1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 } 144 145 // Compute derived properties from the register classes. 146 computeRegisterProperties(STI.getRegisterInfo()); 147 148 setStackPointerRegisterToSaveRestore(RISCV::X2); 149 150 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 151 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 152 153 // TODO: add all necessary setOperationAction calls. 154 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 155 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 setOperationAction(ISD::BR_CC, XLenVT, Expand); 158 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 159 160 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 161 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 162 163 setOperationAction(ISD::VASTART, MVT::Other, Custom); 164 setOperationAction(ISD::VAARG, MVT::Other, Expand); 165 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 166 setOperationAction(ISD::VAEND, MVT::Other, Expand); 167 168 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 169 if (!Subtarget.hasStdExtZbb()) { 170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 172 } 173 174 if (Subtarget.is64Bit()) { 175 setOperationAction(ISD::ADD, MVT::i32, Custom); 176 setOperationAction(ISD::SUB, MVT::i32, Custom); 177 setOperationAction(ISD::SHL, MVT::i32, Custom); 178 setOperationAction(ISD::SRA, MVT::i32, Custom); 179 setOperationAction(ISD::SRL, MVT::i32, Custom); 180 } 181 182 if (!Subtarget.hasStdExtM()) { 183 setOperationAction(ISD::MUL, XLenVT, Expand); 184 setOperationAction(ISD::MULHS, XLenVT, Expand); 185 setOperationAction(ISD::MULHU, XLenVT, Expand); 186 setOperationAction(ISD::SDIV, XLenVT, Expand); 187 setOperationAction(ISD::UDIV, XLenVT, Expand); 188 setOperationAction(ISD::SREM, XLenVT, Expand); 189 setOperationAction(ISD::UREM, XLenVT, Expand); 190 } 191 192 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 193 setOperationAction(ISD::MUL, MVT::i32, Custom); 194 195 setOperationAction(ISD::SDIV, MVT::i8, Custom); 196 setOperationAction(ISD::UDIV, MVT::i8, Custom); 197 setOperationAction(ISD::UREM, MVT::i8, Custom); 198 setOperationAction(ISD::SDIV, MVT::i16, Custom); 199 setOperationAction(ISD::UDIV, MVT::i16, Custom); 200 setOperationAction(ISD::UREM, MVT::i16, Custom); 201 setOperationAction(ISD::SDIV, MVT::i32, Custom); 202 setOperationAction(ISD::UDIV, MVT::i32, Custom); 203 setOperationAction(ISD::UREM, MVT::i32, Custom); 204 } 205 206 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 207 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 208 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 209 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 210 211 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 212 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 213 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 214 215 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 216 if (Subtarget.is64Bit()) { 217 setOperationAction(ISD::ROTL, MVT::i32, Custom); 218 setOperationAction(ISD::ROTR, MVT::i32, Custom); 219 } 220 } else { 221 setOperationAction(ISD::ROTL, XLenVT, Expand); 222 setOperationAction(ISD::ROTR, XLenVT, Expand); 223 } 224 225 if (Subtarget.hasStdExtZbp()) { 226 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 227 // more combining. 228 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 229 setOperationAction(ISD::BSWAP, XLenVT, Custom); 230 231 if (Subtarget.is64Bit()) { 232 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 233 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 234 } 235 } else { 236 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 237 // pattern match it directly in isel. 238 setOperationAction(ISD::BSWAP, XLenVT, 239 Subtarget.hasStdExtZbb() ? Legal : Expand); 240 } 241 242 if (Subtarget.hasStdExtZbb()) { 243 setOperationAction(ISD::SMIN, XLenVT, Legal); 244 setOperationAction(ISD::SMAX, XLenVT, Legal); 245 setOperationAction(ISD::UMIN, XLenVT, Legal); 246 setOperationAction(ISD::UMAX, XLenVT, Legal); 247 } else { 248 setOperationAction(ISD::CTTZ, XLenVT, Expand); 249 setOperationAction(ISD::CTLZ, XLenVT, Expand); 250 setOperationAction(ISD::CTPOP, XLenVT, Expand); 251 } 252 253 if (Subtarget.hasStdExtZbt()) { 254 setOperationAction(ISD::FSHL, XLenVT, Custom); 255 setOperationAction(ISD::FSHR, XLenVT, Custom); 256 setOperationAction(ISD::SELECT, XLenVT, Legal); 257 258 if (Subtarget.is64Bit()) { 259 setOperationAction(ISD::FSHL, MVT::i32, Custom); 260 setOperationAction(ISD::FSHR, MVT::i32, Custom); 261 } 262 } else { 263 setOperationAction(ISD::SELECT, XLenVT, Custom); 264 } 265 266 ISD::CondCode FPCCToExpand[] = { 267 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 268 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 269 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 270 271 ISD::NodeType FPOpToExpand[] = { 272 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 273 ISD::FP_TO_FP16}; 274 275 if (Subtarget.hasStdExtZfh()) 276 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 277 278 if (Subtarget.hasStdExtZfh()) { 279 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 280 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 281 for (auto CC : FPCCToExpand) 282 setCondCodeAction(CC, MVT::f16, Expand); 283 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 284 setOperationAction(ISD::SELECT, MVT::f16, Custom); 285 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 286 for (auto Op : FPOpToExpand) 287 setOperationAction(Op, MVT::f16, Expand); 288 } 289 290 if (Subtarget.hasStdExtF()) { 291 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 292 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 293 for (auto CC : FPCCToExpand) 294 setCondCodeAction(CC, MVT::f32, Expand); 295 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 296 setOperationAction(ISD::SELECT, MVT::f32, Custom); 297 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 298 for (auto Op : FPOpToExpand) 299 setOperationAction(Op, MVT::f32, Expand); 300 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 301 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 302 } 303 304 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 305 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 306 307 if (Subtarget.hasStdExtD()) { 308 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 309 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 310 for (auto CC : FPCCToExpand) 311 setCondCodeAction(CC, MVT::f64, Expand); 312 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 313 setOperationAction(ISD::SELECT, MVT::f64, Custom); 314 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 315 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 316 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 317 for (auto Op : FPOpToExpand) 318 setOperationAction(Op, MVT::f64, Expand); 319 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 320 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 321 } 322 323 if (Subtarget.is64Bit()) { 324 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 325 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 326 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 327 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 328 } 329 330 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 331 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 332 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 333 setOperationAction(ISD::JumpTable, XLenVT, Custom); 334 335 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 336 337 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 338 // Unfortunately this can't be determined just from the ISA naming string. 339 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 340 Subtarget.is64Bit() ? Legal : Custom); 341 342 setOperationAction(ISD::TRAP, MVT::Other, Legal); 343 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 344 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 345 346 if (Subtarget.hasStdExtA()) { 347 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 348 setMinCmpXchgSizeInBits(32); 349 } else { 350 setMaxAtomicSizeInBitsSupported(0); 351 } 352 353 setBooleanContents(ZeroOrOneBooleanContent); 354 355 if (Subtarget.hasStdExtV()) { 356 setBooleanVectorContents(ZeroOrOneBooleanContent); 357 358 setOperationAction(ISD::VSCALE, XLenVT, Custom); 359 360 // RVV intrinsics may have illegal operands. 361 // We also need to custom legalize vmv.x.s. 362 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 363 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 364 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 365 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 366 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 367 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 368 369 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 373 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 374 } else { 375 // We must custom-lower certain vXi64 operations on RV32 due to the vector 376 // element type being illegal. 377 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 378 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 379 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 380 } 381 382 for (MVT VT : BoolVecVTs) { 383 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 384 385 // Mask VTs are custom-expanded into a series of standard nodes 386 setOperationAction(ISD::TRUNCATE, VT, Custom); 387 } 388 389 for (MVT VT : IntVecVTs) { 390 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 391 392 setOperationAction(ISD::SMIN, VT, Legal); 393 setOperationAction(ISD::SMAX, VT, Legal); 394 setOperationAction(ISD::UMIN, VT, Legal); 395 setOperationAction(ISD::UMAX, VT, Legal); 396 397 setOperationAction(ISD::ROTL, VT, Expand); 398 setOperationAction(ISD::ROTR, VT, Expand); 399 400 // Custom-lower extensions and truncations from/to mask types. 401 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 402 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 403 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 404 405 // RVV has native int->float & float->int conversions where the 406 // element type sizes are within one power-of-two of each other. Any 407 // wider distances between type sizes have to be lowered as sequences 408 // which progressively narrow the gap in stages. 409 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 410 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 411 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 412 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 413 414 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 415 // nodes which truncate by one power of two at a time. 416 setOperationAction(ISD::TRUNCATE, VT, Custom); 417 418 // Custom-lower insert/extract operations to simplify patterns. 419 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 420 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 421 } 422 423 // Expand various CCs to best match the RVV ISA, which natively supports UNE 424 // but no other unordered comparisons, and supports all ordered comparisons 425 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 426 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 427 // and we pattern-match those back to the "original", swapping operands once 428 // more. This way we catch both operations and both "vf" and "fv" forms with 429 // fewer patterns. 430 ISD::CondCode VFPCCToExpand[] = { 431 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 432 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 433 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 434 }; 435 436 // Sets common operation actions on RVV floating-point vector types. 437 const auto SetCommonVFPActions = [&](MVT VT) { 438 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 439 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 440 // sizes are within one power-of-two of each other. Therefore conversions 441 // between vXf16 and vXf64 must be lowered as sequences which convert via 442 // vXf32. 443 setOperationAction(ISD::FP_ROUND, VT, Custom); 444 setOperationAction(ISD::FP_EXTEND, VT, Custom); 445 // Custom-lower insert/extract operations to simplify patterns. 446 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 447 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 448 // Expand various condition codes (explained above). 449 for (auto CC : VFPCCToExpand) 450 setCondCodeAction(CC, VT, Expand); 451 }; 452 453 if (Subtarget.hasStdExtZfh()) 454 for (MVT VT : F16VecVTs) 455 SetCommonVFPActions(VT); 456 457 if (Subtarget.hasStdExtF()) 458 for (MVT VT : F32VecVTs) 459 SetCommonVFPActions(VT); 460 461 if (Subtarget.hasStdExtD()) 462 for (MVT VT : F64VecVTs) 463 SetCommonVFPActions(VT); 464 } 465 466 // Function alignments. 467 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 468 setMinFunctionAlignment(FunctionAlignment); 469 setPrefFunctionAlignment(FunctionAlignment); 470 471 setMinimumJumpTableEntries(5); 472 473 // Jumps are expensive, compared to logic 474 setJumpIsExpensive(); 475 476 // We can use any register for comparisons 477 setHasMultipleConditionRegisters(); 478 479 setTargetDAGCombine(ISD::SETCC); 480 if (Subtarget.hasStdExtZbp()) { 481 setTargetDAGCombine(ISD::OR); 482 } 483 } 484 485 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 486 LLVMContext &Context, 487 EVT VT) const { 488 if (!VT.isVector()) 489 return getPointerTy(DL); 490 if (Subtarget.hasStdExtV() && VT.isScalableVector()) 491 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 492 return VT.changeVectorElementTypeToInteger(); 493 } 494 495 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 496 const CallInst &I, 497 MachineFunction &MF, 498 unsigned Intrinsic) const { 499 switch (Intrinsic) { 500 default: 501 return false; 502 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 503 case Intrinsic::riscv_masked_atomicrmw_add_i32: 504 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 505 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 506 case Intrinsic::riscv_masked_atomicrmw_max_i32: 507 case Intrinsic::riscv_masked_atomicrmw_min_i32: 508 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 509 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 510 case Intrinsic::riscv_masked_cmpxchg_i32: 511 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 512 Info.opc = ISD::INTRINSIC_W_CHAIN; 513 Info.memVT = MVT::getVT(PtrTy->getElementType()); 514 Info.ptrVal = I.getArgOperand(0); 515 Info.offset = 0; 516 Info.align = Align(4); 517 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 518 MachineMemOperand::MOVolatile; 519 return true; 520 } 521 } 522 523 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 524 const AddrMode &AM, Type *Ty, 525 unsigned AS, 526 Instruction *I) const { 527 // No global is ever allowed as a base. 528 if (AM.BaseGV) 529 return false; 530 531 // Require a 12-bit signed offset. 532 if (!isInt<12>(AM.BaseOffs)) 533 return false; 534 535 switch (AM.Scale) { 536 case 0: // "r+i" or just "i", depending on HasBaseReg. 537 break; 538 case 1: 539 if (!AM.HasBaseReg) // allow "r+i". 540 break; 541 return false; // disallow "r+r" or "r+r+i". 542 default: 543 return false; 544 } 545 546 return true; 547 } 548 549 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 550 return isInt<12>(Imm); 551 } 552 553 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 554 return isInt<12>(Imm); 555 } 556 557 // On RV32, 64-bit integers are split into their high and low parts and held 558 // in two different registers, so the trunc is free since the low register can 559 // just be used. 560 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 561 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 562 return false; 563 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 564 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 565 return (SrcBits == 64 && DestBits == 32); 566 } 567 568 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 569 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 570 !SrcVT.isInteger() || !DstVT.isInteger()) 571 return false; 572 unsigned SrcBits = SrcVT.getSizeInBits(); 573 unsigned DestBits = DstVT.getSizeInBits(); 574 return (SrcBits == 64 && DestBits == 32); 575 } 576 577 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 578 // Zexts are free if they can be combined with a load. 579 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 580 EVT MemVT = LD->getMemoryVT(); 581 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 582 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 583 (LD->getExtensionType() == ISD::NON_EXTLOAD || 584 LD->getExtensionType() == ISD::ZEXTLOAD)) 585 return true; 586 } 587 588 return TargetLowering::isZExtFree(Val, VT2); 589 } 590 591 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 592 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 593 } 594 595 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 596 return Subtarget.hasStdExtZbb(); 597 } 598 599 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 600 return Subtarget.hasStdExtZbb(); 601 } 602 603 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 604 bool ForCodeSize) const { 605 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 606 return false; 607 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 608 return false; 609 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 610 return false; 611 if (Imm.isNegZero()) 612 return false; 613 return Imm.isZero(); 614 } 615 616 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 617 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 618 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 619 (VT == MVT::f64 && Subtarget.hasStdExtD()); 620 } 621 622 // Changes the condition code and swaps operands if necessary, so the SetCC 623 // operation matches one of the comparisons supported directly in the RISC-V 624 // ISA. 625 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 626 switch (CC) { 627 default: 628 break; 629 case ISD::SETGT: 630 case ISD::SETLE: 631 case ISD::SETUGT: 632 case ISD::SETULE: 633 CC = ISD::getSetCCSwappedOperands(CC); 634 std::swap(LHS, RHS); 635 break; 636 } 637 } 638 639 // Return the RISC-V branch opcode that matches the given DAG integer 640 // condition code. The CondCode must be one of those supported by the RISC-V 641 // ISA (see normaliseSetCC). 642 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 643 switch (CC) { 644 default: 645 llvm_unreachable("Unsupported CondCode"); 646 case ISD::SETEQ: 647 return RISCV::BEQ; 648 case ISD::SETNE: 649 return RISCV::BNE; 650 case ISD::SETLT: 651 return RISCV::BLT; 652 case ISD::SETGE: 653 return RISCV::BGE; 654 case ISD::SETULT: 655 return RISCV::BLTU; 656 case ISD::SETUGE: 657 return RISCV::BGEU; 658 } 659 } 660 661 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 662 SelectionDAG &DAG) const { 663 switch (Op.getOpcode()) { 664 default: 665 report_fatal_error("unimplemented operand"); 666 case ISD::GlobalAddress: 667 return lowerGlobalAddress(Op, DAG); 668 case ISD::BlockAddress: 669 return lowerBlockAddress(Op, DAG); 670 case ISD::ConstantPool: 671 return lowerConstantPool(Op, DAG); 672 case ISD::JumpTable: 673 return lowerJumpTable(Op, DAG); 674 case ISD::GlobalTLSAddress: 675 return lowerGlobalTLSAddress(Op, DAG); 676 case ISD::SELECT: 677 return lowerSELECT(Op, DAG); 678 case ISD::VASTART: 679 return lowerVASTART(Op, DAG); 680 case ISD::FRAMEADDR: 681 return lowerFRAMEADDR(Op, DAG); 682 case ISD::RETURNADDR: 683 return lowerRETURNADDR(Op, DAG); 684 case ISD::SHL_PARTS: 685 return lowerShiftLeftParts(Op, DAG); 686 case ISD::SRA_PARTS: 687 return lowerShiftRightParts(Op, DAG, true); 688 case ISD::SRL_PARTS: 689 return lowerShiftRightParts(Op, DAG, false); 690 case ISD::BITCAST: { 691 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 692 Subtarget.hasStdExtZfh()) && 693 "Unexpected custom legalisation"); 694 SDLoc DL(Op); 695 SDValue Op0 = Op.getOperand(0); 696 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 697 if (Op0.getValueType() != MVT::i16) 698 return SDValue(); 699 SDValue NewOp0 = 700 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 701 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 702 return FPConv; 703 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 704 Subtarget.hasStdExtF()) { 705 if (Op0.getValueType() != MVT::i32) 706 return SDValue(); 707 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 708 SDValue FPConv = 709 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 710 return FPConv; 711 } 712 return SDValue(); 713 } 714 case ISD::INTRINSIC_WO_CHAIN: 715 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 716 case ISD::INTRINSIC_W_CHAIN: 717 return LowerINTRINSIC_W_CHAIN(Op, DAG); 718 case ISD::BSWAP: 719 case ISD::BITREVERSE: { 720 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 721 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 722 MVT VT = Op.getSimpleValueType(); 723 SDLoc DL(Op); 724 // Start with the maximum immediate value which is the bitwidth - 1. 725 unsigned Imm = VT.getSizeInBits() - 1; 726 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 727 if (Op.getOpcode() == ISD::BSWAP) 728 Imm &= ~0x7U; 729 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 730 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 731 } 732 case ISD::FSHL: 733 case ISD::FSHR: { 734 MVT VT = Op.getSimpleValueType(); 735 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 736 SDLoc DL(Op); 737 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 738 // use log(XLen) bits. Mask the shift amount accordingly. 739 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 740 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 741 DAG.getConstant(ShAmtWidth, DL, VT)); 742 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 743 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 744 } 745 case ISD::TRUNCATE: { 746 SDLoc DL(Op); 747 EVT VT = Op.getValueType(); 748 // Only custom-lower vector truncates 749 if (!VT.isVector()) 750 return Op; 751 752 // Truncates to mask types are handled differently 753 if (VT.getVectorElementType() == MVT::i1) 754 return lowerVectorMaskTrunc(Op, DAG); 755 756 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 757 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 758 // truncate by one power of two at a time. 759 EVT DstEltVT = VT.getVectorElementType(); 760 761 SDValue Src = Op.getOperand(0); 762 EVT SrcVT = Src.getValueType(); 763 EVT SrcEltVT = SrcVT.getVectorElementType(); 764 765 assert(DstEltVT.bitsLT(SrcEltVT) && 766 isPowerOf2_64(DstEltVT.getSizeInBits()) && 767 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 768 "Unexpected vector truncate lowering"); 769 770 SDValue Result = Src; 771 LLVMContext &Context = *DAG.getContext(); 772 const ElementCount Count = SrcVT.getVectorElementCount(); 773 do { 774 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 775 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 776 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 777 } while (SrcEltVT != DstEltVT); 778 779 return Result; 780 } 781 case ISD::ANY_EXTEND: 782 case ISD::ZERO_EXTEND: 783 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 784 case ISD::SIGN_EXTEND: 785 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 786 case ISD::SPLAT_VECTOR: 787 return lowerSPLATVECTOR(Op, DAG); 788 case ISD::INSERT_VECTOR_ELT: 789 return lowerINSERT_VECTOR_ELT(Op, DAG); 790 case ISD::EXTRACT_VECTOR_ELT: 791 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 792 case ISD::VSCALE: { 793 MVT VT = Op.getSimpleValueType(); 794 SDLoc DL(Op); 795 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 796 // We define our scalable vector types for lmul=1 to use a 64 bit known 797 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 798 // vscale as VLENB / 8. 799 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 800 DAG.getConstant(3, DL, VT)); 801 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 802 } 803 case ISD::FP_EXTEND: { 804 // RVV can only do fp_extend to types double the size as the source. We 805 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 806 // via f32. 807 MVT VT = Op.getSimpleValueType(); 808 MVT SrcVT = Op.getOperand(0).getSimpleValueType(); 809 // We only need to close the gap between vXf16->vXf64. 810 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 811 SrcVT.getVectorElementType() != MVT::f16) 812 return Op; 813 SDLoc DL(Op); 814 MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 815 SDValue IntermediateRound = 816 DAG.getFPExtendOrRound(Op.getOperand(0), DL, InterVT); 817 return DAG.getFPExtendOrRound(IntermediateRound, DL, VT); 818 } 819 case ISD::FP_ROUND: { 820 // RVV can only do fp_round to types half the size as the source. We 821 // custom-lower f64->f16 rounds via RVV's round-to-odd float 822 // conversion instruction. 823 MVT VT = Op.getSimpleValueType(); 824 MVT SrcVT = Op.getOperand(0).getSimpleValueType(); 825 // We only need to close the gap between vXf64<->vXf16. 826 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 827 SrcVT.getVectorElementType() != MVT::f64) 828 return Op; 829 SDLoc DL(Op); 830 MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 831 SDValue IntermediateRound = 832 DAG.getNode(RISCVISD::VFNCVT_ROD, DL, InterVT, Op.getOperand(0)); 833 return DAG.getFPExtendOrRound(IntermediateRound, DL, VT); 834 } 835 case ISD::FP_TO_SINT: 836 case ISD::FP_TO_UINT: 837 case ISD::SINT_TO_FP: 838 case ISD::UINT_TO_FP: { 839 // RVV can only do fp<->int conversions to types half/double the size as 840 // the source. We custom-lower any conversions that do two hops into 841 // sequences. 842 MVT VT = Op.getSimpleValueType(); 843 if (!VT.isVector()) 844 return Op; 845 SDLoc DL(Op); 846 SDValue Src = Op.getOperand(0); 847 MVT EltVT = VT.getVectorElementType(); 848 MVT SrcEltVT = Src.getSimpleValueType().getVectorElementType(); 849 unsigned EltSize = EltVT.getSizeInBits(); 850 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 851 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 852 "Unexpected vector element types"); 853 bool IsInt2FP = SrcEltVT.isInteger(); 854 // Widening conversions 855 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 856 if (IsInt2FP) { 857 // Do a regular integer sign/zero extension then convert to float. 858 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 859 VT.getVectorElementCount()); 860 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 861 ? ISD::ZERO_EXTEND 862 : ISD::SIGN_EXTEND; 863 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 864 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 865 } 866 // FP2Int 867 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 868 // Do one doubling fp_extend then complete the operation by converting 869 // to int. 870 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 871 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 872 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 873 } 874 875 // Narrowing conversions 876 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 877 if (IsInt2FP) { 878 // One narrowing int_to_fp, then an fp_round. 879 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 880 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 881 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 882 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 883 } 884 // FP2Int 885 // One narrowing fp_to_int, then truncate the integer. If the float isn't 886 // representable by the integer, the result is poison. 887 MVT IVecVT = 888 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 889 VT.getVectorElementCount()); 890 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 891 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 892 } 893 894 return Op; 895 } 896 } 897 } 898 899 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 900 SelectionDAG &DAG, unsigned Flags) { 901 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 902 } 903 904 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 905 SelectionDAG &DAG, unsigned Flags) { 906 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 907 Flags); 908 } 909 910 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 911 SelectionDAG &DAG, unsigned Flags) { 912 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 913 N->getOffset(), Flags); 914 } 915 916 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 917 SelectionDAG &DAG, unsigned Flags) { 918 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 919 } 920 921 template <class NodeTy> 922 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 923 bool IsLocal) const { 924 SDLoc DL(N); 925 EVT Ty = getPointerTy(DAG.getDataLayout()); 926 927 if (isPositionIndependent()) { 928 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 929 if (IsLocal) 930 // Use PC-relative addressing to access the symbol. This generates the 931 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 932 // %pcrel_lo(auipc)). 933 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 934 935 // Use PC-relative addressing to access the GOT for this symbol, then load 936 // the address from the GOT. This generates the pattern (PseudoLA sym), 937 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 938 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 939 } 940 941 switch (getTargetMachine().getCodeModel()) { 942 default: 943 report_fatal_error("Unsupported code model for lowering"); 944 case CodeModel::Small: { 945 // Generate a sequence for accessing addresses within the first 2 GiB of 946 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 947 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 948 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 949 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 950 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 951 } 952 case CodeModel::Medium: { 953 // Generate a sequence for accessing addresses within any 2GiB range within 954 // the address space. This generates the pattern (PseudoLLA sym), which 955 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 956 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 957 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 958 } 959 } 960 } 961 962 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 963 SelectionDAG &DAG) const { 964 SDLoc DL(Op); 965 EVT Ty = Op.getValueType(); 966 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 967 int64_t Offset = N->getOffset(); 968 MVT XLenVT = Subtarget.getXLenVT(); 969 970 const GlobalValue *GV = N->getGlobal(); 971 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 972 SDValue Addr = getAddr(N, DAG, IsLocal); 973 974 // In order to maximise the opportunity for common subexpression elimination, 975 // emit a separate ADD node for the global address offset instead of folding 976 // it in the global address node. Later peephole optimisations may choose to 977 // fold it back in when profitable. 978 if (Offset != 0) 979 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 980 DAG.getConstant(Offset, DL, XLenVT)); 981 return Addr; 982 } 983 984 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 985 SelectionDAG &DAG) const { 986 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 987 988 return getAddr(N, DAG); 989 } 990 991 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 992 SelectionDAG &DAG) const { 993 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 994 995 return getAddr(N, DAG); 996 } 997 998 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 999 SelectionDAG &DAG) const { 1000 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 1001 1002 return getAddr(N, DAG); 1003 } 1004 1005 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 1006 SelectionDAG &DAG, 1007 bool UseGOT) const { 1008 SDLoc DL(N); 1009 EVT Ty = getPointerTy(DAG.getDataLayout()); 1010 const GlobalValue *GV = N->getGlobal(); 1011 MVT XLenVT = Subtarget.getXLenVT(); 1012 1013 if (UseGOT) { 1014 // Use PC-relative addressing to access the GOT for this TLS symbol, then 1015 // load the address from the GOT and add the thread pointer. This generates 1016 // the pattern (PseudoLA_TLS_IE sym), which expands to 1017 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 1018 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1019 SDValue Load = 1020 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 1021 1022 // Add the thread pointer. 1023 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1024 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 1025 } 1026 1027 // Generate a sequence for accessing the address relative to the thread 1028 // pointer, with the appropriate adjustment for the thread pointer offset. 1029 // This generates the pattern 1030 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 1031 SDValue AddrHi = 1032 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 1033 SDValue AddrAdd = 1034 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 1035 SDValue AddrLo = 1036 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 1037 1038 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1039 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1040 SDValue MNAdd = SDValue( 1041 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 1042 0); 1043 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 1044 } 1045 1046 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 1047 SelectionDAG &DAG) const { 1048 SDLoc DL(N); 1049 EVT Ty = getPointerTy(DAG.getDataLayout()); 1050 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 1051 const GlobalValue *GV = N->getGlobal(); 1052 1053 // Use a PC-relative addressing mode to access the global dynamic GOT address. 1054 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 1055 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 1056 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1057 SDValue Load = 1058 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 1059 1060 // Prepare argument list to generate call. 1061 ArgListTy Args; 1062 ArgListEntry Entry; 1063 Entry.Node = Load; 1064 Entry.Ty = CallTy; 1065 Args.push_back(Entry); 1066 1067 // Setup call to __tls_get_addr. 1068 TargetLowering::CallLoweringInfo CLI(DAG); 1069 CLI.setDebugLoc(DL) 1070 .setChain(DAG.getEntryNode()) 1071 .setLibCallee(CallingConv::C, CallTy, 1072 DAG.getExternalSymbol("__tls_get_addr", Ty), 1073 std::move(Args)); 1074 1075 return LowerCallTo(CLI).first; 1076 } 1077 1078 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 1079 SelectionDAG &DAG) const { 1080 SDLoc DL(Op); 1081 EVT Ty = Op.getValueType(); 1082 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1083 int64_t Offset = N->getOffset(); 1084 MVT XLenVT = Subtarget.getXLenVT(); 1085 1086 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 1087 1088 if (DAG.getMachineFunction().getFunction().getCallingConv() == 1089 CallingConv::GHC) 1090 report_fatal_error("In GHC calling convention TLS is not supported"); 1091 1092 SDValue Addr; 1093 switch (Model) { 1094 case TLSModel::LocalExec: 1095 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 1096 break; 1097 case TLSModel::InitialExec: 1098 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 1099 break; 1100 case TLSModel::LocalDynamic: 1101 case TLSModel::GeneralDynamic: 1102 Addr = getDynamicTLSAddr(N, DAG); 1103 break; 1104 } 1105 1106 // In order to maximise the opportunity for common subexpression elimination, 1107 // emit a separate ADD node for the global address offset instead of folding 1108 // it in the global address node. Later peephole optimisations may choose to 1109 // fold it back in when profitable. 1110 if (Offset != 0) 1111 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1112 DAG.getConstant(Offset, DL, XLenVT)); 1113 return Addr; 1114 } 1115 1116 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 1117 SDValue CondV = Op.getOperand(0); 1118 SDValue TrueV = Op.getOperand(1); 1119 SDValue FalseV = Op.getOperand(2); 1120 SDLoc DL(Op); 1121 MVT XLenVT = Subtarget.getXLenVT(); 1122 1123 // If the result type is XLenVT and CondV is the output of a SETCC node 1124 // which also operated on XLenVT inputs, then merge the SETCC node into the 1125 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1126 // compare+branch instructions. i.e.: 1127 // (select (setcc lhs, rhs, cc), truev, falsev) 1128 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1129 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1130 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1131 SDValue LHS = CondV.getOperand(0); 1132 SDValue RHS = CondV.getOperand(1); 1133 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1134 ISD::CondCode CCVal = CC->get(); 1135 1136 normaliseSetCC(LHS, RHS, CCVal); 1137 1138 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1139 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1140 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1141 } 1142 1143 // Otherwise: 1144 // (select condv, truev, falsev) 1145 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1146 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1147 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1148 1149 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1150 1151 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1152 } 1153 1154 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1155 MachineFunction &MF = DAG.getMachineFunction(); 1156 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1157 1158 SDLoc DL(Op); 1159 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1160 getPointerTy(MF.getDataLayout())); 1161 1162 // vastart just stores the address of the VarArgsFrameIndex slot into the 1163 // memory location argument. 1164 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1165 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1166 MachinePointerInfo(SV)); 1167 } 1168 1169 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1170 SelectionDAG &DAG) const { 1171 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1172 MachineFunction &MF = DAG.getMachineFunction(); 1173 MachineFrameInfo &MFI = MF.getFrameInfo(); 1174 MFI.setFrameAddressIsTaken(true); 1175 Register FrameReg = RI.getFrameRegister(MF); 1176 int XLenInBytes = Subtarget.getXLen() / 8; 1177 1178 EVT VT = Op.getValueType(); 1179 SDLoc DL(Op); 1180 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1181 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1182 while (Depth--) { 1183 int Offset = -(XLenInBytes * 2); 1184 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1185 DAG.getIntPtrConstant(Offset, DL)); 1186 FrameAddr = 1187 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1188 } 1189 return FrameAddr; 1190 } 1191 1192 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1193 SelectionDAG &DAG) const { 1194 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1195 MachineFunction &MF = DAG.getMachineFunction(); 1196 MachineFrameInfo &MFI = MF.getFrameInfo(); 1197 MFI.setReturnAddressIsTaken(true); 1198 MVT XLenVT = Subtarget.getXLenVT(); 1199 int XLenInBytes = Subtarget.getXLen() / 8; 1200 1201 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1202 return SDValue(); 1203 1204 EVT VT = Op.getValueType(); 1205 SDLoc DL(Op); 1206 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1207 if (Depth) { 1208 int Off = -XLenInBytes; 1209 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1210 SDValue Offset = DAG.getConstant(Off, DL, VT); 1211 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1212 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1213 MachinePointerInfo()); 1214 } 1215 1216 // Return the value of the return address register, marking it an implicit 1217 // live-in. 1218 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1219 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1220 } 1221 1222 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1223 SelectionDAG &DAG) const { 1224 SDLoc DL(Op); 1225 SDValue Lo = Op.getOperand(0); 1226 SDValue Hi = Op.getOperand(1); 1227 SDValue Shamt = Op.getOperand(2); 1228 EVT VT = Lo.getValueType(); 1229 1230 // if Shamt-XLEN < 0: // Shamt < XLEN 1231 // Lo = Lo << Shamt 1232 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1233 // else: 1234 // Lo = 0 1235 // Hi = Lo << (Shamt-XLEN) 1236 1237 SDValue Zero = DAG.getConstant(0, DL, VT); 1238 SDValue One = DAG.getConstant(1, DL, VT); 1239 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1240 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1241 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1242 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1243 1244 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1245 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1246 SDValue ShiftRightLo = 1247 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1248 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1249 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1250 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1251 1252 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1253 1254 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1255 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1256 1257 SDValue Parts[2] = {Lo, Hi}; 1258 return DAG.getMergeValues(Parts, DL); 1259 } 1260 1261 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1262 bool IsSRA) const { 1263 SDLoc DL(Op); 1264 SDValue Lo = Op.getOperand(0); 1265 SDValue Hi = Op.getOperand(1); 1266 SDValue Shamt = Op.getOperand(2); 1267 EVT VT = Lo.getValueType(); 1268 1269 // SRA expansion: 1270 // if Shamt-XLEN < 0: // Shamt < XLEN 1271 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1272 // Hi = Hi >>s Shamt 1273 // else: 1274 // Lo = Hi >>s (Shamt-XLEN); 1275 // Hi = Hi >>s (XLEN-1) 1276 // 1277 // SRL expansion: 1278 // if Shamt-XLEN < 0: // Shamt < XLEN 1279 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1280 // Hi = Hi >>u Shamt 1281 // else: 1282 // Lo = Hi >>u (Shamt-XLEN); 1283 // Hi = 0; 1284 1285 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1286 1287 SDValue Zero = DAG.getConstant(0, DL, VT); 1288 SDValue One = DAG.getConstant(1, DL, VT); 1289 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1290 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1291 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1292 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1293 1294 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1295 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1296 SDValue ShiftLeftHi = 1297 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1298 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1299 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1300 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1301 SDValue HiFalse = 1302 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1303 1304 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1305 1306 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1307 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1308 1309 SDValue Parts[2] = {Lo, Hi}; 1310 return DAG.getMergeValues(Parts, DL); 1311 } 1312 1313 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1314 // illegal (currently only vXi64 RV32). 1315 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1316 // them to SPLAT_VECTOR_I64 1317 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1318 SelectionDAG &DAG) const { 1319 SDLoc DL(Op); 1320 EVT VecVT = Op.getValueType(); 1321 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1322 "Unexpected SPLAT_VECTOR lowering"); 1323 SDValue SplatVal = Op.getOperand(0); 1324 1325 // If we can prove that the value is a sign-extended 32-bit value, lower this 1326 // as a custom node in order to try and match RVV vector/scalar instructions. 1327 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1328 if (isInt<32>(CVal->getSExtValue())) 1329 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1330 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1331 } 1332 1333 if (SplatVal.getOpcode() == ISD::SIGN_EXTEND && 1334 SplatVal.getOperand(0).getValueType() == MVT::i32) { 1335 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1336 SplatVal.getOperand(0)); 1337 } 1338 1339 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1340 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1341 // vmv.v.x vX, hi 1342 // vsll.vx vX, vX, /*32*/ 1343 // vmv.v.x vY, lo 1344 // vsll.vx vY, vY, /*32*/ 1345 // vsrl.vx vY, vY, /*32*/ 1346 // vor.vv vX, vX, vY 1347 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1348 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1349 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1350 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1351 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1352 1353 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1354 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1355 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1356 1357 if (isNullConstant(Hi)) 1358 return Lo; 1359 1360 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1361 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1362 1363 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1364 } 1365 1366 // Custom-lower extensions from mask vectors by using a vselect either with 1 1367 // for zero/any-extension or -1 for sign-extension: 1368 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1369 // Note that any-extension is lowered identically to zero-extension. 1370 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1371 int64_t ExtTrueVal) const { 1372 SDLoc DL(Op); 1373 EVT VecVT = Op.getValueType(); 1374 SDValue Src = Op.getOperand(0); 1375 // Only custom-lower extensions from mask types 1376 if (!Src.getValueType().isVector() || 1377 Src.getValueType().getVectorElementType() != MVT::i1) 1378 return Op; 1379 1380 // Be careful not to introduce illegal scalar types at this stage, and be 1381 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1382 // illegal and must be expanded. Since we know that the constants are 1383 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1384 bool IsRV32E64 = 1385 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1386 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1387 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT()); 1388 1389 if (!IsRV32E64) { 1390 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1391 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1392 } else { 1393 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1394 SplatTrueVal = 1395 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1396 } 1397 1398 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1399 } 1400 1401 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1402 // setcc operation: 1403 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1404 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1405 SelectionDAG &DAG) const { 1406 SDLoc DL(Op); 1407 EVT MaskVT = Op.getValueType(); 1408 // Only expect to custom-lower truncations to mask types 1409 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1410 "Unexpected type for vector mask lowering"); 1411 SDValue Src = Op.getOperand(0); 1412 EVT VecVT = Src.getValueType(); 1413 1414 // Be careful not to introduce illegal scalar types at this stage, and be 1415 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1416 // illegal and must be expanded. Since we know that the constants are 1417 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1418 bool IsRV32E64 = 1419 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1420 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1421 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1422 1423 if (!IsRV32E64) { 1424 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1425 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1426 } else { 1427 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1428 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1429 } 1430 1431 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1432 1433 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1434 } 1435 1436 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 1437 SelectionDAG &DAG) const { 1438 SDLoc DL(Op); 1439 EVT VecVT = Op.getValueType(); 1440 SDValue Vec = Op.getOperand(0); 1441 SDValue Val = Op.getOperand(1); 1442 SDValue Idx = Op.getOperand(2); 1443 1444 // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is 1445 // first slid down into position, the value is inserted into the first 1446 // position, and the vector is slid back up. We do this to simplify patterns. 1447 // (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx), 1448 if (Subtarget.is64Bit() || VecVT.getVectorElementType() != MVT::i64) { 1449 if (isNullConstant(Idx)) 1450 return Op; 1451 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1452 DAG.getUNDEF(VecVT), Vec, Idx); 1453 SDValue InsertElt0 = 1454 DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecVT, Slidedown, Val, 1455 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1456 1457 return DAG.getNode(RISCVISD::VSLIDEUP, DL, VecVT, Vec, InsertElt0, Idx); 1458 } 1459 1460 // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type 1461 // is illegal (currently only vXi64 RV32). 1462 // Since there is no easy way of getting a single element into a vector when 1463 // XLEN<SEW, we lower the operation to the following sequence: 1464 // splat vVal, rVal 1465 // vid.v vVid 1466 // vmseq.vx mMask, vVid, rIdx 1467 // vmerge.vvm vDest, vSrc, vVal, mMask 1468 // This essentially merges the original vector with the inserted element by 1469 // using a mask whose only set bit is that corresponding to the insert 1470 // index. 1471 SDValue SplattedVal = DAG.getSplatVector(VecVT, DL, Val); 1472 SDValue SplattedIdx = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Idx); 1473 1474 SDValue VID = DAG.getNode(RISCVISD::VID, DL, VecVT); 1475 auto SetCCVT = 1476 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VecVT); 1477 SDValue Mask = DAG.getSetCC(DL, SetCCVT, VID, SplattedIdx, ISD::SETEQ); 1478 1479 return DAG.getNode(ISD::VSELECT, DL, VecVT, Mask, SplattedVal, Vec); 1480 } 1481 1482 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 1483 // extract the first element: (extractelt (slidedown vec, idx), 0). This is 1484 // done to maintain partity with the legalization of RV32 vXi64 legalization. 1485 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 1486 SelectionDAG &DAG) const { 1487 SDLoc DL(Op); 1488 SDValue Idx = Op.getOperand(1); 1489 if (isNullConstant(Idx)) 1490 return Op; 1491 1492 SDValue Vec = Op.getOperand(0); 1493 EVT EltVT = Op.getValueType(); 1494 EVT VecVT = Vec.getValueType(); 1495 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1496 DAG.getUNDEF(VecVT), Vec, Idx); 1497 1498 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Slidedown, 1499 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1500 } 1501 1502 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1503 SelectionDAG &DAG) const { 1504 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1505 SDLoc DL(Op); 1506 1507 if (Subtarget.hasStdExtV()) { 1508 // Some RVV intrinsics may claim that they want an integer operand to be 1509 // extended. 1510 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1511 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1512 if (II->ExtendedOperand) { 1513 assert(II->ExtendedOperand < Op.getNumOperands()); 1514 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1515 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1516 EVT OpVT = ScalarOp.getValueType(); 1517 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1518 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1519 // If the operand is a constant, sign extend to increase our chances 1520 // of being able to use a .vi instruction. ANY_EXTEND would become a 1521 // a zero extend and the simm5 check in isel would fail. 1522 // FIXME: Should we ignore the upper bits in isel instead? 1523 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1524 : ISD::ANY_EXTEND; 1525 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1526 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1527 Operands); 1528 } 1529 } 1530 } 1531 } 1532 1533 switch (IntNo) { 1534 default: 1535 return SDValue(); // Don't custom lower most intrinsics. 1536 case Intrinsic::thread_pointer: { 1537 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1538 return DAG.getRegister(RISCV::X4, PtrVT); 1539 } 1540 case Intrinsic::riscv_vmv_x_s: 1541 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1542 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1543 Op.getOperand(1)); 1544 } 1545 } 1546 1547 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1548 SelectionDAG &DAG) const { 1549 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1550 SDLoc DL(Op); 1551 1552 if (Subtarget.hasStdExtV()) { 1553 // Some RVV intrinsics may claim that they want an integer operand to be 1554 // extended. 1555 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1556 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1557 if (II->ExtendedOperand) { 1558 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1559 unsigned ExtendOp = II->ExtendedOperand + 1; 1560 assert(ExtendOp < Op.getNumOperands()); 1561 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1562 SDValue &ScalarOp = Operands[ExtendOp]; 1563 EVT OpVT = ScalarOp.getValueType(); 1564 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1565 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1566 // If the operand is a constant, sign extend to increase our chances 1567 // of being able to use a .vi instruction. ANY_EXTEND would become a 1568 // a zero extend and the simm5 check in isel would fail. 1569 // FIXME: Should we ignore the upper bits in isel instead? 1570 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1571 : ISD::ANY_EXTEND; 1572 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1573 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1574 Operands); 1575 } 1576 } 1577 } 1578 } 1579 1580 switch (IntNo) { 1581 default: 1582 return SDValue(); // Don't custom lower most intrinsics. 1583 case Intrinsic::riscv_vleff: { 1584 SDLoc DL(Op); 1585 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1586 SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0), 1587 Op.getOperand(2), Op.getOperand(3)); 1588 SDValue ReadVL = 1589 SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1), 1590 Load.getValue(2)), 1591 0); 1592 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1593 } 1594 case Intrinsic::riscv_vleff_mask: { 1595 SDLoc DL(Op); 1596 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1597 SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0), 1598 Op.getOperand(2), Op.getOperand(3), 1599 Op.getOperand(4), Op.getOperand(5)); 1600 SDValue ReadVL = 1601 SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1), 1602 Load.getValue(2)), 1603 0); 1604 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1605 } 1606 } 1607 } 1608 1609 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1610 // form of the given Opcode. 1611 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1612 switch (Opcode) { 1613 default: 1614 llvm_unreachable("Unexpected opcode"); 1615 case ISD::SHL: 1616 return RISCVISD::SLLW; 1617 case ISD::SRA: 1618 return RISCVISD::SRAW; 1619 case ISD::SRL: 1620 return RISCVISD::SRLW; 1621 case ISD::SDIV: 1622 return RISCVISD::DIVW; 1623 case ISD::UDIV: 1624 return RISCVISD::DIVUW; 1625 case ISD::UREM: 1626 return RISCVISD::REMUW; 1627 case ISD::ROTL: 1628 return RISCVISD::ROLW; 1629 case ISD::ROTR: 1630 return RISCVISD::RORW; 1631 case RISCVISD::GREVI: 1632 return RISCVISD::GREVIW; 1633 case RISCVISD::GORCI: 1634 return RISCVISD::GORCIW; 1635 } 1636 } 1637 1638 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1639 // Because i32 isn't a legal type for RV64, these operations would otherwise 1640 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1641 // later one because the fact the operation was originally of type i32 is 1642 // lost. 1643 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 1644 unsigned ExtOpc = ISD::ANY_EXTEND) { 1645 SDLoc DL(N); 1646 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1647 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 1648 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 1649 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1650 // ReplaceNodeResults requires we maintain the same type for the return value. 1651 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 1652 } 1653 1654 // Converts the given 32-bit operation to a i64 operation with signed extension 1655 // semantic to reduce the signed extension instructions. 1656 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1657 SDLoc DL(N); 1658 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1659 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1660 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1661 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1662 DAG.getValueType(MVT::i32)); 1663 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1664 } 1665 1666 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1667 SmallVectorImpl<SDValue> &Results, 1668 SelectionDAG &DAG) const { 1669 SDLoc DL(N); 1670 switch (N->getOpcode()) { 1671 default: 1672 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1673 case ISD::STRICT_FP_TO_SINT: 1674 case ISD::STRICT_FP_TO_UINT: 1675 case ISD::FP_TO_SINT: 1676 case ISD::FP_TO_UINT: { 1677 bool IsStrict = N->isStrictFPOpcode(); 1678 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1679 "Unexpected custom legalisation"); 1680 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1681 // If the FP type needs to be softened, emit a library call using the 'si' 1682 // version. If we left it to default legalization we'd end up with 'di'. If 1683 // the FP type doesn't need to be softened just let generic type 1684 // legalization promote the result type. 1685 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1686 TargetLowering::TypeSoftenFloat) 1687 return; 1688 RTLIB::Libcall LC; 1689 if (N->getOpcode() == ISD::FP_TO_SINT || 1690 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1691 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1692 else 1693 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1694 MakeLibCallOptions CallOptions; 1695 EVT OpVT = Op0.getValueType(); 1696 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1697 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1698 SDValue Result; 1699 std::tie(Result, Chain) = 1700 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1701 Results.push_back(Result); 1702 if (IsStrict) 1703 Results.push_back(Chain); 1704 break; 1705 } 1706 case ISD::READCYCLECOUNTER: { 1707 assert(!Subtarget.is64Bit() && 1708 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1709 1710 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1711 SDValue RCW = 1712 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1713 1714 Results.push_back( 1715 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1716 Results.push_back(RCW.getValue(2)); 1717 break; 1718 } 1719 case ISD::ADD: 1720 case ISD::SUB: 1721 case ISD::MUL: 1722 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1723 "Unexpected custom legalisation"); 1724 if (N->getOperand(1).getOpcode() == ISD::Constant) 1725 return; 1726 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1727 break; 1728 case ISD::SHL: 1729 case ISD::SRA: 1730 case ISD::SRL: 1731 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1732 "Unexpected custom legalisation"); 1733 if (N->getOperand(1).getOpcode() == ISD::Constant) 1734 return; 1735 Results.push_back(customLegalizeToWOp(N, DAG)); 1736 break; 1737 case ISD::ROTL: 1738 case ISD::ROTR: 1739 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1740 "Unexpected custom legalisation"); 1741 Results.push_back(customLegalizeToWOp(N, DAG)); 1742 break; 1743 case ISD::SDIV: 1744 case ISD::UDIV: 1745 case ISD::UREM: { 1746 MVT VT = N->getSimpleValueType(0); 1747 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 1748 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 1749 "Unexpected custom legalisation"); 1750 if (N->getOperand(0).getOpcode() == ISD::Constant || 1751 N->getOperand(1).getOpcode() == ISD::Constant) 1752 return; 1753 1754 // If the input is i32, use ANY_EXTEND since the W instructions don't read 1755 // the upper 32 bits. For other types we need to sign or zero extend 1756 // based on the opcode. 1757 unsigned ExtOpc = ISD::ANY_EXTEND; 1758 if (VT != MVT::i32) 1759 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 1760 : ISD::ZERO_EXTEND; 1761 1762 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 1763 break; 1764 } 1765 case ISD::BITCAST: { 1766 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1767 Subtarget.hasStdExtF()) || 1768 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1769 "Unexpected custom legalisation"); 1770 SDValue Op0 = N->getOperand(0); 1771 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1772 if (Op0.getValueType() != MVT::f16) 1773 return; 1774 SDValue FPConv = 1775 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1776 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1777 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1778 Subtarget.hasStdExtF()) { 1779 if (Op0.getValueType() != MVT::f32) 1780 return; 1781 SDValue FPConv = 1782 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1783 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1784 } 1785 break; 1786 } 1787 case RISCVISD::GREVI: 1788 case RISCVISD::GORCI: { 1789 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1790 "Unexpected custom legalisation"); 1791 // This is similar to customLegalizeToWOp, except that we pass the second 1792 // operand (a TargetConstant) straight through: it is already of type 1793 // XLenVT. 1794 SDLoc DL(N); 1795 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1796 SDValue NewOp0 = 1797 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1798 SDValue NewRes = 1799 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1800 // ReplaceNodeResults requires we maintain the same type for the return 1801 // value. 1802 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1803 break; 1804 } 1805 case ISD::BSWAP: 1806 case ISD::BITREVERSE: { 1807 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1808 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1809 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1810 N->getOperand(0)); 1811 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1812 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1813 DAG.getTargetConstant(Imm, DL, 1814 Subtarget.getXLenVT())); 1815 // ReplaceNodeResults requires we maintain the same type for the return 1816 // value. 1817 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1818 break; 1819 } 1820 case ISD::FSHL: 1821 case ISD::FSHR: { 1822 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1823 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1824 SDValue NewOp0 = 1825 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1826 SDValue NewOp1 = 1827 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1828 SDValue NewOp2 = 1829 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1830 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1831 // Mask the shift amount to 5 bits. 1832 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1833 DAG.getConstant(0x1f, DL, MVT::i64)); 1834 unsigned Opc = 1835 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1836 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1837 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1838 break; 1839 } 1840 case ISD::EXTRACT_VECTOR_ELT: { 1841 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 1842 // type is illegal (currently only vXi64 RV32). 1843 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 1844 // transferred to the destination register. We issue two of these from the 1845 // upper- and lower- halves of the SEW-bit vector element, slid down to the 1846 // first element. 1847 SDLoc DL(N); 1848 SDValue Vec = N->getOperand(0); 1849 SDValue Idx = N->getOperand(1); 1850 EVT VecVT = Vec.getValueType(); 1851 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 1852 VecVT.getVectorElementType() == MVT::i64 && 1853 "Unexpected EXTRACT_VECTOR_ELT legalization"); 1854 1855 SDValue Slidedown = Vec; 1856 // Unless the index is known to be 0, we must slide the vector down to get 1857 // the desired element into index 0. 1858 if (!isNullConstant(Idx)) 1859 Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1860 DAG.getUNDEF(VecVT), Vec, Idx); 1861 1862 MVT XLenVT = Subtarget.getXLenVT(); 1863 // Extract the lower XLEN bits of the correct vector element. 1864 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Slidedown, Idx); 1865 1866 // To extract the upper XLEN bits of the vector element, shift the first 1867 // element right by 32 bits and re-extract the lower XLEN bits. 1868 SDValue ThirtyTwoV = 1869 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1870 DAG.getConstant(32, DL, Subtarget.getXLenVT())); 1871 SDValue LShr32 = DAG.getNode(ISD::SRL, DL, VecVT, Slidedown, ThirtyTwoV); 1872 1873 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32, Idx); 1874 1875 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 1876 break; 1877 } 1878 case ISD::INTRINSIC_WO_CHAIN: { 1879 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1880 switch (IntNo) { 1881 default: 1882 llvm_unreachable( 1883 "Don't know how to custom type legalize this intrinsic!"); 1884 case Intrinsic::riscv_vmv_x_s: { 1885 EVT VT = N->getValueType(0); 1886 assert((VT == MVT::i8 || VT == MVT::i16 || 1887 (Subtarget.is64Bit() && VT == MVT::i32)) && 1888 "Unexpected custom legalisation!"); 1889 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1890 Subtarget.getXLenVT(), N->getOperand(1)); 1891 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1892 break; 1893 } 1894 } 1895 break; 1896 } 1897 } 1898 } 1899 1900 // A structure to hold one of the bit-manipulation patterns below. Together, a 1901 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1902 // (or (and (shl x, 1), 0xAAAAAAAA), 1903 // (and (srl x, 1), 0x55555555)) 1904 struct RISCVBitmanipPat { 1905 SDValue Op; 1906 unsigned ShAmt; 1907 bool IsSHL; 1908 1909 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1910 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1911 } 1912 }; 1913 1914 // Matches any of the following bit-manipulation patterns: 1915 // (and (shl x, 1), (0x55555555 << 1)) 1916 // (and (srl x, 1), 0x55555555) 1917 // (shl (and x, 0x55555555), 1) 1918 // (srl (and x, (0x55555555 << 1)), 1) 1919 // where the shift amount and mask may vary thus: 1920 // [1] = 0x55555555 / 0xAAAAAAAA 1921 // [2] = 0x33333333 / 0xCCCCCCCC 1922 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1923 // [8] = 0x00FF00FF / 0xFF00FF00 1924 // [16] = 0x0000FFFF / 0xFFFFFFFF 1925 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1926 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1927 Optional<uint64_t> Mask; 1928 // Optionally consume a mask around the shift operation. 1929 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1930 Mask = Op.getConstantOperandVal(1); 1931 Op = Op.getOperand(0); 1932 } 1933 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1934 return None; 1935 bool IsSHL = Op.getOpcode() == ISD::SHL; 1936 1937 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1938 return None; 1939 auto ShAmt = Op.getConstantOperandVal(1); 1940 1941 if (!isPowerOf2_64(ShAmt)) 1942 return None; 1943 1944 // These are the unshifted masks which we use to match bit-manipulation 1945 // patterns. They may be shifted left in certain circumstances. 1946 static const uint64_t BitmanipMasks[] = { 1947 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1948 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1949 }; 1950 1951 unsigned MaskIdx = Log2_64(ShAmt); 1952 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1953 return None; 1954 1955 auto Src = Op.getOperand(0); 1956 1957 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1958 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1959 1960 // The expected mask is shifted left when the AND is found around SHL 1961 // patterns. 1962 // ((x >> 1) & 0x55555555) 1963 // ((x << 1) & 0xAAAAAAAA) 1964 bool SHLExpMask = IsSHL; 1965 1966 if (!Mask) { 1967 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1968 // the mask is all ones: consume that now. 1969 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1970 Mask = Src.getConstantOperandVal(1); 1971 Src = Src.getOperand(0); 1972 // The expected mask is now in fact shifted left for SRL, so reverse the 1973 // decision. 1974 // ((x & 0xAAAAAAAA) >> 1) 1975 // ((x & 0x55555555) << 1) 1976 SHLExpMask = !SHLExpMask; 1977 } else { 1978 // Use a default shifted mask of all-ones if there's no AND, truncated 1979 // down to the expected width. This simplifies the logic later on. 1980 Mask = maskTrailingOnes<uint64_t>(Width); 1981 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1982 } 1983 } 1984 1985 if (SHLExpMask) 1986 ExpMask <<= ShAmt; 1987 1988 if (Mask != ExpMask) 1989 return None; 1990 1991 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1992 } 1993 1994 // Match the following pattern as a GREVI(W) operation 1995 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1996 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1997 const RISCVSubtarget &Subtarget) { 1998 EVT VT = Op.getValueType(); 1999 2000 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 2001 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 2002 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 2003 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 2004 SDLoc DL(Op); 2005 return DAG.getNode( 2006 RISCVISD::GREVI, DL, VT, LHS->Op, 2007 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 2008 } 2009 } 2010 return SDValue(); 2011 } 2012 2013 // Matches any the following pattern as a GORCI(W) operation 2014 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 2015 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 2016 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 2017 // Note that with the variant of 3., 2018 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 2019 // the inner pattern will first be matched as GREVI and then the outer 2020 // pattern will be matched to GORC via the first rule above. 2021 // 4. (or (rotl/rotr x, bitwidth/2), x) 2022 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 2023 const RISCVSubtarget &Subtarget) { 2024 EVT VT = Op.getValueType(); 2025 2026 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 2027 SDLoc DL(Op); 2028 SDValue Op0 = Op.getOperand(0); 2029 SDValue Op1 = Op.getOperand(1); 2030 2031 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 2032 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 2033 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 2034 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 2035 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 2036 if ((Reverse.getOpcode() == ISD::ROTL || 2037 Reverse.getOpcode() == ISD::ROTR) && 2038 Reverse.getOperand(0) == X && 2039 isa<ConstantSDNode>(Reverse.getOperand(1))) { 2040 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 2041 if (RotAmt == (VT.getSizeInBits() / 2)) 2042 return DAG.getNode( 2043 RISCVISD::GORCI, DL, VT, X, 2044 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 2045 } 2046 return SDValue(); 2047 }; 2048 2049 // Check for either commutable permutation of (or (GREVI x, shamt), x) 2050 if (SDValue V = MatchOROfReverse(Op0, Op1)) 2051 return V; 2052 if (SDValue V = MatchOROfReverse(Op1, Op0)) 2053 return V; 2054 2055 // OR is commutable so canonicalize its OR operand to the left 2056 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 2057 std::swap(Op0, Op1); 2058 if (Op0.getOpcode() != ISD::OR) 2059 return SDValue(); 2060 SDValue OrOp0 = Op0.getOperand(0); 2061 SDValue OrOp1 = Op0.getOperand(1); 2062 auto LHS = matchRISCVBitmanipPat(OrOp0); 2063 // OR is commutable so swap the operands and try again: x might have been 2064 // on the left 2065 if (!LHS) { 2066 std::swap(OrOp0, OrOp1); 2067 LHS = matchRISCVBitmanipPat(OrOp0); 2068 } 2069 auto RHS = matchRISCVBitmanipPat(Op1); 2070 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 2071 return DAG.getNode( 2072 RISCVISD::GORCI, DL, VT, LHS->Op, 2073 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 2074 } 2075 } 2076 return SDValue(); 2077 } 2078 2079 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 2080 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 2081 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 2082 // not undo itself, but they are redundant. 2083 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 2084 unsigned ShAmt1 = N->getConstantOperandVal(1); 2085 SDValue Src = N->getOperand(0); 2086 2087 if (Src.getOpcode() != N->getOpcode()) 2088 return SDValue(); 2089 2090 unsigned ShAmt2 = Src.getConstantOperandVal(1); 2091 Src = Src.getOperand(0); 2092 2093 unsigned CombinedShAmt; 2094 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 2095 CombinedShAmt = ShAmt1 | ShAmt2; 2096 else 2097 CombinedShAmt = ShAmt1 ^ ShAmt2; 2098 2099 if (CombinedShAmt == 0) 2100 return Src; 2101 2102 SDLoc DL(N); 2103 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 2104 DAG.getTargetConstant(CombinedShAmt, DL, 2105 N->getOperand(1).getValueType())); 2106 } 2107 2108 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 2109 DAGCombinerInfo &DCI) const { 2110 SelectionDAG &DAG = DCI.DAG; 2111 2112 switch (N->getOpcode()) { 2113 default: 2114 break; 2115 case RISCVISD::SplitF64: { 2116 SDValue Op0 = N->getOperand(0); 2117 // If the input to SplitF64 is just BuildPairF64 then the operation is 2118 // redundant. Instead, use BuildPairF64's operands directly. 2119 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 2120 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 2121 2122 SDLoc DL(N); 2123 2124 // It's cheaper to materialise two 32-bit integers than to load a double 2125 // from the constant pool and transfer it to integer registers through the 2126 // stack. 2127 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 2128 APInt V = C->getValueAPF().bitcastToAPInt(); 2129 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 2130 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 2131 return DCI.CombineTo(N, Lo, Hi); 2132 } 2133 2134 // This is a target-specific version of a DAGCombine performed in 2135 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2136 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2137 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2138 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2139 !Op0.getNode()->hasOneUse()) 2140 break; 2141 SDValue NewSplitF64 = 2142 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 2143 Op0.getOperand(0)); 2144 SDValue Lo = NewSplitF64.getValue(0); 2145 SDValue Hi = NewSplitF64.getValue(1); 2146 APInt SignBit = APInt::getSignMask(32); 2147 if (Op0.getOpcode() == ISD::FNEG) { 2148 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 2149 DAG.getConstant(SignBit, DL, MVT::i32)); 2150 return DCI.CombineTo(N, Lo, NewHi); 2151 } 2152 assert(Op0.getOpcode() == ISD::FABS); 2153 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 2154 DAG.getConstant(~SignBit, DL, MVT::i32)); 2155 return DCI.CombineTo(N, Lo, NewHi); 2156 } 2157 case RISCVISD::SLLW: 2158 case RISCVISD::SRAW: 2159 case RISCVISD::SRLW: 2160 case RISCVISD::ROLW: 2161 case RISCVISD::RORW: { 2162 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 2163 SDValue LHS = N->getOperand(0); 2164 SDValue RHS = N->getOperand(1); 2165 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 2166 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 2167 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 2168 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 2169 if (N->getOpcode() != ISD::DELETED_NODE) 2170 DCI.AddToWorklist(N); 2171 return SDValue(N, 0); 2172 } 2173 break; 2174 } 2175 case RISCVISD::FSL: 2176 case RISCVISD::FSR: { 2177 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 2178 SDValue ShAmt = N->getOperand(2); 2179 unsigned BitWidth = ShAmt.getValueSizeInBits(); 2180 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 2181 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 2182 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 2183 if (N->getOpcode() != ISD::DELETED_NODE) 2184 DCI.AddToWorklist(N); 2185 return SDValue(N, 0); 2186 } 2187 break; 2188 } 2189 case RISCVISD::FSLW: 2190 case RISCVISD::FSRW: { 2191 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 2192 // read. 2193 SDValue Op0 = N->getOperand(0); 2194 SDValue Op1 = N->getOperand(1); 2195 SDValue ShAmt = N->getOperand(2); 2196 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2197 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 2198 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 2199 SimplifyDemandedBits(Op1, OpMask, DCI) || 2200 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 2201 if (N->getOpcode() != ISD::DELETED_NODE) 2202 DCI.AddToWorklist(N); 2203 return SDValue(N, 0); 2204 } 2205 break; 2206 } 2207 case RISCVISD::GREVIW: 2208 case RISCVISD::GORCIW: { 2209 // Only the lower 32 bits of the first operand are read 2210 SDValue Op0 = N->getOperand(0); 2211 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2212 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 2213 if (N->getOpcode() != ISD::DELETED_NODE) 2214 DCI.AddToWorklist(N); 2215 return SDValue(N, 0); 2216 } 2217 2218 return combineGREVI_GORCI(N, DCI.DAG); 2219 } 2220 case RISCVISD::FMV_X_ANYEXTW_RV64: { 2221 SDLoc DL(N); 2222 SDValue Op0 = N->getOperand(0); 2223 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 2224 // conversion is unnecessary and can be replaced with an ANY_EXTEND 2225 // of the FMV_W_X_RV64 operand. 2226 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 2227 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 2228 "Unexpected value type!"); 2229 return Op0.getOperand(0); 2230 } 2231 2232 // This is a target-specific version of a DAGCombine performed in 2233 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2234 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2235 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2236 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2237 !Op0.getNode()->hasOneUse()) 2238 break; 2239 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 2240 Op0.getOperand(0)); 2241 APInt SignBit = APInt::getSignMask(32).sext(64); 2242 if (Op0.getOpcode() == ISD::FNEG) 2243 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 2244 DAG.getConstant(SignBit, DL, MVT::i64)); 2245 2246 assert(Op0.getOpcode() == ISD::FABS); 2247 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 2248 DAG.getConstant(~SignBit, DL, MVT::i64)); 2249 } 2250 case RISCVISD::GREVI: 2251 case RISCVISD::GORCI: 2252 return combineGREVI_GORCI(N, DCI.DAG); 2253 case ISD::OR: 2254 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 2255 return GREV; 2256 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 2257 return GORC; 2258 break; 2259 case RISCVISD::SELECT_CC: { 2260 // Transform 2261 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 2262 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 2263 // This can occur when legalizing some floating point comparisons. 2264 SDValue LHS = N->getOperand(0); 2265 SDValue RHS = N->getOperand(1); 2266 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 2267 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2268 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 2269 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 2270 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 2271 SDLoc DL(N); 2272 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 2273 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 2274 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 2275 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 2276 N->getOperand(4)}); 2277 } 2278 break; 2279 } 2280 case ISD::SETCC: { 2281 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 2282 // Comparing with 0 may allow us to fold into bnez/beqz. 2283 SDValue LHS = N->getOperand(0); 2284 SDValue RHS = N->getOperand(1); 2285 if (LHS.getValueType().isScalableVector()) 2286 break; 2287 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2288 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2289 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 2290 DAG.MaskedValueIsZero(LHS, Mask)) { 2291 SDLoc DL(N); 2292 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 2293 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2294 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 2295 } 2296 break; 2297 } 2298 } 2299 2300 return SDValue(); 2301 } 2302 2303 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 2304 const SDNode *N, CombineLevel Level) const { 2305 // The following folds are only desirable if `(OP _, c1 << c2)` can be 2306 // materialised in fewer instructions than `(OP _, c1)`: 2307 // 2308 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 2309 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 2310 SDValue N0 = N->getOperand(0); 2311 EVT Ty = N0.getValueType(); 2312 if (Ty.isScalarInteger() && 2313 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 2314 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2315 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2316 if (C1 && C2) { 2317 const APInt &C1Int = C1->getAPIntValue(); 2318 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 2319 2320 // We can materialise `c1 << c2` into an add immediate, so it's "free", 2321 // and the combine should happen, to potentially allow further combines 2322 // later. 2323 if (ShiftedC1Int.getMinSignedBits() <= 64 && 2324 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 2325 return true; 2326 2327 // We can materialise `c1` in an add immediate, so it's "free", and the 2328 // combine should be prevented. 2329 if (C1Int.getMinSignedBits() <= 64 && 2330 isLegalAddImmediate(C1Int.getSExtValue())) 2331 return false; 2332 2333 // Neither constant will fit into an immediate, so find materialisation 2334 // costs. 2335 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 2336 Subtarget.is64Bit()); 2337 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 2338 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 2339 2340 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 2341 // combine should be prevented. 2342 if (C1Cost < ShiftedC1Cost) 2343 return false; 2344 } 2345 } 2346 return true; 2347 } 2348 2349 bool RISCVTargetLowering::targetShrinkDemandedConstant( 2350 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2351 TargetLoweringOpt &TLO) const { 2352 // Delay this optimization as late as possible. 2353 if (!TLO.LegalOps) 2354 return false; 2355 2356 EVT VT = Op.getValueType(); 2357 if (VT.isVector()) 2358 return false; 2359 2360 // Only handle AND for now. 2361 if (Op.getOpcode() != ISD::AND) 2362 return false; 2363 2364 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2365 if (!C) 2366 return false; 2367 2368 const APInt &Mask = C->getAPIntValue(); 2369 2370 // Clear all non-demanded bits initially. 2371 APInt ShrunkMask = Mask & DemandedBits; 2372 2373 // If the shrunk mask fits in sign extended 12 bits, let the target 2374 // independent code apply it. 2375 if (ShrunkMask.isSignedIntN(12)) 2376 return false; 2377 2378 // Try to make a smaller immediate by setting undemanded bits. 2379 2380 // We need to be able to make a negative number through a combination of mask 2381 // and undemanded bits. 2382 APInt ExpandedMask = Mask | ~DemandedBits; 2383 if (!ExpandedMask.isNegative()) 2384 return false; 2385 2386 // What is the fewest number of bits we need to represent the negative number. 2387 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 2388 2389 // Try to make a 12 bit negative immediate. If that fails try to make a 32 2390 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 2391 APInt NewMask = ShrunkMask; 2392 if (MinSignedBits <= 12) 2393 NewMask.setBitsFrom(11); 2394 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 2395 NewMask.setBitsFrom(31); 2396 else 2397 return false; 2398 2399 // Sanity check that our new mask is a subset of the demanded mask. 2400 assert(NewMask.isSubsetOf(ExpandedMask)); 2401 2402 // If we aren't changing the mask, just return true to keep it and prevent 2403 // the caller from optimizing. 2404 if (NewMask == Mask) 2405 return true; 2406 2407 // Replace the constant with the new mask. 2408 SDLoc DL(Op); 2409 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 2410 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 2411 return TLO.CombineTo(Op, NewOp); 2412 } 2413 2414 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2415 KnownBits &Known, 2416 const APInt &DemandedElts, 2417 const SelectionDAG &DAG, 2418 unsigned Depth) const { 2419 unsigned BitWidth = Known.getBitWidth(); 2420 unsigned Opc = Op.getOpcode(); 2421 assert((Opc >= ISD::BUILTIN_OP_END || 2422 Opc == ISD::INTRINSIC_WO_CHAIN || 2423 Opc == ISD::INTRINSIC_W_CHAIN || 2424 Opc == ISD::INTRINSIC_VOID) && 2425 "Should use MaskedValueIsZero if you don't know whether Op" 2426 " is a target node!"); 2427 2428 Known.resetAll(); 2429 switch (Opc) { 2430 default: break; 2431 case RISCVISD::REMUW: { 2432 KnownBits Known2; 2433 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2434 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2435 // We only care about the lower 32 bits. 2436 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 2437 // Restore the original width by sign extending. 2438 Known = Known.sext(BitWidth); 2439 break; 2440 } 2441 case RISCVISD::DIVUW: { 2442 KnownBits Known2; 2443 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2444 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2445 // We only care about the lower 32 bits. 2446 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 2447 // Restore the original width by sign extending. 2448 Known = Known.sext(BitWidth); 2449 break; 2450 } 2451 case RISCVISD::READ_VLENB: 2452 // We assume VLENB is at least 8 bytes. 2453 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 2454 Known.Zero.setLowBits(3); 2455 break; 2456 } 2457 } 2458 2459 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 2460 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 2461 unsigned Depth) const { 2462 switch (Op.getOpcode()) { 2463 default: 2464 break; 2465 case RISCVISD::SLLW: 2466 case RISCVISD::SRAW: 2467 case RISCVISD::SRLW: 2468 case RISCVISD::DIVW: 2469 case RISCVISD::DIVUW: 2470 case RISCVISD::REMUW: 2471 case RISCVISD::ROLW: 2472 case RISCVISD::RORW: 2473 case RISCVISD::GREVIW: 2474 case RISCVISD::GORCIW: 2475 case RISCVISD::FSLW: 2476 case RISCVISD::FSRW: 2477 // TODO: As the result is sign-extended, this is conservatively correct. A 2478 // more precise answer could be calculated for SRAW depending on known 2479 // bits in the shift amount. 2480 return 33; 2481 case RISCVISD::VMV_X_S: 2482 // The number of sign bits of the scalar result is computed by obtaining the 2483 // element type of the input vector operand, subtracting its width from the 2484 // XLEN, and then adding one (sign bit within the element type). If the 2485 // element type is wider than XLen, the least-significant XLEN bits are 2486 // taken. 2487 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 2488 return 1; 2489 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 2490 } 2491 2492 return 1; 2493 } 2494 2495 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 2496 MachineBasicBlock *BB) { 2497 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 2498 2499 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 2500 // Should the count have wrapped while it was being read, we need to try 2501 // again. 2502 // ... 2503 // read: 2504 // rdcycleh x3 # load high word of cycle 2505 // rdcycle x2 # load low word of cycle 2506 // rdcycleh x4 # load high word of cycle 2507 // bne x3, x4, read # check if high word reads match, otherwise try again 2508 // ... 2509 2510 MachineFunction &MF = *BB->getParent(); 2511 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2512 MachineFunction::iterator It = ++BB->getIterator(); 2513 2514 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2515 MF.insert(It, LoopMBB); 2516 2517 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2518 MF.insert(It, DoneMBB); 2519 2520 // Transfer the remainder of BB and its successor edges to DoneMBB. 2521 DoneMBB->splice(DoneMBB->begin(), BB, 2522 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 2523 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 2524 2525 BB->addSuccessor(LoopMBB); 2526 2527 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2528 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2529 Register LoReg = MI.getOperand(0).getReg(); 2530 Register HiReg = MI.getOperand(1).getReg(); 2531 DebugLoc DL = MI.getDebugLoc(); 2532 2533 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2534 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 2535 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2536 .addReg(RISCV::X0); 2537 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 2538 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 2539 .addReg(RISCV::X0); 2540 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 2541 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2542 .addReg(RISCV::X0); 2543 2544 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 2545 .addReg(HiReg) 2546 .addReg(ReadAgainReg) 2547 .addMBB(LoopMBB); 2548 2549 LoopMBB->addSuccessor(LoopMBB); 2550 LoopMBB->addSuccessor(DoneMBB); 2551 2552 MI.eraseFromParent(); 2553 2554 return DoneMBB; 2555 } 2556 2557 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 2558 MachineBasicBlock *BB) { 2559 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 2560 2561 MachineFunction &MF = *BB->getParent(); 2562 DebugLoc DL = MI.getDebugLoc(); 2563 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2564 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2565 Register LoReg = MI.getOperand(0).getReg(); 2566 Register HiReg = MI.getOperand(1).getReg(); 2567 Register SrcReg = MI.getOperand(2).getReg(); 2568 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 2569 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2570 2571 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 2572 RI); 2573 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2574 MachineMemOperand *MMOLo = 2575 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 2576 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2577 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 2578 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 2579 .addFrameIndex(FI) 2580 .addImm(0) 2581 .addMemOperand(MMOLo); 2582 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 2583 .addFrameIndex(FI) 2584 .addImm(4) 2585 .addMemOperand(MMOHi); 2586 MI.eraseFromParent(); // The pseudo instruction is gone now. 2587 return BB; 2588 } 2589 2590 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 2591 MachineBasicBlock *BB) { 2592 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 2593 "Unexpected instruction"); 2594 2595 MachineFunction &MF = *BB->getParent(); 2596 DebugLoc DL = MI.getDebugLoc(); 2597 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2598 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2599 Register DstReg = MI.getOperand(0).getReg(); 2600 Register LoReg = MI.getOperand(1).getReg(); 2601 Register HiReg = MI.getOperand(2).getReg(); 2602 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 2603 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2604 2605 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2606 MachineMemOperand *MMOLo = 2607 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 2608 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2609 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 2610 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2611 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 2612 .addFrameIndex(FI) 2613 .addImm(0) 2614 .addMemOperand(MMOLo); 2615 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2616 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 2617 .addFrameIndex(FI) 2618 .addImm(4) 2619 .addMemOperand(MMOHi); 2620 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 2621 MI.eraseFromParent(); // The pseudo instruction is gone now. 2622 return BB; 2623 } 2624 2625 static bool isSelectPseudo(MachineInstr &MI) { 2626 switch (MI.getOpcode()) { 2627 default: 2628 return false; 2629 case RISCV::Select_GPR_Using_CC_GPR: 2630 case RISCV::Select_FPR16_Using_CC_GPR: 2631 case RISCV::Select_FPR32_Using_CC_GPR: 2632 case RISCV::Select_FPR64_Using_CC_GPR: 2633 return true; 2634 } 2635 } 2636 2637 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 2638 MachineBasicBlock *BB) { 2639 // To "insert" Select_* instructions, we actually have to insert the triangle 2640 // control-flow pattern. The incoming instructions know the destination vreg 2641 // to set, the condition code register to branch on, the true/false values to 2642 // select between, and the condcode to use to select the appropriate branch. 2643 // 2644 // We produce the following control flow: 2645 // HeadMBB 2646 // | \ 2647 // | IfFalseMBB 2648 // | / 2649 // TailMBB 2650 // 2651 // When we find a sequence of selects we attempt to optimize their emission 2652 // by sharing the control flow. Currently we only handle cases where we have 2653 // multiple selects with the exact same condition (same LHS, RHS and CC). 2654 // The selects may be interleaved with other instructions if the other 2655 // instructions meet some requirements we deem safe: 2656 // - They are debug instructions. Otherwise, 2657 // - They do not have side-effects, do not access memory and their inputs do 2658 // not depend on the results of the select pseudo-instructions. 2659 // The TrueV/FalseV operands of the selects cannot depend on the result of 2660 // previous selects in the sequence. 2661 // These conditions could be further relaxed. See the X86 target for a 2662 // related approach and more information. 2663 Register LHS = MI.getOperand(1).getReg(); 2664 Register RHS = MI.getOperand(2).getReg(); 2665 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2666 2667 SmallVector<MachineInstr *, 4> SelectDebugValues; 2668 SmallSet<Register, 4> SelectDests; 2669 SelectDests.insert(MI.getOperand(0).getReg()); 2670 2671 MachineInstr *LastSelectPseudo = &MI; 2672 2673 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2674 SequenceMBBI != E; ++SequenceMBBI) { 2675 if (SequenceMBBI->isDebugInstr()) 2676 continue; 2677 else if (isSelectPseudo(*SequenceMBBI)) { 2678 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2679 SequenceMBBI->getOperand(2).getReg() != RHS || 2680 SequenceMBBI->getOperand(3).getImm() != CC || 2681 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2682 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2683 break; 2684 LastSelectPseudo = &*SequenceMBBI; 2685 SequenceMBBI->collectDebugValues(SelectDebugValues); 2686 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2687 } else { 2688 if (SequenceMBBI->hasUnmodeledSideEffects() || 2689 SequenceMBBI->mayLoadOrStore()) 2690 break; 2691 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2692 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2693 })) 2694 break; 2695 } 2696 } 2697 2698 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2699 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2700 DebugLoc DL = MI.getDebugLoc(); 2701 MachineFunction::iterator I = ++BB->getIterator(); 2702 2703 MachineBasicBlock *HeadMBB = BB; 2704 MachineFunction *F = BB->getParent(); 2705 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2706 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2707 2708 F->insert(I, IfFalseMBB); 2709 F->insert(I, TailMBB); 2710 2711 // Transfer debug instructions associated with the selects to TailMBB. 2712 for (MachineInstr *DebugInstr : SelectDebugValues) { 2713 TailMBB->push_back(DebugInstr->removeFromParent()); 2714 } 2715 2716 // Move all instructions after the sequence to TailMBB. 2717 TailMBB->splice(TailMBB->end(), HeadMBB, 2718 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2719 // Update machine-CFG edges by transferring all successors of the current 2720 // block to the new block which will contain the Phi nodes for the selects. 2721 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2722 // Set the successors for HeadMBB. 2723 HeadMBB->addSuccessor(IfFalseMBB); 2724 HeadMBB->addSuccessor(TailMBB); 2725 2726 // Insert appropriate branch. 2727 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2728 2729 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2730 .addReg(LHS) 2731 .addReg(RHS) 2732 .addMBB(TailMBB); 2733 2734 // IfFalseMBB just falls through to TailMBB. 2735 IfFalseMBB->addSuccessor(TailMBB); 2736 2737 // Create PHIs for all of the select pseudo-instructions. 2738 auto SelectMBBI = MI.getIterator(); 2739 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2740 auto InsertionPoint = TailMBB->begin(); 2741 while (SelectMBBI != SelectEnd) { 2742 auto Next = std::next(SelectMBBI); 2743 if (isSelectPseudo(*SelectMBBI)) { 2744 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2745 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2746 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2747 .addReg(SelectMBBI->getOperand(4).getReg()) 2748 .addMBB(HeadMBB) 2749 .addReg(SelectMBBI->getOperand(5).getReg()) 2750 .addMBB(IfFalseMBB); 2751 SelectMBBI->eraseFromParent(); 2752 } 2753 SelectMBBI = Next; 2754 } 2755 2756 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2757 return TailMBB; 2758 } 2759 2760 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2761 int VLIndex, unsigned SEWIndex, 2762 RISCVVLMUL VLMul, bool WritesElement0) { 2763 MachineFunction &MF = *BB->getParent(); 2764 DebugLoc DL = MI.getDebugLoc(); 2765 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2766 2767 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2768 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2769 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2770 2771 MachineRegisterInfo &MRI = MF.getRegInfo(); 2772 2773 // VL and VTYPE are alive here. 2774 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2775 2776 if (VLIndex >= 0) { 2777 // Set VL (rs1 != X0). 2778 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2779 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2780 .addReg(MI.getOperand(VLIndex).getReg()); 2781 } else 2782 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2783 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2784 .addReg(RISCV::X0, RegState::Kill); 2785 2786 // Default to tail agnostic unless the destination is tied to a source. In 2787 // that case the user would have some control over the tail values. The tail 2788 // policy is also ignored on instructions that only update element 0 like 2789 // vmv.s.x or reductions so use agnostic there to match the common case. 2790 // FIXME: This is conservatively correct, but we might want to detect that 2791 // the input is undefined. 2792 bool TailAgnostic = true; 2793 unsigned UseOpIdx; 2794 if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) { 2795 TailAgnostic = false; 2796 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 2797 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 2798 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 2799 if (UseMI && UseMI->isImplicitDef()) 2800 TailAgnostic = true; 2801 } 2802 2803 // For simplicity we reuse the vtype representation here. 2804 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 2805 /*TailAgnostic*/ TailAgnostic, 2806 /*MaskAgnostic*/ false)); 2807 2808 // Remove (now) redundant operands from pseudo 2809 MI.getOperand(SEWIndex).setImm(-1); 2810 if (VLIndex >= 0) { 2811 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2812 MI.getOperand(VLIndex).setIsKill(false); 2813 } 2814 2815 return BB; 2816 } 2817 2818 MachineBasicBlock * 2819 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2820 MachineBasicBlock *BB) const { 2821 uint64_t TSFlags = MI.getDesc().TSFlags; 2822 2823 if (TSFlags & RISCVII::HasSEWOpMask) { 2824 unsigned NumOperands = MI.getNumExplicitOperands(); 2825 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 2826 unsigned SEWIndex = NumOperands - 1; 2827 bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask; 2828 2829 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 2830 RISCVII::VLMulShift); 2831 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0); 2832 } 2833 2834 switch (MI.getOpcode()) { 2835 default: 2836 llvm_unreachable("Unexpected instr type to insert"); 2837 case RISCV::ReadCycleWide: 2838 assert(!Subtarget.is64Bit() && 2839 "ReadCycleWrite is only to be used on riscv32"); 2840 return emitReadCycleWidePseudo(MI, BB); 2841 case RISCV::Select_GPR_Using_CC_GPR: 2842 case RISCV::Select_FPR16_Using_CC_GPR: 2843 case RISCV::Select_FPR32_Using_CC_GPR: 2844 case RISCV::Select_FPR64_Using_CC_GPR: 2845 return emitSelectPseudo(MI, BB); 2846 case RISCV::BuildPairF64Pseudo: 2847 return emitBuildPairF64Pseudo(MI, BB); 2848 case RISCV::SplitF64Pseudo: 2849 return emitSplitF64Pseudo(MI, BB); 2850 } 2851 } 2852 2853 // Calling Convention Implementation. 2854 // The expectations for frontend ABI lowering vary from target to target. 2855 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2856 // details, but this is a longer term goal. For now, we simply try to keep the 2857 // role of the frontend as simple and well-defined as possible. The rules can 2858 // be summarised as: 2859 // * Never split up large scalar arguments. We handle them here. 2860 // * If a hardfloat calling convention is being used, and the struct may be 2861 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2862 // available, then pass as two separate arguments. If either the GPRs or FPRs 2863 // are exhausted, then pass according to the rule below. 2864 // * If a struct could never be passed in registers or directly in a stack 2865 // slot (as it is larger than 2*XLEN and the floating point rules don't 2866 // apply), then pass it using a pointer with the byval attribute. 2867 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2868 // word-sized array or a 2*XLEN scalar (depending on alignment). 2869 // * The frontend can determine whether a struct is returned by reference or 2870 // not based on its size and fields. If it will be returned by reference, the 2871 // frontend must modify the prototype so a pointer with the sret annotation is 2872 // passed as the first argument. This is not necessary for large scalar 2873 // returns. 2874 // * Struct return values and varargs should be coerced to structs containing 2875 // register-size fields in the same situations they would be for fixed 2876 // arguments. 2877 2878 static const MCPhysReg ArgGPRs[] = { 2879 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2880 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2881 }; 2882 static const MCPhysReg ArgFPR16s[] = { 2883 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2884 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2885 }; 2886 static const MCPhysReg ArgFPR32s[] = { 2887 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2888 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2889 }; 2890 static const MCPhysReg ArgFPR64s[] = { 2891 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2892 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2893 }; 2894 // This is an interim calling convention and it may be changed in the future. 2895 static const MCPhysReg ArgVRs[] = { 2896 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 2897 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 2898 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 2899 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 2900 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 2901 RISCV::V20M2, RISCV::V22M2}; 2902 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 2903 RISCV::V20M4}; 2904 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 2905 2906 // Pass a 2*XLEN argument that has been split into two XLEN values through 2907 // registers or the stack as necessary. 2908 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2909 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2910 MVT ValVT2, MVT LocVT2, 2911 ISD::ArgFlagsTy ArgFlags2) { 2912 unsigned XLenInBytes = XLen / 8; 2913 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2914 // At least one half can be passed via register. 2915 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2916 VA1.getLocVT(), CCValAssign::Full)); 2917 } else { 2918 // Both halves must be passed on the stack, with proper alignment. 2919 Align StackAlign = 2920 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2921 State.addLoc( 2922 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2923 State.AllocateStack(XLenInBytes, StackAlign), 2924 VA1.getLocVT(), CCValAssign::Full)); 2925 State.addLoc(CCValAssign::getMem( 2926 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2927 LocVT2, CCValAssign::Full)); 2928 return false; 2929 } 2930 2931 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2932 // The second half can also be passed via register. 2933 State.addLoc( 2934 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2935 } else { 2936 // The second half is passed via the stack, without additional alignment. 2937 State.addLoc(CCValAssign::getMem( 2938 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2939 LocVT2, CCValAssign::Full)); 2940 } 2941 2942 return false; 2943 } 2944 2945 // Implements the RISC-V calling convention. Returns true upon failure. 2946 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2947 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2948 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2949 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2950 Optional<unsigned> FirstMaskArgument) { 2951 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2952 assert(XLen == 32 || XLen == 64); 2953 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2954 2955 // Any return value split in to more than two values can't be returned 2956 // directly. 2957 if (IsRet && ValNo > 1) 2958 return true; 2959 2960 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2961 // variadic argument, or if no F16/F32 argument registers are available. 2962 bool UseGPRForF16_F32 = true; 2963 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2964 // variadic argument, or if no F64 argument registers are available. 2965 bool UseGPRForF64 = true; 2966 2967 switch (ABI) { 2968 default: 2969 llvm_unreachable("Unexpected ABI"); 2970 case RISCVABI::ABI_ILP32: 2971 case RISCVABI::ABI_LP64: 2972 break; 2973 case RISCVABI::ABI_ILP32F: 2974 case RISCVABI::ABI_LP64F: 2975 UseGPRForF16_F32 = !IsFixed; 2976 break; 2977 case RISCVABI::ABI_ILP32D: 2978 case RISCVABI::ABI_LP64D: 2979 UseGPRForF16_F32 = !IsFixed; 2980 UseGPRForF64 = !IsFixed; 2981 break; 2982 } 2983 2984 // FPR16, FPR32, and FPR64 alias each other. 2985 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2986 UseGPRForF16_F32 = true; 2987 UseGPRForF64 = true; 2988 } 2989 2990 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2991 // similar local variables rather than directly checking against the target 2992 // ABI. 2993 2994 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2995 LocVT = XLenVT; 2996 LocInfo = CCValAssign::BCvt; 2997 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2998 LocVT = MVT::i64; 2999 LocInfo = CCValAssign::BCvt; 3000 } 3001 3002 // If this is a variadic argument, the RISC-V calling convention requires 3003 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 3004 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 3005 // be used regardless of whether the original argument was split during 3006 // legalisation or not. The argument will not be passed by registers if the 3007 // original type is larger than 2*XLEN, so the register alignment rule does 3008 // not apply. 3009 unsigned TwoXLenInBytes = (2 * XLen) / 8; 3010 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 3011 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 3012 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 3013 // Skip 'odd' register if necessary. 3014 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 3015 State.AllocateReg(ArgGPRs); 3016 } 3017 3018 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 3019 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 3020 State.getPendingArgFlags(); 3021 3022 assert(PendingLocs.size() == PendingArgFlags.size() && 3023 "PendingLocs and PendingArgFlags out of sync"); 3024 3025 // Handle passing f64 on RV32D with a soft float ABI or when floating point 3026 // registers are exhausted. 3027 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 3028 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 3029 "Can't lower f64 if it is split"); 3030 // Depending on available argument GPRS, f64 may be passed in a pair of 3031 // GPRs, split between a GPR and the stack, or passed completely on the 3032 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 3033 // cases. 3034 Register Reg = State.AllocateReg(ArgGPRs); 3035 LocVT = MVT::i32; 3036 if (!Reg) { 3037 unsigned StackOffset = State.AllocateStack(8, Align(8)); 3038 State.addLoc( 3039 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 3040 return false; 3041 } 3042 if (!State.AllocateReg(ArgGPRs)) 3043 State.AllocateStack(4, Align(4)); 3044 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3045 return false; 3046 } 3047 3048 // Split arguments might be passed indirectly, so keep track of the pending 3049 // values. 3050 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 3051 LocVT = XLenVT; 3052 LocInfo = CCValAssign::Indirect; 3053 PendingLocs.push_back( 3054 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 3055 PendingArgFlags.push_back(ArgFlags); 3056 if (!ArgFlags.isSplitEnd()) { 3057 return false; 3058 } 3059 } 3060 3061 // If the split argument only had two elements, it should be passed directly 3062 // in registers or on the stack. 3063 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 3064 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 3065 // Apply the normal calling convention rules to the first half of the 3066 // split argument. 3067 CCValAssign VA = PendingLocs[0]; 3068 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 3069 PendingLocs.clear(); 3070 PendingArgFlags.clear(); 3071 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 3072 ArgFlags); 3073 } 3074 3075 // Allocate to a register if possible, or else a stack slot. 3076 Register Reg; 3077 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 3078 Reg = State.AllocateReg(ArgFPR16s); 3079 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 3080 Reg = State.AllocateReg(ArgFPR32s); 3081 else if (ValVT == MVT::f64 && !UseGPRForF64) 3082 Reg = State.AllocateReg(ArgFPR64s); 3083 else if (ValVT.isScalableVector()) { 3084 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 3085 if (RC == &RISCV::VRRegClass) { 3086 // Assign the first mask argument to V0. 3087 // This is an interim calling convention and it may be changed in the 3088 // future. 3089 if (FirstMaskArgument.hasValue() && 3090 ValNo == FirstMaskArgument.getValue()) { 3091 Reg = State.AllocateReg(RISCV::V0); 3092 } else { 3093 Reg = State.AllocateReg(ArgVRs); 3094 } 3095 } else if (RC == &RISCV::VRM2RegClass) { 3096 Reg = State.AllocateReg(ArgVRM2s); 3097 } else if (RC == &RISCV::VRM4RegClass) { 3098 Reg = State.AllocateReg(ArgVRM4s); 3099 } else if (RC == &RISCV::VRM8RegClass) { 3100 Reg = State.AllocateReg(ArgVRM8s); 3101 } else { 3102 llvm_unreachable("Unhandled class register for ValueType"); 3103 } 3104 if (!Reg) { 3105 LocInfo = CCValAssign::Indirect; 3106 // Try using a GPR to pass the address 3107 Reg = State.AllocateReg(ArgGPRs); 3108 LocVT = XLenVT; 3109 } 3110 } else 3111 Reg = State.AllocateReg(ArgGPRs); 3112 unsigned StackOffset = 3113 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 3114 3115 // If we reach this point and PendingLocs is non-empty, we must be at the 3116 // end of a split argument that must be passed indirectly. 3117 if (!PendingLocs.empty()) { 3118 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 3119 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 3120 3121 for (auto &It : PendingLocs) { 3122 if (Reg) 3123 It.convertToReg(Reg); 3124 else 3125 It.convertToMem(StackOffset); 3126 State.addLoc(It); 3127 } 3128 PendingLocs.clear(); 3129 PendingArgFlags.clear(); 3130 return false; 3131 } 3132 3133 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 3134 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 3135 "Expected an XLenVT or scalable vector types at this stage"); 3136 3137 if (Reg) { 3138 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3139 return false; 3140 } 3141 3142 // When a floating-point value is passed on the stack, no bit-conversion is 3143 // needed. 3144 if (ValVT.isFloatingPoint()) { 3145 LocVT = ValVT; 3146 LocInfo = CCValAssign::Full; 3147 } 3148 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 3149 return false; 3150 } 3151 3152 template <typename ArgTy> 3153 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 3154 for (const auto &ArgIdx : enumerate(Args)) { 3155 MVT ArgVT = ArgIdx.value().VT; 3156 if (ArgVT.isScalableVector() && 3157 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 3158 return ArgIdx.index(); 3159 } 3160 return None; 3161 } 3162 3163 void RISCVTargetLowering::analyzeInputArgs( 3164 MachineFunction &MF, CCState &CCInfo, 3165 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 3166 unsigned NumArgs = Ins.size(); 3167 FunctionType *FType = MF.getFunction().getFunctionType(); 3168 3169 Optional<unsigned> FirstMaskArgument; 3170 if (Subtarget.hasStdExtV()) 3171 FirstMaskArgument = preAssignMask(Ins); 3172 3173 for (unsigned i = 0; i != NumArgs; ++i) { 3174 MVT ArgVT = Ins[i].VT; 3175 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 3176 3177 Type *ArgTy = nullptr; 3178 if (IsRet) 3179 ArgTy = FType->getReturnType(); 3180 else if (Ins[i].isOrigArg()) 3181 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 3182 3183 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3184 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3185 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 3186 FirstMaskArgument)) { 3187 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 3188 << EVT(ArgVT).getEVTString() << '\n'); 3189 llvm_unreachable(nullptr); 3190 } 3191 } 3192 } 3193 3194 void RISCVTargetLowering::analyzeOutputArgs( 3195 MachineFunction &MF, CCState &CCInfo, 3196 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 3197 CallLoweringInfo *CLI) const { 3198 unsigned NumArgs = Outs.size(); 3199 3200 Optional<unsigned> FirstMaskArgument; 3201 if (Subtarget.hasStdExtV()) 3202 FirstMaskArgument = preAssignMask(Outs); 3203 3204 for (unsigned i = 0; i != NumArgs; i++) { 3205 MVT ArgVT = Outs[i].VT; 3206 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3207 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 3208 3209 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3210 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3211 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 3212 FirstMaskArgument)) { 3213 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 3214 << EVT(ArgVT).getEVTString() << "\n"); 3215 llvm_unreachable(nullptr); 3216 } 3217 } 3218 } 3219 3220 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 3221 // values. 3222 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 3223 const CCValAssign &VA, const SDLoc &DL) { 3224 switch (VA.getLocInfo()) { 3225 default: 3226 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3227 case CCValAssign::Full: 3228 break; 3229 case CCValAssign::BCvt: 3230 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3231 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 3232 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3233 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 3234 else 3235 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3236 break; 3237 } 3238 return Val; 3239 } 3240 3241 // The caller is responsible for loading the full value if the argument is 3242 // passed with CCValAssign::Indirect. 3243 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 3244 const CCValAssign &VA, const SDLoc &DL, 3245 const RISCVTargetLowering &TLI) { 3246 MachineFunction &MF = DAG.getMachineFunction(); 3247 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3248 EVT LocVT = VA.getLocVT(); 3249 SDValue Val; 3250 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 3251 Register VReg = RegInfo.createVirtualRegister(RC); 3252 RegInfo.addLiveIn(VA.getLocReg(), VReg); 3253 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 3254 3255 if (VA.getLocInfo() == CCValAssign::Indirect) 3256 return Val; 3257 3258 return convertLocVTToValVT(DAG, Val, VA, DL); 3259 } 3260 3261 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 3262 const CCValAssign &VA, const SDLoc &DL) { 3263 EVT LocVT = VA.getLocVT(); 3264 3265 switch (VA.getLocInfo()) { 3266 default: 3267 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3268 case CCValAssign::Full: 3269 break; 3270 case CCValAssign::BCvt: 3271 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3272 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 3273 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3274 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 3275 else 3276 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 3277 break; 3278 } 3279 return Val; 3280 } 3281 3282 // The caller is responsible for loading the full value if the argument is 3283 // passed with CCValAssign::Indirect. 3284 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 3285 const CCValAssign &VA, const SDLoc &DL) { 3286 MachineFunction &MF = DAG.getMachineFunction(); 3287 MachineFrameInfo &MFI = MF.getFrameInfo(); 3288 EVT LocVT = VA.getLocVT(); 3289 EVT ValVT = VA.getValVT(); 3290 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 3291 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 3292 VA.getLocMemOffset(), /*Immutable=*/true); 3293 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3294 SDValue Val; 3295 3296 ISD::LoadExtType ExtType; 3297 switch (VA.getLocInfo()) { 3298 default: 3299 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3300 case CCValAssign::Full: 3301 case CCValAssign::Indirect: 3302 case CCValAssign::BCvt: 3303 ExtType = ISD::NON_EXTLOAD; 3304 break; 3305 } 3306 Val = DAG.getExtLoad( 3307 ExtType, DL, LocVT, Chain, FIN, 3308 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 3309 return Val; 3310 } 3311 3312 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 3313 const CCValAssign &VA, const SDLoc &DL) { 3314 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 3315 "Unexpected VA"); 3316 MachineFunction &MF = DAG.getMachineFunction(); 3317 MachineFrameInfo &MFI = MF.getFrameInfo(); 3318 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3319 3320 if (VA.isMemLoc()) { 3321 // f64 is passed on the stack. 3322 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 3323 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3324 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 3325 MachinePointerInfo::getFixedStack(MF, FI)); 3326 } 3327 3328 assert(VA.isRegLoc() && "Expected register VA assignment"); 3329 3330 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3331 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 3332 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 3333 SDValue Hi; 3334 if (VA.getLocReg() == RISCV::X17) { 3335 // Second half of f64 is passed on the stack. 3336 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 3337 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3338 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 3339 MachinePointerInfo::getFixedStack(MF, FI)); 3340 } else { 3341 // Second half of f64 is passed in another GPR. 3342 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3343 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 3344 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 3345 } 3346 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 3347 } 3348 3349 // FastCC has less than 1% performance improvement for some particular 3350 // benchmark. But theoretically, it may has benenfit for some cases. 3351 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 3352 CCValAssign::LocInfo LocInfo, 3353 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3354 3355 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3356 // X5 and X6 might be used for save-restore libcall. 3357 static const MCPhysReg GPRList[] = { 3358 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 3359 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 3360 RISCV::X29, RISCV::X30, RISCV::X31}; 3361 if (unsigned Reg = State.AllocateReg(GPRList)) { 3362 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3363 return false; 3364 } 3365 } 3366 3367 if (LocVT == MVT::f16) { 3368 static const MCPhysReg FPR16List[] = { 3369 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 3370 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 3371 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 3372 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 3373 if (unsigned Reg = State.AllocateReg(FPR16List)) { 3374 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3375 return false; 3376 } 3377 } 3378 3379 if (LocVT == MVT::f32) { 3380 static const MCPhysReg FPR32List[] = { 3381 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 3382 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 3383 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 3384 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 3385 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3386 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3387 return false; 3388 } 3389 } 3390 3391 if (LocVT == MVT::f64) { 3392 static const MCPhysReg FPR64List[] = { 3393 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 3394 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 3395 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 3396 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 3397 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3398 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3399 return false; 3400 } 3401 } 3402 3403 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 3404 unsigned Offset4 = State.AllocateStack(4, Align(4)); 3405 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 3406 return false; 3407 } 3408 3409 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 3410 unsigned Offset5 = State.AllocateStack(8, Align(8)); 3411 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 3412 return false; 3413 } 3414 3415 return true; // CC didn't match. 3416 } 3417 3418 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 3419 CCValAssign::LocInfo LocInfo, 3420 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3421 3422 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3423 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 3424 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 3425 static const MCPhysReg GPRList[] = { 3426 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 3427 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 3428 if (unsigned Reg = State.AllocateReg(GPRList)) { 3429 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3430 return false; 3431 } 3432 } 3433 3434 if (LocVT == MVT::f32) { 3435 // Pass in STG registers: F1, ..., F6 3436 // fs0 ... fs5 3437 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 3438 RISCV::F18_F, RISCV::F19_F, 3439 RISCV::F20_F, RISCV::F21_F}; 3440 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3441 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3442 return false; 3443 } 3444 } 3445 3446 if (LocVT == MVT::f64) { 3447 // Pass in STG registers: D1, ..., D6 3448 // fs6 ... fs11 3449 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 3450 RISCV::F24_D, RISCV::F25_D, 3451 RISCV::F26_D, RISCV::F27_D}; 3452 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3453 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3454 return false; 3455 } 3456 } 3457 3458 report_fatal_error("No registers left in GHC calling convention"); 3459 return true; 3460 } 3461 3462 // Transform physical registers into virtual registers. 3463 SDValue RISCVTargetLowering::LowerFormalArguments( 3464 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3465 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3466 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3467 3468 MachineFunction &MF = DAG.getMachineFunction(); 3469 3470 switch (CallConv) { 3471 default: 3472 report_fatal_error("Unsupported calling convention"); 3473 case CallingConv::C: 3474 case CallingConv::Fast: 3475 break; 3476 case CallingConv::GHC: 3477 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 3478 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 3479 report_fatal_error( 3480 "GHC calling convention requires the F and D instruction set extensions"); 3481 } 3482 3483 const Function &Func = MF.getFunction(); 3484 if (Func.hasFnAttribute("interrupt")) { 3485 if (!Func.arg_empty()) 3486 report_fatal_error( 3487 "Functions with the interrupt attribute cannot have arguments!"); 3488 3489 StringRef Kind = 3490 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3491 3492 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 3493 report_fatal_error( 3494 "Function interrupt attribute argument not supported!"); 3495 } 3496 3497 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3498 MVT XLenVT = Subtarget.getXLenVT(); 3499 unsigned XLenInBytes = Subtarget.getXLen() / 8; 3500 // Used with vargs to acumulate store chains. 3501 std::vector<SDValue> OutChains; 3502 3503 // Assign locations to all of the incoming arguments. 3504 SmallVector<CCValAssign, 16> ArgLocs; 3505 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3506 3507 if (CallConv == CallingConv::Fast) 3508 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 3509 else if (CallConv == CallingConv::GHC) 3510 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 3511 else 3512 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 3513 3514 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3515 CCValAssign &VA = ArgLocs[i]; 3516 SDValue ArgValue; 3517 // Passing f64 on RV32D with a soft float ABI must be handled as a special 3518 // case. 3519 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 3520 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 3521 else if (VA.isRegLoc()) 3522 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 3523 else 3524 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 3525 3526 if (VA.getLocInfo() == CCValAssign::Indirect) { 3527 // If the original argument was split and passed by reference (e.g. i128 3528 // on RV32), we need to load all parts of it here (using the same 3529 // address). 3530 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 3531 MachinePointerInfo())); 3532 unsigned ArgIndex = Ins[i].OrigArgIndex; 3533 assert(Ins[i].PartOffset == 0); 3534 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 3535 CCValAssign &PartVA = ArgLocs[i + 1]; 3536 unsigned PartOffset = Ins[i + 1].PartOffset; 3537 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 3538 DAG.getIntPtrConstant(PartOffset, DL)); 3539 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 3540 MachinePointerInfo())); 3541 ++i; 3542 } 3543 continue; 3544 } 3545 InVals.push_back(ArgValue); 3546 } 3547 3548 if (IsVarArg) { 3549 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 3550 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 3551 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 3552 MachineFrameInfo &MFI = MF.getFrameInfo(); 3553 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3554 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 3555 3556 // Offset of the first variable argument from stack pointer, and size of 3557 // the vararg save area. For now, the varargs save area is either zero or 3558 // large enough to hold a0-a7. 3559 int VaArgOffset, VarArgsSaveSize; 3560 3561 // If all registers are allocated, then all varargs must be passed on the 3562 // stack and we don't need to save any argregs. 3563 if (ArgRegs.size() == Idx) { 3564 VaArgOffset = CCInfo.getNextStackOffset(); 3565 VarArgsSaveSize = 0; 3566 } else { 3567 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 3568 VaArgOffset = -VarArgsSaveSize; 3569 } 3570 3571 // Record the frame index of the first variable argument 3572 // which is a value necessary to VASTART. 3573 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3574 RVFI->setVarArgsFrameIndex(FI); 3575 3576 // If saving an odd number of registers then create an extra stack slot to 3577 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 3578 // offsets to even-numbered registered remain 2*XLEN-aligned. 3579 if (Idx % 2) { 3580 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 3581 VarArgsSaveSize += XLenInBytes; 3582 } 3583 3584 // Copy the integer registers that may have been used for passing varargs 3585 // to the vararg save area. 3586 for (unsigned I = Idx; I < ArgRegs.size(); 3587 ++I, VaArgOffset += XLenInBytes) { 3588 const Register Reg = RegInfo.createVirtualRegister(RC); 3589 RegInfo.addLiveIn(ArgRegs[I], Reg); 3590 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 3591 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3592 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3593 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3594 MachinePointerInfo::getFixedStack(MF, FI)); 3595 cast<StoreSDNode>(Store.getNode()) 3596 ->getMemOperand() 3597 ->setValue((Value *)nullptr); 3598 OutChains.push_back(Store); 3599 } 3600 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 3601 } 3602 3603 // All stores are grouped in one node to allow the matching between 3604 // the size of Ins and InVals. This only happens for vararg functions. 3605 if (!OutChains.empty()) { 3606 OutChains.push_back(Chain); 3607 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3608 } 3609 3610 return Chain; 3611 } 3612 3613 /// isEligibleForTailCallOptimization - Check whether the call is eligible 3614 /// for tail call optimization. 3615 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 3616 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 3617 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 3618 const SmallVector<CCValAssign, 16> &ArgLocs) const { 3619 3620 auto &Callee = CLI.Callee; 3621 auto CalleeCC = CLI.CallConv; 3622 auto &Outs = CLI.Outs; 3623 auto &Caller = MF.getFunction(); 3624 auto CallerCC = Caller.getCallingConv(); 3625 3626 // Exception-handling functions need a special set of instructions to 3627 // indicate a return to the hardware. Tail-calling another function would 3628 // probably break this. 3629 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 3630 // should be expanded as new function attributes are introduced. 3631 if (Caller.hasFnAttribute("interrupt")) 3632 return false; 3633 3634 // Do not tail call opt if the stack is used to pass parameters. 3635 if (CCInfo.getNextStackOffset() != 0) 3636 return false; 3637 3638 // Do not tail call opt if any parameters need to be passed indirectly. 3639 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 3640 // passed indirectly. So the address of the value will be passed in a 3641 // register, or if not available, then the address is put on the stack. In 3642 // order to pass indirectly, space on the stack often needs to be allocated 3643 // in order to store the value. In this case the CCInfo.getNextStackOffset() 3644 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 3645 // are passed CCValAssign::Indirect. 3646 for (auto &VA : ArgLocs) 3647 if (VA.getLocInfo() == CCValAssign::Indirect) 3648 return false; 3649 3650 // Do not tail call opt if either caller or callee uses struct return 3651 // semantics. 3652 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3653 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3654 if (IsCallerStructRet || IsCalleeStructRet) 3655 return false; 3656 3657 // Externally-defined functions with weak linkage should not be 3658 // tail-called. The behaviour of branch instructions in this situation (as 3659 // used for tail calls) is implementation-defined, so we cannot rely on the 3660 // linker replacing the tail call with a return. 3661 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3662 const GlobalValue *GV = G->getGlobal(); 3663 if (GV->hasExternalWeakLinkage()) 3664 return false; 3665 } 3666 3667 // The callee has to preserve all registers the caller needs to preserve. 3668 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3669 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3670 if (CalleeCC != CallerCC) { 3671 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3672 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3673 return false; 3674 } 3675 3676 // Byval parameters hand the function a pointer directly into the stack area 3677 // we want to reuse during a tail call. Working around this *is* possible 3678 // but less efficient and uglier in LowerCall. 3679 for (auto &Arg : Outs) 3680 if (Arg.Flags.isByVal()) 3681 return false; 3682 3683 return true; 3684 } 3685 3686 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3687 // and output parameter nodes. 3688 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3689 SmallVectorImpl<SDValue> &InVals) const { 3690 SelectionDAG &DAG = CLI.DAG; 3691 SDLoc &DL = CLI.DL; 3692 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3693 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3694 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3695 SDValue Chain = CLI.Chain; 3696 SDValue Callee = CLI.Callee; 3697 bool &IsTailCall = CLI.IsTailCall; 3698 CallingConv::ID CallConv = CLI.CallConv; 3699 bool IsVarArg = CLI.IsVarArg; 3700 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3701 MVT XLenVT = Subtarget.getXLenVT(); 3702 3703 MachineFunction &MF = DAG.getMachineFunction(); 3704 3705 // Analyze the operands of the call, assigning locations to each operand. 3706 SmallVector<CCValAssign, 16> ArgLocs; 3707 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3708 3709 if (CallConv == CallingConv::Fast) 3710 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3711 else if (CallConv == CallingConv::GHC) 3712 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3713 else 3714 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3715 3716 // Check if it's really possible to do a tail call. 3717 if (IsTailCall) 3718 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3719 3720 if (IsTailCall) 3721 ++NumTailCalls; 3722 else if (CLI.CB && CLI.CB->isMustTailCall()) 3723 report_fatal_error("failed to perform tail call elimination on a call " 3724 "site marked musttail"); 3725 3726 // Get a count of how many bytes are to be pushed on the stack. 3727 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3728 3729 // Create local copies for byval args 3730 SmallVector<SDValue, 8> ByValArgs; 3731 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3732 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3733 if (!Flags.isByVal()) 3734 continue; 3735 3736 SDValue Arg = OutVals[i]; 3737 unsigned Size = Flags.getByValSize(); 3738 Align Alignment = Flags.getNonZeroByValAlign(); 3739 3740 int FI = 3741 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3742 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3743 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3744 3745 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3746 /*IsVolatile=*/false, 3747 /*AlwaysInline=*/false, IsTailCall, 3748 MachinePointerInfo(), MachinePointerInfo()); 3749 ByValArgs.push_back(FIPtr); 3750 } 3751 3752 if (!IsTailCall) 3753 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3754 3755 // Copy argument values to their designated locations. 3756 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3757 SmallVector<SDValue, 8> MemOpChains; 3758 SDValue StackPtr; 3759 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3760 CCValAssign &VA = ArgLocs[i]; 3761 SDValue ArgValue = OutVals[i]; 3762 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3763 3764 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3765 bool IsF64OnRV32DSoftABI = 3766 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3767 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3768 SDValue SplitF64 = DAG.getNode( 3769 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3770 SDValue Lo = SplitF64.getValue(0); 3771 SDValue Hi = SplitF64.getValue(1); 3772 3773 Register RegLo = VA.getLocReg(); 3774 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3775 3776 if (RegLo == RISCV::X17) { 3777 // Second half of f64 is passed on the stack. 3778 // Work out the address of the stack slot. 3779 if (!StackPtr.getNode()) 3780 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3781 // Emit the store. 3782 MemOpChains.push_back( 3783 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3784 } else { 3785 // Second half of f64 is passed in another GPR. 3786 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3787 Register RegHigh = RegLo + 1; 3788 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3789 } 3790 continue; 3791 } 3792 3793 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3794 // as any other MemLoc. 3795 3796 // Promote the value if needed. 3797 // For now, only handle fully promoted and indirect arguments. 3798 if (VA.getLocInfo() == CCValAssign::Indirect) { 3799 // Store the argument in a stack slot and pass its address. 3800 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3801 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3802 MemOpChains.push_back( 3803 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3804 MachinePointerInfo::getFixedStack(MF, FI))); 3805 // If the original argument was split (e.g. i128), we need 3806 // to store all parts of it here (and pass just one address). 3807 unsigned ArgIndex = Outs[i].OrigArgIndex; 3808 assert(Outs[i].PartOffset == 0); 3809 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3810 SDValue PartValue = OutVals[i + 1]; 3811 unsigned PartOffset = Outs[i + 1].PartOffset; 3812 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3813 DAG.getIntPtrConstant(PartOffset, DL)); 3814 MemOpChains.push_back( 3815 DAG.getStore(Chain, DL, PartValue, Address, 3816 MachinePointerInfo::getFixedStack(MF, FI))); 3817 ++i; 3818 } 3819 ArgValue = SpillSlot; 3820 } else { 3821 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3822 } 3823 3824 // Use local copy if it is a byval arg. 3825 if (Flags.isByVal()) 3826 ArgValue = ByValArgs[j++]; 3827 3828 if (VA.isRegLoc()) { 3829 // Queue up the argument copies and emit them at the end. 3830 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3831 } else { 3832 assert(VA.isMemLoc() && "Argument not register or memory"); 3833 assert(!IsTailCall && "Tail call not allowed if stack is used " 3834 "for passing parameters"); 3835 3836 // Work out the address of the stack slot. 3837 if (!StackPtr.getNode()) 3838 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3839 SDValue Address = 3840 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3841 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3842 3843 // Emit the store. 3844 MemOpChains.push_back( 3845 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3846 } 3847 } 3848 3849 // Join the stores, which are independent of one another. 3850 if (!MemOpChains.empty()) 3851 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3852 3853 SDValue Glue; 3854 3855 // Build a sequence of copy-to-reg nodes, chained and glued together. 3856 for (auto &Reg : RegsToPass) { 3857 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3858 Glue = Chain.getValue(1); 3859 } 3860 3861 // Validate that none of the argument registers have been marked as 3862 // reserved, if so report an error. Do the same for the return address if this 3863 // is not a tailcall. 3864 validateCCReservedRegs(RegsToPass, MF); 3865 if (!IsTailCall && 3866 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3867 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3868 MF.getFunction(), 3869 "Return address register required, but has been reserved."}); 3870 3871 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3872 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3873 // split it and then direct call can be matched by PseudoCALL. 3874 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3875 const GlobalValue *GV = S->getGlobal(); 3876 3877 unsigned OpFlags = RISCVII::MO_CALL; 3878 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3879 OpFlags = RISCVII::MO_PLT; 3880 3881 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3882 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3883 unsigned OpFlags = RISCVII::MO_CALL; 3884 3885 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3886 nullptr)) 3887 OpFlags = RISCVII::MO_PLT; 3888 3889 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3890 } 3891 3892 // The first call operand is the chain and the second is the target address. 3893 SmallVector<SDValue, 8> Ops; 3894 Ops.push_back(Chain); 3895 Ops.push_back(Callee); 3896 3897 // Add argument registers to the end of the list so that they are 3898 // known live into the call. 3899 for (auto &Reg : RegsToPass) 3900 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3901 3902 if (!IsTailCall) { 3903 // Add a register mask operand representing the call-preserved registers. 3904 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3905 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3906 assert(Mask && "Missing call preserved mask for calling convention"); 3907 Ops.push_back(DAG.getRegisterMask(Mask)); 3908 } 3909 3910 // Glue the call to the argument copies, if any. 3911 if (Glue.getNode()) 3912 Ops.push_back(Glue); 3913 3914 // Emit the call. 3915 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3916 3917 if (IsTailCall) { 3918 MF.getFrameInfo().setHasTailCall(); 3919 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3920 } 3921 3922 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3923 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3924 Glue = Chain.getValue(1); 3925 3926 // Mark the end of the call, which is glued to the call itself. 3927 Chain = DAG.getCALLSEQ_END(Chain, 3928 DAG.getConstant(NumBytes, DL, PtrVT, true), 3929 DAG.getConstant(0, DL, PtrVT, true), 3930 Glue, DL); 3931 Glue = Chain.getValue(1); 3932 3933 // Assign locations to each value returned by this call. 3934 SmallVector<CCValAssign, 16> RVLocs; 3935 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3936 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3937 3938 // Copy all of the result registers out of their specified physreg. 3939 for (auto &VA : RVLocs) { 3940 // Copy the value out 3941 SDValue RetValue = 3942 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3943 // Glue the RetValue to the end of the call sequence 3944 Chain = RetValue.getValue(1); 3945 Glue = RetValue.getValue(2); 3946 3947 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3948 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3949 SDValue RetValue2 = 3950 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3951 Chain = RetValue2.getValue(1); 3952 Glue = RetValue2.getValue(2); 3953 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3954 RetValue2); 3955 } 3956 3957 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3958 3959 InVals.push_back(RetValue); 3960 } 3961 3962 return Chain; 3963 } 3964 3965 bool RISCVTargetLowering::CanLowerReturn( 3966 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3967 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3968 SmallVector<CCValAssign, 16> RVLocs; 3969 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3970 3971 Optional<unsigned> FirstMaskArgument; 3972 if (Subtarget.hasStdExtV()) 3973 FirstMaskArgument = preAssignMask(Outs); 3974 3975 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3976 MVT VT = Outs[i].VT; 3977 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3978 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3979 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3980 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3981 *this, FirstMaskArgument)) 3982 return false; 3983 } 3984 return true; 3985 } 3986 3987 SDValue 3988 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3989 bool IsVarArg, 3990 const SmallVectorImpl<ISD::OutputArg> &Outs, 3991 const SmallVectorImpl<SDValue> &OutVals, 3992 const SDLoc &DL, SelectionDAG &DAG) const { 3993 const MachineFunction &MF = DAG.getMachineFunction(); 3994 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3995 3996 // Stores the assignment of the return value to a location. 3997 SmallVector<CCValAssign, 16> RVLocs; 3998 3999 // Info about the registers and stack slot. 4000 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 4001 *DAG.getContext()); 4002 4003 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 4004 nullptr); 4005 4006 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 4007 report_fatal_error("GHC functions return void only"); 4008 4009 SDValue Glue; 4010 SmallVector<SDValue, 4> RetOps(1, Chain); 4011 4012 // Copy the result values into the output registers. 4013 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 4014 SDValue Val = OutVals[i]; 4015 CCValAssign &VA = RVLocs[i]; 4016 assert(VA.isRegLoc() && "Can only return in registers!"); 4017 4018 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 4019 // Handle returning f64 on RV32D with a soft float ABI. 4020 assert(VA.isRegLoc() && "Expected return via registers"); 4021 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 4022 DAG.getVTList(MVT::i32, MVT::i32), Val); 4023 SDValue Lo = SplitF64.getValue(0); 4024 SDValue Hi = SplitF64.getValue(1); 4025 Register RegLo = VA.getLocReg(); 4026 assert(RegLo < RISCV::X31 && "Invalid register pair"); 4027 Register RegHi = RegLo + 1; 4028 4029 if (STI.isRegisterReservedByUser(RegLo) || 4030 STI.isRegisterReservedByUser(RegHi)) 4031 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 4032 MF.getFunction(), 4033 "Return value register required, but has been reserved."}); 4034 4035 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 4036 Glue = Chain.getValue(1); 4037 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 4038 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 4039 Glue = Chain.getValue(1); 4040 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 4041 } else { 4042 // Handle a 'normal' return. 4043 Val = convertValVTToLocVT(DAG, Val, VA, DL); 4044 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 4045 4046 if (STI.isRegisterReservedByUser(VA.getLocReg())) 4047 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 4048 MF.getFunction(), 4049 "Return value register required, but has been reserved."}); 4050 4051 // Guarantee that all emitted copies are stuck together. 4052 Glue = Chain.getValue(1); 4053 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 4054 } 4055 } 4056 4057 RetOps[0] = Chain; // Update chain. 4058 4059 // Add the glue node if we have it. 4060 if (Glue.getNode()) { 4061 RetOps.push_back(Glue); 4062 } 4063 4064 // Interrupt service routines use different return instructions. 4065 const Function &Func = DAG.getMachineFunction().getFunction(); 4066 if (Func.hasFnAttribute("interrupt")) { 4067 if (!Func.getReturnType()->isVoidTy()) 4068 report_fatal_error( 4069 "Functions with the interrupt attribute must have void return type!"); 4070 4071 MachineFunction &MF = DAG.getMachineFunction(); 4072 StringRef Kind = 4073 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 4074 4075 unsigned RetOpc; 4076 if (Kind == "user") 4077 RetOpc = RISCVISD::URET_FLAG; 4078 else if (Kind == "supervisor") 4079 RetOpc = RISCVISD::SRET_FLAG; 4080 else 4081 RetOpc = RISCVISD::MRET_FLAG; 4082 4083 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 4084 } 4085 4086 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 4087 } 4088 4089 void RISCVTargetLowering::validateCCReservedRegs( 4090 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 4091 MachineFunction &MF) const { 4092 const Function &F = MF.getFunction(); 4093 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 4094 4095 if (llvm::any_of(Regs, [&STI](auto Reg) { 4096 return STI.isRegisterReservedByUser(Reg.first); 4097 })) 4098 F.getContext().diagnose(DiagnosticInfoUnsupported{ 4099 F, "Argument register required, but has been reserved."}); 4100 } 4101 4102 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 4103 return CI->isTailCall(); 4104 } 4105 4106 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 4107 #define NODE_NAME_CASE(NODE) \ 4108 case RISCVISD::NODE: \ 4109 return "RISCVISD::" #NODE; 4110 // clang-format off 4111 switch ((RISCVISD::NodeType)Opcode) { 4112 case RISCVISD::FIRST_NUMBER: 4113 break; 4114 NODE_NAME_CASE(RET_FLAG) 4115 NODE_NAME_CASE(URET_FLAG) 4116 NODE_NAME_CASE(SRET_FLAG) 4117 NODE_NAME_CASE(MRET_FLAG) 4118 NODE_NAME_CASE(CALL) 4119 NODE_NAME_CASE(SELECT_CC) 4120 NODE_NAME_CASE(BuildPairF64) 4121 NODE_NAME_CASE(SplitF64) 4122 NODE_NAME_CASE(TAIL) 4123 NODE_NAME_CASE(SLLW) 4124 NODE_NAME_CASE(SRAW) 4125 NODE_NAME_CASE(SRLW) 4126 NODE_NAME_CASE(DIVW) 4127 NODE_NAME_CASE(DIVUW) 4128 NODE_NAME_CASE(REMUW) 4129 NODE_NAME_CASE(ROLW) 4130 NODE_NAME_CASE(RORW) 4131 NODE_NAME_CASE(FSLW) 4132 NODE_NAME_CASE(FSRW) 4133 NODE_NAME_CASE(FSL) 4134 NODE_NAME_CASE(FSR) 4135 NODE_NAME_CASE(FMV_H_X) 4136 NODE_NAME_CASE(FMV_X_ANYEXTH) 4137 NODE_NAME_CASE(FMV_W_X_RV64) 4138 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 4139 NODE_NAME_CASE(READ_CYCLE_WIDE) 4140 NODE_NAME_CASE(GREVI) 4141 NODE_NAME_CASE(GREVIW) 4142 NODE_NAME_CASE(GORCI) 4143 NODE_NAME_CASE(GORCIW) 4144 NODE_NAME_CASE(VMV_X_S) 4145 NODE_NAME_CASE(SPLAT_VECTOR_I64) 4146 NODE_NAME_CASE(READ_VLENB) 4147 NODE_NAME_CASE(TRUNCATE_VECTOR) 4148 NODE_NAME_CASE(VLEFF) 4149 NODE_NAME_CASE(VLEFF_MASK) 4150 NODE_NAME_CASE(VSLIDEUP) 4151 NODE_NAME_CASE(VSLIDEDOWN) 4152 NODE_NAME_CASE(VID) 4153 NODE_NAME_CASE(VFNCVT_ROD) 4154 } 4155 // clang-format on 4156 return nullptr; 4157 #undef NODE_NAME_CASE 4158 } 4159 4160 /// getConstraintType - Given a constraint letter, return the type of 4161 /// constraint it is for this target. 4162 RISCVTargetLowering::ConstraintType 4163 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 4164 if (Constraint.size() == 1) { 4165 switch (Constraint[0]) { 4166 default: 4167 break; 4168 case 'f': 4169 return C_RegisterClass; 4170 case 'I': 4171 case 'J': 4172 case 'K': 4173 return C_Immediate; 4174 case 'A': 4175 return C_Memory; 4176 } 4177 } 4178 return TargetLowering::getConstraintType(Constraint); 4179 } 4180 4181 std::pair<unsigned, const TargetRegisterClass *> 4182 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4183 StringRef Constraint, 4184 MVT VT) const { 4185 // First, see if this is a constraint that directly corresponds to a 4186 // RISCV register class. 4187 if (Constraint.size() == 1) { 4188 switch (Constraint[0]) { 4189 case 'r': 4190 return std::make_pair(0U, &RISCV::GPRRegClass); 4191 case 'f': 4192 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 4193 return std::make_pair(0U, &RISCV::FPR16RegClass); 4194 if (Subtarget.hasStdExtF() && VT == MVT::f32) 4195 return std::make_pair(0U, &RISCV::FPR32RegClass); 4196 if (Subtarget.hasStdExtD() && VT == MVT::f64) 4197 return std::make_pair(0U, &RISCV::FPR64RegClass); 4198 break; 4199 default: 4200 break; 4201 } 4202 } 4203 4204 // Clang will correctly decode the usage of register name aliases into their 4205 // official names. However, other frontends like `rustc` do not. This allows 4206 // users of these frontends to use the ABI names for registers in LLVM-style 4207 // register constraints. 4208 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 4209 .Case("{zero}", RISCV::X0) 4210 .Case("{ra}", RISCV::X1) 4211 .Case("{sp}", RISCV::X2) 4212 .Case("{gp}", RISCV::X3) 4213 .Case("{tp}", RISCV::X4) 4214 .Case("{t0}", RISCV::X5) 4215 .Case("{t1}", RISCV::X6) 4216 .Case("{t2}", RISCV::X7) 4217 .Cases("{s0}", "{fp}", RISCV::X8) 4218 .Case("{s1}", RISCV::X9) 4219 .Case("{a0}", RISCV::X10) 4220 .Case("{a1}", RISCV::X11) 4221 .Case("{a2}", RISCV::X12) 4222 .Case("{a3}", RISCV::X13) 4223 .Case("{a4}", RISCV::X14) 4224 .Case("{a5}", RISCV::X15) 4225 .Case("{a6}", RISCV::X16) 4226 .Case("{a7}", RISCV::X17) 4227 .Case("{s2}", RISCV::X18) 4228 .Case("{s3}", RISCV::X19) 4229 .Case("{s4}", RISCV::X20) 4230 .Case("{s5}", RISCV::X21) 4231 .Case("{s6}", RISCV::X22) 4232 .Case("{s7}", RISCV::X23) 4233 .Case("{s8}", RISCV::X24) 4234 .Case("{s9}", RISCV::X25) 4235 .Case("{s10}", RISCV::X26) 4236 .Case("{s11}", RISCV::X27) 4237 .Case("{t3}", RISCV::X28) 4238 .Case("{t4}", RISCV::X29) 4239 .Case("{t5}", RISCV::X30) 4240 .Case("{t6}", RISCV::X31) 4241 .Default(RISCV::NoRegister); 4242 if (XRegFromAlias != RISCV::NoRegister) 4243 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 4244 4245 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 4246 // TableGen record rather than the AsmName to choose registers for InlineAsm 4247 // constraints, plus we want to match those names to the widest floating point 4248 // register type available, manually select floating point registers here. 4249 // 4250 // The second case is the ABI name of the register, so that frontends can also 4251 // use the ABI names in register constraint lists. 4252 if (Subtarget.hasStdExtF()) { 4253 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 4254 .Cases("{f0}", "{ft0}", RISCV::F0_F) 4255 .Cases("{f1}", "{ft1}", RISCV::F1_F) 4256 .Cases("{f2}", "{ft2}", RISCV::F2_F) 4257 .Cases("{f3}", "{ft3}", RISCV::F3_F) 4258 .Cases("{f4}", "{ft4}", RISCV::F4_F) 4259 .Cases("{f5}", "{ft5}", RISCV::F5_F) 4260 .Cases("{f6}", "{ft6}", RISCV::F6_F) 4261 .Cases("{f7}", "{ft7}", RISCV::F7_F) 4262 .Cases("{f8}", "{fs0}", RISCV::F8_F) 4263 .Cases("{f9}", "{fs1}", RISCV::F9_F) 4264 .Cases("{f10}", "{fa0}", RISCV::F10_F) 4265 .Cases("{f11}", "{fa1}", RISCV::F11_F) 4266 .Cases("{f12}", "{fa2}", RISCV::F12_F) 4267 .Cases("{f13}", "{fa3}", RISCV::F13_F) 4268 .Cases("{f14}", "{fa4}", RISCV::F14_F) 4269 .Cases("{f15}", "{fa5}", RISCV::F15_F) 4270 .Cases("{f16}", "{fa6}", RISCV::F16_F) 4271 .Cases("{f17}", "{fa7}", RISCV::F17_F) 4272 .Cases("{f18}", "{fs2}", RISCV::F18_F) 4273 .Cases("{f19}", "{fs3}", RISCV::F19_F) 4274 .Cases("{f20}", "{fs4}", RISCV::F20_F) 4275 .Cases("{f21}", "{fs5}", RISCV::F21_F) 4276 .Cases("{f22}", "{fs6}", RISCV::F22_F) 4277 .Cases("{f23}", "{fs7}", RISCV::F23_F) 4278 .Cases("{f24}", "{fs8}", RISCV::F24_F) 4279 .Cases("{f25}", "{fs9}", RISCV::F25_F) 4280 .Cases("{f26}", "{fs10}", RISCV::F26_F) 4281 .Cases("{f27}", "{fs11}", RISCV::F27_F) 4282 .Cases("{f28}", "{ft8}", RISCV::F28_F) 4283 .Cases("{f29}", "{ft9}", RISCV::F29_F) 4284 .Cases("{f30}", "{ft10}", RISCV::F30_F) 4285 .Cases("{f31}", "{ft11}", RISCV::F31_F) 4286 .Default(RISCV::NoRegister); 4287 if (FReg != RISCV::NoRegister) { 4288 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 4289 if (Subtarget.hasStdExtD()) { 4290 unsigned RegNo = FReg - RISCV::F0_F; 4291 unsigned DReg = RISCV::F0_D + RegNo; 4292 return std::make_pair(DReg, &RISCV::FPR64RegClass); 4293 } 4294 return std::make_pair(FReg, &RISCV::FPR32RegClass); 4295 } 4296 } 4297 4298 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4299 } 4300 4301 unsigned 4302 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 4303 // Currently only support length 1 constraints. 4304 if (ConstraintCode.size() == 1) { 4305 switch (ConstraintCode[0]) { 4306 case 'A': 4307 return InlineAsm::Constraint_A; 4308 default: 4309 break; 4310 } 4311 } 4312 4313 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 4314 } 4315 4316 void RISCVTargetLowering::LowerAsmOperandForConstraint( 4317 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 4318 SelectionDAG &DAG) const { 4319 // Currently only support length 1 constraints. 4320 if (Constraint.length() == 1) { 4321 switch (Constraint[0]) { 4322 case 'I': 4323 // Validate & create a 12-bit signed immediate operand. 4324 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4325 uint64_t CVal = C->getSExtValue(); 4326 if (isInt<12>(CVal)) 4327 Ops.push_back( 4328 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4329 } 4330 return; 4331 case 'J': 4332 // Validate & create an integer zero operand. 4333 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 4334 if (C->getZExtValue() == 0) 4335 Ops.push_back( 4336 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 4337 return; 4338 case 'K': 4339 // Validate & create a 5-bit unsigned immediate operand. 4340 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4341 uint64_t CVal = C->getZExtValue(); 4342 if (isUInt<5>(CVal)) 4343 Ops.push_back( 4344 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4345 } 4346 return; 4347 default: 4348 break; 4349 } 4350 } 4351 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4352 } 4353 4354 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 4355 Instruction *Inst, 4356 AtomicOrdering Ord) const { 4357 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 4358 return Builder.CreateFence(Ord); 4359 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 4360 return Builder.CreateFence(AtomicOrdering::Release); 4361 return nullptr; 4362 } 4363 4364 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 4365 Instruction *Inst, 4366 AtomicOrdering Ord) const { 4367 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 4368 return Builder.CreateFence(AtomicOrdering::Acquire); 4369 return nullptr; 4370 } 4371 4372 TargetLowering::AtomicExpansionKind 4373 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 4374 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 4375 // point operations can't be used in an lr/sc sequence without breaking the 4376 // forward-progress guarantee. 4377 if (AI->isFloatingPointOperation()) 4378 return AtomicExpansionKind::CmpXChg; 4379 4380 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 4381 if (Size == 8 || Size == 16) 4382 return AtomicExpansionKind::MaskedIntrinsic; 4383 return AtomicExpansionKind::None; 4384 } 4385 4386 static Intrinsic::ID 4387 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 4388 if (XLen == 32) { 4389 switch (BinOp) { 4390 default: 4391 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4392 case AtomicRMWInst::Xchg: 4393 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 4394 case AtomicRMWInst::Add: 4395 return Intrinsic::riscv_masked_atomicrmw_add_i32; 4396 case AtomicRMWInst::Sub: 4397 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 4398 case AtomicRMWInst::Nand: 4399 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 4400 case AtomicRMWInst::Max: 4401 return Intrinsic::riscv_masked_atomicrmw_max_i32; 4402 case AtomicRMWInst::Min: 4403 return Intrinsic::riscv_masked_atomicrmw_min_i32; 4404 case AtomicRMWInst::UMax: 4405 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 4406 case AtomicRMWInst::UMin: 4407 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 4408 } 4409 } 4410 4411 if (XLen == 64) { 4412 switch (BinOp) { 4413 default: 4414 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4415 case AtomicRMWInst::Xchg: 4416 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 4417 case AtomicRMWInst::Add: 4418 return Intrinsic::riscv_masked_atomicrmw_add_i64; 4419 case AtomicRMWInst::Sub: 4420 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 4421 case AtomicRMWInst::Nand: 4422 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 4423 case AtomicRMWInst::Max: 4424 return Intrinsic::riscv_masked_atomicrmw_max_i64; 4425 case AtomicRMWInst::Min: 4426 return Intrinsic::riscv_masked_atomicrmw_min_i64; 4427 case AtomicRMWInst::UMax: 4428 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 4429 case AtomicRMWInst::UMin: 4430 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 4431 } 4432 } 4433 4434 llvm_unreachable("Unexpected XLen\n"); 4435 } 4436 4437 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 4438 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 4439 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 4440 unsigned XLen = Subtarget.getXLen(); 4441 Value *Ordering = 4442 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 4443 Type *Tys[] = {AlignedAddr->getType()}; 4444 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 4445 AI->getModule(), 4446 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 4447 4448 if (XLen == 64) { 4449 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 4450 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4451 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 4452 } 4453 4454 Value *Result; 4455 4456 // Must pass the shift amount needed to sign extend the loaded value prior 4457 // to performing a signed comparison for min/max. ShiftAmt is the number of 4458 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 4459 // is the number of bits to left+right shift the value in order to 4460 // sign-extend. 4461 if (AI->getOperation() == AtomicRMWInst::Min || 4462 AI->getOperation() == AtomicRMWInst::Max) { 4463 const DataLayout &DL = AI->getModule()->getDataLayout(); 4464 unsigned ValWidth = 4465 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 4466 Value *SextShamt = 4467 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 4468 Result = Builder.CreateCall(LrwOpScwLoop, 4469 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 4470 } else { 4471 Result = 4472 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 4473 } 4474 4475 if (XLen == 64) 4476 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4477 return Result; 4478 } 4479 4480 TargetLowering::AtomicExpansionKind 4481 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 4482 AtomicCmpXchgInst *CI) const { 4483 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 4484 if (Size == 8 || Size == 16) 4485 return AtomicExpansionKind::MaskedIntrinsic; 4486 return AtomicExpansionKind::None; 4487 } 4488 4489 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 4490 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 4491 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 4492 unsigned XLen = Subtarget.getXLen(); 4493 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 4494 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 4495 if (XLen == 64) { 4496 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 4497 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 4498 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4499 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 4500 } 4501 Type *Tys[] = {AlignedAddr->getType()}; 4502 Function *MaskedCmpXchg = 4503 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 4504 Value *Result = Builder.CreateCall( 4505 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 4506 if (XLen == 64) 4507 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4508 return Result; 4509 } 4510 4511 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4512 EVT VT) const { 4513 VT = VT.getScalarType(); 4514 4515 if (!VT.isSimple()) 4516 return false; 4517 4518 switch (VT.getSimpleVT().SimpleTy) { 4519 case MVT::f16: 4520 return Subtarget.hasStdExtZfh(); 4521 case MVT::f32: 4522 return Subtarget.hasStdExtF(); 4523 case MVT::f64: 4524 return Subtarget.hasStdExtD(); 4525 default: 4526 break; 4527 } 4528 4529 return false; 4530 } 4531 4532 Register RISCVTargetLowering::getExceptionPointerRegister( 4533 const Constant *PersonalityFn) const { 4534 return RISCV::X10; 4535 } 4536 4537 Register RISCVTargetLowering::getExceptionSelectorRegister( 4538 const Constant *PersonalityFn) const { 4539 return RISCV::X11; 4540 } 4541 4542 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 4543 // Return false to suppress the unnecessary extensions if the LibCall 4544 // arguments or return value is f32 type for LP64 ABI. 4545 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 4546 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 4547 return false; 4548 4549 return true; 4550 } 4551 4552 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 4553 if (Subtarget.is64Bit() && Type == MVT::i32) 4554 return true; 4555 4556 return IsSigned; 4557 } 4558 4559 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 4560 SDValue C) const { 4561 // Check integral scalar types. 4562 if (VT.isScalarInteger()) { 4563 // Omit the optimization if the sub target has the M extension and the data 4564 // size exceeds XLen. 4565 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 4566 return false; 4567 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 4568 // Break the MUL to a SLLI and an ADD/SUB. 4569 const APInt &Imm = ConstNode->getAPIntValue(); 4570 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 4571 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 4572 return true; 4573 // Omit the following optimization if the sub target has the M extension 4574 // and the data size >= XLen. 4575 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 4576 return false; 4577 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 4578 // a pair of LUI/ADDI. 4579 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 4580 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 4581 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 4582 (1 - ImmS).isPowerOf2()) 4583 return true; 4584 } 4585 } 4586 } 4587 4588 return false; 4589 } 4590 4591 #define GET_REGISTER_MATCHER 4592 #include "RISCVGenAsmMatcher.inc" 4593 4594 Register 4595 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4596 const MachineFunction &MF) const { 4597 Register Reg = MatchRegisterAltName(RegName); 4598 if (Reg == RISCV::NoRegister) 4599 Reg = MatchRegisterName(RegName); 4600 if (Reg == RISCV::NoRegister) 4601 report_fatal_error( 4602 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 4603 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 4604 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 4605 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 4606 StringRef(RegName) + "\".")); 4607 return Reg; 4608 } 4609 4610 namespace llvm { 4611 namespace RISCVVIntrinsicsTable { 4612 4613 #define GET_RISCVVIntrinsicsTable_IMPL 4614 #include "RISCVGenSearchableTables.inc" 4615 4616 } // namespace RISCVVIntrinsicsTable 4617 4618 namespace RISCVZvlssegTable { 4619 4620 #define GET_RISCVZvlssegTable_IMPL 4621 #include "RISCVGenSearchableTables.inc" 4622 4623 } // namespace RISCVZvlssegTable 4624 } // namespace llvm 4625