1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 256 if (Subtarget.is64Bit()) { 257 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 259 } 260 } else { 261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 262 // pattern match it directly in isel. 263 setOperationAction(ISD::BSWAP, XLenVT, 264 Subtarget.hasStdExtZbb() ? Legal : Expand); 265 } 266 267 if (Subtarget.hasStdExtZbb()) { 268 setOperationAction(ISD::SMIN, XLenVT, Legal); 269 setOperationAction(ISD::SMAX, XLenVT, Legal); 270 setOperationAction(ISD::UMIN, XLenVT, Legal); 271 setOperationAction(ISD::UMAX, XLenVT, Legal); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 275 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 276 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 277 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 278 } 279 } else { 280 setOperationAction(ISD::CTTZ, XLenVT, Expand); 281 setOperationAction(ISD::CTLZ, XLenVT, Expand); 282 setOperationAction(ISD::CTPOP, XLenVT, Expand); 283 } 284 285 if (Subtarget.hasStdExtZbt()) { 286 setOperationAction(ISD::FSHL, XLenVT, Custom); 287 setOperationAction(ISD::FSHR, XLenVT, Custom); 288 setOperationAction(ISD::SELECT, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::FSHL, MVT::i32, Custom); 292 setOperationAction(ISD::FSHR, MVT::i32, Custom); 293 } 294 } else { 295 setOperationAction(ISD::SELECT, XLenVT, Custom); 296 } 297 298 ISD::CondCode FPCCToExpand[] = { 299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 302 303 ISD::NodeType FPOpToExpand[] = { 304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 305 ISD::FP_TO_FP16}; 306 307 if (Subtarget.hasStdExtZfh()) 308 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 309 310 if (Subtarget.hasStdExtZfh()) { 311 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 312 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 313 for (auto CC : FPCCToExpand) 314 setCondCodeAction(CC, MVT::f16, Expand); 315 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 316 setOperationAction(ISD::SELECT, MVT::f16, Custom); 317 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 318 for (auto Op : FPOpToExpand) 319 setOperationAction(Op, MVT::f16, Expand); 320 } 321 322 if (Subtarget.hasStdExtF()) { 323 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 325 for (auto CC : FPCCToExpand) 326 setCondCodeAction(CC, MVT::f32, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 328 setOperationAction(ISD::SELECT, MVT::f32, Custom); 329 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 330 for (auto Op : FPOpToExpand) 331 setOperationAction(Op, MVT::f32, Expand); 332 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 333 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 334 } 335 336 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 337 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 338 339 if (Subtarget.hasStdExtD()) { 340 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 341 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 342 for (auto CC : FPCCToExpand) 343 setCondCodeAction(CC, MVT::f64, Expand); 344 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 345 setOperationAction(ISD::SELECT, MVT::f64, Custom); 346 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 347 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 348 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 353 } 354 355 if (Subtarget.is64Bit()) { 356 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 358 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 359 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 360 } 361 362 if (Subtarget.hasStdExtF()) { 363 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 364 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 365 } 366 367 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 368 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 369 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 370 setOperationAction(ISD::JumpTable, XLenVT, Custom); 371 372 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 373 374 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 375 // Unfortunately this can't be determined just from the ISA naming string. 376 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 377 Subtarget.is64Bit() ? Legal : Custom); 378 379 setOperationAction(ISD::TRAP, MVT::Other, Legal); 380 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 381 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 382 if (Subtarget.is64Bit()) 383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 384 385 if (Subtarget.hasStdExtA()) { 386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 387 setMinCmpXchgSizeInBits(32); 388 } else { 389 setMaxAtomicSizeInBitsSupported(0); 390 } 391 392 setBooleanContents(ZeroOrOneBooleanContent); 393 394 if (Subtarget.hasStdExtV()) { 395 setBooleanVectorContents(ZeroOrOneBooleanContent); 396 397 setOperationAction(ISD::VSCALE, XLenVT, Custom); 398 399 // RVV intrinsics may have illegal operands. 400 // We also need to custom legalize vmv.x.s. 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 405 if (Subtarget.is64Bit()) { 406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 407 } else { 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 410 } 411 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 413 414 static unsigned IntegerVPOps[] = { 415 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 416 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 417 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 418 419 if (!Subtarget.is64Bit()) { 420 // We must custom-lower certain vXi64 operations on RV32 due to the vector 421 // element type being illegal. 422 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 423 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 424 425 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 428 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 429 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 432 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 433 } 434 435 for (MVT VT : BoolVecVTs) { 436 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 437 438 // Mask VTs are custom-expanded into a series of standard nodes 439 setOperationAction(ISD::TRUNCATE, VT, Custom); 440 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 441 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 442 443 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 444 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 445 446 setOperationAction(ISD::SELECT, VT, Expand); 447 setOperationAction(ISD::SELECT_CC, VT, Expand); 448 setOperationAction(ISD::VSELECT, VT, Expand); 449 450 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 451 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 452 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 453 454 // Expand all extending loads to types larger than this, and truncating 455 // stores from types larger than this. 456 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 457 setTruncStoreAction(OtherVT, VT, Expand); 458 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 459 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 460 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 461 } 462 } 463 464 for (MVT VT : IntVecVTs) { 465 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 466 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 467 468 setOperationAction(ISD::SMIN, VT, Legal); 469 setOperationAction(ISD::SMAX, VT, Legal); 470 setOperationAction(ISD::UMIN, VT, Legal); 471 setOperationAction(ISD::UMAX, VT, Legal); 472 473 setOperationAction(ISD::ROTL, VT, Expand); 474 setOperationAction(ISD::ROTR, VT, Expand); 475 476 // Custom-lower extensions and truncations from/to mask types. 477 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 478 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 479 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 480 481 // RVV has native int->float & float->int conversions where the 482 // element type sizes are within one power-of-two of each other. Any 483 // wider distances between type sizes have to be lowered as sequences 484 // which progressively narrow the gap in stages. 485 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 486 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 487 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 488 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 489 490 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 491 // nodes which truncate by one power of two at a time. 492 setOperationAction(ISD::TRUNCATE, VT, Custom); 493 494 // Custom-lower insert/extract operations to simplify patterns. 495 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 497 498 // Custom-lower reduction operations to set up the corresponding custom 499 // nodes' operands. 500 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 501 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 504 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 505 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 506 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 507 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 508 509 for (unsigned VPOpc : IntegerVPOps) 510 setOperationAction(VPOpc, VT, Custom); 511 512 setOperationAction(ISD::MLOAD, VT, Custom); 513 setOperationAction(ISD::MSTORE, VT, Custom); 514 setOperationAction(ISD::MGATHER, VT, Custom); 515 setOperationAction(ISD::MSCATTER, VT, Custom); 516 517 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 518 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 519 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 520 521 setOperationAction(ISD::SELECT, VT, Expand); 522 setOperationAction(ISD::SELECT_CC, VT, Expand); 523 524 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 525 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 526 527 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 528 setTruncStoreAction(VT, OtherVT, Expand); 529 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 530 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 531 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 532 } 533 } 534 535 // Expand various CCs to best match the RVV ISA, which natively supports UNE 536 // but no other unordered comparisons, and supports all ordered comparisons 537 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 538 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 539 // and we pattern-match those back to the "original", swapping operands once 540 // more. This way we catch both operations and both "vf" and "fv" forms with 541 // fewer patterns. 542 ISD::CondCode VFPCCToExpand[] = { 543 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 544 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 545 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 546 }; 547 548 // Sets common operation actions on RVV floating-point vector types. 549 const auto SetCommonVFPActions = [&](MVT VT) { 550 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 551 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 552 // sizes are within one power-of-two of each other. Therefore conversions 553 // between vXf16 and vXf64 must be lowered as sequences which convert via 554 // vXf32. 555 setOperationAction(ISD::FP_ROUND, VT, Custom); 556 setOperationAction(ISD::FP_EXTEND, VT, Custom); 557 // Custom-lower insert/extract operations to simplify patterns. 558 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 559 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 560 // Expand various condition codes (explained above). 561 for (auto CC : VFPCCToExpand) 562 setCondCodeAction(CC, VT, Expand); 563 564 setOperationAction(ISD::FMINNUM, VT, Legal); 565 setOperationAction(ISD::FMAXNUM, VT, Legal); 566 567 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 568 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 569 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 570 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 571 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 572 573 setOperationAction(ISD::MLOAD, VT, Custom); 574 setOperationAction(ISD::MSTORE, VT, Custom); 575 setOperationAction(ISD::MGATHER, VT, Custom); 576 setOperationAction(ISD::MSCATTER, VT, Custom); 577 578 setOperationAction(ISD::SELECT, VT, Expand); 579 setOperationAction(ISD::SELECT_CC, VT, Expand); 580 581 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 582 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 583 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 584 585 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 586 }; 587 588 // Sets common extload/truncstore actions on RVV floating-point vector 589 // types. 590 const auto SetCommonVFPExtLoadTruncStoreActions = 591 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 592 for (auto SmallVT : SmallerVTs) { 593 setTruncStoreAction(VT, SmallVT, Expand); 594 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 595 } 596 }; 597 598 if (Subtarget.hasStdExtZfh()) 599 for (MVT VT : F16VecVTs) 600 SetCommonVFPActions(VT); 601 602 for (MVT VT : F32VecVTs) { 603 if (Subtarget.hasStdExtF()) 604 SetCommonVFPActions(VT); 605 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 606 } 607 608 for (MVT VT : F64VecVTs) { 609 if (Subtarget.hasStdExtD()) 610 SetCommonVFPActions(VT); 611 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 612 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 613 } 614 615 if (Subtarget.useRVVForFixedLengthVectors()) { 616 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 617 if (!useRVVForFixedLengthVectorVT(VT)) 618 continue; 619 620 // By default everything must be expanded. 621 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 622 setOperationAction(Op, VT, Expand); 623 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 624 setTruncStoreAction(VT, OtherVT, Expand); 625 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 626 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 627 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 628 } 629 630 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 631 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 632 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 633 634 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 635 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 636 637 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 638 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 639 640 setOperationAction(ISD::LOAD, VT, Custom); 641 setOperationAction(ISD::STORE, VT, Custom); 642 643 setOperationAction(ISD::SETCC, VT, Custom); 644 645 setOperationAction(ISD::TRUNCATE, VT, Custom); 646 647 setOperationAction(ISD::BITCAST, VT, Custom); 648 649 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 650 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 651 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 652 653 // Operations below are different for between masks and other vectors. 654 if (VT.getVectorElementType() == MVT::i1) { 655 setOperationAction(ISD::AND, VT, Custom); 656 setOperationAction(ISD::OR, VT, Custom); 657 setOperationAction(ISD::XOR, VT, Custom); 658 continue; 659 } 660 661 // Use SPLAT_VECTOR to prevent type legalization from destroying the 662 // splats when type legalizing i64 scalar on RV32. 663 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 664 // improvements first. 665 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 666 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 667 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 668 } 669 670 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 671 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 672 673 setOperationAction(ISD::MLOAD, VT, Custom); 674 setOperationAction(ISD::MSTORE, VT, Custom); 675 setOperationAction(ISD::MGATHER, VT, Custom); 676 setOperationAction(ISD::MSCATTER, VT, Custom); 677 setOperationAction(ISD::ADD, VT, Custom); 678 setOperationAction(ISD::MUL, VT, Custom); 679 setOperationAction(ISD::SUB, VT, Custom); 680 setOperationAction(ISD::AND, VT, Custom); 681 setOperationAction(ISD::OR, VT, Custom); 682 setOperationAction(ISD::XOR, VT, Custom); 683 setOperationAction(ISD::SDIV, VT, Custom); 684 setOperationAction(ISD::SREM, VT, Custom); 685 setOperationAction(ISD::UDIV, VT, Custom); 686 setOperationAction(ISD::UREM, VT, Custom); 687 setOperationAction(ISD::SHL, VT, Custom); 688 setOperationAction(ISD::SRA, VT, Custom); 689 setOperationAction(ISD::SRL, VT, Custom); 690 691 setOperationAction(ISD::SMIN, VT, Custom); 692 setOperationAction(ISD::SMAX, VT, Custom); 693 setOperationAction(ISD::UMIN, VT, Custom); 694 setOperationAction(ISD::UMAX, VT, Custom); 695 setOperationAction(ISD::ABS, VT, Custom); 696 697 setOperationAction(ISD::MULHS, VT, Custom); 698 setOperationAction(ISD::MULHU, VT, Custom); 699 700 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 701 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 702 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 703 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 704 705 setOperationAction(ISD::VSELECT, VT, Custom); 706 setOperationAction(ISD::SELECT, VT, Expand); 707 setOperationAction(ISD::SELECT_CC, VT, Expand); 708 709 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 710 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 711 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 712 713 // Custom-lower reduction operations to set up the corresponding custom 714 // nodes' operands. 715 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 716 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 717 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 718 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 719 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 720 721 for (unsigned VPOpc : IntegerVPOps) 722 setOperationAction(VPOpc, VT, Custom); 723 } 724 725 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 726 if (!useRVVForFixedLengthVectorVT(VT)) 727 continue; 728 729 // By default everything must be expanded. 730 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 731 setOperationAction(Op, VT, Expand); 732 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 733 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 734 setTruncStoreAction(VT, OtherVT, Expand); 735 } 736 737 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 738 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 739 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 740 741 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 742 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 743 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 744 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 745 746 setOperationAction(ISD::LOAD, VT, Custom); 747 setOperationAction(ISD::STORE, VT, Custom); 748 setOperationAction(ISD::MLOAD, VT, Custom); 749 setOperationAction(ISD::MSTORE, VT, Custom); 750 setOperationAction(ISD::MGATHER, VT, Custom); 751 setOperationAction(ISD::MSCATTER, VT, Custom); 752 setOperationAction(ISD::FADD, VT, Custom); 753 setOperationAction(ISD::FSUB, VT, Custom); 754 setOperationAction(ISD::FMUL, VT, Custom); 755 setOperationAction(ISD::FDIV, VT, Custom); 756 setOperationAction(ISD::FNEG, VT, Custom); 757 setOperationAction(ISD::FABS, VT, Custom); 758 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 759 setOperationAction(ISD::FSQRT, VT, Custom); 760 setOperationAction(ISD::FMA, VT, Custom); 761 setOperationAction(ISD::FMINNUM, VT, Custom); 762 setOperationAction(ISD::FMAXNUM, VT, Custom); 763 764 setOperationAction(ISD::FP_ROUND, VT, Custom); 765 setOperationAction(ISD::FP_EXTEND, VT, Custom); 766 767 for (auto CC : VFPCCToExpand) 768 setCondCodeAction(CC, VT, Expand); 769 770 setOperationAction(ISD::VSELECT, VT, Custom); 771 setOperationAction(ISD::SELECT, VT, Expand); 772 setOperationAction(ISD::SELECT_CC, VT, Expand); 773 774 setOperationAction(ISD::BITCAST, VT, Custom); 775 776 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 777 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 778 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 779 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 780 } 781 782 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 783 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 784 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 785 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 786 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 787 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 788 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 789 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 790 } 791 } 792 793 // Function alignments. 794 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 795 setMinFunctionAlignment(FunctionAlignment); 796 setPrefFunctionAlignment(FunctionAlignment); 797 798 setMinimumJumpTableEntries(5); 799 800 // Jumps are expensive, compared to logic 801 setJumpIsExpensive(); 802 803 // We can use any register for comparisons 804 setHasMultipleConditionRegisters(); 805 806 setTargetDAGCombine(ISD::AND); 807 setTargetDAGCombine(ISD::OR); 808 setTargetDAGCombine(ISD::XOR); 809 if (Subtarget.hasStdExtV()) { 810 setTargetDAGCombine(ISD::FCOPYSIGN); 811 setTargetDAGCombine(ISD::MGATHER); 812 setTargetDAGCombine(ISD::MSCATTER); 813 setTargetDAGCombine(ISD::SRA); 814 setTargetDAGCombine(ISD::SRL); 815 setTargetDAGCombine(ISD::SHL); 816 } 817 } 818 819 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 820 LLVMContext &Context, 821 EVT VT) const { 822 if (!VT.isVector()) 823 return getPointerTy(DL); 824 if (Subtarget.hasStdExtV() && 825 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 826 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 827 return VT.changeVectorElementTypeToInteger(); 828 } 829 830 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 831 return Subtarget.getXLenVT(); 832 } 833 834 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 835 const CallInst &I, 836 MachineFunction &MF, 837 unsigned Intrinsic) const { 838 switch (Intrinsic) { 839 default: 840 return false; 841 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 842 case Intrinsic::riscv_masked_atomicrmw_add_i32: 843 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 844 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 845 case Intrinsic::riscv_masked_atomicrmw_max_i32: 846 case Intrinsic::riscv_masked_atomicrmw_min_i32: 847 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 848 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 849 case Intrinsic::riscv_masked_cmpxchg_i32: 850 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 851 Info.opc = ISD::INTRINSIC_W_CHAIN; 852 Info.memVT = MVT::getVT(PtrTy->getElementType()); 853 Info.ptrVal = I.getArgOperand(0); 854 Info.offset = 0; 855 Info.align = Align(4); 856 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 857 MachineMemOperand::MOVolatile; 858 return true; 859 } 860 } 861 862 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 863 const AddrMode &AM, Type *Ty, 864 unsigned AS, 865 Instruction *I) const { 866 // No global is ever allowed as a base. 867 if (AM.BaseGV) 868 return false; 869 870 // Require a 12-bit signed offset. 871 if (!isInt<12>(AM.BaseOffs)) 872 return false; 873 874 switch (AM.Scale) { 875 case 0: // "r+i" or just "i", depending on HasBaseReg. 876 break; 877 case 1: 878 if (!AM.HasBaseReg) // allow "r+i". 879 break; 880 return false; // disallow "r+r" or "r+r+i". 881 default: 882 return false; 883 } 884 885 return true; 886 } 887 888 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 889 return isInt<12>(Imm); 890 } 891 892 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 893 return isInt<12>(Imm); 894 } 895 896 // On RV32, 64-bit integers are split into their high and low parts and held 897 // in two different registers, so the trunc is free since the low register can 898 // just be used. 899 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 900 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 901 return false; 902 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 903 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 904 return (SrcBits == 64 && DestBits == 32); 905 } 906 907 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 908 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 909 !SrcVT.isInteger() || !DstVT.isInteger()) 910 return false; 911 unsigned SrcBits = SrcVT.getSizeInBits(); 912 unsigned DestBits = DstVT.getSizeInBits(); 913 return (SrcBits == 64 && DestBits == 32); 914 } 915 916 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 917 // Zexts are free if they can be combined with a load. 918 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 919 EVT MemVT = LD->getMemoryVT(); 920 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 921 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 922 (LD->getExtensionType() == ISD::NON_EXTLOAD || 923 LD->getExtensionType() == ISD::ZEXTLOAD)) 924 return true; 925 } 926 927 return TargetLowering::isZExtFree(Val, VT2); 928 } 929 930 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 931 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 932 } 933 934 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 935 return Subtarget.hasStdExtZbb(); 936 } 937 938 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 939 return Subtarget.hasStdExtZbb(); 940 } 941 942 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 943 bool ForCodeSize) const { 944 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 945 return false; 946 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 947 return false; 948 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 949 return false; 950 if (Imm.isNegZero()) 951 return false; 952 return Imm.isZero(); 953 } 954 955 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 956 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 957 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 958 (VT == MVT::f64 && Subtarget.hasStdExtD()); 959 } 960 961 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 962 CallingConv::ID CC, 963 EVT VT) const { 964 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 965 // end up using a GPR but that will be decided based on ABI. 966 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 967 return MVT::f32; 968 969 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 970 } 971 972 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 973 CallingConv::ID CC, 974 EVT VT) const { 975 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 976 // end up using a GPR but that will be decided based on ABI. 977 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 978 return 1; 979 980 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 981 } 982 983 // Changes the condition code and swaps operands if necessary, so the SetCC 984 // operation matches one of the comparisons supported directly by branches 985 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 986 // with 1/-1. 987 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 988 ISD::CondCode &CC, SelectionDAG &DAG) { 989 // Convert X > -1 to X >= 0. 990 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 991 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 992 CC = ISD::SETGE; 993 return; 994 } 995 // Convert X < 1 to 0 >= X. 996 if (CC == ISD::SETLT && isOneConstant(RHS)) { 997 RHS = LHS; 998 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 999 CC = ISD::SETGE; 1000 return; 1001 } 1002 1003 switch (CC) { 1004 default: 1005 break; 1006 case ISD::SETGT: 1007 case ISD::SETLE: 1008 case ISD::SETUGT: 1009 case ISD::SETULE: 1010 CC = ISD::getSetCCSwappedOperands(CC); 1011 std::swap(LHS, RHS); 1012 break; 1013 } 1014 } 1015 1016 // Return the RISC-V branch opcode that matches the given DAG integer 1017 // condition code. The CondCode must be one of those supported by the RISC-V 1018 // ISA (see translateSetCCForBranch). 1019 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1020 switch (CC) { 1021 default: 1022 llvm_unreachable("Unsupported CondCode"); 1023 case ISD::SETEQ: 1024 return RISCV::BEQ; 1025 case ISD::SETNE: 1026 return RISCV::BNE; 1027 case ISD::SETLT: 1028 return RISCV::BLT; 1029 case ISD::SETGE: 1030 return RISCV::BGE; 1031 case ISD::SETULT: 1032 return RISCV::BLTU; 1033 case ISD::SETUGE: 1034 return RISCV::BGEU; 1035 } 1036 } 1037 1038 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1039 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1040 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1041 if (VT.getVectorElementType() == MVT::i1) 1042 KnownSize *= 8; 1043 1044 switch (KnownSize) { 1045 default: 1046 llvm_unreachable("Invalid LMUL."); 1047 case 8: 1048 return RISCVII::VLMUL::LMUL_F8; 1049 case 16: 1050 return RISCVII::VLMUL::LMUL_F4; 1051 case 32: 1052 return RISCVII::VLMUL::LMUL_F2; 1053 case 64: 1054 return RISCVII::VLMUL::LMUL_1; 1055 case 128: 1056 return RISCVII::VLMUL::LMUL_2; 1057 case 256: 1058 return RISCVII::VLMUL::LMUL_4; 1059 case 512: 1060 return RISCVII::VLMUL::LMUL_8; 1061 } 1062 } 1063 1064 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1065 switch (LMul) { 1066 default: 1067 llvm_unreachable("Invalid LMUL."); 1068 case RISCVII::VLMUL::LMUL_F8: 1069 case RISCVII::VLMUL::LMUL_F4: 1070 case RISCVII::VLMUL::LMUL_F2: 1071 case RISCVII::VLMUL::LMUL_1: 1072 return RISCV::VRRegClassID; 1073 case RISCVII::VLMUL::LMUL_2: 1074 return RISCV::VRM2RegClassID; 1075 case RISCVII::VLMUL::LMUL_4: 1076 return RISCV::VRM4RegClassID; 1077 case RISCVII::VLMUL::LMUL_8: 1078 return RISCV::VRM8RegClassID; 1079 } 1080 } 1081 1082 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1083 RISCVII::VLMUL LMUL = getLMUL(VT); 1084 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1085 LMUL == RISCVII::VLMUL::LMUL_F4 || 1086 LMUL == RISCVII::VLMUL::LMUL_F2 || 1087 LMUL == RISCVII::VLMUL::LMUL_1) { 1088 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1089 "Unexpected subreg numbering"); 1090 return RISCV::sub_vrm1_0 + Index; 1091 } 1092 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1093 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1094 "Unexpected subreg numbering"); 1095 return RISCV::sub_vrm2_0 + Index; 1096 } 1097 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1098 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1099 "Unexpected subreg numbering"); 1100 return RISCV::sub_vrm4_0 + Index; 1101 } 1102 llvm_unreachable("Invalid vector type."); 1103 } 1104 1105 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1106 if (VT.getVectorElementType() == MVT::i1) 1107 return RISCV::VRRegClassID; 1108 return getRegClassIDForLMUL(getLMUL(VT)); 1109 } 1110 1111 // Attempt to decompose a subvector insert/extract between VecVT and 1112 // SubVecVT via subregister indices. Returns the subregister index that 1113 // can perform the subvector insert/extract with the given element index, as 1114 // well as the index corresponding to any leftover subvectors that must be 1115 // further inserted/extracted within the register class for SubVecVT. 1116 std::pair<unsigned, unsigned> 1117 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1118 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1119 const RISCVRegisterInfo *TRI) { 1120 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1121 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1122 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1123 "Register classes not ordered"); 1124 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1125 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1126 // Try to compose a subregister index that takes us from the incoming 1127 // LMUL>1 register class down to the outgoing one. At each step we half 1128 // the LMUL: 1129 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1130 // Note that this is not guaranteed to find a subregister index, such as 1131 // when we are extracting from one VR type to another. 1132 unsigned SubRegIdx = RISCV::NoSubRegister; 1133 for (const unsigned RCID : 1134 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1135 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1136 VecVT = VecVT.getHalfNumVectorElementsVT(); 1137 bool IsHi = 1138 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1139 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1140 getSubregIndexByMVT(VecVT, IsHi)); 1141 if (IsHi) 1142 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1143 } 1144 return {SubRegIdx, InsertExtractIdx}; 1145 } 1146 1147 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1148 // stores for those types. 1149 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1150 return !Subtarget.useRVVForFixedLengthVectors() || 1151 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1152 } 1153 1154 static bool useRVVForFixedLengthVectorVT(MVT VT, 1155 const RISCVSubtarget &Subtarget) { 1156 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1157 if (!Subtarget.useRVVForFixedLengthVectors()) 1158 return false; 1159 1160 // We only support a set of vector types with an equivalent number of 1161 // elements to avoid legalization issues. Therefore -- since we don't have 1162 // v512i8/v512i16/etc -- the longest fixed-length vector type we support has 1163 // 256 elements. 1164 if (VT.getVectorNumElements() > 256) 1165 return false; 1166 1167 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1168 1169 // Don't use RVV for vectors we cannot scalarize if required. 1170 switch (VT.getVectorElementType().SimpleTy) { 1171 // i1 is supported but has different rules. 1172 default: 1173 return false; 1174 case MVT::i1: 1175 // Masks can only use a single register. 1176 if (VT.getVectorNumElements() > MinVLen) 1177 return false; 1178 MinVLen /= 8; 1179 break; 1180 case MVT::i8: 1181 case MVT::i16: 1182 case MVT::i32: 1183 case MVT::i64: 1184 break; 1185 case MVT::f16: 1186 if (!Subtarget.hasStdExtZfh()) 1187 return false; 1188 break; 1189 case MVT::f32: 1190 if (!Subtarget.hasStdExtF()) 1191 return false; 1192 break; 1193 case MVT::f64: 1194 if (!Subtarget.hasStdExtD()) 1195 return false; 1196 break; 1197 } 1198 1199 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1200 // Don't use RVV for types that don't fit. 1201 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1202 return false; 1203 1204 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1205 // the base fixed length RVV support in place. 1206 if (!VT.isPow2VectorType()) 1207 return false; 1208 1209 return true; 1210 } 1211 1212 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1213 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1214 } 1215 1216 // Return the largest legal scalable vector type that matches VT's element type. 1217 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1218 const RISCVSubtarget &Subtarget) { 1219 // This may be called before legal types are setup. 1220 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1221 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1222 "Expected legal fixed length vector!"); 1223 1224 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1225 1226 MVT EltVT = VT.getVectorElementType(); 1227 switch (EltVT.SimpleTy) { 1228 default: 1229 llvm_unreachable("unexpected element type for RVV container"); 1230 case MVT::i1: 1231 case MVT::i8: 1232 case MVT::i16: 1233 case MVT::i32: 1234 case MVT::i64: 1235 case MVT::f16: 1236 case MVT::f32: 1237 case MVT::f64: { 1238 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1239 // narrower types, but we can't have a fractional LMUL with demoninator less 1240 // than 64/SEW. 1241 unsigned NumElts = 1242 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1243 return MVT::getScalableVectorVT(EltVT, NumElts); 1244 } 1245 } 1246 } 1247 1248 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1249 const RISCVSubtarget &Subtarget) { 1250 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1251 Subtarget); 1252 } 1253 1254 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1255 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1256 } 1257 1258 // Grow V to consume an entire RVV register. 1259 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1260 const RISCVSubtarget &Subtarget) { 1261 assert(VT.isScalableVector() && 1262 "Expected to convert into a scalable vector!"); 1263 assert(V.getValueType().isFixedLengthVector() && 1264 "Expected a fixed length vector operand!"); 1265 SDLoc DL(V); 1266 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1267 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1268 } 1269 1270 // Shrink V so it's just big enough to maintain a VT's worth of data. 1271 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1272 const RISCVSubtarget &Subtarget) { 1273 assert(VT.isFixedLengthVector() && 1274 "Expected to convert into a fixed length vector!"); 1275 assert(V.getValueType().isScalableVector() && 1276 "Expected a scalable vector operand!"); 1277 SDLoc DL(V); 1278 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1279 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1280 } 1281 1282 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1283 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1284 // the vector type that it is contained in. 1285 static std::pair<SDValue, SDValue> 1286 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1287 const RISCVSubtarget &Subtarget) { 1288 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1289 MVT XLenVT = Subtarget.getXLenVT(); 1290 SDValue VL = VecVT.isFixedLengthVector() 1291 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1292 : DAG.getRegister(RISCV::X0, XLenVT); 1293 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1294 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1295 return {Mask, VL}; 1296 } 1297 1298 // As above but assuming the given type is a scalable vector type. 1299 static std::pair<SDValue, SDValue> 1300 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1301 const RISCVSubtarget &Subtarget) { 1302 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1303 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1304 } 1305 1306 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1307 // of either is (currently) supported. This can get us into an infinite loop 1308 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1309 // as a ..., etc. 1310 // Until either (or both) of these can reliably lower any node, reporting that 1311 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1312 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1313 // which is not desirable. 1314 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1315 EVT VT, unsigned DefinedValues) const { 1316 return false; 1317 } 1318 1319 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1320 // Only splats are currently supported. 1321 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1322 return true; 1323 1324 return false; 1325 } 1326 1327 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1328 const RISCVSubtarget &Subtarget) { 1329 MVT VT = Op.getSimpleValueType(); 1330 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1331 1332 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1333 1334 SDLoc DL(Op); 1335 SDValue Mask, VL; 1336 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1337 1338 unsigned Opc = 1339 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1340 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1341 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1342 } 1343 1344 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1345 const RISCVSubtarget &Subtarget) { 1346 MVT VT = Op.getSimpleValueType(); 1347 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1348 1349 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1350 1351 SDLoc DL(Op); 1352 SDValue Mask, VL; 1353 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1354 1355 MVT XLenVT = Subtarget.getXLenVT(); 1356 unsigned NumElts = Op.getNumOperands(); 1357 1358 if (VT.getVectorElementType() == MVT::i1) { 1359 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1360 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1361 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1362 } 1363 1364 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1365 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1366 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1367 } 1368 1369 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1370 // scalar integer chunks whose bit-width depends on the number of mask 1371 // bits and XLEN. 1372 // First, determine the most appropriate scalar integer type to use. This 1373 // is at most XLenVT, but may be shrunk to a smaller vector element type 1374 // according to the size of the final vector - use i8 chunks rather than 1375 // XLenVT if we're producing a v8i1. This results in more consistent 1376 // codegen across RV32 and RV64. 1377 unsigned NumViaIntegerBits = 1378 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1379 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1380 // If we have to use more than one INSERT_VECTOR_ELT then this 1381 // optimization is likely to increase code size; avoid peforming it in 1382 // such a case. We can use a load from a constant pool in this case. 1383 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1384 return SDValue(); 1385 // Now we can create our integer vector type. Note that it may be larger 1386 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1387 MVT IntegerViaVecVT = 1388 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1389 divideCeil(NumElts, NumViaIntegerBits)); 1390 1391 uint64_t Bits = 0; 1392 unsigned BitPos = 0, IntegerEltIdx = 0; 1393 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1394 1395 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1396 // Once we accumulate enough bits to fill our scalar type, insert into 1397 // our vector and clear our accumulated data. 1398 if (I != 0 && I % NumViaIntegerBits == 0) { 1399 if (NumViaIntegerBits <= 32) 1400 Bits = SignExtend64(Bits, 32); 1401 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1402 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1403 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1404 Bits = 0; 1405 BitPos = 0; 1406 IntegerEltIdx++; 1407 } 1408 SDValue V = Op.getOperand(I); 1409 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1410 Bits |= ((uint64_t)BitValue << BitPos); 1411 } 1412 1413 // Insert the (remaining) scalar value into position in our integer 1414 // vector type. 1415 if (NumViaIntegerBits <= 32) 1416 Bits = SignExtend64(Bits, 32); 1417 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1418 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1419 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1420 1421 if (NumElts < NumViaIntegerBits) { 1422 // If we're producing a smaller vector than our minimum legal integer 1423 // type, bitcast to the equivalent (known-legal) mask type, and extract 1424 // our final mask. 1425 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1426 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1427 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1428 DAG.getConstant(0, DL, XLenVT)); 1429 } else { 1430 // Else we must have produced an integer type with the same size as the 1431 // mask type; bitcast for the final result. 1432 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1433 Vec = DAG.getBitcast(VT, Vec); 1434 } 1435 1436 return Vec; 1437 } 1438 1439 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1440 // vector type, we have a legal equivalently-sized i8 type, so we can use 1441 // that. 1442 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1443 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1444 1445 SDValue WideVec; 1446 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1447 // For a splat, perform a scalar truncate before creating the wider 1448 // vector. 1449 assert(Splat.getValueType() == XLenVT && 1450 "Unexpected type for i1 splat value"); 1451 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1452 DAG.getConstant(1, DL, XLenVT)); 1453 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1454 } else { 1455 SmallVector<SDValue, 8> Ops(Op->op_values()); 1456 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1457 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1458 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1459 } 1460 1461 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1462 } 1463 1464 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1465 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1466 : RISCVISD::VMV_V_X_VL; 1467 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1468 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1469 } 1470 1471 // Try and match an index sequence, which we can lower directly to the vid 1472 // instruction. An all-undef vector is matched by getSplatValue, above. 1473 if (VT.isInteger()) { 1474 bool IsVID = true; 1475 for (unsigned I = 0; I < NumElts && IsVID; I++) 1476 IsVID &= Op.getOperand(I).isUndef() || 1477 (isa<ConstantSDNode>(Op.getOperand(I)) && 1478 Op.getConstantOperandVal(I) == I); 1479 1480 if (IsVID) { 1481 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1482 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1483 } 1484 } 1485 1486 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1487 // when re-interpreted as a vector with a larger element type. For example, 1488 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1489 // could be instead splat as 1490 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1491 // TODO: This optimization could also work on non-constant splats, but it 1492 // would require bit-manipulation instructions to construct the splat value. 1493 SmallVector<SDValue> Sequence; 1494 unsigned EltBitSize = VT.getScalarSizeInBits(); 1495 const auto *BV = cast<BuildVectorSDNode>(Op); 1496 if (VT.isInteger() && EltBitSize < 64 && 1497 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1498 BV->getRepeatedSequence(Sequence) && 1499 (Sequence.size() * EltBitSize) <= 64) { 1500 unsigned SeqLen = Sequence.size(); 1501 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1502 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1503 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1504 ViaIntVT == MVT::i64) && 1505 "Unexpected sequence type"); 1506 1507 unsigned EltIdx = 0; 1508 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1509 uint64_t SplatValue = 0; 1510 // Construct the amalgamated value which can be splatted as this larger 1511 // vector type. 1512 for (const auto &SeqV : Sequence) { 1513 if (!SeqV.isUndef()) 1514 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1515 << (EltIdx * EltBitSize)); 1516 EltIdx++; 1517 } 1518 1519 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1520 // achieve better constant materializion. 1521 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1522 SplatValue = SignExtend64(SplatValue, 32); 1523 1524 // Since we can't introduce illegal i64 types at this stage, we can only 1525 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1526 // way we can use RVV instructions to splat. 1527 assert((ViaIntVT.bitsLE(XLenVT) || 1528 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1529 "Unexpected bitcast sequence"); 1530 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1531 SDValue ViaVL = 1532 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1533 MVT ViaContainerVT = 1534 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1535 SDValue Splat = 1536 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1537 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1538 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1539 return DAG.getBitcast(VT, Splat); 1540 } 1541 } 1542 1543 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1544 // which constitute a large proportion of the elements. In such cases we can 1545 // splat a vector with the dominant element and make up the shortfall with 1546 // INSERT_VECTOR_ELTs. 1547 // Note that this includes vectors of 2 elements by association. The 1548 // upper-most element is the "dominant" one, allowing us to use a splat to 1549 // "insert" the upper element, and an insert of the lower element at position 1550 // 0, which improves codegen. 1551 SDValue DominantValue; 1552 unsigned MostCommonCount = 0; 1553 DenseMap<SDValue, unsigned> ValueCounts; 1554 unsigned NumUndefElts = 1555 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1556 1557 for (SDValue V : Op->op_values()) { 1558 if (V.isUndef()) 1559 continue; 1560 1561 ValueCounts.insert(std::make_pair(V, 0)); 1562 unsigned &Count = ValueCounts[V]; 1563 1564 // Is this value dominant? In case of a tie, prefer the highest element as 1565 // it's cheaper to insert near the beginning of a vector than it is at the 1566 // end. 1567 if (++Count >= MostCommonCount) { 1568 DominantValue = V; 1569 MostCommonCount = Count; 1570 } 1571 } 1572 1573 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1574 unsigned NumDefElts = NumElts - NumUndefElts; 1575 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1576 1577 // Don't perform this optimization when optimizing for size, since 1578 // materializing elements and inserting them tends to cause code bloat. 1579 if (!DAG.shouldOptForSize() && 1580 ((MostCommonCount > DominantValueCountThreshold) || 1581 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1582 // Start by splatting the most common element. 1583 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1584 1585 DenseSet<SDValue> Processed{DominantValue}; 1586 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1587 for (const auto &OpIdx : enumerate(Op->ops())) { 1588 const SDValue &V = OpIdx.value(); 1589 if (V.isUndef() || !Processed.insert(V).second) 1590 continue; 1591 if (ValueCounts[V] == 1) { 1592 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1593 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1594 } else { 1595 // Blend in all instances of this value using a VSELECT, using a 1596 // mask where each bit signals whether that element is the one 1597 // we're after. 1598 SmallVector<SDValue> Ops; 1599 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1600 return DAG.getConstant(V == V1, DL, XLenVT); 1601 }); 1602 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1603 DAG.getBuildVector(SelMaskTy, DL, Ops), 1604 DAG.getSplatBuildVector(VT, DL, V), Vec); 1605 } 1606 } 1607 1608 return Vec; 1609 } 1610 1611 return SDValue(); 1612 } 1613 1614 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1615 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1616 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1617 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1618 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1619 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1620 // node in order to try and match RVV vector/scalar instructions. 1621 if ((LoC >> 31) == HiC) 1622 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1623 } 1624 1625 // Fall back to a stack store and stride x0 vector load. 1626 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1627 } 1628 1629 // Called by type legalization to handle splat of i64 on RV32. 1630 // FIXME: We can optimize this when the type has sign or zero bits in one 1631 // of the halves. 1632 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1633 SDValue VL, SelectionDAG &DAG) { 1634 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1635 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1636 DAG.getConstant(0, DL, MVT::i32)); 1637 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1638 DAG.getConstant(1, DL, MVT::i32)); 1639 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1640 } 1641 1642 // This function lowers a splat of a scalar operand Splat with the vector 1643 // length VL. It ensures the final sequence is type legal, which is useful when 1644 // lowering a splat after type legalization. 1645 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1646 SelectionDAG &DAG, 1647 const RISCVSubtarget &Subtarget) { 1648 if (VT.isFloatingPoint()) 1649 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1650 1651 MVT XLenVT = Subtarget.getXLenVT(); 1652 1653 // Simplest case is that the operand needs to be promoted to XLenVT. 1654 if (Scalar.getValueType().bitsLE(XLenVT)) { 1655 // If the operand is a constant, sign extend to increase our chances 1656 // of being able to use a .vi instruction. ANY_EXTEND would become a 1657 // a zero extend and the simm5 check in isel would fail. 1658 // FIXME: Should we ignore the upper bits in isel instead? 1659 unsigned ExtOpc = 1660 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1661 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1662 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1663 } 1664 1665 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1666 "Unexpected scalar for splat lowering!"); 1667 1668 // Otherwise use the more complicated splatting algorithm. 1669 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1670 } 1671 1672 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1673 const RISCVSubtarget &Subtarget) { 1674 SDValue V1 = Op.getOperand(0); 1675 SDValue V2 = Op.getOperand(1); 1676 SDLoc DL(Op); 1677 MVT XLenVT = Subtarget.getXLenVT(); 1678 MVT VT = Op.getSimpleValueType(); 1679 unsigned NumElts = VT.getVectorNumElements(); 1680 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1681 1682 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1683 1684 SDValue TrueMask, VL; 1685 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1686 1687 if (SVN->isSplat()) { 1688 const int Lane = SVN->getSplatIndex(); 1689 if (Lane >= 0) { 1690 MVT SVT = VT.getVectorElementType(); 1691 1692 // Turn splatted vector load into a strided load with an X0 stride. 1693 SDValue V = V1; 1694 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1695 // with undef. 1696 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1697 int Offset = Lane; 1698 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1699 int OpElements = 1700 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1701 V = V.getOperand(Offset / OpElements); 1702 Offset %= OpElements; 1703 } 1704 1705 // We need to ensure the load isn't atomic or volatile. 1706 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1707 auto *Ld = cast<LoadSDNode>(V); 1708 Offset *= SVT.getStoreSize(); 1709 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1710 TypeSize::Fixed(Offset), DL); 1711 1712 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1713 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1714 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1715 SDValue IntID = 1716 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1717 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1718 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1719 SDValue NewLoad = DAG.getMemIntrinsicNode( 1720 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1721 DAG.getMachineFunction().getMachineMemOperand( 1722 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1723 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1724 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1725 } 1726 1727 // Otherwise use a scalar load and splat. This will give the best 1728 // opportunity to fold a splat into the operation. ISel can turn it into 1729 // the x0 strided load if we aren't able to fold away the select. 1730 if (SVT.isFloatingPoint()) 1731 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1732 Ld->getPointerInfo().getWithOffset(Offset), 1733 Ld->getOriginalAlign(), 1734 Ld->getMemOperand()->getFlags()); 1735 else 1736 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1737 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1738 Ld->getOriginalAlign(), 1739 Ld->getMemOperand()->getFlags()); 1740 DAG.makeEquivalentMemoryOrdering(Ld, V); 1741 1742 unsigned Opc = 1743 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1744 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1745 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1746 } 1747 1748 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1749 assert(Lane < (int)NumElts && "Unexpected lane!"); 1750 SDValue Gather = 1751 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1752 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1753 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1754 } 1755 } 1756 1757 // Detect shuffles which can be re-expressed as vector selects; these are 1758 // shuffles in which each element in the destination is taken from an element 1759 // at the corresponding index in either source vectors. 1760 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1761 int MaskIndex = MaskIdx.value(); 1762 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1763 }); 1764 1765 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1766 1767 SmallVector<SDValue> MaskVals; 1768 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1769 // merged with a second vrgather. 1770 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1771 1772 // By default we preserve the original operand order, and use a mask to 1773 // select LHS as true and RHS as false. However, since RVV vector selects may 1774 // feature splats but only on the LHS, we may choose to invert our mask and 1775 // instead select between RHS and LHS. 1776 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1777 bool InvertMask = IsSelect == SwapOps; 1778 1779 // Now construct the mask that will be used by the vselect or blended 1780 // vrgather operation. For vrgathers, construct the appropriate indices into 1781 // each vector. 1782 for (int MaskIndex : SVN->getMask()) { 1783 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1784 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1785 if (!IsSelect) { 1786 bool IsLHS = MaskIndex < (int)NumElts; 1787 // For "undef" elements of -1, shuffle in element 0 instead. 1788 GatherIndicesLHS.push_back( 1789 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1790 // TODO: If we're masking out unused elements anyway, it might produce 1791 // better code if we use the most-common element index instead of 0. 1792 GatherIndicesRHS.push_back( 1793 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1794 } 1795 } 1796 1797 if (SwapOps) { 1798 std::swap(V1, V2); 1799 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1800 } 1801 1802 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1803 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1804 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1805 1806 if (IsSelect) 1807 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1808 1809 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1810 // On such a large vector we're unable to use i8 as the index type. 1811 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1812 // may involve vector splitting if we're already at LMUL=8, or our 1813 // user-supplied maximum fixed-length LMUL. 1814 return SDValue(); 1815 } 1816 1817 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1818 MVT IndexVT = VT.changeTypeToInteger(); 1819 // Since we can't introduce illegal index types at this stage, use i16 and 1820 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1821 // than XLenVT. 1822 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1823 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1824 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1825 } 1826 1827 MVT IndexContainerVT = 1828 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1829 1830 SDValue Gather; 1831 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1832 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1833 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1834 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1835 } else { 1836 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1837 LHSIndices = 1838 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1839 1840 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1841 Gather = 1842 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1843 } 1844 1845 // If a second vector operand is used by this shuffle, blend it in with an 1846 // additional vrgather. 1847 if (!V2.isUndef()) { 1848 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1849 SelectMask = 1850 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1851 1852 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1853 RHSIndices = 1854 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1855 1856 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1857 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1858 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1859 Gather, VL); 1860 } 1861 1862 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1863 } 1864 1865 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1866 SDLoc DL, SelectionDAG &DAG, 1867 const RISCVSubtarget &Subtarget) { 1868 if (VT.isScalableVector()) 1869 return DAG.getFPExtendOrRound(Op, DL, VT); 1870 assert(VT.isFixedLengthVector() && 1871 "Unexpected value type for RVV FP extend/round lowering"); 1872 SDValue Mask, VL; 1873 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1874 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1875 ? RISCVISD::FP_EXTEND_VL 1876 : RISCVISD::FP_ROUND_VL; 1877 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1878 } 1879 1880 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1881 SelectionDAG &DAG) const { 1882 switch (Op.getOpcode()) { 1883 default: 1884 report_fatal_error("unimplemented operand"); 1885 case ISD::GlobalAddress: 1886 return lowerGlobalAddress(Op, DAG); 1887 case ISD::BlockAddress: 1888 return lowerBlockAddress(Op, DAG); 1889 case ISD::ConstantPool: 1890 return lowerConstantPool(Op, DAG); 1891 case ISD::JumpTable: 1892 return lowerJumpTable(Op, DAG); 1893 case ISD::GlobalTLSAddress: 1894 return lowerGlobalTLSAddress(Op, DAG); 1895 case ISD::SELECT: 1896 return lowerSELECT(Op, DAG); 1897 case ISD::BRCOND: 1898 return lowerBRCOND(Op, DAG); 1899 case ISD::VASTART: 1900 return lowerVASTART(Op, DAG); 1901 case ISD::FRAMEADDR: 1902 return lowerFRAMEADDR(Op, DAG); 1903 case ISD::RETURNADDR: 1904 return lowerRETURNADDR(Op, DAG); 1905 case ISD::SHL_PARTS: 1906 return lowerShiftLeftParts(Op, DAG); 1907 case ISD::SRA_PARTS: 1908 return lowerShiftRightParts(Op, DAG, true); 1909 case ISD::SRL_PARTS: 1910 return lowerShiftRightParts(Op, DAG, false); 1911 case ISD::BITCAST: { 1912 SDLoc DL(Op); 1913 EVT VT = Op.getValueType(); 1914 SDValue Op0 = Op.getOperand(0); 1915 EVT Op0VT = Op0.getValueType(); 1916 MVT XLenVT = Subtarget.getXLenVT(); 1917 if (VT.isFixedLengthVector()) { 1918 // We can handle fixed length vector bitcasts with a simple replacement 1919 // in isel. 1920 if (Op0VT.isFixedLengthVector()) 1921 return Op; 1922 // When bitcasting from scalar to fixed-length vector, insert the scalar 1923 // into a one-element vector of the result type, and perform a vector 1924 // bitcast. 1925 if (!Op0VT.isVector()) { 1926 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1927 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1928 DAG.getUNDEF(BVT), Op0, 1929 DAG.getConstant(0, DL, XLenVT))); 1930 } 1931 return SDValue(); 1932 } 1933 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1934 // thus: bitcast the vector to a one-element vector type whose element type 1935 // is the same as the result type, and extract the first element. 1936 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1937 LLVMContext &Context = *DAG.getContext(); 1938 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1939 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1940 DAG.getConstant(0, DL, XLenVT)); 1941 } 1942 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1943 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1944 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1945 return FPConv; 1946 } 1947 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1948 Subtarget.hasStdExtF()) { 1949 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1950 SDValue FPConv = 1951 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1952 return FPConv; 1953 } 1954 return SDValue(); 1955 } 1956 case ISD::INTRINSIC_WO_CHAIN: 1957 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1958 case ISD::INTRINSIC_W_CHAIN: 1959 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1960 case ISD::BSWAP: 1961 case ISD::BITREVERSE: { 1962 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1963 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1964 MVT VT = Op.getSimpleValueType(); 1965 SDLoc DL(Op); 1966 // Start with the maximum immediate value which is the bitwidth - 1. 1967 unsigned Imm = VT.getSizeInBits() - 1; 1968 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1969 if (Op.getOpcode() == ISD::BSWAP) 1970 Imm &= ~0x7U; 1971 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 1972 DAG.getConstant(Imm, DL, VT)); 1973 } 1974 case ISD::FSHL: 1975 case ISD::FSHR: { 1976 MVT VT = Op.getSimpleValueType(); 1977 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1978 SDLoc DL(Op); 1979 if (Op.getOperand(2).getOpcode() == ISD::Constant) 1980 return Op; 1981 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1982 // use log(XLen) bits. Mask the shift amount accordingly. 1983 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1984 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1985 DAG.getConstant(ShAmtWidth, DL, VT)); 1986 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1987 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1988 } 1989 case ISD::TRUNCATE: { 1990 SDLoc DL(Op); 1991 MVT VT = Op.getSimpleValueType(); 1992 // Only custom-lower vector truncates 1993 if (!VT.isVector()) 1994 return Op; 1995 1996 // Truncates to mask types are handled differently 1997 if (VT.getVectorElementType() == MVT::i1) 1998 return lowerVectorMaskTrunc(Op, DAG); 1999 2000 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2001 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2002 // truncate by one power of two at a time. 2003 MVT DstEltVT = VT.getVectorElementType(); 2004 2005 SDValue Src = Op.getOperand(0); 2006 MVT SrcVT = Src.getSimpleValueType(); 2007 MVT SrcEltVT = SrcVT.getVectorElementType(); 2008 2009 assert(DstEltVT.bitsLT(SrcEltVT) && 2010 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2011 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2012 "Unexpected vector truncate lowering"); 2013 2014 MVT ContainerVT = SrcVT; 2015 if (SrcVT.isFixedLengthVector()) { 2016 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2017 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2018 } 2019 2020 SDValue Result = Src; 2021 SDValue Mask, VL; 2022 std::tie(Mask, VL) = 2023 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2024 LLVMContext &Context = *DAG.getContext(); 2025 const ElementCount Count = ContainerVT.getVectorElementCount(); 2026 do { 2027 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2028 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2029 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2030 Mask, VL); 2031 } while (SrcEltVT != DstEltVT); 2032 2033 if (SrcVT.isFixedLengthVector()) 2034 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2035 2036 return Result; 2037 } 2038 case ISD::ANY_EXTEND: 2039 case ISD::ZERO_EXTEND: 2040 if (Op.getOperand(0).getValueType().isVector() && 2041 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2042 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2043 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2044 case ISD::SIGN_EXTEND: 2045 if (Op.getOperand(0).getValueType().isVector() && 2046 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2047 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2048 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2049 case ISD::SPLAT_VECTOR_PARTS: 2050 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2051 case ISD::INSERT_VECTOR_ELT: 2052 return lowerINSERT_VECTOR_ELT(Op, DAG); 2053 case ISD::EXTRACT_VECTOR_ELT: 2054 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2055 case ISD::VSCALE: { 2056 MVT VT = Op.getSimpleValueType(); 2057 SDLoc DL(Op); 2058 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2059 // We define our scalable vector types for lmul=1 to use a 64 bit known 2060 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2061 // vscale as VLENB / 8. 2062 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2063 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2064 DAG.getConstant(3, DL, VT)); 2065 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2066 } 2067 case ISD::FP_EXTEND: { 2068 // RVV can only do fp_extend to types double the size as the source. We 2069 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2070 // via f32. 2071 SDLoc DL(Op); 2072 MVT VT = Op.getSimpleValueType(); 2073 SDValue Src = Op.getOperand(0); 2074 MVT SrcVT = Src.getSimpleValueType(); 2075 2076 // Prepare any fixed-length vector operands. 2077 MVT ContainerVT = VT; 2078 if (SrcVT.isFixedLengthVector()) { 2079 ContainerVT = getContainerForFixedLengthVector(VT); 2080 MVT SrcContainerVT = 2081 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2082 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2083 } 2084 2085 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2086 SrcVT.getVectorElementType() != MVT::f16) { 2087 // For scalable vectors, we only need to close the gap between 2088 // vXf16->vXf64. 2089 if (!VT.isFixedLengthVector()) 2090 return Op; 2091 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2092 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2093 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2094 } 2095 2096 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2097 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2098 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2099 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2100 2101 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2102 DL, DAG, Subtarget); 2103 if (VT.isFixedLengthVector()) 2104 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2105 return Extend; 2106 } 2107 case ISD::FP_ROUND: { 2108 // RVV can only do fp_round to types half the size as the source. We 2109 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2110 // conversion instruction. 2111 SDLoc DL(Op); 2112 MVT VT = Op.getSimpleValueType(); 2113 SDValue Src = Op.getOperand(0); 2114 MVT SrcVT = Src.getSimpleValueType(); 2115 2116 // Prepare any fixed-length vector operands. 2117 MVT ContainerVT = VT; 2118 if (VT.isFixedLengthVector()) { 2119 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2120 ContainerVT = 2121 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2122 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2123 } 2124 2125 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2126 SrcVT.getVectorElementType() != MVT::f64) { 2127 // For scalable vectors, we only need to close the gap between 2128 // vXf64<->vXf16. 2129 if (!VT.isFixedLengthVector()) 2130 return Op; 2131 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2132 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2133 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2134 } 2135 2136 SDValue Mask, VL; 2137 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2138 2139 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2140 SDValue IntermediateRound = 2141 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2142 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2143 DL, DAG, Subtarget); 2144 2145 if (VT.isFixedLengthVector()) 2146 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2147 return Round; 2148 } 2149 case ISD::FP_TO_SINT: 2150 case ISD::FP_TO_UINT: 2151 case ISD::SINT_TO_FP: 2152 case ISD::UINT_TO_FP: { 2153 // RVV can only do fp<->int conversions to types half/double the size as 2154 // the source. We custom-lower any conversions that do two hops into 2155 // sequences. 2156 MVT VT = Op.getSimpleValueType(); 2157 if (!VT.isVector()) 2158 return Op; 2159 SDLoc DL(Op); 2160 SDValue Src = Op.getOperand(0); 2161 MVT EltVT = VT.getVectorElementType(); 2162 MVT SrcVT = Src.getSimpleValueType(); 2163 MVT SrcEltVT = SrcVT.getVectorElementType(); 2164 unsigned EltSize = EltVT.getSizeInBits(); 2165 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2166 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2167 "Unexpected vector element types"); 2168 2169 bool IsInt2FP = SrcEltVT.isInteger(); 2170 // Widening conversions 2171 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2172 if (IsInt2FP) { 2173 // Do a regular integer sign/zero extension then convert to float. 2174 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2175 VT.getVectorElementCount()); 2176 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2177 ? ISD::ZERO_EXTEND 2178 : ISD::SIGN_EXTEND; 2179 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2180 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2181 } 2182 // FP2Int 2183 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2184 // Do one doubling fp_extend then complete the operation by converting 2185 // to int. 2186 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2187 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2188 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2189 } 2190 2191 // Narrowing conversions 2192 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2193 if (IsInt2FP) { 2194 // One narrowing int_to_fp, then an fp_round. 2195 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2196 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2197 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2198 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2199 } 2200 // FP2Int 2201 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2202 // representable by the integer, the result is poison. 2203 MVT IVecVT = 2204 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2205 VT.getVectorElementCount()); 2206 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2207 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2208 } 2209 2210 // Scalable vectors can exit here. Patterns will handle equally-sized 2211 // conversions halving/doubling ones. 2212 if (!VT.isFixedLengthVector()) 2213 return Op; 2214 2215 // For fixed-length vectors we lower to a custom "VL" node. 2216 unsigned RVVOpc = 0; 2217 switch (Op.getOpcode()) { 2218 default: 2219 llvm_unreachable("Impossible opcode"); 2220 case ISD::FP_TO_SINT: 2221 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2222 break; 2223 case ISD::FP_TO_UINT: 2224 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2225 break; 2226 case ISD::SINT_TO_FP: 2227 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2228 break; 2229 case ISD::UINT_TO_FP: 2230 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2231 break; 2232 } 2233 2234 MVT ContainerVT, SrcContainerVT; 2235 // Derive the reference container type from the larger vector type. 2236 if (SrcEltSize > EltSize) { 2237 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2238 ContainerVT = 2239 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2240 } else { 2241 ContainerVT = getContainerForFixedLengthVector(VT); 2242 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2243 } 2244 2245 SDValue Mask, VL; 2246 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2247 2248 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2249 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2250 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2251 } 2252 case ISD::VECREDUCE_ADD: 2253 case ISD::VECREDUCE_UMAX: 2254 case ISD::VECREDUCE_SMAX: 2255 case ISD::VECREDUCE_UMIN: 2256 case ISD::VECREDUCE_SMIN: 2257 return lowerVECREDUCE(Op, DAG); 2258 case ISD::VECREDUCE_AND: 2259 case ISD::VECREDUCE_OR: 2260 case ISD::VECREDUCE_XOR: 2261 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2262 return lowerVectorMaskVECREDUCE(Op, DAG); 2263 return lowerVECREDUCE(Op, DAG); 2264 case ISD::VECREDUCE_FADD: 2265 case ISD::VECREDUCE_SEQ_FADD: 2266 case ISD::VECREDUCE_FMIN: 2267 case ISD::VECREDUCE_FMAX: 2268 return lowerFPVECREDUCE(Op, DAG); 2269 case ISD::INSERT_SUBVECTOR: 2270 return lowerINSERT_SUBVECTOR(Op, DAG); 2271 case ISD::EXTRACT_SUBVECTOR: 2272 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2273 case ISD::STEP_VECTOR: 2274 return lowerSTEP_VECTOR(Op, DAG); 2275 case ISD::VECTOR_REVERSE: 2276 return lowerVECTOR_REVERSE(Op, DAG); 2277 case ISD::BUILD_VECTOR: 2278 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2279 case ISD::SPLAT_VECTOR: 2280 if (Op.getValueType().getVectorElementType() == MVT::i1) 2281 return lowerVectorMaskSplat(Op, DAG); 2282 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2283 case ISD::VECTOR_SHUFFLE: 2284 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2285 case ISD::CONCAT_VECTORS: { 2286 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2287 // better than going through the stack, as the default expansion does. 2288 SDLoc DL(Op); 2289 MVT VT = Op.getSimpleValueType(); 2290 unsigned NumOpElts = 2291 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2292 SDValue Vec = DAG.getUNDEF(VT); 2293 for (const auto &OpIdx : enumerate(Op->ops())) 2294 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2295 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2296 return Vec; 2297 } 2298 case ISD::LOAD: 2299 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2300 case ISD::STORE: 2301 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2302 case ISD::MLOAD: 2303 return lowerMLOAD(Op, DAG); 2304 case ISD::MSTORE: 2305 return lowerMSTORE(Op, DAG); 2306 case ISD::SETCC: 2307 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2308 case ISD::ADD: 2309 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2310 case ISD::SUB: 2311 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2312 case ISD::MUL: 2313 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2314 case ISD::MULHS: 2315 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2316 case ISD::MULHU: 2317 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2318 case ISD::AND: 2319 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2320 RISCVISD::AND_VL); 2321 case ISD::OR: 2322 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2323 RISCVISD::OR_VL); 2324 case ISD::XOR: 2325 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2326 RISCVISD::XOR_VL); 2327 case ISD::SDIV: 2328 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2329 case ISD::SREM: 2330 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2331 case ISD::UDIV: 2332 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2333 case ISD::UREM: 2334 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2335 case ISD::SHL: 2336 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2337 case ISD::SRA: 2338 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2339 case ISD::SRL: 2340 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2341 case ISD::FADD: 2342 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2343 case ISD::FSUB: 2344 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2345 case ISD::FMUL: 2346 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2347 case ISD::FDIV: 2348 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2349 case ISD::FNEG: 2350 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2351 case ISD::FABS: 2352 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2353 case ISD::FSQRT: 2354 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2355 case ISD::FMA: 2356 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2357 case ISD::SMIN: 2358 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2359 case ISD::SMAX: 2360 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2361 case ISD::UMIN: 2362 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2363 case ISD::UMAX: 2364 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2365 case ISD::FMINNUM: 2366 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2367 case ISD::FMAXNUM: 2368 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2369 case ISD::ABS: 2370 return lowerABS(Op, DAG); 2371 case ISD::VSELECT: 2372 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2373 case ISD::FCOPYSIGN: 2374 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2375 case ISD::MGATHER: 2376 return lowerMGATHER(Op, DAG); 2377 case ISD::MSCATTER: 2378 return lowerMSCATTER(Op, DAG); 2379 case ISD::FLT_ROUNDS_: 2380 return lowerGET_ROUNDING(Op, DAG); 2381 case ISD::SET_ROUNDING: 2382 return lowerSET_ROUNDING(Op, DAG); 2383 case ISD::VP_ADD: 2384 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2385 case ISD::VP_SUB: 2386 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2387 case ISD::VP_MUL: 2388 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2389 case ISD::VP_SDIV: 2390 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2391 case ISD::VP_UDIV: 2392 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2393 case ISD::VP_SREM: 2394 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2395 case ISD::VP_UREM: 2396 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2397 case ISD::VP_AND: 2398 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2399 case ISD::VP_OR: 2400 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2401 case ISD::VP_XOR: 2402 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2403 case ISD::VP_ASHR: 2404 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2405 case ISD::VP_LSHR: 2406 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2407 case ISD::VP_SHL: 2408 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2409 } 2410 } 2411 2412 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2413 SelectionDAG &DAG, unsigned Flags) { 2414 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2415 } 2416 2417 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2418 SelectionDAG &DAG, unsigned Flags) { 2419 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2420 Flags); 2421 } 2422 2423 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2424 SelectionDAG &DAG, unsigned Flags) { 2425 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2426 N->getOffset(), Flags); 2427 } 2428 2429 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2430 SelectionDAG &DAG, unsigned Flags) { 2431 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2432 } 2433 2434 template <class NodeTy> 2435 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2436 bool IsLocal) const { 2437 SDLoc DL(N); 2438 EVT Ty = getPointerTy(DAG.getDataLayout()); 2439 2440 if (isPositionIndependent()) { 2441 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2442 if (IsLocal) 2443 // Use PC-relative addressing to access the symbol. This generates the 2444 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2445 // %pcrel_lo(auipc)). 2446 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2447 2448 // Use PC-relative addressing to access the GOT for this symbol, then load 2449 // the address from the GOT. This generates the pattern (PseudoLA sym), 2450 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2451 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2452 } 2453 2454 switch (getTargetMachine().getCodeModel()) { 2455 default: 2456 report_fatal_error("Unsupported code model for lowering"); 2457 case CodeModel::Small: { 2458 // Generate a sequence for accessing addresses within the first 2 GiB of 2459 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2460 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2461 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2462 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2463 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2464 } 2465 case CodeModel::Medium: { 2466 // Generate a sequence for accessing addresses within any 2GiB range within 2467 // the address space. This generates the pattern (PseudoLLA sym), which 2468 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2469 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2470 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2471 } 2472 } 2473 } 2474 2475 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2476 SelectionDAG &DAG) const { 2477 SDLoc DL(Op); 2478 EVT Ty = Op.getValueType(); 2479 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2480 int64_t Offset = N->getOffset(); 2481 MVT XLenVT = Subtarget.getXLenVT(); 2482 2483 const GlobalValue *GV = N->getGlobal(); 2484 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2485 SDValue Addr = getAddr(N, DAG, IsLocal); 2486 2487 // In order to maximise the opportunity for common subexpression elimination, 2488 // emit a separate ADD node for the global address offset instead of folding 2489 // it in the global address node. Later peephole optimisations may choose to 2490 // fold it back in when profitable. 2491 if (Offset != 0) 2492 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2493 DAG.getConstant(Offset, DL, XLenVT)); 2494 return Addr; 2495 } 2496 2497 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2498 SelectionDAG &DAG) const { 2499 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2500 2501 return getAddr(N, DAG); 2502 } 2503 2504 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2505 SelectionDAG &DAG) const { 2506 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2507 2508 return getAddr(N, DAG); 2509 } 2510 2511 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2512 SelectionDAG &DAG) const { 2513 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2514 2515 return getAddr(N, DAG); 2516 } 2517 2518 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2519 SelectionDAG &DAG, 2520 bool UseGOT) const { 2521 SDLoc DL(N); 2522 EVT Ty = getPointerTy(DAG.getDataLayout()); 2523 const GlobalValue *GV = N->getGlobal(); 2524 MVT XLenVT = Subtarget.getXLenVT(); 2525 2526 if (UseGOT) { 2527 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2528 // load the address from the GOT and add the thread pointer. This generates 2529 // the pattern (PseudoLA_TLS_IE sym), which expands to 2530 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2531 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2532 SDValue Load = 2533 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2534 2535 // Add the thread pointer. 2536 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2537 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2538 } 2539 2540 // Generate a sequence for accessing the address relative to the thread 2541 // pointer, with the appropriate adjustment for the thread pointer offset. 2542 // This generates the pattern 2543 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2544 SDValue AddrHi = 2545 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2546 SDValue AddrAdd = 2547 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2548 SDValue AddrLo = 2549 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2550 2551 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2552 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2553 SDValue MNAdd = SDValue( 2554 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2555 0); 2556 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2557 } 2558 2559 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2560 SelectionDAG &DAG) const { 2561 SDLoc DL(N); 2562 EVT Ty = getPointerTy(DAG.getDataLayout()); 2563 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2564 const GlobalValue *GV = N->getGlobal(); 2565 2566 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2567 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2568 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2569 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2570 SDValue Load = 2571 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2572 2573 // Prepare argument list to generate call. 2574 ArgListTy Args; 2575 ArgListEntry Entry; 2576 Entry.Node = Load; 2577 Entry.Ty = CallTy; 2578 Args.push_back(Entry); 2579 2580 // Setup call to __tls_get_addr. 2581 TargetLowering::CallLoweringInfo CLI(DAG); 2582 CLI.setDebugLoc(DL) 2583 .setChain(DAG.getEntryNode()) 2584 .setLibCallee(CallingConv::C, CallTy, 2585 DAG.getExternalSymbol("__tls_get_addr", Ty), 2586 std::move(Args)); 2587 2588 return LowerCallTo(CLI).first; 2589 } 2590 2591 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2592 SelectionDAG &DAG) const { 2593 SDLoc DL(Op); 2594 EVT Ty = Op.getValueType(); 2595 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2596 int64_t Offset = N->getOffset(); 2597 MVT XLenVT = Subtarget.getXLenVT(); 2598 2599 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2600 2601 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2602 CallingConv::GHC) 2603 report_fatal_error("In GHC calling convention TLS is not supported"); 2604 2605 SDValue Addr; 2606 switch (Model) { 2607 case TLSModel::LocalExec: 2608 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2609 break; 2610 case TLSModel::InitialExec: 2611 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2612 break; 2613 case TLSModel::LocalDynamic: 2614 case TLSModel::GeneralDynamic: 2615 Addr = getDynamicTLSAddr(N, DAG); 2616 break; 2617 } 2618 2619 // In order to maximise the opportunity for common subexpression elimination, 2620 // emit a separate ADD node for the global address offset instead of folding 2621 // it in the global address node. Later peephole optimisations may choose to 2622 // fold it back in when profitable. 2623 if (Offset != 0) 2624 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2625 DAG.getConstant(Offset, DL, XLenVT)); 2626 return Addr; 2627 } 2628 2629 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2630 SDValue CondV = Op.getOperand(0); 2631 SDValue TrueV = Op.getOperand(1); 2632 SDValue FalseV = Op.getOperand(2); 2633 SDLoc DL(Op); 2634 MVT XLenVT = Subtarget.getXLenVT(); 2635 2636 // If the result type is XLenVT and CondV is the output of a SETCC node 2637 // which also operated on XLenVT inputs, then merge the SETCC node into the 2638 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2639 // compare+branch instructions. i.e.: 2640 // (select (setcc lhs, rhs, cc), truev, falsev) 2641 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2642 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2643 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2644 SDValue LHS = CondV.getOperand(0); 2645 SDValue RHS = CondV.getOperand(1); 2646 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2647 ISD::CondCode CCVal = CC->get(); 2648 2649 // Special case for a select of 2 constants that have a diffence of 1. 2650 // Normally this is done by DAGCombine, but if the select is introduced by 2651 // type legalization or op legalization, we miss it. Restricting to SETLT 2652 // case for now because that is what signed saturating add/sub need. 2653 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2654 // but we would probably want to swap the true/false values if the condition 2655 // is SETGE/SETLE to avoid an XORI. 2656 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2657 CCVal == ISD::SETLT) { 2658 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2659 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2660 if (TrueVal - 1 == FalseVal) 2661 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2662 if (TrueVal + 1 == FalseVal) 2663 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2664 } 2665 2666 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2667 2668 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2669 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2670 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2671 } 2672 2673 // Otherwise: 2674 // (select condv, truev, falsev) 2675 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2676 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2677 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2678 2679 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2680 2681 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2682 } 2683 2684 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2685 SDValue CondV = Op.getOperand(1); 2686 SDLoc DL(Op); 2687 MVT XLenVT = Subtarget.getXLenVT(); 2688 2689 if (CondV.getOpcode() == ISD::SETCC && 2690 CondV.getOperand(0).getValueType() == XLenVT) { 2691 SDValue LHS = CondV.getOperand(0); 2692 SDValue RHS = CondV.getOperand(1); 2693 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2694 2695 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2696 2697 SDValue TargetCC = DAG.getCondCode(CCVal); 2698 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2699 LHS, RHS, TargetCC, Op.getOperand(2)); 2700 } 2701 2702 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2703 CondV, DAG.getConstant(0, DL, XLenVT), 2704 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2705 } 2706 2707 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2708 MachineFunction &MF = DAG.getMachineFunction(); 2709 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2710 2711 SDLoc DL(Op); 2712 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2713 getPointerTy(MF.getDataLayout())); 2714 2715 // vastart just stores the address of the VarArgsFrameIndex slot into the 2716 // memory location argument. 2717 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2718 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2719 MachinePointerInfo(SV)); 2720 } 2721 2722 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2723 SelectionDAG &DAG) const { 2724 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2725 MachineFunction &MF = DAG.getMachineFunction(); 2726 MachineFrameInfo &MFI = MF.getFrameInfo(); 2727 MFI.setFrameAddressIsTaken(true); 2728 Register FrameReg = RI.getFrameRegister(MF); 2729 int XLenInBytes = Subtarget.getXLen() / 8; 2730 2731 EVT VT = Op.getValueType(); 2732 SDLoc DL(Op); 2733 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2734 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2735 while (Depth--) { 2736 int Offset = -(XLenInBytes * 2); 2737 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2738 DAG.getIntPtrConstant(Offset, DL)); 2739 FrameAddr = 2740 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2741 } 2742 return FrameAddr; 2743 } 2744 2745 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2746 SelectionDAG &DAG) const { 2747 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2748 MachineFunction &MF = DAG.getMachineFunction(); 2749 MachineFrameInfo &MFI = MF.getFrameInfo(); 2750 MFI.setReturnAddressIsTaken(true); 2751 MVT XLenVT = Subtarget.getXLenVT(); 2752 int XLenInBytes = Subtarget.getXLen() / 8; 2753 2754 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2755 return SDValue(); 2756 2757 EVT VT = Op.getValueType(); 2758 SDLoc DL(Op); 2759 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2760 if (Depth) { 2761 int Off = -XLenInBytes; 2762 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2763 SDValue Offset = DAG.getConstant(Off, DL, VT); 2764 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2765 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2766 MachinePointerInfo()); 2767 } 2768 2769 // Return the value of the return address register, marking it an implicit 2770 // live-in. 2771 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2772 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2773 } 2774 2775 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2776 SelectionDAG &DAG) const { 2777 SDLoc DL(Op); 2778 SDValue Lo = Op.getOperand(0); 2779 SDValue Hi = Op.getOperand(1); 2780 SDValue Shamt = Op.getOperand(2); 2781 EVT VT = Lo.getValueType(); 2782 2783 // if Shamt-XLEN < 0: // Shamt < XLEN 2784 // Lo = Lo << Shamt 2785 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2786 // else: 2787 // Lo = 0 2788 // Hi = Lo << (Shamt-XLEN) 2789 2790 SDValue Zero = DAG.getConstant(0, DL, VT); 2791 SDValue One = DAG.getConstant(1, DL, VT); 2792 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2793 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2794 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2795 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2796 2797 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2798 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2799 SDValue ShiftRightLo = 2800 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2801 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2802 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2803 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2804 2805 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2806 2807 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2808 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2809 2810 SDValue Parts[2] = {Lo, Hi}; 2811 return DAG.getMergeValues(Parts, DL); 2812 } 2813 2814 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2815 bool IsSRA) const { 2816 SDLoc DL(Op); 2817 SDValue Lo = Op.getOperand(0); 2818 SDValue Hi = Op.getOperand(1); 2819 SDValue Shamt = Op.getOperand(2); 2820 EVT VT = Lo.getValueType(); 2821 2822 // SRA expansion: 2823 // if Shamt-XLEN < 0: // Shamt < XLEN 2824 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2825 // Hi = Hi >>s Shamt 2826 // else: 2827 // Lo = Hi >>s (Shamt-XLEN); 2828 // Hi = Hi >>s (XLEN-1) 2829 // 2830 // SRL expansion: 2831 // if Shamt-XLEN < 0: // Shamt < XLEN 2832 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2833 // Hi = Hi >>u Shamt 2834 // else: 2835 // Lo = Hi >>u (Shamt-XLEN); 2836 // Hi = 0; 2837 2838 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2839 2840 SDValue Zero = DAG.getConstant(0, DL, VT); 2841 SDValue One = DAG.getConstant(1, DL, VT); 2842 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2843 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2844 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2845 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2846 2847 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2848 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2849 SDValue ShiftLeftHi = 2850 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2851 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2852 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2853 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2854 SDValue HiFalse = 2855 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2856 2857 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2858 2859 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2860 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2861 2862 SDValue Parts[2] = {Lo, Hi}; 2863 return DAG.getMergeValues(Parts, DL); 2864 } 2865 2866 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2867 // legal equivalently-sized i8 type, so we can use that as a go-between. 2868 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 2869 SelectionDAG &DAG) const { 2870 SDLoc DL(Op); 2871 MVT VT = Op.getSimpleValueType(); 2872 SDValue SplatVal = Op.getOperand(0); 2873 // All-zeros or all-ones splats are handled specially. 2874 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 2875 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2876 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 2877 } 2878 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 2879 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2880 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 2881 } 2882 MVT XLenVT = Subtarget.getXLenVT(); 2883 assert(SplatVal.getValueType() == XLenVT && 2884 "Unexpected type for i1 splat value"); 2885 MVT InterVT = VT.changeVectorElementType(MVT::i8); 2886 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 2887 DAG.getConstant(1, DL, XLenVT)); 2888 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 2889 SDValue Zero = DAG.getConstant(0, DL, InterVT); 2890 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 2891 } 2892 2893 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2894 // illegal (currently only vXi64 RV32). 2895 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2896 // them to SPLAT_VECTOR_I64 2897 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2898 SelectionDAG &DAG) const { 2899 SDLoc DL(Op); 2900 MVT VecVT = Op.getSimpleValueType(); 2901 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2902 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2903 2904 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2905 SDValue Lo = Op.getOperand(0); 2906 SDValue Hi = Op.getOperand(1); 2907 2908 if (VecVT.isFixedLengthVector()) { 2909 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2910 SDLoc DL(Op); 2911 SDValue Mask, VL; 2912 std::tie(Mask, VL) = 2913 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2914 2915 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 2916 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 2917 } 2918 2919 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2920 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2921 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2922 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2923 // node in order to try and match RVV vector/scalar instructions. 2924 if ((LoC >> 31) == HiC) 2925 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2926 } 2927 2928 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 2929 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 2930 isa<ConstantSDNode>(Hi.getOperand(1)) && 2931 Hi.getConstantOperandVal(1) == 31) 2932 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2933 2934 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 2935 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 2936 DAG.getRegister(RISCV::X0, MVT::i64)); 2937 } 2938 2939 // Custom-lower extensions from mask vectors by using a vselect either with 1 2940 // for zero/any-extension or -1 for sign-extension: 2941 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2942 // Note that any-extension is lowered identically to zero-extension. 2943 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2944 int64_t ExtTrueVal) const { 2945 SDLoc DL(Op); 2946 MVT VecVT = Op.getSimpleValueType(); 2947 SDValue Src = Op.getOperand(0); 2948 // Only custom-lower extensions from mask types 2949 assert(Src.getValueType().isVector() && 2950 Src.getValueType().getVectorElementType() == MVT::i1); 2951 2952 MVT XLenVT = Subtarget.getXLenVT(); 2953 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2954 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2955 2956 if (VecVT.isScalableVector()) { 2957 // Be careful not to introduce illegal scalar types at this stage, and be 2958 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2959 // illegal and must be expanded. Since we know that the constants are 2960 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2961 bool IsRV32E64 = 2962 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2963 2964 if (!IsRV32E64) { 2965 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2966 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2967 } else { 2968 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2969 SplatTrueVal = 2970 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2971 } 2972 2973 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2974 } 2975 2976 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2977 MVT I1ContainerVT = 2978 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2979 2980 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2981 2982 SDValue Mask, VL; 2983 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2984 2985 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2986 SplatTrueVal = 2987 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2988 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2989 SplatTrueVal, SplatZero, VL); 2990 2991 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2992 } 2993 2994 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 2995 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 2996 MVT ExtVT = Op.getSimpleValueType(); 2997 // Only custom-lower extensions from fixed-length vector types. 2998 if (!ExtVT.isFixedLengthVector()) 2999 return Op; 3000 MVT VT = Op.getOperand(0).getSimpleValueType(); 3001 // Grab the canonical container type for the extended type. Infer the smaller 3002 // type from that to ensure the same number of vector elements, as we know 3003 // the LMUL will be sufficient to hold the smaller type. 3004 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3005 // Get the extended container type manually to ensure the same number of 3006 // vector elements between source and dest. 3007 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3008 ContainerExtVT.getVectorElementCount()); 3009 3010 SDValue Op1 = 3011 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3012 3013 SDLoc DL(Op); 3014 SDValue Mask, VL; 3015 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3016 3017 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3018 3019 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3020 } 3021 3022 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3023 // setcc operation: 3024 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3025 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3026 SelectionDAG &DAG) const { 3027 SDLoc DL(Op); 3028 EVT MaskVT = Op.getValueType(); 3029 // Only expect to custom-lower truncations to mask types 3030 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3031 "Unexpected type for vector mask lowering"); 3032 SDValue Src = Op.getOperand(0); 3033 MVT VecVT = Src.getSimpleValueType(); 3034 3035 // If this is a fixed vector, we need to convert it to a scalable vector. 3036 MVT ContainerVT = VecVT; 3037 if (VecVT.isFixedLengthVector()) { 3038 ContainerVT = getContainerForFixedLengthVector(VecVT); 3039 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3040 } 3041 3042 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3043 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3044 3045 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3046 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3047 3048 if (VecVT.isScalableVector()) { 3049 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3050 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3051 } 3052 3053 SDValue Mask, VL; 3054 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3055 3056 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3057 SDValue Trunc = 3058 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3059 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3060 DAG.getCondCode(ISD::SETNE), Mask, VL); 3061 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3062 } 3063 3064 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3065 // first position of a vector, and that vector is slid up to the insert index. 3066 // By limiting the active vector length to index+1 and merging with the 3067 // original vector (with an undisturbed tail policy for elements >= VL), we 3068 // achieve the desired result of leaving all elements untouched except the one 3069 // at VL-1, which is replaced with the desired value. 3070 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3071 SelectionDAG &DAG) const { 3072 SDLoc DL(Op); 3073 MVT VecVT = Op.getSimpleValueType(); 3074 SDValue Vec = Op.getOperand(0); 3075 SDValue Val = Op.getOperand(1); 3076 SDValue Idx = Op.getOperand(2); 3077 3078 if (VecVT.getVectorElementType() == MVT::i1) { 3079 // FIXME: For now we just promote to an i8 vector and insert into that, 3080 // but this is probably not optimal. 3081 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3082 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3083 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3084 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3085 } 3086 3087 MVT ContainerVT = VecVT; 3088 // If the operand is a fixed-length vector, convert to a scalable one. 3089 if (VecVT.isFixedLengthVector()) { 3090 ContainerVT = getContainerForFixedLengthVector(VecVT); 3091 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3092 } 3093 3094 MVT XLenVT = Subtarget.getXLenVT(); 3095 3096 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3097 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3098 // Even i64-element vectors on RV32 can be lowered without scalar 3099 // legalization if the most-significant 32 bits of the value are not affected 3100 // by the sign-extension of the lower 32 bits. 3101 // TODO: We could also catch sign extensions of a 32-bit value. 3102 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3103 const auto *CVal = cast<ConstantSDNode>(Val); 3104 if (isInt<32>(CVal->getSExtValue())) { 3105 IsLegalInsert = true; 3106 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3107 } 3108 } 3109 3110 SDValue Mask, VL; 3111 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3112 3113 SDValue ValInVec; 3114 3115 if (IsLegalInsert) { 3116 unsigned Opc = 3117 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3118 if (isNullConstant(Idx)) { 3119 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3120 if (!VecVT.isFixedLengthVector()) 3121 return Vec; 3122 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3123 } 3124 ValInVec = 3125 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3126 } else { 3127 // On RV32, i64-element vectors must be specially handled to place the 3128 // value at element 0, by using two vslide1up instructions in sequence on 3129 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3130 // this. 3131 SDValue One = DAG.getConstant(1, DL, XLenVT); 3132 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3133 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3134 MVT I32ContainerVT = 3135 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3136 SDValue I32Mask = 3137 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3138 // Limit the active VL to two. 3139 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3140 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3141 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3142 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3143 InsertI64VL); 3144 // First slide in the hi value, then the lo in underneath it. 3145 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3146 ValHi, I32Mask, InsertI64VL); 3147 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3148 ValLo, I32Mask, InsertI64VL); 3149 // Bitcast back to the right container type. 3150 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3151 } 3152 3153 // Now that the value is in a vector, slide it into position. 3154 SDValue InsertVL = 3155 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3156 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3157 ValInVec, Idx, Mask, InsertVL); 3158 if (!VecVT.isFixedLengthVector()) 3159 return Slideup; 3160 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3161 } 3162 3163 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3164 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3165 // types this is done using VMV_X_S to allow us to glean information about the 3166 // sign bits of the result. 3167 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3168 SelectionDAG &DAG) const { 3169 SDLoc DL(Op); 3170 SDValue Idx = Op.getOperand(1); 3171 SDValue Vec = Op.getOperand(0); 3172 EVT EltVT = Op.getValueType(); 3173 MVT VecVT = Vec.getSimpleValueType(); 3174 MVT XLenVT = Subtarget.getXLenVT(); 3175 3176 if (VecVT.getVectorElementType() == MVT::i1) { 3177 // FIXME: For now we just promote to an i8 vector and extract from that, 3178 // but this is probably not optimal. 3179 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3180 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3181 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3182 } 3183 3184 // If this is a fixed vector, we need to convert it to a scalable vector. 3185 MVT ContainerVT = VecVT; 3186 if (VecVT.isFixedLengthVector()) { 3187 ContainerVT = getContainerForFixedLengthVector(VecVT); 3188 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3189 } 3190 3191 // If the index is 0, the vector is already in the right position. 3192 if (!isNullConstant(Idx)) { 3193 // Use a VL of 1 to avoid processing more elements than we need. 3194 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3195 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3196 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3197 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3198 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3199 } 3200 3201 if (!EltVT.isInteger()) { 3202 // Floating-point extracts are handled in TableGen. 3203 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3204 DAG.getConstant(0, DL, XLenVT)); 3205 } 3206 3207 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3208 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3209 } 3210 3211 // Some RVV intrinsics may claim that they want an integer operand to be 3212 // promoted or expanded. 3213 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3214 const RISCVSubtarget &Subtarget) { 3215 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3216 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3217 "Unexpected opcode"); 3218 3219 if (!Subtarget.hasStdExtV()) 3220 return SDValue(); 3221 3222 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3223 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3224 SDLoc DL(Op); 3225 3226 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3227 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3228 if (!II || !II->SplatOperand) 3229 return SDValue(); 3230 3231 unsigned SplatOp = II->SplatOperand + HasChain; 3232 assert(SplatOp < Op.getNumOperands()); 3233 3234 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3235 SDValue &ScalarOp = Operands[SplatOp]; 3236 MVT OpVT = ScalarOp.getSimpleValueType(); 3237 MVT XLenVT = Subtarget.getXLenVT(); 3238 3239 // If this isn't a scalar, or its type is XLenVT we're done. 3240 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3241 return SDValue(); 3242 3243 // Simplest case is that the operand needs to be promoted to XLenVT. 3244 if (OpVT.bitsLT(XLenVT)) { 3245 // If the operand is a constant, sign extend to increase our chances 3246 // of being able to use a .vi instruction. ANY_EXTEND would become a 3247 // a zero extend and the simm5 check in isel would fail. 3248 // FIXME: Should we ignore the upper bits in isel instead? 3249 unsigned ExtOpc = 3250 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3251 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3252 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3253 } 3254 3255 // Use the previous operand to get the vXi64 VT. The result might be a mask 3256 // VT for compares. Using the previous operand assumes that the previous 3257 // operand will never have a smaller element size than a scalar operand and 3258 // that a widening operation never uses SEW=64. 3259 // NOTE: If this fails the below assert, we can probably just find the 3260 // element count from any operand or result and use it to construct the VT. 3261 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3262 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3263 3264 // The more complex case is when the scalar is larger than XLenVT. 3265 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3266 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3267 3268 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3269 // on the instruction to sign-extend since SEW>XLEN. 3270 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3271 if (isInt<32>(CVal->getSExtValue())) { 3272 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3273 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3274 } 3275 } 3276 3277 // We need to convert the scalar to a splat vector. 3278 // FIXME: Can we implicitly truncate the scalar if it is known to 3279 // be sign extended? 3280 // VL should be the last operand. 3281 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3282 assert(VL.getValueType() == XLenVT); 3283 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3284 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3285 } 3286 3287 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3288 SelectionDAG &DAG) const { 3289 unsigned IntNo = Op.getConstantOperandVal(0); 3290 SDLoc DL(Op); 3291 MVT XLenVT = Subtarget.getXLenVT(); 3292 3293 switch (IntNo) { 3294 default: 3295 break; // Don't custom lower most intrinsics. 3296 case Intrinsic::thread_pointer: { 3297 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3298 return DAG.getRegister(RISCV::X4, PtrVT); 3299 } 3300 case Intrinsic::riscv_orc_b: 3301 // Lower to the GORCI encoding for orc.b. 3302 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3303 DAG.getConstant(7, DL, XLenVT)); 3304 case Intrinsic::riscv_grev: 3305 case Intrinsic::riscv_gorc: { 3306 unsigned Opc = 3307 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3308 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3309 } 3310 case Intrinsic::riscv_shfl: 3311 case Intrinsic::riscv_unshfl: { 3312 unsigned Opc = 3313 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3314 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3315 } 3316 case Intrinsic::riscv_bcompress: 3317 case Intrinsic::riscv_bdecompress: { 3318 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3319 : RISCVISD::BDECOMPRESS; 3320 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3321 } 3322 case Intrinsic::riscv_vmv_x_s: 3323 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3324 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3325 Op.getOperand(1)); 3326 case Intrinsic::riscv_vmv_v_x: 3327 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3328 Op.getSimpleValueType(), DL, DAG, Subtarget); 3329 case Intrinsic::riscv_vfmv_v_f: 3330 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3331 Op.getOperand(1), Op.getOperand(2)); 3332 case Intrinsic::riscv_vmv_s_x: { 3333 SDValue Scalar = Op.getOperand(2); 3334 3335 if (Scalar.getValueType().bitsLE(XLenVT)) { 3336 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3337 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3338 Op.getOperand(1), Scalar, Op.getOperand(3)); 3339 } 3340 3341 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3342 3343 // This is an i64 value that lives in two scalar registers. We have to 3344 // insert this in a convoluted way. First we build vXi64 splat containing 3345 // the/ two values that we assemble using some bit math. Next we'll use 3346 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3347 // to merge element 0 from our splat into the source vector. 3348 // FIXME: This is probably not the best way to do this, but it is 3349 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3350 // point. 3351 // sw lo, (a0) 3352 // sw hi, 4(a0) 3353 // vlse vX, (a0) 3354 // 3355 // vid.v vVid 3356 // vmseq.vx mMask, vVid, 0 3357 // vmerge.vvm vDest, vSrc, vVal, mMask 3358 MVT VT = Op.getSimpleValueType(); 3359 SDValue Vec = Op.getOperand(1); 3360 SDValue VL = Op.getOperand(3); 3361 3362 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3363 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3364 DAG.getConstant(0, DL, MVT::i32), VL); 3365 3366 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3367 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3368 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3369 SDValue SelectCond = 3370 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3371 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3372 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3373 Vec, VL); 3374 } 3375 case Intrinsic::riscv_vslide1up: 3376 case Intrinsic::riscv_vslide1down: 3377 case Intrinsic::riscv_vslide1up_mask: 3378 case Intrinsic::riscv_vslide1down_mask: { 3379 // We need to special case these when the scalar is larger than XLen. 3380 unsigned NumOps = Op.getNumOperands(); 3381 bool IsMasked = NumOps == 6; 3382 unsigned OpOffset = IsMasked ? 1 : 0; 3383 SDValue Scalar = Op.getOperand(2 + OpOffset); 3384 if (Scalar.getValueType().bitsLE(XLenVT)) 3385 break; 3386 3387 // Splatting a sign extended constant is fine. 3388 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3389 if (isInt<32>(CVal->getSExtValue())) 3390 break; 3391 3392 MVT VT = Op.getSimpleValueType(); 3393 assert(VT.getVectorElementType() == MVT::i64 && 3394 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3395 3396 // Convert the vector source to the equivalent nxvXi32 vector. 3397 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3398 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3399 3400 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3401 DAG.getConstant(0, DL, XLenVT)); 3402 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3403 DAG.getConstant(1, DL, XLenVT)); 3404 3405 // Double the VL since we halved SEW. 3406 SDValue VL = Op.getOperand(NumOps - 1); 3407 SDValue I32VL = 3408 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3409 3410 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3411 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3412 3413 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3414 // instructions. 3415 if (IntNo == Intrinsic::riscv_vslide1up || 3416 IntNo == Intrinsic::riscv_vslide1up_mask) { 3417 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3418 I32Mask, I32VL); 3419 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3420 I32Mask, I32VL); 3421 } else { 3422 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3423 I32Mask, I32VL); 3424 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3425 I32Mask, I32VL); 3426 } 3427 3428 // Convert back to nxvXi64. 3429 Vec = DAG.getBitcast(VT, Vec); 3430 3431 if (!IsMasked) 3432 return Vec; 3433 3434 // Apply mask after the operation. 3435 SDValue Mask = Op.getOperand(NumOps - 2); 3436 SDValue MaskedOff = Op.getOperand(1); 3437 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3438 } 3439 } 3440 3441 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3442 } 3443 3444 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3445 SelectionDAG &DAG) const { 3446 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3447 } 3448 3449 static MVT getLMUL1VT(MVT VT) { 3450 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3451 "Unexpected vector MVT"); 3452 return MVT::getScalableVectorVT( 3453 VT.getVectorElementType(), 3454 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3455 } 3456 3457 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3458 switch (ISDOpcode) { 3459 default: 3460 llvm_unreachable("Unhandled reduction"); 3461 case ISD::VECREDUCE_ADD: 3462 return RISCVISD::VECREDUCE_ADD_VL; 3463 case ISD::VECREDUCE_UMAX: 3464 return RISCVISD::VECREDUCE_UMAX_VL; 3465 case ISD::VECREDUCE_SMAX: 3466 return RISCVISD::VECREDUCE_SMAX_VL; 3467 case ISD::VECREDUCE_UMIN: 3468 return RISCVISD::VECREDUCE_UMIN_VL; 3469 case ISD::VECREDUCE_SMIN: 3470 return RISCVISD::VECREDUCE_SMIN_VL; 3471 case ISD::VECREDUCE_AND: 3472 return RISCVISD::VECREDUCE_AND_VL; 3473 case ISD::VECREDUCE_OR: 3474 return RISCVISD::VECREDUCE_OR_VL; 3475 case ISD::VECREDUCE_XOR: 3476 return RISCVISD::VECREDUCE_XOR_VL; 3477 } 3478 } 3479 3480 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3481 SelectionDAG &DAG) const { 3482 SDLoc DL(Op); 3483 SDValue Vec = Op.getOperand(0); 3484 MVT VecVT = Vec.getSimpleValueType(); 3485 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3486 Op.getOpcode() == ISD::VECREDUCE_OR || 3487 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3488 "Unexpected reduction lowering"); 3489 3490 MVT XLenVT = Subtarget.getXLenVT(); 3491 assert(Op.getValueType() == XLenVT && 3492 "Expected reduction output to be legalized to XLenVT"); 3493 3494 MVT ContainerVT = VecVT; 3495 if (VecVT.isFixedLengthVector()) { 3496 ContainerVT = getContainerForFixedLengthVector(VecVT); 3497 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3498 } 3499 3500 SDValue Mask, VL; 3501 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3502 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3503 3504 switch (Op.getOpcode()) { 3505 default: 3506 llvm_unreachable("Unhandled reduction"); 3507 case ISD::VECREDUCE_AND: 3508 // vpopc ~x == 0 3509 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3510 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3511 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3512 case ISD::VECREDUCE_OR: 3513 // vpopc x != 0 3514 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3515 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3516 case ISD::VECREDUCE_XOR: { 3517 // ((vpopc x) & 1) != 0 3518 SDValue One = DAG.getConstant(1, DL, XLenVT); 3519 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3520 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3521 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3522 } 3523 } 3524 } 3525 3526 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3527 SelectionDAG &DAG) const { 3528 SDLoc DL(Op); 3529 SDValue Vec = Op.getOperand(0); 3530 EVT VecEVT = Vec.getValueType(); 3531 3532 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3533 3534 // Due to ordering in legalize types we may have a vector type that needs to 3535 // be split. Do that manually so we can get down to a legal type. 3536 while (getTypeAction(*DAG.getContext(), VecEVT) == 3537 TargetLowering::TypeSplitVector) { 3538 SDValue Lo, Hi; 3539 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3540 VecEVT = Lo.getValueType(); 3541 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3542 } 3543 3544 // TODO: The type may need to be widened rather than split. Or widened before 3545 // it can be split. 3546 if (!isTypeLegal(VecEVT)) 3547 return SDValue(); 3548 3549 MVT VecVT = VecEVT.getSimpleVT(); 3550 MVT VecEltVT = VecVT.getVectorElementType(); 3551 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3552 3553 MVT ContainerVT = VecVT; 3554 if (VecVT.isFixedLengthVector()) { 3555 ContainerVT = getContainerForFixedLengthVector(VecVT); 3556 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3557 } 3558 3559 MVT M1VT = getLMUL1VT(ContainerVT); 3560 3561 SDValue Mask, VL; 3562 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3563 3564 // FIXME: This is a VLMAX splat which might be too large and can prevent 3565 // vsetvli removal. 3566 SDValue NeutralElem = 3567 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3568 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3569 SDValue Reduction = 3570 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3571 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3572 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3573 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3574 } 3575 3576 // Given a reduction op, this function returns the matching reduction opcode, 3577 // the vector SDValue and the scalar SDValue required to lower this to a 3578 // RISCVISD node. 3579 static std::tuple<unsigned, SDValue, SDValue> 3580 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3581 SDLoc DL(Op); 3582 auto Flags = Op->getFlags(); 3583 unsigned Opcode = Op.getOpcode(); 3584 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3585 switch (Opcode) { 3586 default: 3587 llvm_unreachable("Unhandled reduction"); 3588 case ISD::VECREDUCE_FADD: 3589 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3590 DAG.getConstantFP(0.0, DL, EltVT)); 3591 case ISD::VECREDUCE_SEQ_FADD: 3592 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3593 Op.getOperand(0)); 3594 case ISD::VECREDUCE_FMIN: 3595 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3596 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3597 case ISD::VECREDUCE_FMAX: 3598 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3599 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3600 } 3601 } 3602 3603 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3604 SelectionDAG &DAG) const { 3605 SDLoc DL(Op); 3606 MVT VecEltVT = Op.getSimpleValueType(); 3607 3608 unsigned RVVOpcode; 3609 SDValue VectorVal, ScalarVal; 3610 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3611 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3612 MVT VecVT = VectorVal.getSimpleValueType(); 3613 3614 MVT ContainerVT = VecVT; 3615 if (VecVT.isFixedLengthVector()) { 3616 ContainerVT = getContainerForFixedLengthVector(VecVT); 3617 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3618 } 3619 3620 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3621 3622 SDValue Mask, VL; 3623 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3624 3625 // FIXME: This is a VLMAX splat which might be too large and can prevent 3626 // vsetvli removal. 3627 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3628 SDValue Reduction = 3629 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3630 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3631 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3632 } 3633 3634 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3635 SelectionDAG &DAG) const { 3636 SDValue Vec = Op.getOperand(0); 3637 SDValue SubVec = Op.getOperand(1); 3638 MVT VecVT = Vec.getSimpleValueType(); 3639 MVT SubVecVT = SubVec.getSimpleValueType(); 3640 3641 SDLoc DL(Op); 3642 MVT XLenVT = Subtarget.getXLenVT(); 3643 unsigned OrigIdx = Op.getConstantOperandVal(2); 3644 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3645 3646 // We don't have the ability to slide mask vectors up indexed by their i1 3647 // elements; the smallest we can do is i8. Often we are able to bitcast to 3648 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3649 // into a scalable one, we might not necessarily have enough scalable 3650 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3651 if (SubVecVT.getVectorElementType() == MVT::i1 && 3652 (OrigIdx != 0 || !Vec.isUndef())) { 3653 if (VecVT.getVectorMinNumElements() >= 8 && 3654 SubVecVT.getVectorMinNumElements() >= 8) { 3655 assert(OrigIdx % 8 == 0 && "Invalid index"); 3656 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3657 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3658 "Unexpected mask vector lowering"); 3659 OrigIdx /= 8; 3660 SubVecVT = 3661 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3662 SubVecVT.isScalableVector()); 3663 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3664 VecVT.isScalableVector()); 3665 Vec = DAG.getBitcast(VecVT, Vec); 3666 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3667 } else { 3668 // We can't slide this mask vector up indexed by its i1 elements. 3669 // This poses a problem when we wish to insert a scalable vector which 3670 // can't be re-expressed as a larger type. Just choose the slow path and 3671 // extend to a larger type, then truncate back down. 3672 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3673 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3674 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3675 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3676 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3677 Op.getOperand(2)); 3678 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3679 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3680 } 3681 } 3682 3683 // If the subvector vector is a fixed-length type, we cannot use subregister 3684 // manipulation to simplify the codegen; we don't know which register of a 3685 // LMUL group contains the specific subvector as we only know the minimum 3686 // register size. Therefore we must slide the vector group up the full 3687 // amount. 3688 if (SubVecVT.isFixedLengthVector()) { 3689 if (OrigIdx == 0 && Vec.isUndef()) 3690 return Op; 3691 MVT ContainerVT = VecVT; 3692 if (VecVT.isFixedLengthVector()) { 3693 ContainerVT = getContainerForFixedLengthVector(VecVT); 3694 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3695 } 3696 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3697 DAG.getUNDEF(ContainerVT), SubVec, 3698 DAG.getConstant(0, DL, XLenVT)); 3699 SDValue Mask = 3700 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3701 // Set the vector length to only the number of elements we care about. Note 3702 // that for slideup this includes the offset. 3703 SDValue VL = 3704 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3705 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3706 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3707 SubVec, SlideupAmt, Mask, VL); 3708 if (VecVT.isFixedLengthVector()) 3709 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3710 return DAG.getBitcast(Op.getValueType(), Slideup); 3711 } 3712 3713 unsigned SubRegIdx, RemIdx; 3714 std::tie(SubRegIdx, RemIdx) = 3715 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3716 VecVT, SubVecVT, OrigIdx, TRI); 3717 3718 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3719 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3720 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3721 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3722 3723 // 1. If the Idx has been completely eliminated and this subvector's size is 3724 // a vector register or a multiple thereof, or the surrounding elements are 3725 // undef, then this is a subvector insert which naturally aligns to a vector 3726 // register. These can easily be handled using subregister manipulation. 3727 // 2. If the subvector is smaller than a vector register, then the insertion 3728 // must preserve the undisturbed elements of the register. We do this by 3729 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3730 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3731 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3732 // LMUL=1 type back into the larger vector (resolving to another subregister 3733 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3734 // to avoid allocating a large register group to hold our subvector. 3735 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3736 return Op; 3737 3738 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3739 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3740 // (in our case undisturbed). This means we can set up a subvector insertion 3741 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3742 // size of the subvector. 3743 MVT InterSubVT = VecVT; 3744 SDValue AlignedExtract = Vec; 3745 unsigned AlignedIdx = OrigIdx - RemIdx; 3746 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3747 InterSubVT = getLMUL1VT(VecVT); 3748 // Extract a subvector equal to the nearest full vector register type. This 3749 // should resolve to a EXTRACT_SUBREG instruction. 3750 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3751 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3752 } 3753 3754 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3755 // For scalable vectors this must be further multiplied by vscale. 3756 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3757 3758 SDValue Mask, VL; 3759 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3760 3761 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3762 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3763 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3764 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3765 3766 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3767 DAG.getUNDEF(InterSubVT), SubVec, 3768 DAG.getConstant(0, DL, XLenVT)); 3769 3770 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3771 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3772 3773 // If required, insert this subvector back into the correct vector register. 3774 // This should resolve to an INSERT_SUBREG instruction. 3775 if (VecVT.bitsGT(InterSubVT)) 3776 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3777 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3778 3779 // We might have bitcast from a mask type: cast back to the original type if 3780 // required. 3781 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3782 } 3783 3784 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3785 SelectionDAG &DAG) const { 3786 SDValue Vec = Op.getOperand(0); 3787 MVT SubVecVT = Op.getSimpleValueType(); 3788 MVT VecVT = Vec.getSimpleValueType(); 3789 3790 SDLoc DL(Op); 3791 MVT XLenVT = Subtarget.getXLenVT(); 3792 unsigned OrigIdx = Op.getConstantOperandVal(1); 3793 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3794 3795 // We don't have the ability to slide mask vectors down indexed by their i1 3796 // elements; the smallest we can do is i8. Often we are able to bitcast to 3797 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3798 // from a scalable one, we might not necessarily have enough scalable 3799 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3800 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3801 if (VecVT.getVectorMinNumElements() >= 8 && 3802 SubVecVT.getVectorMinNumElements() >= 8) { 3803 assert(OrigIdx % 8 == 0 && "Invalid index"); 3804 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3805 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3806 "Unexpected mask vector lowering"); 3807 OrigIdx /= 8; 3808 SubVecVT = 3809 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3810 SubVecVT.isScalableVector()); 3811 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3812 VecVT.isScalableVector()); 3813 Vec = DAG.getBitcast(VecVT, Vec); 3814 } else { 3815 // We can't slide this mask vector down, indexed by its i1 elements. 3816 // This poses a problem when we wish to extract a scalable vector which 3817 // can't be re-expressed as a larger type. Just choose the slow path and 3818 // extend to a larger type, then truncate back down. 3819 // TODO: We could probably improve this when extracting certain fixed 3820 // from fixed, where we can extract as i8 and shift the correct element 3821 // right to reach the desired subvector? 3822 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3823 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3824 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3825 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3826 Op.getOperand(1)); 3827 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3828 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3829 } 3830 } 3831 3832 // If the subvector vector is a fixed-length type, we cannot use subregister 3833 // manipulation to simplify the codegen; we don't know which register of a 3834 // LMUL group contains the specific subvector as we only know the minimum 3835 // register size. Therefore we must slide the vector group down the full 3836 // amount. 3837 if (SubVecVT.isFixedLengthVector()) { 3838 // With an index of 0 this is a cast-like subvector, which can be performed 3839 // with subregister operations. 3840 if (OrigIdx == 0) 3841 return Op; 3842 MVT ContainerVT = VecVT; 3843 if (VecVT.isFixedLengthVector()) { 3844 ContainerVT = getContainerForFixedLengthVector(VecVT); 3845 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3846 } 3847 SDValue Mask = 3848 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3849 // Set the vector length to only the number of elements we care about. This 3850 // avoids sliding down elements we're going to discard straight away. 3851 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3852 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3853 SDValue Slidedown = 3854 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3855 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3856 // Now we can use a cast-like subvector extract to get the result. 3857 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3858 DAG.getConstant(0, DL, XLenVT)); 3859 return DAG.getBitcast(Op.getValueType(), Slidedown); 3860 } 3861 3862 unsigned SubRegIdx, RemIdx; 3863 std::tie(SubRegIdx, RemIdx) = 3864 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3865 VecVT, SubVecVT, OrigIdx, TRI); 3866 3867 // If the Idx has been completely eliminated then this is a subvector extract 3868 // which naturally aligns to a vector register. These can easily be handled 3869 // using subregister manipulation. 3870 if (RemIdx == 0) 3871 return Op; 3872 3873 // Else we must shift our vector register directly to extract the subvector. 3874 // Do this using VSLIDEDOWN. 3875 3876 // If the vector type is an LMUL-group type, extract a subvector equal to the 3877 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3878 // instruction. 3879 MVT InterSubVT = VecVT; 3880 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3881 InterSubVT = getLMUL1VT(VecVT); 3882 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3883 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3884 } 3885 3886 // Slide this vector register down by the desired number of elements in order 3887 // to place the desired subvector starting at element 0. 3888 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3889 // For scalable vectors this must be further multiplied by vscale. 3890 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3891 3892 SDValue Mask, VL; 3893 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3894 SDValue Slidedown = 3895 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3896 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3897 3898 // Now the vector is in the right position, extract our final subvector. This 3899 // should resolve to a COPY. 3900 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3901 DAG.getConstant(0, DL, XLenVT)); 3902 3903 // We might have bitcast from a mask type: cast back to the original type if 3904 // required. 3905 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3906 } 3907 3908 // Lower step_vector to the vid instruction. Any non-identity step value must 3909 // be accounted for my manual expansion. 3910 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3911 SelectionDAG &DAG) const { 3912 SDLoc DL(Op); 3913 MVT VT = Op.getSimpleValueType(); 3914 MVT XLenVT = Subtarget.getXLenVT(); 3915 SDValue Mask, VL; 3916 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3917 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3918 uint64_t StepValImm = Op.getConstantOperandVal(0); 3919 if (StepValImm != 1) { 3920 assert(Op.getOperand(0).getValueType() == XLenVT && 3921 "Unexpected step value type"); 3922 if (isPowerOf2_64(StepValImm)) { 3923 SDValue StepVal = 3924 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3925 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 3926 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 3927 } else { 3928 SDValue StepVal = 3929 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 3930 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 3931 } 3932 } 3933 return StepVec; 3934 } 3935 3936 // Implement vector_reverse using vrgather.vv with indices determined by 3937 // subtracting the id of each element from (VLMAX-1). This will convert 3938 // the indices like so: 3939 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3940 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3941 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3942 SelectionDAG &DAG) const { 3943 SDLoc DL(Op); 3944 MVT VecVT = Op.getSimpleValueType(); 3945 unsigned EltSize = VecVT.getScalarSizeInBits(); 3946 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3947 3948 unsigned MaxVLMAX = 0; 3949 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3950 if (VectorBitsMax != 0) 3951 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3952 3953 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3954 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3955 3956 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3957 // to use vrgatherei16.vv. 3958 // TODO: It's also possible to use vrgatherei16.vv for other types to 3959 // decrease register width for the index calculation. 3960 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3961 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3962 // Reverse each half, then reassemble them in reverse order. 3963 // NOTE: It's also possible that after splitting that VLMAX no longer 3964 // requires vrgatherei16.vv. 3965 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3966 SDValue Lo, Hi; 3967 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3968 EVT LoVT, HiVT; 3969 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 3970 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 3971 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 3972 // Reassemble the low and high pieces reversed. 3973 // FIXME: This is a CONCAT_VECTORS. 3974 SDValue Res = 3975 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 3976 DAG.getIntPtrConstant(0, DL)); 3977 return DAG.getNode( 3978 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 3979 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 3980 } 3981 3982 // Just promote the int type to i16 which will double the LMUL. 3983 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 3984 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 3985 } 3986 3987 MVT XLenVT = Subtarget.getXLenVT(); 3988 SDValue Mask, VL; 3989 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3990 3991 // Calculate VLMAX-1 for the desired SEW. 3992 unsigned MinElts = VecVT.getVectorMinNumElements(); 3993 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 3994 DAG.getConstant(MinElts, DL, XLenVT)); 3995 SDValue VLMinus1 = 3996 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 3997 3998 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 3999 bool IsRV32E64 = 4000 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4001 SDValue SplatVL; 4002 if (!IsRV32E64) 4003 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4004 else 4005 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4006 4007 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4008 SDValue Indices = 4009 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4010 4011 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4012 } 4013 4014 SDValue 4015 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4016 SelectionDAG &DAG) const { 4017 auto *Load = cast<LoadSDNode>(Op); 4018 4019 SDLoc DL(Op); 4020 MVT VT = Op.getSimpleValueType(); 4021 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4022 4023 SDValue VL = 4024 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4025 4026 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4027 SDValue NewLoad = DAG.getMemIntrinsicNode( 4028 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4029 Load->getMemoryVT(), Load->getMemOperand()); 4030 4031 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4032 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4033 } 4034 4035 SDValue 4036 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4037 SelectionDAG &DAG) const { 4038 auto *Store = cast<StoreSDNode>(Op); 4039 4040 SDLoc DL(Op); 4041 SDValue StoreVal = Store->getValue(); 4042 MVT VT = StoreVal.getSimpleValueType(); 4043 4044 // If the size less than a byte, we need to pad with zeros to make a byte. 4045 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4046 VT = MVT::v8i1; 4047 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4048 DAG.getConstant(0, DL, VT), StoreVal, 4049 DAG.getIntPtrConstant(0, DL)); 4050 } 4051 4052 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4053 4054 SDValue VL = 4055 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4056 4057 SDValue NewValue = 4058 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4059 return DAG.getMemIntrinsicNode( 4060 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4061 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4062 Store->getMemoryVT(), Store->getMemOperand()); 4063 } 4064 4065 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4066 auto *Load = cast<MaskedLoadSDNode>(Op); 4067 4068 SDLoc DL(Op); 4069 MVT VT = Op.getSimpleValueType(); 4070 MVT XLenVT = Subtarget.getXLenVT(); 4071 4072 SDValue Mask = Load->getMask(); 4073 SDValue PassThru = Load->getPassThru(); 4074 SDValue VL; 4075 4076 MVT ContainerVT = VT; 4077 if (VT.isFixedLengthVector()) { 4078 ContainerVT = getContainerForFixedLengthVector(VT); 4079 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4080 4081 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4082 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4083 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4084 } else 4085 VL = DAG.getRegister(RISCV::X0, XLenVT); 4086 4087 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4088 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4089 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4090 Load->getBasePtr(), Mask, VL}; 4091 SDValue Result = 4092 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4093 Load->getMemoryVT(), Load->getMemOperand()); 4094 SDValue Chain = Result.getValue(1); 4095 4096 if (VT.isFixedLengthVector()) 4097 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4098 4099 return DAG.getMergeValues({Result, Chain}, DL); 4100 } 4101 4102 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4103 auto *Store = cast<MaskedStoreSDNode>(Op); 4104 4105 SDLoc DL(Op); 4106 SDValue Val = Store->getValue(); 4107 SDValue Mask = Store->getMask(); 4108 MVT VT = Val.getSimpleValueType(); 4109 MVT XLenVT = Subtarget.getXLenVT(); 4110 SDValue VL; 4111 4112 MVT ContainerVT = VT; 4113 if (VT.isFixedLengthVector()) { 4114 ContainerVT = getContainerForFixedLengthVector(VT); 4115 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4116 4117 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4118 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4119 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4120 } else 4121 VL = DAG.getRegister(RISCV::X0, XLenVT); 4122 4123 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4124 return DAG.getMemIntrinsicNode( 4125 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4126 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4127 Store->getMemoryVT(), Store->getMemOperand()); 4128 } 4129 4130 SDValue 4131 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4132 SelectionDAG &DAG) const { 4133 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4134 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4135 4136 MVT VT = Op.getSimpleValueType(); 4137 4138 SDValue Op1 = 4139 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4140 SDValue Op2 = 4141 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4142 4143 SDLoc DL(Op); 4144 SDValue VL = 4145 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4146 4147 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4148 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4149 4150 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4151 Op.getOperand(2), Mask, VL); 4152 4153 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4154 } 4155 4156 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4157 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4158 MVT VT = Op.getSimpleValueType(); 4159 4160 if (VT.getVectorElementType() == MVT::i1) 4161 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4162 4163 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4164 } 4165 4166 // Lower vector ABS to smax(X, sub(0, X)). 4167 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4168 SDLoc DL(Op); 4169 MVT VT = Op.getSimpleValueType(); 4170 SDValue X = Op.getOperand(0); 4171 4172 assert(VT.isFixedLengthVector() && "Unexpected type"); 4173 4174 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4175 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4176 4177 SDValue Mask, VL; 4178 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4179 4180 SDValue SplatZero = 4181 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4182 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4183 SDValue NegX = 4184 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4185 SDValue Max = 4186 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4187 4188 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4189 } 4190 4191 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4192 SDValue Op, SelectionDAG &DAG) const { 4193 SDLoc DL(Op); 4194 MVT VT = Op.getSimpleValueType(); 4195 SDValue Mag = Op.getOperand(0); 4196 SDValue Sign = Op.getOperand(1); 4197 assert(Mag.getValueType() == Sign.getValueType() && 4198 "Can only handle COPYSIGN with matching types."); 4199 4200 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4201 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4202 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4203 4204 SDValue Mask, VL; 4205 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4206 4207 SDValue CopySign = 4208 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4209 4210 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4211 } 4212 4213 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4214 SDValue Op, SelectionDAG &DAG) const { 4215 MVT VT = Op.getSimpleValueType(); 4216 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4217 4218 MVT I1ContainerVT = 4219 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4220 4221 SDValue CC = 4222 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4223 SDValue Op1 = 4224 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4225 SDValue Op2 = 4226 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4227 4228 SDLoc DL(Op); 4229 SDValue Mask, VL; 4230 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4231 4232 SDValue Select = 4233 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4234 4235 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4236 } 4237 4238 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4239 unsigned NewOpc, 4240 bool HasMask) const { 4241 MVT VT = Op.getSimpleValueType(); 4242 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4243 4244 // Create list of operands by converting existing ones to scalable types. 4245 SmallVector<SDValue, 6> Ops; 4246 for (const SDValue &V : Op->op_values()) { 4247 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4248 4249 // Pass through non-vector operands. 4250 if (!V.getValueType().isVector()) { 4251 Ops.push_back(V); 4252 continue; 4253 } 4254 4255 // "cast" fixed length vector to a scalable vector. 4256 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4257 "Only fixed length vectors are supported!"); 4258 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4259 } 4260 4261 SDLoc DL(Op); 4262 SDValue Mask, VL; 4263 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4264 if (HasMask) 4265 Ops.push_back(Mask); 4266 Ops.push_back(VL); 4267 4268 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4269 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4270 } 4271 4272 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4273 // * Operands of each node are assumed to be in the same order. 4274 // * The EVL operand is promoted from i32 to i64 on RV64. 4275 // * Fixed-length vectors are converted to their scalable-vector container 4276 // types. 4277 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4278 unsigned RISCVISDOpc) const { 4279 SDLoc DL(Op); 4280 MVT VT = Op.getSimpleValueType(); 4281 SmallVector<SDValue, 4> Ops; 4282 4283 for (const auto &OpIdx : enumerate(Op->ops())) { 4284 SDValue V = OpIdx.value(); 4285 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4286 // Pass through operands which aren't fixed-length vectors. 4287 if (!V.getValueType().isFixedLengthVector()) { 4288 Ops.push_back(V); 4289 continue; 4290 } 4291 // "cast" fixed length vector to a scalable vector. 4292 MVT OpVT = V.getSimpleValueType(); 4293 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4294 assert(useRVVForFixedLengthVectorVT(OpVT) && 4295 "Only fixed length vectors are supported!"); 4296 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4297 } 4298 4299 if (!VT.isFixedLengthVector()) 4300 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4301 4302 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4303 4304 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4305 4306 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4307 } 4308 4309 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4310 // a RVV indexed load. The RVV indexed load instructions only support the 4311 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4312 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4313 // indexing is extended to the XLEN value type and scaled accordingly. 4314 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4315 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4316 SDLoc DL(Op); 4317 4318 SDValue Index = MGN->getIndex(); 4319 SDValue Mask = MGN->getMask(); 4320 SDValue PassThru = MGN->getPassThru(); 4321 4322 MVT VT = Op.getSimpleValueType(); 4323 MVT IndexVT = Index.getSimpleValueType(); 4324 MVT XLenVT = Subtarget.getXLenVT(); 4325 4326 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4327 "Unexpected VTs!"); 4328 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4329 "Unexpected pointer type"); 4330 // Targets have to explicitly opt-in for extending vector loads. 4331 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4332 "Unexpected extending MGATHER"); 4333 4334 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4335 // the selection of the masked intrinsics doesn't do this for us. 4336 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4337 4338 SDValue VL; 4339 MVT ContainerVT = VT; 4340 if (VT.isFixedLengthVector()) { 4341 // We need to use the larger of the result and index type to determine the 4342 // scalable type to use so we don't increase LMUL for any operand/result. 4343 if (VT.bitsGE(IndexVT)) { 4344 ContainerVT = getContainerForFixedLengthVector(VT); 4345 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4346 ContainerVT.getVectorElementCount()); 4347 } else { 4348 IndexVT = getContainerForFixedLengthVector(IndexVT); 4349 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4350 IndexVT.getVectorElementCount()); 4351 } 4352 4353 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4354 4355 if (!IsUnmasked) { 4356 MVT MaskVT = 4357 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4358 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4359 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4360 } 4361 4362 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4363 } else 4364 VL = DAG.getRegister(RISCV::X0, XLenVT); 4365 4366 unsigned IntID = 4367 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4368 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4369 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4370 if (!IsUnmasked) 4371 Ops.push_back(PassThru); 4372 Ops.push_back(MGN->getBasePtr()); 4373 Ops.push_back(Index); 4374 if (!IsUnmasked) 4375 Ops.push_back(Mask); 4376 Ops.push_back(VL); 4377 4378 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4379 SDValue Result = 4380 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4381 MGN->getMemoryVT(), MGN->getMemOperand()); 4382 SDValue Chain = Result.getValue(1); 4383 4384 if (VT.isFixedLengthVector()) 4385 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4386 4387 return DAG.getMergeValues({Result, Chain}, DL); 4388 } 4389 4390 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4391 // a RVV indexed store. The RVV indexed store instructions only support the 4392 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4393 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4394 // indexing is extended to the XLEN value type and scaled accordingly. 4395 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4396 SelectionDAG &DAG) const { 4397 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4398 SDLoc DL(Op); 4399 SDValue Index = MSN->getIndex(); 4400 SDValue Mask = MSN->getMask(); 4401 SDValue Val = MSN->getValue(); 4402 4403 MVT VT = Val.getSimpleValueType(); 4404 MVT IndexVT = Index.getSimpleValueType(); 4405 MVT XLenVT = Subtarget.getXLenVT(); 4406 4407 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4408 "Unexpected VTs!"); 4409 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4410 "Unexpected pointer type"); 4411 // Targets have to explicitly opt-in for extending vector loads and 4412 // truncating vector stores. 4413 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4414 4415 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4416 // the selection of the masked intrinsics doesn't do this for us. 4417 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4418 4419 SDValue VL; 4420 if (VT.isFixedLengthVector()) { 4421 // We need to use the larger of the value and index type to determine the 4422 // scalable type to use so we don't increase LMUL for any operand/result. 4423 MVT ContainerVT; 4424 if (VT.bitsGE(IndexVT)) { 4425 ContainerVT = getContainerForFixedLengthVector(VT); 4426 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4427 ContainerVT.getVectorElementCount()); 4428 } else { 4429 IndexVT = getContainerForFixedLengthVector(IndexVT); 4430 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4431 IndexVT.getVectorElementCount()); 4432 } 4433 4434 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4435 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4436 4437 if (!IsUnmasked) { 4438 MVT MaskVT = 4439 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4440 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4441 } 4442 4443 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4444 } else 4445 VL = DAG.getRegister(RISCV::X0, XLenVT); 4446 4447 unsigned IntID = 4448 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4449 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4450 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4451 Ops.push_back(Val); 4452 Ops.push_back(MSN->getBasePtr()); 4453 Ops.push_back(Index); 4454 if (!IsUnmasked) 4455 Ops.push_back(Mask); 4456 Ops.push_back(VL); 4457 4458 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4459 MSN->getMemoryVT(), MSN->getMemOperand()); 4460 } 4461 4462 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4463 SelectionDAG &DAG) const { 4464 const MVT XLenVT = Subtarget.getXLenVT(); 4465 SDLoc DL(Op); 4466 SDValue Chain = Op->getOperand(0); 4467 SDValue SysRegNo = DAG.getConstant( 4468 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4469 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4470 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4471 4472 // Encoding used for rounding mode in RISCV differs from that used in 4473 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4474 // table, which consists of a sequence of 4-bit fields, each representing 4475 // corresponding FLT_ROUNDS mode. 4476 static const int Table = 4477 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4478 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4479 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4480 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4481 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4482 4483 SDValue Shift = 4484 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4485 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4486 DAG.getConstant(Table, DL, XLenVT), Shift); 4487 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4488 DAG.getConstant(7, DL, XLenVT)); 4489 4490 return DAG.getMergeValues({Masked, Chain}, DL); 4491 } 4492 4493 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4494 SelectionDAG &DAG) const { 4495 const MVT XLenVT = Subtarget.getXLenVT(); 4496 SDLoc DL(Op); 4497 SDValue Chain = Op->getOperand(0); 4498 SDValue RMValue = Op->getOperand(1); 4499 SDValue SysRegNo = DAG.getConstant( 4500 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4501 4502 // Encoding used for rounding mode in RISCV differs from that used in 4503 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4504 // a table, which consists of a sequence of 4-bit fields, each representing 4505 // corresponding RISCV mode. 4506 static const unsigned Table = 4507 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4508 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4509 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4510 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4511 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4512 4513 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4514 DAG.getConstant(2, DL, XLenVT)); 4515 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4516 DAG.getConstant(Table, DL, XLenVT), Shift); 4517 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4518 DAG.getConstant(0x7, DL, XLenVT)); 4519 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4520 RMValue); 4521 } 4522 4523 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4524 // form of the given Opcode. 4525 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4526 switch (Opcode) { 4527 default: 4528 llvm_unreachable("Unexpected opcode"); 4529 case ISD::SHL: 4530 return RISCVISD::SLLW; 4531 case ISD::SRA: 4532 return RISCVISD::SRAW; 4533 case ISD::SRL: 4534 return RISCVISD::SRLW; 4535 case ISD::SDIV: 4536 return RISCVISD::DIVW; 4537 case ISD::UDIV: 4538 return RISCVISD::DIVUW; 4539 case ISD::UREM: 4540 return RISCVISD::REMUW; 4541 case ISD::ROTL: 4542 return RISCVISD::ROLW; 4543 case ISD::ROTR: 4544 return RISCVISD::RORW; 4545 case RISCVISD::GREV: 4546 return RISCVISD::GREVW; 4547 case RISCVISD::GORC: 4548 return RISCVISD::GORCW; 4549 } 4550 } 4551 4552 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4553 // Because i32 isn't a legal type for RV64, these operations would otherwise 4554 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4555 // later one because the fact the operation was originally of type i32 is 4556 // lost. 4557 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4558 unsigned ExtOpc = ISD::ANY_EXTEND) { 4559 SDLoc DL(N); 4560 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4561 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4562 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4563 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4564 // ReplaceNodeResults requires we maintain the same type for the return value. 4565 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4566 } 4567 4568 // Converts the given 32-bit operation to a i64 operation with signed extension 4569 // semantic to reduce the signed extension instructions. 4570 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4571 SDLoc DL(N); 4572 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4573 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4574 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4575 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4576 DAG.getValueType(MVT::i32)); 4577 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4578 } 4579 4580 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4581 SmallVectorImpl<SDValue> &Results, 4582 SelectionDAG &DAG) const { 4583 SDLoc DL(N); 4584 switch (N->getOpcode()) { 4585 default: 4586 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4587 case ISD::STRICT_FP_TO_SINT: 4588 case ISD::STRICT_FP_TO_UINT: 4589 case ISD::FP_TO_SINT: 4590 case ISD::FP_TO_UINT: { 4591 bool IsStrict = N->isStrictFPOpcode(); 4592 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4593 "Unexpected custom legalisation"); 4594 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4595 // If the FP type needs to be softened, emit a library call using the 'si' 4596 // version. If we left it to default legalization we'd end up with 'di'. If 4597 // the FP type doesn't need to be softened just let generic type 4598 // legalization promote the result type. 4599 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4600 TargetLowering::TypeSoftenFloat) 4601 return; 4602 RTLIB::Libcall LC; 4603 if (N->getOpcode() == ISD::FP_TO_SINT || 4604 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4605 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4606 else 4607 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4608 MakeLibCallOptions CallOptions; 4609 EVT OpVT = Op0.getValueType(); 4610 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4611 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4612 SDValue Result; 4613 std::tie(Result, Chain) = 4614 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4615 Results.push_back(Result); 4616 if (IsStrict) 4617 Results.push_back(Chain); 4618 break; 4619 } 4620 case ISD::READCYCLECOUNTER: { 4621 assert(!Subtarget.is64Bit() && 4622 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4623 4624 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4625 SDValue RCW = 4626 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4627 4628 Results.push_back( 4629 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4630 Results.push_back(RCW.getValue(2)); 4631 break; 4632 } 4633 case ISD::MUL: { 4634 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4635 unsigned XLen = Subtarget.getXLen(); 4636 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4637 if (Size > XLen) { 4638 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4639 SDValue LHS = N->getOperand(0); 4640 SDValue RHS = N->getOperand(1); 4641 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4642 4643 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4644 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4645 // We need exactly one side to be unsigned. 4646 if (LHSIsU == RHSIsU) 4647 return; 4648 4649 auto MakeMULPair = [&](SDValue S, SDValue U) { 4650 MVT XLenVT = Subtarget.getXLenVT(); 4651 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4652 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4653 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4654 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4655 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4656 }; 4657 4658 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4659 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4660 4661 // The other operand should be signed, but still prefer MULH when 4662 // possible. 4663 if (RHSIsU && LHSIsS && !RHSIsS) 4664 Results.push_back(MakeMULPair(LHS, RHS)); 4665 else if (LHSIsU && RHSIsS && !LHSIsS) 4666 Results.push_back(MakeMULPair(RHS, LHS)); 4667 4668 return; 4669 } 4670 LLVM_FALLTHROUGH; 4671 } 4672 case ISD::ADD: 4673 case ISD::SUB: 4674 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4675 "Unexpected custom legalisation"); 4676 if (N->getOperand(1).getOpcode() == ISD::Constant) 4677 return; 4678 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4679 break; 4680 case ISD::SHL: 4681 case ISD::SRA: 4682 case ISD::SRL: 4683 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4684 "Unexpected custom legalisation"); 4685 if (N->getOperand(1).getOpcode() == ISD::Constant) 4686 return; 4687 Results.push_back(customLegalizeToWOp(N, DAG)); 4688 break; 4689 case ISD::ROTL: 4690 case ISD::ROTR: 4691 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4692 "Unexpected custom legalisation"); 4693 Results.push_back(customLegalizeToWOp(N, DAG)); 4694 break; 4695 case ISD::CTTZ: 4696 case ISD::CTTZ_ZERO_UNDEF: 4697 case ISD::CTLZ: 4698 case ISD::CTLZ_ZERO_UNDEF: { 4699 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4700 "Unexpected custom legalisation"); 4701 4702 SDValue NewOp0 = 4703 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4704 bool IsCTZ = 4705 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4706 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4707 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4708 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4709 return; 4710 } 4711 case ISD::SDIV: 4712 case ISD::UDIV: 4713 case ISD::UREM: { 4714 MVT VT = N->getSimpleValueType(0); 4715 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4716 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4717 "Unexpected custom legalisation"); 4718 if (N->getOperand(0).getOpcode() == ISD::Constant || 4719 N->getOperand(1).getOpcode() == ISD::Constant) 4720 return; 4721 4722 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4723 // the upper 32 bits. For other types we need to sign or zero extend 4724 // based on the opcode. 4725 unsigned ExtOpc = ISD::ANY_EXTEND; 4726 if (VT != MVT::i32) 4727 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4728 : ISD::ZERO_EXTEND; 4729 4730 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4731 break; 4732 } 4733 case ISD::UADDO: 4734 case ISD::USUBO: { 4735 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4736 "Unexpected custom legalisation"); 4737 bool IsAdd = N->getOpcode() == ISD::UADDO; 4738 // Create an ADDW or SUBW. 4739 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4740 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4741 SDValue Res = 4742 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4743 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4744 DAG.getValueType(MVT::i32)); 4745 4746 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4747 // Since the inputs are sign extended from i32, this is equivalent to 4748 // comparing the lower 32 bits. 4749 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4750 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4751 IsAdd ? ISD::SETULT : ISD::SETUGT); 4752 4753 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4754 Results.push_back(Overflow); 4755 return; 4756 } 4757 case ISD::UADDSAT: 4758 case ISD::USUBSAT: { 4759 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4760 "Unexpected custom legalisation"); 4761 if (Subtarget.hasStdExtZbb()) { 4762 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4763 // sign extend allows overflow of the lower 32 bits to be detected on 4764 // the promoted size. 4765 SDValue LHS = 4766 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4767 SDValue RHS = 4768 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4769 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4770 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4771 return; 4772 } 4773 4774 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4775 // promotion for UADDO/USUBO. 4776 Results.push_back(expandAddSubSat(N, DAG)); 4777 return; 4778 } 4779 case ISD::BITCAST: { 4780 EVT VT = N->getValueType(0); 4781 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4782 SDValue Op0 = N->getOperand(0); 4783 EVT Op0VT = Op0.getValueType(); 4784 MVT XLenVT = Subtarget.getXLenVT(); 4785 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4786 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4787 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4788 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4789 Subtarget.hasStdExtF()) { 4790 SDValue FPConv = 4791 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4792 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4793 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4794 isTypeLegal(Op0VT)) { 4795 // Custom-legalize bitcasts from fixed-length vector types to illegal 4796 // scalar types in order to improve codegen. Bitcast the vector to a 4797 // one-element vector type whose element type is the same as the result 4798 // type, and extract the first element. 4799 LLVMContext &Context = *DAG.getContext(); 4800 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4801 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4802 DAG.getConstant(0, DL, XLenVT))); 4803 } 4804 break; 4805 } 4806 case RISCVISD::GREV: 4807 case RISCVISD::GORC: { 4808 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4809 "Unexpected custom legalisation"); 4810 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4811 // This is similar to customLegalizeToWOp, except that we pass the second 4812 // operand (a TargetConstant) straight through: it is already of type 4813 // XLenVT. 4814 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4815 SDValue NewOp0 = 4816 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4817 SDValue NewOp1 = 4818 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4819 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4820 // ReplaceNodeResults requires we maintain the same type for the return 4821 // value. 4822 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4823 break; 4824 } 4825 case RISCVISD::SHFL: { 4826 // There is no SHFLIW instruction, but we can just promote the operation. 4827 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4828 "Unexpected custom legalisation"); 4829 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4830 SDValue NewOp0 = 4831 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4832 SDValue NewOp1 = 4833 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4834 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4835 // ReplaceNodeResults requires we maintain the same type for the return 4836 // value. 4837 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4838 break; 4839 } 4840 case ISD::BSWAP: 4841 case ISD::BITREVERSE: { 4842 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4843 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4844 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4845 N->getOperand(0)); 4846 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4847 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0, 4848 DAG.getConstant(Imm, DL, MVT::i64)); 4849 // ReplaceNodeResults requires we maintain the same type for the return 4850 // value. 4851 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4852 break; 4853 } 4854 case ISD::FSHL: 4855 case ISD::FSHR: { 4856 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4857 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4858 SDValue NewOp0 = 4859 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4860 SDValue NewOp1 = 4861 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4862 SDValue NewOp2 = 4863 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4864 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4865 // Mask the shift amount to 5 bits. 4866 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4867 DAG.getConstant(0x1f, DL, MVT::i64)); 4868 unsigned Opc = 4869 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4870 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4871 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4872 break; 4873 } 4874 case ISD::EXTRACT_VECTOR_ELT: { 4875 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4876 // type is illegal (currently only vXi64 RV32). 4877 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4878 // transferred to the destination register. We issue two of these from the 4879 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4880 // first element. 4881 SDValue Vec = N->getOperand(0); 4882 SDValue Idx = N->getOperand(1); 4883 4884 // The vector type hasn't been legalized yet so we can't issue target 4885 // specific nodes if it needs legalization. 4886 // FIXME: We would manually legalize if it's important. 4887 if (!isTypeLegal(Vec.getValueType())) 4888 return; 4889 4890 MVT VecVT = Vec.getSimpleValueType(); 4891 4892 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4893 VecVT.getVectorElementType() == MVT::i64 && 4894 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4895 4896 // If this is a fixed vector, we need to convert it to a scalable vector. 4897 MVT ContainerVT = VecVT; 4898 if (VecVT.isFixedLengthVector()) { 4899 ContainerVT = getContainerForFixedLengthVector(VecVT); 4900 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4901 } 4902 4903 MVT XLenVT = Subtarget.getXLenVT(); 4904 4905 // Use a VL of 1 to avoid processing more elements than we need. 4906 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4907 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4908 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4909 4910 // Unless the index is known to be 0, we must slide the vector down to get 4911 // the desired element into index 0. 4912 if (!isNullConstant(Idx)) { 4913 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4914 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4915 } 4916 4917 // Extract the lower XLEN bits of the correct vector element. 4918 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4919 4920 // To extract the upper XLEN bits of the vector element, shift the first 4921 // element right by 32 bits and re-extract the lower XLEN bits. 4922 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4923 DAG.getConstant(32, DL, XLenVT), VL); 4924 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4925 ThirtyTwoV, Mask, VL); 4926 4927 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4928 4929 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4930 break; 4931 } 4932 case ISD::INTRINSIC_WO_CHAIN: { 4933 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4934 switch (IntNo) { 4935 default: 4936 llvm_unreachable( 4937 "Don't know how to custom type legalize this intrinsic!"); 4938 case Intrinsic::riscv_orc_b: { 4939 // Lower to the GORCI encoding for orc.b with the operand extended. 4940 SDValue NewOp = 4941 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4942 // If Zbp is enabled, use GORCIW which will sign extend the result. 4943 unsigned Opc = 4944 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 4945 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4946 DAG.getConstant(7, DL, MVT::i64)); 4947 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4948 return; 4949 } 4950 case Intrinsic::riscv_grev: 4951 case Intrinsic::riscv_gorc: { 4952 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4953 "Unexpected custom legalisation"); 4954 SDValue NewOp1 = 4955 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4956 SDValue NewOp2 = 4957 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4958 unsigned Opc = 4959 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 4960 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4961 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4962 break; 4963 } 4964 case Intrinsic::riscv_shfl: 4965 case Intrinsic::riscv_unshfl: { 4966 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4967 "Unexpected custom legalisation"); 4968 SDValue NewOp1 = 4969 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4970 SDValue NewOp2 = 4971 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4972 unsigned Opc = 4973 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 4974 if (isa<ConstantSDNode>(N->getOperand(2))) { 4975 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4976 DAG.getConstant(0xf, DL, MVT::i64)); 4977 Opc = 4978 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4979 } 4980 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4981 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4982 break; 4983 } 4984 case Intrinsic::riscv_bcompress: 4985 case Intrinsic::riscv_bdecompress: { 4986 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4987 "Unexpected custom legalisation"); 4988 SDValue NewOp1 = 4989 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4990 SDValue NewOp2 = 4991 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4992 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 4993 ? RISCVISD::BCOMPRESSW 4994 : RISCVISD::BDECOMPRESSW; 4995 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4996 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4997 break; 4998 } 4999 case Intrinsic::riscv_vmv_x_s: { 5000 EVT VT = N->getValueType(0); 5001 MVT XLenVT = Subtarget.getXLenVT(); 5002 if (VT.bitsLT(XLenVT)) { 5003 // Simple case just extract using vmv.x.s and truncate. 5004 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5005 Subtarget.getXLenVT(), N->getOperand(1)); 5006 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5007 return; 5008 } 5009 5010 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5011 "Unexpected custom legalization"); 5012 5013 // We need to do the move in two steps. 5014 SDValue Vec = N->getOperand(1); 5015 MVT VecVT = Vec.getSimpleValueType(); 5016 5017 // First extract the lower XLEN bits of the element. 5018 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5019 5020 // To extract the upper XLEN bits of the vector element, shift the first 5021 // element right by 32 bits and re-extract the lower XLEN bits. 5022 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5023 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5024 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5025 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5026 DAG.getConstant(32, DL, XLenVT), VL); 5027 SDValue LShr32 = 5028 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5029 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5030 5031 Results.push_back( 5032 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5033 break; 5034 } 5035 } 5036 break; 5037 } 5038 case ISD::VECREDUCE_ADD: 5039 case ISD::VECREDUCE_AND: 5040 case ISD::VECREDUCE_OR: 5041 case ISD::VECREDUCE_XOR: 5042 case ISD::VECREDUCE_SMAX: 5043 case ISD::VECREDUCE_UMAX: 5044 case ISD::VECREDUCE_SMIN: 5045 case ISD::VECREDUCE_UMIN: 5046 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5047 Results.push_back(V); 5048 break; 5049 case ISD::FLT_ROUNDS_: { 5050 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5051 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5052 Results.push_back(Res.getValue(0)); 5053 Results.push_back(Res.getValue(1)); 5054 break; 5055 } 5056 } 5057 } 5058 5059 // A structure to hold one of the bit-manipulation patterns below. Together, a 5060 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5061 // (or (and (shl x, 1), 0xAAAAAAAA), 5062 // (and (srl x, 1), 0x55555555)) 5063 struct RISCVBitmanipPat { 5064 SDValue Op; 5065 unsigned ShAmt; 5066 bool IsSHL; 5067 5068 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5069 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5070 } 5071 }; 5072 5073 // Matches patterns of the form 5074 // (and (shl x, C2), (C1 << C2)) 5075 // (and (srl x, C2), C1) 5076 // (shl (and x, C1), C2) 5077 // (srl (and x, (C1 << C2)), C2) 5078 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5079 // The expected masks for each shift amount are specified in BitmanipMasks where 5080 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5081 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5082 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5083 // XLen is 64. 5084 static Optional<RISCVBitmanipPat> 5085 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5086 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5087 "Unexpected number of masks"); 5088 Optional<uint64_t> Mask; 5089 // Optionally consume a mask around the shift operation. 5090 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5091 Mask = Op.getConstantOperandVal(1); 5092 Op = Op.getOperand(0); 5093 } 5094 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5095 return None; 5096 bool IsSHL = Op.getOpcode() == ISD::SHL; 5097 5098 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5099 return None; 5100 uint64_t ShAmt = Op.getConstantOperandVal(1); 5101 5102 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5103 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 5104 return None; 5105 // If we don't have enough masks for 64 bit, then we must be trying to 5106 // match SHFL so we're only allowed to shift 1/4 of the width. 5107 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5108 return None; 5109 5110 SDValue Src = Op.getOperand(0); 5111 5112 // The expected mask is shifted left when the AND is found around SHL 5113 // patterns. 5114 // ((x >> 1) & 0x55555555) 5115 // ((x << 1) & 0xAAAAAAAA) 5116 bool SHLExpMask = IsSHL; 5117 5118 if (!Mask) { 5119 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5120 // the mask is all ones: consume that now. 5121 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5122 Mask = Src.getConstantOperandVal(1); 5123 Src = Src.getOperand(0); 5124 // The expected mask is now in fact shifted left for SRL, so reverse the 5125 // decision. 5126 // ((x & 0xAAAAAAAA) >> 1) 5127 // ((x & 0x55555555) << 1) 5128 SHLExpMask = !SHLExpMask; 5129 } else { 5130 // Use a default shifted mask of all-ones if there's no AND, truncated 5131 // down to the expected width. This simplifies the logic later on. 5132 Mask = maskTrailingOnes<uint64_t>(Width); 5133 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5134 } 5135 } 5136 5137 unsigned MaskIdx = Log2_32(ShAmt); 5138 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5139 5140 if (SHLExpMask) 5141 ExpMask <<= ShAmt; 5142 5143 if (Mask != ExpMask) 5144 return None; 5145 5146 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5147 } 5148 5149 // Matches any of the following bit-manipulation patterns: 5150 // (and (shl x, 1), (0x55555555 << 1)) 5151 // (and (srl x, 1), 0x55555555) 5152 // (shl (and x, 0x55555555), 1) 5153 // (srl (and x, (0x55555555 << 1)), 1) 5154 // where the shift amount and mask may vary thus: 5155 // [1] = 0x55555555 / 0xAAAAAAAA 5156 // [2] = 0x33333333 / 0xCCCCCCCC 5157 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5158 // [8] = 0x00FF00FF / 0xFF00FF00 5159 // [16] = 0x0000FFFF / 0xFFFFFFFF 5160 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5161 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5162 // These are the unshifted masks which we use to match bit-manipulation 5163 // patterns. They may be shifted left in certain circumstances. 5164 static const uint64_t BitmanipMasks[] = { 5165 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5166 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5167 5168 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5169 } 5170 5171 // Match the following pattern as a GREVI(W) operation 5172 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5173 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5174 const RISCVSubtarget &Subtarget) { 5175 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5176 EVT VT = Op.getValueType(); 5177 5178 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5179 auto LHS = matchGREVIPat(Op.getOperand(0)); 5180 auto RHS = matchGREVIPat(Op.getOperand(1)); 5181 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5182 SDLoc DL(Op); 5183 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5184 DAG.getConstant(LHS->ShAmt, DL, VT)); 5185 } 5186 } 5187 return SDValue(); 5188 } 5189 5190 // Matches any the following pattern as a GORCI(W) operation 5191 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5192 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5193 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5194 // Note that with the variant of 3., 5195 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5196 // the inner pattern will first be matched as GREVI and then the outer 5197 // pattern will be matched to GORC via the first rule above. 5198 // 4. (or (rotl/rotr x, bitwidth/2), x) 5199 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5200 const RISCVSubtarget &Subtarget) { 5201 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5202 EVT VT = Op.getValueType(); 5203 5204 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5205 SDLoc DL(Op); 5206 SDValue Op0 = Op.getOperand(0); 5207 SDValue Op1 = Op.getOperand(1); 5208 5209 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5210 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5211 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5212 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5213 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5214 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5215 if ((Reverse.getOpcode() == ISD::ROTL || 5216 Reverse.getOpcode() == ISD::ROTR) && 5217 Reverse.getOperand(0) == X && 5218 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5219 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5220 if (RotAmt == (VT.getSizeInBits() / 2)) 5221 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5222 DAG.getConstant(RotAmt, DL, VT)); 5223 } 5224 return SDValue(); 5225 }; 5226 5227 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5228 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5229 return V; 5230 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5231 return V; 5232 5233 // OR is commutable so canonicalize its OR operand to the left 5234 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5235 std::swap(Op0, Op1); 5236 if (Op0.getOpcode() != ISD::OR) 5237 return SDValue(); 5238 SDValue OrOp0 = Op0.getOperand(0); 5239 SDValue OrOp1 = Op0.getOperand(1); 5240 auto LHS = matchGREVIPat(OrOp0); 5241 // OR is commutable so swap the operands and try again: x might have been 5242 // on the left 5243 if (!LHS) { 5244 std::swap(OrOp0, OrOp1); 5245 LHS = matchGREVIPat(OrOp0); 5246 } 5247 auto RHS = matchGREVIPat(Op1); 5248 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5249 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5250 DAG.getConstant(LHS->ShAmt, DL, VT)); 5251 } 5252 } 5253 return SDValue(); 5254 } 5255 5256 // Matches any of the following bit-manipulation patterns: 5257 // (and (shl x, 1), (0x22222222 << 1)) 5258 // (and (srl x, 1), 0x22222222) 5259 // (shl (and x, 0x22222222), 1) 5260 // (srl (and x, (0x22222222 << 1)), 1) 5261 // where the shift amount and mask may vary thus: 5262 // [1] = 0x22222222 / 0x44444444 5263 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5264 // [4] = 0x00F000F0 / 0x0F000F00 5265 // [8] = 0x0000FF00 / 0x00FF0000 5266 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5267 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5268 // These are the unshifted masks which we use to match bit-manipulation 5269 // patterns. They may be shifted left in certain circumstances. 5270 static const uint64_t BitmanipMasks[] = { 5271 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5272 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5273 5274 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5275 } 5276 5277 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5278 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5279 const RISCVSubtarget &Subtarget) { 5280 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5281 EVT VT = Op.getValueType(); 5282 5283 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5284 return SDValue(); 5285 5286 SDValue Op0 = Op.getOperand(0); 5287 SDValue Op1 = Op.getOperand(1); 5288 5289 // Or is commutable so canonicalize the second OR to the LHS. 5290 if (Op0.getOpcode() != ISD::OR) 5291 std::swap(Op0, Op1); 5292 if (Op0.getOpcode() != ISD::OR) 5293 return SDValue(); 5294 5295 // We found an inner OR, so our operands are the operands of the inner OR 5296 // and the other operand of the outer OR. 5297 SDValue A = Op0.getOperand(0); 5298 SDValue B = Op0.getOperand(1); 5299 SDValue C = Op1; 5300 5301 auto Match1 = matchSHFLPat(A); 5302 auto Match2 = matchSHFLPat(B); 5303 5304 // If neither matched, we failed. 5305 if (!Match1 && !Match2) 5306 return SDValue(); 5307 5308 // We had at least one match. if one failed, try the remaining C operand. 5309 if (!Match1) { 5310 std::swap(A, C); 5311 Match1 = matchSHFLPat(A); 5312 if (!Match1) 5313 return SDValue(); 5314 } else if (!Match2) { 5315 std::swap(B, C); 5316 Match2 = matchSHFLPat(B); 5317 if (!Match2) 5318 return SDValue(); 5319 } 5320 assert(Match1 && Match2); 5321 5322 // Make sure our matches pair up. 5323 if (!Match1->formsPairWith(*Match2)) 5324 return SDValue(); 5325 5326 // All the remains is to make sure C is an AND with the same input, that masks 5327 // out the bits that are being shuffled. 5328 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5329 C.getOperand(0) != Match1->Op) 5330 return SDValue(); 5331 5332 uint64_t Mask = C.getConstantOperandVal(1); 5333 5334 static const uint64_t BitmanipMasks[] = { 5335 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5336 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5337 }; 5338 5339 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5340 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5341 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5342 5343 if (Mask != ExpMask) 5344 return SDValue(); 5345 5346 SDLoc DL(Op); 5347 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5348 DAG.getConstant(Match1->ShAmt, DL, VT)); 5349 } 5350 5351 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5352 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5353 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5354 // not undo itself, but they are redundant. 5355 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5356 SDValue Src = N->getOperand(0); 5357 5358 if (Src.getOpcode() != N->getOpcode()) 5359 return SDValue(); 5360 5361 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5362 !isa<ConstantSDNode>(Src.getOperand(1))) 5363 return SDValue(); 5364 5365 unsigned ShAmt1 = N->getConstantOperandVal(1); 5366 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5367 Src = Src.getOperand(0); 5368 5369 unsigned CombinedShAmt; 5370 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5371 CombinedShAmt = ShAmt1 | ShAmt2; 5372 else 5373 CombinedShAmt = ShAmt1 ^ ShAmt2; 5374 5375 if (CombinedShAmt == 0) 5376 return Src; 5377 5378 SDLoc DL(N); 5379 return DAG.getNode( 5380 N->getOpcode(), DL, N->getValueType(0), Src, 5381 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5382 } 5383 5384 // Combine a constant select operand into its use: 5385 // 5386 // (and (select_cc lhs, rhs, cc, -1, c), x) 5387 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5388 // (or (select_cc lhs, rhs, cc, 0, c), x) 5389 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5390 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5391 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5392 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5393 SelectionDAG &DAG, bool AllOnes) { 5394 EVT VT = N->getValueType(0); 5395 5396 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5397 return SDValue(); 5398 5399 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5400 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5401 }; 5402 5403 bool SwapSelectOps; 5404 SDValue TrueVal = Slct.getOperand(3); 5405 SDValue FalseVal = Slct.getOperand(4); 5406 SDValue NonConstantVal; 5407 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5408 SwapSelectOps = false; 5409 NonConstantVal = FalseVal; 5410 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5411 SwapSelectOps = true; 5412 NonConstantVal = TrueVal; 5413 } else 5414 return SDValue(); 5415 5416 // Slct is now know to be the desired identity constant when CC is true. 5417 TrueVal = OtherOp; 5418 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5419 // Unless SwapSelectOps says CC should be false. 5420 if (SwapSelectOps) 5421 std::swap(TrueVal, FalseVal); 5422 5423 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5424 {Slct.getOperand(0), Slct.getOperand(1), 5425 Slct.getOperand(2), TrueVal, FalseVal}); 5426 } 5427 5428 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5429 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5430 bool AllOnes) { 5431 SDValue N0 = N->getOperand(0); 5432 SDValue N1 = N->getOperand(1); 5433 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5434 return Result; 5435 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5436 return Result; 5437 return SDValue(); 5438 } 5439 5440 static SDValue performANDCombine(SDNode *N, 5441 TargetLowering::DAGCombinerInfo &DCI, 5442 const RISCVSubtarget &Subtarget) { 5443 SelectionDAG &DAG = DCI.DAG; 5444 5445 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5446 // (select lhs, rhs, cc, x, (and x, y)) 5447 return combineSelectCCAndUseCommutative(N, DAG, true); 5448 } 5449 5450 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5451 const RISCVSubtarget &Subtarget) { 5452 SelectionDAG &DAG = DCI.DAG; 5453 if (Subtarget.hasStdExtZbp()) { 5454 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5455 return GREV; 5456 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5457 return GORC; 5458 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5459 return SHFL; 5460 } 5461 5462 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5463 // (select lhs, rhs, cc, x, (or x, y)) 5464 return combineSelectCCAndUseCommutative(N, DAG, false); 5465 } 5466 5467 static SDValue performXORCombine(SDNode *N, 5468 TargetLowering::DAGCombinerInfo &DCI, 5469 const RISCVSubtarget &Subtarget) { 5470 SelectionDAG &DAG = DCI.DAG; 5471 5472 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5473 // (select lhs, rhs, cc, x, (xor x, y)) 5474 return combineSelectCCAndUseCommutative(N, DAG, false); 5475 } 5476 5477 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5478 DAGCombinerInfo &DCI) const { 5479 SelectionDAG &DAG = DCI.DAG; 5480 5481 switch (N->getOpcode()) { 5482 default: 5483 break; 5484 case RISCVISD::SplitF64: { 5485 SDValue Op0 = N->getOperand(0); 5486 // If the input to SplitF64 is just BuildPairF64 then the operation is 5487 // redundant. Instead, use BuildPairF64's operands directly. 5488 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5489 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5490 5491 SDLoc DL(N); 5492 5493 // It's cheaper to materialise two 32-bit integers than to load a double 5494 // from the constant pool and transfer it to integer registers through the 5495 // stack. 5496 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5497 APInt V = C->getValueAPF().bitcastToAPInt(); 5498 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5499 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5500 return DCI.CombineTo(N, Lo, Hi); 5501 } 5502 5503 // This is a target-specific version of a DAGCombine performed in 5504 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5505 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5506 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5507 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5508 !Op0.getNode()->hasOneUse()) 5509 break; 5510 SDValue NewSplitF64 = 5511 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5512 Op0.getOperand(0)); 5513 SDValue Lo = NewSplitF64.getValue(0); 5514 SDValue Hi = NewSplitF64.getValue(1); 5515 APInt SignBit = APInt::getSignMask(32); 5516 if (Op0.getOpcode() == ISD::FNEG) { 5517 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5518 DAG.getConstant(SignBit, DL, MVT::i32)); 5519 return DCI.CombineTo(N, Lo, NewHi); 5520 } 5521 assert(Op0.getOpcode() == ISD::FABS); 5522 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5523 DAG.getConstant(~SignBit, DL, MVT::i32)); 5524 return DCI.CombineTo(N, Lo, NewHi); 5525 } 5526 case RISCVISD::SLLW: 5527 case RISCVISD::SRAW: 5528 case RISCVISD::SRLW: 5529 case RISCVISD::ROLW: 5530 case RISCVISD::RORW: { 5531 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5532 SDValue LHS = N->getOperand(0); 5533 SDValue RHS = N->getOperand(1); 5534 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5535 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5536 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5537 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5538 if (N->getOpcode() != ISD::DELETED_NODE) 5539 DCI.AddToWorklist(N); 5540 return SDValue(N, 0); 5541 } 5542 break; 5543 } 5544 case RISCVISD::CLZW: 5545 case RISCVISD::CTZW: { 5546 // Only the lower 32 bits of the first operand are read 5547 SDValue Op0 = N->getOperand(0); 5548 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5549 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5550 if (N->getOpcode() != ISD::DELETED_NODE) 5551 DCI.AddToWorklist(N); 5552 return SDValue(N, 0); 5553 } 5554 break; 5555 } 5556 case RISCVISD::FSL: 5557 case RISCVISD::FSR: { 5558 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5559 SDValue ShAmt = N->getOperand(2); 5560 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5561 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5562 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5563 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5564 if (N->getOpcode() != ISD::DELETED_NODE) 5565 DCI.AddToWorklist(N); 5566 return SDValue(N, 0); 5567 } 5568 break; 5569 } 5570 case RISCVISD::FSLW: 5571 case RISCVISD::FSRW: { 5572 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5573 // read. 5574 SDValue Op0 = N->getOperand(0); 5575 SDValue Op1 = N->getOperand(1); 5576 SDValue ShAmt = N->getOperand(2); 5577 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5578 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5579 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5580 SimplifyDemandedBits(Op1, OpMask, DCI) || 5581 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5582 if (N->getOpcode() != ISD::DELETED_NODE) 5583 DCI.AddToWorklist(N); 5584 return SDValue(N, 0); 5585 } 5586 break; 5587 } 5588 case RISCVISD::GREV: 5589 case RISCVISD::GORC: { 5590 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5591 SDValue ShAmt = N->getOperand(1); 5592 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5593 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5594 APInt ShAmtMask(BitWidth, BitWidth - 1); 5595 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5596 if (N->getOpcode() != ISD::DELETED_NODE) 5597 DCI.AddToWorklist(N); 5598 return SDValue(N, 0); 5599 } 5600 5601 return combineGREVI_GORCI(N, DCI.DAG); 5602 } 5603 case RISCVISD::GREVW: 5604 case RISCVISD::GORCW: { 5605 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5606 SDValue LHS = N->getOperand(0); 5607 SDValue RHS = N->getOperand(1); 5608 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5609 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5610 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5611 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5612 if (N->getOpcode() != ISD::DELETED_NODE) 5613 DCI.AddToWorklist(N); 5614 return SDValue(N, 0); 5615 } 5616 5617 return combineGREVI_GORCI(N, DCI.DAG); 5618 } 5619 case RISCVISD::SHFL: 5620 case RISCVISD::UNSHFL: { 5621 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5622 SDValue ShAmt = N->getOperand(1); 5623 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5624 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5625 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5626 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5627 if (N->getOpcode() != ISD::DELETED_NODE) 5628 DCI.AddToWorklist(N); 5629 return SDValue(N, 0); 5630 } 5631 5632 break; 5633 } 5634 case RISCVISD::SHFLW: 5635 case RISCVISD::UNSHFLW: { 5636 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5637 SDValue LHS = N->getOperand(0); 5638 SDValue RHS = N->getOperand(1); 5639 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5640 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5641 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5642 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5643 if (N->getOpcode() != ISD::DELETED_NODE) 5644 DCI.AddToWorklist(N); 5645 return SDValue(N, 0); 5646 } 5647 5648 break; 5649 } 5650 case RISCVISD::BCOMPRESSW: 5651 case RISCVISD::BDECOMPRESSW: { 5652 // Only the lower 32 bits of LHS and RHS are read. 5653 SDValue LHS = N->getOperand(0); 5654 SDValue RHS = N->getOperand(1); 5655 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5656 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5657 SimplifyDemandedBits(RHS, Mask, DCI)) { 5658 if (N->getOpcode() != ISD::DELETED_NODE) 5659 DCI.AddToWorklist(N); 5660 return SDValue(N, 0); 5661 } 5662 5663 break; 5664 } 5665 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5666 SDLoc DL(N); 5667 SDValue Op0 = N->getOperand(0); 5668 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5669 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5670 // of the FMV_W_X_RV64 operand. 5671 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5672 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5673 "Unexpected value type!"); 5674 return Op0.getOperand(0); 5675 } 5676 5677 // This is a target-specific version of a DAGCombine performed in 5678 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5679 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5680 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5681 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5682 !Op0.getNode()->hasOneUse()) 5683 break; 5684 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5685 Op0.getOperand(0)); 5686 APInt SignBit = APInt::getSignMask(32).sext(64); 5687 if (Op0.getOpcode() == ISD::FNEG) 5688 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5689 DAG.getConstant(SignBit, DL, MVT::i64)); 5690 5691 assert(Op0.getOpcode() == ISD::FABS); 5692 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5693 DAG.getConstant(~SignBit, DL, MVT::i64)); 5694 } 5695 case ISD::AND: 5696 return performANDCombine(N, DCI, Subtarget); 5697 case ISD::OR: 5698 return performORCombine(N, DCI, Subtarget); 5699 case ISD::XOR: 5700 return performXORCombine(N, DCI, Subtarget); 5701 case RISCVISD::SELECT_CC: { 5702 // Transform 5703 SDValue LHS = N->getOperand(0); 5704 SDValue RHS = N->getOperand(1); 5705 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5706 if (!ISD::isIntEqualitySetCC(CCVal)) 5707 break; 5708 5709 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5710 // (select_cc X, Y, lt, trueV, falseV) 5711 // Sometimes the setcc is introduced after select_cc has been formed. 5712 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5713 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5714 // If we're looking for eq 0 instead of ne 0, we need to invert the 5715 // condition. 5716 bool Invert = CCVal == ISD::SETEQ; 5717 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5718 if (Invert) 5719 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5720 5721 SDLoc DL(N); 5722 RHS = LHS.getOperand(1); 5723 LHS = LHS.getOperand(0); 5724 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5725 5726 SDValue TargetCC = 5727 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5728 return DAG.getNode( 5729 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5730 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5731 } 5732 5733 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5734 // (select_cc X, Y, eq/ne, trueV, falseV) 5735 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5736 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5737 {LHS.getOperand(0), LHS.getOperand(1), 5738 N->getOperand(2), N->getOperand(3), 5739 N->getOperand(4)}); 5740 // (select_cc X, 1, setne, trueV, falseV) -> 5741 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5742 // This can occur when legalizing some floating point comparisons. 5743 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5744 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5745 SDLoc DL(N); 5746 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5747 SDValue TargetCC = 5748 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5749 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5750 return DAG.getNode( 5751 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5752 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5753 } 5754 5755 break; 5756 } 5757 case RISCVISD::BR_CC: { 5758 SDValue LHS = N->getOperand(1); 5759 SDValue RHS = N->getOperand(2); 5760 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5761 if (!ISD::isIntEqualitySetCC(CCVal)) 5762 break; 5763 5764 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5765 // (br_cc X, Y, lt, dest) 5766 // Sometimes the setcc is introduced after br_cc has been formed. 5767 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5768 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5769 // If we're looking for eq 0 instead of ne 0, we need to invert the 5770 // condition. 5771 bool Invert = CCVal == ISD::SETEQ; 5772 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5773 if (Invert) 5774 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5775 5776 SDLoc DL(N); 5777 RHS = LHS.getOperand(1); 5778 LHS = LHS.getOperand(0); 5779 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5780 5781 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5782 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5783 N->getOperand(4)); 5784 } 5785 5786 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5787 // (br_cc X, Y, eq/ne, trueV, falseV) 5788 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5789 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5790 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5791 N->getOperand(3), N->getOperand(4)); 5792 5793 // (br_cc X, 1, setne, br_cc) -> 5794 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5795 // This can occur when legalizing some floating point comparisons. 5796 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5797 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5798 SDLoc DL(N); 5799 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5800 SDValue TargetCC = DAG.getCondCode(CCVal); 5801 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5802 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5803 N->getOperand(0), LHS, RHS, TargetCC, 5804 N->getOperand(4)); 5805 } 5806 break; 5807 } 5808 case ISD::FCOPYSIGN: { 5809 EVT VT = N->getValueType(0); 5810 if (!VT.isVector()) 5811 break; 5812 // There is a form of VFSGNJ which injects the negated sign of its second 5813 // operand. Try and bubble any FNEG up after the extend/round to produce 5814 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5815 // TRUNC=1. 5816 SDValue In2 = N->getOperand(1); 5817 // Avoid cases where the extend/round has multiple uses, as duplicating 5818 // those is typically more expensive than removing a fneg. 5819 if (!In2.hasOneUse()) 5820 break; 5821 if (In2.getOpcode() != ISD::FP_EXTEND && 5822 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5823 break; 5824 In2 = In2.getOperand(0); 5825 if (In2.getOpcode() != ISD::FNEG) 5826 break; 5827 SDLoc DL(N); 5828 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5829 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5830 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5831 } 5832 case ISD::MGATHER: 5833 case ISD::MSCATTER: { 5834 if (!DCI.isBeforeLegalize()) 5835 break; 5836 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5837 SDValue Index = MGSN->getIndex(); 5838 EVT IndexVT = Index.getValueType(); 5839 MVT XLenVT = Subtarget.getXLenVT(); 5840 // RISCV indexed loads only support the "unsigned unscaled" addressing 5841 // mode, so anything else must be manually legalized. 5842 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5843 (MGSN->isIndexSigned() && 5844 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5845 if (!NeedsIdxLegalization) 5846 break; 5847 5848 SDLoc DL(N); 5849 5850 // Any index legalization should first promote to XLenVT, so we don't lose 5851 // bits when scaling. This may create an illegal index type so we let 5852 // LLVM's legalization take care of the splitting. 5853 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5854 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5855 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5856 : ISD::ZERO_EXTEND, 5857 DL, IndexVT, Index); 5858 } 5859 5860 unsigned Scale = N->getConstantOperandVal(5); 5861 if (MGSN->isIndexScaled() && Scale != 1) { 5862 // Manually scale the indices by the element size. 5863 // TODO: Sanitize the scale operand here? 5864 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5865 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5866 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5867 } 5868 5869 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5870 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5871 return DAG.getMaskedGather( 5872 N->getVTList(), MGSN->getMemoryVT(), DL, 5873 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5874 MGSN->getBasePtr(), Index, MGN->getScale()}, 5875 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5876 } 5877 const auto *MSN = cast<MaskedScatterSDNode>(N); 5878 return DAG.getMaskedScatter( 5879 N->getVTList(), MGSN->getMemoryVT(), DL, 5880 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5881 Index, MGSN->getScale()}, 5882 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5883 } 5884 case RISCVISD::SRA_VL: 5885 case RISCVISD::SRL_VL: 5886 case RISCVISD::SHL_VL: { 5887 SDValue ShAmt = N->getOperand(1); 5888 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 5889 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 5890 SDLoc DL(N); 5891 SDValue VL = N->getOperand(3); 5892 EVT VT = N->getValueType(0); 5893 ShAmt = 5894 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 5895 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 5896 N->getOperand(2), N->getOperand(3)); 5897 } 5898 break; 5899 } 5900 case ISD::SRA: 5901 case ISD::SRL: 5902 case ISD::SHL: { 5903 SDValue ShAmt = N->getOperand(1); 5904 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 5905 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 5906 SDLoc DL(N); 5907 EVT VT = N->getValueType(0); 5908 ShAmt = 5909 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 5910 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 5911 } 5912 break; 5913 } 5914 } 5915 5916 return SDValue(); 5917 } 5918 5919 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5920 const SDNode *N, CombineLevel Level) const { 5921 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5922 // materialised in fewer instructions than `(OP _, c1)`: 5923 // 5924 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5925 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5926 SDValue N0 = N->getOperand(0); 5927 EVT Ty = N0.getValueType(); 5928 if (Ty.isScalarInteger() && 5929 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5930 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5931 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5932 if (C1 && C2) { 5933 const APInt &C1Int = C1->getAPIntValue(); 5934 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5935 5936 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5937 // and the combine should happen, to potentially allow further combines 5938 // later. 5939 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5940 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5941 return true; 5942 5943 // We can materialise `c1` in an add immediate, so it's "free", and the 5944 // combine should be prevented. 5945 if (C1Int.getMinSignedBits() <= 64 && 5946 isLegalAddImmediate(C1Int.getSExtValue())) 5947 return false; 5948 5949 // Neither constant will fit into an immediate, so find materialisation 5950 // costs. 5951 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5952 Subtarget.is64Bit()); 5953 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5954 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5955 5956 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5957 // combine should be prevented. 5958 if (C1Cost < ShiftedC1Cost) 5959 return false; 5960 } 5961 } 5962 return true; 5963 } 5964 5965 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5966 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5967 TargetLoweringOpt &TLO) const { 5968 // Delay this optimization as late as possible. 5969 if (!TLO.LegalOps) 5970 return false; 5971 5972 EVT VT = Op.getValueType(); 5973 if (VT.isVector()) 5974 return false; 5975 5976 // Only handle AND for now. 5977 if (Op.getOpcode() != ISD::AND) 5978 return false; 5979 5980 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5981 if (!C) 5982 return false; 5983 5984 const APInt &Mask = C->getAPIntValue(); 5985 5986 // Clear all non-demanded bits initially. 5987 APInt ShrunkMask = Mask & DemandedBits; 5988 5989 // Try to make a smaller immediate by setting undemanded bits. 5990 5991 APInt ExpandedMask = Mask | ~DemandedBits; 5992 5993 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 5994 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 5995 }; 5996 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 5997 if (NewMask == Mask) 5998 return true; 5999 SDLoc DL(Op); 6000 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6001 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6002 return TLO.CombineTo(Op, NewOp); 6003 }; 6004 6005 // If the shrunk mask fits in sign extended 12 bits, let the target 6006 // independent code apply it. 6007 if (ShrunkMask.isSignedIntN(12)) 6008 return false; 6009 6010 // Preserve (and X, 0xffff) when zext.h is supported. 6011 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6012 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6013 if (IsLegalMask(NewMask)) 6014 return UseMask(NewMask); 6015 } 6016 6017 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6018 if (VT == MVT::i64) { 6019 APInt NewMask = APInt(64, 0xffffffff); 6020 if (IsLegalMask(NewMask)) 6021 return UseMask(NewMask); 6022 } 6023 6024 // For the remaining optimizations, we need to be able to make a negative 6025 // number through a combination of mask and undemanded bits. 6026 if (!ExpandedMask.isNegative()) 6027 return false; 6028 6029 // What is the fewest number of bits we need to represent the negative number. 6030 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6031 6032 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6033 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6034 APInt NewMask = ShrunkMask; 6035 if (MinSignedBits <= 12) 6036 NewMask.setBitsFrom(11); 6037 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6038 NewMask.setBitsFrom(31); 6039 else 6040 return false; 6041 6042 // Sanity check that our new mask is a subset of the demanded mask. 6043 assert(IsLegalMask(NewMask)); 6044 return UseMask(NewMask); 6045 } 6046 6047 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6048 KnownBits &Known, 6049 const APInt &DemandedElts, 6050 const SelectionDAG &DAG, 6051 unsigned Depth) const { 6052 unsigned BitWidth = Known.getBitWidth(); 6053 unsigned Opc = Op.getOpcode(); 6054 assert((Opc >= ISD::BUILTIN_OP_END || 6055 Opc == ISD::INTRINSIC_WO_CHAIN || 6056 Opc == ISD::INTRINSIC_W_CHAIN || 6057 Opc == ISD::INTRINSIC_VOID) && 6058 "Should use MaskedValueIsZero if you don't know whether Op" 6059 " is a target node!"); 6060 6061 Known.resetAll(); 6062 switch (Opc) { 6063 default: break; 6064 case RISCVISD::SELECT_CC: { 6065 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6066 // If we don't know any bits, early out. 6067 if (Known.isUnknown()) 6068 break; 6069 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6070 6071 // Only known if known in both the LHS and RHS. 6072 Known = KnownBits::commonBits(Known, Known2); 6073 break; 6074 } 6075 case RISCVISD::REMUW: { 6076 KnownBits Known2; 6077 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6078 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6079 // We only care about the lower 32 bits. 6080 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6081 // Restore the original width by sign extending. 6082 Known = Known.sext(BitWidth); 6083 break; 6084 } 6085 case RISCVISD::DIVUW: { 6086 KnownBits Known2; 6087 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6088 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6089 // We only care about the lower 32 bits. 6090 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6091 // Restore the original width by sign extending. 6092 Known = Known.sext(BitWidth); 6093 break; 6094 } 6095 case RISCVISD::CTZW: { 6096 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6097 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6098 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6099 Known.Zero.setBitsFrom(LowBits); 6100 break; 6101 } 6102 case RISCVISD::CLZW: { 6103 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6104 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6105 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6106 Known.Zero.setBitsFrom(LowBits); 6107 break; 6108 } 6109 case RISCVISD::READ_VLENB: 6110 // We assume VLENB is at least 16 bytes. 6111 Known.Zero.setLowBits(4); 6112 break; 6113 case ISD::INTRINSIC_W_CHAIN: { 6114 unsigned IntNo = Op.getConstantOperandVal(1); 6115 switch (IntNo) { 6116 default: 6117 // We can't do anything for most intrinsics. 6118 break; 6119 case Intrinsic::riscv_vsetvli: 6120 case Intrinsic::riscv_vsetvlimax: 6121 // Assume that VL output is positive and would fit in an int32_t. 6122 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6123 if (BitWidth >= 32) 6124 Known.Zero.setBitsFrom(31); 6125 break; 6126 } 6127 break; 6128 } 6129 } 6130 } 6131 6132 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6133 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6134 unsigned Depth) const { 6135 switch (Op.getOpcode()) { 6136 default: 6137 break; 6138 case RISCVISD::SLLW: 6139 case RISCVISD::SRAW: 6140 case RISCVISD::SRLW: 6141 case RISCVISD::DIVW: 6142 case RISCVISD::DIVUW: 6143 case RISCVISD::REMUW: 6144 case RISCVISD::ROLW: 6145 case RISCVISD::RORW: 6146 case RISCVISD::GREVW: 6147 case RISCVISD::GORCW: 6148 case RISCVISD::FSLW: 6149 case RISCVISD::FSRW: 6150 case RISCVISD::SHFLW: 6151 case RISCVISD::UNSHFLW: 6152 case RISCVISD::BCOMPRESSW: 6153 case RISCVISD::BDECOMPRESSW: 6154 // TODO: As the result is sign-extended, this is conservatively correct. A 6155 // more precise answer could be calculated for SRAW depending on known 6156 // bits in the shift amount. 6157 return 33; 6158 case RISCVISD::SHFL: 6159 case RISCVISD::UNSHFL: { 6160 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6161 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6162 // will stay within the upper 32 bits. If there were more than 32 sign bits 6163 // before there will be at least 33 sign bits after. 6164 if (Op.getValueType() == MVT::i64 && 6165 isa<ConstantSDNode>(Op.getOperand(1)) && 6166 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6167 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6168 if (Tmp > 32) 6169 return 33; 6170 } 6171 break; 6172 } 6173 case RISCVISD::VMV_X_S: 6174 // The number of sign bits of the scalar result is computed by obtaining the 6175 // element type of the input vector operand, subtracting its width from the 6176 // XLEN, and then adding one (sign bit within the element type). If the 6177 // element type is wider than XLen, the least-significant XLEN bits are 6178 // taken. 6179 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6180 return 1; 6181 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6182 } 6183 6184 return 1; 6185 } 6186 6187 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6188 MachineBasicBlock *BB) { 6189 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6190 6191 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6192 // Should the count have wrapped while it was being read, we need to try 6193 // again. 6194 // ... 6195 // read: 6196 // rdcycleh x3 # load high word of cycle 6197 // rdcycle x2 # load low word of cycle 6198 // rdcycleh x4 # load high word of cycle 6199 // bne x3, x4, read # check if high word reads match, otherwise try again 6200 // ... 6201 6202 MachineFunction &MF = *BB->getParent(); 6203 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6204 MachineFunction::iterator It = ++BB->getIterator(); 6205 6206 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6207 MF.insert(It, LoopMBB); 6208 6209 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6210 MF.insert(It, DoneMBB); 6211 6212 // Transfer the remainder of BB and its successor edges to DoneMBB. 6213 DoneMBB->splice(DoneMBB->begin(), BB, 6214 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6215 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6216 6217 BB->addSuccessor(LoopMBB); 6218 6219 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6220 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6221 Register LoReg = MI.getOperand(0).getReg(); 6222 Register HiReg = MI.getOperand(1).getReg(); 6223 DebugLoc DL = MI.getDebugLoc(); 6224 6225 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6226 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6227 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6228 .addReg(RISCV::X0); 6229 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6230 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6231 .addReg(RISCV::X0); 6232 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6233 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6234 .addReg(RISCV::X0); 6235 6236 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6237 .addReg(HiReg) 6238 .addReg(ReadAgainReg) 6239 .addMBB(LoopMBB); 6240 6241 LoopMBB->addSuccessor(LoopMBB); 6242 LoopMBB->addSuccessor(DoneMBB); 6243 6244 MI.eraseFromParent(); 6245 6246 return DoneMBB; 6247 } 6248 6249 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6250 MachineBasicBlock *BB) { 6251 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6252 6253 MachineFunction &MF = *BB->getParent(); 6254 DebugLoc DL = MI.getDebugLoc(); 6255 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6256 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6257 Register LoReg = MI.getOperand(0).getReg(); 6258 Register HiReg = MI.getOperand(1).getReg(); 6259 Register SrcReg = MI.getOperand(2).getReg(); 6260 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6261 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6262 6263 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6264 RI); 6265 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6266 MachineMemOperand *MMOLo = 6267 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6268 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6269 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6270 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6271 .addFrameIndex(FI) 6272 .addImm(0) 6273 .addMemOperand(MMOLo); 6274 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6275 .addFrameIndex(FI) 6276 .addImm(4) 6277 .addMemOperand(MMOHi); 6278 MI.eraseFromParent(); // The pseudo instruction is gone now. 6279 return BB; 6280 } 6281 6282 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6283 MachineBasicBlock *BB) { 6284 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6285 "Unexpected instruction"); 6286 6287 MachineFunction &MF = *BB->getParent(); 6288 DebugLoc DL = MI.getDebugLoc(); 6289 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6290 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6291 Register DstReg = MI.getOperand(0).getReg(); 6292 Register LoReg = MI.getOperand(1).getReg(); 6293 Register HiReg = MI.getOperand(2).getReg(); 6294 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6295 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6296 6297 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6298 MachineMemOperand *MMOLo = 6299 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6300 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6301 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6302 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6303 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6304 .addFrameIndex(FI) 6305 .addImm(0) 6306 .addMemOperand(MMOLo); 6307 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6308 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6309 .addFrameIndex(FI) 6310 .addImm(4) 6311 .addMemOperand(MMOHi); 6312 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6313 MI.eraseFromParent(); // The pseudo instruction is gone now. 6314 return BB; 6315 } 6316 6317 static bool isSelectPseudo(MachineInstr &MI) { 6318 switch (MI.getOpcode()) { 6319 default: 6320 return false; 6321 case RISCV::Select_GPR_Using_CC_GPR: 6322 case RISCV::Select_FPR16_Using_CC_GPR: 6323 case RISCV::Select_FPR32_Using_CC_GPR: 6324 case RISCV::Select_FPR64_Using_CC_GPR: 6325 return true; 6326 } 6327 } 6328 6329 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6330 MachineBasicBlock *BB) { 6331 // To "insert" Select_* instructions, we actually have to insert the triangle 6332 // control-flow pattern. The incoming instructions know the destination vreg 6333 // to set, the condition code register to branch on, the true/false values to 6334 // select between, and the condcode to use to select the appropriate branch. 6335 // 6336 // We produce the following control flow: 6337 // HeadMBB 6338 // | \ 6339 // | IfFalseMBB 6340 // | / 6341 // TailMBB 6342 // 6343 // When we find a sequence of selects we attempt to optimize their emission 6344 // by sharing the control flow. Currently we only handle cases where we have 6345 // multiple selects with the exact same condition (same LHS, RHS and CC). 6346 // The selects may be interleaved with other instructions if the other 6347 // instructions meet some requirements we deem safe: 6348 // - They are debug instructions. Otherwise, 6349 // - They do not have side-effects, do not access memory and their inputs do 6350 // not depend on the results of the select pseudo-instructions. 6351 // The TrueV/FalseV operands of the selects cannot depend on the result of 6352 // previous selects in the sequence. 6353 // These conditions could be further relaxed. See the X86 target for a 6354 // related approach and more information. 6355 Register LHS = MI.getOperand(1).getReg(); 6356 Register RHS = MI.getOperand(2).getReg(); 6357 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6358 6359 SmallVector<MachineInstr *, 4> SelectDebugValues; 6360 SmallSet<Register, 4> SelectDests; 6361 SelectDests.insert(MI.getOperand(0).getReg()); 6362 6363 MachineInstr *LastSelectPseudo = &MI; 6364 6365 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6366 SequenceMBBI != E; ++SequenceMBBI) { 6367 if (SequenceMBBI->isDebugInstr()) 6368 continue; 6369 else if (isSelectPseudo(*SequenceMBBI)) { 6370 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6371 SequenceMBBI->getOperand(2).getReg() != RHS || 6372 SequenceMBBI->getOperand(3).getImm() != CC || 6373 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6374 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6375 break; 6376 LastSelectPseudo = &*SequenceMBBI; 6377 SequenceMBBI->collectDebugValues(SelectDebugValues); 6378 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6379 } else { 6380 if (SequenceMBBI->hasUnmodeledSideEffects() || 6381 SequenceMBBI->mayLoadOrStore()) 6382 break; 6383 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6384 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6385 })) 6386 break; 6387 } 6388 } 6389 6390 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6391 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6392 DebugLoc DL = MI.getDebugLoc(); 6393 MachineFunction::iterator I = ++BB->getIterator(); 6394 6395 MachineBasicBlock *HeadMBB = BB; 6396 MachineFunction *F = BB->getParent(); 6397 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6398 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6399 6400 F->insert(I, IfFalseMBB); 6401 F->insert(I, TailMBB); 6402 6403 // Transfer debug instructions associated with the selects to TailMBB. 6404 for (MachineInstr *DebugInstr : SelectDebugValues) { 6405 TailMBB->push_back(DebugInstr->removeFromParent()); 6406 } 6407 6408 // Move all instructions after the sequence to TailMBB. 6409 TailMBB->splice(TailMBB->end(), HeadMBB, 6410 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6411 // Update machine-CFG edges by transferring all successors of the current 6412 // block to the new block which will contain the Phi nodes for the selects. 6413 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6414 // Set the successors for HeadMBB. 6415 HeadMBB->addSuccessor(IfFalseMBB); 6416 HeadMBB->addSuccessor(TailMBB); 6417 6418 // Insert appropriate branch. 6419 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6420 6421 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6422 .addReg(LHS) 6423 .addReg(RHS) 6424 .addMBB(TailMBB); 6425 6426 // IfFalseMBB just falls through to TailMBB. 6427 IfFalseMBB->addSuccessor(TailMBB); 6428 6429 // Create PHIs for all of the select pseudo-instructions. 6430 auto SelectMBBI = MI.getIterator(); 6431 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6432 auto InsertionPoint = TailMBB->begin(); 6433 while (SelectMBBI != SelectEnd) { 6434 auto Next = std::next(SelectMBBI); 6435 if (isSelectPseudo(*SelectMBBI)) { 6436 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6437 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6438 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6439 .addReg(SelectMBBI->getOperand(4).getReg()) 6440 .addMBB(HeadMBB) 6441 .addReg(SelectMBBI->getOperand(5).getReg()) 6442 .addMBB(IfFalseMBB); 6443 SelectMBBI->eraseFromParent(); 6444 } 6445 SelectMBBI = Next; 6446 } 6447 6448 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6449 return TailMBB; 6450 } 6451 6452 MachineBasicBlock * 6453 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6454 MachineBasicBlock *BB) const { 6455 switch (MI.getOpcode()) { 6456 default: 6457 llvm_unreachable("Unexpected instr type to insert"); 6458 case RISCV::ReadCycleWide: 6459 assert(!Subtarget.is64Bit() && 6460 "ReadCycleWrite is only to be used on riscv32"); 6461 return emitReadCycleWidePseudo(MI, BB); 6462 case RISCV::Select_GPR_Using_CC_GPR: 6463 case RISCV::Select_FPR16_Using_CC_GPR: 6464 case RISCV::Select_FPR32_Using_CC_GPR: 6465 case RISCV::Select_FPR64_Using_CC_GPR: 6466 return emitSelectPseudo(MI, BB); 6467 case RISCV::BuildPairF64Pseudo: 6468 return emitBuildPairF64Pseudo(MI, BB); 6469 case RISCV::SplitF64Pseudo: 6470 return emitSplitF64Pseudo(MI, BB); 6471 } 6472 } 6473 6474 // Calling Convention Implementation. 6475 // The expectations for frontend ABI lowering vary from target to target. 6476 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6477 // details, but this is a longer term goal. For now, we simply try to keep the 6478 // role of the frontend as simple and well-defined as possible. The rules can 6479 // be summarised as: 6480 // * Never split up large scalar arguments. We handle them here. 6481 // * If a hardfloat calling convention is being used, and the struct may be 6482 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6483 // available, then pass as two separate arguments. If either the GPRs or FPRs 6484 // are exhausted, then pass according to the rule below. 6485 // * If a struct could never be passed in registers or directly in a stack 6486 // slot (as it is larger than 2*XLEN and the floating point rules don't 6487 // apply), then pass it using a pointer with the byval attribute. 6488 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6489 // word-sized array or a 2*XLEN scalar (depending on alignment). 6490 // * The frontend can determine whether a struct is returned by reference or 6491 // not based on its size and fields. If it will be returned by reference, the 6492 // frontend must modify the prototype so a pointer with the sret annotation is 6493 // passed as the first argument. This is not necessary for large scalar 6494 // returns. 6495 // * Struct return values and varargs should be coerced to structs containing 6496 // register-size fields in the same situations they would be for fixed 6497 // arguments. 6498 6499 static const MCPhysReg ArgGPRs[] = { 6500 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6501 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6502 }; 6503 static const MCPhysReg ArgFPR16s[] = { 6504 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6505 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6506 }; 6507 static const MCPhysReg ArgFPR32s[] = { 6508 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6509 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6510 }; 6511 static const MCPhysReg ArgFPR64s[] = { 6512 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6513 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6514 }; 6515 // This is an interim calling convention and it may be changed in the future. 6516 static const MCPhysReg ArgVRs[] = { 6517 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6518 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6519 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6520 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6521 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6522 RISCV::V20M2, RISCV::V22M2}; 6523 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6524 RISCV::V20M4}; 6525 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6526 6527 // Pass a 2*XLEN argument that has been split into two XLEN values through 6528 // registers or the stack as necessary. 6529 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6530 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6531 MVT ValVT2, MVT LocVT2, 6532 ISD::ArgFlagsTy ArgFlags2) { 6533 unsigned XLenInBytes = XLen / 8; 6534 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6535 // At least one half can be passed via register. 6536 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6537 VA1.getLocVT(), CCValAssign::Full)); 6538 } else { 6539 // Both halves must be passed on the stack, with proper alignment. 6540 Align StackAlign = 6541 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6542 State.addLoc( 6543 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6544 State.AllocateStack(XLenInBytes, StackAlign), 6545 VA1.getLocVT(), CCValAssign::Full)); 6546 State.addLoc(CCValAssign::getMem( 6547 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6548 LocVT2, CCValAssign::Full)); 6549 return false; 6550 } 6551 6552 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6553 // The second half can also be passed via register. 6554 State.addLoc( 6555 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6556 } else { 6557 // The second half is passed via the stack, without additional alignment. 6558 State.addLoc(CCValAssign::getMem( 6559 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6560 LocVT2, CCValAssign::Full)); 6561 } 6562 6563 return false; 6564 } 6565 6566 // Implements the RISC-V calling convention. Returns true upon failure. 6567 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6568 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6569 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6570 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6571 Optional<unsigned> FirstMaskArgument) { 6572 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6573 assert(XLen == 32 || XLen == 64); 6574 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6575 6576 // Any return value split in to more than two values can't be returned 6577 // directly. Vectors are returned via the available vector registers. 6578 if (!LocVT.isVector() && IsRet && ValNo > 1) 6579 return true; 6580 6581 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6582 // variadic argument, or if no F16/F32 argument registers are available. 6583 bool UseGPRForF16_F32 = true; 6584 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6585 // variadic argument, or if no F64 argument registers are available. 6586 bool UseGPRForF64 = true; 6587 6588 switch (ABI) { 6589 default: 6590 llvm_unreachable("Unexpected ABI"); 6591 case RISCVABI::ABI_ILP32: 6592 case RISCVABI::ABI_LP64: 6593 break; 6594 case RISCVABI::ABI_ILP32F: 6595 case RISCVABI::ABI_LP64F: 6596 UseGPRForF16_F32 = !IsFixed; 6597 break; 6598 case RISCVABI::ABI_ILP32D: 6599 case RISCVABI::ABI_LP64D: 6600 UseGPRForF16_F32 = !IsFixed; 6601 UseGPRForF64 = !IsFixed; 6602 break; 6603 } 6604 6605 // FPR16, FPR32, and FPR64 alias each other. 6606 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6607 UseGPRForF16_F32 = true; 6608 UseGPRForF64 = true; 6609 } 6610 6611 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6612 // similar local variables rather than directly checking against the target 6613 // ABI. 6614 6615 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6616 LocVT = XLenVT; 6617 LocInfo = CCValAssign::BCvt; 6618 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6619 LocVT = MVT::i64; 6620 LocInfo = CCValAssign::BCvt; 6621 } 6622 6623 // If this is a variadic argument, the RISC-V calling convention requires 6624 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6625 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6626 // be used regardless of whether the original argument was split during 6627 // legalisation or not. The argument will not be passed by registers if the 6628 // original type is larger than 2*XLEN, so the register alignment rule does 6629 // not apply. 6630 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6631 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6632 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6633 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6634 // Skip 'odd' register if necessary. 6635 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6636 State.AllocateReg(ArgGPRs); 6637 } 6638 6639 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6640 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6641 State.getPendingArgFlags(); 6642 6643 assert(PendingLocs.size() == PendingArgFlags.size() && 6644 "PendingLocs and PendingArgFlags out of sync"); 6645 6646 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6647 // registers are exhausted. 6648 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6649 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6650 "Can't lower f64 if it is split"); 6651 // Depending on available argument GPRS, f64 may be passed in a pair of 6652 // GPRs, split between a GPR and the stack, or passed completely on the 6653 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6654 // cases. 6655 Register Reg = State.AllocateReg(ArgGPRs); 6656 LocVT = MVT::i32; 6657 if (!Reg) { 6658 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6659 State.addLoc( 6660 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6661 return false; 6662 } 6663 if (!State.AllocateReg(ArgGPRs)) 6664 State.AllocateStack(4, Align(4)); 6665 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6666 return false; 6667 } 6668 6669 // Fixed-length vectors are located in the corresponding scalable-vector 6670 // container types. 6671 if (ValVT.isFixedLengthVector()) 6672 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6673 6674 // Split arguments might be passed indirectly, so keep track of the pending 6675 // values. Split vectors are passed via a mix of registers and indirectly, so 6676 // treat them as we would any other argument. 6677 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6678 LocVT = XLenVT; 6679 LocInfo = CCValAssign::Indirect; 6680 PendingLocs.push_back( 6681 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6682 PendingArgFlags.push_back(ArgFlags); 6683 if (!ArgFlags.isSplitEnd()) { 6684 return false; 6685 } 6686 } 6687 6688 // If the split argument only had two elements, it should be passed directly 6689 // in registers or on the stack. 6690 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6691 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6692 // Apply the normal calling convention rules to the first half of the 6693 // split argument. 6694 CCValAssign VA = PendingLocs[0]; 6695 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6696 PendingLocs.clear(); 6697 PendingArgFlags.clear(); 6698 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6699 ArgFlags); 6700 } 6701 6702 // Allocate to a register if possible, or else a stack slot. 6703 Register Reg; 6704 unsigned StoreSizeBytes = XLen / 8; 6705 Align StackAlign = Align(XLen / 8); 6706 6707 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6708 Reg = State.AllocateReg(ArgFPR16s); 6709 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6710 Reg = State.AllocateReg(ArgFPR32s); 6711 else if (ValVT == MVT::f64 && !UseGPRForF64) 6712 Reg = State.AllocateReg(ArgFPR64s); 6713 else if (ValVT.isVector()) { 6714 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6715 if (RC == &RISCV::VRRegClass) { 6716 // Assign the first mask argument to V0. 6717 // This is an interim calling convention and it may be changed in the 6718 // future. 6719 if (FirstMaskArgument.hasValue() && 6720 ValNo == FirstMaskArgument.getValue()) { 6721 Reg = State.AllocateReg(RISCV::V0); 6722 } else { 6723 Reg = State.AllocateReg(ArgVRs); 6724 } 6725 } else if (RC == &RISCV::VRM2RegClass) { 6726 Reg = State.AllocateReg(ArgVRM2s); 6727 } else if (RC == &RISCV::VRM4RegClass) { 6728 Reg = State.AllocateReg(ArgVRM4s); 6729 } else if (RC == &RISCV::VRM8RegClass) { 6730 Reg = State.AllocateReg(ArgVRM8s); 6731 } else { 6732 llvm_unreachable("Unhandled class register for ValueType"); 6733 } 6734 if (!Reg) { 6735 // For return values, the vector must be passed fully via registers or 6736 // via the stack. 6737 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6738 // but we're using all of them. 6739 if (IsRet) 6740 return true; 6741 // Try using a GPR to pass the address 6742 if ((Reg = State.AllocateReg(ArgGPRs))) { 6743 LocVT = XLenVT; 6744 LocInfo = CCValAssign::Indirect; 6745 } else if (ValVT.isScalableVector()) { 6746 report_fatal_error("Unable to pass scalable vector types on the stack"); 6747 } else { 6748 // Pass fixed-length vectors on the stack. 6749 LocVT = ValVT; 6750 StoreSizeBytes = ValVT.getStoreSize(); 6751 // Align vectors to their element sizes, being careful for vXi1 6752 // vectors. 6753 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 6754 } 6755 } 6756 } else { 6757 Reg = State.AllocateReg(ArgGPRs); 6758 } 6759 6760 unsigned StackOffset = 6761 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 6762 6763 // If we reach this point and PendingLocs is non-empty, we must be at the 6764 // end of a split argument that must be passed indirectly. 6765 if (!PendingLocs.empty()) { 6766 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6767 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6768 6769 for (auto &It : PendingLocs) { 6770 if (Reg) 6771 It.convertToReg(Reg); 6772 else 6773 It.convertToMem(StackOffset); 6774 State.addLoc(It); 6775 } 6776 PendingLocs.clear(); 6777 PendingArgFlags.clear(); 6778 return false; 6779 } 6780 6781 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6782 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6783 "Expected an XLenVT or vector types at this stage"); 6784 6785 if (Reg) { 6786 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6787 return false; 6788 } 6789 6790 // When a floating-point value is passed on the stack, no bit-conversion is 6791 // needed. 6792 if (ValVT.isFloatingPoint()) { 6793 LocVT = ValVT; 6794 LocInfo = CCValAssign::Full; 6795 } 6796 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6797 return false; 6798 } 6799 6800 template <typename ArgTy> 6801 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6802 for (const auto &ArgIdx : enumerate(Args)) { 6803 MVT ArgVT = ArgIdx.value().VT; 6804 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6805 return ArgIdx.index(); 6806 } 6807 return None; 6808 } 6809 6810 void RISCVTargetLowering::analyzeInputArgs( 6811 MachineFunction &MF, CCState &CCInfo, 6812 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 6813 unsigned NumArgs = Ins.size(); 6814 FunctionType *FType = MF.getFunction().getFunctionType(); 6815 6816 Optional<unsigned> FirstMaskArgument; 6817 if (Subtarget.hasStdExtV()) 6818 FirstMaskArgument = preAssignMask(Ins); 6819 6820 for (unsigned i = 0; i != NumArgs; ++i) { 6821 MVT ArgVT = Ins[i].VT; 6822 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6823 6824 Type *ArgTy = nullptr; 6825 if (IsRet) 6826 ArgTy = FType->getReturnType(); 6827 else if (Ins[i].isOrigArg()) 6828 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6829 6830 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6831 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6832 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6833 FirstMaskArgument)) { 6834 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6835 << EVT(ArgVT).getEVTString() << '\n'); 6836 llvm_unreachable(nullptr); 6837 } 6838 } 6839 } 6840 6841 void RISCVTargetLowering::analyzeOutputArgs( 6842 MachineFunction &MF, CCState &CCInfo, 6843 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6844 CallLoweringInfo *CLI) const { 6845 unsigned NumArgs = Outs.size(); 6846 6847 Optional<unsigned> FirstMaskArgument; 6848 if (Subtarget.hasStdExtV()) 6849 FirstMaskArgument = preAssignMask(Outs); 6850 6851 for (unsigned i = 0; i != NumArgs; i++) { 6852 MVT ArgVT = Outs[i].VT; 6853 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6854 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6855 6856 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6857 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6858 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6859 FirstMaskArgument)) { 6860 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6861 << EVT(ArgVT).getEVTString() << "\n"); 6862 llvm_unreachable(nullptr); 6863 } 6864 } 6865 } 6866 6867 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6868 // values. 6869 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6870 const CCValAssign &VA, const SDLoc &DL, 6871 const RISCVSubtarget &Subtarget) { 6872 switch (VA.getLocInfo()) { 6873 default: 6874 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6875 case CCValAssign::Full: 6876 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6877 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6878 break; 6879 case CCValAssign::BCvt: 6880 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6881 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6882 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6883 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6884 else 6885 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6886 break; 6887 } 6888 return Val; 6889 } 6890 6891 // The caller is responsible for loading the full value if the argument is 6892 // passed with CCValAssign::Indirect. 6893 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6894 const CCValAssign &VA, const SDLoc &DL, 6895 const RISCVTargetLowering &TLI) { 6896 MachineFunction &MF = DAG.getMachineFunction(); 6897 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6898 EVT LocVT = VA.getLocVT(); 6899 SDValue Val; 6900 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6901 Register VReg = RegInfo.createVirtualRegister(RC); 6902 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6903 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6904 6905 if (VA.getLocInfo() == CCValAssign::Indirect) 6906 return Val; 6907 6908 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 6909 } 6910 6911 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 6912 const CCValAssign &VA, const SDLoc &DL, 6913 const RISCVSubtarget &Subtarget) { 6914 EVT LocVT = VA.getLocVT(); 6915 6916 switch (VA.getLocInfo()) { 6917 default: 6918 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6919 case CCValAssign::Full: 6920 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 6921 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 6922 break; 6923 case CCValAssign::BCvt: 6924 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6925 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 6926 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6927 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 6928 else 6929 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 6930 break; 6931 } 6932 return Val; 6933 } 6934 6935 // The caller is responsible for loading the full value if the argument is 6936 // passed with CCValAssign::Indirect. 6937 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 6938 const CCValAssign &VA, const SDLoc &DL) { 6939 MachineFunction &MF = DAG.getMachineFunction(); 6940 MachineFrameInfo &MFI = MF.getFrameInfo(); 6941 EVT LocVT = VA.getLocVT(); 6942 EVT ValVT = VA.getValVT(); 6943 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 6944 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 6945 /*Immutable=*/true); 6946 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6947 SDValue Val; 6948 6949 ISD::LoadExtType ExtType; 6950 switch (VA.getLocInfo()) { 6951 default: 6952 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6953 case CCValAssign::Full: 6954 case CCValAssign::Indirect: 6955 case CCValAssign::BCvt: 6956 ExtType = ISD::NON_EXTLOAD; 6957 break; 6958 } 6959 Val = DAG.getExtLoad( 6960 ExtType, DL, LocVT, Chain, FIN, 6961 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 6962 return Val; 6963 } 6964 6965 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 6966 const CCValAssign &VA, const SDLoc &DL) { 6967 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 6968 "Unexpected VA"); 6969 MachineFunction &MF = DAG.getMachineFunction(); 6970 MachineFrameInfo &MFI = MF.getFrameInfo(); 6971 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6972 6973 if (VA.isMemLoc()) { 6974 // f64 is passed on the stack. 6975 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 6976 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6977 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 6978 MachinePointerInfo::getFixedStack(MF, FI)); 6979 } 6980 6981 assert(VA.isRegLoc() && "Expected register VA assignment"); 6982 6983 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6984 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 6985 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 6986 SDValue Hi; 6987 if (VA.getLocReg() == RISCV::X17) { 6988 // Second half of f64 is passed on the stack. 6989 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 6990 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6991 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 6992 MachinePointerInfo::getFixedStack(MF, FI)); 6993 } else { 6994 // Second half of f64 is passed in another GPR. 6995 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6996 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 6997 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 6998 } 6999 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7000 } 7001 7002 // FastCC has less than 1% performance improvement for some particular 7003 // benchmark. But theoretically, it may has benenfit for some cases. 7004 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 7005 CCValAssign::LocInfo LocInfo, 7006 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7007 7008 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7009 // X5 and X6 might be used for save-restore libcall. 7010 static const MCPhysReg GPRList[] = { 7011 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7012 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7013 RISCV::X29, RISCV::X30, RISCV::X31}; 7014 if (unsigned Reg = State.AllocateReg(GPRList)) { 7015 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7016 return false; 7017 } 7018 } 7019 7020 if (LocVT == MVT::f16) { 7021 static const MCPhysReg FPR16List[] = { 7022 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7023 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7024 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7025 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7026 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7027 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7028 return false; 7029 } 7030 } 7031 7032 if (LocVT == MVT::f32) { 7033 static const MCPhysReg FPR32List[] = { 7034 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7035 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7036 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7037 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7038 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7039 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7040 return false; 7041 } 7042 } 7043 7044 if (LocVT == MVT::f64) { 7045 static const MCPhysReg FPR64List[] = { 7046 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7047 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7048 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7049 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7050 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7051 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7052 return false; 7053 } 7054 } 7055 7056 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7057 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7058 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7059 return false; 7060 } 7061 7062 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7063 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7064 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7065 return false; 7066 } 7067 7068 return true; // CC didn't match. 7069 } 7070 7071 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7072 CCValAssign::LocInfo LocInfo, 7073 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7074 7075 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7076 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7077 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7078 static const MCPhysReg GPRList[] = { 7079 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7080 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7081 if (unsigned Reg = State.AllocateReg(GPRList)) { 7082 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7083 return false; 7084 } 7085 } 7086 7087 if (LocVT == MVT::f32) { 7088 // Pass in STG registers: F1, ..., F6 7089 // fs0 ... fs5 7090 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7091 RISCV::F18_F, RISCV::F19_F, 7092 RISCV::F20_F, RISCV::F21_F}; 7093 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7094 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7095 return false; 7096 } 7097 } 7098 7099 if (LocVT == MVT::f64) { 7100 // Pass in STG registers: D1, ..., D6 7101 // fs6 ... fs11 7102 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7103 RISCV::F24_D, RISCV::F25_D, 7104 RISCV::F26_D, RISCV::F27_D}; 7105 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7106 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7107 return false; 7108 } 7109 } 7110 7111 report_fatal_error("No registers left in GHC calling convention"); 7112 return true; 7113 } 7114 7115 // Transform physical registers into virtual registers. 7116 SDValue RISCVTargetLowering::LowerFormalArguments( 7117 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7118 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7119 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7120 7121 MachineFunction &MF = DAG.getMachineFunction(); 7122 7123 switch (CallConv) { 7124 default: 7125 report_fatal_error("Unsupported calling convention"); 7126 case CallingConv::C: 7127 case CallingConv::Fast: 7128 break; 7129 case CallingConv::GHC: 7130 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7131 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7132 report_fatal_error( 7133 "GHC calling convention requires the F and D instruction set extensions"); 7134 } 7135 7136 const Function &Func = MF.getFunction(); 7137 if (Func.hasFnAttribute("interrupt")) { 7138 if (!Func.arg_empty()) 7139 report_fatal_error( 7140 "Functions with the interrupt attribute cannot have arguments!"); 7141 7142 StringRef Kind = 7143 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7144 7145 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7146 report_fatal_error( 7147 "Function interrupt attribute argument not supported!"); 7148 } 7149 7150 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7151 MVT XLenVT = Subtarget.getXLenVT(); 7152 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7153 // Used with vargs to acumulate store chains. 7154 std::vector<SDValue> OutChains; 7155 7156 // Assign locations to all of the incoming arguments. 7157 SmallVector<CCValAssign, 16> ArgLocs; 7158 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7159 7160 if (CallConv == CallingConv::Fast) 7161 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 7162 else if (CallConv == CallingConv::GHC) 7163 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7164 else 7165 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 7166 7167 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7168 CCValAssign &VA = ArgLocs[i]; 7169 SDValue ArgValue; 7170 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7171 // case. 7172 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7173 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7174 else if (VA.isRegLoc()) 7175 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7176 else 7177 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7178 7179 if (VA.getLocInfo() == CCValAssign::Indirect) { 7180 // If the original argument was split and passed by reference (e.g. i128 7181 // on RV32), we need to load all parts of it here (using the same 7182 // address). Vectors may be partly split to registers and partly to the 7183 // stack, in which case the base address is partly offset and subsequent 7184 // stores are relative to that. 7185 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7186 MachinePointerInfo())); 7187 unsigned ArgIndex = Ins[i].OrigArgIndex; 7188 unsigned ArgPartOffset = Ins[i].PartOffset; 7189 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7190 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7191 CCValAssign &PartVA = ArgLocs[i + 1]; 7192 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7193 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 7194 DAG.getIntPtrConstant(PartOffset, DL)); 7195 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7196 MachinePointerInfo())); 7197 ++i; 7198 } 7199 continue; 7200 } 7201 InVals.push_back(ArgValue); 7202 } 7203 7204 if (IsVarArg) { 7205 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7206 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7207 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7208 MachineFrameInfo &MFI = MF.getFrameInfo(); 7209 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7210 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7211 7212 // Offset of the first variable argument from stack pointer, and size of 7213 // the vararg save area. For now, the varargs save area is either zero or 7214 // large enough to hold a0-a7. 7215 int VaArgOffset, VarArgsSaveSize; 7216 7217 // If all registers are allocated, then all varargs must be passed on the 7218 // stack and we don't need to save any argregs. 7219 if (ArgRegs.size() == Idx) { 7220 VaArgOffset = CCInfo.getNextStackOffset(); 7221 VarArgsSaveSize = 0; 7222 } else { 7223 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7224 VaArgOffset = -VarArgsSaveSize; 7225 } 7226 7227 // Record the frame index of the first variable argument 7228 // which is a value necessary to VASTART. 7229 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7230 RVFI->setVarArgsFrameIndex(FI); 7231 7232 // If saving an odd number of registers then create an extra stack slot to 7233 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7234 // offsets to even-numbered registered remain 2*XLEN-aligned. 7235 if (Idx % 2) { 7236 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7237 VarArgsSaveSize += XLenInBytes; 7238 } 7239 7240 // Copy the integer registers that may have been used for passing varargs 7241 // to the vararg save area. 7242 for (unsigned I = Idx; I < ArgRegs.size(); 7243 ++I, VaArgOffset += XLenInBytes) { 7244 const Register Reg = RegInfo.createVirtualRegister(RC); 7245 RegInfo.addLiveIn(ArgRegs[I], Reg); 7246 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7247 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7248 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7249 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7250 MachinePointerInfo::getFixedStack(MF, FI)); 7251 cast<StoreSDNode>(Store.getNode()) 7252 ->getMemOperand() 7253 ->setValue((Value *)nullptr); 7254 OutChains.push_back(Store); 7255 } 7256 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7257 } 7258 7259 // All stores are grouped in one node to allow the matching between 7260 // the size of Ins and InVals. This only happens for vararg functions. 7261 if (!OutChains.empty()) { 7262 OutChains.push_back(Chain); 7263 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7264 } 7265 7266 return Chain; 7267 } 7268 7269 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7270 /// for tail call optimization. 7271 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7272 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7273 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7274 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7275 7276 auto &Callee = CLI.Callee; 7277 auto CalleeCC = CLI.CallConv; 7278 auto &Outs = CLI.Outs; 7279 auto &Caller = MF.getFunction(); 7280 auto CallerCC = Caller.getCallingConv(); 7281 7282 // Exception-handling functions need a special set of instructions to 7283 // indicate a return to the hardware. Tail-calling another function would 7284 // probably break this. 7285 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7286 // should be expanded as new function attributes are introduced. 7287 if (Caller.hasFnAttribute("interrupt")) 7288 return false; 7289 7290 // Do not tail call opt if the stack is used to pass parameters. 7291 if (CCInfo.getNextStackOffset() != 0) 7292 return false; 7293 7294 // Do not tail call opt if any parameters need to be passed indirectly. 7295 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7296 // passed indirectly. So the address of the value will be passed in a 7297 // register, or if not available, then the address is put on the stack. In 7298 // order to pass indirectly, space on the stack often needs to be allocated 7299 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7300 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7301 // are passed CCValAssign::Indirect. 7302 for (auto &VA : ArgLocs) 7303 if (VA.getLocInfo() == CCValAssign::Indirect) 7304 return false; 7305 7306 // Do not tail call opt if either caller or callee uses struct return 7307 // semantics. 7308 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7309 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7310 if (IsCallerStructRet || IsCalleeStructRet) 7311 return false; 7312 7313 // Externally-defined functions with weak linkage should not be 7314 // tail-called. The behaviour of branch instructions in this situation (as 7315 // used for tail calls) is implementation-defined, so we cannot rely on the 7316 // linker replacing the tail call with a return. 7317 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7318 const GlobalValue *GV = G->getGlobal(); 7319 if (GV->hasExternalWeakLinkage()) 7320 return false; 7321 } 7322 7323 // The callee has to preserve all registers the caller needs to preserve. 7324 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7325 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7326 if (CalleeCC != CallerCC) { 7327 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7328 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7329 return false; 7330 } 7331 7332 // Byval parameters hand the function a pointer directly into the stack area 7333 // we want to reuse during a tail call. Working around this *is* possible 7334 // but less efficient and uglier in LowerCall. 7335 for (auto &Arg : Outs) 7336 if (Arg.Flags.isByVal()) 7337 return false; 7338 7339 return true; 7340 } 7341 7342 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7343 return DAG.getDataLayout().getPrefTypeAlign( 7344 VT.getTypeForEVT(*DAG.getContext())); 7345 } 7346 7347 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7348 // and output parameter nodes. 7349 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7350 SmallVectorImpl<SDValue> &InVals) const { 7351 SelectionDAG &DAG = CLI.DAG; 7352 SDLoc &DL = CLI.DL; 7353 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7354 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7355 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7356 SDValue Chain = CLI.Chain; 7357 SDValue Callee = CLI.Callee; 7358 bool &IsTailCall = CLI.IsTailCall; 7359 CallingConv::ID CallConv = CLI.CallConv; 7360 bool IsVarArg = CLI.IsVarArg; 7361 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7362 MVT XLenVT = Subtarget.getXLenVT(); 7363 7364 MachineFunction &MF = DAG.getMachineFunction(); 7365 7366 // Analyze the operands of the call, assigning locations to each operand. 7367 SmallVector<CCValAssign, 16> ArgLocs; 7368 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7369 7370 if (CallConv == CallingConv::Fast) 7371 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 7372 else if (CallConv == CallingConv::GHC) 7373 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7374 else 7375 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 7376 7377 // Check if it's really possible to do a tail call. 7378 if (IsTailCall) 7379 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7380 7381 if (IsTailCall) 7382 ++NumTailCalls; 7383 else if (CLI.CB && CLI.CB->isMustTailCall()) 7384 report_fatal_error("failed to perform tail call elimination on a call " 7385 "site marked musttail"); 7386 7387 // Get a count of how many bytes are to be pushed on the stack. 7388 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7389 7390 // Create local copies for byval args 7391 SmallVector<SDValue, 8> ByValArgs; 7392 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7393 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7394 if (!Flags.isByVal()) 7395 continue; 7396 7397 SDValue Arg = OutVals[i]; 7398 unsigned Size = Flags.getByValSize(); 7399 Align Alignment = Flags.getNonZeroByValAlign(); 7400 7401 int FI = 7402 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7403 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7404 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7405 7406 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7407 /*IsVolatile=*/false, 7408 /*AlwaysInline=*/false, IsTailCall, 7409 MachinePointerInfo(), MachinePointerInfo()); 7410 ByValArgs.push_back(FIPtr); 7411 } 7412 7413 if (!IsTailCall) 7414 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7415 7416 // Copy argument values to their designated locations. 7417 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7418 SmallVector<SDValue, 8> MemOpChains; 7419 SDValue StackPtr; 7420 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7421 CCValAssign &VA = ArgLocs[i]; 7422 SDValue ArgValue = OutVals[i]; 7423 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7424 7425 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7426 bool IsF64OnRV32DSoftABI = 7427 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7428 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7429 SDValue SplitF64 = DAG.getNode( 7430 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7431 SDValue Lo = SplitF64.getValue(0); 7432 SDValue Hi = SplitF64.getValue(1); 7433 7434 Register RegLo = VA.getLocReg(); 7435 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7436 7437 if (RegLo == RISCV::X17) { 7438 // Second half of f64 is passed on the stack. 7439 // Work out the address of the stack slot. 7440 if (!StackPtr.getNode()) 7441 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7442 // Emit the store. 7443 MemOpChains.push_back( 7444 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7445 } else { 7446 // Second half of f64 is passed in another GPR. 7447 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7448 Register RegHigh = RegLo + 1; 7449 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7450 } 7451 continue; 7452 } 7453 7454 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7455 // as any other MemLoc. 7456 7457 // Promote the value if needed. 7458 // For now, only handle fully promoted and indirect arguments. 7459 if (VA.getLocInfo() == CCValAssign::Indirect) { 7460 // Store the argument in a stack slot and pass its address. 7461 Align StackAlign = 7462 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7463 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7464 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7465 // If the original argument was split (e.g. i128), we need 7466 // to store the required parts of it here (and pass just one address). 7467 // Vectors may be partly split to registers and partly to the stack, in 7468 // which case the base address is partly offset and subsequent stores are 7469 // relative to that. 7470 unsigned ArgIndex = Outs[i].OrigArgIndex; 7471 unsigned ArgPartOffset = Outs[i].PartOffset; 7472 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7473 // Calculate the total size to store. We don't have access to what we're 7474 // actually storing other than performing the loop and collecting the 7475 // info. 7476 SmallVector<std::pair<SDValue, unsigned>> Parts; 7477 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7478 SDValue PartValue = OutVals[i + 1]; 7479 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7480 EVT PartVT = PartValue.getValueType(); 7481 StoredSize += PartVT.getStoreSize(); 7482 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7483 Parts.push_back(std::make_pair(PartValue, PartOffset)); 7484 ++i; 7485 } 7486 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7487 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7488 MemOpChains.push_back( 7489 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7490 MachinePointerInfo::getFixedStack(MF, FI))); 7491 for (const auto &Part : Parts) { 7492 SDValue PartValue = Part.first; 7493 unsigned PartOffset = Part.second; 7494 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 7495 DAG.getIntPtrConstant(PartOffset, DL)); 7496 MemOpChains.push_back( 7497 DAG.getStore(Chain, DL, PartValue, Address, 7498 MachinePointerInfo::getFixedStack(MF, FI))); 7499 } 7500 ArgValue = SpillSlot; 7501 } else { 7502 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7503 } 7504 7505 // Use local copy if it is a byval arg. 7506 if (Flags.isByVal()) 7507 ArgValue = ByValArgs[j++]; 7508 7509 if (VA.isRegLoc()) { 7510 // Queue up the argument copies and emit them at the end. 7511 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7512 } else { 7513 assert(VA.isMemLoc() && "Argument not register or memory"); 7514 assert(!IsTailCall && "Tail call not allowed if stack is used " 7515 "for passing parameters"); 7516 7517 // Work out the address of the stack slot. 7518 if (!StackPtr.getNode()) 7519 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7520 SDValue Address = 7521 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7522 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7523 7524 // Emit the store. 7525 MemOpChains.push_back( 7526 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7527 } 7528 } 7529 7530 // Join the stores, which are independent of one another. 7531 if (!MemOpChains.empty()) 7532 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7533 7534 SDValue Glue; 7535 7536 // Build a sequence of copy-to-reg nodes, chained and glued together. 7537 for (auto &Reg : RegsToPass) { 7538 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7539 Glue = Chain.getValue(1); 7540 } 7541 7542 // Validate that none of the argument registers have been marked as 7543 // reserved, if so report an error. Do the same for the return address if this 7544 // is not a tailcall. 7545 validateCCReservedRegs(RegsToPass, MF); 7546 if (!IsTailCall && 7547 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7548 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7549 MF.getFunction(), 7550 "Return address register required, but has been reserved."}); 7551 7552 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7553 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7554 // split it and then direct call can be matched by PseudoCALL. 7555 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7556 const GlobalValue *GV = S->getGlobal(); 7557 7558 unsigned OpFlags = RISCVII::MO_CALL; 7559 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7560 OpFlags = RISCVII::MO_PLT; 7561 7562 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7563 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7564 unsigned OpFlags = RISCVII::MO_CALL; 7565 7566 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7567 nullptr)) 7568 OpFlags = RISCVII::MO_PLT; 7569 7570 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7571 } 7572 7573 // The first call operand is the chain and the second is the target address. 7574 SmallVector<SDValue, 8> Ops; 7575 Ops.push_back(Chain); 7576 Ops.push_back(Callee); 7577 7578 // Add argument registers to the end of the list so that they are 7579 // known live into the call. 7580 for (auto &Reg : RegsToPass) 7581 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7582 7583 if (!IsTailCall) { 7584 // Add a register mask operand representing the call-preserved registers. 7585 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7586 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7587 assert(Mask && "Missing call preserved mask for calling convention"); 7588 Ops.push_back(DAG.getRegisterMask(Mask)); 7589 } 7590 7591 // Glue the call to the argument copies, if any. 7592 if (Glue.getNode()) 7593 Ops.push_back(Glue); 7594 7595 // Emit the call. 7596 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7597 7598 if (IsTailCall) { 7599 MF.getFrameInfo().setHasTailCall(); 7600 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7601 } 7602 7603 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7604 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7605 Glue = Chain.getValue(1); 7606 7607 // Mark the end of the call, which is glued to the call itself. 7608 Chain = DAG.getCALLSEQ_END(Chain, 7609 DAG.getConstant(NumBytes, DL, PtrVT, true), 7610 DAG.getConstant(0, DL, PtrVT, true), 7611 Glue, DL); 7612 Glue = Chain.getValue(1); 7613 7614 // Assign locations to each value returned by this call. 7615 SmallVector<CCValAssign, 16> RVLocs; 7616 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7617 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 7618 7619 // Copy all of the result registers out of their specified physreg. 7620 for (auto &VA : RVLocs) { 7621 // Copy the value out 7622 SDValue RetValue = 7623 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7624 // Glue the RetValue to the end of the call sequence 7625 Chain = RetValue.getValue(1); 7626 Glue = RetValue.getValue(2); 7627 7628 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7629 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7630 SDValue RetValue2 = 7631 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7632 Chain = RetValue2.getValue(1); 7633 Glue = RetValue2.getValue(2); 7634 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7635 RetValue2); 7636 } 7637 7638 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7639 7640 InVals.push_back(RetValue); 7641 } 7642 7643 return Chain; 7644 } 7645 7646 bool RISCVTargetLowering::CanLowerReturn( 7647 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7648 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7649 SmallVector<CCValAssign, 16> RVLocs; 7650 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7651 7652 Optional<unsigned> FirstMaskArgument; 7653 if (Subtarget.hasStdExtV()) 7654 FirstMaskArgument = preAssignMask(Outs); 7655 7656 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7657 MVT VT = Outs[i].VT; 7658 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7659 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7660 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7661 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7662 *this, FirstMaskArgument)) 7663 return false; 7664 } 7665 return true; 7666 } 7667 7668 SDValue 7669 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7670 bool IsVarArg, 7671 const SmallVectorImpl<ISD::OutputArg> &Outs, 7672 const SmallVectorImpl<SDValue> &OutVals, 7673 const SDLoc &DL, SelectionDAG &DAG) const { 7674 const MachineFunction &MF = DAG.getMachineFunction(); 7675 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7676 7677 // Stores the assignment of the return value to a location. 7678 SmallVector<CCValAssign, 16> RVLocs; 7679 7680 // Info about the registers and stack slot. 7681 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7682 *DAG.getContext()); 7683 7684 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7685 nullptr); 7686 7687 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7688 report_fatal_error("GHC functions return void only"); 7689 7690 SDValue Glue; 7691 SmallVector<SDValue, 4> RetOps(1, Chain); 7692 7693 // Copy the result values into the output registers. 7694 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7695 SDValue Val = OutVals[i]; 7696 CCValAssign &VA = RVLocs[i]; 7697 assert(VA.isRegLoc() && "Can only return in registers!"); 7698 7699 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7700 // Handle returning f64 on RV32D with a soft float ABI. 7701 assert(VA.isRegLoc() && "Expected return via registers"); 7702 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7703 DAG.getVTList(MVT::i32, MVT::i32), Val); 7704 SDValue Lo = SplitF64.getValue(0); 7705 SDValue Hi = SplitF64.getValue(1); 7706 Register RegLo = VA.getLocReg(); 7707 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7708 Register RegHi = RegLo + 1; 7709 7710 if (STI.isRegisterReservedByUser(RegLo) || 7711 STI.isRegisterReservedByUser(RegHi)) 7712 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7713 MF.getFunction(), 7714 "Return value register required, but has been reserved."}); 7715 7716 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7717 Glue = Chain.getValue(1); 7718 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7719 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7720 Glue = Chain.getValue(1); 7721 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7722 } else { 7723 // Handle a 'normal' return. 7724 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7725 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7726 7727 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7728 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7729 MF.getFunction(), 7730 "Return value register required, but has been reserved."}); 7731 7732 // Guarantee that all emitted copies are stuck together. 7733 Glue = Chain.getValue(1); 7734 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7735 } 7736 } 7737 7738 RetOps[0] = Chain; // Update chain. 7739 7740 // Add the glue node if we have it. 7741 if (Glue.getNode()) { 7742 RetOps.push_back(Glue); 7743 } 7744 7745 // Interrupt service routines use different return instructions. 7746 const Function &Func = DAG.getMachineFunction().getFunction(); 7747 if (Func.hasFnAttribute("interrupt")) { 7748 if (!Func.getReturnType()->isVoidTy()) 7749 report_fatal_error( 7750 "Functions with the interrupt attribute must have void return type!"); 7751 7752 MachineFunction &MF = DAG.getMachineFunction(); 7753 StringRef Kind = 7754 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7755 7756 unsigned RetOpc; 7757 if (Kind == "user") 7758 RetOpc = RISCVISD::URET_FLAG; 7759 else if (Kind == "supervisor") 7760 RetOpc = RISCVISD::SRET_FLAG; 7761 else 7762 RetOpc = RISCVISD::MRET_FLAG; 7763 7764 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7765 } 7766 7767 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7768 } 7769 7770 void RISCVTargetLowering::validateCCReservedRegs( 7771 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7772 MachineFunction &MF) const { 7773 const Function &F = MF.getFunction(); 7774 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7775 7776 if (llvm::any_of(Regs, [&STI](auto Reg) { 7777 return STI.isRegisterReservedByUser(Reg.first); 7778 })) 7779 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7780 F, "Argument register required, but has been reserved."}); 7781 } 7782 7783 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7784 return CI->isTailCall(); 7785 } 7786 7787 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7788 #define NODE_NAME_CASE(NODE) \ 7789 case RISCVISD::NODE: \ 7790 return "RISCVISD::" #NODE; 7791 // clang-format off 7792 switch ((RISCVISD::NodeType)Opcode) { 7793 case RISCVISD::FIRST_NUMBER: 7794 break; 7795 NODE_NAME_CASE(RET_FLAG) 7796 NODE_NAME_CASE(URET_FLAG) 7797 NODE_NAME_CASE(SRET_FLAG) 7798 NODE_NAME_CASE(MRET_FLAG) 7799 NODE_NAME_CASE(CALL) 7800 NODE_NAME_CASE(SELECT_CC) 7801 NODE_NAME_CASE(BR_CC) 7802 NODE_NAME_CASE(BuildPairF64) 7803 NODE_NAME_CASE(SplitF64) 7804 NODE_NAME_CASE(TAIL) 7805 NODE_NAME_CASE(MULHSU) 7806 NODE_NAME_CASE(SLLW) 7807 NODE_NAME_CASE(SRAW) 7808 NODE_NAME_CASE(SRLW) 7809 NODE_NAME_CASE(DIVW) 7810 NODE_NAME_CASE(DIVUW) 7811 NODE_NAME_CASE(REMUW) 7812 NODE_NAME_CASE(ROLW) 7813 NODE_NAME_CASE(RORW) 7814 NODE_NAME_CASE(CLZW) 7815 NODE_NAME_CASE(CTZW) 7816 NODE_NAME_CASE(FSLW) 7817 NODE_NAME_CASE(FSRW) 7818 NODE_NAME_CASE(FSL) 7819 NODE_NAME_CASE(FSR) 7820 NODE_NAME_CASE(FMV_H_X) 7821 NODE_NAME_CASE(FMV_X_ANYEXTH) 7822 NODE_NAME_CASE(FMV_W_X_RV64) 7823 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 7824 NODE_NAME_CASE(READ_CYCLE_WIDE) 7825 NODE_NAME_CASE(GREV) 7826 NODE_NAME_CASE(GREVW) 7827 NODE_NAME_CASE(GORC) 7828 NODE_NAME_CASE(GORCW) 7829 NODE_NAME_CASE(SHFL) 7830 NODE_NAME_CASE(SHFLW) 7831 NODE_NAME_CASE(UNSHFL) 7832 NODE_NAME_CASE(UNSHFLW) 7833 NODE_NAME_CASE(BCOMPRESS) 7834 NODE_NAME_CASE(BCOMPRESSW) 7835 NODE_NAME_CASE(BDECOMPRESS) 7836 NODE_NAME_CASE(BDECOMPRESSW) 7837 NODE_NAME_CASE(VMV_V_X_VL) 7838 NODE_NAME_CASE(VFMV_V_F_VL) 7839 NODE_NAME_CASE(VMV_X_S) 7840 NODE_NAME_CASE(VMV_S_X_VL) 7841 NODE_NAME_CASE(VFMV_S_F_VL) 7842 NODE_NAME_CASE(SPLAT_VECTOR_I64) 7843 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 7844 NODE_NAME_CASE(READ_VLENB) 7845 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 7846 NODE_NAME_CASE(VSLIDEUP_VL) 7847 NODE_NAME_CASE(VSLIDE1UP_VL) 7848 NODE_NAME_CASE(VSLIDEDOWN_VL) 7849 NODE_NAME_CASE(VSLIDE1DOWN_VL) 7850 NODE_NAME_CASE(VID_VL) 7851 NODE_NAME_CASE(VFNCVT_ROD_VL) 7852 NODE_NAME_CASE(VECREDUCE_ADD_VL) 7853 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 7854 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 7855 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 7856 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 7857 NODE_NAME_CASE(VECREDUCE_AND_VL) 7858 NODE_NAME_CASE(VECREDUCE_OR_VL) 7859 NODE_NAME_CASE(VECREDUCE_XOR_VL) 7860 NODE_NAME_CASE(VECREDUCE_FADD_VL) 7861 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 7862 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 7863 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 7864 NODE_NAME_CASE(ADD_VL) 7865 NODE_NAME_CASE(AND_VL) 7866 NODE_NAME_CASE(MUL_VL) 7867 NODE_NAME_CASE(OR_VL) 7868 NODE_NAME_CASE(SDIV_VL) 7869 NODE_NAME_CASE(SHL_VL) 7870 NODE_NAME_CASE(SREM_VL) 7871 NODE_NAME_CASE(SRA_VL) 7872 NODE_NAME_CASE(SRL_VL) 7873 NODE_NAME_CASE(SUB_VL) 7874 NODE_NAME_CASE(UDIV_VL) 7875 NODE_NAME_CASE(UREM_VL) 7876 NODE_NAME_CASE(XOR_VL) 7877 NODE_NAME_CASE(FADD_VL) 7878 NODE_NAME_CASE(FSUB_VL) 7879 NODE_NAME_CASE(FMUL_VL) 7880 NODE_NAME_CASE(FDIV_VL) 7881 NODE_NAME_CASE(FNEG_VL) 7882 NODE_NAME_CASE(FABS_VL) 7883 NODE_NAME_CASE(FSQRT_VL) 7884 NODE_NAME_CASE(FMA_VL) 7885 NODE_NAME_CASE(FCOPYSIGN_VL) 7886 NODE_NAME_CASE(SMIN_VL) 7887 NODE_NAME_CASE(SMAX_VL) 7888 NODE_NAME_CASE(UMIN_VL) 7889 NODE_NAME_CASE(UMAX_VL) 7890 NODE_NAME_CASE(FMINNUM_VL) 7891 NODE_NAME_CASE(FMAXNUM_VL) 7892 NODE_NAME_CASE(MULHS_VL) 7893 NODE_NAME_CASE(MULHU_VL) 7894 NODE_NAME_CASE(FP_TO_SINT_VL) 7895 NODE_NAME_CASE(FP_TO_UINT_VL) 7896 NODE_NAME_CASE(SINT_TO_FP_VL) 7897 NODE_NAME_CASE(UINT_TO_FP_VL) 7898 NODE_NAME_CASE(FP_EXTEND_VL) 7899 NODE_NAME_CASE(FP_ROUND_VL) 7900 NODE_NAME_CASE(SETCC_VL) 7901 NODE_NAME_CASE(VSELECT_VL) 7902 NODE_NAME_CASE(VMAND_VL) 7903 NODE_NAME_CASE(VMOR_VL) 7904 NODE_NAME_CASE(VMXOR_VL) 7905 NODE_NAME_CASE(VMCLR_VL) 7906 NODE_NAME_CASE(VMSET_VL) 7907 NODE_NAME_CASE(VRGATHER_VX_VL) 7908 NODE_NAME_CASE(VRGATHER_VV_VL) 7909 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 7910 NODE_NAME_CASE(VSEXT_VL) 7911 NODE_NAME_CASE(VZEXT_VL) 7912 NODE_NAME_CASE(VPOPC_VL) 7913 NODE_NAME_CASE(VLE_VL) 7914 NODE_NAME_CASE(VSE_VL) 7915 NODE_NAME_CASE(READ_CSR) 7916 NODE_NAME_CASE(WRITE_CSR) 7917 NODE_NAME_CASE(SWAP_CSR) 7918 } 7919 // clang-format on 7920 return nullptr; 7921 #undef NODE_NAME_CASE 7922 } 7923 7924 /// getConstraintType - Given a constraint letter, return the type of 7925 /// constraint it is for this target. 7926 RISCVTargetLowering::ConstraintType 7927 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 7928 if (Constraint.size() == 1) { 7929 switch (Constraint[0]) { 7930 default: 7931 break; 7932 case 'f': 7933 case 'v': 7934 return C_RegisterClass; 7935 case 'I': 7936 case 'J': 7937 case 'K': 7938 return C_Immediate; 7939 case 'A': 7940 return C_Memory; 7941 } 7942 } 7943 return TargetLowering::getConstraintType(Constraint); 7944 } 7945 7946 std::pair<unsigned, const TargetRegisterClass *> 7947 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 7948 StringRef Constraint, 7949 MVT VT) const { 7950 // First, see if this is a constraint that directly corresponds to a 7951 // RISCV register class. 7952 if (Constraint.size() == 1) { 7953 switch (Constraint[0]) { 7954 case 'r': 7955 return std::make_pair(0U, &RISCV::GPRRegClass); 7956 case 'f': 7957 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 7958 return std::make_pair(0U, &RISCV::FPR16RegClass); 7959 if (Subtarget.hasStdExtF() && VT == MVT::f32) 7960 return std::make_pair(0U, &RISCV::FPR32RegClass); 7961 if (Subtarget.hasStdExtD() && VT == MVT::f64) 7962 return std::make_pair(0U, &RISCV::FPR64RegClass); 7963 break; 7964 case 'v': 7965 for (const auto *RC : 7966 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 7967 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7968 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 7969 return std::make_pair(0U, RC); 7970 } 7971 break; 7972 default: 7973 break; 7974 } 7975 } 7976 7977 // Clang will correctly decode the usage of register name aliases into their 7978 // official names. However, other frontends like `rustc` do not. This allows 7979 // users of these frontends to use the ABI names for registers in LLVM-style 7980 // register constraints. 7981 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 7982 .Case("{zero}", RISCV::X0) 7983 .Case("{ra}", RISCV::X1) 7984 .Case("{sp}", RISCV::X2) 7985 .Case("{gp}", RISCV::X3) 7986 .Case("{tp}", RISCV::X4) 7987 .Case("{t0}", RISCV::X5) 7988 .Case("{t1}", RISCV::X6) 7989 .Case("{t2}", RISCV::X7) 7990 .Cases("{s0}", "{fp}", RISCV::X8) 7991 .Case("{s1}", RISCV::X9) 7992 .Case("{a0}", RISCV::X10) 7993 .Case("{a1}", RISCV::X11) 7994 .Case("{a2}", RISCV::X12) 7995 .Case("{a3}", RISCV::X13) 7996 .Case("{a4}", RISCV::X14) 7997 .Case("{a5}", RISCV::X15) 7998 .Case("{a6}", RISCV::X16) 7999 .Case("{a7}", RISCV::X17) 8000 .Case("{s2}", RISCV::X18) 8001 .Case("{s3}", RISCV::X19) 8002 .Case("{s4}", RISCV::X20) 8003 .Case("{s5}", RISCV::X21) 8004 .Case("{s6}", RISCV::X22) 8005 .Case("{s7}", RISCV::X23) 8006 .Case("{s8}", RISCV::X24) 8007 .Case("{s9}", RISCV::X25) 8008 .Case("{s10}", RISCV::X26) 8009 .Case("{s11}", RISCV::X27) 8010 .Case("{t3}", RISCV::X28) 8011 .Case("{t4}", RISCV::X29) 8012 .Case("{t5}", RISCV::X30) 8013 .Case("{t6}", RISCV::X31) 8014 .Default(RISCV::NoRegister); 8015 if (XRegFromAlias != RISCV::NoRegister) 8016 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8017 8018 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8019 // TableGen record rather than the AsmName to choose registers for InlineAsm 8020 // constraints, plus we want to match those names to the widest floating point 8021 // register type available, manually select floating point registers here. 8022 // 8023 // The second case is the ABI name of the register, so that frontends can also 8024 // use the ABI names in register constraint lists. 8025 if (Subtarget.hasStdExtF()) { 8026 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8027 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8028 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8029 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8030 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8031 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8032 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8033 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8034 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8035 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8036 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8037 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8038 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8039 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8040 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8041 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8042 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8043 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8044 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8045 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8046 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8047 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8048 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8049 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8050 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8051 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8052 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8053 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8054 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8055 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8056 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8057 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8058 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8059 .Default(RISCV::NoRegister); 8060 if (FReg != RISCV::NoRegister) { 8061 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8062 if (Subtarget.hasStdExtD()) { 8063 unsigned RegNo = FReg - RISCV::F0_F; 8064 unsigned DReg = RISCV::F0_D + RegNo; 8065 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8066 } 8067 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8068 } 8069 } 8070 8071 if (Subtarget.hasStdExtV()) { 8072 Register VReg = StringSwitch<Register>(Constraint.lower()) 8073 .Case("{v0}", RISCV::V0) 8074 .Case("{v1}", RISCV::V1) 8075 .Case("{v2}", RISCV::V2) 8076 .Case("{v3}", RISCV::V3) 8077 .Case("{v4}", RISCV::V4) 8078 .Case("{v5}", RISCV::V5) 8079 .Case("{v6}", RISCV::V6) 8080 .Case("{v7}", RISCV::V7) 8081 .Case("{v8}", RISCV::V8) 8082 .Case("{v9}", RISCV::V9) 8083 .Case("{v10}", RISCV::V10) 8084 .Case("{v11}", RISCV::V11) 8085 .Case("{v12}", RISCV::V12) 8086 .Case("{v13}", RISCV::V13) 8087 .Case("{v14}", RISCV::V14) 8088 .Case("{v15}", RISCV::V15) 8089 .Case("{v16}", RISCV::V16) 8090 .Case("{v17}", RISCV::V17) 8091 .Case("{v18}", RISCV::V18) 8092 .Case("{v19}", RISCV::V19) 8093 .Case("{v20}", RISCV::V20) 8094 .Case("{v21}", RISCV::V21) 8095 .Case("{v22}", RISCV::V22) 8096 .Case("{v23}", RISCV::V23) 8097 .Case("{v24}", RISCV::V24) 8098 .Case("{v25}", RISCV::V25) 8099 .Case("{v26}", RISCV::V26) 8100 .Case("{v27}", RISCV::V27) 8101 .Case("{v28}", RISCV::V28) 8102 .Case("{v29}", RISCV::V29) 8103 .Case("{v30}", RISCV::V30) 8104 .Case("{v31}", RISCV::V31) 8105 .Default(RISCV::NoRegister); 8106 if (VReg != RISCV::NoRegister) { 8107 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8108 return std::make_pair(VReg, &RISCV::VMRegClass); 8109 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8110 return std::make_pair(VReg, &RISCV::VRRegClass); 8111 for (const auto *RC : 8112 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8113 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8114 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8115 return std::make_pair(VReg, RC); 8116 } 8117 } 8118 } 8119 } 8120 8121 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8122 } 8123 8124 unsigned 8125 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8126 // Currently only support length 1 constraints. 8127 if (ConstraintCode.size() == 1) { 8128 switch (ConstraintCode[0]) { 8129 case 'A': 8130 return InlineAsm::Constraint_A; 8131 default: 8132 break; 8133 } 8134 } 8135 8136 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8137 } 8138 8139 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8140 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8141 SelectionDAG &DAG) const { 8142 // Currently only support length 1 constraints. 8143 if (Constraint.length() == 1) { 8144 switch (Constraint[0]) { 8145 case 'I': 8146 // Validate & create a 12-bit signed immediate operand. 8147 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8148 uint64_t CVal = C->getSExtValue(); 8149 if (isInt<12>(CVal)) 8150 Ops.push_back( 8151 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8152 } 8153 return; 8154 case 'J': 8155 // Validate & create an integer zero operand. 8156 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8157 if (C->getZExtValue() == 0) 8158 Ops.push_back( 8159 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8160 return; 8161 case 'K': 8162 // Validate & create a 5-bit unsigned immediate operand. 8163 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8164 uint64_t CVal = C->getZExtValue(); 8165 if (isUInt<5>(CVal)) 8166 Ops.push_back( 8167 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8168 } 8169 return; 8170 default: 8171 break; 8172 } 8173 } 8174 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8175 } 8176 8177 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8178 Instruction *Inst, 8179 AtomicOrdering Ord) const { 8180 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8181 return Builder.CreateFence(Ord); 8182 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8183 return Builder.CreateFence(AtomicOrdering::Release); 8184 return nullptr; 8185 } 8186 8187 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8188 Instruction *Inst, 8189 AtomicOrdering Ord) const { 8190 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8191 return Builder.CreateFence(AtomicOrdering::Acquire); 8192 return nullptr; 8193 } 8194 8195 TargetLowering::AtomicExpansionKind 8196 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8197 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8198 // point operations can't be used in an lr/sc sequence without breaking the 8199 // forward-progress guarantee. 8200 if (AI->isFloatingPointOperation()) 8201 return AtomicExpansionKind::CmpXChg; 8202 8203 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8204 if (Size == 8 || Size == 16) 8205 return AtomicExpansionKind::MaskedIntrinsic; 8206 return AtomicExpansionKind::None; 8207 } 8208 8209 static Intrinsic::ID 8210 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8211 if (XLen == 32) { 8212 switch (BinOp) { 8213 default: 8214 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8215 case AtomicRMWInst::Xchg: 8216 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8217 case AtomicRMWInst::Add: 8218 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8219 case AtomicRMWInst::Sub: 8220 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8221 case AtomicRMWInst::Nand: 8222 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8223 case AtomicRMWInst::Max: 8224 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8225 case AtomicRMWInst::Min: 8226 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8227 case AtomicRMWInst::UMax: 8228 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8229 case AtomicRMWInst::UMin: 8230 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8231 } 8232 } 8233 8234 if (XLen == 64) { 8235 switch (BinOp) { 8236 default: 8237 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8238 case AtomicRMWInst::Xchg: 8239 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8240 case AtomicRMWInst::Add: 8241 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8242 case AtomicRMWInst::Sub: 8243 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8244 case AtomicRMWInst::Nand: 8245 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8246 case AtomicRMWInst::Max: 8247 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8248 case AtomicRMWInst::Min: 8249 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8250 case AtomicRMWInst::UMax: 8251 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8252 case AtomicRMWInst::UMin: 8253 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8254 } 8255 } 8256 8257 llvm_unreachable("Unexpected XLen\n"); 8258 } 8259 8260 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8261 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8262 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8263 unsigned XLen = Subtarget.getXLen(); 8264 Value *Ordering = 8265 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8266 Type *Tys[] = {AlignedAddr->getType()}; 8267 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8268 AI->getModule(), 8269 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8270 8271 if (XLen == 64) { 8272 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8273 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8274 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8275 } 8276 8277 Value *Result; 8278 8279 // Must pass the shift amount needed to sign extend the loaded value prior 8280 // to performing a signed comparison for min/max. ShiftAmt is the number of 8281 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8282 // is the number of bits to left+right shift the value in order to 8283 // sign-extend. 8284 if (AI->getOperation() == AtomicRMWInst::Min || 8285 AI->getOperation() == AtomicRMWInst::Max) { 8286 const DataLayout &DL = AI->getModule()->getDataLayout(); 8287 unsigned ValWidth = 8288 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8289 Value *SextShamt = 8290 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8291 Result = Builder.CreateCall(LrwOpScwLoop, 8292 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8293 } else { 8294 Result = 8295 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8296 } 8297 8298 if (XLen == 64) 8299 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8300 return Result; 8301 } 8302 8303 TargetLowering::AtomicExpansionKind 8304 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8305 AtomicCmpXchgInst *CI) const { 8306 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8307 if (Size == 8 || Size == 16) 8308 return AtomicExpansionKind::MaskedIntrinsic; 8309 return AtomicExpansionKind::None; 8310 } 8311 8312 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8313 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8314 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8315 unsigned XLen = Subtarget.getXLen(); 8316 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8317 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8318 if (XLen == 64) { 8319 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8320 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8321 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8322 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8323 } 8324 Type *Tys[] = {AlignedAddr->getType()}; 8325 Function *MaskedCmpXchg = 8326 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8327 Value *Result = Builder.CreateCall( 8328 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8329 if (XLen == 64) 8330 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8331 return Result; 8332 } 8333 8334 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8335 return false; 8336 } 8337 8338 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8339 EVT VT) const { 8340 VT = VT.getScalarType(); 8341 8342 if (!VT.isSimple()) 8343 return false; 8344 8345 switch (VT.getSimpleVT().SimpleTy) { 8346 case MVT::f16: 8347 return Subtarget.hasStdExtZfh(); 8348 case MVT::f32: 8349 return Subtarget.hasStdExtF(); 8350 case MVT::f64: 8351 return Subtarget.hasStdExtD(); 8352 default: 8353 break; 8354 } 8355 8356 return false; 8357 } 8358 8359 Register RISCVTargetLowering::getExceptionPointerRegister( 8360 const Constant *PersonalityFn) const { 8361 return RISCV::X10; 8362 } 8363 8364 Register RISCVTargetLowering::getExceptionSelectorRegister( 8365 const Constant *PersonalityFn) const { 8366 return RISCV::X11; 8367 } 8368 8369 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8370 // Return false to suppress the unnecessary extensions if the LibCall 8371 // arguments or return value is f32 type for LP64 ABI. 8372 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8373 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8374 return false; 8375 8376 return true; 8377 } 8378 8379 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8380 if (Subtarget.is64Bit() && Type == MVT::i32) 8381 return true; 8382 8383 return IsSigned; 8384 } 8385 8386 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8387 SDValue C) const { 8388 // Check integral scalar types. 8389 if (VT.isScalarInteger()) { 8390 // Omit the optimization if the sub target has the M extension and the data 8391 // size exceeds XLen. 8392 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8393 return false; 8394 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8395 // Break the MUL to a SLLI and an ADD/SUB. 8396 const APInt &Imm = ConstNode->getAPIntValue(); 8397 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8398 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8399 return true; 8400 // Omit the following optimization if the sub target has the M extension 8401 // and the data size >= XLen. 8402 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8403 return false; 8404 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8405 // a pair of LUI/ADDI. 8406 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8407 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8408 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8409 (1 - ImmS).isPowerOf2()) 8410 return true; 8411 } 8412 } 8413 } 8414 8415 return false; 8416 } 8417 8418 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8419 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8420 bool *Fast) const { 8421 if (!VT.isVector()) 8422 return false; 8423 8424 EVT ElemVT = VT.getVectorElementType(); 8425 if (Alignment >= ElemVT.getStoreSize()) { 8426 if (Fast) 8427 *Fast = true; 8428 return true; 8429 } 8430 8431 return false; 8432 } 8433 8434 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8435 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8436 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8437 bool IsABIRegCopy = CC.hasValue(); 8438 EVT ValueVT = Val.getValueType(); 8439 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8440 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8441 // and cast to f32. 8442 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8443 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8444 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8445 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8446 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8447 Parts[0] = Val; 8448 return true; 8449 } 8450 8451 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8452 LLVMContext &Context = *DAG.getContext(); 8453 EVT ValueEltVT = ValueVT.getVectorElementType(); 8454 EVT PartEltVT = PartVT.getVectorElementType(); 8455 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8456 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8457 if (PartVTBitSize % ValueVTBitSize == 0) { 8458 // If the element types are different, bitcast to the same element type of 8459 // PartVT first. 8460 if (ValueEltVT != PartEltVT) { 8461 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8462 assert(Count != 0 && "The number of element should not be zero."); 8463 EVT SameEltTypeVT = 8464 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8465 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8466 } 8467 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8468 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8469 Parts[0] = Val; 8470 return true; 8471 } 8472 } 8473 return false; 8474 } 8475 8476 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8477 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8478 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8479 bool IsABIRegCopy = CC.hasValue(); 8480 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8481 SDValue Val = Parts[0]; 8482 8483 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8484 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8485 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8486 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8487 return Val; 8488 } 8489 8490 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8491 LLVMContext &Context = *DAG.getContext(); 8492 SDValue Val = Parts[0]; 8493 EVT ValueEltVT = ValueVT.getVectorElementType(); 8494 EVT PartEltVT = PartVT.getVectorElementType(); 8495 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8496 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8497 if (PartVTBitSize % ValueVTBitSize == 0) { 8498 EVT SameEltTypeVT = ValueVT; 8499 // If the element types are different, convert it to the same element type 8500 // of PartVT. 8501 if (ValueEltVT != PartEltVT) { 8502 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8503 assert(Count != 0 && "The number of element should not be zero."); 8504 SameEltTypeVT = 8505 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8506 } 8507 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8508 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8509 if (ValueEltVT != PartEltVT) 8510 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8511 return Val; 8512 } 8513 } 8514 return SDValue(); 8515 } 8516 8517 #define GET_REGISTER_MATCHER 8518 #include "RISCVGenAsmMatcher.inc" 8519 8520 Register 8521 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8522 const MachineFunction &MF) const { 8523 Register Reg = MatchRegisterAltName(RegName); 8524 if (Reg == RISCV::NoRegister) 8525 Reg = MatchRegisterName(RegName); 8526 if (Reg == RISCV::NoRegister) 8527 report_fatal_error( 8528 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8529 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8530 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8531 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8532 StringRef(RegName) + "\".")); 8533 return Reg; 8534 } 8535 8536 namespace llvm { 8537 namespace RISCVVIntrinsicsTable { 8538 8539 #define GET_RISCVVIntrinsicsTable_IMPL 8540 #include "RISCVGenSearchableTables.inc" 8541 8542 } // namespace RISCVVIntrinsicsTable 8543 8544 } // namespace llvm 8545