ISD::FSIN, VT, Expand);
672       setOperationAction(ISD::FSINCOS, VT, Expand);
673       setOperationAction(ISD::FEXP, VT, Expand);
674       setOperationAction(ISD::FEXP2, VT, Expand);
675       setOperationAction(ISD::FLOG, VT, Expand);
676       setOperationAction(ISD::FLOG2, VT, Expand);
677       setOperationAction(ISD::FLOG10, VT, Expand);
678       setOperationAction(ISD::FRINT, VT, Expand);
679       setOperationAction(ISD::FNEARBYINT, VT, Expand);
680 
681       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
682       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
683       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
684       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
685 
686       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
687 
688       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
689 
690       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
691                          VT, Custom);
692 
693       setOperationAction(
694           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
695           Custom);
696 
697       setOperationAction(ISD::SELECT, VT, Custom);
698       setOperationAction(ISD::SELECT_CC, VT, Expand);
699 
700       setOperationAction(
701           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
702           VT, Custom);
703 
704       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
705 
706       setOperationAction(FloatingPointVPOps, VT, Custom);
707     };
708 
709     // Sets common extload/truncstore actions on RVV floating-point vector
710     // types.
711     const auto SetCommonVFPExtLoadTruncStoreActions =
712         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
713           for (auto SmallVT : SmallerVTs) {
714             setTruncStoreAction(VT, SmallVT, Expand);
715             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
716           }
717         };
718 
719     if (Subtarget.hasVInstructionsF16()) {
720       for (MVT VT : F16VecVTs) {
721         if (!isTypeLegal(VT))
722           continue;
723         SetCommonVFPActions(VT);
724       }
725     }
726 
727     if (Subtarget.hasVInstructionsF32()) {
728       for (MVT VT : F32VecVTs) {
729         if (!isTypeLegal(VT))
730           continue;
731         SetCommonVFPActions(VT);
732         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
733       }
734     }
735 
736     if (Subtarget.hasVInstructionsF64()) {
737       for (MVT VT : F64VecVTs) {
738         if (!isTypeLegal(VT))
739           continue;
740         SetCommonVFPActions(VT);
741         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
742         SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
743       }
744     }
745 
746     if (Subtarget.useRVVForFixedLengthVectors()) {
747       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
748         if (!useRVVForFixedLengthVectorVT(VT))
749           continue;
750 
751         // By default everything must be expanded.
752         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
753           setOperationAction(Op, VT, Expand);
754         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
755           setTruncStoreAction(VT, OtherVT, Expand);
756           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
757                            OtherVT, VT, Expand);
758         }
759 
760         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
761         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
762                            Custom);
763 
764         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
765                            Custom);
766 
767         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
768                            VT, Custom);
769 
770         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
771 
772         setOperationAction(ISD::SETCC, VT, Custom);
773 
774         setOperationAction(ISD::SELECT, VT, Custom);
775 
776         setOperationAction(ISD::TRUNCATE, VT, Custom);
777 
778         setOperationAction(ISD::BITCAST, VT, Custom);
779 
780         setOperationAction(
781             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
782             Custom);
783 
784         setOperationAction(
785             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
786             Custom);
787 
788         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
789                             ISD::FP_TO_UINT},
790                            VT, Custom);
791 
792         // Operations below are different for between masks and other vectors.
793         if (VT.getVectorElementType() == MVT::i1) {
794           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
795                               ISD::OR, ISD::XOR},
796                              VT, Custom);
797 
798           setOperationAction(
799               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
800               VT, Custom);
801           continue;
802         }
803 
804         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
805         // it before type legalization for i64 vectors on RV32. It will then be
806         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
807         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
808         // improvements first.
809         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
810           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
811           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
812         }
813 
814         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
815         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(
818             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
819 
820         setOperationAction(
821             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
822             Custom);
823 
824         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
825                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
826                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
827                            VT, Custom);
828 
829         setOperationAction(
830             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
831 
832         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
833         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
834           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
835 
836         setOperationAction(
837             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
838             Custom);
839 
840         setOperationAction(ISD::VSELECT, VT, Custom);
841         setOperationAction(ISD::SELECT_CC, VT, Expand);
842 
843         setOperationAction(
844             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
845 
846         // Custom-lower reduction operations to set up the corresponding custom
847         // nodes' operands.
848         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
849                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
850                             ISD::VECREDUCE_UMIN},
851                            VT, Custom);
852 
853         setOperationAction(IntegerVPOps, VT, Custom);
854 
855         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
856         // type that can represent the value exactly.
857         if (VT.getVectorElementType() != MVT::i64) {
858           MVT FloatEltVT =
859               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
860           EVT FloatVT =
861               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
862           if (isTypeLegal(FloatVT))
863             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
864                                Custom);
865         }
866       }
867 
868       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
869         if (!useRVVForFixedLengthVectorVT(VT))
870           continue;
871 
872         // By default everything must be expanded.
873         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
874           setOperationAction(Op, VT, Expand);
875         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
876           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
877           setTruncStoreAction(VT, OtherVT, Expand);
878         }
879 
880         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
881         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
882                            Custom);
883 
884         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
885                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
886                             ISD::EXTRACT_VECTOR_ELT},
887                            VT, Custom);
888 
889         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
890                             ISD::MGATHER, ISD::MSCATTER},
891                            VT, Custom);
892 
893         setOperationAction(
894             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
895             Custom);
896 
897         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
898                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
899                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
900                            VT, Custom);
901 
902         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
903 
904         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
905                            VT, Custom);
906 
907         setCondCodeAction(VFPCCToExpand, VT, Expand);
908 
909         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
910         setOperationAction(ISD::SELECT_CC, VT, Expand);
911 
912         setOperationAction(ISD::BITCAST, VT, Custom);
913 
914         setOperationAction(FloatingPointVecReduceOps, VT, Custom);
915 
916         setOperationAction(FloatingPointVPOps, VT, Custom);
917       }
918 
919       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
920       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
921                          Custom);
922       if (Subtarget.hasStdExtZfh())
923         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
924       if (Subtarget.hasStdExtF())
925         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
926       if (Subtarget.hasStdExtD())
927         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
928     }
929   }
930 
931   // Function alignments.
932   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
933   setMinFunctionAlignment(FunctionAlignment);
934   setPrefFunctionAlignment(FunctionAlignment);
935 
936   setMinimumJumpTableEntries(5);
937 
938   // Jumps are expensive, compared to logic
939   setJumpIsExpensive();
940 
941   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
942                        ISD::OR, ISD::XOR, ISD::SETCC});
943   if (Subtarget.is64Bit())
944     setTargetDAGCombine(ISD::SRA);
945 
946   if (Subtarget.hasStdExtF())
947     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
948 
949   if (Subtarget.hasStdExtZbp())
950     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
951 
952   if (Subtarget.hasStdExtZbb())
953     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
954 
955   if (Subtarget.hasStdExtZbkb())
956     setTargetDAGCombine(ISD::BITREVERSE);
957   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
958     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
959   if (Subtarget.hasStdExtF())
960     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
961                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
962   if (Subtarget.hasVInstructions())
963     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
964                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
965                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
966   if (Subtarget.useRVVForFixedLengthVectors())
967     setTargetDAGCombine(ISD::BITCAST);
968 
969   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
970   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
971 }
972 
973 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
974                                             LLVMContext &Context,
975                                             EVT VT) const {
976   if (!VT.isVector())
977     return getPointerTy(DL);
978   if (Subtarget.hasVInstructions() &&
979       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
980     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
981   return VT.changeVectorElementTypeToInteger();
982 }
983 
984 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
985   return Subtarget.getXLenVT();
986 }
987 
988 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
989                                              const CallInst &I,
990                                              MachineFunction &MF,
991                                              unsigned Intrinsic) const {
992   auto &DL = I.getModule()->getDataLayout();
993   switch (Intrinsic) {
994   default:
995     return false;
996   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
997   case Intrinsic::riscv_masked_atomicrmw_add_i32:
998   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
999   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1000   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1001   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1002   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1003   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1004   case Intrinsic::riscv_masked_cmpxchg_i32:
1005     Info.opc = ISD::INTRINSIC_W_CHAIN;
1006     Info.memVT = MVT::i32;
1007     Info.ptrVal = I.getArgOperand(0);
1008     Info.offset = 0;
1009     Info.align = Align(4);
1010     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1011                  MachineMemOperand::MOVolatile;
1012     return true;
1013   case Intrinsic::riscv_masked_strided_load:
1014     Info.opc = ISD::INTRINSIC_W_CHAIN;
1015     Info.ptrVal = I.getArgOperand(1);
1016     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1017     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1018     Info.size = MemoryLocation::UnknownSize;
1019     Info.flags |= MachineMemOperand::MOLoad;
1020     return true;
1021   case Intrinsic::riscv_masked_strided_store:
1022     Info.opc = ISD::INTRINSIC_VOID;
1023     Info.ptrVal = I.getArgOperand(1);
1024     Info.memVT =
1025         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1026     Info.align = Align(
1027         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1028         8);
1029     Info.size = MemoryLocation::UnknownSize;
1030     Info.flags |= MachineMemOperand::MOStore;
1031     return true;
1032   case Intrinsic::riscv_seg2_load:
1033   case Intrinsic::riscv_seg3_load:
1034   case Intrinsic::riscv_seg4_load:
1035   case Intrinsic::riscv_seg5_load:
1036   case Intrinsic::riscv_seg6_load:
1037   case Intrinsic::riscv_seg7_load:
1038   case Intrinsic::riscv_seg8_load:
1039     Info.opc = ISD::INTRINSIC_W_CHAIN;
1040     Info.ptrVal = I.getArgOperand(0);
1041     Info.memVT =
1042         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1043     Info.align =
1044         Align(DL.getTypeSizeInBits(
1045                   I.getType()->getStructElementType(0)->getScalarType()) /
1046               8);
1047     Info.size = MemoryLocation::UnknownSize;
1048     Info.flags |= MachineMemOperand::MOLoad;
1049     return true;
1050   }
1051 }
1052 
1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1054                                                 const AddrMode &AM, Type *Ty,
1055                                                 unsigned AS,
1056                                                 Instruction *I) const {
1057   // No global is ever allowed as a base.
1058   if (AM.BaseGV)
1059     return false;
1060 
1061   // RVV instructions only support register addressing.
1062   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1063     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1064 
1065   // Require a 12-bit signed offset.
1066   if (!isInt<12>(AM.BaseOffs))
1067     return false;
1068 
1069   switch (AM.Scale) {
1070   case 0: // "r+i" or just "i", depending on HasBaseReg.
1071     break;
1072   case 1:
1073     if (!AM.HasBaseReg) // allow "r+i".
1074       break;
1075     return false; // disallow "r+r" or "r+r+i".
1076   default:
1077     return false;
1078   }
1079 
1080   return true;
1081 }
1082 
1083 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1084   return isInt<12>(Imm);
1085 }
1086 
1087 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1088   return isInt<12>(Imm);
1089 }
1090 
1091 // On RV32, 64-bit integers are split into their high and low parts and held
1092 // in two different registers, so the trunc is free since the low register can
1093 // just be used.
1094 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1095   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1096     return false;
1097   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1098   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1099   return (SrcBits == 64 && DestBits == 32);
1100 }
1101 
1102 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1103   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1104       !SrcVT.isInteger() || !DstVT.isInteger())
1105     return false;
1106   unsigned SrcBits = SrcVT.getSizeInBits();
1107   unsigned DestBits = DstVT.getSizeInBits();
1108   return (SrcBits == 64 && DestBits == 32);
1109 }
1110 
1111 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1112   // Zexts are free if they can be combined with a load.
1113   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1114   // poorly with type legalization of compares preferring sext.
1115   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1116     EVT MemVT = LD->getMemoryVT();
1117     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1118         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1119          LD->getExtensionType() == ISD::ZEXTLOAD))
1120       return true;
1121   }
1122 
1123   return TargetLowering::isZExtFree(Val, VT2);
1124 }
1125 
1126 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1127   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1128 }
1129 
1130 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1131   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1132 }
1133 
1134 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1135   return Subtarget.hasStdExtZbb();
1136 }
1137 
1138 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1139   return Subtarget.hasStdExtZbb();
1140 }
1141 
1142 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1143   EVT VT = Y.getValueType();
1144 
1145   // FIXME: Support vectors once we have tests.
1146   if (VT.isVector())
1147     return false;
1148 
1149   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1150           Subtarget.hasStdExtZbkb()) &&
1151          !isa<ConstantSDNode>(Y);
1152 }
1153 
1154 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1155   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1156   auto *C = dyn_cast<ConstantSDNode>(Y);
1157   return C && C->getAPIntValue().ule(10);
1158 }
1159 
1160 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1161                                                             Type *Ty) const {
1162   assert(Ty->isIntegerTy());
1163 
1164   unsigned BitSize = Ty->getIntegerBitWidth();
1165   if (BitSize > Subtarget.getXLen())
1166     return false;
1167 
1168   // Fast path, assume 32-bit immediates are cheap.
1169   int64_t Val = Imm.getSExtValue();
1170   if (isInt<32>(Val))
1171     return true;
1172 
1173   // A constant pool entry may be more aligned thant he load we're trying to
1174   // replace. If we don't support unaligned scalar mem, prefer the constant
1175   // pool.
1176   // TODO: Can the caller pass down the alignment?
1177   if (!Subtarget.enableUnalignedScalarMem())
1178     return true;
1179 
1180   // Prefer to keep the load if it would require many instructions.
1181   // This uses the same threshold we use for constant pools but doesn't
1182   // check useConstantPoolForLargeInts.
1183   // TODO: Should we keep the load only when we're definitely going to emit a
1184   // constant pool?
1185 
1186   RISCVMatInt::InstSeq Seq =
1187       RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
1188   return Seq.size() <= Subtarget.getMaxBuildIntsCost();
1189 }
1190 
1191 bool RISCVTargetLowering::
1192     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1193         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1194         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1195         SelectionDAG &DAG) const {
1196   // One interesting pattern that we'd want to form is 'bit extract':
1197   //   ((1 >> Y) & 1) ==/!= 0
1198   // But we also need to be careful not to try to reverse that fold.
1199 
1200   // Is this '((1 >> Y) & 1)'?
1201   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1202     return false; // Keep the 'bit extract' pattern.
1203 
1204   // Will this be '((1 >> Y) & 1)' after the transform?
1205   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1206     return true; // Do form the 'bit extract' pattern.
1207 
1208   // If 'X' is a constant, and we transform, then we will immediately
1209   // try to undo the fold, thus causing endless combine loop.
1210   // So only do the transform if X is not a constant. This matches the default
1211   // implementation of this function.
1212   return !XC;
1213 }
1214 
1215 /// Check if sinking \p I's operands to I's basic block is profitable, because
1216 /// the operands can be folded into a target instruction, e.g.
1217 /// splats of scalars can fold into vector instructions.
1218 bool RISCVTargetLowering::shouldSinkOperands(
1219     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1220   using namespace llvm::PatternMatch;
1221 
1222   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1223     return false;
1224 
1225   auto IsSinker = [&](Instruction *I, int Operand) {
1226     switch (I->getOpcode()) {
1227     case Instruction::Add:
1228     case Instruction::Sub:
1229     case Instruction::Mul:
1230     case Instruction::And:
1231     case Instruction::Or:
1232     case Instruction::Xor:
1233     case Instruction::FAdd:
1234     case Instruction::FSub:
1235     case Instruction::FMul:
1236     case Instruction::FDiv:
1237     case Instruction::ICmp:
1238     case Instruction::FCmp:
1239       return true;
1240     case Instruction::Shl:
1241     case Instruction::LShr:
1242     case Instruction::AShr:
1243     case Instruction::UDiv:
1244     case Instruction::SDiv:
1245     case Instruction::URem:
1246     case Instruction::SRem:
1247       return Operand == 1;
1248     case Instruction::Call:
1249       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1250         switch (II->getIntrinsicID()) {
1251         case Intrinsic::fma:
1252         case Intrinsic::vp_fma:
1253           return Operand == 0 || Operand == 1;
1254         // FIXME: Our patterns can only match vx/vf instructions when the splat
1255         // it on the RHS, because TableGen doesn't recognize our VP operations
1256         // as commutative.
1257         case Intrinsic::vp_add:
1258         case Intrinsic::vp_mul:
1259         case Intrinsic::vp_and:
1260         case Intrinsic::vp_or:
1261         case Intrinsic::vp_xor:
1262         case Intrinsic::vp_fadd:
1263         case Intrinsic::vp_fmul:
1264         case Intrinsic::vp_shl:
1265         case Intrinsic::vp_lshr:
1266         case Intrinsic::vp_ashr:
1267         case Intrinsic::vp_udiv:
1268         case Intrinsic::vp_sdiv:
1269         case Intrinsic::vp_urem:
1270         case Intrinsic::vp_srem:
1271           return Operand == 1;
1272         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1273         // explicit patterns for both LHS and RHS (as 'vr' versions).
1274         case Intrinsic::vp_sub:
1275         case Intrinsic::vp_fsub:
1276         case Intrinsic::vp_fdiv:
1277           return Operand == 0 || Operand == 1;
1278         default:
1279           return false;
1280         }
1281       }
1282       return false;
1283     default:
1284       return false;
1285     }
1286   };
1287 
1288   for (auto OpIdx : enumerate(I->operands())) {
1289     if (!IsSinker(I, OpIdx.index()))
1290       continue;
1291 
1292     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1293     // Make sure we are not already sinking this operand
1294     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1295       continue;
1296 
1297     // We are looking for a splat that can be sunk.
1298     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1299                              m_Undef(), m_ZeroMask())))
1300       continue;
1301 
1302     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1303     // and vector registers
1304     for (Use &U : Op->uses()) {
1305       Instruction *Insn = cast<Instruction>(U.getUser());
1306       if (!IsSinker(Insn, U.getOperandNo()))
1307         return false;
1308     }
1309 
1310     Ops.push_back(&Op->getOperandUse(0));
1311     Ops.push_back(&OpIdx.value());
1312   }
1313   return true;
1314 }
1315 
1316 bool RISCVTargetLowering::isOffsetFoldingLegal(
1317     const GlobalAddressSDNode *GA) const {
1318   // In order to maximise the opportunity for common subexpression elimination,
1319   // keep a separate ADD node for the global address offset instead of folding
1320   // it in the global address node. Later peephole optimisations may choose to
1321   // fold it back in when profitable.
1322   return false;
1323 }
1324 
1325 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1326                                        bool ForCodeSize) const {
1327   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1328   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1329     return false;
1330   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1331     return false;
1332   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1333     return false;
1334   return Imm.isZero();
1335 }
1336 
1337 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1338   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1339          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1340          (VT == MVT::f64 && Subtarget.hasStdExtD());
1341 }
1342 
1343 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1344                                                       CallingConv::ID CC,
1345                                                       EVT VT) const {
1346   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1347   // We might still end up using a GPR but that will be decided based on ABI.
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1350     return MVT::f32;
1351 
1352   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1353 }
1354 
1355 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1356                                                            CallingConv::ID CC,
1357                                                            EVT VT) const {
1358   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1359   // We might still end up using a GPR but that will be decided based on ABI.
1360   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1361   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1362     return 1;
1363 
1364   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1365 }
1366 
1367 // Changes the condition code and swaps operands if necessary, so the SetCC
1368 // operation matches one of the comparisons supported directly by branches
1369 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1370 // with 1/-1.
1371 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1372                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1373   // Convert X > -1 to X >= 0.
1374   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1375     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1376     CC = ISD::SETGE;
1377     return;
1378   }
1379   // Convert X < 1 to 0 >= X.
1380   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1381     RHS = LHS;
1382     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1383     CC = ISD::SETGE;
1384     return;
1385   }
1386 
1387   switch (CC) {
1388   default:
1389     break;
1390   case ISD::SETGT:
1391   case ISD::SETLE:
1392   case ISD::SETUGT:
1393   case ISD::SETULE:
1394     CC = ISD::getSetCCSwappedOperands(CC);
1395     std::swap(LHS, RHS);
1396     break;
1397   }
1398 }
1399 
1400 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1401   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1402   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1403   if (VT.getVectorElementType() == MVT::i1)
1404     KnownSize *= 8;
1405 
1406   switch (KnownSize) {
1407   default:
1408     llvm_unreachable("Invalid LMUL.");
1409   case 8:
1410     return RISCVII::VLMUL::LMUL_F8;
1411   case 16:
1412     return RISCVII::VLMUL::LMUL_F4;
1413   case 32:
1414     return RISCVII::VLMUL::LMUL_F2;
1415   case 64:
1416     return RISCVII::VLMUL::LMUL_1;
1417   case 128:
1418     return RISCVII::VLMUL::LMUL_2;
1419   case 256:
1420     return RISCVII::VLMUL::LMUL_4;
1421   case 512:
1422     return RISCVII::VLMUL::LMUL_8;
1423   }
1424 }
1425 
1426 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1427   switch (LMul) {
1428   default:
1429     llvm_unreachable("Invalid LMUL.");
1430   case RISCVII::VLMUL::LMUL_F8:
1431   case RISCVII::VLMUL::LMUL_F4:
1432   case RISCVII::VLMUL::LMUL_F2:
1433   case RISCVII::VLMUL::LMUL_1:
1434     return RISCV::VRRegClassID;
1435   case RISCVII::VLMUL::LMUL_2:
1436     return RISCV::VRM2RegClassID;
1437   case RISCVII::VLMUL::LMUL_4:
1438     return RISCV::VRM4RegClassID;
1439   case RISCVII::VLMUL::LMUL_8:
1440     return RISCV::VRM8RegClassID;
1441   }
1442 }
1443 
1444 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1445   RISCVII::VLMUL LMUL = getLMUL(VT);
1446   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1447       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1448       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1449       LMUL == RISCVII::VLMUL::LMUL_1) {
1450     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1451                   "Unexpected subreg numbering");
1452     return RISCV::sub_vrm1_0 + Index;
1453   }
1454   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1455     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1456                   "Unexpected subreg numbering");
1457     return RISCV::sub_vrm2_0 + Index;
1458   }
1459   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1460     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1461                   "Unexpected subreg numbering");
1462     return RISCV::sub_vrm4_0 + Index;
1463   }
1464   llvm_unreachable("Invalid vector type.");
1465 }
1466 
1467 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1468   if (VT.getVectorElementType() == MVT::i1)
1469     return RISCV::VRRegClassID;
1470   return getRegClassIDForLMUL(getLMUL(VT));
1471 }
1472 
1473 // Attempt to decompose a subvector insert/extract between VecVT and
1474 // SubVecVT via subregister indices. Returns the subregister index that
1475 // can perform the subvector insert/extract with the given element index, as
1476 // well as the index corresponding to any leftover subvectors that must be
1477 // further inserted/extracted within the register class for SubVecVT.
1478 std::pair<unsigned, unsigned>
1479 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1480     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1481     const RISCVRegisterInfo *TRI) {
1482   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1483                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1484                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1485                 "Register classes not ordered");
1486   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1487   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1488   // Try to compose a subregister index that takes us from the incoming
1489   // LMUL>1 register class down to the outgoing one. At each step we half
1490   // the LMUL:
1491   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1492   // Note that this is not guaranteed to find a subregister index, such as
1493   // when we are extracting from one VR type to another.
1494   unsigned SubRegIdx = RISCV::NoSubRegister;
1495   for (const unsigned RCID :
1496        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1497     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1498       VecVT = VecVT.getHalfNumVectorElementsVT();
1499       bool IsHi =
1500           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1501       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1502                                             getSubregIndexByMVT(VecVT, IsHi));
1503       if (IsHi)
1504         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1505     }
1506   return {SubRegIdx, InsertExtractIdx};
1507 }
1508 
1509 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1510 // stores for those types.
1511 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1512   return !Subtarget.useRVVForFixedLengthVectors() ||
1513          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1514 }
1515 
1516 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1517   if (ScalarTy->isPointerTy())
1518     return true;
1519 
1520   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1521       ScalarTy->isIntegerTy(32))
1522     return true;
1523 
1524   if (ScalarTy->isIntegerTy(64))
1525     return Subtarget.hasVInstructionsI64();
1526 
1527   if (ScalarTy->isHalfTy())
1528     return Subtarget.hasVInstructionsF16();
1529   if (ScalarTy->isFloatTy())
1530     return Subtarget.hasVInstructionsF32();
1531   if (ScalarTy->isDoubleTy())
1532     return Subtarget.hasVInstructionsF64();
1533 
1534   return false;
1535 }
1536 
1537 static SDValue getVLOperand(SDValue Op) {
1538   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1539           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1540          "Unexpected opcode");
1541   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1542   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1543   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1544       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1545   if (!II)
1546     return SDValue();
1547   return Op.getOperand(II->VLOperand + 1 + HasChain);
1548 }
1549 
1550 static bool useRVVForFixedLengthVectorVT(MVT VT,
1551                                          const RISCVSubtarget &Subtarget) {
1552   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1553   if (!Subtarget.useRVVForFixedLengthVectors())
1554     return false;
1555 
1556   // We only support a set of vector types with a consistent maximum fixed size
1557   // across all supported vector element types to avoid legalization issues.
1558   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1559   // fixed-length vector type we support is 1024 bytes.
1560   if (VT.getFixedSizeInBits() > 1024 * 8)
1561     return false;
1562 
1563   unsigned MinVLen = Subtarget.getRealMinVLen();
1564 
1565   MVT EltVT = VT.getVectorElementType();
1566 
1567   // Don't use RVV for vectors we cannot scalarize if required.
1568   switch (EltVT.SimpleTy) {
1569   // i1 is supported but has different rules.
1570   default:
1571     return false;
1572   case MVT::i1:
1573     // Masks can only use a single register.
1574     if (VT.getVectorNumElements() > MinVLen)
1575       return false;
1576     MinVLen /= 8;
1577     break;
1578   case MVT::i8:
1579   case MVT::i16:
1580   case MVT::i32:
1581     break;
1582   case MVT::i64:
1583     if (!Subtarget.hasVInstructionsI64())
1584       return false;
1585     break;
1586   case MVT::f16:
1587     if (!Subtarget.hasVInstructionsF16())
1588       return false;
1589     break;
1590   case MVT::f32:
1591     if (!Subtarget.hasVInstructionsF32())
1592       return false;
1593     break;
1594   case MVT::f64:
1595     if (!Subtarget.hasVInstructionsF64())
1596       return false;
1597     break;
1598   }
1599 
1600   // Reject elements larger than ELEN.
1601   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1602     return false;
1603 
1604   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1605   // Don't use RVV for types that don't fit.
1606   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1607     return false;
1608 
1609   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1610   // the base fixed length RVV support in place.
1611   if (!VT.isPow2VectorType())
1612     return false;
1613 
1614   return true;
1615 }
1616 
1617 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1618   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1619 }
1620 
1621 // Return the largest legal scalable vector type that matches VT's element type.
1622 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1623                                             const RISCVSubtarget &Subtarget) {
1624   // This may be called before legal types are setup.
1625   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1626           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1627          "Expected legal fixed length vector!");
1628 
1629   unsigned MinVLen = Subtarget.getRealMinVLen();
1630   unsigned MaxELen = Subtarget.getELEN();
1631 
1632   MVT EltVT = VT.getVectorElementType();
1633   switch (EltVT.SimpleTy) {
1634   default:
1635     llvm_unreachable("unexpected element type for RVV container");
1636   case MVT::i1:
1637   case MVT::i8:
1638   case MVT::i16:
1639   case MVT::i32:
1640   case MVT::i64:
1641   case MVT::f16:
1642   case MVT::f32:
1643   case MVT::f64: {
1644     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1645     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1646     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1647     unsigned NumElts =
1648         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1649     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1650     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1651     return MVT::getScalableVectorVT(EltVT, NumElts);
1652   }
1653   }
1654 }
1655 
1656 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1657                                             const RISCVSubtarget &Subtarget) {
1658   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1659                                           Subtarget);
1660 }
1661 
1662 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1663   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1664 }
1665 
1666 // Grow V to consume an entire RVV register.
1667 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1668                                        const RISCVSubtarget &Subtarget) {
1669   assert(VT.isScalableVector() &&
1670          "Expected to convert into a scalable vector!");
1671   assert(V.getValueType().isFixedLengthVector() &&
1672          "Expected a fixed length vector operand!");
1673   SDLoc DL(V);
1674   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1675   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1676 }
1677 
1678 // Shrink V so it's just big enough to maintain a VT's worth of data.
1679 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1680                                          const RISCVSubtarget &Subtarget) {
1681   assert(VT.isFixedLengthVector() &&
1682          "Expected to convert into a fixed length vector!");
1683   assert(V.getValueType().isScalableVector() &&
1684          "Expected a scalable vector operand!");
1685   SDLoc DL(V);
1686   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1687   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1688 }
1689 
1690 /// Return the type of the mask type suitable for masking the provided
1691 /// vector type.  This is simply an i1 element type vector of the same
1692 /// (possibly scalable) length.
1693 static MVT getMaskTypeFor(MVT VecVT) {
1694   assert(VecVT.isVector());
1695   ElementCount EC = VecVT.getVectorElementCount();
1696   return MVT::getVectorVT(MVT::i1, EC);
1697 }
1698 
1699 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1700 /// vector length VL.  .
1701 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1702                               SelectionDAG &DAG) {
1703   MVT MaskVT = getMaskTypeFor(VecVT);
1704   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1705 }
1706 
1707 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1708 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1709 // the vector type that it is contained in.
1710 static std::pair<SDValue, SDValue>
1711 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1712                 const RISCVSubtarget &Subtarget) {
1713   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1714   MVT XLenVT = Subtarget.getXLenVT();
1715   SDValue VL = VecVT.isFixedLengthVector()
1716                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1717                    : DAG.getRegister(RISCV::X0, XLenVT);
1718   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1719   return {Mask, VL};
1720 }
1721 
1722 // As above but assuming the given type is a scalable vector type.
1723 static std::pair<SDValue, SDValue>
1724 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1725                         const RISCVSubtarget &Subtarget) {
1726   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1727   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1728 }
1729 
1730 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1731 // of either is (currently) supported. This can get us into an infinite loop
1732 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1733 // as a ..., etc.
1734 // Until either (or both) of these can reliably lower any node, reporting that
1735 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1736 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1737 // which is not desirable.
1738 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1739     EVT VT, unsigned DefinedValues) const {
1740   return false;
1741 }
1742 
1743 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1744                                   const RISCVSubtarget &Subtarget) {
1745   // RISCV FP-to-int conversions saturate to the destination register size, but
1746   // don't produce 0 for nan. We can use a conversion instruction and fix the
1747   // nan case with a compare and a select.
1748   SDValue Src = Op.getOperand(0);
1749 
1750   EVT DstVT = Op.getValueType();
1751   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1752 
1753   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1754   unsigned Opc;
1755   if (SatVT == DstVT)
1756     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1757   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1758     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1759   else
1760     return SDValue();
1761   // FIXME: Support other SatVTs by clamping before or after the conversion.
1762 
1763   SDLoc DL(Op);
1764   SDValue FpToInt = DAG.getNode(
1765       Opc, DL, DstVT, Src,
1766       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1767 
1768   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1769   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1770 }
1771 
1772 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1773 // and back. Taking care to avoid converting values that are nan or already
1774 // correct.
1775 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1776 // have FRM dependencies modeled yet.
1777 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1778   MVT VT = Op.getSimpleValueType();
1779   assert(VT.isVector() && "Unexpected type");
1780 
1781   SDLoc DL(Op);
1782 
1783   // Freeze the source since we are increasing the number of uses.
1784   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1785 
1786   // Truncate to integer and convert back to FP.
1787   MVT IntVT = VT.changeVectorElementTypeToInteger();
1788   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1789   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1790 
1791   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1792 
1793   if (Op.getOpcode() == ISD::FCEIL) {
1794     // If the truncated value is the greater than or equal to the original
1795     // value, we've computed the ceil. Otherwise, we went the wrong way and
1796     // need to increase by 1.
1797     // FIXME: This should use a masked operation. Handle here or in isel?
1798     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1799                                  DAG.getConstantFP(1.0, DL, VT));
1800     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1801     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1802   } else if (Op.getOpcode() == ISD::FFLOOR) {
1803     // If the truncated value is the less than or equal to the original value,
1804     // we've computed the floor. Otherwise, we went the wrong way and need to
1805     // decrease by 1.
1806     // FIXME: This should use a masked operation. Handle here or in isel?
1807     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1808                                  DAG.getConstantFP(1.0, DL, VT));
1809     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1810     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1811   }
1812 
1813   // Restore the original sign so that -0.0 is preserved.
1814   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1815 
1816   // Determine the largest integer that can be represented exactly. This and
1817   // values larger than it don't have any fractional bits so don't need to
1818   // be converted.
1819   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1820   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1821   APFloat MaxVal = APFloat(FltSem);
1822   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1823                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1824   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1825 
1826   // If abs(Src) was larger than MaxVal or nan, keep it.
1827   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1828   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1829   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1830 }
1831 
1832 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1833 // This mode isn't supported in vector hardware on RISCV. But as long as we
1834 // aren't compiling with trapping math, we can emulate this with
1835 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1836 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1837 // dependencies modeled yet.
1838 // FIXME: Use masked operations to avoid final merge.
1839 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1840   MVT VT = Op.getSimpleValueType();
1841   assert(VT.isVector() && "Unexpected type");
1842 
1843   SDLoc DL(Op);
1844 
1845   // Freeze the source since we are increasing the number of uses.
1846   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1847 
1848   // We do the conversion on the absolute value and fix the sign at the end.
1849   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1850 
1851   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1852   bool Ignored;
1853   APFloat Point5Pred = APFloat(0.5f);
1854   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1855   Point5Pred.next(/*nextDown*/ true);
1856 
1857   // Add the adjustment.
1858   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1859                                DAG.getConstantFP(Point5Pred, DL, VT));
1860 
1861   // Truncate to integer and convert back to fp.
1862   MVT IntVT = VT.changeVectorElementTypeToInteger();
1863   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1864   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1865 
1866   // Restore the original sign.
1867   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1868 
1869   // Determine the largest integer that can be represented exactly. This and
1870   // values larger than it don't have any fractional bits so don't need to
1871   // be converted.
1872   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1873   APFloat MaxVal = APFloat(FltSem);
1874   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1875                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1876   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1877 
1878   // If abs(Src) was larger than MaxVal or nan, keep it.
1879   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1880   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1881   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1882 }
1883 
1884 struct VIDSequence {
1885   int64_t StepNumerator;
1886   unsigned StepDenominator;
1887   int64_t Addend;
1888 };
1889 
1890 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1891 // to the (non-zero) step S and start value X. This can be then lowered as the
1892 // RVV sequence (VID * S) + X, for example.
1893 // The step S is represented as an integer numerator divided by a positive
1894 // denominator. Note that the implementation currently only identifies
1895 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1896 // cannot detect 2/3, for example.
1897 // Note that this method will also match potentially unappealing index
1898 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1899 // determine whether this is worth generating code for.
1900 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1901   unsigned NumElts = Op.getNumOperands();
1902   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1903   if (!Op.getValueType().isInteger())
1904     return None;
1905 
1906   Optional<unsigned> SeqStepDenom;
1907   Optional<int64_t> SeqStepNum, SeqAddend;
1908   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1909   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1910   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1911     // Assume undef elements match the sequence; we just have to be careful
1912     // when interpolating across them.
1913     if (Op.getOperand(Idx).isUndef())
1914       continue;
1915     // The BUILD_VECTOR must be all constants.
1916     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1917       return None;
1918 
1919     uint64_t Val = Op.getConstantOperandVal(Idx) &
1920                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1921 
1922     if (PrevElt) {
1923       // Calculate the step since the last non-undef element, and ensure
1924       // it's consistent across the entire sequence.
1925       unsigned IdxDiff = Idx - PrevElt->second;
1926       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1927 
1928       // A zero-value value difference means that we're somewhere in the middle
1929       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1930       // step change before evaluating the sequence.
1931       if (ValDiff == 0)
1932         continue;
1933 
1934       int64_t Remainder = ValDiff % IdxDiff;
1935       // Normalize the step if it's greater than 1.
1936       if (Remainder != ValDiff) {
1937         // The difference must cleanly divide the element span.
1938         if (Remainder != 0)
1939           return None;
1940         ValDiff /= IdxDiff;
1941         IdxDiff = 1;
1942       }
1943 
1944       if (!SeqStepNum)
1945         SeqStepNum = ValDiff;
1946       else if (ValDiff != SeqStepNum)
1947         return None;
1948 
1949       if (!SeqStepDenom)
1950         SeqStepDenom = IdxDiff;
1951       else if (IdxDiff != *SeqStepDenom)
1952         return None;
1953     }
1954 
1955     // Record this non-undef element for later.
1956     if (!PrevElt || PrevElt->first != Val)
1957       PrevElt = std::make_pair(Val, Idx);
1958   }
1959 
1960   // We need to have logged a step for this to count as a legal index sequence.
1961   if (!SeqStepNum || !SeqStepDenom)
1962     return None;
1963 
1964   // Loop back through the sequence and validate elements we might have skipped
1965   // while waiting for a valid step. While doing this, log any sequence addend.
1966   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1967     if (Op.getOperand(Idx).isUndef())
1968       continue;
1969     uint64_t Val = Op.getConstantOperandVal(Idx) &
1970                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1971     uint64_t ExpectedVal =
1972         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1973     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1974     if (!SeqAddend)
1975       SeqAddend = Addend;
1976     else if (Addend != SeqAddend)
1977       return None;
1978   }
1979 
1980   assert(SeqAddend && "Must have an addend if we have a step");
1981 
1982   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1983 }
1984 
1985 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1986 // and lower it as a VRGATHER_VX_VL from the source vector.
1987 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1988                                   SelectionDAG &DAG,
1989                                   const RISCVSubtarget &Subtarget) {
1990   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1991     return SDValue();
1992   SDValue Vec = SplatVal.getOperand(0);
1993   // Only perform this optimization on vectors of the same size for simplicity.
1994   // Don't perform this optimization for i1 vectors.
1995   // FIXME: Support i1 vectors, maybe by promoting to i8?
1996   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
1997     return SDValue();
1998   SDValue Idx = SplatVal.getOperand(1);
1999   // The index must be a legal type.
2000   if (Idx.getValueType() != Subtarget.getXLenVT())
2001     return SDValue();
2002 
2003   MVT ContainerVT = VT;
2004   if (VT.isFixedLengthVector()) {
2005     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2006     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2007   }
2008 
2009   SDValue Mask, VL;
2010   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2011 
2012   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2013                                Idx, Mask, DAG.getUNDEF(ContainerVT), VL);
2014 
2015   if (!VT.isFixedLengthVector())
2016     return Gather;
2017 
2018   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2019 }
2020 
2021 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2022                                  const RISCVSubtarget &Subtarget) {
2023   MVT VT = Op.getSimpleValueType();
2024   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2025 
2026   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2027 
2028   SDLoc DL(Op);
2029   SDValue Mask, VL;
2030   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2031 
2032   MVT XLenVT = Subtarget.getXLenVT();
2033   unsigned NumElts = Op.getNumOperands();
2034 
2035   if (VT.getVectorElementType() == MVT::i1) {
2036     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2037       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2038       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2039     }
2040 
2041     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2042       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2043       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2044     }
2045 
2046     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2047     // scalar integer chunks whose bit-width depends on the number of mask
2048     // bits and XLEN.
2049     // First, determine the most appropriate scalar integer type to use. This
2050     // is at most XLenVT, but may be shrunk to a smaller vector element type
2051     // according to the size of the final vector - use i8 chunks rather than
2052     // XLenVT if we're producing a v8i1. This results in more consistent
2053     // codegen across RV32 and RV64.
2054     unsigned NumViaIntegerBits =
2055         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2056     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2057     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2058       // If we have to use more than one INSERT_VECTOR_ELT then this
2059       // optimization is likely to increase code size; avoid peforming it in
2060       // such a case. We can use a load from a constant pool in this case.
2061       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2062         return SDValue();
2063       // Now we can create our integer vector type. Note that it may be larger
2064       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2065       MVT IntegerViaVecVT =
2066           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2067                            divideCeil(NumElts, NumViaIntegerBits));
2068 
2069       uint64_t Bits = 0;
2070       unsigned BitPos = 0, IntegerEltIdx = 0;
2071       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2072 
2073       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2074         // Once we accumulate enough bits to fill our scalar type, insert into
2075         // our vector and clear our accumulated data.
2076         if (I != 0 && I % NumViaIntegerBits == 0) {
2077           if (NumViaIntegerBits <= 32)
2078             Bits = SignExtend64<32>(Bits);
2079           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2080           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2081                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2082           Bits = 0;
2083           BitPos = 0;
2084           IntegerEltIdx++;
2085         }
2086         SDValue V = Op.getOperand(I);
2087         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2088         Bits |= ((uint64_t)BitValue << BitPos);
2089       }
2090 
2091       // Insert the (remaining) scalar value into position in our integer
2092       // vector type.
2093       if (NumViaIntegerBits <= 32)
2094         Bits = SignExtend64<32>(Bits);
2095       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2096       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2097                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2098 
2099       if (NumElts < NumViaIntegerBits) {
2100         // If we're producing a smaller vector than our minimum legal integer
2101         // type, bitcast to the equivalent (known-legal) mask type, and extract
2102         // our final mask.
2103         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2104         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2105         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2106                           DAG.getConstant(0, DL, XLenVT));
2107       } else {
2108         // Else we must have produced an integer type with the same size as the
2109         // mask type; bitcast for the final result.
2110         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2111         Vec = DAG.getBitcast(VT, Vec);
2112       }
2113 
2114       return Vec;
2115     }
2116 
2117     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2118     // vector type, we have a legal equivalently-sized i8 type, so we can use
2119     // that.
2120     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2121     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2122 
2123     SDValue WideVec;
2124     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2125       // For a splat, perform a scalar truncate before creating the wider
2126       // vector.
2127       assert(Splat.getValueType() == XLenVT &&
2128              "Unexpected type for i1 splat value");
2129       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2130                           DAG.getConstant(1, DL, XLenVT));
2131       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2132     } else {
2133       SmallVector<SDValue, 8> Ops(Op->op_values());
2134       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2135       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2136       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2137     }
2138 
2139     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2140   }
2141 
2142   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2143     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2144       return Gather;
2145     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2146                                         : RISCVISD::VMV_V_X_VL;
2147     Splat =
2148         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2149     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2150   }
2151 
2152   // Try and match index sequences, which we can lower to the vid instruction
2153   // with optional modifications. An all-undef vector is matched by
2154   // getSplatValue, above.
2155   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2156     int64_t StepNumerator = SimpleVID->StepNumerator;
2157     unsigned StepDenominator = SimpleVID->StepDenominator;
2158     int64_t Addend = SimpleVID->Addend;
2159 
2160     assert(StepNumerator != 0 && "Invalid step");
2161     bool Negate = false;
2162     int64_t SplatStepVal = StepNumerator;
2163     unsigned StepOpcode = ISD::MUL;
2164     if (StepNumerator != 1) {
2165       if (isPowerOf2_64(std::abs(StepNumerator))) {
2166         Negate = StepNumerator < 0;
2167         StepOpcode = ISD::SHL;
2168         SplatStepVal = Log2_64(std::abs(StepNumerator));
2169       }
2170     }
2171 
2172     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2173     // threshold since it's the immediate value many RVV instructions accept.
2174     // There is no vmul.vi instruction so ensure multiply constant can fit in
2175     // a single addi instruction.
2176     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2177          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2178         isPowerOf2_32(StepDenominator) &&
2179         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2180       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2181       // Convert right out of the scalable type so we can use standard ISD
2182       // nodes for the rest of the computation. If we used scalable types with
2183       // these, we'd lose the fixed-length vector info and generate worse
2184       // vsetvli code.
2185       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2186       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2187           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2188         SDValue SplatStep = DAG.getSplatBuildVector(
2189             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2190         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2191       }
2192       if (StepDenominator != 1) {
2193         SDValue SplatStep = DAG.getSplatBuildVector(
2194             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2195         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2196       }
2197       if (Addend != 0 || Negate) {
2198         SDValue SplatAddend = DAG.getSplatBuildVector(
2199             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2200         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2201       }
2202       return VID;
2203     }
2204   }
2205 
2206   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2207   // when re-interpreted as a vector with a larger element type. For example,
2208   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2209   // could be instead splat as
2210   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2211   // TODO: This optimization could also work on non-constant splats, but it
2212   // would require bit-manipulation instructions to construct the splat value.
2213   SmallVector<SDValue> Sequence;
2214   unsigned EltBitSize = VT.getScalarSizeInBits();
2215   const auto *BV = cast<BuildVectorSDNode>(Op);
2216   if (VT.isInteger() && EltBitSize < 64 &&
2217       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2218       BV->getRepeatedSequence(Sequence) &&
2219       (Sequence.size() * EltBitSize) <= 64) {
2220     unsigned SeqLen = Sequence.size();
2221     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2222     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2223     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2224             ViaIntVT == MVT::i64) &&
2225            "Unexpected sequence type");
2226 
2227     unsigned EltIdx = 0;
2228     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2229     uint64_t SplatValue = 0;
2230     // Construct the amalgamated value which can be splatted as this larger
2231     // vector type.
2232     for (const auto &SeqV : Sequence) {
2233       if (!SeqV.isUndef())
2234         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2235                        << (EltIdx * EltBitSize));
2236       EltIdx++;
2237     }
2238 
2239     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2240     // achieve better constant materializion.
2241     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2242       SplatValue = SignExtend64<32>(SplatValue);
2243 
2244     // Since we can't introduce illegal i64 types at this stage, we can only
2245     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2246     // way we can use RVV instructions to splat.
2247     assert((ViaIntVT.bitsLE(XLenVT) ||
2248             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2249            "Unexpected bitcast sequence");
2250     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2251       SDValue ViaVL =
2252           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2253       MVT ViaContainerVT =
2254           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2255       SDValue Splat =
2256           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2257                       DAG.getUNDEF(ViaContainerVT),
2258                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2259       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2260       return DAG.getBitcast(VT, Splat);
2261     }
2262   }
2263 
2264   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2265   // which constitute a large proportion of the elements. In such cases we can
2266   // splat a vector with the dominant element and make up the shortfall with
2267   // INSERT_VECTOR_ELTs.
2268   // Note that this includes vectors of 2 elements by association. The
2269   // upper-most element is the "dominant" one, allowing us to use a splat to
2270   // "insert" the upper element, and an insert of the lower element at position
2271   // 0, which improves codegen.
2272   SDValue DominantValue;
2273   unsigned MostCommonCount = 0;
2274   DenseMap<SDValue, unsigned> ValueCounts;
2275   unsigned NumUndefElts =
2276       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2277 
2278   // Track the number of scalar loads we know we'd be inserting, estimated as
2279   // any non-zero floating-point constant. Other kinds of element are either
2280   // already in registers or are materialized on demand. The threshold at which
2281   // a vector load is more desirable than several scalar materializion and
2282   // vector-insertion instructions is not known.
2283   unsigned NumScalarLoads = 0;
2284 
2285   for (SDValue V : Op->op_values()) {
2286     if (V.isUndef())
2287       continue;
2288 
2289     ValueCounts.insert(std::make_pair(V, 0));
2290     unsigned &Count = ValueCounts[V];
2291 
2292     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2293       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2294 
2295     // Is this value dominant? In case of a tie, prefer the highest element as
2296     // it's cheaper to insert near the beginning of a vector than it is at the
2297     // end.
2298     if (++Count >= MostCommonCount) {
2299       DominantValue = V;
2300       MostCommonCount = Count;
2301     }
2302   }
2303 
2304   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2305   unsigned NumDefElts = NumElts - NumUndefElts;
2306   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2307 
2308   // Don't perform this optimization when optimizing for size, since
2309   // materializing elements and inserting them tends to cause code bloat.
2310   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2311       ((MostCommonCount > DominantValueCountThreshold) ||
2312        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2313     // Start by splatting the most common element.
2314     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2315 
2316     DenseSet<SDValue> Processed{DominantValue};
2317     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2318     for (const auto &OpIdx : enumerate(Op->ops())) {
2319       const SDValue &V = OpIdx.value();
2320       if (V.isUndef() || !Processed.insert(V).second)
2321         continue;
2322       if (ValueCounts[V] == 1) {
2323         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2324                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2325       } else {
2326         // Blend in all instances of this value using a VSELECT, using a
2327         // mask where each bit signals whether that element is the one
2328         // we're after.
2329         SmallVector<SDValue> Ops;
2330         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2331           return DAG.getConstant(V == V1, DL, XLenVT);
2332         });
2333         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2334                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2335                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2336       }
2337     }
2338 
2339     return Vec;
2340   }
2341 
2342   return SDValue();
2343 }
2344 
2345 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2346                                    SDValue Lo, SDValue Hi, SDValue VL,
2347                                    SelectionDAG &DAG) {
2348   if (!Passthru)
2349     Passthru = DAG.getUNDEF(VT);
2350   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2351     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2352     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2353     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2354     // node in order to try and match RVV vector/scalar instructions.
2355     if ((LoC >> 31) == HiC)
2356       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2357 
2358     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2359     // vmv.v.x whose EEW = 32 to lower it.
2360     auto *Const = dyn_cast<ConstantSDNode>(VL);
2361     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2362       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2363       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2364       // access the subtarget here now.
2365       auto InterVec = DAG.getNode(
2366           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2367                                   DAG.getRegister(RISCV::X0, MVT::i32));
2368       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2369     }
2370   }
2371 
2372   // Fall back to a stack store and stride x0 vector load.
2373   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2374                      Hi, VL);
2375 }
2376 
2377 // Called by type legalization to handle splat of i64 on RV32.
2378 // FIXME: We can optimize this when the type has sign or zero bits in one
2379 // of the halves.
2380 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2381                                    SDValue Scalar, SDValue VL,
2382                                    SelectionDAG &DAG) {
2383   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2384   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2385                            DAG.getConstant(0, DL, MVT::i32));
2386   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2387                            DAG.getConstant(1, DL, MVT::i32));
2388   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2389 }
2390 
2391 // This function lowers a splat of a scalar operand Splat with the vector
2392 // length VL. It ensures the final sequence is type legal, which is useful when
2393 // lowering a splat after type legalization.
2394 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2395                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2396                                 const RISCVSubtarget &Subtarget) {
2397   bool HasPassthru = Passthru && !Passthru.isUndef();
2398   if (!HasPassthru && !Passthru)
2399     Passthru = DAG.getUNDEF(VT);
2400   if (VT.isFloatingPoint()) {
2401     // If VL is 1, we could use vfmv.s.f.
2402     if (isOneConstant(VL))
2403       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2404     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2405   }
2406 
2407   MVT XLenVT = Subtarget.getXLenVT();
2408 
2409   // Simplest case is that the operand needs to be promoted to XLenVT.
2410   if (Scalar.getValueType().bitsLE(XLenVT)) {
2411     // If the operand is a constant, sign extend to increase our chances
2412     // of being able to use a .vi instruction. ANY_EXTEND would become a
2413     // a zero extend and the simm5 check in isel would fail.
2414     // FIXME: Should we ignore the upper bits in isel instead?
2415     unsigned ExtOpc =
2416         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2417     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2418     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2419     // If VL is 1 and the scalar value won't benefit from immediate, we could
2420     // use vmv.s.x.
2421     if (isOneConstant(VL) &&
2422         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2423       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2424     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2425   }
2426 
2427   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2428          "Unexpected scalar for splat lowering!");
2429 
2430   if (isOneConstant(VL) && isNullConstant(Scalar))
2431     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2432                        DAG.getConstant(0, DL, XLenVT), VL);
2433 
2434   // Otherwise use the more complicated splatting algorithm.
2435   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2436 }
2437 
2438 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2439                                 const RISCVSubtarget &Subtarget) {
2440   // We need to be able to widen elements to the next larger integer type.
2441   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2442     return false;
2443 
2444   int Size = Mask.size();
2445   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2446 
2447   int Srcs[] = {-1, -1};
2448   for (int i = 0; i != Size; ++i) {
2449     // Ignore undef elements.
2450     if (Mask[i] < 0)
2451       continue;
2452 
2453     // Is this an even or odd element.
2454     int Pol = i % 2;
2455 
2456     // Ensure we consistently use the same source for this element polarity.
2457     int Src = Mask[i] / Size;
2458     if (Srcs[Pol] < 0)
2459       Srcs[Pol] = Src;
2460     if (Srcs[Pol] != Src)
2461       return false;
2462 
2463     // Make sure the element within the source is appropriate for this element
2464     // in the destination.
2465     int Elt = Mask[i] % Size;
2466     if (Elt != i / 2)
2467       return false;
2468   }
2469 
2470   // We need to find a source for each polarity and they can't be the same.
2471   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2472     return false;
2473 
2474   // Swap the sources if the second source was in the even polarity.
2475   SwapSources = Srcs[0] > Srcs[1];
2476 
2477   return true;
2478 }
2479 
2480 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2481 /// and then extract the original number of elements from the rotated result.
2482 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2483 /// returned rotation amount is for a rotate right, where elements move from
2484 /// higher elements to lower elements. \p LoSrc indicates the first source
2485 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2486 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2487 /// 0 or 1 if a rotation is found.
2488 ///
2489 /// NOTE: We talk about rotate to the right which matches how bit shift and
2490 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2491 /// and the table below write vectors with the lowest elements on the left.
2492 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2493   int Size = Mask.size();
2494 
2495   // We need to detect various ways of spelling a rotation:
2496   //   [11, 12, 13, 14, 15,  0,  1,  2]
2497   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2498   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2499   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2500   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2501   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2502   int Rotation = 0;
2503   LoSrc = -1;
2504   HiSrc = -1;
2505   for (int i = 0; i != Size; ++i) {
2506     int M = Mask[i];
2507     if (M < 0)
2508       continue;
2509 
2510     // Determine where a rotate vector would have started.
2511     int StartIdx = i - (M % Size);
2512     // The identity rotation isn't interesting, stop.
2513     if (StartIdx == 0)
2514       return -1;
2515 
2516     // If we found the tail of a vector the rotation must be the missing
2517     // front. If we found the head of a vector, it must be how much of the
2518     // head.
2519     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2520 
2521     if (Rotation == 0)
2522       Rotation = CandidateRotation;
2523     else if (Rotation != CandidateRotation)
2524       // The rotations don't match, so we can't match this mask.
2525       return -1;
2526 
2527     // Compute which value this mask is pointing at.
2528     int MaskSrc = M < Size ? 0 : 1;
2529 
2530     // Compute which of the two target values this index should be assigned to.
2531     // This reflects whether the high elements are remaining or the low elemnts
2532     // are remaining.
2533     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2534 
2535     // Either set up this value if we've not encountered it before, or check
2536     // that it remains consistent.
2537     if (TargetSrc < 0)
2538       TargetSrc = MaskSrc;
2539     else if (TargetSrc != MaskSrc)
2540       // This may be a rotation, but it pulls from the inputs in some
2541       // unsupported interleaving.
2542       return -1;
2543   }
2544 
2545   // Check that we successfully analyzed the mask, and normalize the results.
2546   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2547   assert((LoSrc >= 0 || HiSrc >= 0) &&
2548          "Failed to find a rotated input vector!");
2549 
2550   return Rotation;
2551 }
2552 
2553 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2554                                    const RISCVSubtarget &Subtarget) {
2555   SDValue V1 = Op.getOperand(0);
2556   SDValue V2 = Op.getOperand(1);
2557   SDLoc DL(Op);
2558   MVT XLenVT = Subtarget.getXLenVT();
2559   MVT VT = Op.getSimpleValueType();
2560   unsigned NumElts = VT.getVectorNumElements();
2561   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2562 
2563   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2564 
2565   SDValue TrueMask, VL;
2566   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2567 
2568   if (SVN->isSplat()) {
2569     const int Lane = SVN->getSplatIndex();
2570     if (Lane >= 0) {
2571       MVT SVT = VT.getVectorElementType();
2572 
2573       // Turn splatted vector load into a strided load with an X0 stride.
2574       SDValue V = V1;
2575       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2576       // with undef.
2577       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2578       int Offset = Lane;
2579       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2580         int OpElements =
2581             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2582         V = V.getOperand(Offset / OpElements);
2583         Offset %= OpElements;
2584       }
2585 
2586       // We need to ensure the load isn't atomic or volatile.
2587       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2588         auto *Ld = cast<LoadSDNode>(V);
2589         Offset *= SVT.getStoreSize();
2590         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2591                                                    TypeSize::Fixed(Offset), DL);
2592 
2593         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2594         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2595           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2596           SDValue IntID =
2597               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2598           SDValue Ops[] = {Ld->getChain(),
2599                            IntID,
2600                            DAG.getUNDEF(ContainerVT),
2601                            NewAddr,
2602                            DAG.getRegister(RISCV::X0, XLenVT),
2603                            VL};
2604           SDValue NewLoad = DAG.getMemIntrinsicNode(
2605               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2606               DAG.getMachineFunction().getMachineMemOperand(
2607                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2608           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2609           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2610         }
2611 
2612         // Otherwise use a scalar load and splat. This will give the best
2613         // opportunity to fold a splat into the operation. ISel can turn it into
2614         // the x0 strided load if we aren't able to fold away the select.
2615         if (SVT.isFloatingPoint())
2616           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2617                           Ld->getPointerInfo().getWithOffset(Offset),
2618                           Ld->getOriginalAlign(),
2619                           Ld->getMemOperand()->getFlags());
2620         else
2621           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2622                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2623                              Ld->getOriginalAlign(),
2624                              Ld->getMemOperand()->getFlags());
2625         DAG.makeEquivalentMemoryOrdering(Ld, V);
2626 
2627         unsigned Opc =
2628             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2629         SDValue Splat =
2630             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2631         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2632       }
2633 
2634       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2635       assert(Lane < (int)NumElts && "Unexpected lane!");
2636       SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
2637                                    V1, DAG.getConstant(Lane, DL, XLenVT),
2638                                    TrueMask, DAG.getUNDEF(ContainerVT), VL);
2639       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2640     }
2641   }
2642 
2643   ArrayRef<int> Mask = SVN->getMask();
2644 
2645   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2646   // be undef which can be handled with a single SLIDEDOWN/UP.
2647   int LoSrc, HiSrc;
2648   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2649   if (Rotation > 0) {
2650     SDValue LoV, HiV;
2651     if (LoSrc >= 0) {
2652       LoV = LoSrc == 0 ? V1 : V2;
2653       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2654     }
2655     if (HiSrc >= 0) {
2656       HiV = HiSrc == 0 ? V1 : V2;
2657       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2658     }
2659 
2660     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2661     // to slide LoV up by (NumElts - Rotation).
2662     unsigned InvRotate = NumElts - Rotation;
2663 
2664     SDValue Res = DAG.getUNDEF(ContainerVT);
2665     if (HiV) {
2666       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2667       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2668       // causes multiple vsetvlis in some test cases such as lowering
2669       // reduce.mul
2670       SDValue DownVL = VL;
2671       if (LoV)
2672         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2673       Res =
2674           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2675                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2676     }
2677     if (LoV)
2678       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2679                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2680 
2681     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2682   }
2683 
2684   // Detect an interleave shuffle and lower to
2685   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2686   bool SwapSources;
2687   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2688     // Swap sources if needed.
2689     if (SwapSources)
2690       std::swap(V1, V2);
2691 
2692     // Extract the lower half of the vectors.
2693     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2694     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2695                      DAG.getConstant(0, DL, XLenVT));
2696     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2697                      DAG.getConstant(0, DL, XLenVT));
2698 
2699     // Double the element width and halve the number of elements in an int type.
2700     unsigned EltBits = VT.getScalarSizeInBits();
2701     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2702     MVT WideIntVT =
2703         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2704     // Convert this to a scalable vector. We need to base this on the
2705     // destination size to ensure there's always a type with a smaller LMUL.
2706     MVT WideIntContainerVT =
2707         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2708 
2709     // Convert sources to scalable vectors with the same element count as the
2710     // larger type.
2711     MVT HalfContainerVT = MVT::getVectorVT(
2712         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2713     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2714     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2715 
2716     // Cast sources to integer.
2717     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2718     MVT IntHalfVT =
2719         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2720     V1 = DAG.getBitcast(IntHalfVT, V1);
2721     V2 = DAG.getBitcast(IntHalfVT, V2);
2722 
2723     // Freeze V2 since we use it twice and we need to be sure that the add and
2724     // multiply see the same value.
2725     V2 = DAG.getFreeze(V2);
2726 
2727     // Recreate TrueMask using the widened type's element count.
2728     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2729 
2730     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2731     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2732                               V2, TrueMask, VL);
2733     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2734     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2735                                      DAG.getUNDEF(IntHalfVT),
2736                                      DAG.getAllOnesConstant(DL, XLenVT));
2737     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2738                                    V2, Multiplier, TrueMask, VL);
2739     // Add the new copies to our previous addition giving us 2^eltbits copies of
2740     // V2. This is equivalent to shifting V2 left by eltbits. This should
2741     // combine with the vwmulu.vv above to form vwmaccu.vv.
2742     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2743                       TrueMask, VL);
2744     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2745     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2746     // vector VT.
2747     ContainerVT =
2748         MVT::getVectorVT(VT.getVectorElementType(),
2749                          WideIntContainerVT.getVectorElementCount() * 2);
2750     Add = DAG.getBitcast(ContainerVT, Add);
2751     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2752   }
2753 
2754   // Detect shuffles which can be re-expressed as vector selects; these are
2755   // shuffles in which each element in the destination is taken from an element
2756   // at the corresponding index in either source vectors.
2757   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2758     int MaskIndex = MaskIdx.value();
2759     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2760   });
2761 
2762   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2763 
2764   SmallVector<SDValue> MaskVals;
2765   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2766   // merged with a second vrgather.
2767   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2768 
2769   // By default we preserve the original operand order, and use a mask to
2770   // select LHS as true and RHS as false. However, since RVV vector selects may
2771   // feature splats but only on the LHS, we may choose to invert our mask and
2772   // instead select between RHS and LHS.
2773   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2774   bool InvertMask = IsSelect == SwapOps;
2775 
2776   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2777   // half.
2778   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2779 
2780   // Now construct the mask that will be used by the vselect or blended
2781   // vrgather operation. For vrgathers, construct the appropriate indices into
2782   // each vector.
2783   for (int MaskIndex : Mask) {
2784     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2785     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2786     if (!IsSelect) {
2787       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2788       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2789                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2790                                      : DAG.getUNDEF(XLenVT));
2791       GatherIndicesRHS.push_back(
2792           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2793                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2794       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2795         ++LHSIndexCounts[MaskIndex];
2796       if (!IsLHSOrUndefIndex)
2797         ++RHSIndexCounts[MaskIndex - NumElts];
2798     }
2799   }
2800 
2801   if (SwapOps) {
2802     std::swap(V1, V2);
2803     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2804   }
2805 
2806   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2807   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2808   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2809 
2810   if (IsSelect)
2811     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2812 
2813   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2814     // On such a large vector we're unable to use i8 as the index type.
2815     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2816     // may involve vector splitting if we're already at LMUL=8, or our
2817     // user-supplied maximum fixed-length LMUL.
2818     return SDValue();
2819   }
2820 
2821   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2822   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2823   MVT IndexVT = VT.changeTypeToInteger();
2824   // Since we can't introduce illegal index types at this stage, use i16 and
2825   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2826   // than XLenVT.
2827   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2828     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2829     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2830   }
2831 
2832   MVT IndexContainerVT =
2833       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2834 
2835   SDValue Gather;
2836   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2837   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2838   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2839     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2840                               Subtarget);
2841   } else {
2842     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2843     // If only one index is used, we can use a "splat" vrgather.
2844     // TODO: We can splat the most-common index and fix-up any stragglers, if
2845     // that's beneficial.
2846     if (LHSIndexCounts.size() == 1) {
2847       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2848       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2849                            DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask,
2850                            DAG.getUNDEF(ContainerVT), VL);
2851     } else {
2852       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2853       LHSIndices =
2854           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2855 
2856       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2857                            TrueMask, DAG.getUNDEF(ContainerVT), VL);
2858     }
2859   }
2860 
2861   // If a second vector operand is used by this shuffle, blend it in with an
2862   // additional vrgather.
2863   if (!V2.isUndef()) {
2864     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2865 
2866     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2867     SelectMask =
2868         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2869 
2870     // If only one index is used, we can use a "splat" vrgather.
2871     // TODO: We can splat the most-common index and fix-up any stragglers, if
2872     // that's beneficial.
2873     if (RHSIndexCounts.size() == 1) {
2874       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2875       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2876                            DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask,
2877                            Gather, VL);
2878     } else {
2879       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2880       RHSIndices =
2881           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2882       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices,
2883                            SelectMask, Gather, VL);
2884     }
2885   }
2886 
2887   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2888 }
2889 
2890 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2891   // Support splats for any type. These should type legalize well.
2892   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2893     return true;
2894 
2895   // Only support legal VTs for other shuffles for now.
2896   if (!isTypeLegal(VT))
2897     return false;
2898 
2899   MVT SVT = VT.getSimpleVT();
2900 
2901   bool SwapSources;
2902   int LoSrc, HiSrc;
2903   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2904          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2905 }
2906 
2907 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2908 // the exponent.
2909 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2910   MVT VT = Op.getSimpleValueType();
2911   unsigned EltSize = VT.getScalarSizeInBits();
2912   SDValue Src = Op.getOperand(0);
2913   SDLoc DL(Op);
2914 
2915   // We need a FP type that can represent the value.
2916   // TODO: Use f16 for i8 when possible?
2917   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2918   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2919 
2920   // Legal types should have been checked in the RISCVTargetLowering
2921   // constructor.
2922   // TODO: Splitting may make sense in some cases.
2923   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2924          "Expected legal float type!");
2925 
2926   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2927   // The trailing zero count is equal to log2 of this single bit value.
2928   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2929     SDValue Neg =
2930         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2931     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2932   }
2933 
2934   // We have a legal FP type, convert to it.
2935   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2936   // Bitcast to integer and shift the exponent to the LSB.
2937   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2938   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2939   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2940   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2941                               DAG.getConstant(ShiftAmt, DL, IntVT));
2942   // Truncate back to original type to allow vnsrl.
2943   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2944   // The exponent contains log2 of the value in biased form.
2945   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2946 
2947   // For trailing zeros, we just need to subtract the bias.
2948   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2949     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2950                        DAG.getConstant(ExponentBias, DL, VT));
2951 
2952   // For leading zeros, we need to remove the bias and convert from log2 to
2953   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2954   unsigned Adjust = ExponentBias + (EltSize - 1);
2955   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2956 }
2957 
2958 // While RVV has alignment restrictions, we should always be able to load as a
2959 // legal equivalently-sized byte-typed vector instead. This method is
2960 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2961 // the load is already correctly-aligned, it returns SDValue().
2962 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2963                                                     SelectionDAG &DAG) const {
2964   auto *Load = cast<LoadSDNode>(Op);
2965   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2966 
2967   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2968                                      Load->getMemoryVT(),
2969                                      *Load->getMemOperand()))
2970     return SDValue();
2971 
2972   SDLoc DL(Op);
2973   MVT VT = Op.getSimpleValueType();
2974   unsigned EltSizeBits = VT.getScalarSizeInBits();
2975   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2976          "Unexpected unaligned RVV load type");
2977   MVT NewVT =
2978       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2979   assert(NewVT.isValid() &&
2980          "Expecting equally-sized RVV vector types to be legal");
2981   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2982                           Load->getPointerInfo(), Load->getOriginalAlign(),
2983                           Load->getMemOperand()->getFlags());
2984   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2985 }
2986 
2987 // While RVV has alignment restrictions, we should always be able to store as a
2988 // legal equivalently-sized byte-typed vector instead. This method is
2989 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2990 // returns SDValue() if the store is already correctly aligned.
2991 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2992                                                      SelectionDAG &DAG) const {
2993   auto *Store = cast<StoreSDNode>(Op);
2994   assert(Store && Store->getValue().getValueType().isVector() &&
2995          "Expected vector store");
2996 
2997   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2998                                      Store->getMemoryVT(),
2999                                      *Store->getMemOperand()))
3000     return SDValue();
3001 
3002   SDLoc DL(Op);
3003   SDValue StoredVal = Store->getValue();
3004   MVT VT = StoredVal.getSimpleValueType();
3005   unsigned EltSizeBits = VT.getScalarSizeInBits();
3006   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3007          "Unexpected unaligned RVV store type");
3008   MVT NewVT =
3009       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3010   assert(NewVT.isValid() &&
3011          "Expecting equally-sized RVV vector types to be legal");
3012   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3013   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3014                       Store->getPointerInfo(), Store->getOriginalAlign(),
3015                       Store->getMemOperand()->getFlags());
3016 }
3017 
3018 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
3019                              const RISCVSubtarget &Subtarget) {
3020   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
3021 
3022   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
3023 
3024   // All simm32 constants should be handled by isel.
3025   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
3026   // this check redundant, but small immediates are common so this check
3027   // should have better compile time.
3028   if (isInt<32>(Imm))
3029     return Op;
3030 
3031   // We only need to cost the immediate, if constant pool lowering is enabled.
3032   if (!Subtarget.useConstantPoolForLargeInts())
3033     return Op;
3034 
3035   RISCVMatInt::InstSeq Seq =
3036       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3037   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3038     return Op;
3039 
3040   // Expand to a constant pool using the default expansion code.
3041   return SDValue();
3042 }
3043 
3044 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3045                                             SelectionDAG &DAG) const {
3046   switch (Op.getOpcode()) {
3047   default:
3048     report_fatal_error("unimplemented operand");
3049   case ISD::GlobalAddress:
3050     return lowerGlobalAddress(Op, DAG);
3051   case ISD::BlockAddress:
3052     return lowerBlockAddress(Op, DAG);
3053   case ISD::ConstantPool:
3054     return lowerConstantPool(Op, DAG);
3055   case ISD::JumpTable:
3056     return lowerJumpTable(Op, DAG);
3057   case ISD::GlobalTLSAddress:
3058     return lowerGlobalTLSAddress(Op, DAG);
3059   case ISD::Constant:
3060     return lowerConstant(Op, DAG, Subtarget);
3061   case ISD::SELECT:
3062     return lowerSELECT(Op, DAG);
3063   case ISD::BRCOND:
3064     return lowerBRCOND(Op, DAG);
3065   case ISD::VASTART:
3066     return lowerVASTART(Op, DAG);
3067   case ISD::FRAMEADDR:
3068     return lowerFRAMEADDR(Op, DAG);
3069   case ISD::RETURNADDR:
3070     return lowerRETURNADDR(Op, DAG);
3071   case ISD::SHL_PARTS:
3072     return lowerShiftLeftParts(Op, DAG);
3073   case ISD::SRA_PARTS:
3074     return lowerShiftRightParts(Op, DAG, true);
3075   case ISD::SRL_PARTS:
3076     return lowerShiftRightParts(Op, DAG, false);
3077   case ISD::BITCAST: {
3078     SDLoc DL(Op);
3079     EVT VT = Op.getValueType();
3080     SDValue Op0 = Op.getOperand(0);
3081     EVT Op0VT = Op0.getValueType();
3082     MVT XLenVT = Subtarget.getXLenVT();
3083     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3084       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3085       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3086       return FPConv;
3087     }
3088     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3089         Subtarget.hasStdExtF()) {
3090       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3091       SDValue FPConv =
3092           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3093       return FPConv;
3094     }
3095 
3096     // Consider other scalar<->scalar casts as legal if the types are legal.
3097     // Otherwise expand them.
3098     if (!VT.isVector() && !Op0VT.isVector()) {
3099       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3100         return Op;
3101       return SDValue();
3102     }
3103 
3104     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3105            "Unexpected types");
3106 
3107     if (VT.isFixedLengthVector()) {
3108       // We can handle fixed length vector bitcasts with a simple replacement
3109       // in isel.
3110       if (Op0VT.isFixedLengthVector())
3111         return Op;
3112       // When bitcasting from scalar to fixed-length vector, insert the scalar
3113       // into a one-element vector of the result type, and perform a vector
3114       // bitcast.
3115       if (!Op0VT.isVector()) {
3116         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3117         if (!isTypeLegal(BVT))
3118           return SDValue();
3119         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3120                                               DAG.getUNDEF(BVT), Op0,
3121                                               DAG.getConstant(0, DL, XLenVT)));
3122       }
3123       return SDValue();
3124     }
3125     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3126     // thus: bitcast the vector to a one-element vector type whose element type
3127     // is the same as the result type, and extract the first element.
3128     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3129       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3130       if (!isTypeLegal(BVT))
3131         return SDValue();
3132       SDValue BVec = DAG.getBitcast(BVT, Op0);
3133       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3134                          DAG.getConstant(0, DL, XLenVT));
3135     }
3136     return SDValue();
3137   }
3138   case ISD::INTRINSIC_WO_CHAIN:
3139     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3140   case ISD::INTRINSIC_W_CHAIN:
3141     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3142   case ISD::INTRINSIC_VOID:
3143     return LowerINTRINSIC_VOID(Op, DAG);
3144   case ISD::BSWAP:
3145   case ISD::BITREVERSE: {
3146     MVT VT = Op.getSimpleValueType();
3147     SDLoc DL(Op);
3148     if (Subtarget.hasStdExtZbp()) {
3149       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3150       // Start with the maximum immediate value which is the bitwidth - 1.
3151       unsigned Imm = VT.getSizeInBits() - 1;
3152       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3153       if (Op.getOpcode() == ISD::BSWAP)
3154         Imm &= ~0x7U;
3155       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3156                          DAG.getConstant(Imm, DL, VT));
3157     }
3158     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3159     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3160     // Expand bitreverse to a bswap(rev8) followed by brev8.
3161     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3162     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3163     // as brev8 by an isel pattern.
3164     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3165                        DAG.getConstant(7, DL, VT));
3166   }
3167   case ISD::FSHL:
3168   case ISD::FSHR: {
3169     MVT VT = Op.getSimpleValueType();
3170     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3171     SDLoc DL(Op);
3172     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3173     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3174     // accidentally setting the extra bit.
3175     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3176     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3177                                 DAG.getConstant(ShAmtWidth, DL, VT));
3178     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3179     // instruction use different orders. fshl will return its first operand for
3180     // shift of zero, fshr will return its second operand. fsl and fsr both
3181     // return rs1 so the ISD nodes need to have different operand orders.
3182     // Shift amount is in rs2.
3183     SDValue Op0 = Op.getOperand(0);
3184     SDValue Op1 = Op.getOperand(1);
3185     unsigned Opc = RISCVISD::FSL;
3186     if (Op.getOpcode() == ISD::FSHR) {
3187       std::swap(Op0, Op1);
3188       Opc = RISCVISD::FSR;
3189     }
3190     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3191   }
3192   case ISD::TRUNCATE:
3193     // Only custom-lower vector truncates
3194     if (!Op.getSimpleValueType().isVector())
3195       return Op;
3196     return lowerVectorTruncLike(Op, DAG);
3197   case ISD::ANY_EXTEND:
3198   case ISD::ZERO_EXTEND:
3199     if (Op.getOperand(0).getValueType().isVector() &&
3200         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3201       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3202     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3203   case ISD::SIGN_EXTEND:
3204     if (Op.getOperand(0).getValueType().isVector() &&
3205         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3206       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3207     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3208   case ISD::SPLAT_VECTOR_PARTS:
3209     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3210   case ISD::INSERT_VECTOR_ELT:
3211     return lowerINSERT_VECTOR_ELT(Op, DAG);
3212   case ISD::EXTRACT_VECTOR_ELT:
3213     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3214   case ISD::VSCALE: {
3215     MVT VT = Op.getSimpleValueType();
3216     SDLoc DL(Op);
3217     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3218     // We define our scalable vector types for lmul=1 to use a 64 bit known
3219     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3220     // vscale as VLENB / 8.
3221     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3222     if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3223       report_fatal_error("Support for VLEN==32 is incomplete.");
3224     // We assume VLENB is a multiple of 8. We manually choose the best shift
3225     // here because SimplifyDemandedBits isn't always able to simplify it.
3226     uint64_t Val = Op.getConstantOperandVal(0);
3227     if (isPowerOf2_64(Val)) {
3228       uint64_t Log2 = Log2_64(Val);
3229       if (Log2 < 3)
3230         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3231                            DAG.getConstant(3 - Log2, DL, VT));
3232       if (Log2 > 3)
3233         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3234                            DAG.getConstant(Log2 - 3, DL, VT));
3235       return VLENB;
3236     }
3237     // If the multiplier is a multiple of 8, scale it down to avoid needing
3238     // to shift the VLENB value.
3239     if ((Val % 8) == 0)
3240       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3241                          DAG.getConstant(Val / 8, DL, VT));
3242 
3243     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3244                                  DAG.getConstant(3, DL, VT));
3245     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3246   }
3247   case ISD::FPOWI: {
3248     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3249     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3250     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3251         Op.getOperand(1).getValueType() == MVT::i32) {
3252       SDLoc DL(Op);
3253       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3254       SDValue Powi =
3255           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3256       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3257                          DAG.getIntPtrConstant(0, DL));
3258     }
3259     return SDValue();
3260   }
3261   case ISD::FP_EXTEND:
3262   case ISD::FP_ROUND:
3263     if (!Op.getValueType().isVector())
3264       return Op;
3265     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3266   case ISD::FP_TO_SINT:
3267   case ISD::FP_TO_UINT:
3268   case ISD::SINT_TO_FP:
3269   case ISD::UINT_TO_FP: {
3270     // RVV can only do fp<->int conversions to types half/double the size as
3271     // the source. We custom-lower any conversions that do two hops into
3272     // sequences.
3273     MVT VT = Op.getSimpleValueType();
3274     if (!VT.isVector())
3275       return Op;
3276     SDLoc DL(Op);
3277     SDValue Src = Op.getOperand(0);
3278     MVT EltVT = VT.getVectorElementType();
3279     MVT SrcVT = Src.getSimpleValueType();
3280     MVT SrcEltVT = SrcVT.getVectorElementType();
3281     unsigned EltSize = EltVT.getSizeInBits();
3282     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3283     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3284            "Unexpected vector element types");
3285 
3286     bool IsInt2FP = SrcEltVT.isInteger();
3287     // Widening conversions
3288     if (EltSize > (2 * SrcEltSize)) {
3289       if (IsInt2FP) {
3290         // Do a regular integer sign/zero extension then convert to float.
3291         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3292                                       VT.getVectorElementCount());
3293         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3294                                  ? ISD::ZERO_EXTEND
3295                                  : ISD::SIGN_EXTEND;
3296         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3297         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3298       }
3299       // FP2Int
3300       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3301       // Do one doubling fp_extend then complete the operation by converting
3302       // to int.
3303       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3304       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3305       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3306     }
3307 
3308     // Narrowing conversions
3309     if (SrcEltSize > (2 * EltSize)) {
3310       if (IsInt2FP) {
3311         // One narrowing int_to_fp, then an fp_round.
3312         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3313         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3314         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3315         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3316       }
3317       // FP2Int
3318       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3319       // representable by the integer, the result is poison.
3320       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3321                                     VT.getVectorElementCount());
3322       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3323       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3324     }
3325 
3326     // Scalable vectors can exit here. Patterns will handle equally-sized
3327     // conversions halving/doubling ones.
3328     if (!VT.isFixedLengthVector())
3329       return Op;
3330 
3331     // For fixed-length vectors we lower to a custom "VL" node.
3332     unsigned RVVOpc = 0;
3333     switch (Op.getOpcode()) {
3334     default:
3335       llvm_unreachable("Impossible opcode");
3336     case ISD::FP_TO_SINT:
3337       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3338       break;
3339     case ISD::FP_TO_UINT:
3340       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3341       break;
3342     case ISD::SINT_TO_FP:
3343       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3344       break;
3345     case ISD::UINT_TO_FP:
3346       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3347       break;
3348     }
3349 
3350     MVT ContainerVT, SrcContainerVT;
3351     // Derive the reference container type from the larger vector type.
3352     if (SrcEltSize > EltSize) {
3353       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3354       ContainerVT =
3355           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3356     } else {
3357       ContainerVT = getContainerForFixedLengthVector(VT);
3358       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3359     }
3360 
3361     SDValue Mask, VL;
3362     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3363 
3364     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3365     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3366     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3367   }
3368   case ISD::FP_TO_SINT_SAT:
3369   case ISD::FP_TO_UINT_SAT:
3370     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3371   case ISD::FTRUNC:
3372   case ISD::FCEIL:
3373   case ISD::FFLOOR:
3374     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3375   case ISD::FROUND:
3376     return lowerFROUND(Op, DAG);
3377   case ISD::VECREDUCE_ADD:
3378   case ISD::VECREDUCE_UMAX:
3379   case ISD::VECREDUCE_SMAX:
3380   case ISD::VECREDUCE_UMIN:
3381   case ISD::VECREDUCE_SMIN:
3382     return lowerVECREDUCE(Op, DAG);
3383   case ISD::VECREDUCE_AND:
3384   case ISD::VECREDUCE_OR:
3385   case ISD::VECREDUCE_XOR:
3386     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3387       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3388     return lowerVECREDUCE(Op, DAG);
3389   case ISD::VECREDUCE_FADD:
3390   case ISD::VECREDUCE_SEQ_FADD:
3391   case ISD::VECREDUCE_FMIN:
3392   case ISD::VECREDUCE_FMAX:
3393     return lowerFPVECREDUCE(Op, DAG);
3394   case ISD::VP_REDUCE_ADD:
3395   case ISD::VP_REDUCE_UMAX:
3396   case ISD::VP_REDUCE_SMAX:
3397   case ISD::VP_REDUCE_UMIN:
3398   case ISD::VP_REDUCE_SMIN:
3399   case ISD::VP_REDUCE_FADD:
3400   case ISD::VP_REDUCE_SEQ_FADD:
3401   case ISD::VP_REDUCE_FMIN:
3402   case ISD::VP_REDUCE_FMAX:
3403     return lowerVPREDUCE(Op, DAG);
3404   case ISD::VP_REDUCE_AND:
3405   case ISD::VP_REDUCE_OR:
3406   case ISD::VP_REDUCE_XOR:
3407     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3408       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3409     return lowerVPREDUCE(Op, DAG);
3410   case ISD::INSERT_SUBVECTOR:
3411     return lowerINSERT_SUBVECTOR(Op, DAG);
3412   case ISD::EXTRACT_SUBVECTOR:
3413     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3414   case ISD::STEP_VECTOR:
3415     return lowerSTEP_VECTOR(Op, DAG);
3416   case ISD::VECTOR_REVERSE:
3417     return lowerVECTOR_REVERSE(Op, DAG);
3418   case ISD::VECTOR_SPLICE:
3419     return lowerVECTOR_SPLICE(Op, DAG);
3420   case ISD::BUILD_VECTOR:
3421     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3422   case ISD::SPLAT_VECTOR:
3423     if (Op.getValueType().getVectorElementType() == MVT::i1)
3424       return lowerVectorMaskSplat(Op, DAG);
3425     return SDValue();
3426   case ISD::VECTOR_SHUFFLE:
3427     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3428   case ISD::CONCAT_VECTORS: {
3429     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3430     // better than going through the stack, as the default expansion does.
3431     SDLoc DL(Op);
3432     MVT VT = Op.getSimpleValueType();
3433     unsigned NumOpElts =
3434         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3435     SDValue Vec = DAG.getUNDEF(VT);
3436     for (const auto &OpIdx : enumerate(Op->ops())) {
3437       SDValue SubVec = OpIdx.value();
3438       // Don't insert undef subvectors.
3439       if (SubVec.isUndef())
3440         continue;
3441       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3442                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3443     }
3444     return Vec;
3445   }
3446   case ISD::LOAD:
3447     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3448       return V;
3449     if (Op.getValueType().isFixedLengthVector())
3450       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3451     return Op;
3452   case ISD::STORE:
3453     if (auto V = expandUnalignedRVVStore(Op, DAG))
3454       return V;
3455     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3456       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3457     return Op;
3458   case ISD::MLOAD:
3459   case ISD::VP_LOAD:
3460     return lowerMaskedLoad(Op, DAG);
3461   case ISD::MSTORE:
3462   case ISD::VP_STORE:
3463     return lowerMaskedStore(Op, DAG);
3464   case ISD::SETCC:
3465     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3466   case ISD::ADD:
3467     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3468   case ISD::SUB:
3469     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3470   case ISD::MUL:
3471     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3472   case ISD::MULHS:
3473     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3474   case ISD::MULHU:
3475     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3476   case ISD::AND:
3477     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3478                                               RISCVISD::AND_VL);
3479   case ISD::OR:
3480     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3481                                               RISCVISD::OR_VL);
3482   case ISD::XOR:
3483     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3484                                               RISCVISD::XOR_VL);
3485   case ISD::SDIV:
3486     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3487   case ISD::SREM:
3488     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3489   case ISD::UDIV:
3490     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3491   case ISD::UREM:
3492     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3493   case ISD::SHL:
3494   case ISD::SRA:
3495   case ISD::SRL:
3496     if (Op.getSimpleValueType().isFixedLengthVector())
3497       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3498     // This can be called for an i32 shift amount that needs to be promoted.
3499     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3500            "Unexpected custom legalisation");
3501     return SDValue();
3502   case ISD::SADDSAT:
3503     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3504   case ISD::UADDSAT:
3505     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3506   case ISD::SSUBSAT:
3507     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3508   case ISD::USUBSAT:
3509     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3510   case ISD::FADD:
3511     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3512   case ISD::FSUB:
3513     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3514   case ISD::FMUL:
3515     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3516   case ISD::FDIV:
3517     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3518   case ISD::FNEG:
3519     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3520   case ISD::FABS:
3521     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3522   case ISD::FSQRT:
3523     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3524   case ISD::FMA:
3525     return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
3526   case ISD::SMIN:
3527     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3528   case ISD::SMAX:
3529     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3530   case ISD::UMIN:
3531     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3532   case ISD::UMAX:
3533     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3534   case ISD::FMINNUM:
3535     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3536   case ISD::FMAXNUM:
3537     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3538   case ISD::ABS:
3539     return lowerABS(Op, DAG);
3540   case ISD::CTLZ_ZERO_UNDEF:
3541   case ISD::CTTZ_ZERO_UNDEF:
3542     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3543   case ISD::VSELECT:
3544     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3545   case ISD::FCOPYSIGN:
3546     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3547   case ISD::MGATHER:
3548   case ISD::VP_GATHER:
3549     return lowerMaskedGather(Op, DAG);
3550   case ISD::MSCATTER:
3551   case ISD::VP_SCATTER:
3552     return lowerMaskedScatter(Op, DAG);
3553   case ISD::FLT_ROUNDS_:
3554     return lowerGET_ROUNDING(Op, DAG);
3555   case ISD::SET_ROUNDING:
3556     return lowerSET_ROUNDING(Op, DAG);
3557   case ISD::EH_DWARF_CFA:
3558     return lowerEH_DWARF_CFA(Op, DAG);
3559   case ISD::VP_SELECT:
3560     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3561   case ISD::VP_MERGE:
3562     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3563   case ISD::VP_ADD:
3564     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3565   case ISD::VP_SUB:
3566     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3567   case ISD::VP_MUL:
3568     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3569   case ISD::VP_SDIV:
3570     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3571   case ISD::VP_UDIV:
3572     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3573   case ISD::VP_SREM:
3574     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3575   case ISD::VP_UREM:
3576     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3577   case ISD::VP_AND:
3578     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3579   case ISD::VP_OR:
3580     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3581   case ISD::VP_XOR:
3582     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3583   case ISD::VP_ASHR:
3584     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3585   case ISD::VP_LSHR:
3586     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3587   case ISD::VP_SHL:
3588     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3589   case ISD::VP_FADD:
3590     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3591   case ISD::VP_FSUB:
3592     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3593   case ISD::VP_FMUL:
3594     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3595   case ISD::VP_FDIV:
3596     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3597   case ISD::VP_FNEG:
3598     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3599   case ISD::VP_FMA:
3600     return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
3601   case ISD::VP_SIGN_EXTEND:
3602   case ISD::VP_ZERO_EXTEND:
3603     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3604       return lowerVPExtMaskOp(Op, DAG);
3605     return lowerVPOp(Op, DAG,
3606                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3607                          ? RISCVISD::VSEXT_VL
3608                          : RISCVISD::VZEXT_VL);
3609   case ISD::VP_TRUNCATE:
3610     return lowerVectorTruncLike(Op, DAG);
3611   case ISD::VP_FP_EXTEND:
3612   case ISD::VP_FP_ROUND:
3613     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3614   case ISD::VP_FPTOSI:
3615     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3616   case ISD::VP_FPTOUI:
3617     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3618   case ISD::VP_SITOFP:
3619     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3620   case ISD::VP_UITOFP:
3621     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3622   case ISD::VP_SETCC:
3623     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3624       return lowerVPSetCCMaskOp(Op, DAG);
3625     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3626   }
3627 }
3628 
3629 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3630                              SelectionDAG &DAG, unsigned Flags) {
3631   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3632 }
3633 
3634 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3635                              SelectionDAG &DAG, unsigned Flags) {
3636   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3637                                    Flags);
3638 }
3639 
3640 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3641                              SelectionDAG &DAG, unsigned Flags) {
3642   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3643                                    N->getOffset(), Flags);
3644 }
3645 
3646 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3647                              SelectionDAG &DAG, unsigned Flags) {
3648   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3649 }
3650 
3651 template <class NodeTy>
3652 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3653                                      bool IsLocal) const {
3654   SDLoc DL(N);
3655   EVT Ty = getPointerTy(DAG.getDataLayout());
3656 
3657   if (isPositionIndependent()) {
3658     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3659     if (IsLocal)
3660       // Use PC-relative addressing to access the symbol. This generates the
3661       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3662       // %pcrel_lo(auipc)).
3663       return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3664 
3665     // Use PC-relative addressing to access the GOT for this symbol, then load
3666     // the address from the GOT. This generates the pattern (PseudoLA sym),
3667     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3668     MachineFunction &MF = DAG.getMachineFunction();
3669     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3670         MachinePointerInfo::getGOT(MF),
3671         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3672             MachineMemOperand::MOInvariant,
3673         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3674     SDValue Load =
3675         DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
3676                                 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3677     return Load;
3678   }
3679 
3680   switch (getTargetMachine().getCodeModel()) {
3681   default:
3682     report_fatal_error("Unsupported code model for lowering");
3683   case CodeModel::Small: {
3684     // Generate a sequence for accessing addresses within the first 2 GiB of
3685     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3686     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3687     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3688     SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3689     return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
3690   }
3691   case CodeModel::Medium: {
3692     // Generate a sequence for accessing addresses within any 2GiB range within
3693     // the address space. This generates the pattern (PseudoLLA sym), which
3694     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3695     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3696     return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3697   }
3698   }
3699 }
3700 
3701 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3702                                                 SelectionDAG &DAG) const {
3703   SDLoc DL(Op);
3704   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3705   assert(N->getOffset() == 0 && "unexpected offset in global node");
3706   return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
3707 }
3708 
3709 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3710                                                SelectionDAG &DAG) const {
3711   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3712 
3713   return getAddr(N, DAG);
3714 }
3715 
3716 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3717                                                SelectionDAG &DAG) const {
3718   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3719 
3720   return getAddr(N, DAG);
3721 }
3722 
3723 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3724                                             SelectionDAG &DAG) const {
3725   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3726 
3727   return getAddr(N, DAG);
3728 }
3729 
3730 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3731                                               SelectionDAG &DAG,
3732                                               bool UseGOT) const {
3733   SDLoc DL(N);
3734   EVT Ty = getPointerTy(DAG.getDataLayout());
3735   const GlobalValue *GV = N->getGlobal();
3736   MVT XLenVT = Subtarget.getXLenVT();
3737 
3738   if (UseGOT) {
3739     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3740     // load the address from the GOT and add the thread pointer. This generates
3741     // the pattern (PseudoLA_TLS_IE sym), which expands to
3742     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3743     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3744     MachineFunction &MF = DAG.getMachineFunction();
3745     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3746         MachinePointerInfo::getGOT(MF),
3747         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3748             MachineMemOperand::MOInvariant,
3749         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3750     SDValue Load = DAG.getMemIntrinsicNode(
3751         RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
3752         {DAG.getEntryNode(), Addr}, Ty, MemOp);
3753 
3754     // Add the thread pointer.
3755     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3756     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3757   }
3758 
3759   // Generate a sequence for accessing the address relative to the thread
3760   // pointer, with the appropriate adjustment for the thread pointer offset.
3761   // This generates the pattern
3762   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3763   SDValue AddrHi =
3764       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3765   SDValue AddrAdd =
3766       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3767   SDValue AddrLo =
3768       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3769 
3770   SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3771   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3772   SDValue MNAdd =
3773       DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
3774   return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
3775 }
3776 
3777 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3778                                                SelectionDAG &DAG) const {
3779   SDLoc DL(N);
3780   EVT Ty = getPointerTy(DAG.getDataLayout());
3781   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3782   const GlobalValue *GV = N->getGlobal();
3783 
3784   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3785   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3786   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3787   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3788   SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
3789 
3790   // Prepare argument list to generate call.
3791   ArgListTy Args;
3792   ArgListEntry Entry;
3793   Entry.Node = Load;
3794   Entry.Ty = CallTy;
3795   Args.push_back(Entry);
3796 
3797   // Setup call to __tls_get_addr.
3798   TargetLowering::CallLoweringInfo CLI(DAG);
3799   CLI.setDebugLoc(DL)
3800       .setChain(DAG.getEntryNode())
3801       .setLibCallee(CallingConv::C, CallTy,
3802                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3803                     std::move(Args));
3804 
3805   return LowerCallTo(CLI).first;
3806 }
3807 
3808 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3809                                                    SelectionDAG &DAG) const {
3810   SDLoc DL(Op);
3811   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3812   assert(N->getOffset() == 0 && "unexpected offset in global node");
3813 
3814   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3815 
3816   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3817       CallingConv::GHC)
3818     report_fatal_error("In GHC calling convention TLS is not supported");
3819 
3820   SDValue Addr;
3821   switch (Model) {
3822   case TLSModel::LocalExec:
3823     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3824     break;
3825   case TLSModel::InitialExec:
3826     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3827     break;
3828   case TLSModel::LocalDynamic:
3829   case TLSModel::GeneralDynamic:
3830     Addr = getDynamicTLSAddr(N, DAG);
3831     break;
3832   }
3833 
3834   return Addr;
3835 }
3836 
3837 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3838   SDValue CondV = Op.getOperand(0);
3839   SDValue TrueV = Op.getOperand(1);
3840   SDValue FalseV = Op.getOperand(2);
3841   SDLoc DL(Op);
3842   MVT VT = Op.getSimpleValueType();
3843   MVT XLenVT = Subtarget.getXLenVT();
3844 
3845   // Lower vector SELECTs to VSELECTs by splatting the condition.
3846   if (VT.isVector()) {
3847     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3848     SDValue CondSplat = VT.isScalableVector()
3849                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3850                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3851     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3852   }
3853 
3854   // If the result type is XLenVT and CondV is the output of a SETCC node
3855   // which also operated on XLenVT inputs, then merge the SETCC node into the
3856   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3857   // compare+branch instructions. i.e.:
3858   // (select (setcc lhs, rhs, cc), truev, falsev)
3859   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3860   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3861       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3862     SDValue LHS = CondV.getOperand(0);
3863     SDValue RHS = CondV.getOperand(1);
3864     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3865     ISD::CondCode CCVal = CC->get();
3866 
3867     // Special case for a select of 2 constants that have a diffence of 1.
3868     // Normally this is done by DAGCombine, but if the select is introduced by
3869     // type legalization or op legalization, we miss it. Restricting to SETLT
3870     // case for now because that is what signed saturating add/sub need.
3871     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3872     // but we would probably want to swap the true/false values if the condition
3873     // is SETGE/SETLE to avoid an XORI.
3874     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3875         CCVal == ISD::SETLT) {
3876       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3877       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3878       if (TrueVal - 1 == FalseVal)
3879         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3880       if (TrueVal + 1 == FalseVal)
3881         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3882     }
3883 
3884     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3885 
3886     SDValue TargetCC = DAG.getCondCode(CCVal);
3887     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3888     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3889   }
3890 
3891   // Otherwise:
3892   // (select condv, truev, falsev)
3893   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3894   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3895   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3896 
3897   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3898 
3899   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3900 }
3901 
3902 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3903   SDValue CondV = Op.getOperand(1);
3904   SDLoc DL(Op);
3905   MVT XLenVT = Subtarget.getXLenVT();
3906 
3907   if (CondV.getOpcode() == ISD::SETCC &&
3908       CondV.getOperand(0).getValueType() == XLenVT) {
3909     SDValue LHS = CondV.getOperand(0);
3910     SDValue RHS = CondV.getOperand(1);
3911     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3912 
3913     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3914 
3915     SDValue TargetCC = DAG.getCondCode(CCVal);
3916     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3917                        LHS, RHS, TargetCC, Op.getOperand(2));
3918   }
3919 
3920   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3921                      CondV, DAG.getConstant(0, DL, XLenVT),
3922                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3923 }
3924 
3925 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3926   MachineFunction &MF = DAG.getMachineFunction();
3927   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3928 
3929   SDLoc DL(Op);
3930   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3931                                  getPointerTy(MF.getDataLayout()));
3932 
3933   // vastart just stores the address of the VarArgsFrameIndex slot into the
3934   // memory location argument.
3935   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3936   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3937                       MachinePointerInfo(SV));
3938 }
3939 
3940 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3941                                             SelectionDAG &DAG) const {
3942   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3943   MachineFunction &MF = DAG.getMachineFunction();
3944   MachineFrameInfo &MFI = MF.getFrameInfo();
3945   MFI.setFrameAddressIsTaken(true);
3946   Register FrameReg = RI.getFrameRegister(MF);
3947   int XLenInBytes = Subtarget.getXLen() / 8;
3948 
3949   EVT VT = Op.getValueType();
3950   SDLoc DL(Op);
3951   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3952   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3953   while (Depth--) {
3954     int Offset = -(XLenInBytes * 2);
3955     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3956                               DAG.getIntPtrConstant(Offset, DL));
3957     FrameAddr =
3958         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3959   }
3960   return FrameAddr;
3961 }
3962 
3963 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3964                                              SelectionDAG &DAG) const {
3965   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3966   MachineFunction &MF = DAG.getMachineFunction();
3967   MachineFrameInfo &MFI = MF.getFrameInfo();
3968   MFI.setReturnAddressIsTaken(true);
3969   MVT XLenVT = Subtarget.getXLenVT();
3970   int XLenInBytes = Subtarget.getXLen() / 8;
3971 
3972   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3973     return SDValue();
3974 
3975   EVT VT = Op.getValueType();
3976   SDLoc DL(Op);
3977   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3978   if (Depth) {
3979     int Off = -XLenInBytes;
3980     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3981     SDValue Offset = DAG.getConstant(Off, DL, VT);
3982     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3983                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3984                        MachinePointerInfo());
3985   }
3986 
3987   // Return the value of the return address register, marking it an implicit
3988   // live-in.
3989   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3990   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3991 }
3992 
3993 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3994                                                  SelectionDAG &DAG) const {
3995   SDLoc DL(Op);
3996   SDValue Lo = Op.getOperand(0);
3997   SDValue Hi = Op.getOperand(1);
3998   SDValue Shamt = Op.getOperand(2);
3999   EVT VT = Lo.getValueType();
4000 
4001   // if Shamt-XLEN < 0: // Shamt < XLEN
4002   //   Lo = Lo << Shamt
4003   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4004   // else:
4005   //   Lo = 0
4006   //   Hi = Lo << (Shamt-XLEN)
4007 
4008   SDValue Zero = DAG.getConstant(0, DL, VT);
4009   SDValue One = DAG.getConstant(1, DL, VT);
4010   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4011   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4012   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4013   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4014 
4015   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4016   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4017   SDValue ShiftRightLo =
4018       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4019   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4020   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4021   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4022 
4023   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4024 
4025   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4026   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4027 
4028   SDValue Parts[2] = {Lo, Hi};
4029   return DAG.getMergeValues(Parts, DL);
4030 }
4031 
4032 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4033                                                   bool IsSRA) const {
4034   SDLoc DL(Op);
4035   SDValue Lo = Op.getOperand(0);
4036   SDValue Hi = Op.getOperand(1);
4037   SDValue Shamt = Op.getOperand(2);
4038   EVT VT = Lo.getValueType();
4039 
4040   // SRA expansion:
4041   //   if Shamt-XLEN < 0: // Shamt < XLEN
4042   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4043   //     Hi = Hi >>s Shamt
4044   //   else:
4045   //     Lo = Hi >>s (Shamt-XLEN);
4046   //     Hi = Hi >>s (XLEN-1)
4047   //
4048   // SRL expansion:
4049   //   if Shamt-XLEN < 0: // Shamt < XLEN
4050   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4051   //     Hi = Hi >>u Shamt
4052   //   else:
4053   //     Lo = Hi >>u (Shamt-XLEN);
4054   //     Hi = 0;
4055 
4056   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4057 
4058   SDValue Zero = DAG.getConstant(0, DL, VT);
4059   SDValue One = DAG.getConstant(1, DL, VT);
4060   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4061   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4062   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4063   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4064 
4065   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4066   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4067   SDValue ShiftLeftHi =
4068       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4069   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4070   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4071   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4072   SDValue HiFalse =
4073       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4074 
4075   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4076 
4077   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4078   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4079 
4080   SDValue Parts[2] = {Lo, Hi};
4081   return DAG.getMergeValues(Parts, DL);
4082 }
4083 
4084 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4085 // legal equivalently-sized i8 type, so we can use that as a go-between.
4086 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4087                                                   SelectionDAG &DAG) const {
4088   SDLoc DL(Op);
4089   MVT VT = Op.getSimpleValueType();
4090   SDValue SplatVal = Op.getOperand(0);
4091   // All-zeros or all-ones splats are handled specially.
4092   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4093     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4094     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4095   }
4096   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4097     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4098     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4099   }
4100   MVT XLenVT = Subtarget.getXLenVT();
4101   assert(SplatVal.getValueType() == XLenVT &&
4102          "Unexpected type for i1 splat value");
4103   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4104   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4105                          DAG.getConstant(1, DL, XLenVT));
4106   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4107   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4108   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4109 }
4110 
4111 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4112 // illegal (currently only vXi64 RV32).
4113 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4114 // them to VMV_V_X_VL.
4115 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4116                                                      SelectionDAG &DAG) const {
4117   SDLoc DL(Op);
4118   MVT VecVT = Op.getSimpleValueType();
4119   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4120          "Unexpected SPLAT_VECTOR_PARTS lowering");
4121 
4122   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4123   SDValue Lo = Op.getOperand(0);
4124   SDValue Hi = Op.getOperand(1);
4125 
4126   if (VecVT.isFixedLengthVector()) {
4127     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4128     SDLoc DL(Op);
4129     SDValue Mask, VL;
4130     std::tie(Mask, VL) =
4131         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4132 
4133     SDValue Res =
4134         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4135     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4136   }
4137 
4138   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4139     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4140     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4141     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4142     // node in order to try and match RVV vector/scalar instructions.
4143     if ((LoC >> 31) == HiC)
4144       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4145                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4146   }
4147 
4148   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4149   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4150       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4151       Hi.getConstantOperandVal(1) == 31)
4152     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4153                        DAG.getRegister(RISCV::X0, MVT::i32));
4154 
4155   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4156   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4157                      DAG.getUNDEF(VecVT), Lo, Hi,
4158                      DAG.getRegister(RISCV::X0, MVT::i32));
4159 }
4160 
4161 // Custom-lower extensions from mask vectors by using a vselect either with 1
4162 // for zero/any-extension or -1 for sign-extension:
4163 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4164 // Note that any-extension is lowered identically to zero-extension.
4165 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4166                                                 int64_t ExtTrueVal) const {
4167   SDLoc DL(Op);
4168   MVT VecVT = Op.getSimpleValueType();
4169   SDValue Src = Op.getOperand(0);
4170   // Only custom-lower extensions from mask types
4171   assert(Src.getValueType().isVector() &&
4172          Src.getValueType().getVectorElementType() == MVT::i1);
4173 
4174   if (VecVT.isScalableVector()) {
4175     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4176     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4177     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4178   }
4179 
4180   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4181   MVT I1ContainerVT =
4182       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4183 
4184   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4185 
4186   SDValue Mask, VL;
4187   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4188 
4189   MVT XLenVT = Subtarget.getXLenVT();
4190   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4191   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4192 
4193   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4194                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4195   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4196                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4197   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4198                                SplatTrueVal, SplatZero, VL);
4199 
4200   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4201 }
4202 
4203 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4204     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4205   MVT ExtVT = Op.getSimpleValueType();
4206   // Only custom-lower extensions from fixed-length vector types.
4207   if (!ExtVT.isFixedLengthVector())
4208     return Op;
4209   MVT VT = Op.getOperand(0).getSimpleValueType();
4210   // Grab the canonical container type for the extended type. Infer the smaller
4211   // type from that to ensure the same number of vector elements, as we know
4212   // the LMUL will be sufficient to hold the smaller type.
4213   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4214   // Get the extended container type manually to ensure the same number of
4215   // vector elements between source and dest.
4216   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4217                                      ContainerExtVT.getVectorElementCount());
4218 
4219   SDValue Op1 =
4220       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4221 
4222   SDLoc DL(Op);
4223   SDValue Mask, VL;
4224   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4225 
4226   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4227 
4228   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4229 }
4230 
4231 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4232 // setcc operation:
4233 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4234 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4235                                                       SelectionDAG &DAG) const {
4236   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4237   SDLoc DL(Op);
4238   EVT MaskVT = Op.getValueType();
4239   // Only expect to custom-lower truncations to mask types
4240   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4241          "Unexpected type for vector mask lowering");
4242   SDValue Src = Op.getOperand(0);
4243   MVT VecVT = Src.getSimpleValueType();
4244   SDValue Mask, VL;
4245   if (IsVPTrunc) {
4246     Mask = Op.getOperand(1);
4247     VL = Op.getOperand(2);
4248   }
4249   // If this is a fixed vector, we need to convert it to a scalable vector.
4250   MVT ContainerVT = VecVT;
4251 
4252   if (VecVT.isFixedLengthVector()) {
4253     ContainerVT = getContainerForFixedLengthVector(VecVT);
4254     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4255     if (IsVPTrunc) {
4256       MVT MaskContainerVT =
4257           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4258       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4259     }
4260   }
4261 
4262   if (!IsVPTrunc) {
4263     std::tie(Mask, VL) =
4264         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4265   }
4266 
4267   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4268   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4269 
4270   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4271                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4272   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4273                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4274 
4275   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4276   SDValue Trunc =
4277       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4278   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4279                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4280   if (MaskVT.isFixedLengthVector())
4281     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4282   return Trunc;
4283 }
4284 
4285 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4286                                                   SelectionDAG &DAG) const {
4287   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4288   SDLoc DL(Op);
4289 
4290   MVT VT = Op.getSimpleValueType();
4291   // Only custom-lower vector truncates
4292   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4293 
4294   // Truncates to mask types are handled differently
4295   if (VT.getVectorElementType() == MVT::i1)
4296     return lowerVectorMaskTruncLike(Op, DAG);
4297 
4298   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4299   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4300   // truncate by one power of two at a time.
4301   MVT DstEltVT = VT.getVectorElementType();
4302 
4303   SDValue Src = Op.getOperand(0);
4304   MVT SrcVT = Src.getSimpleValueType();
4305   MVT SrcEltVT = SrcVT.getVectorElementType();
4306 
4307   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4308          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4309          "Unexpected vector truncate lowering");
4310 
4311   MVT ContainerVT = SrcVT;
4312   SDValue Mask, VL;
4313   if (IsVPTrunc) {
4314     Mask = Op.getOperand(1);
4315     VL = Op.getOperand(2);
4316   }
4317   if (SrcVT.isFixedLengthVector()) {
4318     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4319     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4320     if (IsVPTrunc) {
4321       MVT MaskVT = getMaskTypeFor(ContainerVT);
4322       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4323     }
4324   }
4325 
4326   SDValue Result = Src;
4327   if (!IsVPTrunc) {
4328     std::tie(Mask, VL) =
4329         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4330   }
4331 
4332   LLVMContext &Context = *DAG.getContext();
4333   const ElementCount Count = ContainerVT.getVectorElementCount();
4334   do {
4335     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4336     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4337     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4338                          Mask, VL);
4339   } while (SrcEltVT != DstEltVT);
4340 
4341   if (SrcVT.isFixedLengthVector())
4342     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4343 
4344   return Result;
4345 }
4346 
4347 SDValue
4348 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4349                                                     SelectionDAG &DAG) const {
4350   bool IsVP =
4351       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4352   bool IsExtend =
4353       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4354   // RVV can only do truncate fp to types half the size as the source. We
4355   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4356   // conversion instruction.
4357   SDLoc DL(Op);
4358   MVT VT = Op.getSimpleValueType();
4359 
4360   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4361 
4362   SDValue Src = Op.getOperand(0);
4363   MVT SrcVT = Src.getSimpleValueType();
4364 
4365   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4366                                      SrcVT.getVectorElementType() != MVT::f16);
4367   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4368                                      SrcVT.getVectorElementType() != MVT::f64);
4369 
4370   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4371 
4372   // Prepare any fixed-length vector operands.
4373   MVT ContainerVT = VT;
4374   SDValue Mask, VL;
4375   if (IsVP) {
4376     Mask = Op.getOperand(1);
4377     VL = Op.getOperand(2);
4378   }
4379   if (VT.isFixedLengthVector()) {
4380     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4381     ContainerVT =
4382         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4383     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4384     if (IsVP) {
4385       MVT MaskVT = getMaskTypeFor(ContainerVT);
4386       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4387     }
4388   }
4389 
4390   if (!IsVP)
4391     std::tie(Mask, VL) =
4392         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4393 
4394   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4395 
4396   if (IsDirectConv) {
4397     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4398     if (VT.isFixedLengthVector())
4399       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4400     return Src;
4401   }
4402 
4403   unsigned InterConvOpc =
4404       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4405 
4406   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4407   SDValue IntermediateConv =
4408       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4409   SDValue Result =
4410       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4411   if (VT.isFixedLengthVector())
4412     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4413   return Result;
4414 }
4415 
4416 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4417 // first position of a vector, and that vector is slid up to the insert index.
4418 // By limiting the active vector length to index+1 and merging with the
4419 // original vector (with an undisturbed tail policy for elements >= VL), we
4420 // achieve the desired result of leaving all elements untouched except the one
4421 // at VL-1, which is replaced with the desired value.
4422 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4423                                                     SelectionDAG &DAG) const {
4424   SDLoc DL(Op);
4425   MVT VecVT = Op.getSimpleValueType();
4426   SDValue Vec = Op.getOperand(0);
4427   SDValue Val = Op.getOperand(1);
4428   SDValue Idx = Op.getOperand(2);
4429 
4430   if (VecVT.getVectorElementType() == MVT::i1) {
4431     // FIXME: For now we just promote to an i8 vector and insert into that,
4432     // but this is probably not optimal.
4433     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4434     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4435     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4436     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4437   }
4438 
4439   MVT ContainerVT = VecVT;
4440   // If the operand is a fixed-length vector, convert to a scalable one.
4441   if (VecVT.isFixedLengthVector()) {
4442     ContainerVT = getContainerForFixedLengthVector(VecVT);
4443     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4444   }
4445 
4446   MVT XLenVT = Subtarget.getXLenVT();
4447 
4448   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4449   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4450   // Even i64-element vectors on RV32 can be lowered without scalar
4451   // legalization if the most-significant 32 bits of the value are not affected
4452   // by the sign-extension of the lower 32 bits.
4453   // TODO: We could also catch sign extensions of a 32-bit value.
4454   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4455     const auto *CVal = cast<ConstantSDNode>(Val);
4456     if (isInt<32>(CVal->getSExtValue())) {
4457       IsLegalInsert = true;
4458       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4459     }
4460   }
4461 
4462   SDValue Mask, VL;
4463   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4464 
4465   SDValue ValInVec;
4466 
4467   if (IsLegalInsert) {
4468     unsigned Opc =
4469         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4470     if (isNullConstant(Idx)) {
4471       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4472       if (!VecVT.isFixedLengthVector())
4473         return Vec;
4474       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4475     }
4476     ValInVec =
4477         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4478   } else {
4479     // On RV32, i64-element vectors must be specially handled to place the
4480     // value at element 0, by using two vslide1up instructions in sequence on
4481     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4482     // this.
4483     SDValue One = DAG.getConstant(1, DL, XLenVT);
4484     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4485     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4486     MVT I32ContainerVT =
4487         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4488     SDValue I32Mask =
4489         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4490     // Limit the active VL to two.
4491     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4492     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4493     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4494     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4495                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4496     // First slide in the hi value, then the lo in underneath it.
4497     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4498                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4499                            I32Mask, InsertI64VL);
4500     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4501                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4502                            I32Mask, InsertI64VL);
4503     // Bitcast back to the right container type.
4504     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4505   }
4506 
4507   // Now that the value is in a vector, slide it into position.
4508   SDValue InsertVL =
4509       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4510   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4511                                 ValInVec, Idx, Mask, InsertVL);
4512   if (!VecVT.isFixedLengthVector())
4513     return Slideup;
4514   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4515 }
4516 
4517 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4518 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4519 // types this is done using VMV_X_S to allow us to glean information about the
4520 // sign bits of the result.
4521 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4522                                                      SelectionDAG &DAG) const {
4523   SDLoc DL(Op);
4524   SDValue Idx = Op.getOperand(1);
4525   SDValue Vec = Op.getOperand(0);
4526   EVT EltVT = Op.getValueType();
4527   MVT VecVT = Vec.getSimpleValueType();
4528   MVT XLenVT = Subtarget.getXLenVT();
4529 
4530   if (VecVT.getVectorElementType() == MVT::i1) {
4531     if (VecVT.isFixedLengthVector()) {
4532       unsigned NumElts = VecVT.getVectorNumElements();
4533       if (NumElts >= 8) {
4534         MVT WideEltVT;
4535         unsigned WidenVecLen;
4536         SDValue ExtractElementIdx;
4537         SDValue ExtractBitIdx;
4538         unsigned MaxEEW = Subtarget.getELEN();
4539         MVT LargestEltVT = MVT::getIntegerVT(
4540             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4541         if (NumElts <= LargestEltVT.getSizeInBits()) {
4542           assert(isPowerOf2_32(NumElts) &&
4543                  "the number of elements should be power of 2");
4544           WideEltVT = MVT::getIntegerVT(NumElts);
4545           WidenVecLen = 1;
4546           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4547           ExtractBitIdx = Idx;
4548         } else {
4549           WideEltVT = LargestEltVT;
4550           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4551           // extract element index = index / element width
4552           ExtractElementIdx = DAG.getNode(
4553               ISD::SRL, DL, XLenVT, Idx,
4554               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4555           // mask bit index = index % element width
4556           ExtractBitIdx = DAG.getNode(
4557               ISD::AND, DL, XLenVT, Idx,
4558               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4559         }
4560         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4561         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4562         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4563                                          Vec, ExtractElementIdx);
4564         // Extract the bit from GPR.
4565         SDValue ShiftRight =
4566             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4567         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4568                            DAG.getConstant(1, DL, XLenVT));
4569       }
4570     }
4571     // Otherwise, promote to an i8 vector and extract from that.
4572     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4573     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4574     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4575   }
4576 
4577   // If this is a fixed vector, we need to convert it to a scalable vector.
4578   MVT ContainerVT = VecVT;
4579   if (VecVT.isFixedLengthVector()) {
4580     ContainerVT = getContainerForFixedLengthVector(VecVT);
4581     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4582   }
4583 
4584   // If the index is 0, the vector is already in the right position.
4585   if (!isNullConstant(Idx)) {
4586     // Use a VL of 1 to avoid processing more elements than we need.
4587     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4588     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4589     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4590                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4591   }
4592 
4593   if (!EltVT.isInteger()) {
4594     // Floating-point extracts are handled in TableGen.
4595     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4596                        DAG.getConstant(0, DL, XLenVT));
4597   }
4598 
4599   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4600   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4601 }
4602 
4603 // Some RVV intrinsics may claim that they want an integer operand to be
4604 // promoted or expanded.
4605 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4606                                            const RISCVSubtarget &Subtarget) {
4607   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4608           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4609          "Unexpected opcode");
4610 
4611   if (!Subtarget.hasVInstructions())
4612     return SDValue();
4613 
4614   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4615   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4616   SDLoc DL(Op);
4617 
4618   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4619       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4620   if (!II || !II->hasScalarOperand())
4621     return SDValue();
4622 
4623   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4624   assert(SplatOp < Op.getNumOperands());
4625 
4626   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4627   SDValue &ScalarOp = Operands[SplatOp];
4628   MVT OpVT = ScalarOp.getSimpleValueType();
4629   MVT XLenVT = Subtarget.getXLenVT();
4630 
4631   // If this isn't a scalar, or its type is XLenVT we're done.
4632   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4633     return SDValue();
4634 
4635   // Simplest case is that the operand needs to be promoted to XLenVT.
4636   if (OpVT.bitsLT(XLenVT)) {
4637     // If the operand is a constant, sign extend to increase our chances
4638     // of being able to use a .vi instruction. ANY_EXTEND would become a
4639     // a zero extend and the simm5 check in isel would fail.
4640     // FIXME: Should we ignore the upper bits in isel instead?
4641     unsigned ExtOpc =
4642         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4643     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4644     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4645   }
4646 
4647   // Use the previous operand to get the vXi64 VT. The result might be a mask
4648   // VT for compares. Using the previous operand assumes that the previous
4649   // operand will never have a smaller element size than a scalar operand and
4650   // that a widening operation never uses SEW=64.
4651   // NOTE: If this fails the below assert, we can probably just find the
4652   // element count from any operand or result and use it to construct the VT.
4653   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4654   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4655 
4656   // The more complex case is when the scalar is larger than XLenVT.
4657   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4658          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4659 
4660   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4661   // instruction to sign-extend since SEW>XLEN.
4662   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4663     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4664     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4665   }
4666 
4667   switch (IntNo) {
4668   case Intrinsic::riscv_vslide1up:
4669   case Intrinsic::riscv_vslide1down:
4670   case Intrinsic::riscv_vslide1up_mask:
4671   case Intrinsic::riscv_vslide1down_mask: {
4672     // We need to special case these when the scalar is larger than XLen.
4673     unsigned NumOps = Op.getNumOperands();
4674     bool IsMasked = NumOps == 7;
4675 
4676     // Convert the vector source to the equivalent nxvXi32 vector.
4677     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4678     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4679 
4680     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4681                                    DAG.getConstant(0, DL, XLenVT));
4682     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4683                                    DAG.getConstant(1, DL, XLenVT));
4684 
4685     // Double the VL since we halved SEW.
4686     SDValue AVL = getVLOperand(Op);
4687     SDValue I32VL;
4688 
4689     // Optimize for constant AVL
4690     if (isa<ConstantSDNode>(AVL)) {
4691       unsigned EltSize = VT.getScalarSizeInBits();
4692       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4693 
4694       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4695       unsigned MaxVLMAX =
4696           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4697 
4698       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4699       unsigned MinVLMAX =
4700           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4701 
4702       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4703       if (AVLInt <= MinVLMAX) {
4704         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4705       } else if (AVLInt >= 2 * MaxVLMAX) {
4706         // Just set vl to VLMAX in this situation
4707         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4708         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4709         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4710         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4711         SDValue SETVLMAX = DAG.getTargetConstant(
4712             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4713         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4714                             LMUL);
4715       } else {
4716         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4717         // is related to the hardware implementation.
4718         // So let the following code handle
4719       }
4720     }
4721     if (!I32VL) {
4722       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4723       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4724       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4725       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4726       SDValue SETVL =
4727           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4728       // Using vsetvli instruction to get actually used length which related to
4729       // the hardware implementation
4730       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4731                                SEW, LMUL);
4732       I32VL =
4733           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4734     }
4735 
4736     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4737 
4738     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4739     // instructions.
4740     SDValue Passthru;
4741     if (IsMasked)
4742       Passthru = DAG.getUNDEF(I32VT);
4743     else
4744       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4745 
4746     if (IntNo == Intrinsic::riscv_vslide1up ||
4747         IntNo == Intrinsic::riscv_vslide1up_mask) {
4748       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4749                         ScalarHi, I32Mask, I32VL);
4750       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4751                         ScalarLo, I32Mask, I32VL);
4752     } else {
4753       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4754                         ScalarLo, I32Mask, I32VL);
4755       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4756                         ScalarHi, I32Mask, I32VL);
4757     }
4758 
4759     // Convert back to nxvXi64.
4760     Vec = DAG.getBitcast(VT, Vec);
4761 
4762     if (!IsMasked)
4763       return Vec;
4764     // Apply mask after the operation.
4765     SDValue Mask = Operands[NumOps - 3];
4766     SDValue MaskedOff = Operands[1];
4767     // Assume Policy operand is the last operand.
4768     uint64_t Policy =
4769         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4770     // We don't need to select maskedoff if it's undef.
4771     if (MaskedOff.isUndef())
4772       return Vec;
4773     // TAMU
4774     if (Policy == RISCVII::TAIL_AGNOSTIC)
4775       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4776                          AVL);
4777     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4778     // It's fine because vmerge does not care mask policy.
4779     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4780                        AVL);
4781   }
4782   }
4783 
4784   // We need to convert the scalar to a splat vector.
4785   SDValue VL = getVLOperand(Op);
4786   assert(VL.getValueType() == XLenVT);
4787   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4788   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4789 }
4790 
4791 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4792                                                      SelectionDAG &DAG) const {
4793   unsigned IntNo = Op.getConstantOperandVal(0);
4794   SDLoc DL(Op);
4795   MVT XLenVT = Subtarget.getXLenVT();
4796 
4797   switch (IntNo) {
4798   default:
4799     break; // Don't custom lower most intrinsics.
4800   case Intrinsic::thread_pointer: {
4801     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4802     return DAG.getRegister(RISCV::X4, PtrVT);
4803   }
4804   case Intrinsic::riscv_orc_b:
4805   case Intrinsic::riscv_brev8: {
4806     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4807     unsigned Opc =
4808         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4809     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4810                        DAG.getConstant(7, DL, XLenVT));
4811   }
4812   case Intrinsic::riscv_grev:
4813   case Intrinsic::riscv_gorc: {
4814     unsigned Opc =
4815         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4816     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4817   }
4818   case Intrinsic::riscv_zip:
4819   case Intrinsic::riscv_unzip: {
4820     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4821     // For i32 the immediate is 15. For i64 the immediate is 31.
4822     unsigned Opc =
4823         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4824     unsigned BitWidth = Op.getValueSizeInBits();
4825     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4826     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4827                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4828   }
4829   case Intrinsic::riscv_shfl:
4830   case Intrinsic::riscv_unshfl: {
4831     unsigned Opc =
4832         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4833     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4834   }
4835   case Intrinsic::riscv_bcompress:
4836   case Intrinsic::riscv_bdecompress: {
4837     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4838                                                        : RISCVISD::BDECOMPRESS;
4839     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4840   }
4841   case Intrinsic::riscv_bfp:
4842     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4843                        Op.getOperand(2));
4844   case Intrinsic::riscv_fsl:
4845     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4846                        Op.getOperand(2), Op.getOperand(3));
4847   case Intrinsic::riscv_fsr:
4848     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4849                        Op.getOperand(2), Op.getOperand(3));
4850   case Intrinsic::riscv_vmv_x_s:
4851     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4852     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4853                        Op.getOperand(1));
4854   case Intrinsic::riscv_vmv_v_x:
4855     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4856                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4857                             Subtarget);
4858   case Intrinsic::riscv_vfmv_v_f:
4859     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4860                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4861   case Intrinsic::riscv_vmv_s_x: {
4862     SDValue Scalar = Op.getOperand(2);
4863 
4864     if (Scalar.getValueType().bitsLE(XLenVT)) {
4865       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4866       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4867                          Op.getOperand(1), Scalar, Op.getOperand(3));
4868     }
4869 
4870     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4871 
4872     // This is an i64 value that lives in two scalar registers. We have to
4873     // insert this in a convoluted way. First we build vXi64 splat containing
4874     // the two values that we assemble using some bit math. Next we'll use
4875     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4876     // to merge element 0 from our splat into the source vector.
4877     // FIXME: This is probably not the best way to do this, but it is
4878     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4879     // point.
4880     //   sw lo, (a0)
4881     //   sw hi, 4(a0)
4882     //   vlse vX, (a0)
4883     //
4884     //   vid.v      vVid
4885     //   vmseq.vx   mMask, vVid, 0
4886     //   vmerge.vvm vDest, vSrc, vVal, mMask
4887     MVT VT = Op.getSimpleValueType();
4888     SDValue Vec = Op.getOperand(1);
4889     SDValue VL = getVLOperand(Op);
4890 
4891     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4892     if (Op.getOperand(1).isUndef())
4893       return SplattedVal;
4894     SDValue SplattedIdx =
4895         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4896                     DAG.getConstant(0, DL, MVT::i32), VL);
4897 
4898     MVT MaskVT = getMaskTypeFor(VT);
4899     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4900     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4901     SDValue SelectCond =
4902         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4903                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4904     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4905                        Vec, VL);
4906   }
4907   }
4908 
4909   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4910 }
4911 
4912 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4913                                                     SelectionDAG &DAG) const {
4914   unsigned IntNo = Op.getConstantOperandVal(1);
4915   switch (IntNo) {
4916   default:
4917     break;
4918   case Intrinsic::riscv_masked_strided_load: {
4919     SDLoc DL(Op);
4920     MVT XLenVT = Subtarget.getXLenVT();
4921 
4922     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4923     // the selection of the masked intrinsics doesn't do this for us.
4924     SDValue Mask = Op.getOperand(5);
4925     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4926 
4927     MVT VT = Op->getSimpleValueType(0);
4928     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4929 
4930     SDValue PassThru = Op.getOperand(2);
4931     if (!IsUnmasked) {
4932       MVT MaskVT = getMaskTypeFor(ContainerVT);
4933       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4934       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4935     }
4936 
4937     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4938 
4939     SDValue IntID = DAG.getTargetConstant(
4940         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4941         XLenVT);
4942 
4943     auto *Load = cast<MemIntrinsicSDNode>(Op);
4944     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4945     if (IsUnmasked)
4946       Ops.push_back(DAG.getUNDEF(ContainerVT));
4947     else
4948       Ops.push_back(PassThru);
4949     Ops.push_back(Op.getOperand(3)); // Ptr
4950     Ops.push_back(Op.getOperand(4)); // Stride
4951     if (!IsUnmasked)
4952       Ops.push_back(Mask);
4953     Ops.push_back(VL);
4954     if (!IsUnmasked) {
4955       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4956       Ops.push_back(Policy);
4957     }
4958 
4959     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4960     SDValue Result =
4961         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4962                                 Load->getMemoryVT(), Load->getMemOperand());
4963     SDValue Chain = Result.getValue(1);
4964     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4965     return DAG.getMergeValues({Result, Chain}, DL);
4966   }
4967   case Intrinsic::riscv_seg2_load:
4968   case Intrinsic::riscv_seg3_load:
4969   case Intrinsic::riscv_seg4_load:
4970   case Intrinsic::riscv_seg5_load:
4971   case Intrinsic::riscv_seg6_load:
4972   case Intrinsic::riscv_seg7_load:
4973   case Intrinsic::riscv_seg8_load: {
4974     SDLoc DL(Op);
4975     static const Intrinsic::ID VlsegInts[7] = {
4976         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4977         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4978         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4979         Intrinsic::riscv_vlseg8};
4980     unsigned NF = Op->getNumValues() - 1;
4981     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4982     MVT XLenVT = Subtarget.getXLenVT();
4983     MVT VT = Op->getSimpleValueType(0);
4984     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4985 
4986     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4987     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4988     auto *Load = cast<MemIntrinsicSDNode>(Op);
4989     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4990     ContainerVTs.push_back(MVT::Other);
4991     SDVTList VTs = DAG.getVTList(ContainerVTs);
4992     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4993     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4994     Ops.push_back(Op.getOperand(2));
4995     Ops.push_back(VL);
4996     SDValue Result =
4997         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4998                                 Load->getMemoryVT(), Load->getMemOperand());
4999     SmallVector<SDValue, 9> Results;
5000     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5001       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5002                                                   DAG, Subtarget));
5003     Results.push_back(Result.getValue(NF));
5004     return DAG.getMergeValues(Results, DL);
5005   }
5006   }
5007 
5008   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5009 }
5010 
5011 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5012                                                  SelectionDAG &DAG) const {
5013   unsigned IntNo = Op.getConstantOperandVal(1);
5014   switch (IntNo) {
5015   default:
5016     break;
5017   case Intrinsic::riscv_masked_strided_store: {
5018     SDLoc DL(Op);
5019     MVT XLenVT = Subtarget.getXLenVT();
5020 
5021     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5022     // the selection of the masked intrinsics doesn't do this for us.
5023     SDValue Mask = Op.getOperand(5);
5024     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5025 
5026     SDValue Val = Op.getOperand(2);
5027     MVT VT = Val.getSimpleValueType();
5028     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5029 
5030     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5031     if (!IsUnmasked) {
5032       MVT MaskVT = getMaskTypeFor(ContainerVT);
5033       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5034     }
5035 
5036     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5037 
5038     SDValue IntID = DAG.getTargetConstant(
5039         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5040         XLenVT);
5041 
5042     auto *Store = cast<MemIntrinsicSDNode>(Op);
5043     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5044     Ops.push_back(Val);
5045     Ops.push_back(Op.getOperand(3)); // Ptr
5046     Ops.push_back(Op.getOperand(4)); // Stride
5047     if (!IsUnmasked)
5048       Ops.push_back(Mask);
5049     Ops.push_back(VL);
5050 
5051     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5052                                    Ops, Store->getMemoryVT(),
5053                                    Store->getMemOperand());
5054   }
5055   }
5056 
5057   return SDValue();
5058 }
5059 
5060 static MVT getLMUL1VT(MVT VT) {
5061   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5062          "Unexpected vector MVT");
5063   return MVT::getScalableVectorVT(
5064       VT.getVectorElementType(),
5065       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5066 }
5067 
5068 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5069   switch (ISDOpcode) {
5070   default:
5071     llvm_unreachable("Unhandled reduction");
5072   case ISD::VECREDUCE_ADD:
5073     return RISCVISD::VECREDUCE_ADD_VL;
5074   case ISD::VECREDUCE_UMAX:
5075     return RISCVISD::VECREDUCE_UMAX_VL;
5076   case ISD::VECREDUCE_SMAX:
5077     return RISCVISD::VECREDUCE_SMAX_VL;
5078   case ISD::VECREDUCE_UMIN:
5079     return RISCVISD::VECREDUCE_UMIN_VL;
5080   case ISD::VECREDUCE_SMIN:
5081     return RISCVISD::VECREDUCE_SMIN_VL;
5082   case ISD::VECREDUCE_AND:
5083     return RISCVISD::VECREDUCE_AND_VL;
5084   case ISD::VECREDUCE_OR:
5085     return RISCVISD::VECREDUCE_OR_VL;
5086   case ISD::VECREDUCE_XOR:
5087     return RISCVISD::VECREDUCE_XOR_VL;
5088   }
5089 }
5090 
5091 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5092                                                          SelectionDAG &DAG,
5093                                                          bool IsVP) const {
5094   SDLoc DL(Op);
5095   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5096   MVT VecVT = Vec.getSimpleValueType();
5097   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5098           Op.getOpcode() == ISD::VECREDUCE_OR ||
5099           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5100           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5101           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5102           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5103          "Unexpected reduction lowering");
5104 
5105   MVT XLenVT = Subtarget.getXLenVT();
5106   assert(Op.getValueType() == XLenVT &&
5107          "Expected reduction output to be legalized to XLenVT");
5108 
5109   MVT ContainerVT = VecVT;
5110   if (VecVT.isFixedLengthVector()) {
5111     ContainerVT = getContainerForFixedLengthVector(VecVT);
5112     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5113   }
5114 
5115   SDValue Mask, VL;
5116   if (IsVP) {
5117     Mask = Op.getOperand(2);
5118     VL = Op.getOperand(3);
5119   } else {
5120     std::tie(Mask, VL) =
5121         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5122   }
5123 
5124   unsigned BaseOpc;
5125   ISD::CondCode CC;
5126   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5127 
5128   switch (Op.getOpcode()) {
5129   default:
5130     llvm_unreachable("Unhandled reduction");
5131   case ISD::VECREDUCE_AND:
5132   case ISD::VP_REDUCE_AND: {
5133     // vcpop ~x == 0
5134     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5135     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5136     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5137     CC = ISD::SETEQ;
5138     BaseOpc = ISD::AND;
5139     break;
5140   }
5141   case ISD::VECREDUCE_OR:
5142   case ISD::VP_REDUCE_OR:
5143     // vcpop x != 0
5144     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5145     CC = ISD::SETNE;
5146     BaseOpc = ISD::OR;
5147     break;
5148   case ISD::VECREDUCE_XOR:
5149   case ISD::VP_REDUCE_XOR: {
5150     // ((vcpop x) & 1) != 0
5151     SDValue One = DAG.getConstant(1, DL, XLenVT);
5152     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5153     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5154     CC = ISD::SETNE;
5155     BaseOpc = ISD::XOR;
5156     break;
5157   }
5158   }
5159 
5160   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5161 
5162   if (!IsVP)
5163     return SetCC;
5164 
5165   // Now include the start value in the operation.
5166   // Note that we must return the start value when no elements are operated
5167   // upon. The vcpop instructions we've emitted in each case above will return
5168   // 0 for an inactive vector, and so we've already received the neutral value:
5169   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5170   // can simply include the start value.
5171   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5172 }
5173 
5174 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5175                                             SelectionDAG &DAG) const {
5176   SDLoc DL(Op);
5177   SDValue Vec = Op.getOperand(0);
5178   EVT VecEVT = Vec.getValueType();
5179 
5180   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5181 
5182   // Due to ordering in legalize types we may have a vector type that needs to
5183   // be split. Do that manually so we can get down to a legal type.
5184   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5185          TargetLowering::TypeSplitVector) {
5186     SDValue Lo, Hi;
5187     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5188     VecEVT = Lo.getValueType();
5189     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5190   }
5191 
5192   // TODO: The type may need to be widened rather than split. Or widened before
5193   // it can be split.
5194   if (!isTypeLegal(VecEVT))
5195     return SDValue();
5196 
5197   MVT VecVT = VecEVT.getSimpleVT();
5198   MVT VecEltVT = VecVT.getVectorElementType();
5199   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5200 
5201   MVT ContainerVT = VecVT;
5202   if (VecVT.isFixedLengthVector()) {
5203     ContainerVT = getContainerForFixedLengthVector(VecVT);
5204     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5205   }
5206 
5207   MVT M1VT = getLMUL1VT(ContainerVT);
5208   MVT XLenVT = Subtarget.getXLenVT();
5209 
5210   SDValue Mask, VL;
5211   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5212 
5213   SDValue NeutralElem =
5214       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5215   SDValue IdentitySplat =
5216       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5217                        M1VT, DL, DAG, Subtarget);
5218   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5219                                   IdentitySplat, Mask, VL);
5220   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5221                              DAG.getConstant(0, DL, XLenVT));
5222   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5223 }
5224 
5225 // Given a reduction op, this function returns the matching reduction opcode,
5226 // the vector SDValue and the scalar SDValue required to lower this to a
5227 // RISCVISD node.
5228 static std::tuple<unsigned, SDValue, SDValue>
5229 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5230   SDLoc DL(Op);
5231   auto Flags = Op->getFlags();
5232   unsigned Opcode = Op.getOpcode();
5233   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5234   switch (Opcode) {
5235   default:
5236     llvm_unreachable("Unhandled reduction");
5237   case ISD::VECREDUCE_FADD: {
5238     // Use positive zero if we can. It is cheaper to materialize.
5239     SDValue Zero =
5240         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5241     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5242   }
5243   case ISD::VECREDUCE_SEQ_FADD:
5244     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5245                            Op.getOperand(0));
5246   case ISD::VECREDUCE_FMIN:
5247     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5248                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5249   case ISD::VECREDUCE_FMAX:
5250     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5251                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5252   }
5253 }
5254 
5255 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5256                                               SelectionDAG &DAG) const {
5257   SDLoc DL(Op);
5258   MVT VecEltVT = Op.getSimpleValueType();
5259 
5260   unsigned RVVOpcode;
5261   SDValue VectorVal, ScalarVal;
5262   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5263       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5264   MVT VecVT = VectorVal.getSimpleValueType();
5265 
5266   MVT ContainerVT = VecVT;
5267   if (VecVT.isFixedLengthVector()) {
5268     ContainerVT = getContainerForFixedLengthVector(VecVT);
5269     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5270   }
5271 
5272   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5273   MVT XLenVT = Subtarget.getXLenVT();
5274 
5275   SDValue Mask, VL;
5276   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5277 
5278   SDValue ScalarSplat =
5279       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5280                        M1VT, DL, DAG, Subtarget);
5281   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5282                                   VectorVal, ScalarSplat, Mask, VL);
5283   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5284                      DAG.getConstant(0, DL, XLenVT));
5285 }
5286 
5287 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5288   switch (ISDOpcode) {
5289   default:
5290     llvm_unreachable("Unhandled reduction");
5291   case ISD::VP_REDUCE_ADD:
5292     return RISCVISD::VECREDUCE_ADD_VL;
5293   case ISD::VP_REDUCE_UMAX:
5294     return RISCVISD::VECREDUCE_UMAX_VL;
5295   case ISD::VP_REDUCE_SMAX:
5296     return RISCVISD::VECREDUCE_SMAX_VL;
5297   case ISD::VP_REDUCE_UMIN:
5298     return RISCVISD::VECREDUCE_UMIN_VL;
5299   case ISD::VP_REDUCE_SMIN:
5300     return RISCVISD::VECREDUCE_SMIN_VL;
5301   case ISD::VP_REDUCE_AND:
5302     return RISCVISD::VECREDUCE_AND_VL;
5303   case ISD::VP_REDUCE_OR:
5304     return RISCVISD::VECREDUCE_OR_VL;
5305   case ISD::VP_REDUCE_XOR:
5306     return RISCVISD::VECREDUCE_XOR_VL;
5307   case ISD::VP_REDUCE_FADD:
5308     return RISCVISD::VECREDUCE_FADD_VL;
5309   case ISD::VP_REDUCE_SEQ_FADD:
5310     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5311   case ISD::VP_REDUCE_FMAX:
5312     return RISCVISD::VECREDUCE_FMAX_VL;
5313   case ISD::VP_REDUCE_FMIN:
5314     return RISCVISD::VECREDUCE_FMIN_VL;
5315   }
5316 }
5317 
5318 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5319                                            SelectionDAG &DAG) const {
5320   SDLoc DL(Op);
5321   SDValue Vec = Op.getOperand(1);
5322   EVT VecEVT = Vec.getValueType();
5323 
5324   // TODO: The type may need to be widened rather than split. Or widened before
5325   // it can be split.
5326   if (!isTypeLegal(VecEVT))
5327     return SDValue();
5328 
5329   MVT VecVT = VecEVT.getSimpleVT();
5330   MVT VecEltVT = VecVT.getVectorElementType();
5331   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5332 
5333   MVT ContainerVT = VecVT;
5334   if (VecVT.isFixedLengthVector()) {
5335     ContainerVT = getContainerForFixedLengthVector(VecVT);
5336     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5337   }
5338 
5339   SDValue VL = Op.getOperand(3);
5340   SDValue Mask = Op.getOperand(2);
5341 
5342   MVT M1VT = getLMUL1VT(ContainerVT);
5343   MVT XLenVT = Subtarget.getXLenVT();
5344   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5345 
5346   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5347                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5348                                         DL, DAG, Subtarget);
5349   SDValue Reduction =
5350       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5351   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5352                              DAG.getConstant(0, DL, XLenVT));
5353   if (!VecVT.isInteger())
5354     return Elt0;
5355   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5356 }
5357 
5358 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5359                                                    SelectionDAG &DAG) const {
5360   SDValue Vec = Op.getOperand(0);
5361   SDValue SubVec = Op.getOperand(1);
5362   MVT VecVT = Vec.getSimpleValueType();
5363   MVT SubVecVT = SubVec.getSimpleValueType();
5364 
5365   SDLoc DL(Op);
5366   MVT XLenVT = Subtarget.getXLenVT();
5367   unsigned OrigIdx = Op.getConstantOperandVal(2);
5368   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5369 
5370   // We don't have the ability to slide mask vectors up indexed by their i1
5371   // elements; the smallest we can do is i8. Often we are able to bitcast to
5372   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5373   // into a scalable one, we might not necessarily have enough scalable
5374   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5375   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5376       (OrigIdx != 0 || !Vec.isUndef())) {
5377     if (VecVT.getVectorMinNumElements() >= 8 &&
5378         SubVecVT.getVectorMinNumElements() >= 8) {
5379       assert(OrigIdx % 8 == 0 && "Invalid index");
5380       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5381              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5382              "Unexpected mask vector lowering");
5383       OrigIdx /= 8;
5384       SubVecVT =
5385           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5386                            SubVecVT.isScalableVector());
5387       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5388                                VecVT.isScalableVector());
5389       Vec = DAG.getBitcast(VecVT, Vec);
5390       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5391     } else {
5392       // We can't slide this mask vector up indexed by its i1 elements.
5393       // This poses a problem when we wish to insert a scalable vector which
5394       // can't be re-expressed as a larger type. Just choose the slow path and
5395       // extend to a larger type, then truncate back down.
5396       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5397       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5398       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5399       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5400       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5401                         Op.getOperand(2));
5402       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5403       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5404     }
5405   }
5406 
5407   // If the subvector vector is a fixed-length type, we cannot use subregister
5408   // manipulation to simplify the codegen; we don't know which register of a
5409   // LMUL group contains the specific subvector as we only know the minimum
5410   // register size. Therefore we must slide the vector group up the full
5411   // amount.
5412   if (SubVecVT.isFixedLengthVector()) {
5413     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5414       return Op;
5415     MVT ContainerVT = VecVT;
5416     if (VecVT.isFixedLengthVector()) {
5417       ContainerVT = getContainerForFixedLengthVector(VecVT);
5418       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5419     }
5420     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5421                          DAG.getUNDEF(ContainerVT), SubVec,
5422                          DAG.getConstant(0, DL, XLenVT));
5423     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5424       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5425       return DAG.getBitcast(Op.getValueType(), SubVec);
5426     }
5427     SDValue Mask =
5428         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5429     // Set the vector length to only the number of elements we care about. Note
5430     // that for slideup this includes the offset.
5431     SDValue VL =
5432         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5433     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5434     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5435                                   SubVec, SlideupAmt, Mask, VL);
5436     if (VecVT.isFixedLengthVector())
5437       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5438     return DAG.getBitcast(Op.getValueType(), Slideup);
5439   }
5440 
5441   unsigned SubRegIdx, RemIdx;
5442   std::tie(SubRegIdx, RemIdx) =
5443       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5444           VecVT, SubVecVT, OrigIdx, TRI);
5445 
5446   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5447   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5448                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5449                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5450 
5451   // 1. If the Idx has been completely eliminated and this subvector's size is
5452   // a vector register or a multiple thereof, or the surrounding elements are
5453   // undef, then this is a subvector insert which naturally aligns to a vector
5454   // register. These can easily be handled using subregister manipulation.
5455   // 2. If the subvector is smaller than a vector register, then the insertion
5456   // must preserve the undisturbed elements of the register. We do this by
5457   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5458   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5459   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5460   // LMUL=1 type back into the larger vector (resolving to another subregister
5461   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5462   // to avoid allocating a large register group to hold our subvector.
5463   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5464     return Op;
5465 
5466   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5467   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5468   // (in our case undisturbed). This means we can set up a subvector insertion
5469   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5470   // size of the subvector.
5471   MVT InterSubVT = VecVT;
5472   SDValue AlignedExtract = Vec;
5473   unsigned AlignedIdx = OrigIdx - RemIdx;
5474   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5475     InterSubVT = getLMUL1VT(VecVT);
5476     // Extract a subvector equal to the nearest full vector register type. This
5477     // should resolve to a EXTRACT_SUBREG instruction.
5478     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5479                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5480   }
5481 
5482   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5483   // For scalable vectors this must be further multiplied by vscale.
5484   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5485 
5486   SDValue Mask, VL;
5487   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5488 
5489   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5490   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5491   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5492   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5493 
5494   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5495                        DAG.getUNDEF(InterSubVT), SubVec,
5496                        DAG.getConstant(0, DL, XLenVT));
5497 
5498   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5499                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5500 
5501   // If required, insert this subvector back into the correct vector register.
5502   // This should resolve to an INSERT_SUBREG instruction.
5503   if (VecVT.bitsGT(InterSubVT))
5504     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5505                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5506 
5507   // We might have bitcast from a mask type: cast back to the original type if
5508   // required.
5509   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5510 }
5511 
5512 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5513                                                     SelectionDAG &DAG) const {
5514   SDValue Vec = Op.getOperand(0);
5515   MVT SubVecVT = Op.getSimpleValueType();
5516   MVT VecVT = Vec.getSimpleValueType();
5517 
5518   SDLoc DL(Op);
5519   MVT XLenVT = Subtarget.getXLenVT();
5520   unsigned OrigIdx = Op.getConstantOperandVal(1);
5521   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5522 
5523   // We don't have the ability to slide mask vectors down indexed by their i1
5524   // elements; the smallest we can do is i8. Often we are able to bitcast to
5525   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5526   // from a scalable one, we might not necessarily have enough scalable
5527   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5528   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5529     if (VecVT.getVectorMinNumElements() >= 8 &&
5530         SubVecVT.getVectorMinNumElements() >= 8) {
5531       assert(OrigIdx % 8 == 0 && "Invalid index");
5532       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5533              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5534              "Unexpected mask vector lowering");
5535       OrigIdx /= 8;
5536       SubVecVT =
5537           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5538                            SubVecVT.isScalableVector());
5539       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5540                                VecVT.isScalableVector());
5541       Vec = DAG.getBitcast(VecVT, Vec);
5542     } else {
5543       // We can't slide this mask vector down, indexed by its i1 elements.
5544       // This poses a problem when we wish to extract a scalable vector which
5545       // can't be re-expressed as a larger type. Just choose the slow path and
5546       // extend to a larger type, then truncate back down.
5547       // TODO: We could probably improve this when extracting certain fixed
5548       // from fixed, where we can extract as i8 and shift the correct element
5549       // right to reach the desired subvector?
5550       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5551       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5552       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5553       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5554                         Op.getOperand(1));
5555       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5556       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5557     }
5558   }
5559 
5560   // If the subvector vector is a fixed-length type, we cannot use subregister
5561   // manipulation to simplify the codegen; we don't know which register of a
5562   // LMUL group contains the specific subvector as we only know the minimum
5563   // register size. Therefore we must slide the vector group down the full
5564   // amount.
5565   if (SubVecVT.isFixedLengthVector()) {
5566     // With an index of 0 this is a cast-like subvector, which can be performed
5567     // with subregister operations.
5568     if (OrigIdx == 0)
5569       return Op;
5570     MVT ContainerVT = VecVT;
5571     if (VecVT.isFixedLengthVector()) {
5572       ContainerVT = getContainerForFixedLengthVector(VecVT);
5573       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5574     }
5575     SDValue Mask =
5576         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5577     // Set the vector length to only the number of elements we care about. This
5578     // avoids sliding down elements we're going to discard straight away.
5579     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5580     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5581     SDValue Slidedown =
5582         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5583                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5584     // Now we can use a cast-like subvector extract to get the result.
5585     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5586                             DAG.getConstant(0, DL, XLenVT));
5587     return DAG.getBitcast(Op.getValueType(), Slidedown);
5588   }
5589 
5590   unsigned SubRegIdx, RemIdx;
5591   std::tie(SubRegIdx, RemIdx) =
5592       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5593           VecVT, SubVecVT, OrigIdx, TRI);
5594 
5595   // If the Idx has been completely eliminated then this is a subvector extract
5596   // which naturally aligns to a vector register. These can easily be handled
5597   // using subregister manipulation.
5598   if (RemIdx == 0)
5599     return Op;
5600 
5601   // Else we must shift our vector register directly to extract the subvector.
5602   // Do this using VSLIDEDOWN.
5603 
5604   // If the vector type is an LMUL-group type, extract a subvector equal to the
5605   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5606   // instruction.
5607   MVT InterSubVT = VecVT;
5608   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5609     InterSubVT = getLMUL1VT(VecVT);
5610     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5611                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5612   }
5613 
5614   // Slide this vector register down by the desired number of elements in order
5615   // to place the desired subvector starting at element 0.
5616   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5617   // For scalable vectors this must be further multiplied by vscale.
5618   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5619 
5620   SDValue Mask, VL;
5621   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5622   SDValue Slidedown =
5623       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5624                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5625 
5626   // Now the vector is in the right position, extract our final subvector. This
5627   // should resolve to a COPY.
5628   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5629                           DAG.getConstant(0, DL, XLenVT));
5630 
5631   // We might have bitcast from a mask type: cast back to the original type if
5632   // required.
5633   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5634 }
5635 
5636 // Lower step_vector to the vid instruction. Any non-identity step value must
5637 // be accounted for my manual expansion.
5638 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5639                                               SelectionDAG &DAG) const {
5640   SDLoc DL(Op);
5641   MVT VT = Op.getSimpleValueType();
5642   MVT XLenVT = Subtarget.getXLenVT();
5643   SDValue Mask, VL;
5644   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5645   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5646   uint64_t StepValImm = Op.getConstantOperandVal(0);
5647   if (StepValImm != 1) {
5648     if (isPowerOf2_64(StepValImm)) {
5649       SDValue StepVal =
5650           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5651                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5652       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5653     } else {
5654       SDValue StepVal = lowerScalarSplat(
5655           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5656           VL, VT, DL, DAG, Subtarget);
5657       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5658     }
5659   }
5660   return StepVec;
5661 }
5662 
5663 // Implement vector_reverse using vrgather.vv with indices determined by
5664 // subtracting the id of each element from (VLMAX-1). This will convert
5665 // the indices like so:
5666 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5667 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5668 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5669                                                  SelectionDAG &DAG) const {
5670   SDLoc DL(Op);
5671   MVT VecVT = Op.getSimpleValueType();
5672   if (VecVT.getVectorElementType() == MVT::i1) {
5673     MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5674     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
5675     SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
5676     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
5677   }
5678   unsigned EltSize = VecVT.getScalarSizeInBits();
5679   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5680   unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5681   unsigned MaxVLMAX =
5682     RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5683 
5684   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5685   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5686 
5687   // If this is SEW=8 and VLMAX is potentially more than 256, we need
5688   // to use vrgatherei16.vv.
5689   // TODO: It's also possible to use vrgatherei16.vv for other types to
5690   // decrease register width for the index calculation.
5691   if (MaxVLMAX > 256 && EltSize == 8) {
5692     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5693     // Reverse each half, then reassemble them in reverse order.
5694     // NOTE: It's also possible that after splitting that VLMAX no longer
5695     // requires vrgatherei16.vv.
5696     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5697       SDValue Lo, Hi;
5698       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5699       EVT LoVT, HiVT;
5700       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5701       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5702       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5703       // Reassemble the low and high pieces reversed.
5704       // FIXME: This is a CONCAT_VECTORS.
5705       SDValue Res =
5706           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5707                       DAG.getIntPtrConstant(0, DL));
5708       return DAG.getNode(
5709           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5710           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5711     }
5712 
5713     // Just promote the int type to i16 which will double the LMUL.
5714     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5715     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5716   }
5717 
5718   MVT XLenVT = Subtarget.getXLenVT();
5719   SDValue Mask, VL;
5720   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5721 
5722   // Calculate VLMAX-1 for the desired SEW.
5723   unsigned MinElts = VecVT.getVectorMinNumElements();
5724   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5725                               DAG.getConstant(MinElts, DL, XLenVT));
5726   SDValue VLMinus1 =
5727       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5728 
5729   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5730   bool IsRV32E64 =
5731       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5732   SDValue SplatVL;
5733   if (!IsRV32E64)
5734     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5735   else
5736     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5737                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5738 
5739   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5740   SDValue Indices =
5741       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5742 
5743   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask,
5744                      DAG.getUNDEF(VecVT), VL);
5745 }
5746 
5747 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5748                                                 SelectionDAG &DAG) const {
5749   SDLoc DL(Op);
5750   SDValue V1 = Op.getOperand(0);
5751   SDValue V2 = Op.getOperand(1);
5752   MVT XLenVT = Subtarget.getXLenVT();
5753   MVT VecVT = Op.getSimpleValueType();
5754 
5755   unsigned MinElts = VecVT.getVectorMinNumElements();
5756   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5757                               DAG.getConstant(MinElts, DL, XLenVT));
5758 
5759   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5760   SDValue DownOffset, UpOffset;
5761   if (ImmValue >= 0) {
5762     // The operand is a TargetConstant, we need to rebuild it as a regular
5763     // constant.
5764     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5765     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5766   } else {
5767     // The operand is a TargetConstant, we need to rebuild it as a regular
5768     // constant rather than negating the original operand.
5769     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5770     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5771   }
5772 
5773   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5774 
5775   SDValue SlideDown =
5776       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5777                   DownOffset, TrueMask, UpOffset);
5778   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5779                      TrueMask, DAG.getRegister(RISCV::X0, XLenVT));
5780 }
5781 
5782 SDValue
5783 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5784                                                      SelectionDAG &DAG) const {
5785   SDLoc DL(Op);
5786   auto *Load = cast<LoadSDNode>(Op);
5787 
5788   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5789                                         Load->getMemoryVT(),
5790                                         *Load->getMemOperand()) &&
5791          "Expecting a correctly-aligned load");
5792 
5793   MVT VT = Op.getSimpleValueType();
5794   MVT XLenVT = Subtarget.getXLenVT();
5795   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5796 
5797   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5798 
5799   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5800   SDValue IntID = DAG.getTargetConstant(
5801       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5802   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5803   if (!IsMaskOp)
5804     Ops.push_back(DAG.getUNDEF(ContainerVT));
5805   Ops.push_back(Load->getBasePtr());
5806   Ops.push_back(VL);
5807   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5808   SDValue NewLoad =
5809       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5810                               Load->getMemoryVT(), Load->getMemOperand());
5811 
5812   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5813   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5814 }
5815 
5816 SDValue
5817 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5818                                                       SelectionDAG &DAG) const {
5819   SDLoc DL(Op);
5820   auto *Store = cast<StoreSDNode>(Op);
5821 
5822   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5823                                         Store->getMemoryVT(),
5824                                         *Store->getMemOperand()) &&
5825          "Expecting a correctly-aligned store");
5826 
5827   SDValue StoreVal = Store->getValue();
5828   MVT VT = StoreVal.getSimpleValueType();
5829   MVT XLenVT = Subtarget.getXLenVT();
5830 
5831   // If the size less than a byte, we need to pad with zeros to make a byte.
5832   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5833     VT = MVT::v8i1;
5834     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5835                            DAG.getConstant(0, DL, VT), StoreVal,
5836                            DAG.getIntPtrConstant(0, DL));
5837   }
5838 
5839   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5840 
5841   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5842 
5843   SDValue NewValue =
5844       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5845 
5846   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5847   SDValue IntID = DAG.getTargetConstant(
5848       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5849   return DAG.getMemIntrinsicNode(
5850       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5851       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5852       Store->getMemoryVT(), Store->getMemOperand());
5853 }
5854 
5855 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5856                                              SelectionDAG &DAG) const {
5857   SDLoc DL(Op);
5858   MVT VT = Op.getSimpleValueType();
5859 
5860   const auto *MemSD = cast<MemSDNode>(Op);
5861   EVT MemVT = MemSD->getMemoryVT();
5862   MachineMemOperand *MMO = MemSD->getMemOperand();
5863   SDValue Chain = MemSD->getChain();
5864   SDValue BasePtr = MemSD->getBasePtr();
5865 
5866   SDValue Mask, PassThru, VL;
5867   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5868     Mask = VPLoad->getMask();
5869     PassThru = DAG.getUNDEF(VT);
5870     VL = VPLoad->getVectorLength();
5871   } else {
5872     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5873     Mask = MLoad->getMask();
5874     PassThru = MLoad->getPassThru();
5875   }
5876 
5877   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5878 
5879   MVT XLenVT = Subtarget.getXLenVT();
5880 
5881   MVT ContainerVT = VT;
5882   if (VT.isFixedLengthVector()) {
5883     ContainerVT = getContainerForFixedLengthVector(VT);
5884     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5885     if (!IsUnmasked) {
5886       MVT MaskVT = getMaskTypeFor(ContainerVT);
5887       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5888     }
5889   }
5890 
5891   if (!VL)
5892     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5893 
5894   unsigned IntID =
5895       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5896   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5897   if (IsUnmasked)
5898     Ops.push_back(DAG.getUNDEF(ContainerVT));
5899   else
5900     Ops.push_back(PassThru);
5901   Ops.push_back(BasePtr);
5902   if (!IsUnmasked)
5903     Ops.push_back(Mask);
5904   Ops.push_back(VL);
5905   if (!IsUnmasked)
5906     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5907 
5908   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5909 
5910   SDValue Result =
5911       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5912   Chain = Result.getValue(1);
5913 
5914   if (VT.isFixedLengthVector())
5915     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5916 
5917   return DAG.getMergeValues({Result, Chain}, DL);
5918 }
5919 
5920 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5921                                               SelectionDAG &DAG) const {
5922   SDLoc DL(Op);
5923 
5924   const auto *MemSD = cast<MemSDNode>(Op);
5925   EVT MemVT = MemSD->getMemoryVT();
5926   MachineMemOperand *MMO = MemSD->getMemOperand();
5927   SDValue Chain = MemSD->getChain();
5928   SDValue BasePtr = MemSD->getBasePtr();
5929   SDValue Val, Mask, VL;
5930 
5931   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5932     Val = VPStore->getValue();
5933     Mask = VPStore->getMask();
5934     VL = VPStore->getVectorLength();
5935   } else {
5936     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5937     Val = MStore->getValue();
5938     Mask = MStore->getMask();
5939   }
5940 
5941   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5942 
5943   MVT VT = Val.getSimpleValueType();
5944   MVT XLenVT = Subtarget.getXLenVT();
5945 
5946   MVT ContainerVT = VT;
5947   if (VT.isFixedLengthVector()) {
5948     ContainerVT = getContainerForFixedLengthVector(VT);
5949 
5950     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5951     if (!IsUnmasked) {
5952       MVT MaskVT = getMaskTypeFor(ContainerVT);
5953       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5954     }
5955   }
5956 
5957   if (!VL)
5958     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5959 
5960   unsigned IntID =
5961       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5962   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5963   Ops.push_back(Val);
5964   Ops.push_back(BasePtr);
5965   if (!IsUnmasked)
5966     Ops.push_back(Mask);
5967   Ops.push_back(VL);
5968 
5969   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5970                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5971 }
5972 
5973 SDValue
5974 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5975                                                       SelectionDAG &DAG) const {
5976   MVT InVT = Op.getOperand(0).getSimpleValueType();
5977   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5978 
5979   MVT VT = Op.getSimpleValueType();
5980 
5981   SDValue Op1 =
5982       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5983   SDValue Op2 =
5984       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5985 
5986   SDLoc DL(Op);
5987   SDValue VL =
5988       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5989 
5990   MVT MaskVT = getMaskTypeFor(ContainerVT);
5991   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5992 
5993   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5994                             Op.getOperand(2), Mask, VL);
5995 
5996   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5997 }
5998 
5999 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6000     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6001   MVT VT = Op.getSimpleValueType();
6002 
6003   if (VT.getVectorElementType() == MVT::i1)
6004     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
6005 
6006   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
6007 }
6008 
6009 SDValue
6010 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6011                                                       SelectionDAG &DAG) const {
6012   unsigned Opc;
6013   switch (Op.getOpcode()) {
6014   default: llvm_unreachable("Unexpected opcode!");
6015   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6016   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6017   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6018   }
6019 
6020   return lowerToScalableOp(Op, DAG, Opc);
6021 }
6022 
6023 // Lower vector ABS to smax(X, sub(0, X)).
6024 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6025   SDLoc DL(Op);
6026   MVT VT = Op.getSimpleValueType();
6027   SDValue X = Op.getOperand(0);
6028 
6029   assert(VT.isFixedLengthVector() && "Unexpected type");
6030 
6031   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6032   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6033 
6034   SDValue Mask, VL;
6035   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6036 
6037   SDValue SplatZero = DAG.getNode(
6038       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6039       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6040   SDValue NegX =
6041       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6042   SDValue Max =
6043       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6044 
6045   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6046 }
6047 
6048 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6049     SDValue Op, SelectionDAG &DAG) const {
6050   SDLoc DL(Op);
6051   MVT VT = Op.getSimpleValueType();
6052   SDValue Mag = Op.getOperand(0);
6053   SDValue Sign = Op.getOperand(1);
6054   assert(Mag.getValueType() == Sign.getValueType() &&
6055          "Can only handle COPYSIGN with matching types.");
6056 
6057   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6058   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6059   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6060 
6061   SDValue Mask, VL;
6062   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6063 
6064   SDValue CopySign =
6065       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6066 
6067   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6068 }
6069 
6070 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6071     SDValue Op, SelectionDAG &DAG) const {
6072   MVT VT = Op.getSimpleValueType();
6073   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6074 
6075   MVT I1ContainerVT =
6076       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6077 
6078   SDValue CC =
6079       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6080   SDValue Op1 =
6081       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6082   SDValue Op2 =
6083       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6084 
6085   SDLoc DL(Op);
6086   SDValue Mask, VL;
6087   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6088 
6089   SDValue Select =
6090       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6091 
6092   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6093 }
6094 
6095 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6096                                                unsigned NewOpc,
6097                                                bool HasMask) const {
6098   MVT VT = Op.getSimpleValueType();
6099   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6100 
6101   // Create list of operands by converting existing ones to scalable types.
6102   SmallVector<SDValue, 6> Ops;
6103   for (const SDValue &V : Op->op_values()) {
6104     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6105 
6106     // Pass through non-vector operands.
6107     if (!V.getValueType().isVector()) {
6108       Ops.push_back(V);
6109       continue;
6110     }
6111 
6112     // "cast" fixed length vector to a scalable vector.
6113     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6114            "Only fixed length vectors are supported!");
6115     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6116   }
6117 
6118   SDLoc DL(Op);
6119   SDValue Mask, VL;
6120   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6121   if (HasMask)
6122     Ops.push_back(Mask);
6123   Ops.push_back(VL);
6124 
6125   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6126   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6127 }
6128 
6129 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6130 // * Operands of each node are assumed to be in the same order.
6131 // * The EVL operand is promoted from i32 to i64 on RV64.
6132 // * Fixed-length vectors are converted to their scalable-vector container
6133 //   types.
6134 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6135                                        unsigned RISCVISDOpc) const {
6136   SDLoc DL(Op);
6137   MVT VT = Op.getSimpleValueType();
6138   SmallVector<SDValue, 4> Ops;
6139 
6140   for (const auto &OpIdx : enumerate(Op->ops())) {
6141     SDValue V = OpIdx.value();
6142     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6143     // Pass through operands which aren't fixed-length vectors.
6144     if (!V.getValueType().isFixedLengthVector()) {
6145       Ops.push_back(V);
6146       continue;
6147     }
6148     // "cast" fixed length vector to a scalable vector.
6149     MVT OpVT = V.getSimpleValueType();
6150     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6151     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6152            "Only fixed length vectors are supported!");
6153     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6154   }
6155 
6156   if (!VT.isFixedLengthVector())
6157     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6158 
6159   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6160 
6161   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6162 
6163   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6164 }
6165 
6166 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6167                                               SelectionDAG &DAG) const {
6168   SDLoc DL(Op);
6169   MVT VT = Op.getSimpleValueType();
6170 
6171   SDValue Src = Op.getOperand(0);
6172   // NOTE: Mask is dropped.
6173   SDValue VL = Op.getOperand(2);
6174 
6175   MVT ContainerVT = VT;
6176   if (VT.isFixedLengthVector()) {
6177     ContainerVT = getContainerForFixedLengthVector(VT);
6178     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6179     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6180   }
6181 
6182   MVT XLenVT = Subtarget.getXLenVT();
6183   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6184   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6185                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6186 
6187   SDValue SplatValue = DAG.getConstant(
6188       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6189   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6190                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6191 
6192   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6193                                Splat, ZeroSplat, VL);
6194   if (!VT.isFixedLengthVector())
6195     return Result;
6196   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6197 }
6198 
6199 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6200                                                 SelectionDAG &DAG) const {
6201   SDLoc DL(Op);
6202   MVT VT = Op.getSimpleValueType();
6203 
6204   SDValue Op1 = Op.getOperand(0);
6205   SDValue Op2 = Op.getOperand(1);
6206   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6207   // NOTE: Mask is dropped.
6208   SDValue VL = Op.getOperand(4);
6209 
6210   MVT ContainerVT = VT;
6211   if (VT.isFixedLengthVector()) {
6212     ContainerVT = getContainerForFixedLengthVector(VT);
6213     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6214     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6215   }
6216 
6217   SDValue Result;
6218   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6219 
6220   switch (Condition) {
6221   default:
6222     break;
6223   // X != Y  --> (X^Y)
6224   case ISD::SETNE:
6225     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6226     break;
6227   // X == Y  --> ~(X^Y)
6228   case ISD::SETEQ: {
6229     SDValue Temp =
6230         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6231     Result =
6232         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6233     break;
6234   }
6235   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6236   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6237   case ISD::SETGT:
6238   case ISD::SETULT: {
6239     SDValue Temp =
6240         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6241     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6242     break;
6243   }
6244   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6245   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6246   case ISD::SETLT:
6247   case ISD::SETUGT: {
6248     SDValue Temp =
6249         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6250     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6251     break;
6252   }
6253   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6254   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6255   case ISD::SETGE:
6256   case ISD::SETULE: {
6257     SDValue Temp =
6258         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6259     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6260     break;
6261   }
6262   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6263   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6264   case ISD::SETLE:
6265   case ISD::SETUGE: {
6266     SDValue Temp =
6267         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6268     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6269     break;
6270   }
6271   }
6272 
6273   if (!VT.isFixedLengthVector())
6274     return Result;
6275   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6276 }
6277 
6278 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6279 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6280                                                 unsigned RISCVISDOpc) const {
6281   SDLoc DL(Op);
6282 
6283   SDValue Src = Op.getOperand(0);
6284   SDValue Mask = Op.getOperand(1);
6285   SDValue VL = Op.getOperand(2);
6286 
6287   MVT DstVT = Op.getSimpleValueType();
6288   MVT SrcVT = Src.getSimpleValueType();
6289   if (DstVT.isFixedLengthVector()) {
6290     DstVT = getContainerForFixedLengthVector(DstVT);
6291     SrcVT = getContainerForFixedLengthVector(SrcVT);
6292     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6293     MVT MaskVT = getMaskTypeFor(DstVT);
6294     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6295   }
6296 
6297   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6298                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6299                                 ? RISCVISD::VSEXT_VL
6300                                 : RISCVISD::VZEXT_VL;
6301 
6302   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6303   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6304 
6305   SDValue Result;
6306   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6307     if (SrcVT.isInteger()) {
6308       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6309 
6310       // Do we need to do any pre-widening before converting?
6311       if (SrcEltSize == 1) {
6312         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6313         MVT XLenVT = Subtarget.getXLenVT();
6314         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6315         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6316                                         DAG.getUNDEF(IntVT), Zero, VL);
6317         SDValue One = DAG.getConstant(
6318             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6319         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6320                                        DAG.getUNDEF(IntVT), One, VL);
6321         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6322                           ZeroSplat, VL);
6323       } else if (DstEltSize > (2 * SrcEltSize)) {
6324         // Widen before converting.
6325         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6326                                      DstVT.getVectorElementCount());
6327         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6328       }
6329 
6330       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6331     } else {
6332       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6333              "Wrong input/output vector types");
6334 
6335       // Convert f16 to f32 then convert f32 to i64.
6336       if (DstEltSize > (2 * SrcEltSize)) {
6337         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6338         MVT InterimFVT =
6339             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6340         Src =
6341             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6342       }
6343 
6344       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6345     }
6346   } else { // Narrowing + Conversion
6347     if (SrcVT.isInteger()) {
6348       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6349       // First do a narrowing convert to an FP type half the size, then round
6350       // the FP type to a small FP type if needed.
6351 
6352       MVT InterimFVT = DstVT;
6353       if (SrcEltSize > (2 * DstEltSize)) {
6354         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6355         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6356         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6357       }
6358 
6359       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6360 
6361       if (InterimFVT != DstVT) {
6362         Src = Result;
6363         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6364       }
6365     } else {
6366       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6367              "Wrong input/output vector types");
6368       // First do a narrowing conversion to an integer half the size, then
6369       // truncate if needed.
6370 
6371       if (DstEltSize == 1) {
6372         // First convert to the same size integer, then convert to mask using
6373         // setcc.
6374         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6375         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6376                                           DstVT.getVectorElementCount());
6377         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6378 
6379         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6380         // otherwise the conversion was undefined.
6381         MVT XLenVT = Subtarget.getXLenVT();
6382         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6383         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6384                                 DAG.getUNDEF(InterimIVT), SplatZero);
6385         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6386                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6387       } else {
6388         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6389                                           DstVT.getVectorElementCount());
6390 
6391         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6392 
6393         while (InterimIVT != DstVT) {
6394           SrcEltSize /= 2;
6395           Src = Result;
6396           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6397                                         DstVT.getVectorElementCount());
6398           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6399                                Src, Mask, VL);
6400         }
6401       }
6402     }
6403   }
6404 
6405   MVT VT = Op.getSimpleValueType();
6406   if (!VT.isFixedLengthVector())
6407     return Result;
6408   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6409 }
6410 
6411 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6412                                             unsigned MaskOpc,
6413                                             unsigned VecOpc) const {
6414   MVT VT = Op.getSimpleValueType();
6415   if (VT.getVectorElementType() != MVT::i1)
6416     return lowerVPOp(Op, DAG, VecOpc);
6417 
6418   // It is safe to drop mask parameter as masked-off elements are undef.
6419   SDValue Op1 = Op->getOperand(0);
6420   SDValue Op2 = Op->getOperand(1);
6421   SDValue VL = Op->getOperand(3);
6422 
6423   MVT ContainerVT = VT;
6424   const bool IsFixed = VT.isFixedLengthVector();
6425   if (IsFixed) {
6426     ContainerVT = getContainerForFixedLengthVector(VT);
6427     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6428     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6429   }
6430 
6431   SDLoc DL(Op);
6432   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6433   if (!IsFixed)
6434     return Val;
6435   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6436 }
6437 
6438 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6439 // matched to a RVV indexed load. The RVV indexed load instructions only
6440 // support the "unsigned unscaled" addressing mode; indices are implicitly
6441 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6442 // signed or scaled indexing is extended to the XLEN value type and scaled
6443 // accordingly.
6444 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6445                                                SelectionDAG &DAG) const {
6446   SDLoc DL(Op);
6447   MVT VT = Op.getSimpleValueType();
6448 
6449   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6450   EVT MemVT = MemSD->getMemoryVT();
6451   MachineMemOperand *MMO = MemSD->getMemOperand();
6452   SDValue Chain = MemSD->getChain();
6453   SDValue BasePtr = MemSD->getBasePtr();
6454 
6455   ISD::LoadExtType LoadExtType;
6456   SDValue Index, Mask, PassThru, VL;
6457 
6458   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6459     Index = VPGN->getIndex();
6460     Mask = VPGN->getMask();
6461     PassThru = DAG.getUNDEF(VT);
6462     VL = VPGN->getVectorLength();
6463     // VP doesn't support extending loads.
6464     LoadExtType = ISD::NON_EXTLOAD;
6465   } else {
6466     // Else it must be a MGATHER.
6467     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6468     Index = MGN->getIndex();
6469     Mask = MGN->getMask();
6470     PassThru = MGN->getPassThru();
6471     LoadExtType = MGN->getExtensionType();
6472   }
6473 
6474   MVT IndexVT = Index.getSimpleValueType();
6475   MVT XLenVT = Subtarget.getXLenVT();
6476 
6477   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6478          "Unexpected VTs!");
6479   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6480   // Targets have to explicitly opt-in for extending vector loads.
6481   assert(LoadExtType == ISD::NON_EXTLOAD &&
6482          "Unexpected extending MGATHER/VP_GATHER");
6483   (void)LoadExtType;
6484 
6485   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6486   // the selection of the masked intrinsics doesn't do this for us.
6487   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6488 
6489   MVT ContainerVT = VT;
6490   if (VT.isFixedLengthVector()) {
6491     ContainerVT = getContainerForFixedLengthVector(VT);
6492     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6493                                ContainerVT.getVectorElementCount());
6494 
6495     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6496 
6497     if (!IsUnmasked) {
6498       MVT MaskVT = getMaskTypeFor(ContainerVT);
6499       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6500       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6501     }
6502   }
6503 
6504   if (!VL)
6505     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6506 
6507   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6508     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6509     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6510                                    VL);
6511     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6512                         TrueMask, VL);
6513   }
6514 
6515   unsigned IntID =
6516       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6517   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6518   if (IsUnmasked)
6519     Ops.push_back(DAG.getUNDEF(ContainerVT));
6520   else
6521     Ops.push_back(PassThru);
6522   Ops.push_back(BasePtr);
6523   Ops.push_back(Index);
6524   if (!IsUnmasked)
6525     Ops.push_back(Mask);
6526   Ops.push_back(VL);
6527   if (!IsUnmasked)
6528     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6529 
6530   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6531   SDValue Result =
6532       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6533   Chain = Result.getValue(1);
6534 
6535   if (VT.isFixedLengthVector())
6536     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6537 
6538   return DAG.getMergeValues({Result, Chain}, DL);
6539 }
6540 
6541 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6542 // matched to a RVV indexed store. The RVV indexed store instructions only
6543 // support the "unsigned unscaled" addressing mode; indices are implicitly
6544 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6545 // signed or scaled indexing is extended to the XLEN value type and scaled
6546 // accordingly.
6547 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6548                                                 SelectionDAG &DAG) const {
6549   SDLoc DL(Op);
6550   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6551   EVT MemVT = MemSD->getMemoryVT();
6552   MachineMemOperand *MMO = MemSD->getMemOperand();
6553   SDValue Chain = MemSD->getChain();
6554   SDValue BasePtr = MemSD->getBasePtr();
6555 
6556   bool IsTruncatingStore = false;
6557   SDValue Index, Mask, Val, VL;
6558 
6559   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6560     Index = VPSN->getIndex();
6561     Mask = VPSN->getMask();
6562     Val = VPSN->getValue();
6563     VL = VPSN->getVectorLength();
6564     // VP doesn't support truncating stores.
6565     IsTruncatingStore = false;
6566   } else {
6567     // Else it must be a MSCATTER.
6568     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6569     Index = MSN->getIndex();
6570     Mask = MSN->getMask();
6571     Val = MSN->getValue();
6572     IsTruncatingStore = MSN->isTruncatingStore();
6573   }
6574 
6575   MVT VT = Val.getSimpleValueType();
6576   MVT IndexVT = Index.getSimpleValueType();
6577   MVT XLenVT = Subtarget.getXLenVT();
6578 
6579   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6580          "Unexpected VTs!");
6581   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6582   // Targets have to explicitly opt-in for extending vector loads and
6583   // truncating vector stores.
6584   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6585   (void)IsTruncatingStore;
6586 
6587   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6588   // the selection of the masked intrinsics doesn't do this for us.
6589   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6590 
6591   MVT ContainerVT = VT;
6592   if (VT.isFixedLengthVector()) {
6593     ContainerVT = getContainerForFixedLengthVector(VT);
6594     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6595                                ContainerVT.getVectorElementCount());
6596 
6597     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6598     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6599 
6600     if (!IsUnmasked) {
6601       MVT MaskVT = getMaskTypeFor(ContainerVT);
6602       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6603     }
6604   }
6605 
6606   if (!VL)
6607     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6608 
6609   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6610     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6611     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6612                                    VL);
6613     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6614                         TrueMask, VL);
6615   }
6616 
6617   unsigned IntID =
6618       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6619   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6620   Ops.push_back(Val);
6621   Ops.push_back(BasePtr);
6622   Ops.push_back(Index);
6623   if (!IsUnmasked)
6624     Ops.push_back(Mask);
6625   Ops.push_back(VL);
6626 
6627   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6628                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6629 }
6630 
6631 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6632                                                SelectionDAG &DAG) const {
6633   const MVT XLenVT = Subtarget.getXLenVT();
6634   SDLoc DL(Op);
6635   SDValue Chain = Op->getOperand(0);
6636   SDValue SysRegNo = DAG.getTargetConstant(
6637       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6638   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6639   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6640 
6641   // Encoding used for rounding mode in RISCV differs from that used in
6642   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6643   // table, which consists of a sequence of 4-bit fields, each representing
6644   // corresponding FLT_ROUNDS mode.
6645   static const int Table =
6646       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6647       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6648       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6649       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6650       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6651 
6652   SDValue Shift =
6653       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6654   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6655                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6656   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6657                                DAG.getConstant(7, DL, XLenVT));
6658 
6659   return DAG.getMergeValues({Masked, Chain}, DL);
6660 }
6661 
6662 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6663                                                SelectionDAG &DAG) const {
6664   const MVT XLenVT = Subtarget.getXLenVT();
6665   SDLoc DL(Op);
6666   SDValue Chain = Op->getOperand(0);
6667   SDValue RMValue = Op->getOperand(1);
6668   SDValue SysRegNo = DAG.getTargetConstant(
6669       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6670 
6671   // Encoding used for rounding mode in RISCV differs from that used in
6672   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6673   // a table, which consists of a sequence of 4-bit fields, each representing
6674   // corresponding RISCV mode.
6675   static const unsigned Table =
6676       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6677       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6678       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6679       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6680       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6681 
6682   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6683                               DAG.getConstant(2, DL, XLenVT));
6684   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6685                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6686   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6687                         DAG.getConstant(0x7, DL, XLenVT));
6688   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6689                      RMValue);
6690 }
6691 
6692 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6693                                                SelectionDAG &DAG) const {
6694   MachineFunction &MF = DAG.getMachineFunction();
6695 
6696   bool isRISCV64 = Subtarget.is64Bit();
6697   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6698 
6699   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6700   return DAG.getFrameIndex(FI, PtrVT);
6701 }
6702 
6703 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6704   switch (IntNo) {
6705   default:
6706     llvm_unreachable("Unexpected Intrinsic");
6707   case Intrinsic::riscv_bcompress:
6708     return RISCVISD::BCOMPRESSW;
6709   case Intrinsic::riscv_bdecompress:
6710     return RISCVISD::BDECOMPRESSW;
6711   case Intrinsic::riscv_bfp:
6712     return RISCVISD::BFPW;
6713   case Intrinsic::riscv_fsl:
6714     return RISCVISD::FSLW;
6715   case Intrinsic::riscv_fsr:
6716     return RISCVISD::FSRW;
6717   }
6718 }
6719 
6720 // Converts the given intrinsic to a i64 operation with any extension.
6721 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6722                                          unsigned IntNo) {
6723   SDLoc DL(N);
6724   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6725   // Deal with the Instruction Operands
6726   SmallVector<SDValue, 3> NewOps;
6727   for (SDValue Op : drop_begin(N->ops()))
6728     // Promote the operand to i64 type
6729     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6730   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6731   // ReplaceNodeResults requires we maintain the same type for the return value.
6732   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6733 }
6734 
6735 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6736 // form of the given Opcode.
6737 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6738   switch (Opcode) {
6739   default:
6740     llvm_unreachable("Unexpected opcode");
6741   case ISD::SHL:
6742     return RISCVISD::SLLW;
6743   case ISD::SRA:
6744     return RISCVISD::SRAW;
6745   case ISD::SRL:
6746     return RISCVISD::SRLW;
6747   case ISD::SDIV:
6748     return RISCVISD::DIVW;
6749   case ISD::UDIV:
6750     return RISCVISD::DIVUW;
6751   case ISD::UREM:
6752     return RISCVISD::REMUW;
6753   case ISD::ROTL:
6754     return RISCVISD::ROLW;
6755   case ISD::ROTR:
6756     return RISCVISD::RORW;
6757   }
6758 }
6759 
6760 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6761 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6762 // otherwise be promoted to i64, making it difficult to select the
6763 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6764 // type i8/i16/i32 is lost.
6765 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6766                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6767   SDLoc DL(N);
6768   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6769   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6770   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6771   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6772   // ReplaceNodeResults requires we maintain the same type for the return value.
6773   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6774 }
6775 
6776 // Converts the given 32-bit operation to a i64 operation with signed extension
6777 // semantic to reduce the signed extension instructions.
6778 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6779   SDLoc DL(N);
6780   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6781   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6782   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6783   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6784                                DAG.getValueType(MVT::i32));
6785   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6786 }
6787 
6788 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6789                                              SmallVectorImpl<SDValue> &Results,
6790                                              SelectionDAG &DAG) const {
6791   SDLoc DL(N);
6792   switch (N->getOpcode()) {
6793   default:
6794     llvm_unreachable("Don't know how to custom type legalize this operation!");
6795   case ISD::STRICT_FP_TO_SINT:
6796   case ISD::STRICT_FP_TO_UINT:
6797   case ISD::FP_TO_SINT:
6798   case ISD::FP_TO_UINT: {
6799     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6800            "Unexpected custom legalisation");
6801     bool IsStrict = N->isStrictFPOpcode();
6802     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6803                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6804     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6805     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6806         TargetLowering::TypeSoftenFloat) {
6807       if (!isTypeLegal(Op0.getValueType()))
6808         return;
6809       if (IsStrict) {
6810         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6811                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6812         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6813         SDValue Res = DAG.getNode(
6814             Opc, DL, VTs, N->getOperand(0), Op0,
6815             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6816         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6817         Results.push_back(Res.getValue(1));
6818         return;
6819       }
6820       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6821       SDValue Res =
6822           DAG.getNode(Opc, DL, MVT::i64, Op0,
6823                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6824       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6825       return;
6826     }
6827     // If the FP type needs to be softened, emit a library call using the 'si'
6828     // version. If we left it to default legalization we'd end up with 'di'. If
6829     // the FP type doesn't need to be softened just let generic type
6830     // legalization promote the result type.
6831     RTLIB::Libcall LC;
6832     if (IsSigned)
6833       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6834     else
6835       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6836     MakeLibCallOptions CallOptions;
6837     EVT OpVT = Op0.getValueType();
6838     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6839     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6840     SDValue Result;
6841     std::tie(Result, Chain) =
6842         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6843     Results.push_back(Result);
6844     if (IsStrict)
6845       Results.push_back(Chain);
6846     break;
6847   }
6848   case ISD::READCYCLECOUNTER: {
6849     assert(!Subtarget.is64Bit() &&
6850            "READCYCLECOUNTER only has custom type legalization on riscv32");
6851 
6852     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6853     SDValue RCW =
6854         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6855 
6856     Results.push_back(
6857         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6858     Results.push_back(RCW.getValue(2));
6859     break;
6860   }
6861   case ISD::MUL: {
6862     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6863     unsigned XLen = Subtarget.getXLen();
6864     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6865     if (Size > XLen) {
6866       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6867       SDValue LHS = N->getOperand(0);
6868       SDValue RHS = N->getOperand(1);
6869       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6870 
6871       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6872       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6873       // We need exactly one side to be unsigned.
6874       if (LHSIsU == RHSIsU)
6875         return;
6876 
6877       auto MakeMULPair = [&](SDValue S, SDValue U) {
6878         MVT XLenVT = Subtarget.getXLenVT();
6879         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6880         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6881         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6882         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6883         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6884       };
6885 
6886       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6887       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6888 
6889       // The other operand should be signed, but still prefer MULH when
6890       // possible.
6891       if (RHSIsU && LHSIsS && !RHSIsS)
6892         Results.push_back(MakeMULPair(LHS, RHS));
6893       else if (LHSIsU && RHSIsS && !LHSIsS)
6894         Results.push_back(MakeMULPair(RHS, LHS));
6895 
6896       return;
6897     }
6898     LLVM_FALLTHROUGH;
6899   }
6900   case ISD::ADD:
6901   case ISD::SUB:
6902     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6903            "Unexpected custom legalisation");
6904     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6905     break;
6906   case ISD::SHL:
6907   case ISD::SRA:
6908   case ISD::SRL:
6909     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6910            "Unexpected custom legalisation");
6911     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6912       // If we can use a BSET instruction, allow default promotion to apply.
6913       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6914           isOneConstant(N->getOperand(0)))
6915         break;
6916       Results.push_back(customLegalizeToWOp(N, DAG));
6917       break;
6918     }
6919 
6920     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6921     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6922     // shift amount.
6923     if (N->getOpcode() == ISD::SHL) {
6924       SDLoc DL(N);
6925       SDValue NewOp0 =
6926           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6927       SDValue NewOp1 =
6928           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6929       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6930       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6931                                    DAG.getValueType(MVT::i32));
6932       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6933     }
6934 
6935     break;
6936   case ISD::ROTL:
6937   case ISD::ROTR:
6938     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6939            "Unexpected custom legalisation");
6940     Results.push_back(customLegalizeToWOp(N, DAG));
6941     break;
6942   case ISD::CTTZ:
6943   case ISD::CTTZ_ZERO_UNDEF:
6944   case ISD::CTLZ:
6945   case ISD::CTLZ_ZERO_UNDEF: {
6946     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6947            "Unexpected custom legalisation");
6948 
6949     SDValue NewOp0 =
6950         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6951     bool IsCTZ =
6952         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6953     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6954     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6955     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6956     return;
6957   }
6958   case ISD::SDIV:
6959   case ISD::UDIV:
6960   case ISD::UREM: {
6961     MVT VT = N->getSimpleValueType(0);
6962     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6963            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6964            "Unexpected custom legalisation");
6965     // Don't promote division/remainder by constant since we should expand those
6966     // to multiply by magic constant.
6967     // FIXME: What if the expansion is disabled for minsize.
6968     if (N->getOperand(1).getOpcode() == ISD::Constant)
6969       return;
6970 
6971     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6972     // the upper 32 bits. For other types we need to sign or zero extend
6973     // based on the opcode.
6974     unsigned ExtOpc = ISD::ANY_EXTEND;
6975     if (VT != MVT::i32)
6976       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6977                                            : ISD::ZERO_EXTEND;
6978 
6979     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6980     break;
6981   }
6982   case ISD::UADDO:
6983   case ISD::USUBO: {
6984     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6985            "Unexpected custom legalisation");
6986     bool IsAdd = N->getOpcode() == ISD::UADDO;
6987     // Create an ADDW or SUBW.
6988     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6989     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6990     SDValue Res =
6991         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6992     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6993                       DAG.getValueType(MVT::i32));
6994 
6995     SDValue Overflow;
6996     if (IsAdd && isOneConstant(RHS)) {
6997       // Special case uaddo X, 1 overflowed if the addition result is 0.
6998       // The general case (X + C) < C is not necessarily beneficial. Although we
6999       // reduce the live range of X, we may introduce the materialization of
7000       // constant C, especially when the setcc result is used by branch. We have
7001       // no compare with constant and branch instructions.
7002       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
7003                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
7004     } else {
7005       // Sign extend the LHS and perform an unsigned compare with the ADDW
7006       // result. Since the inputs are sign extended from i32, this is equivalent
7007       // to comparing the lower 32 bits.
7008       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7009       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
7010                               IsAdd ? ISD::SETULT : ISD::SETUGT);
7011     }
7012 
7013     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7014     Results.push_back(Overflow);
7015     return;
7016   }
7017   case ISD::UADDSAT:
7018   case ISD::USUBSAT: {
7019     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7020            "Unexpected custom legalisation");
7021     if (Subtarget.hasStdExtZbb()) {
7022       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
7023       // sign extend allows overflow of the lower 32 bits to be detected on
7024       // the promoted size.
7025       SDValue LHS =
7026           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7027       SDValue RHS =
7028           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7029       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7030       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7031       return;
7032     }
7033 
7034     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7035     // promotion for UADDO/USUBO.
7036     Results.push_back(expandAddSubSat(N, DAG));
7037     return;
7038   }
7039   case ISD::ABS: {
7040     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7041            "Unexpected custom legalisation");
7042 
7043     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7044 
7045     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7046 
7047     // Freeze the source so we can increase it's use count.
7048     Src = DAG.getFreeze(Src);
7049 
7050     // Copy sign bit to all bits using the sraiw pattern.
7051     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7052                                    DAG.getValueType(MVT::i32));
7053     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7054                            DAG.getConstant(31, DL, MVT::i64));
7055 
7056     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7057     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7058 
7059     // NOTE: The result is only required to be anyextended, but sext is
7060     // consistent with type legalization of sub.
7061     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7062                          DAG.getValueType(MVT::i32));
7063     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7064     return;
7065   }
7066   case ISD::BITCAST: {
7067     EVT VT = N->getValueType(0);
7068     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7069     SDValue Op0 = N->getOperand(0);
7070     EVT Op0VT = Op0.getValueType();
7071     MVT XLenVT = Subtarget.getXLenVT();
7072     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7073       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7074       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7075     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7076                Subtarget.hasStdExtF()) {
7077       SDValue FPConv =
7078           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7079       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7080     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7081                isTypeLegal(Op0VT)) {
7082       // Custom-legalize bitcasts from fixed-length vector types to illegal
7083       // scalar types in order to improve codegen. Bitcast the vector to a
7084       // one-element vector type whose element type is the same as the result
7085       // type, and extract the first element.
7086       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7087       if (isTypeLegal(BVT)) {
7088         SDValue BVec = DAG.getBitcast(BVT, Op0);
7089         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7090                                       DAG.getConstant(0, DL, XLenVT)));
7091       }
7092     }
7093     break;
7094   }
7095   case RISCVISD::GREV:
7096   case RISCVISD::GORC:
7097   case RISCVISD::SHFL: {
7098     MVT VT = N->getSimpleValueType(0);
7099     MVT XLenVT = Subtarget.getXLenVT();
7100     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7101            "Unexpected custom legalisation");
7102     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7103     assert((Subtarget.hasStdExtZbp() ||
7104             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7105              N->getConstantOperandVal(1) == 7)) &&
7106            "Unexpected extension");
7107     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7108     SDValue NewOp1 =
7109         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7110     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7111     // ReplaceNodeResults requires we maintain the same type for the return
7112     // value.
7113     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7114     break;
7115   }
7116   case ISD::BSWAP:
7117   case ISD::BITREVERSE: {
7118     MVT VT = N->getSimpleValueType(0);
7119     MVT XLenVT = Subtarget.getXLenVT();
7120     assert((VT == MVT::i8 || VT == MVT::i16 ||
7121             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7122            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7123     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7124     unsigned Imm = VT.getSizeInBits() - 1;
7125     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7126     if (N->getOpcode() == ISD::BSWAP)
7127       Imm &= ~0x7U;
7128     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7129                                 DAG.getConstant(Imm, DL, XLenVT));
7130     // ReplaceNodeResults requires we maintain the same type for the return
7131     // value.
7132     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7133     break;
7134   }
7135   case ISD::FSHL:
7136   case ISD::FSHR: {
7137     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7138            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7139     SDValue NewOp0 =
7140         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7141     SDValue NewOp1 =
7142         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7143     SDValue NewShAmt =
7144         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7145     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7146     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7147     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7148                            DAG.getConstant(0x1f, DL, MVT::i64));
7149     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7150     // instruction use different orders. fshl will return its first operand for
7151     // shift of zero, fshr will return its second operand. fsl and fsr both
7152     // return rs1 so the ISD nodes need to have different operand orders.
7153     // Shift amount is in rs2.
7154     unsigned Opc = RISCVISD::FSLW;
7155     if (N->getOpcode() == ISD::FSHR) {
7156       std::swap(NewOp0, NewOp1);
7157       Opc = RISCVISD::FSRW;
7158     }
7159     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7160     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7161     break;
7162   }
7163   case ISD::EXTRACT_VECTOR_ELT: {
7164     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7165     // type is illegal (currently only vXi64 RV32).
7166     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7167     // transferred to the destination register. We issue two of these from the
7168     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7169     // first element.
7170     SDValue Vec = N->getOperand(0);
7171     SDValue Idx = N->getOperand(1);
7172 
7173     // The vector type hasn't been legalized yet so we can't issue target
7174     // specific nodes if it needs legalization.
7175     // FIXME: We would manually legalize if it's important.
7176     if (!isTypeLegal(Vec.getValueType()))
7177       return;
7178 
7179     MVT VecVT = Vec.getSimpleValueType();
7180 
7181     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7182            VecVT.getVectorElementType() == MVT::i64 &&
7183            "Unexpected EXTRACT_VECTOR_ELT legalization");
7184 
7185     // If this is a fixed vector, we need to convert it to a scalable vector.
7186     MVT ContainerVT = VecVT;
7187     if (VecVT.isFixedLengthVector()) {
7188       ContainerVT = getContainerForFixedLengthVector(VecVT);
7189       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7190     }
7191 
7192     MVT XLenVT = Subtarget.getXLenVT();
7193 
7194     // Use a VL of 1 to avoid processing more elements than we need.
7195     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7196     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7197 
7198     // Unless the index is known to be 0, we must slide the vector down to get
7199     // the desired element into index 0.
7200     if (!isNullConstant(Idx)) {
7201       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7202                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7203     }
7204 
7205     // Extract the lower XLEN bits of the correct vector element.
7206     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7207 
7208     // To extract the upper XLEN bits of the vector element, shift the first
7209     // element right by 32 bits and re-extract the lower XLEN bits.
7210     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7211                                      DAG.getUNDEF(ContainerVT),
7212                                      DAG.getConstant(32, DL, XLenVT), VL);
7213     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7214                                  ThirtyTwoV, Mask, VL);
7215 
7216     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7217 
7218     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7219     break;
7220   }
7221   case ISD::INTRINSIC_WO_CHAIN: {
7222     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7223     switch (IntNo) {
7224     default:
7225       llvm_unreachable(
7226           "Don't know how to custom type legalize this intrinsic!");
7227     case Intrinsic::riscv_grev:
7228     case Intrinsic::riscv_gorc: {
7229       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7230              "Unexpected custom legalisation");
7231       SDValue NewOp1 =
7232           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7233       SDValue NewOp2 =
7234           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7235       unsigned Opc =
7236           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7237       // If the control is a constant, promote the node by clearing any extra
7238       // bits bits in the control. isel will form greviw/gorciw if the result is
7239       // sign extended.
7240       if (isa<ConstantSDNode>(NewOp2)) {
7241         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7242                              DAG.getConstant(0x1f, DL, MVT::i64));
7243         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7244       }
7245       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7246       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7247       break;
7248     }
7249     case Intrinsic::riscv_bcompress:
7250     case Intrinsic::riscv_bdecompress:
7251     case Intrinsic::riscv_bfp:
7252     case Intrinsic::riscv_fsl:
7253     case Intrinsic::riscv_fsr: {
7254       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7255              "Unexpected custom legalisation");
7256       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7257       break;
7258     }
7259     case Intrinsic::riscv_orc_b: {
7260       // Lower to the GORCI encoding for orc.b with the operand extended.
7261       SDValue NewOp =
7262           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7263       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7264                                 DAG.getConstant(7, DL, MVT::i64));
7265       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7266       return;
7267     }
7268     case Intrinsic::riscv_shfl:
7269     case Intrinsic::riscv_unshfl: {
7270       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7271              "Unexpected custom legalisation");
7272       SDValue NewOp1 =
7273           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7274       SDValue NewOp2 =
7275           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7276       unsigned Opc =
7277           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7278       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7279       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7280       // will be shuffled the same way as the lower 32 bit half, but the two
7281       // halves won't cross.
7282       if (isa<ConstantSDNode>(NewOp2)) {
7283         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7284                              DAG.getConstant(0xf, DL, MVT::i64));
7285         Opc =
7286             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7287       }
7288       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7289       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7290       break;
7291     }
7292     case Intrinsic::riscv_vmv_x_s: {
7293       EVT VT = N->getValueType(0);
7294       MVT XLenVT = Subtarget.getXLenVT();
7295       if (VT.bitsLT(XLenVT)) {
7296         // Simple case just extract using vmv.x.s and truncate.
7297         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7298                                       Subtarget.getXLenVT(), N->getOperand(1));
7299         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7300         return;
7301       }
7302 
7303       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7304              "Unexpected custom legalization");
7305 
7306       // We need to do the move in two steps.
7307       SDValue Vec = N->getOperand(1);
7308       MVT VecVT = Vec.getSimpleValueType();
7309 
7310       // First extract the lower XLEN bits of the element.
7311       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7312 
7313       // To extract the upper XLEN bits of the vector element, shift the first
7314       // element right by 32 bits and re-extract the lower XLEN bits.
7315       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7316       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7317 
7318       SDValue ThirtyTwoV =
7319           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7320                       DAG.getConstant(32, DL, XLenVT), VL);
7321       SDValue LShr32 =
7322           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7323       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7324 
7325       Results.push_back(
7326           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7327       break;
7328     }
7329     }
7330     break;
7331   }
7332   case ISD::VECREDUCE_ADD:
7333   case ISD::VECREDUCE_AND:
7334   case ISD::VECREDUCE_OR:
7335   case ISD::VECREDUCE_XOR:
7336   case ISD::VECREDUCE_SMAX:
7337   case ISD::VECREDUCE_UMAX:
7338   case ISD::VECREDUCE_SMIN:
7339   case ISD::VECREDUCE_UMIN:
7340     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7341       Results.push_back(V);
7342     break;
7343   case ISD::VP_REDUCE_ADD:
7344   case ISD::VP_REDUCE_AND:
7345   case ISD::VP_REDUCE_OR:
7346   case ISD::VP_REDUCE_XOR:
7347   case ISD::VP_REDUCE_SMAX:
7348   case ISD::VP_REDUCE_UMAX:
7349   case ISD::VP_REDUCE_SMIN:
7350   case ISD::VP_REDUCE_UMIN:
7351     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7352       Results.push_back(V);
7353     break;
7354   case ISD::FLT_ROUNDS_: {
7355     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7356     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7357     Results.push_back(Res.getValue(0));
7358     Results.push_back(Res.getValue(1));
7359     break;
7360   }
7361   }
7362 }
7363 
7364 // A structure to hold one of the bit-manipulation patterns below. Together, a
7365 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7366 //   (or (and (shl x, 1), 0xAAAAAAAA),
7367 //       (and (srl x, 1), 0x55555555))
7368 struct RISCVBitmanipPat {
7369   SDValue Op;
7370   unsigned ShAmt;
7371   bool IsSHL;
7372 
7373   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7374     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7375   }
7376 };
7377 
7378 // Matches patterns of the form
7379 //   (and (shl x, C2), (C1 << C2))
7380 //   (and (srl x, C2), C1)
7381 //   (shl (and x, C1), C2)
7382 //   (srl (and x, (C1 << C2)), C2)
7383 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7384 // The expected masks for each shift amount are specified in BitmanipMasks where
7385 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7386 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7387 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7388 // XLen is 64.
7389 static Optional<RISCVBitmanipPat>
7390 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7391   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7392          "Unexpected number of masks");
7393   Optional<uint64_t> Mask;
7394   // Optionally consume a mask around the shift operation.
7395   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7396     Mask = Op.getConstantOperandVal(1);
7397     Op = Op.getOperand(0);
7398   }
7399   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7400     return None;
7401   bool IsSHL = Op.getOpcode() == ISD::SHL;
7402 
7403   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7404     return None;
7405   uint64_t ShAmt = Op.getConstantOperandVal(1);
7406 
7407   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7408   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7409     return None;
7410   // If we don't have enough masks for 64 bit, then we must be trying to
7411   // match SHFL so we're only allowed to shift 1/4 of the width.
7412   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7413     return None;
7414 
7415   SDValue Src = Op.getOperand(0);
7416 
7417   // The expected mask is shifted left when the AND is found around SHL
7418   // patterns.
7419   //   ((x >> 1) & 0x55555555)
7420   //   ((x << 1) & 0xAAAAAAAA)
7421   bool SHLExpMask = IsSHL;
7422 
7423   if (!Mask) {
7424     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7425     // the mask is all ones: consume that now.
7426     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7427       Mask = Src.getConstantOperandVal(1);
7428       Src = Src.getOperand(0);
7429       // The expected mask is now in fact shifted left for SRL, so reverse the
7430       // decision.
7431       //   ((x & 0xAAAAAAAA) >> 1)
7432       //   ((x & 0x55555555) << 1)
7433       SHLExpMask = !SHLExpMask;
7434     } else {
7435       // Use a default shifted mask of all-ones if there's no AND, truncated
7436       // down to the expected width. This simplifies the logic later on.
7437       Mask = maskTrailingOnes<uint64_t>(Width);
7438       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7439     }
7440   }
7441 
7442   unsigned MaskIdx = Log2_32(ShAmt);
7443   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7444 
7445   if (SHLExpMask)
7446     ExpMask <<= ShAmt;
7447 
7448   if (Mask != ExpMask)
7449     return None;
7450 
7451   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7452 }
7453 
7454 // Matches any of the following bit-manipulation patterns:
7455 //   (and (shl x, 1), (0x55555555 << 1))
7456 //   (and (srl x, 1), 0x55555555)
7457 //   (shl (and x, 0x55555555), 1)
7458 //   (srl (and x, (0x55555555 << 1)), 1)
7459 // where the shift amount and mask may vary thus:
7460 //   [1]  = 0x55555555 / 0xAAAAAAAA
7461 //   [2]  = 0x33333333 / 0xCCCCCCCC
7462 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7463 //   [8]  = 0x00FF00FF / 0xFF00FF00
7464 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7465 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7466 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7467   // These are the unshifted masks which we use to match bit-manipulation
7468   // patterns. They may be shifted left in certain circumstances.
7469   static const uint64_t BitmanipMasks[] = {
7470       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7471       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7472 
7473   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7474 }
7475 
7476 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7477 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7478   auto BinOpToRVVReduce = [](unsigned Opc) {
7479     switch (Opc) {
7480     default:
7481       llvm_unreachable("Unhandled binary to transfrom reduction");
7482     case ISD::ADD:
7483       return RISCVISD::VECREDUCE_ADD_VL;
7484     case ISD::UMAX:
7485       return RISCVISD::VECREDUCE_UMAX_VL;
7486     case ISD::SMAX:
7487       return RISCVISD::VECREDUCE_SMAX_VL;
7488     case ISD::UMIN:
7489       return RISCVISD::VECREDUCE_UMIN_VL;
7490     case ISD::SMIN:
7491       return RISCVISD::VECREDUCE_SMIN_VL;
7492     case ISD::AND:
7493       return RISCVISD::VECREDUCE_AND_VL;
7494     case ISD::OR:
7495       return RISCVISD::VECREDUCE_OR_VL;
7496     case ISD::XOR:
7497       return RISCVISD::VECREDUCE_XOR_VL;
7498     case ISD::FADD:
7499       return RISCVISD::VECREDUCE_FADD_VL;
7500     case ISD::FMAXNUM:
7501       return RISCVISD::VECREDUCE_FMAX_VL;
7502     case ISD::FMINNUM:
7503       return RISCVISD::VECREDUCE_FMIN_VL;
7504     }
7505   };
7506 
7507   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7508     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7509            isNullConstant(V.getOperand(1)) &&
7510            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7511   };
7512 
7513   unsigned Opc = N->getOpcode();
7514   unsigned ReduceIdx;
7515   if (IsReduction(N->getOperand(0), Opc))
7516     ReduceIdx = 0;
7517   else if (IsReduction(N->getOperand(1), Opc))
7518     ReduceIdx = 1;
7519   else
7520     return SDValue();
7521 
7522   // Skip if FADD disallows reassociation but the combiner needs.
7523   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7524     return SDValue();
7525 
7526   SDValue Extract = N->getOperand(ReduceIdx);
7527   SDValue Reduce = Extract.getOperand(0);
7528   if (!Reduce.hasOneUse())
7529     return SDValue();
7530 
7531   SDValue ScalarV = Reduce.getOperand(2);
7532 
7533   // Make sure that ScalarV is a splat with VL=1.
7534   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7535       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7536       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7537     return SDValue();
7538 
7539   if (!isOneConstant(ScalarV.getOperand(2)))
7540     return SDValue();
7541 
7542   // TODO: Deal with value other than neutral element.
7543   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7544     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7545         isNullFPConstant(V))
7546       return true;
7547     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7548                                  N->getFlags()) == V;
7549   };
7550 
7551   // Check the scalar of ScalarV is neutral element
7552   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7553     return SDValue();
7554 
7555   if (!ScalarV.hasOneUse())
7556     return SDValue();
7557 
7558   EVT SplatVT = ScalarV.getValueType();
7559   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7560   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7561   if (SplatVT.isInteger()) {
7562     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7563     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7564       SplatOpc = RISCVISD::VMV_S_X_VL;
7565     else
7566       SplatOpc = RISCVISD::VMV_V_X_VL;
7567   }
7568 
7569   SDValue NewScalarV =
7570       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7571                   ScalarV.getOperand(2));
7572   SDValue NewReduce =
7573       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7574                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7575                   Reduce.getOperand(3), Reduce.getOperand(4));
7576   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7577                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7578 }
7579 
7580 // Match the following pattern as a GREVI(W) operation
7581 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7582 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7583                                const RISCVSubtarget &Subtarget) {
7584   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7585   EVT VT = Op.getValueType();
7586 
7587   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7588     auto LHS = matchGREVIPat(Op.getOperand(0));
7589     auto RHS = matchGREVIPat(Op.getOperand(1));
7590     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7591       SDLoc DL(Op);
7592       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7593                          DAG.getConstant(LHS->ShAmt, DL, VT));
7594     }
7595   }
7596   return SDValue();
7597 }
7598 
7599 // Matches any the following pattern as a GORCI(W) operation
7600 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7601 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7602 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7603 // Note that with the variant of 3.,
7604 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7605 // the inner pattern will first be matched as GREVI and then the outer
7606 // pattern will be matched to GORC via the first rule above.
7607 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7608 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7609                                const RISCVSubtarget &Subtarget) {
7610   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7611   EVT VT = Op.getValueType();
7612 
7613   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7614     SDLoc DL(Op);
7615     SDValue Op0 = Op.getOperand(0);
7616     SDValue Op1 = Op.getOperand(1);
7617 
7618     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7619       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7620           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7621           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7622         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7623       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7624       if ((Reverse.getOpcode() == ISD::ROTL ||
7625            Reverse.getOpcode() == ISD::ROTR) &&
7626           Reverse.getOperand(0) == X &&
7627           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7628         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7629         if (RotAmt == (VT.getSizeInBits() / 2))
7630           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7631                              DAG.getConstant(RotAmt, DL, VT));
7632       }
7633       return SDValue();
7634     };
7635 
7636     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7637     if (SDValue V = MatchOROfReverse(Op0, Op1))
7638       return V;
7639     if (SDValue V = MatchOROfReverse(Op1, Op0))
7640       return V;
7641 
7642     // OR is commutable so canonicalize its OR operand to the left
7643     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7644       std::swap(Op0, Op1);
7645     if (Op0.getOpcode() != ISD::OR)
7646       return SDValue();
7647     SDValue OrOp0 = Op0.getOperand(0);
7648     SDValue OrOp1 = Op0.getOperand(1);
7649     auto LHS = matchGREVIPat(OrOp0);
7650     // OR is commutable so swap the operands and try again: x might have been
7651     // on the left
7652     if (!LHS) {
7653       std::swap(OrOp0, OrOp1);
7654       LHS = matchGREVIPat(OrOp0);
7655     }
7656     auto RHS = matchGREVIPat(Op1);
7657     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7658       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7659                          DAG.getConstant(LHS->ShAmt, DL, VT));
7660     }
7661   }
7662   return SDValue();
7663 }
7664 
7665 // Matches any of the following bit-manipulation patterns:
7666 //   (and (shl x, 1), (0x22222222 << 1))
7667 //   (and (srl x, 1), 0x22222222)
7668 //   (shl (and x, 0x22222222), 1)
7669 //   (srl (and x, (0x22222222 << 1)), 1)
7670 // where the shift amount and mask may vary thus:
7671 //   [1]  = 0x22222222 / 0x44444444
7672 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7673 //   [4]  = 0x00F000F0 / 0x0F000F00
7674 //   [8]  = 0x0000FF00 / 0x00FF0000
7675 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7676 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7677   // These are the unshifted masks which we use to match bit-manipulation
7678   // patterns. They may be shifted left in certain circumstances.
7679   static const uint64_t BitmanipMasks[] = {
7680       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7681       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7682 
7683   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7684 }
7685 
7686 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7687 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7688                                const RISCVSubtarget &Subtarget) {
7689   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7690   EVT VT = Op.getValueType();
7691 
7692   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7693     return SDValue();
7694 
7695   SDValue Op0 = Op.getOperand(0);
7696   SDValue Op1 = Op.getOperand(1);
7697 
7698   // Or is commutable so canonicalize the second OR to the LHS.
7699   if (Op0.getOpcode() != ISD::OR)
7700     std::swap(Op0, Op1);
7701   if (Op0.getOpcode() != ISD::OR)
7702     return SDValue();
7703 
7704   // We found an inner OR, so our operands are the operands of the inner OR
7705   // and the other operand of the outer OR.
7706   SDValue A = Op0.getOperand(0);
7707   SDValue B = Op0.getOperand(1);
7708   SDValue C = Op1;
7709 
7710   auto Match1 = matchSHFLPat(A);
7711   auto Match2 = matchSHFLPat(B);
7712 
7713   // If neither matched, we failed.
7714   if (!Match1 && !Match2)
7715     return SDValue();
7716 
7717   // We had at least one match. if one failed, try the remaining C operand.
7718   if (!Match1) {
7719     std::swap(A, C);
7720     Match1 = matchSHFLPat(A);
7721     if (!Match1)
7722       return SDValue();
7723   } else if (!Match2) {
7724     std::swap(B, C);
7725     Match2 = matchSHFLPat(B);
7726     if (!Match2)
7727       return SDValue();
7728   }
7729   assert(Match1 && Match2);
7730 
7731   // Make sure our matches pair up.
7732   if (!Match1->formsPairWith(*Match2))
7733     return SDValue();
7734 
7735   // All the remains is to make sure C is an AND with the same input, that masks
7736   // out the bits that are being shuffled.
7737   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7738       C.getOperand(0) != Match1->Op)
7739     return SDValue();
7740 
7741   uint64_t Mask = C.getConstantOperandVal(1);
7742 
7743   static const uint64_t BitmanipMasks[] = {
7744       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7745       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7746   };
7747 
7748   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7749   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7750   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7751 
7752   if (Mask != ExpMask)
7753     return SDValue();
7754 
7755   SDLoc DL(Op);
7756   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7757                      DAG.getConstant(Match1->ShAmt, DL, VT));
7758 }
7759 
7760 // Optimize (add (shl x, c0), (shl y, c1)) ->
7761 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7762 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7763                                   const RISCVSubtarget &Subtarget) {
7764   // Perform this optimization only in the zba extension.
7765   if (!Subtarget.hasStdExtZba())
7766     return SDValue();
7767 
7768   // Skip for vector types and larger types.
7769   EVT VT = N->getValueType(0);
7770   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7771     return SDValue();
7772 
7773   // The two operand nodes must be SHL and have no other use.
7774   SDValue N0 = N->getOperand(0);
7775   SDValue N1 = N->getOperand(1);
7776   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7777       !N0->hasOneUse() || !N1->hasOneUse())
7778     return SDValue();
7779 
7780   // Check c0 and c1.
7781   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7782   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7783   if (!N0C || !N1C)
7784     return SDValue();
7785   int64_t C0 = N0C->getSExtValue();
7786   int64_t C1 = N1C->getSExtValue();
7787   if (C0 <= 0 || C1 <= 0)
7788     return SDValue();
7789 
7790   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7791   int64_t Bits = std::min(C0, C1);
7792   int64_t Diff = std::abs(C0 - C1);
7793   if (Diff != 1 && Diff != 2 && Diff != 3)
7794     return SDValue();
7795 
7796   // Build nodes.
7797   SDLoc DL(N);
7798   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7799   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7800   SDValue NA0 =
7801       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7802   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7803   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7804 }
7805 
7806 // Combine
7807 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7808 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7809 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7810 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7811 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7812 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7813 // The grev patterns represents BSWAP.
7814 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7815 // off the grev.
7816 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7817                                           const RISCVSubtarget &Subtarget) {
7818   bool IsWInstruction =
7819       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7820   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7821           IsWInstruction) &&
7822          "Unexpected opcode!");
7823   SDValue Src = N->getOperand(0);
7824   EVT VT = N->getValueType(0);
7825   SDLoc DL(N);
7826 
7827   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7828     return SDValue();
7829 
7830   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7831       !isa<ConstantSDNode>(Src.getOperand(1)))
7832     return SDValue();
7833 
7834   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7835   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7836 
7837   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7838   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7839   unsigned ShAmt1 = N->getConstantOperandVal(1);
7840   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7841   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7842     return SDValue();
7843 
7844   Src = Src.getOperand(0);
7845 
7846   // Toggle bit the MSB of the shift.
7847   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7848   if (CombinedShAmt == 0)
7849     return Src;
7850 
7851   SDValue Res = DAG.getNode(
7852       RISCVISD::GREV, DL, VT, Src,
7853       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7854   if (!IsWInstruction)
7855     return Res;
7856 
7857   // Sign extend the result to match the behavior of the rotate. This will be
7858   // selected to GREVIW in isel.
7859   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7860                      DAG.getValueType(MVT::i32));
7861 }
7862 
7863 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7864 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7865 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7866 // not undo itself, but they are redundant.
7867 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7868   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7869   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7870   SDValue Src = N->getOperand(0);
7871 
7872   if (Src.getOpcode() != N->getOpcode())
7873     return SDValue();
7874 
7875   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7876       !isa<ConstantSDNode>(Src.getOperand(1)))
7877     return SDValue();
7878 
7879   unsigned ShAmt1 = N->getConstantOperandVal(1);
7880   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7881   Src = Src.getOperand(0);
7882 
7883   unsigned CombinedShAmt;
7884   if (IsGORC)
7885     CombinedShAmt = ShAmt1 | ShAmt2;
7886   else
7887     CombinedShAmt = ShAmt1 ^ ShAmt2;
7888 
7889   if (CombinedShAmt == 0)
7890     return Src;
7891 
7892   SDLoc DL(N);
7893   return DAG.getNode(
7894       N->getOpcode(), DL, N->getValueType(0), Src,
7895       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7896 }
7897 
7898 // Combine a constant select operand into its use:
7899 //
7900 // (and (select cond, -1, c), x)
7901 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7902 // (or  (select cond, 0, c), x)
7903 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7904 // (xor (select cond, 0, c), x)
7905 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7906 // (add (select cond, 0, c), x)
7907 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7908 // (sub x, (select cond, 0, c))
7909 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7910 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7911                                    SelectionDAG &DAG, bool AllOnes) {
7912   EVT VT = N->getValueType(0);
7913 
7914   // Skip vectors.
7915   if (VT.isVector())
7916     return SDValue();
7917 
7918   if ((Slct.getOpcode() != ISD::SELECT &&
7919        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7920       !Slct.hasOneUse())
7921     return SDValue();
7922 
7923   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7924     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7925   };
7926 
7927   bool SwapSelectOps;
7928   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7929   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7930   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7931   SDValue NonConstantVal;
7932   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7933     SwapSelectOps = false;
7934     NonConstantVal = FalseVal;
7935   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7936     SwapSelectOps = true;
7937     NonConstantVal = TrueVal;
7938   } else
7939     return SDValue();
7940 
7941   // Slct is now know to be the desired identity constant when CC is true.
7942   TrueVal = OtherOp;
7943   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7944   // Unless SwapSelectOps says the condition should be false.
7945   if (SwapSelectOps)
7946     std::swap(TrueVal, FalseVal);
7947 
7948   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7949     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7950                        {Slct.getOperand(0), Slct.getOperand(1),
7951                         Slct.getOperand(2), TrueVal, FalseVal});
7952 
7953   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7954                      {Slct.getOperand(0), TrueVal, FalseVal});
7955 }
7956 
7957 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7958 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7959                                               bool AllOnes) {
7960   SDValue N0 = N->getOperand(0);
7961   SDValue N1 = N->getOperand(1);
7962   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7963     return Result;
7964   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7965     return Result;
7966   return SDValue();
7967 }
7968 
7969 // Transform (add (mul x, c0), c1) ->
7970 //           (add (mul (add x, c1/c0), c0), c1%c0).
7971 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7972 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7973 // to an infinite loop in DAGCombine if transformed.
7974 // Or transform (add (mul x, c0), c1) ->
7975 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7976 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7977 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7978 // lead to an infinite loop in DAGCombine if transformed.
7979 // Or transform (add (mul x, c0), c1) ->
7980 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7981 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7982 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7983 // lead to an infinite loop in DAGCombine if transformed.
7984 // Or transform (add (mul x, c0), c1) ->
7985 //              (mul (add x, c1/c0), c0).
7986 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7987 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7988                                      const RISCVSubtarget &Subtarget) {
7989   // Skip for vector types and larger types.
7990   EVT VT = N->getValueType(0);
7991   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7992     return SDValue();
7993   // The first operand node must be a MUL and has no other use.
7994   SDValue N0 = N->getOperand(0);
7995   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7996     return SDValue();
7997   // Check if c0 and c1 match above conditions.
7998   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7999   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8000   if (!N0C || !N1C)
8001     return SDValue();
8002   // If N0C has multiple uses it's possible one of the cases in
8003   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
8004   // in an infinite loop.
8005   if (!N0C->hasOneUse())
8006     return SDValue();
8007   int64_t C0 = N0C->getSExtValue();
8008   int64_t C1 = N1C->getSExtValue();
8009   int64_t CA, CB;
8010   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
8011     return SDValue();
8012   // Search for proper CA (non-zero) and CB that both are simm12.
8013   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
8014       !isInt<12>(C0 * (C1 / C0))) {
8015     CA = C1 / C0;
8016     CB = C1 % C0;
8017   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
8018              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
8019     CA = C1 / C0 + 1;
8020     CB = C1 % C0 - C0;
8021   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
8022              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
8023     CA = C1 / C0 - 1;
8024     CB = C1 % C0 + C0;
8025   } else
8026     return SDValue();
8027   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8028   SDLoc DL(N);
8029   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8030                              DAG.getConstant(CA, DL, VT));
8031   SDValue New1 =
8032       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8033   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8034 }
8035 
8036 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8037                                  const RISCVSubtarget &Subtarget) {
8038   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8039     return V;
8040   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8041     return V;
8042   if (SDValue V = combineBinOpToReduce(N, DAG))
8043     return V;
8044   // fold (add (select lhs, rhs, cc, 0, y), x) ->
8045   //      (select lhs, rhs, cc, x, (add x, y))
8046   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8047 }
8048 
8049 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
8050   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8051   //      (select lhs, rhs, cc, x, (sub x, y))
8052   SDValue N0 = N->getOperand(0);
8053   SDValue N1 = N->getOperand(1);
8054   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8055 }
8056 
8057 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8058                                  const RISCVSubtarget &Subtarget) {
8059   SDValue N0 = N->getOperand(0);
8060   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8061   // extending X. This is safe since we only need the LSB after the shift and
8062   // shift amounts larger than 31 would produce poison. If we wait until
8063   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8064   // to use a BEXT instruction.
8065   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8066       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8067       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8068       N0.hasOneUse()) {
8069     SDLoc DL(N);
8070     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8071     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8072     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8073     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8074                               DAG.getConstant(1, DL, MVT::i64));
8075     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8076   }
8077 
8078   if (SDValue V = combineBinOpToReduce(N, DAG))
8079     return V;
8080 
8081   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8082   //      (select lhs, rhs, cc, x, (and x, y))
8083   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8084 }
8085 
8086 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8087                                 const RISCVSubtarget &Subtarget) {
8088   if (Subtarget.hasStdExtZbp()) {
8089     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8090       return GREV;
8091     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8092       return GORC;
8093     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8094       return SHFL;
8095   }
8096 
8097   if (SDValue V = combineBinOpToReduce(N, DAG))
8098     return V;
8099   // fold (or (select cond, 0, y), x) ->
8100   //      (select cond, x, (or x, y))
8101   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8102 }
8103 
8104 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8105   SDValue N0 = N->getOperand(0);
8106   SDValue N1 = N->getOperand(1);
8107 
8108   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8109   // NOTE: Assumes ROL being legal means ROLW is legal.
8110   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8111   if (N0.getOpcode() == RISCVISD::SLLW &&
8112       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8113       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8114     SDLoc DL(N);
8115     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8116                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8117   }
8118 
8119   if (SDValue V = combineBinOpToReduce(N, DAG))
8120     return V;
8121   // fold (xor (select cond, 0, y), x) ->
8122   //      (select cond, x, (xor x, y))
8123   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8124 }
8125 
8126 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with
8127 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
8128 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
8129 // can become a sext.w instead of a shift pair.
8130 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
8131                                    const RISCVSubtarget &Subtarget) {
8132   SDValue N0 = N->getOperand(0);
8133   SDValue N1 = N->getOperand(1);
8134   EVT VT = N->getValueType(0);
8135   EVT OpVT = N0.getValueType();
8136 
8137   if (OpVT != MVT::i64 || !Subtarget.is64Bit())
8138     return SDValue();
8139 
8140   // RHS needs to be a constant.
8141   auto *N1C = dyn_cast<ConstantSDNode>(N1);
8142   if (!N1C)
8143     return SDValue();
8144 
8145   // LHS needs to be (and X, 0xffffffff).
8146   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
8147       !isa<ConstantSDNode>(N0.getOperand(1)) ||
8148       N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
8149     return SDValue();
8150 
8151   // Looking for an equality compare.
8152   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
8153   if (!isIntEqualitySetCC(Cond))
8154     return SDValue();
8155 
8156   const APInt &C1 = cast<ConstantSDNode>(N1)->getAPIntValue();
8157 
8158   SDLoc dl(N);
8159   // If the constant is larger than 2^32 - 1 it is impossible for both sides
8160   // to be equal.
8161   if (C1.getActiveBits() > 32)
8162     return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
8163 
8164   SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
8165                                N0.getOperand(0), DAG.getValueType(MVT::i32));
8166   return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
8167                                                       dl, OpVT), Cond);
8168 }
8169 
8170 static SDValue
8171 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8172                                 const RISCVSubtarget &Subtarget) {
8173   SDValue Src = N->getOperand(0);
8174   EVT VT = N->getValueType(0);
8175 
8176   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8177   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8178       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8179     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8180                        Src.getOperand(0));
8181 
8182   // Fold (i64 (sext_inreg (abs X), i32)) ->
8183   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8184   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8185   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8186   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8187   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8188   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8189   // may get combined into an earlier operation so we need to use
8190   // ComputeNumSignBits.
8191   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8192   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8193   // we can't assume that X has 33 sign bits. We must check.
8194   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8195       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8196       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8197       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8198     SDLoc DL(N);
8199     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8200     SDValue Neg =
8201         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8202     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8203                       DAG.getValueType(MVT::i32));
8204     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8205   }
8206 
8207   return SDValue();
8208 }
8209 
8210 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8211 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8212 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8213                                              bool Commute = false) {
8214   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8215           N->getOpcode() == RISCVISD::SUB_VL) &&
8216          "Unexpected opcode");
8217   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8218   SDValue Op0 = N->getOperand(0);
8219   SDValue Op1 = N->getOperand(1);
8220   if (Commute)
8221     std::swap(Op0, Op1);
8222 
8223   MVT VT = N->getSimpleValueType(0);
8224 
8225   // Determine the narrow size for a widening add/sub.
8226   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8227   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8228                                   VT.getVectorElementCount());
8229 
8230   SDValue Mask = N->getOperand(2);
8231   SDValue VL = N->getOperand(3);
8232 
8233   SDLoc DL(N);
8234 
8235   // If the RHS is a sext or zext, we can form a widening op.
8236   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8237        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8238       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8239     unsigned ExtOpc = Op1.getOpcode();
8240     Op1 = Op1.getOperand(0);
8241     // Re-introduce narrower extends if needed.
8242     if (Op1.getValueType() != NarrowVT)
8243       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8244 
8245     unsigned WOpc;
8246     if (ExtOpc == RISCVISD::VSEXT_VL)
8247       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8248     else
8249       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8250 
8251     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8252   }
8253 
8254   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8255   // sext/zext?
8256 
8257   return SDValue();
8258 }
8259 
8260 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8261 // vwsub(u).vv/vx.
8262 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8263   SDValue Op0 = N->getOperand(0);
8264   SDValue Op1 = N->getOperand(1);
8265   SDValue Mask = N->getOperand(2);
8266   SDValue VL = N->getOperand(3);
8267 
8268   MVT VT = N->getSimpleValueType(0);
8269   MVT NarrowVT = Op1.getSimpleValueType();
8270   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8271 
8272   unsigned VOpc;
8273   switch (N->getOpcode()) {
8274   default: llvm_unreachable("Unexpected opcode");
8275   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8276   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8277   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8278   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8279   }
8280 
8281   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8282                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8283 
8284   SDLoc DL(N);
8285 
8286   // If the LHS is a sext or zext, we can narrow this op to the same size as
8287   // the RHS.
8288   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8289        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8290       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8291     unsigned ExtOpc = Op0.getOpcode();
8292     Op0 = Op0.getOperand(0);
8293     // Re-introduce narrower extends if needed.
8294     if (Op0.getValueType() != NarrowVT)
8295       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8296     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8297   }
8298 
8299   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8300                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8301 
8302   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8303   // to commute and use a vwadd(u).vx instead.
8304   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8305       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8306     Op0 = Op0.getOperand(1);
8307 
8308     // See if have enough sign bits or zero bits in the scalar to use a
8309     // widening add/sub by splatting to smaller element size.
8310     unsigned EltBits = VT.getScalarSizeInBits();
8311     unsigned ScalarBits = Op0.getValueSizeInBits();
8312     // Make sure we're getting all element bits from the scalar register.
8313     // FIXME: Support implicit sign extension of vmv.v.x?
8314     if (ScalarBits < EltBits)
8315       return SDValue();
8316 
8317     if (IsSigned) {
8318       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8319         return SDValue();
8320     } else {
8321       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8322       if (!DAG.MaskedValueIsZero(Op0, Mask))
8323         return SDValue();
8324     }
8325 
8326     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8327                       DAG.getUNDEF(NarrowVT), Op0, VL);
8328     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8329   }
8330 
8331   return SDValue();
8332 }
8333 
8334 // Try to form VWMUL, VWMULU or VWMULSU.
8335 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8336 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8337                                        bool Commute) {
8338   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8339   SDValue Op0 = N->getOperand(0);
8340   SDValue Op1 = N->getOperand(1);
8341   if (Commute)
8342     std::swap(Op0, Op1);
8343 
8344   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8345   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8346   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8347   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8348     return SDValue();
8349 
8350   SDValue Mask = N->getOperand(2);
8351   SDValue VL = N->getOperand(3);
8352 
8353   // Make sure the mask and VL match.
8354   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8355     return SDValue();
8356 
8357   MVT VT = N->getSimpleValueType(0);
8358 
8359   // Determine the narrow size for a widening multiply.
8360   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8361   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8362                                   VT.getVectorElementCount());
8363 
8364   SDLoc DL(N);
8365 
8366   // See if the other operand is the same opcode.
8367   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8368     if (!Op1.hasOneUse())
8369       return SDValue();
8370 
8371     // Make sure the mask and VL match.
8372     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8373       return SDValue();
8374 
8375     Op1 = Op1.getOperand(0);
8376   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8377     // The operand is a splat of a scalar.
8378 
8379     // The pasthru must be undef for tail agnostic
8380     if (!Op1.getOperand(0).isUndef())
8381       return SDValue();
8382     // The VL must be the same.
8383     if (Op1.getOperand(2) != VL)
8384       return SDValue();
8385 
8386     // Get the scalar value.
8387     Op1 = Op1.getOperand(1);
8388 
8389     // See if have enough sign bits or zero bits in the scalar to use a
8390     // widening multiply by splatting to smaller element size.
8391     unsigned EltBits = VT.getScalarSizeInBits();
8392     unsigned ScalarBits = Op1.getValueSizeInBits();
8393     // Make sure we're getting all element bits from the scalar register.
8394     // FIXME: Support implicit sign extension of vmv.v.x?
8395     if (ScalarBits < EltBits)
8396       return SDValue();
8397 
8398     // If the LHS is a sign extend, try to use vwmul.
8399     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8400       // Can use vwmul.
8401     } else {
8402       // Otherwise try to use vwmulu or vwmulsu.
8403       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8404       if (DAG.MaskedValueIsZero(Op1, Mask))
8405         IsVWMULSU = IsSignExt;
8406       else
8407         return SDValue();
8408     }
8409 
8410     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8411                       DAG.getUNDEF(NarrowVT), Op1, VL);
8412   } else
8413     return SDValue();
8414 
8415   Op0 = Op0.getOperand(0);
8416 
8417   // Re-introduce narrower extends if needed.
8418   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8419   if (Op0.getValueType() != NarrowVT)
8420     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8421   // vwmulsu requires second operand to be zero extended.
8422   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8423   if (Op1.getValueType() != NarrowVT)
8424     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8425 
8426   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8427   if (!IsVWMULSU)
8428     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8429   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8430 }
8431 
8432 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8433   switch (Op.getOpcode()) {
8434   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8435   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8436   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8437   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8438   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8439   }
8440 
8441   return RISCVFPRndMode::Invalid;
8442 }
8443 
8444 // Fold
8445 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8446 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8447 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8448 //   (fp_to_int (fceil X))      -> fcvt X, rup
8449 //   (fp_to_int (fround X))     -> fcvt X, rmm
8450 static SDValue performFP_TO_INTCombine(SDNode *N,
8451                                        TargetLowering::DAGCombinerInfo &DCI,
8452                                        const RISCVSubtarget &Subtarget) {
8453   SelectionDAG &DAG = DCI.DAG;
8454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8455   MVT XLenVT = Subtarget.getXLenVT();
8456 
8457   // Only handle XLen or i32 types. Other types narrower than XLen will
8458   // eventually be legalized to XLenVT.
8459   EVT VT = N->getValueType(0);
8460   if (VT != MVT::i32 && VT != XLenVT)
8461     return SDValue();
8462 
8463   SDValue Src = N->getOperand(0);
8464 
8465   // Ensure the FP type is also legal.
8466   if (!TLI.isTypeLegal(Src.getValueType()))
8467     return SDValue();
8468 
8469   // Don't do this for f16 with Zfhmin and not Zfh.
8470   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8471     return SDValue();
8472 
8473   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8474   if (FRM == RISCVFPRndMode::Invalid)
8475     return SDValue();
8476 
8477   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8478 
8479   unsigned Opc;
8480   if (VT == XLenVT)
8481     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8482   else
8483     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8484 
8485   SDLoc DL(N);
8486   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8487                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8488   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8489 }
8490 
8491 // Fold
8492 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8493 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8494 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8495 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8496 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8497 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8498                                        TargetLowering::DAGCombinerInfo &DCI,
8499                                        const RISCVSubtarget &Subtarget) {
8500   SelectionDAG &DAG = DCI.DAG;
8501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8502   MVT XLenVT = Subtarget.getXLenVT();
8503 
8504   // Only handle XLen types. Other types narrower than XLen will eventually be
8505   // legalized to XLenVT.
8506   EVT DstVT = N->getValueType(0);
8507   if (DstVT != XLenVT)
8508     return SDValue();
8509 
8510   SDValue Src = N->getOperand(0);
8511 
8512   // Ensure the FP type is also legal.
8513   if (!TLI.isTypeLegal(Src.getValueType()))
8514     return SDValue();
8515 
8516   // Don't do this for f16 with Zfhmin and not Zfh.
8517   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8518     return SDValue();
8519 
8520   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8521 
8522   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8523   if (FRM == RISCVFPRndMode::Invalid)
8524     return SDValue();
8525 
8526   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8527 
8528   unsigned Opc;
8529   if (SatVT == DstVT)
8530     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8531   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8532     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8533   else
8534     return SDValue();
8535   // FIXME: Support other SatVTs by clamping before or after the conversion.
8536 
8537   Src = Src.getOperand(0);
8538 
8539   SDLoc DL(N);
8540   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8541                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8542 
8543   // RISCV FP-to-int conversions saturate to the destination register size, but
8544   // don't produce 0 for nan.
8545   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8546   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8547 }
8548 
8549 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8550 // smaller than XLenVT.
8551 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8552                                         const RISCVSubtarget &Subtarget) {
8553   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8554 
8555   SDValue Src = N->getOperand(0);
8556   if (Src.getOpcode() != ISD::BSWAP)
8557     return SDValue();
8558 
8559   EVT VT = N->getValueType(0);
8560   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8561       !isPowerOf2_32(VT.getSizeInBits()))
8562     return SDValue();
8563 
8564   SDLoc DL(N);
8565   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8566                      DAG.getConstant(7, DL, VT));
8567 }
8568 
8569 // Convert from one FMA opcode to another based on whether we are negating the
8570 // multiply result and/or the accumulator.
8571 // NOTE: Only supports RVV operations with VL.
8572 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
8573   assert((NegMul || NegAcc) && "Not negating anything?");
8574 
8575   // Negating the multiply result changes ADD<->SUB and toggles 'N'.
8576   if (NegMul) {
8577     // clang-format off
8578     switch (Opcode) {
8579     default: llvm_unreachable("Unexpected opcode");
8580     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFNMSUB_VL; break;
8581     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL;  break;
8582     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL;  break;
8583     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFNMADD_VL; break;
8584     }
8585     // clang-format on
8586   }
8587 
8588   // Negating the accumulator changes ADD<->SUB.
8589   if (NegAcc) {
8590     // clang-format off
8591     switch (Opcode) {
8592     default: llvm_unreachable("Unexpected opcode");
8593     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFMSUB_VL;  break;
8594     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFMADD_VL;  break;
8595     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8596     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8597     }
8598     // clang-format on
8599   }
8600 
8601   return Opcode;
8602 }
8603 
8604 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
8605                                  const RISCVSubtarget &Subtarget) {
8606   assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
8607 
8608   if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
8609     return SDValue();
8610 
8611   if (!isa<ConstantSDNode>(N->getOperand(1)))
8612     return SDValue();
8613   uint64_t ShAmt = N->getConstantOperandVal(1);
8614   if (ShAmt > 32)
8615     return SDValue();
8616 
8617   SDValue N0 = N->getOperand(0);
8618 
8619   // Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
8620   // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
8621   // SLLIW+SRAIW. SLLI+SRAI have compressed forms.
8622   if (ShAmt < 32 &&
8623       N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
8624       cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
8625       N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
8626       isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
8627     uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
8628     if (LShAmt < 32) {
8629       SDLoc ShlDL(N0.getOperand(0));
8630       SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
8631                                 N0.getOperand(0).getOperand(0),
8632                                 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
8633       SDLoc DL(N);
8634       return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
8635                          DAG.getConstant(ShAmt + 32, DL, MVT::i64));
8636     }
8637   }
8638 
8639   // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
8640   // FIXME: Should this be a generic combine? There's a similar combine on X86.
8641   //
8642   // Also try these folds where an add or sub is in the middle.
8643   // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
8644   // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
8645   SDValue Shl;
8646   ConstantSDNode *AddC = nullptr;
8647 
8648   // We might have an ADD or SUB between the SRA and SHL.
8649   bool IsAdd = N0.getOpcode() == ISD::ADD;
8650   if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
8651     if (!N0.hasOneUse())
8652       return SDValue();
8653     // Other operand needs to be a constant we can modify.
8654     AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
8655     if (!AddC)
8656       return SDValue();
8657 
8658     // AddC needs to have at least 32 trailing zeros.
8659     if (AddC->getAPIntValue().countTrailingZeros() < 32)
8660       return SDValue();
8661 
8662     Shl = N0.getOperand(IsAdd ? 0 : 1);
8663   } else {
8664     // Not an ADD or SUB.
8665     Shl = N0;
8666   }
8667 
8668   // Look for a shift left by 32.
8669   if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() ||
8670       !isa<ConstantSDNode>(Shl.getOperand(1)) ||
8671       Shl.getConstantOperandVal(1) != 32)
8672     return SDValue();
8673 
8674   SDLoc DL(N);
8675   SDValue In = Shl.getOperand(0);
8676 
8677   // If we looked through an ADD or SUB, we need to rebuild it with the shifted
8678   // constant.
8679   if (AddC) {
8680     SDValue ShiftedAddC =
8681         DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
8682     if (IsAdd)
8683       In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
8684     else
8685       In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
8686   }
8687 
8688   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
8689                              DAG.getValueType(MVT::i32));
8690   if (ShAmt == 32)
8691     return SExt;
8692 
8693   return DAG.getNode(
8694       ISD::SHL, DL, MVT::i64, SExt,
8695       DAG.getConstant(32 - ShAmt, DL, MVT::i64));
8696 }
8697 
8698 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8699                                                DAGCombinerInfo &DCI) const {
8700   SelectionDAG &DAG = DCI.DAG;
8701 
8702   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8703   // bits are demanded. N will be added to the Worklist if it was not deleted.
8704   // Caller should return SDValue(N, 0) if this returns true.
8705   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8706     SDValue Op = N->getOperand(OpNo);
8707     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8708     if (!SimplifyDemandedBits(Op, Mask, DCI))
8709       return false;
8710 
8711     if (N->getOpcode() != ISD::DELETED_NODE)
8712       DCI.AddToWorklist(N);
8713     return true;
8714   };
8715 
8716   switch (N->getOpcode()) {
8717   default:
8718     break;
8719   case RISCVISD::SplitF64: {
8720     SDValue Op0 = N->getOperand(0);
8721     // If the input to SplitF64 is just BuildPairF64 then the operation is
8722     // redundant. Instead, use BuildPairF64's operands directly.
8723     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8724       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8725 
8726     if (Op0->isUndef()) {
8727       SDValue Lo = DAG.getUNDEF(MVT::i32);
8728       SDValue Hi = DAG.getUNDEF(MVT::i32);
8729       return DCI.CombineTo(N, Lo, Hi);
8730     }
8731 
8732     SDLoc DL(N);
8733 
8734     // It's cheaper to materialise two 32-bit integers than to load a double
8735     // from the constant pool and transfer it to integer registers through the
8736     // stack.
8737     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8738       APInt V = C->getValueAPF().bitcastToAPInt();
8739       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8740       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8741       return DCI.CombineTo(N, Lo, Hi);
8742     }
8743 
8744     // This is a target-specific version of a DAGCombine performed in
8745     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8746     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8747     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8748     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8749         !Op0.getNode()->hasOneUse())
8750       break;
8751     SDValue NewSplitF64 =
8752         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8753                     Op0.getOperand(0));
8754     SDValue Lo = NewSplitF64.getValue(0);
8755     SDValue Hi = NewSplitF64.getValue(1);
8756     APInt SignBit = APInt::getSignMask(32);
8757     if (Op0.getOpcode() == ISD::FNEG) {
8758       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8759                                   DAG.getConstant(SignBit, DL, MVT::i32));
8760       return DCI.CombineTo(N, Lo, NewHi);
8761     }
8762     assert(Op0.getOpcode() == ISD::FABS);
8763     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8764                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8765     return DCI.CombineTo(N, Lo, NewHi);
8766   }
8767   case RISCVISD::SLLW:
8768   case RISCVISD::SRAW:
8769   case RISCVISD::SRLW: {
8770     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8771     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8772         SimplifyDemandedLowBitsHelper(1, 5))
8773       return SDValue(N, 0);
8774 
8775     break;
8776   }
8777   case ISD::ROTR:
8778   case ISD::ROTL:
8779   case RISCVISD::RORW:
8780   case RISCVISD::ROLW: {
8781     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8782       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8783       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8784           SimplifyDemandedLowBitsHelper(1, 5))
8785         return SDValue(N, 0);
8786     }
8787 
8788     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8789   }
8790   case RISCVISD::CLZW:
8791   case RISCVISD::CTZW: {
8792     // Only the lower 32 bits of the first operand are read
8793     if (SimplifyDemandedLowBitsHelper(0, 32))
8794       return SDValue(N, 0);
8795     break;
8796   }
8797   case RISCVISD::GREV:
8798   case RISCVISD::GORC: {
8799     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8800     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8801     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8802     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8803       return SDValue(N, 0);
8804 
8805     return combineGREVI_GORCI(N, DAG);
8806   }
8807   case RISCVISD::GREVW:
8808   case RISCVISD::GORCW: {
8809     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8810     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8811         SimplifyDemandedLowBitsHelper(1, 5))
8812       return SDValue(N, 0);
8813 
8814     break;
8815   }
8816   case RISCVISD::SHFL:
8817   case RISCVISD::UNSHFL: {
8818     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8819     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8820     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8821     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8822       return SDValue(N, 0);
8823 
8824     break;
8825   }
8826   case RISCVISD::SHFLW:
8827   case RISCVISD::UNSHFLW: {
8828     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8829     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8830         SimplifyDemandedLowBitsHelper(1, 4))
8831       return SDValue(N, 0);
8832 
8833     break;
8834   }
8835   case RISCVISD::BCOMPRESSW:
8836   case RISCVISD::BDECOMPRESSW: {
8837     // Only the lower 32 bits of LHS and RHS are read.
8838     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8839         SimplifyDemandedLowBitsHelper(1, 32))
8840       return SDValue(N, 0);
8841 
8842     break;
8843   }
8844   case RISCVISD::FSR:
8845   case RISCVISD::FSL:
8846   case RISCVISD::FSRW:
8847   case RISCVISD::FSLW: {
8848     bool IsWInstruction =
8849         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8850     unsigned BitWidth =
8851         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8852     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8853     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8854     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8855       return SDValue(N, 0);
8856 
8857     break;
8858   }
8859   case RISCVISD::FMV_X_ANYEXTH:
8860   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8861     SDLoc DL(N);
8862     SDValue Op0 = N->getOperand(0);
8863     MVT VT = N->getSimpleValueType(0);
8864     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8865     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8866     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8867     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8868          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8869         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8870          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8871       assert(Op0.getOperand(0).getValueType() == VT &&
8872              "Unexpected value type!");
8873       return Op0.getOperand(0);
8874     }
8875 
8876     // This is a target-specific version of a DAGCombine performed in
8877     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8878     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8879     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8880     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8881         !Op0.getNode()->hasOneUse())
8882       break;
8883     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8884     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8885     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8886     if (Op0.getOpcode() == ISD::FNEG)
8887       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8888                          DAG.getConstant(SignBit, DL, VT));
8889 
8890     assert(Op0.getOpcode() == ISD::FABS);
8891     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8892                        DAG.getConstant(~SignBit, DL, VT));
8893   }
8894   case ISD::ADD:
8895     return performADDCombine(N, DAG, Subtarget);
8896   case ISD::SUB:
8897     return performSUBCombine(N, DAG);
8898   case ISD::AND:
8899     return performANDCombine(N, DAG, Subtarget);
8900   case ISD::OR:
8901     return performORCombine(N, DAG, Subtarget);
8902   case ISD::XOR:
8903     return performXORCombine(N, DAG);
8904   case ISD::FADD:
8905   case ISD::UMAX:
8906   case ISD::UMIN:
8907   case ISD::SMAX:
8908   case ISD::SMIN:
8909   case ISD::FMAXNUM:
8910   case ISD::FMINNUM:
8911     return combineBinOpToReduce(N, DAG);
8912   case ISD::SETCC:
8913     return performSETCCCombine(N, DAG, Subtarget);
8914   case ISD::SIGN_EXTEND_INREG:
8915     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8916   case ISD::ZERO_EXTEND:
8917     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8918     // type legalization. This is safe because fp_to_uint produces poison if
8919     // it overflows.
8920     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8921       SDValue Src = N->getOperand(0);
8922       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8923           isTypeLegal(Src.getOperand(0).getValueType()))
8924         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8925                            Src.getOperand(0));
8926       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8927           isTypeLegal(Src.getOperand(1).getValueType())) {
8928         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8929         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8930                                   Src.getOperand(0), Src.getOperand(1));
8931         DCI.CombineTo(N, Res);
8932         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8933         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8934         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8935       }
8936     }
8937     return SDValue();
8938   case RISCVISD::SELECT_CC: {
8939     // Transform
8940     SDValue LHS = N->getOperand(0);
8941     SDValue RHS = N->getOperand(1);
8942     SDValue TrueV = N->getOperand(3);
8943     SDValue FalseV = N->getOperand(4);
8944 
8945     // If the True and False values are the same, we don't need a select_cc.
8946     if (TrueV == FalseV)
8947       return TrueV;
8948 
8949     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8950     if (!ISD::isIntEqualitySetCC(CCVal))
8951       break;
8952 
8953     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8954     //      (select_cc X, Y, lt, trueV, falseV)
8955     // Sometimes the setcc is introduced after select_cc has been formed.
8956     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8957         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8958       // If we're looking for eq 0 instead of ne 0, we need to invert the
8959       // condition.
8960       bool Invert = CCVal == ISD::SETEQ;
8961       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8962       if (Invert)
8963         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8964 
8965       SDLoc DL(N);
8966       RHS = LHS.getOperand(1);
8967       LHS = LHS.getOperand(0);
8968       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8969 
8970       SDValue TargetCC = DAG.getCondCode(CCVal);
8971       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8972                          {LHS, RHS, TargetCC, TrueV, FalseV});
8973     }
8974 
8975     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8976     //      (select_cc X, Y, eq/ne, trueV, falseV)
8977     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8978       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8979                          {LHS.getOperand(0), LHS.getOperand(1),
8980                           N->getOperand(2), TrueV, FalseV});
8981     // (select_cc X, 1, setne, trueV, falseV) ->
8982     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8983     // This can occur when legalizing some floating point comparisons.
8984     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8985     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8986       SDLoc DL(N);
8987       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8988       SDValue TargetCC = DAG.getCondCode(CCVal);
8989       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8990       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8991                          {LHS, RHS, TargetCC, TrueV, FalseV});
8992     }
8993 
8994     break;
8995   }
8996   case RISCVISD::BR_CC: {
8997     SDValue LHS = N->getOperand(1);
8998     SDValue RHS = N->getOperand(2);
8999     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
9000     if (!ISD::isIntEqualitySetCC(CCVal))
9001       break;
9002 
9003     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
9004     //      (br_cc X, Y, lt, dest)
9005     // Sometimes the setcc is introduced after br_cc has been formed.
9006     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
9007         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
9008       // If we're looking for eq 0 instead of ne 0, we need to invert the
9009       // condition.
9010       bool Invert = CCVal == ISD::SETEQ;
9011       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9012       if (Invert)
9013         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
9014 
9015       SDLoc DL(N);
9016       RHS = LHS.getOperand(1);
9017       LHS = LHS.getOperand(0);
9018       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
9019 
9020       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
9021                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
9022                          N->getOperand(4));
9023     }
9024 
9025     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
9026     //      (br_cc X, Y, eq/ne, trueV, falseV)
9027     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
9028       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
9029                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
9030                          N->getOperand(3), N->getOperand(4));
9031 
9032     // (br_cc X, 1, setne, br_cc) ->
9033     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
9034     // This can occur when legalizing some floating point comparisons.
9035     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
9036     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
9037       SDLoc DL(N);
9038       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
9039       SDValue TargetCC = DAG.getCondCode(CCVal);
9040       RHS = DAG.getConstant(0, DL, LHS.getValueType());
9041       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
9042                          N->getOperand(0), LHS, RHS, TargetCC,
9043                          N->getOperand(4));
9044     }
9045     break;
9046   }
9047   case ISD::BITREVERSE:
9048     return performBITREVERSECombine(N, DAG, Subtarget);
9049   case ISD::FP_TO_SINT:
9050   case ISD::FP_TO_UINT:
9051     return performFP_TO_INTCombine(N, DCI, Subtarget);
9052   case ISD::FP_TO_SINT_SAT:
9053   case ISD::FP_TO_UINT_SAT:
9054     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
9055   case ISD::FCOPYSIGN: {
9056     EVT VT = N->getValueType(0);
9057     if (!VT.isVector())
9058       break;
9059     // There is a form of VFSGNJ which injects the negated sign of its second
9060     // operand. Try and bubble any FNEG up after the extend/round to produce
9061     // this optimized pattern. Avoid modifying cases where FP_ROUND and
9062     // TRUNC=1.
9063     SDValue In2 = N->getOperand(1);
9064     // Avoid cases where the extend/round has multiple uses, as duplicating
9065     // those is typically more expensive than removing a fneg.
9066     if (!In2.hasOneUse())
9067       break;
9068     if (In2.getOpcode() != ISD::FP_EXTEND &&
9069         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
9070       break;
9071     In2 = In2.getOperand(0);
9072     if (In2.getOpcode() != ISD::FNEG)
9073       break;
9074     SDLoc DL(N);
9075     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
9076     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
9077                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
9078   }
9079   case ISD::MGATHER:
9080   case ISD::MSCATTER:
9081   case ISD::VP_GATHER:
9082   case ISD::VP_SCATTER: {
9083     if (!DCI.isBeforeLegalize())
9084       break;
9085     SDValue Index, ScaleOp;
9086     bool IsIndexScaled = false;
9087     bool IsIndexSigned = false;
9088     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
9089       Index = VPGSN->getIndex();
9090       ScaleOp = VPGSN->getScale();
9091       IsIndexScaled = VPGSN->isIndexScaled();
9092       IsIndexSigned = VPGSN->isIndexSigned();
9093     } else {
9094       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
9095       Index = MGSN->getIndex();
9096       ScaleOp = MGSN->getScale();
9097       IsIndexScaled = MGSN->isIndexScaled();
9098       IsIndexSigned = MGSN->isIndexSigned();
9099     }
9100     EVT IndexVT = Index.getValueType();
9101     MVT XLenVT = Subtarget.getXLenVT();
9102     // RISCV indexed loads only support the "unsigned unscaled" addressing
9103     // mode, so anything else must be manually legalized.
9104     bool NeedsIdxLegalization =
9105         IsIndexScaled ||
9106         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
9107     if (!NeedsIdxLegalization)
9108       break;
9109 
9110     SDLoc DL(N);
9111 
9112     // Any index legalization should first promote to XLenVT, so we don't lose
9113     // bits when scaling. This may create an illegal index type so we let
9114     // LLVM's legalization take care of the splitting.
9115     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
9116     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
9117       IndexVT = IndexVT.changeVectorElementType(XLenVT);
9118       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9119                           DL, IndexVT, Index);
9120     }
9121 
9122     if (IsIndexScaled) {
9123       // Manually scale the indices.
9124       // TODO: Sanitize the scale operand here?
9125       // TODO: For VP nodes, should we use VP_SHL here?
9126       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
9127       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
9128       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
9129       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
9130       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
9131     }
9132 
9133     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
9134     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
9135       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
9136                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
9137                               ScaleOp, VPGN->getMask(),
9138                               VPGN->getVectorLength()},
9139                              VPGN->getMemOperand(), NewIndexTy);
9140     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
9141       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
9142                               {VPSN->getChain(), VPSN->getValue(),
9143                                VPSN->getBasePtr(), Index, ScaleOp,
9144                                VPSN->getMask(), VPSN->getVectorLength()},
9145                               VPSN->getMemOperand(), NewIndexTy);
9146     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
9147       return DAG.getMaskedGather(
9148           N->getVTList(), MGN->getMemoryVT(), DL,
9149           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
9150            MGN->getBasePtr(), Index, ScaleOp},
9151           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
9152     const auto *MSN = cast<MaskedScatterSDNode>(N);
9153     return DAG.getMaskedScatter(
9154         N->getVTList(), MSN->getMemoryVT(), DL,
9155         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
9156          Index, ScaleOp},
9157         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
9158   }
9159   case RISCVISD::SRA_VL:
9160   case RISCVISD::SRL_VL:
9161   case RISCVISD::SHL_VL: {
9162     SDValue ShAmt = N->getOperand(1);
9163     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9164       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9165       SDLoc DL(N);
9166       SDValue VL = N->getOperand(3);
9167       EVT VT = N->getValueType(0);
9168       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9169                           ShAmt.getOperand(1), VL);
9170       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
9171                          N->getOperand(2), N->getOperand(3));
9172     }
9173     break;
9174   }
9175   case ISD::SRA:
9176     if (SDValue V = performSRACombine(N, DAG, Subtarget))
9177       return V;
9178     LLVM_FALLTHROUGH;
9179   case ISD::SRL:
9180   case ISD::SHL: {
9181     SDValue ShAmt = N->getOperand(1);
9182     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9183       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9184       SDLoc DL(N);
9185       EVT VT = N->getValueType(0);
9186       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9187                           ShAmt.getOperand(1),
9188                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
9189       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
9190     }
9191     break;
9192   }
9193   case RISCVISD::ADD_VL:
9194     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
9195       return V;
9196     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
9197   case RISCVISD::SUB_VL:
9198     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
9199   case RISCVISD::VWADD_W_VL:
9200   case RISCVISD::VWADDU_W_VL:
9201   case RISCVISD::VWSUB_W_VL:
9202   case RISCVISD::VWSUBU_W_VL:
9203     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
9204   case RISCVISD::MUL_VL:
9205     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
9206       return V;
9207     // Mul is commutative.
9208     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
9209   case RISCVISD::VFMADD_VL:
9210   case RISCVISD::VFNMADD_VL:
9211   case RISCVISD::VFMSUB_VL:
9212   case RISCVISD::VFNMSUB_VL: {
9213     // Fold FNEG_VL into FMA opcodes.
9214     SDValue A = N->getOperand(0);
9215     SDValue B = N->getOperand(1);
9216     SDValue C = N->getOperand(2);
9217     SDValue Mask = N->getOperand(3);
9218     SDValue VL = N->getOperand(4);
9219 
9220     auto invertIfNegative = [&Mask, &VL](SDValue &V) {
9221       if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
9222           V.getOperand(2) == VL) {
9223         // Return the negated input.
9224         V = V.getOperand(0);
9225         return true;
9226       }
9227 
9228       return false;
9229     };
9230 
9231     bool NegA = invertIfNegative(A);
9232     bool NegB = invertIfNegative(B);
9233     bool NegC = invertIfNegative(C);
9234 
9235     // If no operands are negated, we're done.
9236     if (!NegA && !NegB && !NegC)
9237       return SDValue();
9238 
9239     unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
9240     return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
9241                        VL);
9242   }
9243   case ISD::STORE: {
9244     auto *Store = cast<StoreSDNode>(N);
9245     SDValue Val = Store->getValue();
9246     // Combine store of vmv.x.s to vse with VL of 1.
9247     // FIXME: Support FP.
9248     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
9249       SDValue Src = Val.getOperand(0);
9250       MVT VecVT = Src.getSimpleValueType();
9251       EVT MemVT = Store->getMemoryVT();
9252       // The memory VT and the element type must match.
9253       if (MemVT == VecVT.getVectorElementType()) {
9254         SDLoc DL(N);
9255         MVT MaskVT = getMaskTypeFor(VecVT);
9256         return DAG.getStoreVP(
9257             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
9258             DAG.getConstant(1, DL, MaskVT),
9259             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
9260             Store->getMemOperand(), Store->getAddressingMode(),
9261             Store->isTruncatingStore(), /*IsCompress*/ false);
9262       }
9263     }
9264 
9265     break;
9266   }
9267   case ISD::SPLAT_VECTOR: {
9268     EVT VT = N->getValueType(0);
9269     // Only perform this combine on legal MVT types.
9270     if (!isTypeLegal(VT))
9271       break;
9272     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9273                                          DAG, Subtarget))
9274       return Gather;
9275     break;
9276   }
9277   case RISCVISD::VMV_V_X_VL: {
9278     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9279     // scalar input.
9280     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9281     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9282     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9283       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9284         return SDValue(N, 0);
9285 
9286     break;
9287   }
9288   case ISD::INTRINSIC_WO_CHAIN: {
9289     unsigned IntNo = N->getConstantOperandVal(0);
9290     switch (IntNo) {
9291       // By default we do not combine any intrinsic.
9292     default:
9293       return SDValue();
9294     case Intrinsic::riscv_vcpop:
9295     case Intrinsic::riscv_vcpop_mask:
9296     case Intrinsic::riscv_vfirst:
9297     case Intrinsic::riscv_vfirst_mask: {
9298       SDValue VL = N->getOperand(2);
9299       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9300           IntNo == Intrinsic::riscv_vfirst_mask)
9301         VL = N->getOperand(3);
9302       if (!isNullConstant(VL))
9303         return SDValue();
9304       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9305       SDLoc DL(N);
9306       EVT VT = N->getValueType(0);
9307       if (IntNo == Intrinsic::riscv_vfirst ||
9308           IntNo == Intrinsic::riscv_vfirst_mask)
9309         return DAG.getConstant(-1, DL, VT);
9310       return DAG.getConstant(0, DL, VT);
9311     }
9312     }
9313   }
9314   case ISD::BITCAST: {
9315     assert(Subtarget.useRVVForFixedLengthVectors());
9316     SDValue N0 = N->getOperand(0);
9317     EVT VT = N->getValueType(0);
9318     EVT SrcVT = N0.getValueType();
9319     // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
9320     // type, widen both sides to avoid a trip through memory.
9321     if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
9322         VT.isScalarInteger()) {
9323       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
9324       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
9325       Ops[0] = N0;
9326       SDLoc DL(N);
9327       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
9328       N0 = DAG.getBitcast(MVT::i8, N0);
9329       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
9330     }
9331 
9332     return SDValue();
9333   }
9334   }
9335 
9336   return SDValue();
9337 }
9338 
9339 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9340     const SDNode *N, CombineLevel Level) const {
9341   assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
9342           N->getOpcode() == ISD::SRL) &&
9343          "Expected shift op");
9344 
9345   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9346   // materialised in fewer instructions than `(OP _, c1)`:
9347   //
9348   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9349   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9350   SDValue N0 = N->getOperand(0);
9351   EVT Ty = N0.getValueType();
9352   if (Ty.isScalarInteger() &&
9353       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9354     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9355     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9356     if (C1 && C2) {
9357       const APInt &C1Int = C1->getAPIntValue();
9358       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9359 
9360       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9361       // and the combine should happen, to potentially allow further combines
9362       // later.
9363       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9364           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9365         return true;
9366 
9367       // We can materialise `c1` in an add immediate, so it's "free", and the
9368       // combine should be prevented.
9369       if (C1Int.getMinSignedBits() <= 64 &&
9370           isLegalAddImmediate(C1Int.getSExtValue()))
9371         return false;
9372 
9373       // Neither constant will fit into an immediate, so find materialisation
9374       // costs.
9375       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9376                                               Subtarget.getFeatureBits(),
9377                                               /*CompressionCost*/true);
9378       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9379           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9380           /*CompressionCost*/true);
9381 
9382       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9383       // combine should be prevented.
9384       if (C1Cost < ShiftedC1Cost)
9385         return false;
9386     }
9387   }
9388   return true;
9389 }
9390 
9391 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9392     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9393     TargetLoweringOpt &TLO) const {
9394   // Delay this optimization as late as possible.
9395   if (!TLO.LegalOps)
9396     return false;
9397 
9398   EVT VT = Op.getValueType();
9399   if (VT.isVector())
9400     return false;
9401 
9402   // Only handle AND for now.
9403   unsigned Opcode = Op.getOpcode();
9404   if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
9405     return false;
9406 
9407   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9408   if (!C)
9409     return false;
9410 
9411   const APInt &Mask = C->getAPIntValue();
9412 
9413   // Clear all non-demanded bits initially.
9414   APInt ShrunkMask = Mask & DemandedBits;
9415 
9416   // Try to make a smaller immediate by setting undemanded bits.
9417 
9418   APInt ExpandedMask = Mask | ~DemandedBits;
9419 
9420   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9421     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9422   };
9423   auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
9424     if (NewMask == Mask)
9425       return true;
9426     SDLoc DL(Op);
9427     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
9428     SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
9429                                     Op.getOperand(0), NewC);
9430     return TLO.CombineTo(Op, NewOp);
9431   };
9432 
9433   // If the shrunk mask fits in sign extended 12 bits, let the target
9434   // independent code apply it.
9435   if (ShrunkMask.isSignedIntN(12))
9436     return false;
9437 
9438   // And has a few special cases for zext.
9439   if (Opcode == ISD::AND) {
9440     // Preserve (and X, 0xffff) when zext.h is supported.
9441     if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9442       APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9443       if (IsLegalMask(NewMask))
9444         return UseMask(NewMask);
9445     }
9446 
9447     // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9448     if (VT == MVT::i64) {
9449       APInt NewMask = APInt(64, 0xffffffff);
9450       if (IsLegalMask(NewMask))
9451         return UseMask(NewMask);
9452     }
9453   }
9454 
9455   // For the remaining optimizations, we need to be able to make a negative
9456   // number through a combination of mask and undemanded bits.
9457   if (!ExpandedMask.isNegative())
9458     return false;
9459 
9460   // What is the fewest number of bits we need to represent the negative number.
9461   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9462 
9463   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9464   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9465   // If we can't create a simm12, we shouldn't change opaque constants.
9466   APInt NewMask = ShrunkMask;
9467   if (MinSignedBits <= 12)
9468     NewMask.setBitsFrom(11);
9469   else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9470     NewMask.setBitsFrom(31);
9471   else
9472     return false;
9473 
9474   // Check that our new mask is a subset of the demanded mask.
9475   assert(IsLegalMask(NewMask));
9476   return UseMask(NewMask);
9477 }
9478 
9479 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9480   static const uint64_t GREVMasks[] = {
9481       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9482       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9483 
9484   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9485     unsigned Shift = 1 << Stage;
9486     if (ShAmt & Shift) {
9487       uint64_t Mask = GREVMasks[Stage];
9488       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9489       if (IsGORC)
9490         Res |= x;
9491       x = Res;
9492     }
9493   }
9494 
9495   return x;
9496 }
9497 
9498 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9499                                                         KnownBits &Known,
9500                                                         const APInt &DemandedElts,
9501                                                         const SelectionDAG &DAG,
9502                                                         unsigned Depth) const {
9503   unsigned BitWidth = Known.getBitWidth();
9504   unsigned Opc = Op.getOpcode();
9505   assert((Opc >= ISD::BUILTIN_OP_END ||
9506           Opc == ISD::INTRINSIC_WO_CHAIN ||
9507           Opc == ISD::INTRINSIC_W_CHAIN ||
9508           Opc == ISD::INTRINSIC_VOID) &&
9509          "Should use MaskedValueIsZero if you don't know whether Op"
9510          " is a target node!");
9511 
9512   Known.resetAll();
9513   switch (Opc) {
9514   default: break;
9515   case RISCVISD::SELECT_CC: {
9516     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9517     // If we don't know any bits, early out.
9518     if (Known.isUnknown())
9519       break;
9520     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9521 
9522     // Only known if known in both the LHS and RHS.
9523     Known = KnownBits::commonBits(Known, Known2);
9524     break;
9525   }
9526   case RISCVISD::REMUW: {
9527     KnownBits Known2;
9528     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9529     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9530     // We only care about the lower 32 bits.
9531     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9532     // Restore the original width by sign extending.
9533     Known = Known.sext(BitWidth);
9534     break;
9535   }
9536   case RISCVISD::DIVUW: {
9537     KnownBits Known2;
9538     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9539     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9540     // We only care about the lower 32 bits.
9541     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9542     // Restore the original width by sign extending.
9543     Known = Known.sext(BitWidth);
9544     break;
9545   }
9546   case RISCVISD::CTZW: {
9547     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9548     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9549     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9550     Known.Zero.setBitsFrom(LowBits);
9551     break;
9552   }
9553   case RISCVISD::CLZW: {
9554     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9555     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9556     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9557     Known.Zero.setBitsFrom(LowBits);
9558     break;
9559   }
9560   case RISCVISD::GREV:
9561   case RISCVISD::GORC: {
9562     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9563       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9564       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9565       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9566       // To compute zeros, we need to invert the value and invert it back after.
9567       Known.Zero =
9568           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9569       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9570     }
9571     break;
9572   }
9573   case RISCVISD::READ_VLENB: {
9574     // We can use the minimum and maximum VLEN values to bound VLENB.  We
9575     // know VLEN must be a power of two.
9576     const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
9577     const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
9578     assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
9579     Known.Zero.setLowBits(Log2_32(MinVLenB));
9580     Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
9581     if (MaxVLenB == MinVLenB)
9582       Known.One.setBit(Log2_32(MinVLenB));
9583     break;
9584   }
9585   case ISD::INTRINSIC_W_CHAIN:
9586   case ISD::INTRINSIC_WO_CHAIN: {
9587     unsigned IntNo =
9588         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9589     switch (IntNo) {
9590     default:
9591       // We can't do anything for most intrinsics.
9592       break;
9593     case Intrinsic::riscv_vsetvli:
9594     case Intrinsic::riscv_vsetvlimax:
9595     case Intrinsic::riscv_vsetvli_opt:
9596     case Intrinsic::riscv_vsetvlimax_opt:
9597       // Assume that VL output is positive and would fit in an int32_t.
9598       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9599       if (BitWidth >= 32)
9600         Known.Zero.setBitsFrom(31);
9601       break;
9602     }
9603     break;
9604   }
9605   }
9606 }
9607 
9608 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9609     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9610     unsigned Depth) const {
9611   switch (Op.getOpcode()) {
9612   default:
9613     break;
9614   case RISCVISD::SELECT_CC: {
9615     unsigned Tmp =
9616         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9617     if (Tmp == 1) return 1;  // Early out.
9618     unsigned Tmp2 =
9619         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9620     return std::min(Tmp, Tmp2);
9621   }
9622   case RISCVISD::SLLW:
9623   case RISCVISD::SRAW:
9624   case RISCVISD::SRLW:
9625   case RISCVISD::DIVW:
9626   case RISCVISD::DIVUW:
9627   case RISCVISD::REMUW:
9628   case RISCVISD::ROLW:
9629   case RISCVISD::RORW:
9630   case RISCVISD::GREVW:
9631   case RISCVISD::GORCW:
9632   case RISCVISD::FSLW:
9633   case RISCVISD::FSRW:
9634   case RISCVISD::SHFLW:
9635   case RISCVISD::UNSHFLW:
9636   case RISCVISD::BCOMPRESSW:
9637   case RISCVISD::BDECOMPRESSW:
9638   case RISCVISD::BFPW:
9639   case RISCVISD::FCVT_W_RV64:
9640   case RISCVISD::FCVT_WU_RV64:
9641   case RISCVISD::STRICT_FCVT_W_RV64:
9642   case RISCVISD::STRICT_FCVT_WU_RV64:
9643     // TODO: As the result is sign-extended, this is conservatively correct. A
9644     // more precise answer could be calculated for SRAW depending on known
9645     // bits in the shift amount.
9646     return 33;
9647   case RISCVISD::SHFL:
9648   case RISCVISD::UNSHFL: {
9649     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9650     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9651     // will stay within the upper 32 bits. If there were more than 32 sign bits
9652     // before there will be at least 33 sign bits after.
9653     if (Op.getValueType() == MVT::i64 &&
9654         isa<ConstantSDNode>(Op.getOperand(1)) &&
9655         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9656       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9657       if (Tmp > 32)
9658         return 33;
9659     }
9660     break;
9661   }
9662   case RISCVISD::VMV_X_S: {
9663     // The number of sign bits of the scalar result is computed by obtaining the
9664     // element type of the input vector operand, subtracting its width from the
9665     // XLEN, and then adding one (sign bit within the element type). If the
9666     // element type is wider than XLen, the least-significant XLEN bits are
9667     // taken.
9668     unsigned XLen = Subtarget.getXLen();
9669     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9670     if (EltBits <= XLen)
9671       return XLen - EltBits + 1;
9672     break;
9673   }
9674   }
9675 
9676   return 1;
9677 }
9678 
9679 const Constant *
9680 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
9681   assert(Ld && "Unexpected null LoadSDNode");
9682   if (!ISD::isNormalLoad(Ld))
9683     return nullptr;
9684 
9685   SDValue Ptr = Ld->getBasePtr();
9686 
9687   // Only constant pools with no offset are supported.
9688   auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
9689     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
9690     if (!CNode || CNode->isMachineConstantPoolEntry() ||
9691         CNode->getOffset() != 0)
9692       return nullptr;
9693 
9694     return CNode;
9695   };
9696 
9697   // Simple case, LLA.
9698   if (Ptr.getOpcode() == RISCVISD::LLA) {
9699     auto *CNode = GetSupportedConstantPool(Ptr);
9700     if (!CNode || CNode->getTargetFlags() != 0)
9701       return nullptr;
9702 
9703     return CNode->getConstVal();
9704   }
9705 
9706   // Look for a HI and ADD_LO pair.
9707   if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
9708       Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
9709     return nullptr;
9710 
9711   auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
9712   auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
9713 
9714   if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
9715       !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
9716     return nullptr;
9717 
9718   if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
9719     return nullptr;
9720 
9721   return CNodeLo->getConstVal();
9722 }
9723 
9724 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9725                                                   MachineBasicBlock *BB) {
9726   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9727 
9728   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9729   // Should the count have wrapped while it was being read, we need to try
9730   // again.
9731   // ...
9732   // read:
9733   // rdcycleh x3 # load high word of cycle
9734   // rdcycle  x2 # load low word of cycle
9735   // rdcycleh x4 # load high word of cycle
9736   // bne x3, x4, read # check if high word reads match, otherwise try again
9737   // ...
9738 
9739   MachineFunction &MF = *BB->getParent();
9740   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9741   MachineFunction::iterator It = ++BB->getIterator();
9742 
9743   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9744   MF.insert(It, LoopMBB);
9745 
9746   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9747   MF.insert(It, DoneMBB);
9748 
9749   // Transfer the remainder of BB and its successor edges to DoneMBB.
9750   DoneMBB->splice(DoneMBB->begin(), BB,
9751                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9752   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9753 
9754   BB->addSuccessor(LoopMBB);
9755 
9756   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9757   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9758   Register LoReg = MI.getOperand(0).getReg();
9759   Register HiReg = MI.getOperand(1).getReg();
9760   DebugLoc DL = MI.getDebugLoc();
9761 
9762   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9763   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9764       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9765       .addReg(RISCV::X0);
9766   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9767       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9768       .addReg(RISCV::X0);
9769   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9770       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9771       .addReg(RISCV::X0);
9772 
9773   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9774       .addReg(HiReg)
9775       .addReg(ReadAgainReg)
9776       .addMBB(LoopMBB);
9777 
9778   LoopMBB->addSuccessor(LoopMBB);
9779   LoopMBB->addSuccessor(DoneMBB);
9780 
9781   MI.eraseFromParent();
9782 
9783   return DoneMBB;
9784 }
9785 
9786 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9787                                              MachineBasicBlock *BB) {
9788   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9789 
9790   MachineFunction &MF = *BB->getParent();
9791   DebugLoc DL = MI.getDebugLoc();
9792   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9793   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9794   Register LoReg = MI.getOperand(0).getReg();
9795   Register HiReg = MI.getOperand(1).getReg();
9796   Register SrcReg = MI.getOperand(2).getReg();
9797   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9798   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9799 
9800   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9801                           RI);
9802   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9803   MachineMemOperand *MMOLo =
9804       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9805   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9806       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9807   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9808       .addFrameIndex(FI)
9809       .addImm(0)
9810       .addMemOperand(MMOLo);
9811   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9812       .addFrameIndex(FI)
9813       .addImm(4)
9814       .addMemOperand(MMOHi);
9815   MI.eraseFromParent(); // The pseudo instruction is gone now.
9816   return BB;
9817 }
9818 
9819 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9820                                                  MachineBasicBlock *BB) {
9821   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9822          "Unexpected instruction");
9823 
9824   MachineFunction &MF = *BB->getParent();
9825   DebugLoc DL = MI.getDebugLoc();
9826   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9827   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9828   Register DstReg = MI.getOperand(0).getReg();
9829   Register LoReg = MI.getOperand(1).getReg();
9830   Register HiReg = MI.getOperand(2).getReg();
9831   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9832   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9833 
9834   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9835   MachineMemOperand *MMOLo =
9836       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9837   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9838       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9839   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9840       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9841       .addFrameIndex(FI)
9842       .addImm(0)
9843       .addMemOperand(MMOLo);
9844   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9845       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9846       .addFrameIndex(FI)
9847       .addImm(4)
9848       .addMemOperand(MMOHi);
9849   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9850   MI.eraseFromParent(); // The pseudo instruction is gone now.
9851   return BB;
9852 }
9853 
9854 static bool isSelectPseudo(MachineInstr &MI) {
9855   switch (MI.getOpcode()) {
9856   default:
9857     return false;
9858   case RISCV::Select_GPR_Using_CC_GPR:
9859   case RISCV::Select_FPR16_Using_CC_GPR:
9860   case RISCV::Select_FPR32_Using_CC_GPR:
9861   case RISCV::Select_FPR64_Using_CC_GPR:
9862     return true;
9863   }
9864 }
9865 
9866 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9867                                         unsigned RelOpcode, unsigned EqOpcode,
9868                                         const RISCVSubtarget &Subtarget) {
9869   DebugLoc DL = MI.getDebugLoc();
9870   Register DstReg = MI.getOperand(0).getReg();
9871   Register Src1Reg = MI.getOperand(1).getReg();
9872   Register Src2Reg = MI.getOperand(2).getReg();
9873   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9874   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9875   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9876 
9877   // Save the current FFLAGS.
9878   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9879 
9880   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9881                  .addReg(Src1Reg)
9882                  .addReg(Src2Reg);
9883   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9884     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9885 
9886   // Restore the FFLAGS.
9887   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9888       .addReg(SavedFFlags, RegState::Kill);
9889 
9890   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9891   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9892                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9893                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9894   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9895     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9896 
9897   // Erase the pseudoinstruction.
9898   MI.eraseFromParent();
9899   return BB;
9900 }
9901 
9902 static MachineBasicBlock *
9903 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
9904                           MachineBasicBlock *ThisMBB,
9905                           const RISCVSubtarget &Subtarget) {
9906   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
9907   // Without this, custom-inserter would have generated:
9908   //
9909   //   A
9910   //   | \
9911   //   |  B
9912   //   | /
9913   //   C
9914   //   | \
9915   //   |  D
9916   //   | /
9917   //   E
9918   //
9919   // A: X = ...; Y = ...
9920   // B: empty
9921   // C: Z = PHI [X, A], [Y, B]
9922   // D: empty
9923   // E: PHI [X, C], [Z, D]
9924   //
9925   // If we lower both Select_FPRX_ in a single step, we can instead generate:
9926   //
9927   //   A
9928   //   | \
9929   //   |  C
9930   //   | /|
9931   //   |/ |
9932   //   |  |
9933   //   |  D
9934   //   | /
9935   //   E
9936   //
9937   // A: X = ...; Y = ...
9938   // D: empty
9939   // E: PHI [X, A], [X, C], [Y, D]
9940 
9941   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9942   const DebugLoc &DL = First.getDebugLoc();
9943   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
9944   MachineFunction *F = ThisMBB->getParent();
9945   MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
9946   MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
9947   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9948   MachineFunction::iterator It = ++ThisMBB->getIterator();
9949   F->insert(It, FirstMBB);
9950   F->insert(It, SecondMBB);
9951   F->insert(It, SinkMBB);
9952 
9953   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
9954   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
9955                   std::next(MachineBasicBlock::iterator(First)),
9956                   ThisMBB->end());
9957   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
9958 
9959   // Fallthrough block for ThisMBB.
9960   ThisMBB->addSuccessor(FirstMBB);
9961   // Fallthrough block for FirstMBB.
9962   FirstMBB->addSuccessor(SecondMBB);
9963   ThisMBB->addSuccessor(SinkMBB);
9964   FirstMBB->addSuccessor(SinkMBB);
9965   // This is fallthrough.
9966   SecondMBB->addSuccessor(SinkMBB);
9967 
9968   auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
9969   Register FLHS = First.getOperand(1).getReg();
9970   Register FRHS = First.getOperand(2).getReg();
9971   // Insert appropriate branch.
9972   BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
9973       .addReg(FLHS)
9974       .addReg(FRHS)
9975       .addMBB(SinkMBB);
9976 
9977   Register SLHS = Second.getOperand(1).getReg();
9978   Register SRHS = Second.getOperand(2).getReg();
9979   Register Op1Reg4 = First.getOperand(4).getReg();
9980   Register Op1Reg5 = First.getOperand(5).getReg();
9981 
9982   auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
9983   // Insert appropriate branch.
9984   BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
9985       .addReg(SLHS)
9986       .addReg(SRHS)
9987       .addMBB(SinkMBB);
9988 
9989   Register DestReg = Second.getOperand(0).getReg();
9990   Register Op2Reg4 = Second.getOperand(4).getReg();
9991   BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
9992       .addReg(Op2Reg4)
9993       .addMBB(ThisMBB)
9994       .addReg(Op1Reg4)
9995       .addMBB(FirstMBB)
9996       .addReg(Op1Reg5)
9997       .addMBB(SecondMBB);
9998 
9999   // Now remove the Select_FPRX_s.
10000   First.eraseFromParent();
10001   Second.eraseFromParent();
10002   return SinkMBB;
10003 }
10004 
10005 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
10006                                            MachineBasicBlock *BB,
10007                                            const RISCVSubtarget &Subtarget) {
10008   // To "insert" Select_* instructions, we actually have to insert the triangle
10009   // control-flow pattern.  The incoming instructions know the destination vreg
10010   // to set, the condition code register to branch on, the true/false values to
10011   // select between, and the condcode to use to select the appropriate branch.
10012   //
10013   // We produce the following control flow:
10014   //     HeadMBB
10015   //     |  \
10016   //     |  IfFalseMBB
10017   //     | /
10018   //    TailMBB
10019   //
10020   // When we find a sequence of selects we attempt to optimize their emission
10021   // by sharing the control flow. Currently we only handle cases where we have
10022   // multiple selects with the exact same condition (same LHS, RHS and CC).
10023   // The selects may be interleaved with other instructions if the other
10024   // instructions meet some requirements we deem safe:
10025   // - They are debug instructions. Otherwise,
10026   // - They do not have side-effects, do not access memory and their inputs do
10027   //   not depend on the results of the select pseudo-instructions.
10028   // The TrueV/FalseV operands of the selects cannot depend on the result of
10029   // previous selects in the sequence.
10030   // These conditions could be further relaxed. See the X86 target for a
10031   // related approach and more information.
10032   //
10033   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
10034   // is checked here and handled by a separate function -
10035   // EmitLoweredCascadedSelect.
10036   Register LHS = MI.getOperand(1).getReg();
10037   Register RHS = MI.getOperand(2).getReg();
10038   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
10039 
10040   SmallVector<MachineInstr *, 4> SelectDebugValues;
10041   SmallSet<Register, 4> SelectDests;
10042   SelectDests.insert(MI.getOperand(0).getReg());
10043 
10044   MachineInstr *LastSelectPseudo = &MI;
10045   auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
10046   if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() &&
10047       Next->getOpcode() == MI.getOpcode() &&
10048       Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
10049       Next->getOperand(5).isKill()) {
10050     return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
10051   }
10052 
10053   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
10054        SequenceMBBI != E; ++SequenceMBBI) {
10055     if (SequenceMBBI->isDebugInstr())
10056       continue;
10057     if (isSelectPseudo(*SequenceMBBI)) {
10058       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
10059           SequenceMBBI->getOperand(2).getReg() != RHS ||
10060           SequenceMBBI->getOperand(3).getImm() != CC ||
10061           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
10062           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
10063         break;
10064       LastSelectPseudo = &*SequenceMBBI;
10065       SequenceMBBI->collectDebugValues(SelectDebugValues);
10066       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
10067     } else {
10068       if (SequenceMBBI->hasUnmodeledSideEffects() ||
10069           SequenceMBBI->mayLoadOrStore())
10070         break;
10071       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
10072             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
10073           }))
10074         break;
10075     }
10076   }
10077 
10078   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
10079   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10080   DebugLoc DL = MI.getDebugLoc();
10081   MachineFunction::iterator I = ++BB->getIterator();
10082 
10083   MachineBasicBlock *HeadMBB = BB;
10084   MachineFunction *F = BB->getParent();
10085   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
10086   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
10087 
10088   F->insert(I, IfFalseMBB);
10089   F->insert(I, TailMBB);
10090 
10091   // Transfer debug instructions associated with the selects to TailMBB.
10092   for (MachineInstr *DebugInstr : SelectDebugValues) {
10093     TailMBB->push_back(DebugInstr->removeFromParent());
10094   }
10095 
10096   // Move all instructions after the sequence to TailMBB.
10097   TailMBB->splice(TailMBB->end(), HeadMBB,
10098                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
10099   // Update machine-CFG edges by transferring all successors of the current
10100   // block to the new block which will contain the Phi nodes for the selects.
10101   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
10102   // Set the successors for HeadMBB.
10103   HeadMBB->addSuccessor(IfFalseMBB);
10104   HeadMBB->addSuccessor(TailMBB);
10105 
10106   // Insert appropriate branch.
10107   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
10108     .addReg(LHS)
10109     .addReg(RHS)
10110     .addMBB(TailMBB);
10111 
10112   // IfFalseMBB just falls through to TailMBB.
10113   IfFalseMBB->addSuccessor(TailMBB);
10114 
10115   // Create PHIs for all of the select pseudo-instructions.
10116   auto SelectMBBI = MI.getIterator();
10117   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
10118   auto InsertionPoint = TailMBB->begin();
10119   while (SelectMBBI != SelectEnd) {
10120     auto Next = std::next(SelectMBBI);
10121     if (isSelectPseudo(*SelectMBBI)) {
10122       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
10123       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
10124               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
10125           .addReg(SelectMBBI->getOperand(4).getReg())
10126           .addMBB(HeadMBB)
10127           .addReg(SelectMBBI->getOperand(5).getReg())
10128           .addMBB(IfFalseMBB);
10129       SelectMBBI->eraseFromParent();
10130     }
10131     SelectMBBI = Next;
10132   }
10133 
10134   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
10135   return TailMBB;
10136 }
10137 
10138 MachineBasicBlock *
10139 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10140                                                  MachineBasicBlock *BB) const {
10141   switch (MI.getOpcode()) {
10142   default:
10143     llvm_unreachable("Unexpected instr type to insert");
10144   case RISCV::ReadCycleWide:
10145     assert(!Subtarget.is64Bit() &&
10146            "ReadCycleWrite is only to be used on riscv32");
10147     return emitReadCycleWidePseudo(MI, BB);
10148   case RISCV::Select_GPR_Using_CC_GPR:
10149   case RISCV::Select_FPR16_Using_CC_GPR:
10150   case RISCV::Select_FPR32_Using_CC_GPR:
10151   case RISCV::Select_FPR64_Using_CC_GPR:
10152     return emitSelectPseudo(MI, BB, Subtarget);
10153   case RISCV::BuildPairF64Pseudo:
10154     return emitBuildPairF64Pseudo(MI, BB);
10155   case RISCV::SplitF64Pseudo:
10156     return emitSplitF64Pseudo(MI, BB);
10157   case RISCV::PseudoQuietFLE_H:
10158     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
10159   case RISCV::PseudoQuietFLT_H:
10160     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
10161   case RISCV::PseudoQuietFLE_S:
10162     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
10163   case RISCV::PseudoQuietFLT_S:
10164     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
10165   case RISCV::PseudoQuietFLE_D:
10166     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
10167   case RISCV::PseudoQuietFLT_D:
10168     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
10169   }
10170 }
10171 
10172 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10173                                                         SDNode *Node) const {
10174   // Add FRM dependency to any instructions with dynamic rounding mode.
10175   unsigned Opc = MI.getOpcode();
10176   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
10177   if (Idx < 0)
10178     return;
10179   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
10180     return;
10181   // If the instruction already reads FRM, don't add another read.
10182   if (MI.readsRegister(RISCV::FRM))
10183     return;
10184   MI.addOperand(
10185       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
10186 }
10187 
10188 // Calling Convention Implementation.
10189 // The expectations for frontend ABI lowering vary from target to target.
10190 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
10191 // details, but this is a longer term goal. For now, we simply try to keep the
10192 // role of the frontend as simple and well-defined as possible. The rules can
10193 // be summarised as:
10194 // * Never split up large scalar arguments. We handle them here.
10195 // * If a hardfloat calling convention is being used, and the struct may be
10196 // passed in a pair of registers (fp+fp, int+fp), and both registers are
10197 // available, then pass as two separate arguments. If either the GPRs or FPRs
10198 // are exhausted, then pass according to the rule below.
10199 // * If a struct could never be passed in registers or directly in a stack
10200 // slot (as it is larger than 2*XLEN and the floating point rules don't
10201 // apply), then pass it using a pointer with the byval attribute.
10202 // * If a struct is less than 2*XLEN, then coerce to either a two-element
10203 // word-sized array or a 2*XLEN scalar (depending on alignment).
10204 // * The frontend can determine whether a struct is returned by reference or
10205 // not based on its size and fields. If it will be returned by reference, the
10206 // frontend must modify the prototype so a pointer with the sret annotation is
10207 // passed as the first argument. This is not necessary for large scalar
10208 // returns.
10209 // * Struct return values and varargs should be coerced to structs containing
10210 // register-size fields in the same situations they would be for fixed
10211 // arguments.
10212 
10213 static const MCPhysReg ArgGPRs[] = {
10214   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
10215   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
10216 };
10217 static const MCPhysReg ArgFPR16s[] = {
10218   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
10219   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
10220 };
10221 static const MCPhysReg ArgFPR32s[] = {
10222   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
10223   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
10224 };
10225 static const MCPhysReg ArgFPR64s[] = {
10226   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
10227   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
10228 };
10229 // This is an interim calling convention and it may be changed in the future.
10230 static const MCPhysReg ArgVRs[] = {
10231     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
10232     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
10233     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
10234 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
10235                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
10236                                      RISCV::V20M2, RISCV::V22M2};
10237 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
10238                                      RISCV::V20M4};
10239 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
10240 
10241 // Pass a 2*XLEN argument that has been split into two XLEN values through
10242 // registers or the stack as necessary.
10243 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
10244                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
10245                                 MVT ValVT2, MVT LocVT2,
10246                                 ISD::ArgFlagsTy ArgFlags2) {
10247   unsigned XLenInBytes = XLen / 8;
10248   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10249     // At least one half can be passed via register.
10250     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
10251                                      VA1.getLocVT(), CCValAssign::Full));
10252   } else {
10253     // Both halves must be passed on the stack, with proper alignment.
10254     Align StackAlign =
10255         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
10256     State.addLoc(
10257         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
10258                             State.AllocateStack(XLenInBytes, StackAlign),
10259                             VA1.getLocVT(), CCValAssign::Full));
10260     State.addLoc(CCValAssign::getMem(
10261         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10262         LocVT2, CCValAssign::Full));
10263     return false;
10264   }
10265 
10266   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10267     // The second half can also be passed via register.
10268     State.addLoc(
10269         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
10270   } else {
10271     // The second half is passed via the stack, without additional alignment.
10272     State.addLoc(CCValAssign::getMem(
10273         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10274         LocVT2, CCValAssign::Full));
10275   }
10276 
10277   return false;
10278 }
10279 
10280 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
10281                                Optional<unsigned> FirstMaskArgument,
10282                                CCState &State, const RISCVTargetLowering &TLI) {
10283   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
10284   if (RC == &RISCV::VRRegClass) {
10285     // Assign the first mask argument to V0.
10286     // This is an interim calling convention and it may be changed in the
10287     // future.
10288     if (FirstMaskArgument && ValNo == *FirstMaskArgument)
10289       return State.AllocateReg(RISCV::V0);
10290     return State.AllocateReg(ArgVRs);
10291   }
10292   if (RC == &RISCV::VRM2RegClass)
10293     return State.AllocateReg(ArgVRM2s);
10294   if (RC == &RISCV::VRM4RegClass)
10295     return State.AllocateReg(ArgVRM4s);
10296   if (RC == &RISCV::VRM8RegClass)
10297     return State.AllocateReg(ArgVRM8s);
10298   llvm_unreachable("Unhandled register class for ValueType");
10299 }
10300 
10301 // Implements the RISC-V calling convention. Returns true upon failure.
10302 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
10303                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
10304                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
10305                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
10306                      Optional<unsigned> FirstMaskArgument) {
10307   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
10308   assert(XLen == 32 || XLen == 64);
10309   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
10310 
10311   // Any return value split in to more than two values can't be returned
10312   // directly. Vectors are returned via the available vector registers.
10313   if (!LocVT.isVector() && IsRet && ValNo > 1)
10314     return true;
10315 
10316   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
10317   // variadic argument, or if no F16/F32 argument registers are available.
10318   bool UseGPRForF16_F32 = true;
10319   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
10320   // variadic argument, or if no F64 argument registers are available.
10321   bool UseGPRForF64 = true;
10322 
10323   switch (ABI) {
10324   default:
10325     llvm_unreachable("Unexpected ABI");
10326   case RISCVABI::ABI_ILP32:
10327   case RISCVABI::ABI_LP64:
10328     break;
10329   case RISCVABI::ABI_ILP32F:
10330   case RISCVABI::ABI_LP64F:
10331     UseGPRForF16_F32 = !IsFixed;
10332     break;
10333   case RISCVABI::ABI_ILP32D:
10334   case RISCVABI::ABI_LP64D:
10335     UseGPRForF16_F32 = !IsFixed;
10336     UseGPRForF64 = !IsFixed;
10337     break;
10338   }
10339 
10340   // FPR16, FPR32, and FPR64 alias each other.
10341   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
10342     UseGPRForF16_F32 = true;
10343     UseGPRForF64 = true;
10344   }
10345 
10346   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
10347   // similar local variables rather than directly checking against the target
10348   // ABI.
10349 
10350   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
10351     LocVT = XLenVT;
10352     LocInfo = CCValAssign::BCvt;
10353   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
10354     LocVT = MVT::i64;
10355     LocInfo = CCValAssign::BCvt;
10356   }
10357 
10358   // If this is a variadic argument, the RISC-V calling convention requires
10359   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
10360   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
10361   // be used regardless of whether the original argument was split during
10362   // legalisation or not. The argument will not be passed by registers if the
10363   // original type is larger than 2*XLEN, so the register alignment rule does
10364   // not apply.
10365   unsigned TwoXLenInBytes = (2 * XLen) / 8;
10366   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
10367       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
10368     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
10369     // Skip 'odd' register if necessary.
10370     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
10371       State.AllocateReg(ArgGPRs);
10372   }
10373 
10374   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
10375   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
10376       State.getPendingArgFlags();
10377 
10378   assert(PendingLocs.size() == PendingArgFlags.size() &&
10379          "PendingLocs and PendingArgFlags out of sync");
10380 
10381   // Handle passing f64 on RV32D with a soft float ABI or when floating point
10382   // registers are exhausted.
10383   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
10384     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
10385            "Can't lower f64 if it is split");
10386     // Depending on available argument GPRS, f64 may be passed in a pair of
10387     // GPRs, split between a GPR and the stack, or passed completely on the
10388     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
10389     // cases.
10390     Register Reg = State.AllocateReg(ArgGPRs);
10391     LocVT = MVT::i32;
10392     if (!Reg) {
10393       unsigned StackOffset = State.AllocateStack(8, Align(8));
10394       State.addLoc(
10395           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10396       return false;
10397     }
10398     if (!State.AllocateReg(ArgGPRs))
10399       State.AllocateStack(4, Align(4));
10400     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10401     return false;
10402   }
10403 
10404   // Fixed-length vectors are located in the corresponding scalable-vector
10405   // container types.
10406   if (ValVT.isFixedLengthVector())
10407     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10408 
10409   // Split arguments might be passed indirectly, so keep track of the pending
10410   // values. Split vectors are passed via a mix of registers and indirectly, so
10411   // treat them as we would any other argument.
10412   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
10413     LocVT = XLenVT;
10414     LocInfo = CCValAssign::Indirect;
10415     PendingLocs.push_back(
10416         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
10417     PendingArgFlags.push_back(ArgFlags);
10418     if (!ArgFlags.isSplitEnd()) {
10419       return false;
10420     }
10421   }
10422 
10423   // If the split argument only had two elements, it should be passed directly
10424   // in registers or on the stack.
10425   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
10426       PendingLocs.size() <= 2) {
10427     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
10428     // Apply the normal calling convention rules to the first half of the
10429     // split argument.
10430     CCValAssign VA = PendingLocs[0];
10431     ISD::ArgFlagsTy AF = PendingArgFlags[0];
10432     PendingLocs.clear();
10433     PendingArgFlags.clear();
10434     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
10435                                ArgFlags);
10436   }
10437 
10438   // Allocate to a register if possible, or else a stack slot.
10439   Register Reg;
10440   unsigned StoreSizeBytes = XLen / 8;
10441   Align StackAlign = Align(XLen / 8);
10442 
10443   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
10444     Reg = State.AllocateReg(ArgFPR16s);
10445   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
10446     Reg = State.AllocateReg(ArgFPR32s);
10447   else if (ValVT == MVT::f64 && !UseGPRForF64)
10448     Reg = State.AllocateReg(ArgFPR64s);
10449   else if (ValVT.isVector()) {
10450     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
10451     if (!Reg) {
10452       // For return values, the vector must be passed fully via registers or
10453       // via the stack.
10454       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10455       // but we're using all of them.
10456       if (IsRet)
10457         return true;
10458       // Try using a GPR to pass the address
10459       if ((Reg = State.AllocateReg(ArgGPRs))) {
10460         LocVT = XLenVT;
10461         LocInfo = CCValAssign::Indirect;
10462       } else if (ValVT.isScalableVector()) {
10463         LocVT = XLenVT;
10464         LocInfo = CCValAssign::Indirect;
10465       } else {
10466         // Pass fixed-length vectors on the stack.
10467         LocVT = ValVT;
10468         StoreSizeBytes = ValVT.getStoreSize();
10469         // Align vectors to their element sizes, being careful for vXi1
10470         // vectors.
10471         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10472       }
10473     }
10474   } else {
10475     Reg = State.AllocateReg(ArgGPRs);
10476   }
10477 
10478   unsigned StackOffset =
10479       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10480 
10481   // If we reach this point and PendingLocs is non-empty, we must be at the
10482   // end of a split argument that must be passed indirectly.
10483   if (!PendingLocs.empty()) {
10484     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10485     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10486 
10487     for (auto &It : PendingLocs) {
10488       if (Reg)
10489         It.convertToReg(Reg);
10490       else
10491         It.convertToMem(StackOffset);
10492       State.addLoc(It);
10493     }
10494     PendingLocs.clear();
10495     PendingArgFlags.clear();
10496     return false;
10497   }
10498 
10499   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10500           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10501          "Expected an XLenVT or vector types at this stage");
10502 
10503   if (Reg) {
10504     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10505     return false;
10506   }
10507 
10508   // When a floating-point value is passed on the stack, no bit-conversion is
10509   // needed.
10510   if (ValVT.isFloatingPoint()) {
10511     LocVT = ValVT;
10512     LocInfo = CCValAssign::Full;
10513   }
10514   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10515   return false;
10516 }
10517 
10518 template <typename ArgTy>
10519 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10520   for (const auto &ArgIdx : enumerate(Args)) {
10521     MVT ArgVT = ArgIdx.value().VT;
10522     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10523       return ArgIdx.index();
10524   }
10525   return None;
10526 }
10527 
10528 void RISCVTargetLowering::analyzeInputArgs(
10529     MachineFunction &MF, CCState &CCInfo,
10530     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10531     RISCVCCAssignFn Fn) const {
10532   unsigned NumArgs = Ins.size();
10533   FunctionType *FType = MF.getFunction().getFunctionType();
10534 
10535   Optional<unsigned> FirstMaskArgument;
10536   if (Subtarget.hasVInstructions())
10537     FirstMaskArgument = preAssignMask(Ins);
10538 
10539   for (unsigned i = 0; i != NumArgs; ++i) {
10540     MVT ArgVT = Ins[i].VT;
10541     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10542 
10543     Type *ArgTy = nullptr;
10544     if (IsRet)
10545       ArgTy = FType->getReturnType();
10546     else if (Ins[i].isOrigArg())
10547       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10548 
10549     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10550     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10551            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10552            FirstMaskArgument)) {
10553       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10554                         << EVT(ArgVT).getEVTString() << '\n');
10555       llvm_unreachable(nullptr);
10556     }
10557   }
10558 }
10559 
10560 void RISCVTargetLowering::analyzeOutputArgs(
10561     MachineFunction &MF, CCState &CCInfo,
10562     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10563     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10564   unsigned NumArgs = Outs.size();
10565 
10566   Optional<unsigned> FirstMaskArgument;
10567   if (Subtarget.hasVInstructions())
10568     FirstMaskArgument = preAssignMask(Outs);
10569 
10570   for (unsigned i = 0; i != NumArgs; i++) {
10571     MVT ArgVT = Outs[i].VT;
10572     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10573     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10574 
10575     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10576     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10577            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10578            FirstMaskArgument)) {
10579       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10580                         << EVT(ArgVT).getEVTString() << "\n");
10581       llvm_unreachable(nullptr);
10582     }
10583   }
10584 }
10585 
10586 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10587 // values.
10588 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10589                                    const CCValAssign &VA, const SDLoc &DL,
10590                                    const RISCVSubtarget &Subtarget) {
10591   switch (VA.getLocInfo()) {
10592   default:
10593     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10594   case CCValAssign::Full:
10595     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10596       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10597     break;
10598   case CCValAssign::BCvt:
10599     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10600       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10601     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10602       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10603     else
10604       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10605     break;
10606   }
10607   return Val;
10608 }
10609 
10610 // The caller is responsible for loading the full value if the argument is
10611 // passed with CCValAssign::Indirect.
10612 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10613                                 const CCValAssign &VA, const SDLoc &DL,
10614                                 const RISCVTargetLowering &TLI) {
10615   MachineFunction &MF = DAG.getMachineFunction();
10616   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10617   EVT LocVT = VA.getLocVT();
10618   SDValue Val;
10619   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10620   Register VReg = RegInfo.createVirtualRegister(RC);
10621   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10622   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10623 
10624   if (VA.getLocInfo() == CCValAssign::Indirect)
10625     return Val;
10626 
10627   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10628 }
10629 
10630 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10631                                    const CCValAssign &VA, const SDLoc &DL,
10632                                    const RISCVSubtarget &Subtarget) {
10633   EVT LocVT = VA.getLocVT();
10634 
10635   switch (VA.getLocInfo()) {
10636   default:
10637     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10638   case CCValAssign::Full:
10639     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10640       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10641     break;
10642   case CCValAssign::BCvt:
10643     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10644       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10645     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10646       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10647     else
10648       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10649     break;
10650   }
10651   return Val;
10652 }
10653 
10654 // The caller is responsible for loading the full value if the argument is
10655 // passed with CCValAssign::Indirect.
10656 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10657                                 const CCValAssign &VA, const SDLoc &DL) {
10658   MachineFunction &MF = DAG.getMachineFunction();
10659   MachineFrameInfo &MFI = MF.getFrameInfo();
10660   EVT LocVT = VA.getLocVT();
10661   EVT ValVT = VA.getValVT();
10662   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10663   if (ValVT.isScalableVector()) {
10664     // When the value is a scalable vector, we save the pointer which points to
10665     // the scalable vector value in the stack. The ValVT will be the pointer
10666     // type, instead of the scalable vector type.
10667     ValVT = LocVT;
10668   }
10669   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10670                                  /*IsImmutable=*/true);
10671   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10672   SDValue Val;
10673 
10674   ISD::LoadExtType ExtType;
10675   switch (VA.getLocInfo()) {
10676   default:
10677     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10678   case CCValAssign::Full:
10679   case CCValAssign::Indirect:
10680   case CCValAssign::BCvt:
10681     ExtType = ISD::NON_EXTLOAD;
10682     break;
10683   }
10684   Val = DAG.getExtLoad(
10685       ExtType, DL, LocVT, Chain, FIN,
10686       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10687   return Val;
10688 }
10689 
10690 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10691                                        const CCValAssign &VA, const SDLoc &DL) {
10692   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10693          "Unexpected VA");
10694   MachineFunction &MF = DAG.getMachineFunction();
10695   MachineFrameInfo &MFI = MF.getFrameInfo();
10696   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10697 
10698   if (VA.isMemLoc()) {
10699     // f64 is passed on the stack.
10700     int FI =
10701         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10702     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10703     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10704                        MachinePointerInfo::getFixedStack(MF, FI));
10705   }
10706 
10707   assert(VA.isRegLoc() && "Expected register VA assignment");
10708 
10709   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10710   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10711   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10712   SDValue Hi;
10713   if (VA.getLocReg() == RISCV::X17) {
10714     // Second half of f64 is passed on the stack.
10715     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10716     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10717     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10718                      MachinePointerInfo::getFixedStack(MF, FI));
10719   } else {
10720     // Second half of f64 is passed in another GPR.
10721     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10722     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10723     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10724   }
10725   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10726 }
10727 
10728 // FastCC has less than 1% performance improvement for some particular
10729 // benchmark. But theoretically, it may has benenfit for some cases.
10730 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10731                             unsigned ValNo, MVT ValVT, MVT LocVT,
10732                             CCValAssign::LocInfo LocInfo,
10733                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10734                             bool IsFixed, bool IsRet, Type *OrigTy,
10735                             const RISCVTargetLowering &TLI,
10736                             Optional<unsigned> FirstMaskArgument) {
10737 
10738   // X5 and X6 might be used for save-restore libcall.
10739   static const MCPhysReg GPRList[] = {
10740       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10741       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10742       RISCV::X29, RISCV::X30, RISCV::X31};
10743 
10744   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10745     if (unsigned Reg = State.AllocateReg(GPRList)) {
10746       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10747       return false;
10748     }
10749   }
10750 
10751   if (LocVT == MVT::f16) {
10752     static const MCPhysReg FPR16List[] = {
10753         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10754         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10755         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10756         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10757     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10758       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10759       return false;
10760     }
10761   }
10762 
10763   if (LocVT == MVT::f32) {
10764     static const MCPhysReg FPR32List[] = {
10765         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10766         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10767         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10768         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10769     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10770       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10771       return false;
10772     }
10773   }
10774 
10775   if (LocVT == MVT::f64) {
10776     static const MCPhysReg FPR64List[] = {
10777         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10778         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10779         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10780         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10781     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10782       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10783       return false;
10784     }
10785   }
10786 
10787   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10788     unsigned Offset4 = State.AllocateStack(4, Align(4));
10789     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10790     return false;
10791   }
10792 
10793   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10794     unsigned Offset5 = State.AllocateStack(8, Align(8));
10795     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10796     return false;
10797   }
10798 
10799   if (LocVT.isVector()) {
10800     if (unsigned Reg =
10801             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10802       // Fixed-length vectors are located in the corresponding scalable-vector
10803       // container types.
10804       if (ValVT.isFixedLengthVector())
10805         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10806       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10807     } else {
10808       // Try and pass the address via a "fast" GPR.
10809       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10810         LocInfo = CCValAssign::Indirect;
10811         LocVT = TLI.getSubtarget().getXLenVT();
10812         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10813       } else if (ValVT.isFixedLengthVector()) {
10814         auto StackAlign =
10815             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10816         unsigned StackOffset =
10817             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10818         State.addLoc(
10819             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10820       } else {
10821         // Can't pass scalable vectors on the stack.
10822         return true;
10823       }
10824     }
10825 
10826     return false;
10827   }
10828 
10829   return true; // CC didn't match.
10830 }
10831 
10832 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10833                          CCValAssign::LocInfo LocInfo,
10834                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10835 
10836   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10837     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10838     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10839     static const MCPhysReg GPRList[] = {
10840         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10841         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10842     if (unsigned Reg = State.AllocateReg(GPRList)) {
10843       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10844       return false;
10845     }
10846   }
10847 
10848   if (LocVT == MVT::f32) {
10849     // Pass in STG registers: F1, ..., F6
10850     //                        fs0 ... fs5
10851     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10852                                           RISCV::F18_F, RISCV::F19_F,
10853                                           RISCV::F20_F, RISCV::F21_F};
10854     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10855       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10856       return false;
10857     }
10858   }
10859 
10860   if (LocVT == MVT::f64) {
10861     // Pass in STG registers: D1, ..., D6
10862     //                        fs6 ... fs11
10863     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10864                                           RISCV::F24_D, RISCV::F25_D,
10865                                           RISCV::F26_D, RISCV::F27_D};
10866     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10867       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10868       return false;
10869     }
10870   }
10871 
10872   report_fatal_error("No registers left in GHC calling convention");
10873   return true;
10874 }
10875 
10876 // Transform physical registers into virtual registers.
10877 SDValue RISCVTargetLowering::LowerFormalArguments(
10878     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10879     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10880     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10881 
10882   MachineFunction &MF = DAG.getMachineFunction();
10883 
10884   switch (CallConv) {
10885   default:
10886     report_fatal_error("Unsupported calling convention");
10887   case CallingConv::C:
10888   case CallingConv::Fast:
10889     break;
10890   case CallingConv::GHC:
10891     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10892         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10893       report_fatal_error(
10894         "GHC calling convention requires the F and D instruction set extensions");
10895   }
10896 
10897   const Function &Func = MF.getFunction();
10898   if (Func.hasFnAttribute("interrupt")) {
10899     if (!Func.arg_empty())
10900       report_fatal_error(
10901         "Functions with the interrupt attribute cannot have arguments!");
10902 
10903     StringRef Kind =
10904       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10905 
10906     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10907       report_fatal_error(
10908         "Function interrupt attribute argument not supported!");
10909   }
10910 
10911   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10912   MVT XLenVT = Subtarget.getXLenVT();
10913   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10914   // Used with vargs to acumulate store chains.
10915   std::vector<SDValue> OutChains;
10916 
10917   // Assign locations to all of the incoming arguments.
10918   SmallVector<CCValAssign, 16> ArgLocs;
10919   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10920 
10921   if (CallConv == CallingConv::GHC)
10922     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10923   else
10924     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10925                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10926                                                    : CC_RISCV);
10927 
10928   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10929     CCValAssign &VA = ArgLocs[i];
10930     SDValue ArgValue;
10931     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10932     // case.
10933     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10934       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10935     else if (VA.isRegLoc())
10936       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10937     else
10938       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10939 
10940     if (VA.getLocInfo() == CCValAssign::Indirect) {
10941       // If the original argument was split and passed by reference (e.g. i128
10942       // on RV32), we need to load all parts of it here (using the same
10943       // address). Vectors may be partly split to registers and partly to the
10944       // stack, in which case the base address is partly offset and subsequent
10945       // stores are relative to that.
10946       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10947                                    MachinePointerInfo()));
10948       unsigned ArgIndex = Ins[i].OrigArgIndex;
10949       unsigned ArgPartOffset = Ins[i].PartOffset;
10950       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10951       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10952         CCValAssign &PartVA = ArgLocs[i + 1];
10953         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10954         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10955         if (PartVA.getValVT().isScalableVector())
10956           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10957         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10958         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10959                                      MachinePointerInfo()));
10960         ++i;
10961       }
10962       continue;
10963     }
10964     InVals.push_back(ArgValue);
10965   }
10966 
10967   if (IsVarArg) {
10968     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10969     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10970     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10971     MachineFrameInfo &MFI = MF.getFrameInfo();
10972     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10973     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10974 
10975     // Offset of the first variable argument from stack pointer, and size of
10976     // the vararg save area. For now, the varargs save area is either zero or
10977     // large enough to hold a0-a7.
10978     int VaArgOffset, VarArgsSaveSize;
10979 
10980     // If all registers are allocated, then all varargs must be passed on the
10981     // stack and we don't need to save any argregs.
10982     if (ArgRegs.size() == Idx) {
10983       VaArgOffset = CCInfo.getNextStackOffset();
10984       VarArgsSaveSize = 0;
10985     } else {
10986       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10987       VaArgOffset = -VarArgsSaveSize;
10988     }
10989 
10990     // Record the frame index of the first variable argument
10991     // which is a value necessary to VASTART.
10992     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10993     RVFI->setVarArgsFrameIndex(FI);
10994 
10995     // If saving an odd number of registers then create an extra stack slot to
10996     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10997     // offsets to even-numbered registered remain 2*XLEN-aligned.
10998     if (Idx % 2) {
10999       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
11000       VarArgsSaveSize += XLenInBytes;
11001     }
11002 
11003     // Copy the integer registers that may have been used for passing varargs
11004     // to the vararg save area.
11005     for (unsigned I = Idx; I < ArgRegs.size();
11006          ++I, VaArgOffset += XLenInBytes) {
11007       const Register Reg = RegInfo.createVirtualRegister(RC);
11008       RegInfo.addLiveIn(ArgRegs[I], Reg);
11009       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
11010       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11011       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11012       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
11013                                    MachinePointerInfo::getFixedStack(MF, FI));
11014       cast<StoreSDNode>(Store.getNode())
11015           ->getMemOperand()
11016           ->setValue((Value *)nullptr);
11017       OutChains.push_back(Store);
11018     }
11019     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
11020   }
11021 
11022   // All stores are grouped in one node to allow the matching between
11023   // the size of Ins and InVals. This only happens for vararg functions.
11024   if (!OutChains.empty()) {
11025     OutChains.push_back(Chain);
11026     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
11027   }
11028 
11029   return Chain;
11030 }
11031 
11032 /// isEligibleForTailCallOptimization - Check whether the call is eligible
11033 /// for tail call optimization.
11034 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
11035 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
11036     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
11037     const SmallVector<CCValAssign, 16> &ArgLocs) const {
11038 
11039   auto &Callee = CLI.Callee;
11040   auto CalleeCC = CLI.CallConv;
11041   auto &Outs = CLI.Outs;
11042   auto &Caller = MF.getFunction();
11043   auto CallerCC = Caller.getCallingConv();
11044 
11045   // Exception-handling functions need a special set of instructions to
11046   // indicate a return to the hardware. Tail-calling another function would
11047   // probably break this.
11048   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
11049   // should be expanded as new function attributes are introduced.
11050   if (Caller.hasFnAttribute("interrupt"))
11051     return false;
11052 
11053   // Do not tail call opt if the stack is used to pass parameters.
11054   if (CCInfo.getNextStackOffset() != 0)
11055     return false;
11056 
11057   // Do not tail call opt if any parameters need to be passed indirectly.
11058   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
11059   // passed indirectly. So the address of the value will be passed in a
11060   // register, or if not available, then the address is put on the stack. In
11061   // order to pass indirectly, space on the stack often needs to be allocated
11062   // in order to store the value. In this case the CCInfo.getNextStackOffset()
11063   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
11064   // are passed CCValAssign::Indirect.
11065   for (auto &VA : ArgLocs)
11066     if (VA.getLocInfo() == CCValAssign::Indirect)
11067       return false;
11068 
11069   // Do not tail call opt if either caller or callee uses struct return
11070   // semantics.
11071   auto IsCallerStructRet = Caller.hasStructRetAttr();
11072   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
11073   if (IsCallerStructRet || IsCalleeStructRet)
11074     return false;
11075 
11076   // Externally-defined functions with weak linkage should not be
11077   // tail-called. The behaviour of branch instructions in this situation (as
11078   // used for tail calls) is implementation-defined, so we cannot rely on the
11079   // linker replacing the tail call with a return.
11080   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
11081     const GlobalValue *GV = G->getGlobal();
11082     if (GV->hasExternalWeakLinkage())
11083       return false;
11084   }
11085 
11086   // The callee has to preserve all registers the caller needs to preserve.
11087   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
11088   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
11089   if (CalleeCC != CallerCC) {
11090     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
11091     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
11092       return false;
11093   }
11094 
11095   // Byval parameters hand the function a pointer directly into the stack area
11096   // we want to reuse during a tail call. Working around this *is* possible
11097   // but less efficient and uglier in LowerCall.
11098   for (auto &Arg : Outs)
11099     if (Arg.Flags.isByVal())
11100       return false;
11101 
11102   return true;
11103 }
11104 
11105 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
11106   return DAG.getDataLayout().getPrefTypeAlign(
11107       VT.getTypeForEVT(*DAG.getContext()));
11108 }
11109 
11110 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
11111 // and output parameter nodes.
11112 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
11113                                        SmallVectorImpl<SDValue> &InVals) const {
11114   SelectionDAG &DAG = CLI.DAG;
11115   SDLoc &DL = CLI.DL;
11116   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
11117   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
11118   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
11119   SDValue Chain = CLI.Chain;
11120   SDValue Callee = CLI.Callee;
11121   bool &IsTailCall = CLI.IsTailCall;
11122   CallingConv::ID CallConv = CLI.CallConv;
11123   bool IsVarArg = CLI.IsVarArg;
11124   EVT PtrVT = getPointerTy(DAG.getDataLayout());
11125   MVT XLenVT = Subtarget.getXLenVT();
11126 
11127   MachineFunction &MF = DAG.getMachineFunction();
11128 
11129   // Analyze the operands of the call, assigning locations to each operand.
11130   SmallVector<CCValAssign, 16> ArgLocs;
11131   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
11132 
11133   if (CallConv == CallingConv::GHC)
11134     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
11135   else
11136     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
11137                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
11138                                                     : CC_RISCV);
11139 
11140   // Check if it's really possible to do a tail call.
11141   if (IsTailCall)
11142     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
11143 
11144   if (IsTailCall)
11145     ++NumTailCalls;
11146   else if (CLI.CB && CLI.CB->isMustTailCall())
11147     report_fatal_error("failed to perform tail call elimination on a call "
11148                        "site marked musttail");
11149 
11150   // Get a count of how many bytes are to be pushed on the stack.
11151   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
11152 
11153   // Create local copies for byval args
11154   SmallVector<SDValue, 8> ByValArgs;
11155   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11156     ISD::ArgFlagsTy Flags = Outs[i].Flags;
11157     if (!Flags.isByVal())
11158       continue;
11159 
11160     SDValue Arg = OutVals[i];
11161     unsigned Size = Flags.getByValSize();
11162     Align Alignment = Flags.getNonZeroByValAlign();
11163 
11164     int FI =
11165         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
11166     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11167     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
11168 
11169     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
11170                           /*IsVolatile=*/false,
11171                           /*AlwaysInline=*/false, IsTailCall,
11172                           MachinePointerInfo(), MachinePointerInfo());
11173     ByValArgs.push_back(FIPtr);
11174   }
11175 
11176   if (!IsTailCall)
11177     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
11178 
11179   // Copy argument values to their designated locations.
11180   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
11181   SmallVector<SDValue, 8> MemOpChains;
11182   SDValue StackPtr;
11183   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
11184     CCValAssign &VA = ArgLocs[i];
11185     SDValue ArgValue = OutVals[i];
11186     ISD::ArgFlagsTy Flags = Outs[i].Flags;
11187 
11188     // Handle passing f64 on RV32D with a soft float ABI as a special case.
11189     bool IsF64OnRV32DSoftABI =
11190         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
11191     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
11192       SDValue SplitF64 = DAG.getNode(
11193           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
11194       SDValue Lo = SplitF64.getValue(0);
11195       SDValue Hi = SplitF64.getValue(1);
11196 
11197       Register RegLo = VA.getLocReg();
11198       RegsToPass.push_back(std::make_pair(RegLo, Lo));
11199 
11200       if (RegLo == RISCV::X17) {
11201         // Second half of f64 is passed on the stack.
11202         // Work out the address of the stack slot.
11203         if (!StackPtr.getNode())
11204           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11205         // Emit the store.
11206         MemOpChains.push_back(
11207             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
11208       } else {
11209         // Second half of f64 is passed in another GPR.
11210         assert(RegLo < RISCV::X31 && "Invalid register pair");
11211         Register RegHigh = RegLo + 1;
11212         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
11213       }
11214       continue;
11215     }
11216 
11217     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
11218     // as any other MemLoc.
11219 
11220     // Promote the value if needed.
11221     // For now, only handle fully promoted and indirect arguments.
11222     if (VA.getLocInfo() == CCValAssign::Indirect) {
11223       // Store the argument in a stack slot and pass its address.
11224       Align StackAlign =
11225           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
11226                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
11227       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
11228       // If the original argument was split (e.g. i128), we need
11229       // to store the required parts of it here (and pass just one address).
11230       // Vectors may be partly split to registers and partly to the stack, in
11231       // which case the base address is partly offset and subsequent stores are
11232       // relative to that.
11233       unsigned ArgIndex = Outs[i].OrigArgIndex;
11234       unsigned ArgPartOffset = Outs[i].PartOffset;
11235       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
11236       // Calculate the total size to store. We don't have access to what we're
11237       // actually storing other than performing the loop and collecting the
11238       // info.
11239       SmallVector<std::pair<SDValue, SDValue>> Parts;
11240       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
11241         SDValue PartValue = OutVals[i + 1];
11242         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
11243         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
11244         EVT PartVT = PartValue.getValueType();
11245         if (PartVT.isScalableVector())
11246           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11247         StoredSize += PartVT.getStoreSize();
11248         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
11249         Parts.push_back(std::make_pair(PartValue, Offset));
11250         ++i;
11251       }
11252       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
11253       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
11254       MemOpChains.push_back(
11255           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
11256                        MachinePointerInfo::getFixedStack(MF, FI)));
11257       for (const auto &Part : Parts) {
11258         SDValue PartValue = Part.first;
11259         SDValue PartOffset = Part.second;
11260         SDValue Address =
11261             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
11262         MemOpChains.push_back(
11263             DAG.getStore(Chain, DL, PartValue, Address,
11264                          MachinePointerInfo::getFixedStack(MF, FI)));
11265       }
11266       ArgValue = SpillSlot;
11267     } else {
11268       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
11269     }
11270 
11271     // Use local copy if it is a byval arg.
11272     if (Flags.isByVal())
11273       ArgValue = ByValArgs[j++];
11274 
11275     if (VA.isRegLoc()) {
11276       // Queue up the argument copies and emit them at the end.
11277       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
11278     } else {
11279       assert(VA.isMemLoc() && "Argument not register or memory");
11280       assert(!IsTailCall && "Tail call not allowed if stack is used "
11281                             "for passing parameters");
11282 
11283       // Work out the address of the stack slot.
11284       if (!StackPtr.getNode())
11285         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11286       SDValue Address =
11287           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
11288                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
11289 
11290       // Emit the store.
11291       MemOpChains.push_back(
11292           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
11293     }
11294   }
11295 
11296   // Join the stores, which are independent of one another.
11297   if (!MemOpChains.empty())
11298     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
11299 
11300   SDValue Glue;
11301 
11302   // Build a sequence of copy-to-reg nodes, chained and glued together.
11303   for (auto &Reg : RegsToPass) {
11304     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
11305     Glue = Chain.getValue(1);
11306   }
11307 
11308   // Validate that none of the argument registers have been marked as
11309   // reserved, if so report an error. Do the same for the return address if this
11310   // is not a tailcall.
11311   validateCCReservedRegs(RegsToPass, MF);
11312   if (!IsTailCall &&
11313       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
11314     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11315         MF.getFunction(),
11316         "Return address register required, but has been reserved."});
11317 
11318   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
11319   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
11320   // split it and then direct call can be matched by PseudoCALL.
11321   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
11322     const GlobalValue *GV = S->getGlobal();
11323 
11324     unsigned OpFlags = RISCVII::MO_CALL;
11325     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
11326       OpFlags = RISCVII::MO_PLT;
11327 
11328     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
11329   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
11330     unsigned OpFlags = RISCVII::MO_CALL;
11331 
11332     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
11333                                                  nullptr))
11334       OpFlags = RISCVII::MO_PLT;
11335 
11336     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
11337   }
11338 
11339   // The first call operand is the chain and the second is the target address.
11340   SmallVector<SDValue, 8> Ops;
11341   Ops.push_back(Chain);
11342   Ops.push_back(Callee);
11343 
11344   // Add argument registers to the end of the list so that they are
11345   // known live into the call.
11346   for (auto &Reg : RegsToPass)
11347     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
11348 
11349   if (!IsTailCall) {
11350     // Add a register mask operand representing the call-preserved registers.
11351     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
11352     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
11353     assert(Mask && "Missing call preserved mask for calling convention");
11354     Ops.push_back(DAG.getRegisterMask(Mask));
11355   }
11356 
11357   // Glue the call to the argument copies, if any.
11358   if (Glue.getNode())
11359     Ops.push_back(Glue);
11360 
11361   // Emit the call.
11362   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11363 
11364   if (IsTailCall) {
11365     MF.getFrameInfo().setHasTailCall();
11366     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
11367   }
11368 
11369   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
11370   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
11371   Glue = Chain.getValue(1);
11372 
11373   // Mark the end of the call, which is glued to the call itself.
11374   Chain = DAG.getCALLSEQ_END(Chain,
11375                              DAG.getConstant(NumBytes, DL, PtrVT, true),
11376                              DAG.getConstant(0, DL, PtrVT, true),
11377                              Glue, DL);
11378   Glue = Chain.getValue(1);
11379 
11380   // Assign locations to each value returned by this call.
11381   SmallVector<CCValAssign, 16> RVLocs;
11382   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
11383   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
11384 
11385   // Copy all of the result registers out of their specified physreg.
11386   for (auto &VA : RVLocs) {
11387     // Copy the value out
11388     SDValue RetValue =
11389         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
11390     // Glue the RetValue to the end of the call sequence
11391     Chain = RetValue.getValue(1);
11392     Glue = RetValue.getValue(2);
11393 
11394     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11395       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
11396       SDValue RetValue2 =
11397           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
11398       Chain = RetValue2.getValue(1);
11399       Glue = RetValue2.getValue(2);
11400       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
11401                              RetValue2);
11402     }
11403 
11404     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
11405 
11406     InVals.push_back(RetValue);
11407   }
11408 
11409   return Chain;
11410 }
11411 
11412 bool RISCVTargetLowering::CanLowerReturn(
11413     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
11414     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
11415   SmallVector<CCValAssign, 16> RVLocs;
11416   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
11417 
11418   Optional<unsigned> FirstMaskArgument;
11419   if (Subtarget.hasVInstructions())
11420     FirstMaskArgument = preAssignMask(Outs);
11421 
11422   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11423     MVT VT = Outs[i].VT;
11424     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
11425     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
11426     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
11427                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
11428                  *this, FirstMaskArgument))
11429       return false;
11430   }
11431   return true;
11432 }
11433 
11434 SDValue
11435 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
11436                                  bool IsVarArg,
11437                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
11438                                  const SmallVectorImpl<SDValue> &OutVals,
11439                                  const SDLoc &DL, SelectionDAG &DAG) const {
11440   const MachineFunction &MF = DAG.getMachineFunction();
11441   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11442 
11443   // Stores the assignment of the return value to a location.
11444   SmallVector<CCValAssign, 16> RVLocs;
11445 
11446   // Info about the registers and stack slot.
11447   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
11448                  *DAG.getContext());
11449 
11450   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
11451                     nullptr, CC_RISCV);
11452 
11453   if (CallConv == CallingConv::GHC && !RVLocs.empty())
11454     report_fatal_error("GHC functions return void only");
11455 
11456   SDValue Glue;
11457   SmallVector<SDValue, 4> RetOps(1, Chain);
11458 
11459   // Copy the result values into the output registers.
11460   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11461     SDValue Val = OutVals[i];
11462     CCValAssign &VA = RVLocs[i];
11463     assert(VA.isRegLoc() && "Can only return in registers!");
11464 
11465     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11466       // Handle returning f64 on RV32D with a soft float ABI.
11467       assert(VA.isRegLoc() && "Expected return via registers");
11468       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11469                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
11470       SDValue Lo = SplitF64.getValue(0);
11471       SDValue Hi = SplitF64.getValue(1);
11472       Register RegLo = VA.getLocReg();
11473       assert(RegLo < RISCV::X31 && "Invalid register pair");
11474       Register RegHi = RegLo + 1;
11475 
11476       if (STI.isRegisterReservedByUser(RegLo) ||
11477           STI.isRegisterReservedByUser(RegHi))
11478         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11479             MF.getFunction(),
11480             "Return value register required, but has been reserved."});
11481 
11482       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11483       Glue = Chain.getValue(1);
11484       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11485       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11486       Glue = Chain.getValue(1);
11487       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11488     } else {
11489       // Handle a 'normal' return.
11490       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11491       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11492 
11493       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11494         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11495             MF.getFunction(),
11496             "Return value register required, but has been reserved."});
11497 
11498       // Guarantee that all emitted copies are stuck together.
11499       Glue = Chain.getValue(1);
11500       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11501     }
11502   }
11503 
11504   RetOps[0] = Chain; // Update chain.
11505 
11506   // Add the glue node if we have it.
11507   if (Glue.getNode()) {
11508     RetOps.push_back(Glue);
11509   }
11510 
11511   unsigned RetOpc = RISCVISD::RET_FLAG;
11512   // Interrupt service routines use different return instructions.
11513   const Function &Func = DAG.getMachineFunction().getFunction();
11514   if (Func.hasFnAttribute("interrupt")) {
11515     if (!Func.getReturnType()->isVoidTy())
11516       report_fatal_error(
11517           "Functions with the interrupt attribute must have void return type!");
11518 
11519     MachineFunction &MF = DAG.getMachineFunction();
11520     StringRef Kind =
11521       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11522 
11523     if (Kind == "user")
11524       RetOpc = RISCVISD::URET_FLAG;
11525     else if (Kind == "supervisor")
11526       RetOpc = RISCVISD::SRET_FLAG;
11527     else
11528       RetOpc = RISCVISD::MRET_FLAG;
11529   }
11530 
11531   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11532 }
11533 
11534 void RISCVTargetLowering::validateCCReservedRegs(
11535     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11536     MachineFunction &MF) const {
11537   const Function &F = MF.getFunction();
11538   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11539 
11540   if (llvm::any_of(Regs, [&STI](auto Reg) {
11541         return STI.isRegisterReservedByUser(Reg.first);
11542       }))
11543     F.getContext().diagnose(DiagnosticInfoUnsupported{
11544         F, "Argument register required, but has been reserved."});
11545 }
11546 
11547 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11548   return CI->isTailCall();
11549 }
11550 
11551 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11552 #define NODE_NAME_CASE(NODE)                                                   \
11553   case RISCVISD::NODE:                                                         \
11554     return "RISCVISD::" #NODE;
11555   // clang-format off
11556   switch ((RISCVISD::NodeType)Opcode) {
11557   case RISCVISD::FIRST_NUMBER:
11558     break;
11559   NODE_NAME_CASE(RET_FLAG)
11560   NODE_NAME_CASE(URET_FLAG)
11561   NODE_NAME_CASE(SRET_FLAG)
11562   NODE_NAME_CASE(MRET_FLAG)
11563   NODE_NAME_CASE(CALL)
11564   NODE_NAME_CASE(SELECT_CC)
11565   NODE_NAME_CASE(BR_CC)
11566   NODE_NAME_CASE(BuildPairF64)
11567   NODE_NAME_CASE(SplitF64)
11568   NODE_NAME_CASE(TAIL)
11569   NODE_NAME_CASE(ADD_LO)
11570   NODE_NAME_CASE(HI)
11571   NODE_NAME_CASE(LLA)
11572   NODE_NAME_CASE(ADD_TPREL)
11573   NODE_NAME_CASE(LA)
11574   NODE_NAME_CASE(LA_TLS_IE)
11575   NODE_NAME_CASE(LA_TLS_GD)
11576   NODE_NAME_CASE(MULHSU)
11577   NODE_NAME_CASE(SLLW)
11578   NODE_NAME_CASE(SRAW)
11579   NODE_NAME_CASE(SRLW)
11580   NODE_NAME_CASE(DIVW)
11581   NODE_NAME_CASE(DIVUW)
11582   NODE_NAME_CASE(REMUW)
11583   NODE_NAME_CASE(ROLW)
11584   NODE_NAME_CASE(RORW)
11585   NODE_NAME_CASE(CLZW)
11586   NODE_NAME_CASE(CTZW)
11587   NODE_NAME_CASE(FSLW)
11588   NODE_NAME_CASE(FSRW)
11589   NODE_NAME_CASE(FSL)
11590   NODE_NAME_CASE(FSR)
11591   NODE_NAME_CASE(FMV_H_X)
11592   NODE_NAME_CASE(FMV_X_ANYEXTH)
11593   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11594   NODE_NAME_CASE(FMV_W_X_RV64)
11595   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11596   NODE_NAME_CASE(FCVT_X)
11597   NODE_NAME_CASE(FCVT_XU)
11598   NODE_NAME_CASE(FCVT_W_RV64)
11599   NODE_NAME_CASE(FCVT_WU_RV64)
11600   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11601   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11602   NODE_NAME_CASE(READ_CYCLE_WIDE)
11603   NODE_NAME_CASE(GREV)
11604   NODE_NAME_CASE(GREVW)
11605   NODE_NAME_CASE(GORC)
11606   NODE_NAME_CASE(GORCW)
11607   NODE_NAME_CASE(SHFL)
11608   NODE_NAME_CASE(SHFLW)
11609   NODE_NAME_CASE(UNSHFL)
11610   NODE_NAME_CASE(UNSHFLW)
11611   NODE_NAME_CASE(BFP)
11612   NODE_NAME_CASE(BFPW)
11613   NODE_NAME_CASE(BCOMPRESS)
11614   NODE_NAME_CASE(BCOMPRESSW)
11615   NODE_NAME_CASE(BDECOMPRESS)
11616   NODE_NAME_CASE(BDECOMPRESSW)
11617   NODE_NAME_CASE(VMV_V_X_VL)
11618   NODE_NAME_CASE(VFMV_V_F_VL)
11619   NODE_NAME_CASE(VMV_X_S)
11620   NODE_NAME_CASE(VMV_S_X_VL)
11621   NODE_NAME_CASE(VFMV_S_F_VL)
11622   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11623   NODE_NAME_CASE(READ_VLENB)
11624   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11625   NODE_NAME_CASE(VSLIDEUP_VL)
11626   NODE_NAME_CASE(VSLIDE1UP_VL)
11627   NODE_NAME_CASE(VSLIDEDOWN_VL)
11628   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11629   NODE_NAME_CASE(VID_VL)
11630   NODE_NAME_CASE(VFNCVT_ROD_VL)
11631   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11632   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11633   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11634   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11635   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11636   NODE_NAME_CASE(VECREDUCE_AND_VL)
11637   NODE_NAME_CASE(VECREDUCE_OR_VL)
11638   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11639   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11640   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11641   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11642   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11643   NODE_NAME_CASE(ADD_VL)
11644   NODE_NAME_CASE(AND_VL)
11645   NODE_NAME_CASE(MUL_VL)
11646   NODE_NAME_CASE(OR_VL)
11647   NODE_NAME_CASE(SDIV_VL)
11648   NODE_NAME_CASE(SHL_VL)
11649   NODE_NAME_CASE(SREM_VL)
11650   NODE_NAME_CASE(SRA_VL)
11651   NODE_NAME_CASE(SRL_VL)
11652   NODE_NAME_CASE(SUB_VL)
11653   NODE_NAME_CASE(UDIV_VL)
11654   NODE_NAME_CASE(UREM_VL)
11655   NODE_NAME_CASE(XOR_VL)
11656   NODE_NAME_CASE(SADDSAT_VL)
11657   NODE_NAME_CASE(UADDSAT_VL)
11658   NODE_NAME_CASE(SSUBSAT_VL)
11659   NODE_NAME_CASE(USUBSAT_VL)
11660   NODE_NAME_CASE(FADD_VL)
11661   NODE_NAME_CASE(FSUB_VL)
11662   NODE_NAME_CASE(FMUL_VL)
11663   NODE_NAME_CASE(FDIV_VL)
11664   NODE_NAME_CASE(FNEG_VL)
11665   NODE_NAME_CASE(FABS_VL)
11666   NODE_NAME_CASE(FSQRT_VL)
11667   NODE_NAME_CASE(VFMADD_VL)
11668   NODE_NAME_CASE(VFNMADD_VL)
11669   NODE_NAME_CASE(VFMSUB_VL)
11670   NODE_NAME_CASE(VFNMSUB_VL)
11671   NODE_NAME_CASE(FCOPYSIGN_VL)
11672   NODE_NAME_CASE(SMIN_VL)
11673   NODE_NAME_CASE(SMAX_VL)
11674   NODE_NAME_CASE(UMIN_VL)
11675   NODE_NAME_CASE(UMAX_VL)
11676   NODE_NAME_CASE(FMINNUM_VL)
11677   NODE_NAME_CASE(FMAXNUM_VL)
11678   NODE_NAME_CASE(MULHS_VL)
11679   NODE_NAME_CASE(MULHU_VL)
11680   NODE_NAME_CASE(FP_TO_SINT_VL)
11681   NODE_NAME_CASE(FP_TO_UINT_VL)
11682   NODE_NAME_CASE(SINT_TO_FP_VL)
11683   NODE_NAME_CASE(UINT_TO_FP_VL)
11684   NODE_NAME_CASE(FP_EXTEND_VL)
11685   NODE_NAME_CASE(FP_ROUND_VL)
11686   NODE_NAME_CASE(VWMUL_VL)
11687   NODE_NAME_CASE(VWMULU_VL)
11688   NODE_NAME_CASE(VWMULSU_VL)
11689   NODE_NAME_CASE(VWADD_VL)
11690   NODE_NAME_CASE(VWADDU_VL)
11691   NODE_NAME_CASE(VWSUB_VL)
11692   NODE_NAME_CASE(VWSUBU_VL)
11693   NODE_NAME_CASE(VWADD_W_VL)
11694   NODE_NAME_CASE(VWADDU_W_VL)
11695   NODE_NAME_CASE(VWSUB_W_VL)
11696   NODE_NAME_CASE(VWSUBU_W_VL)
11697   NODE_NAME_CASE(SETCC_VL)
11698   NODE_NAME_CASE(VSELECT_VL)
11699   NODE_NAME_CASE(VP_MERGE_VL)
11700   NODE_NAME_CASE(VMAND_VL)
11701   NODE_NAME_CASE(VMOR_VL)
11702   NODE_NAME_CASE(VMXOR_VL)
11703   NODE_NAME_CASE(VMCLR_VL)
11704   NODE_NAME_CASE(VMSET_VL)
11705   NODE_NAME_CASE(VRGATHER_VX_VL)
11706   NODE_NAME_CASE(VRGATHER_VV_VL)
11707   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11708   NODE_NAME_CASE(VSEXT_VL)
11709   NODE_NAME_CASE(VZEXT_VL)
11710   NODE_NAME_CASE(VCPOP_VL)
11711   NODE_NAME_CASE(READ_CSR)
11712   NODE_NAME_CASE(WRITE_CSR)
11713   NODE_NAME_CASE(SWAP_CSR)
11714   }
11715   // clang-format on
11716   return nullptr;
11717 #undef NODE_NAME_CASE
11718 }
11719 
11720 /// getConstraintType - Given a constraint letter, return the type of
11721 /// constraint it is for this target.
11722 RISCVTargetLowering::ConstraintType
11723 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11724   if (Constraint.size() == 1) {
11725     switch (Constraint[0]) {
11726     default:
11727       break;
11728     case 'f':
11729       return C_RegisterClass;
11730     case 'I':
11731     case 'J':
11732     case 'K':
11733       return C_Immediate;
11734     case 'A':
11735       return C_Memory;
11736     case 'S': // A symbolic address
11737       return C_Other;
11738     }
11739   } else {
11740     if (Constraint == "vr" || Constraint == "vm")
11741       return C_RegisterClass;
11742   }
11743   return TargetLowering::getConstraintType(Constraint);
11744 }
11745 
11746 std::pair<unsigned, const TargetRegisterClass *>
11747 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11748                                                   StringRef Constraint,
11749                                                   MVT VT) const {
11750   // First, see if this is a constraint that directly corresponds to a
11751   // RISCV register class.
11752   if (Constraint.size() == 1) {
11753     switch (Constraint[0]) {
11754     case 'r':
11755       // TODO: Support fixed vectors up to XLen for P extension?
11756       if (VT.isVector())
11757         break;
11758       return std::make_pair(0U, &RISCV::GPRRegClass);
11759     case 'f':
11760       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11761         return std::make_pair(0U, &RISCV::FPR16RegClass);
11762       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11763         return std::make_pair(0U, &RISCV::FPR32RegClass);
11764       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11765         return std::make_pair(0U, &RISCV::FPR64RegClass);
11766       break;
11767     default:
11768       break;
11769     }
11770   } else if (Constraint == "vr") {
11771     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11772                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11773       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11774         return std::make_pair(0U, RC);
11775     }
11776   } else if (Constraint == "vm") {
11777     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11778       return std::make_pair(0U, &RISCV::VMV0RegClass);
11779   }
11780 
11781   // Clang will correctly decode the usage of register name aliases into their
11782   // official names. However, other frontends like `rustc` do not. This allows
11783   // users of these frontends to use the ABI names for registers in LLVM-style
11784   // register constraints.
11785   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11786                                .Case("{zero}", RISCV::X0)
11787                                .Case("{ra}", RISCV::X1)
11788                                .Case("{sp}", RISCV::X2)
11789                                .Case("{gp}", RISCV::X3)
11790                                .Case("{tp}", RISCV::X4)
11791                                .Case("{t0}", RISCV::X5)
11792                                .Case("{t1}", RISCV::X6)
11793                                .Case("{t2}", RISCV::X7)
11794                                .Cases("{s0}", "{fp}", RISCV::X8)
11795                                .Case("{s1}", RISCV::X9)
11796                                .Case("{a0}", RISCV::X10)
11797                                .Case("{a1}", RISCV::X11)
11798                                .Case("{a2}", RISCV::X12)
11799                                .Case("{a3}", RISCV::X13)
11800                                .Case("{a4}", RISCV::X14)
11801                                .Case("{a5}", RISCV::X15)
11802                                .Case("{a6}", RISCV::X16)
11803                                .Case("{a7}", RISCV::X17)
11804                                .Case("{s2}", RISCV::X18)
11805                                .Case("{s3}", RISCV::X19)
11806                                .Case("{s4}", RISCV::X20)
11807                                .Case("{s5}", RISCV::X21)
11808                                .Case("{s6}", RISCV::X22)
11809                                .Case("{s7}", RISCV::X23)
11810                                .Case("{s8}", RISCV::X24)
11811                                .Case("{s9}", RISCV::X25)
11812                                .Case("{s10}", RISCV::X26)
11813                                .Case("{s11}", RISCV::X27)
11814                                .Case("{t3}", RISCV::X28)
11815                                .Case("{t4}", RISCV::X29)
11816                                .Case("{t5}", RISCV::X30)
11817                                .Case("{t6}", RISCV::X31)
11818                                .Default(RISCV::NoRegister);
11819   if (XRegFromAlias != RISCV::NoRegister)
11820     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11821 
11822   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11823   // TableGen record rather than the AsmName to choose registers for InlineAsm
11824   // constraints, plus we want to match those names to the widest floating point
11825   // register type available, manually select floating point registers here.
11826   //
11827   // The second case is the ABI name of the register, so that frontends can also
11828   // use the ABI names in register constraint lists.
11829   if (Subtarget.hasStdExtF()) {
11830     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11831                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11832                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11833                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11834                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11835                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11836                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11837                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11838                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11839                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11840                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11841                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11842                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11843                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11844                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11845                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11846                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11847                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11848                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11849                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11850                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11851                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11852                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11853                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11854                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11855                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11856                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11857                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11858                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11859                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11860                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11861                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11862                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11863                         .Default(RISCV::NoRegister);
11864     if (FReg != RISCV::NoRegister) {
11865       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11866       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11867         unsigned RegNo = FReg - RISCV::F0_F;
11868         unsigned DReg = RISCV::F0_D + RegNo;
11869         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11870       }
11871       if (VT == MVT::f32 || VT == MVT::Other)
11872         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11873       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11874         unsigned RegNo = FReg - RISCV::F0_F;
11875         unsigned HReg = RISCV::F0_H + RegNo;
11876         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11877       }
11878     }
11879   }
11880 
11881   if (Subtarget.hasVInstructions()) {
11882     Register VReg = StringSwitch<Register>(Constraint.lower())
11883                         .Case("{v0}", RISCV::V0)
11884                         .Case("{v1}", RISCV::V1)
11885                         .Case("{v2}", RISCV::V2)
11886                         .Case("{v3}", RISCV::V3)
11887                         .Case("{v4}", RISCV::V4)
11888                         .Case("{v5}", RISCV::V5)
11889                         .Case("{v6}", RISCV::V6)
11890                         .Case("{v7}", RISCV::V7)
11891                         .Case("{v8}", RISCV::V8)
11892                         .Case("{v9}", RISCV::V9)
11893                         .Case("{v10}", RISCV::V10)
11894                         .Case("{v11}", RISCV::V11)
11895                         .Case("{v12}", RISCV::V12)
11896                         .Case("{v13}", RISCV::V13)
11897                         .Case("{v14}", RISCV::V14)
11898                         .Case("{v15}", RISCV::V15)
11899                         .Case("{v16}", RISCV::V16)
11900                         .Case("{v17}", RISCV::V17)
11901                         .Case("{v18}", RISCV::V18)
11902                         .Case("{v19}", RISCV::V19)
11903                         .Case("{v20}", RISCV::V20)
11904                         .Case("{v21}", RISCV::V21)
11905                         .Case("{v22}", RISCV::V22)
11906                         .Case("{v23}", RISCV::V23)
11907                         .Case("{v24}", RISCV::V24)
11908                         .Case("{v25}", RISCV::V25)
11909                         .Case("{v26}", RISCV::V26)
11910                         .Case("{v27}", RISCV::V27)
11911                         .Case("{v28}", RISCV::V28)
11912                         .Case("{v29}", RISCV::V29)
11913                         .Case("{v30}", RISCV::V30)
11914                         .Case("{v31}", RISCV::V31)
11915                         .Default(RISCV::NoRegister);
11916     if (VReg != RISCV::NoRegister) {
11917       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11918         return std::make_pair(VReg, &RISCV::VMRegClass);
11919       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11920         return std::make_pair(VReg, &RISCV::VRRegClass);
11921       for (const auto *RC :
11922            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11923         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11924           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11925           return std::make_pair(VReg, RC);
11926         }
11927       }
11928     }
11929   }
11930 
11931   std::pair<Register, const TargetRegisterClass *> Res =
11932       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11933 
11934   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11935   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11936   // Subtarget into account.
11937   if (Res.second == &RISCV::GPRF16RegClass ||
11938       Res.second == &RISCV::GPRF32RegClass ||
11939       Res.second == &RISCV::GPRF64RegClass)
11940     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11941 
11942   return Res;
11943 }
11944 
11945 unsigned
11946 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11947   // Currently only support length 1 constraints.
11948   if (ConstraintCode.size() == 1) {
11949     switch (ConstraintCode[0]) {
11950     case 'A':
11951       return InlineAsm::Constraint_A;
11952     default:
11953       break;
11954     }
11955   }
11956 
11957   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11958 }
11959 
11960 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11961     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11962     SelectionDAG &DAG) const {
11963   // Currently only support length 1 constraints.
11964   if (Constraint.length() == 1) {
11965     switch (Constraint[0]) {
11966     case 'I':
11967       // Validate & create a 12-bit signed immediate operand.
11968       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11969         uint64_t CVal = C->getSExtValue();
11970         if (isInt<12>(CVal))
11971           Ops.push_back(
11972               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11973       }
11974       return;
11975     case 'J':
11976       // Validate & create an integer zero operand.
11977       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11978         if (C->getZExtValue() == 0)
11979           Ops.push_back(
11980               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11981       return;
11982     case 'K':
11983       // Validate & create a 5-bit unsigned immediate operand.
11984       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11985         uint64_t CVal = C->getZExtValue();
11986         if (isUInt<5>(CVal))
11987           Ops.push_back(
11988               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11989       }
11990       return;
11991     case 'S':
11992       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11993         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11994                                                  GA->getValueType(0)));
11995       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11996         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11997                                                 BA->getValueType(0)));
11998       }
11999       return;
12000     default:
12001       break;
12002     }
12003   }
12004   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12005 }
12006 
12007 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
12008                                                    Instruction *Inst,
12009                                                    AtomicOrdering Ord) const {
12010   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
12011     return Builder.CreateFence(Ord);
12012   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
12013     return Builder.CreateFence(AtomicOrdering::Release);
12014   return nullptr;
12015 }
12016 
12017 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
12018                                                     Instruction *Inst,
12019                                                     AtomicOrdering Ord) const {
12020   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
12021     return Builder.CreateFence(AtomicOrdering::Acquire);
12022   return nullptr;
12023 }
12024 
12025 TargetLowering::AtomicExpansionKind
12026 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12027   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
12028   // point operations can't be used in an lr/sc sequence without breaking the
12029   // forward-progress guarantee.
12030   if (AI->isFloatingPointOperation())
12031     return AtomicExpansionKind::CmpXChg;
12032 
12033   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12034   if (Size == 8 || Size == 16)
12035     return AtomicExpansionKind::MaskedIntrinsic;
12036   return AtomicExpansionKind::None;
12037 }
12038 
12039 static Intrinsic::ID
12040 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
12041   if (XLen == 32) {
12042     switch (BinOp) {
12043     default:
12044       llvm_unreachable("Unexpected AtomicRMW BinOp");
12045     case AtomicRMWInst::Xchg:
12046       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
12047     case AtomicRMWInst::Add:
12048       return Intrinsic::riscv_masked_atomicrmw_add_i32;
12049     case AtomicRMWInst::Sub:
12050       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
12051     case AtomicRMWInst::Nand:
12052       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
12053     case AtomicRMWInst::Max:
12054       return Intrinsic::riscv_masked_atomicrmw_max_i32;
12055     case AtomicRMWInst::Min:
12056       return Intrinsic::riscv_masked_atomicrmw_min_i32;
12057     case AtomicRMWInst::UMax:
12058       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
12059     case AtomicRMWInst::UMin:
12060       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
12061     }
12062   }
12063 
12064   if (XLen == 64) {
12065     switch (BinOp) {
12066     default:
12067       llvm_unreachable("Unexpected AtomicRMW BinOp");
12068     case AtomicRMWInst::Xchg:
12069       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
12070     case AtomicRMWInst::Add:
12071       return Intrinsic::riscv_masked_atomicrmw_add_i64;
12072     case AtomicRMWInst::Sub:
12073       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
12074     case AtomicRMWInst::Nand:
12075       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
12076     case AtomicRMWInst::Max:
12077       return Intrinsic::riscv_masked_atomicrmw_max_i64;
12078     case AtomicRMWInst::Min:
12079       return Intrinsic::riscv_masked_atomicrmw_min_i64;
12080     case AtomicRMWInst::UMax:
12081       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
12082     case AtomicRMWInst::UMin:
12083       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
12084     }
12085   }
12086 
12087   llvm_unreachable("Unexpected XLen\n");
12088 }
12089 
12090 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
12091     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
12092     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
12093   unsigned XLen = Subtarget.getXLen();
12094   Value *Ordering =
12095       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
12096   Type *Tys[] = {AlignedAddr->getType()};
12097   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
12098       AI->getModule(),
12099       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
12100 
12101   if (XLen == 64) {
12102     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
12103     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12104     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
12105   }
12106 
12107   Value *Result;
12108 
12109   // Must pass the shift amount needed to sign extend the loaded value prior
12110   // to performing a signed comparison for min/max. ShiftAmt is the number of
12111   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
12112   // is the number of bits to left+right shift the value in order to
12113   // sign-extend.
12114   if (AI->getOperation() == AtomicRMWInst::Min ||
12115       AI->getOperation() == AtomicRMWInst::Max) {
12116     const DataLayout &DL = AI->getModule()->getDataLayout();
12117     unsigned ValWidth =
12118         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
12119     Value *SextShamt =
12120         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
12121     Result = Builder.CreateCall(LrwOpScwLoop,
12122                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
12123   } else {
12124     Result =
12125         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
12126   }
12127 
12128   if (XLen == 64)
12129     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12130   return Result;
12131 }
12132 
12133 TargetLowering::AtomicExpansionKind
12134 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
12135     AtomicCmpXchgInst *CI) const {
12136   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
12137   if (Size == 8 || Size == 16)
12138     return AtomicExpansionKind::MaskedIntrinsic;
12139   return AtomicExpansionKind::None;
12140 }
12141 
12142 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
12143     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
12144     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
12145   unsigned XLen = Subtarget.getXLen();
12146   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
12147   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
12148   if (XLen == 64) {
12149     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
12150     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
12151     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12152     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
12153   }
12154   Type *Tys[] = {AlignedAddr->getType()};
12155   Function *MaskedCmpXchg =
12156       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
12157   Value *Result = Builder.CreateCall(
12158       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
12159   if (XLen == 64)
12160     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12161   return Result;
12162 }
12163 
12164 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
12165                                                         EVT DataVT) const {
12166   return false;
12167 }
12168 
12169 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
12170                                                EVT VT) const {
12171   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
12172     return false;
12173 
12174   switch (FPVT.getSimpleVT().SimpleTy) {
12175   case MVT::f16:
12176     return Subtarget.hasStdExtZfh();
12177   case MVT::f32:
12178     return Subtarget.hasStdExtF();
12179   case MVT::f64:
12180     return Subtarget.hasStdExtD();
12181   default:
12182     return false;
12183   }
12184 }
12185 
12186 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
12187   // If we are using the small code model, we can reduce size of jump table
12188   // entry to 4 bytes.
12189   if (Subtarget.is64Bit() && !isPositionIndependent() &&
12190       getTargetMachine().getCodeModel() == CodeModel::Small) {
12191     return MachineJumpTableInfo::EK_Custom32;
12192   }
12193   return TargetLowering::getJumpTableEncoding();
12194 }
12195 
12196 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
12197     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
12198     unsigned uid, MCContext &Ctx) const {
12199   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
12200          getTargetMachine().getCodeModel() == CodeModel::Small);
12201   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
12202 }
12203 
12204 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
12205   // We define vscale to be VLEN/RVVBitsPerBlock.  VLEN is always a power
12206   // of two >= 64, and RVVBitsPerBlock is 64.  Thus, vscale must be
12207   // a power of two as well.
12208   // FIXME: This doesn't work for zve32, but that's already broken
12209   // elsewhere for the same reason.
12210   assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
12211   assert(RISCV::RVVBitsPerBlock == 64 && "RVVBitsPerBlock changed, audit needed");
12212   return true;
12213 }
12214 
12215 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
12216                                                      EVT VT) const {
12217   VT = VT.getScalarType();
12218 
12219   if (!VT.isSimple())
12220     return false;
12221 
12222   switch (VT.getSimpleVT().SimpleTy) {
12223   case MVT::f16:
12224     return Subtarget.hasStdExtZfh();
12225   case MVT::f32:
12226     return Subtarget.hasStdExtF();
12227   case MVT::f64:
12228     return Subtarget.hasStdExtD();
12229   default:
12230     break;
12231   }
12232 
12233   return false;
12234 }
12235 
12236 Register RISCVTargetLowering::getExceptionPointerRegister(
12237     const Constant *PersonalityFn) const {
12238   return RISCV::X10;
12239 }
12240 
12241 Register RISCVTargetLowering::getExceptionSelectorRegister(
12242     const Constant *PersonalityFn) const {
12243   return RISCV::X11;
12244 }
12245 
12246 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
12247   // Return false to suppress the unnecessary extensions if the LibCall
12248   // arguments or return value is f32 type for LP64 ABI.
12249   RISCVABI::ABI ABI = Subtarget.getTargetABI();
12250   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
12251     return false;
12252 
12253   return true;
12254 }
12255 
12256 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
12257   if (Subtarget.is64Bit() && Type == MVT::i32)
12258     return true;
12259 
12260   return IsSigned;
12261 }
12262 
12263 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
12264                                                  SDValue C) const {
12265   // Check integral scalar types.
12266   const bool HasExtMOrZmmul =
12267       Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul();
12268   if (VT.isScalarInteger()) {
12269     // Omit the optimization if the sub target has the M extension and the data
12270     // size exceeds XLen.
12271     if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen())
12272       return false;
12273     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
12274       // Break the MUL to a SLLI and an ADD/SUB.
12275       const APInt &Imm = ConstNode->getAPIntValue();
12276       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
12277           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
12278         return true;
12279       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
12280       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
12281           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
12282            (Imm - 8).isPowerOf2()))
12283         return true;
12284       // Omit the following optimization if the sub target has the M extension
12285       // and the data size >= XLen.
12286       if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen())
12287         return false;
12288       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
12289       // a pair of LUI/ADDI.
12290       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
12291         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
12292         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
12293             (1 - ImmS).isPowerOf2())
12294           return true;
12295       }
12296     }
12297   }
12298 
12299   return false;
12300 }
12301 
12302 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
12303                                                       SDValue ConstNode) const {
12304   // Let the DAGCombiner decide for vectors.
12305   EVT VT = AddNode.getValueType();
12306   if (VT.isVector())
12307     return true;
12308 
12309   // Let the DAGCombiner decide for larger types.
12310   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
12311     return true;
12312 
12313   // It is worse if c1 is simm12 while c1*c2 is not.
12314   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
12315   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
12316   const APInt &C1 = C1Node->getAPIntValue();
12317   const APInt &C2 = C2Node->getAPIntValue();
12318   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
12319     return false;
12320 
12321   // Default to true and let the DAGCombiner decide.
12322   return true;
12323 }
12324 
12325 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
12326     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
12327     bool *Fast) const {
12328   if (!VT.isVector()) {
12329     if (Fast)
12330       *Fast = false;
12331     return Subtarget.enableUnalignedScalarMem();
12332   }
12333 
12334   // All vector implementations must support element alignment
12335   EVT ElemVT = VT.getVectorElementType();
12336   if (Alignment >= ElemVT.getStoreSize()) {
12337     if (Fast)
12338       *Fast = true;
12339     return true;
12340   }
12341 
12342   return false;
12343 }
12344 
12345 bool RISCVTargetLowering::splitValueIntoRegisterParts(
12346     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
12347     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
12348   bool IsABIRegCopy = CC.has_value();
12349   EVT ValueVT = Val.getValueType();
12350   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12351     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
12352     // and cast to f32.
12353     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
12354     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
12355     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
12356                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
12357     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
12358     Parts[0] = Val;
12359     return true;
12360   }
12361 
12362   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12363     LLVMContext &Context = *DAG.getContext();
12364     EVT ValueEltVT = ValueVT.getVectorElementType();
12365     EVT PartEltVT = PartVT.getVectorElementType();
12366     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12367     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12368     if (PartVTBitSize % ValueVTBitSize == 0) {
12369       assert(PartVTBitSize >= ValueVTBitSize);
12370       // If the element types are different, bitcast to the same element type of
12371       // PartVT first.
12372       // Give an example here, we want copy a <vscale x 1 x i8> value to
12373       // <vscale x 4 x i16>.
12374       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
12375       // subvector, then we can bitcast to <vscale x 4 x i16>.
12376       if (ValueEltVT != PartEltVT) {
12377         if (PartVTBitSize > ValueVTBitSize) {
12378           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12379           assert(Count != 0 && "The number of element should not be zero.");
12380           EVT SameEltTypeVT =
12381               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12382           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
12383                             DAG.getUNDEF(SameEltTypeVT), Val,
12384                             DAG.getVectorIdxConstant(0, DL));
12385         }
12386         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
12387       } else {
12388         Val =
12389             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
12390                         Val, DAG.getVectorIdxConstant(0, DL));
12391       }
12392       Parts[0] = Val;
12393       return true;
12394     }
12395   }
12396   return false;
12397 }
12398 
12399 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
12400     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
12401     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
12402   bool IsABIRegCopy = CC.has_value();
12403   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12404     SDValue Val = Parts[0];
12405 
12406     // Cast the f32 to i32, truncate to i16, and cast back to f16.
12407     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
12408     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
12409     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
12410     return Val;
12411   }
12412 
12413   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12414     LLVMContext &Context = *DAG.getContext();
12415     SDValue Val = Parts[0];
12416     EVT ValueEltVT = ValueVT.getVectorElementType();
12417     EVT PartEltVT = PartVT.getVectorElementType();
12418     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12419     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12420     if (PartVTBitSize % ValueVTBitSize == 0) {
12421       assert(PartVTBitSize >= ValueVTBitSize);
12422       EVT SameEltTypeVT = ValueVT;
12423       // If the element types are different, convert it to the same element type
12424       // of PartVT.
12425       // Give an example here, we want copy a <vscale x 1 x i8> value from
12426       // <vscale x 4 x i16>.
12427       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
12428       // then we can extract <vscale x 1 x i8>.
12429       if (ValueEltVT != PartEltVT) {
12430         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12431         assert(Count != 0 && "The number of element should not be zero.");
12432         SameEltTypeVT =
12433             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12434         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
12435       }
12436       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
12437                         DAG.getVectorIdxConstant(0, DL));
12438       return Val;
12439     }
12440   }
12441   return SDValue();
12442 }
12443 
12444 SDValue
12445 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12446                                    SelectionDAG &DAG,
12447                                    SmallVectorImpl<SDNode *> &Created) const {
12448   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12449   if (isIntDivCheap(N->getValueType(0), Attr))
12450     return SDValue(N, 0); // Lower SDIV as SDIV
12451 
12452   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
12453          "Unexpected divisor!");
12454 
12455   // Conditional move is needed, so do the transformation iff Zbt is enabled.
12456   if (!Subtarget.hasStdExtZbt())
12457     return SDValue();
12458 
12459   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
12460   // Besides, more critical path instructions will be generated when dividing
12461   // by 2. So we keep using the original DAGs for these cases.
12462   unsigned Lg2 = Divisor.countTrailingZeros();
12463   if (Lg2 == 1 || Lg2 >= 12)
12464     return SDValue();
12465 
12466   // fold (sdiv X, pow2)
12467   EVT VT = N->getValueType(0);
12468   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
12469     return SDValue();
12470 
12471   SDLoc DL(N);
12472   SDValue N0 = N->getOperand(0);
12473   SDValue Zero = DAG.getConstant(0, DL, VT);
12474   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12475 
12476   // Add (N0 < 0) ? Pow2 - 1 : 0;
12477   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12478   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12479   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12480 
12481   Created.push_back(Cmp.getNode());
12482   Created.push_back(Add.getNode());
12483   Created.push_back(Sel.getNode());
12484 
12485   // Divide by pow2.
12486   SDValue SRA =
12487       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12488 
12489   // If we're dividing by a positive value, we're done.  Otherwise, we must
12490   // negate the result.
12491   if (Divisor.isNonNegative())
12492     return SRA;
12493 
12494   Created.push_back(SRA.getNode());
12495   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12496 }
12497 
12498 #define GET_REGISTER_MATCHER
12499 #include "RISCVGenAsmMatcher.inc"
12500 
12501 Register
12502 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12503                                        const MachineFunction &MF) const {
12504   Register Reg = MatchRegisterAltName(RegName);
12505   if (Reg == RISCV::NoRegister)
12506     Reg = MatchRegisterName(RegName);
12507   if (Reg == RISCV::NoRegister)
12508     report_fatal_error(
12509         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12510   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12511   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12512     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12513                              StringRef(RegName) + "\"."));
12514   return Reg;
12515 }
12516 
12517 namespace llvm {
12518 namespace RISCVVIntrinsicsTable {
12519 
12520 #define GET_RISCVVIntrinsicsTable_IMPL
12521 #include "RISCVGenSearchableTables.inc"
12522 
12523 } // namespace RISCVVIntrinsicsTable
12524 
12525 } // namespace llvm
12526