1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "riscv-lower" 40 41 STATISTIC(NumTailCalls, "Number of tail calls"); 42 43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 44 const RISCVSubtarget &STI) 45 : TargetLowering(TM), Subtarget(STI) { 46 47 if (Subtarget.isRV32E()) 48 report_fatal_error("Codegen not yet implemented for RV32E"); 49 50 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 51 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 52 53 switch (ABI) { 54 default: 55 report_fatal_error("Don't know how to lower this ABI"); 56 case RISCVABI::ABI_ILP32: 57 case RISCVABI::ABI_ILP32F: 58 case RISCVABI::ABI_ILP32D: 59 case RISCVABI::ABI_LP64: 60 case RISCVABI::ABI_LP64F: 61 case RISCVABI::ABI_LP64D: 62 break; 63 } 64 65 MVT XLenVT = Subtarget.getXLenVT(); 66 67 // Set up the register classes. 68 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 69 70 if (Subtarget.hasStdExtF()) 71 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 72 if (Subtarget.hasStdExtD()) 73 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 74 75 // Compute derived properties from the register classes. 76 computeRegisterProperties(STI.getRegisterInfo()); 77 78 setStackPointerRegisterToSaveRestore(RISCV::X2); 79 80 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 81 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 82 83 // TODO: add all necessary setOperationAction calls. 84 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 85 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BR_CC, XLenVT, Expand); 88 setOperationAction(ISD::SELECT, XLenVT, Custom); 89 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 90 91 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 92 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 93 94 setOperationAction(ISD::VASTART, MVT::Other, Custom); 95 setOperationAction(ISD::VAARG, MVT::Other, Expand); 96 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 97 setOperationAction(ISD::VAEND, MVT::Other, Expand); 98 99 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 100 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 101 102 if (Subtarget.is64Bit()) { 103 setOperationAction(ISD::ADD, MVT::i32, Custom); 104 setOperationAction(ISD::SUB, MVT::i32, Custom); 105 setOperationAction(ISD::SHL, MVT::i32, Custom); 106 setOperationAction(ISD::SRA, MVT::i32, Custom); 107 setOperationAction(ISD::SRL, MVT::i32, Custom); 108 } 109 110 if (!Subtarget.hasStdExtM()) { 111 setOperationAction(ISD::MUL, XLenVT, Expand); 112 setOperationAction(ISD::MULHS, XLenVT, Expand); 113 setOperationAction(ISD::MULHU, XLenVT, Expand); 114 setOperationAction(ISD::SDIV, XLenVT, Expand); 115 setOperationAction(ISD::UDIV, XLenVT, Expand); 116 setOperationAction(ISD::SREM, XLenVT, Expand); 117 setOperationAction(ISD::UREM, XLenVT, Expand); 118 } 119 120 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 121 setOperationAction(ISD::MUL, MVT::i32, Custom); 122 setOperationAction(ISD::SDIV, MVT::i32, Custom); 123 setOperationAction(ISD::UDIV, MVT::i32, Custom); 124 setOperationAction(ISD::UREM, MVT::i32, Custom); 125 } 126 127 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 128 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 129 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 130 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 131 132 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 133 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 134 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 135 136 setOperationAction(ISD::ROTL, XLenVT, Expand); 137 setOperationAction(ISD::ROTR, XLenVT, Expand); 138 setOperationAction(ISD::BSWAP, XLenVT, Expand); 139 setOperationAction(ISD::CTTZ, XLenVT, Expand); 140 setOperationAction(ISD::CTLZ, XLenVT, Expand); 141 setOperationAction(ISD::CTPOP, XLenVT, Expand); 142 143 ISD::CondCode FPCCToExtend[] = { 144 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 145 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 146 ISD::SETGE, ISD::SETNE}; 147 148 ISD::NodeType FPOpToExtend[] = { 149 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 150 151 if (Subtarget.hasStdExtF()) { 152 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 153 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 154 for (auto CC : FPCCToExtend) 155 setCondCodeAction(CC, MVT::f32, Expand); 156 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 157 setOperationAction(ISD::SELECT, MVT::f32, Custom); 158 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 159 for (auto Op : FPOpToExtend) 160 setOperationAction(Op, MVT::f32, Expand); 161 } 162 163 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 164 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 165 166 if (Subtarget.hasStdExtD()) { 167 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 168 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 169 for (auto CC : FPCCToExtend) 170 setCondCodeAction(CC, MVT::f64, Expand); 171 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 172 setOperationAction(ISD::SELECT, MVT::f64, Custom); 173 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 174 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 175 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 176 for (auto Op : FPOpToExtend) 177 setOperationAction(Op, MVT::f64, Expand); 178 } 179 180 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 181 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 182 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 183 184 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 185 186 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 187 // Unfortunately this can't be determined just from the ISA naming string. 188 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 189 Subtarget.is64Bit() ? Legal : Custom); 190 191 if (Subtarget.hasStdExtA()) { 192 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 193 setMinCmpXchgSizeInBits(32); 194 } else { 195 setMaxAtomicSizeInBitsSupported(0); 196 } 197 198 setBooleanContents(ZeroOrOneBooleanContent); 199 200 // Function alignments. 201 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 202 setMinFunctionAlignment(FunctionAlignment); 203 setPrefFunctionAlignment(FunctionAlignment); 204 205 // Effectively disable jump table generation. 206 setMinimumJumpTableEntries(INT_MAX); 207 } 208 209 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 210 EVT VT) const { 211 if (!VT.isVector()) 212 return getPointerTy(DL); 213 return VT.changeVectorElementTypeToInteger(); 214 } 215 216 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 217 const CallInst &I, 218 MachineFunction &MF, 219 unsigned Intrinsic) const { 220 switch (Intrinsic) { 221 default: 222 return false; 223 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 224 case Intrinsic::riscv_masked_atomicrmw_add_i32: 225 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 226 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 227 case Intrinsic::riscv_masked_atomicrmw_max_i32: 228 case Intrinsic::riscv_masked_atomicrmw_min_i32: 229 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 230 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 231 case Intrinsic::riscv_masked_cmpxchg_i32: 232 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 233 Info.opc = ISD::INTRINSIC_W_CHAIN; 234 Info.memVT = MVT::getVT(PtrTy->getElementType()); 235 Info.ptrVal = I.getArgOperand(0); 236 Info.offset = 0; 237 Info.align = Align(4); 238 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 239 MachineMemOperand::MOVolatile; 240 return true; 241 } 242 } 243 244 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 245 const AddrMode &AM, Type *Ty, 246 unsigned AS, 247 Instruction *I) const { 248 // No global is ever allowed as a base. 249 if (AM.BaseGV) 250 return false; 251 252 // Require a 12-bit signed offset. 253 if (!isInt<12>(AM.BaseOffs)) 254 return false; 255 256 switch (AM.Scale) { 257 case 0: // "r+i" or just "i", depending on HasBaseReg. 258 break; 259 case 1: 260 if (!AM.HasBaseReg) // allow "r+i". 261 break; 262 return false; // disallow "r+r" or "r+r+i". 263 default: 264 return false; 265 } 266 267 return true; 268 } 269 270 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 271 return isInt<12>(Imm); 272 } 273 274 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 275 return isInt<12>(Imm); 276 } 277 278 // On RV32, 64-bit integers are split into their high and low parts and held 279 // in two different registers, so the trunc is free since the low register can 280 // just be used. 281 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 282 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 283 return false; 284 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 285 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 286 return (SrcBits == 64 && DestBits == 32); 287 } 288 289 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 290 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 291 !SrcVT.isInteger() || !DstVT.isInteger()) 292 return false; 293 unsigned SrcBits = SrcVT.getSizeInBits(); 294 unsigned DestBits = DstVT.getSizeInBits(); 295 return (SrcBits == 64 && DestBits == 32); 296 } 297 298 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 299 // Zexts are free if they can be combined with a load. 300 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 301 EVT MemVT = LD->getMemoryVT(); 302 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 303 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 304 (LD->getExtensionType() == ISD::NON_EXTLOAD || 305 LD->getExtensionType() == ISD::ZEXTLOAD)) 306 return true; 307 } 308 309 return TargetLowering::isZExtFree(Val, VT2); 310 } 311 312 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 313 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 314 } 315 316 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 317 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 318 (VT == MVT::f64 && Subtarget.hasStdExtD()); 319 } 320 321 // Changes the condition code and swaps operands if necessary, so the SetCC 322 // operation matches one of the comparisons supported directly in the RISC-V 323 // ISA. 324 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 325 switch (CC) { 326 default: 327 break; 328 case ISD::SETGT: 329 case ISD::SETLE: 330 case ISD::SETUGT: 331 case ISD::SETULE: 332 CC = ISD::getSetCCSwappedOperands(CC); 333 std::swap(LHS, RHS); 334 break; 335 } 336 } 337 338 // Return the RISC-V branch opcode that matches the given DAG integer 339 // condition code. The CondCode must be one of those supported by the RISC-V 340 // ISA (see normaliseSetCC). 341 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 342 switch (CC) { 343 default: 344 llvm_unreachable("Unsupported CondCode"); 345 case ISD::SETEQ: 346 return RISCV::BEQ; 347 case ISD::SETNE: 348 return RISCV::BNE; 349 case ISD::SETLT: 350 return RISCV::BLT; 351 case ISD::SETGE: 352 return RISCV::BGE; 353 case ISD::SETULT: 354 return RISCV::BLTU; 355 case ISD::SETUGE: 356 return RISCV::BGEU; 357 } 358 } 359 360 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 361 SelectionDAG &DAG) const { 362 switch (Op.getOpcode()) { 363 default: 364 report_fatal_error("unimplemented operand"); 365 case ISD::GlobalAddress: 366 return lowerGlobalAddress(Op, DAG); 367 case ISD::BlockAddress: 368 return lowerBlockAddress(Op, DAG); 369 case ISD::ConstantPool: 370 return lowerConstantPool(Op, DAG); 371 case ISD::GlobalTLSAddress: 372 return lowerGlobalTLSAddress(Op, DAG); 373 case ISD::SELECT: 374 return lowerSELECT(Op, DAG); 375 case ISD::VASTART: 376 return lowerVASTART(Op, DAG); 377 case ISD::FRAMEADDR: 378 return lowerFRAMEADDR(Op, DAG); 379 case ISD::RETURNADDR: 380 return lowerRETURNADDR(Op, DAG); 381 case ISD::SHL_PARTS: 382 return lowerShiftLeftParts(Op, DAG); 383 case ISD::SRA_PARTS: 384 return lowerShiftRightParts(Op, DAG, true); 385 case ISD::SRL_PARTS: 386 return lowerShiftRightParts(Op, DAG, false); 387 case ISD::BITCAST: { 388 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 389 "Unexpected custom legalisation"); 390 SDLoc DL(Op); 391 SDValue Op0 = Op.getOperand(0); 392 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 393 return SDValue(); 394 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 395 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 396 return FPConv; 397 } 398 } 399 } 400 401 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 402 SelectionDAG &DAG, unsigned Flags) { 403 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 404 } 405 406 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 407 SelectionDAG &DAG, unsigned Flags) { 408 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 409 Flags); 410 } 411 412 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 413 SelectionDAG &DAG, unsigned Flags) { 414 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 415 N->getOffset(), Flags); 416 } 417 418 template <class NodeTy> 419 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 420 bool IsLocal) const { 421 SDLoc DL(N); 422 EVT Ty = getPointerTy(DAG.getDataLayout()); 423 424 if (isPositionIndependent()) { 425 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 426 if (IsLocal) 427 // Use PC-relative addressing to access the symbol. This generates the 428 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 429 // %pcrel_lo(auipc)). 430 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 431 432 // Use PC-relative addressing to access the GOT for this symbol, then load 433 // the address from the GOT. This generates the pattern (PseudoLA sym), 434 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 435 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 436 } 437 438 switch (getTargetMachine().getCodeModel()) { 439 default: 440 report_fatal_error("Unsupported code model for lowering"); 441 case CodeModel::Small: { 442 // Generate a sequence for accessing addresses within the first 2 GiB of 443 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 444 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 445 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 446 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 447 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 448 } 449 case CodeModel::Medium: { 450 // Generate a sequence for accessing addresses within any 2GiB range within 451 // the address space. This generates the pattern (PseudoLLA sym), which 452 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 453 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 454 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 455 } 456 } 457 } 458 459 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 460 SelectionDAG &DAG) const { 461 SDLoc DL(Op); 462 EVT Ty = Op.getValueType(); 463 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 464 int64_t Offset = N->getOffset(); 465 MVT XLenVT = Subtarget.getXLenVT(); 466 467 const GlobalValue *GV = N->getGlobal(); 468 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 469 SDValue Addr = getAddr(N, DAG, IsLocal); 470 471 // In order to maximise the opportunity for common subexpression elimination, 472 // emit a separate ADD node for the global address offset instead of folding 473 // it in the global address node. Later peephole optimisations may choose to 474 // fold it back in when profitable. 475 if (Offset != 0) 476 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 477 DAG.getConstant(Offset, DL, XLenVT)); 478 return Addr; 479 } 480 481 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 482 SelectionDAG &DAG) const { 483 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 484 485 return getAddr(N, DAG); 486 } 487 488 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 489 SelectionDAG &DAG) const { 490 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 491 492 return getAddr(N, DAG); 493 } 494 495 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 496 SelectionDAG &DAG, 497 bool UseGOT) const { 498 SDLoc DL(N); 499 EVT Ty = getPointerTy(DAG.getDataLayout()); 500 const GlobalValue *GV = N->getGlobal(); 501 MVT XLenVT = Subtarget.getXLenVT(); 502 503 if (UseGOT) { 504 // Use PC-relative addressing to access the GOT for this TLS symbol, then 505 // load the address from the GOT and add the thread pointer. This generates 506 // the pattern (PseudoLA_TLS_IE sym), which expands to 507 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 508 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 509 SDValue Load = 510 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 511 512 // Add the thread pointer. 513 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 514 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 515 } 516 517 // Generate a sequence for accessing the address relative to the thread 518 // pointer, with the appropriate adjustment for the thread pointer offset. 519 // This generates the pattern 520 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 521 SDValue AddrHi = 522 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 523 SDValue AddrAdd = 524 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 525 SDValue AddrLo = 526 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 527 528 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 529 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 530 SDValue MNAdd = SDValue( 531 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 532 0); 533 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 534 } 535 536 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 537 SelectionDAG &DAG) const { 538 SDLoc DL(N); 539 EVT Ty = getPointerTy(DAG.getDataLayout()); 540 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 541 const GlobalValue *GV = N->getGlobal(); 542 543 // Use a PC-relative addressing mode to access the global dynamic GOT address. 544 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 545 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 546 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 547 SDValue Load = 548 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 549 550 // Prepare argument list to generate call. 551 ArgListTy Args; 552 ArgListEntry Entry; 553 Entry.Node = Load; 554 Entry.Ty = CallTy; 555 Args.push_back(Entry); 556 557 // Setup call to __tls_get_addr. 558 TargetLowering::CallLoweringInfo CLI(DAG); 559 CLI.setDebugLoc(DL) 560 .setChain(DAG.getEntryNode()) 561 .setLibCallee(CallingConv::C, CallTy, 562 DAG.getExternalSymbol("__tls_get_addr", Ty), 563 std::move(Args)); 564 565 return LowerCallTo(CLI).first; 566 } 567 568 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 569 SelectionDAG &DAG) const { 570 SDLoc DL(Op); 571 EVT Ty = Op.getValueType(); 572 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 573 int64_t Offset = N->getOffset(); 574 MVT XLenVT = Subtarget.getXLenVT(); 575 576 // Non-PIC TLS lowering should always use the LocalExec model. 577 TLSModel::Model Model = isPositionIndependent() 578 ? getTargetMachine().getTLSModel(N->getGlobal()) 579 : TLSModel::LocalExec; 580 581 SDValue Addr; 582 switch (Model) { 583 case TLSModel::LocalExec: 584 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 585 break; 586 case TLSModel::InitialExec: 587 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 588 break; 589 case TLSModel::LocalDynamic: 590 case TLSModel::GeneralDynamic: 591 Addr = getDynamicTLSAddr(N, DAG); 592 break; 593 } 594 595 // In order to maximise the opportunity for common subexpression elimination, 596 // emit a separate ADD node for the global address offset instead of folding 597 // it in the global address node. Later peephole optimisations may choose to 598 // fold it back in when profitable. 599 if (Offset != 0) 600 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 601 DAG.getConstant(Offset, DL, XLenVT)); 602 return Addr; 603 } 604 605 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 606 SDValue CondV = Op.getOperand(0); 607 SDValue TrueV = Op.getOperand(1); 608 SDValue FalseV = Op.getOperand(2); 609 SDLoc DL(Op); 610 MVT XLenVT = Subtarget.getXLenVT(); 611 612 // If the result type is XLenVT and CondV is the output of a SETCC node 613 // which also operated on XLenVT inputs, then merge the SETCC node into the 614 // lowered RISCVISD::SELECT_CC to take advantage of the integer 615 // compare+branch instructions. i.e.: 616 // (select (setcc lhs, rhs, cc), truev, falsev) 617 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 618 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 619 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 620 SDValue LHS = CondV.getOperand(0); 621 SDValue RHS = CondV.getOperand(1); 622 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 623 ISD::CondCode CCVal = CC->get(); 624 625 normaliseSetCC(LHS, RHS, CCVal); 626 627 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 628 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 629 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 630 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 631 } 632 633 // Otherwise: 634 // (select condv, truev, falsev) 635 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 636 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 637 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 638 639 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 640 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 641 642 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 643 } 644 645 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 646 MachineFunction &MF = DAG.getMachineFunction(); 647 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 648 649 SDLoc DL(Op); 650 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 651 getPointerTy(MF.getDataLayout())); 652 653 // vastart just stores the address of the VarArgsFrameIndex slot into the 654 // memory location argument. 655 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 656 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 657 MachinePointerInfo(SV)); 658 } 659 660 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 661 SelectionDAG &DAG) const { 662 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 663 MachineFunction &MF = DAG.getMachineFunction(); 664 MachineFrameInfo &MFI = MF.getFrameInfo(); 665 MFI.setFrameAddressIsTaken(true); 666 Register FrameReg = RI.getFrameRegister(MF); 667 int XLenInBytes = Subtarget.getXLen() / 8; 668 669 EVT VT = Op.getValueType(); 670 SDLoc DL(Op); 671 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 672 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 673 while (Depth--) { 674 int Offset = -(XLenInBytes * 2); 675 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 676 DAG.getIntPtrConstant(Offset, DL)); 677 FrameAddr = 678 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 679 } 680 return FrameAddr; 681 } 682 683 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 684 SelectionDAG &DAG) const { 685 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 686 MachineFunction &MF = DAG.getMachineFunction(); 687 MachineFrameInfo &MFI = MF.getFrameInfo(); 688 MFI.setReturnAddressIsTaken(true); 689 MVT XLenVT = Subtarget.getXLenVT(); 690 int XLenInBytes = Subtarget.getXLen() / 8; 691 692 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 693 return SDValue(); 694 695 EVT VT = Op.getValueType(); 696 SDLoc DL(Op); 697 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 698 if (Depth) { 699 int Off = -XLenInBytes; 700 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 701 SDValue Offset = DAG.getConstant(Off, DL, VT); 702 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 703 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 704 MachinePointerInfo()); 705 } 706 707 // Return the value of the return address register, marking it an implicit 708 // live-in. 709 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 710 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 711 } 712 713 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 714 SelectionDAG &DAG) const { 715 SDLoc DL(Op); 716 SDValue Lo = Op.getOperand(0); 717 SDValue Hi = Op.getOperand(1); 718 SDValue Shamt = Op.getOperand(2); 719 EVT VT = Lo.getValueType(); 720 721 // if Shamt-XLEN < 0: // Shamt < XLEN 722 // Lo = Lo << Shamt 723 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 724 // else: 725 // Lo = 0 726 // Hi = Lo << (Shamt-XLEN) 727 728 SDValue Zero = DAG.getConstant(0, DL, VT); 729 SDValue One = DAG.getConstant(1, DL, VT); 730 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 731 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 732 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 733 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 734 735 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 736 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 737 SDValue ShiftRightLo = 738 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 739 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 740 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 741 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 742 743 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 744 745 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 746 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 747 748 SDValue Parts[2] = {Lo, Hi}; 749 return DAG.getMergeValues(Parts, DL); 750 } 751 752 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 753 bool IsSRA) const { 754 SDLoc DL(Op); 755 SDValue Lo = Op.getOperand(0); 756 SDValue Hi = Op.getOperand(1); 757 SDValue Shamt = Op.getOperand(2); 758 EVT VT = Lo.getValueType(); 759 760 // SRA expansion: 761 // if Shamt-XLEN < 0: // Shamt < XLEN 762 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 763 // Hi = Hi >>s Shamt 764 // else: 765 // Lo = Hi >>s (Shamt-XLEN); 766 // Hi = Hi >>s (XLEN-1) 767 // 768 // SRL expansion: 769 // if Shamt-XLEN < 0: // Shamt < XLEN 770 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 771 // Hi = Hi >>u Shamt 772 // else: 773 // Lo = Hi >>u (Shamt-XLEN); 774 // Hi = 0; 775 776 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 777 778 SDValue Zero = DAG.getConstant(0, DL, VT); 779 SDValue One = DAG.getConstant(1, DL, VT); 780 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 781 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 782 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 783 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 784 785 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 786 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 787 SDValue ShiftLeftHi = 788 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 789 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 790 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 791 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 792 SDValue HiFalse = 793 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 794 795 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 796 797 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 798 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 799 800 SDValue Parts[2] = {Lo, Hi}; 801 return DAG.getMergeValues(Parts, DL); 802 } 803 804 // Returns the opcode of the target-specific SDNode that implements the 32-bit 805 // form of the given Opcode. 806 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 807 switch (Opcode) { 808 default: 809 llvm_unreachable("Unexpected opcode"); 810 case ISD::SHL: 811 return RISCVISD::SLLW; 812 case ISD::SRA: 813 return RISCVISD::SRAW; 814 case ISD::SRL: 815 return RISCVISD::SRLW; 816 case ISD::SDIV: 817 return RISCVISD::DIVW; 818 case ISD::UDIV: 819 return RISCVISD::DIVUW; 820 case ISD::UREM: 821 return RISCVISD::REMUW; 822 } 823 } 824 825 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 826 // Because i32 isn't a legal type for RV64, these operations would otherwise 827 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 828 // later one because the fact the operation was originally of type i32 is 829 // lost. 830 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 831 SDLoc DL(N); 832 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 833 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 834 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 835 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 836 // ReplaceNodeResults requires we maintain the same type for the return value. 837 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 838 } 839 840 // Converts the given 32-bit operation to a i64 operation with signed extension 841 // semantic to reduce the signed extension instructions. 842 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 843 SDLoc DL(N); 844 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 845 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 846 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 847 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 848 DAG.getValueType(MVT::i32)); 849 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 850 } 851 852 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 853 SmallVectorImpl<SDValue> &Results, 854 SelectionDAG &DAG) const { 855 SDLoc DL(N); 856 switch (N->getOpcode()) { 857 default: 858 llvm_unreachable("Don't know how to custom type legalize this operation!"); 859 case ISD::READCYCLECOUNTER: { 860 assert(!Subtarget.is64Bit() && 861 "READCYCLECOUNTER only has custom type legalization on riscv32"); 862 863 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 864 SDValue RCW = 865 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 866 867 Results.push_back(RCW); 868 Results.push_back(RCW.getValue(1)); 869 Results.push_back(RCW.getValue(2)); 870 break; 871 } 872 case ISD::ADD: 873 case ISD::SUB: 874 case ISD::MUL: 875 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 876 "Unexpected custom legalisation"); 877 if (N->getOperand(1).getOpcode() == ISD::Constant) 878 return; 879 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 880 break; 881 case ISD::SHL: 882 case ISD::SRA: 883 case ISD::SRL: 884 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 885 "Unexpected custom legalisation"); 886 if (N->getOperand(1).getOpcode() == ISD::Constant) 887 return; 888 Results.push_back(customLegalizeToWOp(N, DAG)); 889 break; 890 case ISD::SDIV: 891 case ISD::UDIV: 892 case ISD::UREM: 893 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 894 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 895 if (N->getOperand(0).getOpcode() == ISD::Constant || 896 N->getOperand(1).getOpcode() == ISD::Constant) 897 return; 898 Results.push_back(customLegalizeToWOp(N, DAG)); 899 break; 900 case ISD::BITCAST: { 901 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 902 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 903 SDLoc DL(N); 904 SDValue Op0 = N->getOperand(0); 905 if (Op0.getValueType() != MVT::f32) 906 return; 907 SDValue FPConv = 908 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 909 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 910 break; 911 } 912 } 913 } 914 915 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 916 DAGCombinerInfo &DCI) const { 917 SelectionDAG &DAG = DCI.DAG; 918 919 switch (N->getOpcode()) { 920 default: 921 break; 922 case RISCVISD::SplitF64: { 923 SDValue Op0 = N->getOperand(0); 924 // If the input to SplitF64 is just BuildPairF64 then the operation is 925 // redundant. Instead, use BuildPairF64's operands directly. 926 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 927 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 928 929 SDLoc DL(N); 930 931 // It's cheaper to materialise two 32-bit integers than to load a double 932 // from the constant pool and transfer it to integer registers through the 933 // stack. 934 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 935 APInt V = C->getValueAPF().bitcastToAPInt(); 936 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 937 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 938 return DCI.CombineTo(N, Lo, Hi); 939 } 940 941 // This is a target-specific version of a DAGCombine performed in 942 // DAGCombiner::visitBITCAST. It performs the equivalent of: 943 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 944 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 945 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 946 !Op0.getNode()->hasOneUse()) 947 break; 948 SDValue NewSplitF64 = 949 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 950 Op0.getOperand(0)); 951 SDValue Lo = NewSplitF64.getValue(0); 952 SDValue Hi = NewSplitF64.getValue(1); 953 APInt SignBit = APInt::getSignMask(32); 954 if (Op0.getOpcode() == ISD::FNEG) { 955 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 956 DAG.getConstant(SignBit, DL, MVT::i32)); 957 return DCI.CombineTo(N, Lo, NewHi); 958 } 959 assert(Op0.getOpcode() == ISD::FABS); 960 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 961 DAG.getConstant(~SignBit, DL, MVT::i32)); 962 return DCI.CombineTo(N, Lo, NewHi); 963 } 964 case RISCVISD::SLLW: 965 case RISCVISD::SRAW: 966 case RISCVISD::SRLW: { 967 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 968 SDValue LHS = N->getOperand(0); 969 SDValue RHS = N->getOperand(1); 970 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 971 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 972 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 973 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 974 return SDValue(); 975 break; 976 } 977 case RISCVISD::FMV_X_ANYEXTW_RV64: { 978 SDLoc DL(N); 979 SDValue Op0 = N->getOperand(0); 980 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 981 // conversion is unnecessary and can be replaced with an ANY_EXTEND 982 // of the FMV_W_X_RV64 operand. 983 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 984 SDValue AExtOp = 985 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 986 return DCI.CombineTo(N, AExtOp); 987 } 988 989 // This is a target-specific version of a DAGCombine performed in 990 // DAGCombiner::visitBITCAST. It performs the equivalent of: 991 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 992 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 993 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 994 !Op0.getNode()->hasOneUse()) 995 break; 996 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 997 Op0.getOperand(0)); 998 APInt SignBit = APInt::getSignMask(32).sext(64); 999 if (Op0.getOpcode() == ISD::FNEG) { 1000 return DCI.CombineTo(N, 1001 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1002 DAG.getConstant(SignBit, DL, MVT::i64))); 1003 } 1004 assert(Op0.getOpcode() == ISD::FABS); 1005 return DCI.CombineTo(N, 1006 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1007 DAG.getConstant(~SignBit, DL, MVT::i64))); 1008 } 1009 } 1010 1011 return SDValue(); 1012 } 1013 1014 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1015 const SDNode *N, CombineLevel Level) const { 1016 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1017 // materialised in fewer instructions than `(OP _, c1)`: 1018 // 1019 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1020 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1021 SDValue N0 = N->getOperand(0); 1022 EVT Ty = N0.getValueType(); 1023 if (Ty.isScalarInteger() && 1024 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1025 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1026 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1027 if (C1 && C2) { 1028 APInt C1Int = C1->getAPIntValue(); 1029 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1030 1031 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1032 // and the combine should happen, to potentially allow further combines 1033 // later. 1034 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1035 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1036 return true; 1037 1038 // We can materialise `c1` in an add immediate, so it's "free", and the 1039 // combine should be prevented. 1040 if (C1Int.getMinSignedBits() <= 64 && 1041 isLegalAddImmediate(C1Int.getSExtValue())) 1042 return false; 1043 1044 // Neither constant will fit into an immediate, so find materialisation 1045 // costs. 1046 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1047 Subtarget.is64Bit()); 1048 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1049 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1050 1051 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1052 // combine should be prevented. 1053 if (C1Cost < ShiftedC1Cost) 1054 return false; 1055 } 1056 } 1057 return true; 1058 } 1059 1060 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1061 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1062 unsigned Depth) const { 1063 switch (Op.getOpcode()) { 1064 default: 1065 break; 1066 case RISCVISD::SLLW: 1067 case RISCVISD::SRAW: 1068 case RISCVISD::SRLW: 1069 case RISCVISD::DIVW: 1070 case RISCVISD::DIVUW: 1071 case RISCVISD::REMUW: 1072 // TODO: As the result is sign-extended, this is conservatively correct. A 1073 // more precise answer could be calculated for SRAW depending on known 1074 // bits in the shift amount. 1075 return 33; 1076 } 1077 1078 return 1; 1079 } 1080 1081 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1082 MachineBasicBlock *BB) { 1083 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1084 1085 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1086 // Should the count have wrapped while it was being read, we need to try 1087 // again. 1088 // ... 1089 // read: 1090 // rdcycleh x3 # load high word of cycle 1091 // rdcycle x2 # load low word of cycle 1092 // rdcycleh x4 # load high word of cycle 1093 // bne x3, x4, read # check if high word reads match, otherwise try again 1094 // ... 1095 1096 MachineFunction &MF = *BB->getParent(); 1097 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1098 MachineFunction::iterator It = ++BB->getIterator(); 1099 1100 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1101 MF.insert(It, LoopMBB); 1102 1103 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1104 MF.insert(It, DoneMBB); 1105 1106 // Transfer the remainder of BB and its successor edges to DoneMBB. 1107 DoneMBB->splice(DoneMBB->begin(), BB, 1108 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1109 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1110 1111 BB->addSuccessor(LoopMBB); 1112 1113 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1114 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1115 Register LoReg = MI.getOperand(0).getReg(); 1116 Register HiReg = MI.getOperand(1).getReg(); 1117 DebugLoc DL = MI.getDebugLoc(); 1118 1119 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1120 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1121 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1122 .addReg(RISCV::X0); 1123 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1124 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1125 .addReg(RISCV::X0); 1126 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1127 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1128 .addReg(RISCV::X0); 1129 1130 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1131 .addReg(HiReg) 1132 .addReg(ReadAgainReg) 1133 .addMBB(LoopMBB); 1134 1135 LoopMBB->addSuccessor(LoopMBB); 1136 LoopMBB->addSuccessor(DoneMBB); 1137 1138 MI.eraseFromParent(); 1139 1140 return DoneMBB; 1141 } 1142 1143 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1144 MachineBasicBlock *BB) { 1145 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1146 1147 MachineFunction &MF = *BB->getParent(); 1148 DebugLoc DL = MI.getDebugLoc(); 1149 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1150 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1151 Register LoReg = MI.getOperand(0).getReg(); 1152 Register HiReg = MI.getOperand(1).getReg(); 1153 Register SrcReg = MI.getOperand(2).getReg(); 1154 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1155 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1156 1157 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1158 RI); 1159 MachineMemOperand *MMO = 1160 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1161 MachineMemOperand::MOLoad, 8, 8); 1162 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1163 .addFrameIndex(FI) 1164 .addImm(0) 1165 .addMemOperand(MMO); 1166 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1167 .addFrameIndex(FI) 1168 .addImm(4) 1169 .addMemOperand(MMO); 1170 MI.eraseFromParent(); // The pseudo instruction is gone now. 1171 return BB; 1172 } 1173 1174 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1175 MachineBasicBlock *BB) { 1176 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1177 "Unexpected instruction"); 1178 1179 MachineFunction &MF = *BB->getParent(); 1180 DebugLoc DL = MI.getDebugLoc(); 1181 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1182 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1183 Register DstReg = MI.getOperand(0).getReg(); 1184 Register LoReg = MI.getOperand(1).getReg(); 1185 Register HiReg = MI.getOperand(2).getReg(); 1186 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1187 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1188 1189 MachineMemOperand *MMO = 1190 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1191 MachineMemOperand::MOStore, 8, 8); 1192 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1193 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1194 .addFrameIndex(FI) 1195 .addImm(0) 1196 .addMemOperand(MMO); 1197 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1198 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1199 .addFrameIndex(FI) 1200 .addImm(4) 1201 .addMemOperand(MMO); 1202 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1203 MI.eraseFromParent(); // The pseudo instruction is gone now. 1204 return BB; 1205 } 1206 1207 static bool isSelectPseudo(MachineInstr &MI) { 1208 switch (MI.getOpcode()) { 1209 default: 1210 return false; 1211 case RISCV::Select_GPR_Using_CC_GPR: 1212 case RISCV::Select_FPR32_Using_CC_GPR: 1213 case RISCV::Select_FPR64_Using_CC_GPR: 1214 return true; 1215 } 1216 } 1217 1218 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1219 MachineBasicBlock *BB) { 1220 // To "insert" Select_* instructions, we actually have to insert the triangle 1221 // control-flow pattern. The incoming instructions know the destination vreg 1222 // to set, the condition code register to branch on, the true/false values to 1223 // select between, and the condcode to use to select the appropriate branch. 1224 // 1225 // We produce the following control flow: 1226 // HeadMBB 1227 // | \ 1228 // | IfFalseMBB 1229 // | / 1230 // TailMBB 1231 // 1232 // When we find a sequence of selects we attempt to optimize their emission 1233 // by sharing the control flow. Currently we only handle cases where we have 1234 // multiple selects with the exact same condition (same LHS, RHS and CC). 1235 // The selects may be interleaved with other instructions if the other 1236 // instructions meet some requirements we deem safe: 1237 // - They are debug instructions. Otherwise, 1238 // - They do not have side-effects, do not access memory and their inputs do 1239 // not depend on the results of the select pseudo-instructions. 1240 // The TrueV/FalseV operands of the selects cannot depend on the result of 1241 // previous selects in the sequence. 1242 // These conditions could be further relaxed. See the X86 target for a 1243 // related approach and more information. 1244 Register LHS = MI.getOperand(1).getReg(); 1245 Register RHS = MI.getOperand(2).getReg(); 1246 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1247 1248 SmallVector<MachineInstr *, 4> SelectDebugValues; 1249 SmallSet<Register, 4> SelectDests; 1250 SelectDests.insert(MI.getOperand(0).getReg()); 1251 1252 MachineInstr *LastSelectPseudo = &MI; 1253 1254 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1255 SequenceMBBI != E; ++SequenceMBBI) { 1256 if (SequenceMBBI->isDebugInstr()) 1257 continue; 1258 else if (isSelectPseudo(*SequenceMBBI)) { 1259 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1260 SequenceMBBI->getOperand(2).getReg() != RHS || 1261 SequenceMBBI->getOperand(3).getImm() != CC || 1262 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1263 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1264 break; 1265 LastSelectPseudo = &*SequenceMBBI; 1266 SequenceMBBI->collectDebugValues(SelectDebugValues); 1267 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1268 } else { 1269 if (SequenceMBBI->hasUnmodeledSideEffects() || 1270 SequenceMBBI->mayLoadOrStore()) 1271 break; 1272 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1273 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1274 })) 1275 break; 1276 } 1277 } 1278 1279 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1280 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1281 DebugLoc DL = MI.getDebugLoc(); 1282 MachineFunction::iterator I = ++BB->getIterator(); 1283 1284 MachineBasicBlock *HeadMBB = BB; 1285 MachineFunction *F = BB->getParent(); 1286 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1287 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1288 1289 F->insert(I, IfFalseMBB); 1290 F->insert(I, TailMBB); 1291 1292 // Transfer debug instructions associated with the selects to TailMBB. 1293 for (MachineInstr *DebugInstr : SelectDebugValues) { 1294 TailMBB->push_back(DebugInstr->removeFromParent()); 1295 } 1296 1297 // Move all instructions after the sequence to TailMBB. 1298 TailMBB->splice(TailMBB->end(), HeadMBB, 1299 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1300 // Update machine-CFG edges by transferring all successors of the current 1301 // block to the new block which will contain the Phi nodes for the selects. 1302 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1303 // Set the successors for HeadMBB. 1304 HeadMBB->addSuccessor(IfFalseMBB); 1305 HeadMBB->addSuccessor(TailMBB); 1306 1307 // Insert appropriate branch. 1308 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1309 1310 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1311 .addReg(LHS) 1312 .addReg(RHS) 1313 .addMBB(TailMBB); 1314 1315 // IfFalseMBB just falls through to TailMBB. 1316 IfFalseMBB->addSuccessor(TailMBB); 1317 1318 // Create PHIs for all of the select pseudo-instructions. 1319 auto SelectMBBI = MI.getIterator(); 1320 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1321 auto InsertionPoint = TailMBB->begin(); 1322 while (SelectMBBI != SelectEnd) { 1323 auto Next = std::next(SelectMBBI); 1324 if (isSelectPseudo(*SelectMBBI)) { 1325 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1326 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1327 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1328 .addReg(SelectMBBI->getOperand(4).getReg()) 1329 .addMBB(HeadMBB) 1330 .addReg(SelectMBBI->getOperand(5).getReg()) 1331 .addMBB(IfFalseMBB); 1332 SelectMBBI->eraseFromParent(); 1333 } 1334 SelectMBBI = Next; 1335 } 1336 1337 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1338 return TailMBB; 1339 } 1340 1341 MachineBasicBlock * 1342 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1343 MachineBasicBlock *BB) const { 1344 switch (MI.getOpcode()) { 1345 default: 1346 llvm_unreachable("Unexpected instr type to insert"); 1347 case RISCV::ReadCycleWide: 1348 assert(!Subtarget.is64Bit() && 1349 "ReadCycleWrite is only to be used on riscv32"); 1350 return emitReadCycleWidePseudo(MI, BB); 1351 case RISCV::Select_GPR_Using_CC_GPR: 1352 case RISCV::Select_FPR32_Using_CC_GPR: 1353 case RISCV::Select_FPR64_Using_CC_GPR: 1354 return emitSelectPseudo(MI, BB); 1355 case RISCV::BuildPairF64Pseudo: 1356 return emitBuildPairF64Pseudo(MI, BB); 1357 case RISCV::SplitF64Pseudo: 1358 return emitSplitF64Pseudo(MI, BB); 1359 } 1360 } 1361 1362 // Calling Convention Implementation. 1363 // The expectations for frontend ABI lowering vary from target to target. 1364 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1365 // details, but this is a longer term goal. For now, we simply try to keep the 1366 // role of the frontend as simple and well-defined as possible. The rules can 1367 // be summarised as: 1368 // * Never split up large scalar arguments. We handle them here. 1369 // * If a hardfloat calling convention is being used, and the struct may be 1370 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1371 // available, then pass as two separate arguments. If either the GPRs or FPRs 1372 // are exhausted, then pass according to the rule below. 1373 // * If a struct could never be passed in registers or directly in a stack 1374 // slot (as it is larger than 2*XLEN and the floating point rules don't 1375 // apply), then pass it using a pointer with the byval attribute. 1376 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1377 // word-sized array or a 2*XLEN scalar (depending on alignment). 1378 // * The frontend can determine whether a struct is returned by reference or 1379 // not based on its size and fields. If it will be returned by reference, the 1380 // frontend must modify the prototype so a pointer with the sret annotation is 1381 // passed as the first argument. This is not necessary for large scalar 1382 // returns. 1383 // * Struct return values and varargs should be coerced to structs containing 1384 // register-size fields in the same situations they would be for fixed 1385 // arguments. 1386 1387 static const MCPhysReg ArgGPRs[] = { 1388 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1389 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1390 }; 1391 static const MCPhysReg ArgFPR32s[] = { 1392 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1393 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1394 }; 1395 static const MCPhysReg ArgFPR64s[] = { 1396 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1397 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1398 }; 1399 1400 // Pass a 2*XLEN argument that has been split into two XLEN values through 1401 // registers or the stack as necessary. 1402 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1403 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1404 MVT ValVT2, MVT LocVT2, 1405 ISD::ArgFlagsTy ArgFlags2) { 1406 unsigned XLenInBytes = XLen / 8; 1407 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1408 // At least one half can be passed via register. 1409 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1410 VA1.getLocVT(), CCValAssign::Full)); 1411 } else { 1412 // Both halves must be passed on the stack, with proper alignment. 1413 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1414 State.addLoc( 1415 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1416 State.AllocateStack(XLenInBytes, StackAlign), 1417 VA1.getLocVT(), CCValAssign::Full)); 1418 State.addLoc(CCValAssign::getMem( 1419 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1420 CCValAssign::Full)); 1421 return false; 1422 } 1423 1424 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1425 // The second half can also be passed via register. 1426 State.addLoc( 1427 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1428 } else { 1429 // The second half is passed via the stack, without additional alignment. 1430 State.addLoc(CCValAssign::getMem( 1431 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1432 CCValAssign::Full)); 1433 } 1434 1435 return false; 1436 } 1437 1438 // Implements the RISC-V calling convention. Returns true upon failure. 1439 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1440 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1441 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1442 bool IsRet, Type *OrigTy) { 1443 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1444 assert(XLen == 32 || XLen == 64); 1445 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1446 1447 // Any return value split in to more than two values can't be returned 1448 // directly. 1449 if (IsRet && ValNo > 1) 1450 return true; 1451 1452 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1453 // variadic argument, or if no F32 argument registers are available. 1454 bool UseGPRForF32 = true; 1455 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1456 // variadic argument, or if no F64 argument registers are available. 1457 bool UseGPRForF64 = true; 1458 1459 switch (ABI) { 1460 default: 1461 llvm_unreachable("Unexpected ABI"); 1462 case RISCVABI::ABI_ILP32: 1463 case RISCVABI::ABI_LP64: 1464 break; 1465 case RISCVABI::ABI_ILP32F: 1466 case RISCVABI::ABI_LP64F: 1467 UseGPRForF32 = !IsFixed; 1468 break; 1469 case RISCVABI::ABI_ILP32D: 1470 case RISCVABI::ABI_LP64D: 1471 UseGPRForF32 = !IsFixed; 1472 UseGPRForF64 = !IsFixed; 1473 break; 1474 } 1475 1476 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1477 UseGPRForF32 = true; 1478 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1479 UseGPRForF64 = true; 1480 1481 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1482 // variables rather than directly checking against the target ABI. 1483 1484 if (UseGPRForF32 && ValVT == MVT::f32) { 1485 LocVT = XLenVT; 1486 LocInfo = CCValAssign::BCvt; 1487 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1488 LocVT = MVT::i64; 1489 LocInfo = CCValAssign::BCvt; 1490 } 1491 1492 // If this is a variadic argument, the RISC-V calling convention requires 1493 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1494 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1495 // be used regardless of whether the original argument was split during 1496 // legalisation or not. The argument will not be passed by registers if the 1497 // original type is larger than 2*XLEN, so the register alignment rule does 1498 // not apply. 1499 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1500 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1501 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1502 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1503 // Skip 'odd' register if necessary. 1504 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1505 State.AllocateReg(ArgGPRs); 1506 } 1507 1508 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1509 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1510 State.getPendingArgFlags(); 1511 1512 assert(PendingLocs.size() == PendingArgFlags.size() && 1513 "PendingLocs and PendingArgFlags out of sync"); 1514 1515 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1516 // registers are exhausted. 1517 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1518 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1519 "Can't lower f64 if it is split"); 1520 // Depending on available argument GPRS, f64 may be passed in a pair of 1521 // GPRs, split between a GPR and the stack, or passed completely on the 1522 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1523 // cases. 1524 Register Reg = State.AllocateReg(ArgGPRs); 1525 LocVT = MVT::i32; 1526 if (!Reg) { 1527 unsigned StackOffset = State.AllocateStack(8, 8); 1528 State.addLoc( 1529 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1530 return false; 1531 } 1532 if (!State.AllocateReg(ArgGPRs)) 1533 State.AllocateStack(4, 4); 1534 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1535 return false; 1536 } 1537 1538 // Split arguments might be passed indirectly, so keep track of the pending 1539 // values. 1540 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1541 LocVT = XLenVT; 1542 LocInfo = CCValAssign::Indirect; 1543 PendingLocs.push_back( 1544 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1545 PendingArgFlags.push_back(ArgFlags); 1546 if (!ArgFlags.isSplitEnd()) { 1547 return false; 1548 } 1549 } 1550 1551 // If the split argument only had two elements, it should be passed directly 1552 // in registers or on the stack. 1553 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1554 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1555 // Apply the normal calling convention rules to the first half of the 1556 // split argument. 1557 CCValAssign VA = PendingLocs[0]; 1558 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1559 PendingLocs.clear(); 1560 PendingArgFlags.clear(); 1561 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1562 ArgFlags); 1563 } 1564 1565 // Allocate to a register if possible, or else a stack slot. 1566 Register Reg; 1567 if (ValVT == MVT::f32 && !UseGPRForF32) 1568 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1569 else if (ValVT == MVT::f64 && !UseGPRForF64) 1570 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1571 else 1572 Reg = State.AllocateReg(ArgGPRs); 1573 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1574 1575 // If we reach this point and PendingLocs is non-empty, we must be at the 1576 // end of a split argument that must be passed indirectly. 1577 if (!PendingLocs.empty()) { 1578 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1579 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1580 1581 for (auto &It : PendingLocs) { 1582 if (Reg) 1583 It.convertToReg(Reg); 1584 else 1585 It.convertToMem(StackOffset); 1586 State.addLoc(It); 1587 } 1588 PendingLocs.clear(); 1589 PendingArgFlags.clear(); 1590 return false; 1591 } 1592 1593 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1594 "Expected an XLenVT at this stage"); 1595 1596 if (Reg) { 1597 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1598 return false; 1599 } 1600 1601 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1602 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1603 LocVT = ValVT; 1604 LocInfo = CCValAssign::Full; 1605 } 1606 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1607 return false; 1608 } 1609 1610 void RISCVTargetLowering::analyzeInputArgs( 1611 MachineFunction &MF, CCState &CCInfo, 1612 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1613 unsigned NumArgs = Ins.size(); 1614 FunctionType *FType = MF.getFunction().getFunctionType(); 1615 1616 for (unsigned i = 0; i != NumArgs; ++i) { 1617 MVT ArgVT = Ins[i].VT; 1618 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1619 1620 Type *ArgTy = nullptr; 1621 if (IsRet) 1622 ArgTy = FType->getReturnType(); 1623 else if (Ins[i].isOrigArg()) 1624 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1625 1626 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1627 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1628 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1629 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1630 << EVT(ArgVT).getEVTString() << '\n'); 1631 llvm_unreachable(nullptr); 1632 } 1633 } 1634 } 1635 1636 void RISCVTargetLowering::analyzeOutputArgs( 1637 MachineFunction &MF, CCState &CCInfo, 1638 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1639 CallLoweringInfo *CLI) const { 1640 unsigned NumArgs = Outs.size(); 1641 1642 for (unsigned i = 0; i != NumArgs; i++) { 1643 MVT ArgVT = Outs[i].VT; 1644 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1645 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1646 1647 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1648 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1649 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1650 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1651 << EVT(ArgVT).getEVTString() << "\n"); 1652 llvm_unreachable(nullptr); 1653 } 1654 } 1655 } 1656 1657 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1658 // values. 1659 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1660 const CCValAssign &VA, const SDLoc &DL) { 1661 switch (VA.getLocInfo()) { 1662 default: 1663 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1664 case CCValAssign::Full: 1665 break; 1666 case CCValAssign::BCvt: 1667 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1668 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1669 break; 1670 } 1671 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1672 break; 1673 } 1674 return Val; 1675 } 1676 1677 // The caller is responsible for loading the full value if the argument is 1678 // passed with CCValAssign::Indirect. 1679 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1680 const CCValAssign &VA, const SDLoc &DL) { 1681 MachineFunction &MF = DAG.getMachineFunction(); 1682 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1683 EVT LocVT = VA.getLocVT(); 1684 SDValue Val; 1685 const TargetRegisterClass *RC; 1686 1687 switch (LocVT.getSimpleVT().SimpleTy) { 1688 default: 1689 llvm_unreachable("Unexpected register type"); 1690 case MVT::i32: 1691 case MVT::i64: 1692 RC = &RISCV::GPRRegClass; 1693 break; 1694 case MVT::f32: 1695 RC = &RISCV::FPR32RegClass; 1696 break; 1697 case MVT::f64: 1698 RC = &RISCV::FPR64RegClass; 1699 break; 1700 } 1701 1702 Register VReg = RegInfo.createVirtualRegister(RC); 1703 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1704 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1705 1706 if (VA.getLocInfo() == CCValAssign::Indirect) 1707 return Val; 1708 1709 return convertLocVTToValVT(DAG, Val, VA, DL); 1710 } 1711 1712 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1713 const CCValAssign &VA, const SDLoc &DL) { 1714 EVT LocVT = VA.getLocVT(); 1715 1716 switch (VA.getLocInfo()) { 1717 default: 1718 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1719 case CCValAssign::Full: 1720 break; 1721 case CCValAssign::BCvt: 1722 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1723 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1724 break; 1725 } 1726 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1727 break; 1728 } 1729 return Val; 1730 } 1731 1732 // The caller is responsible for loading the full value if the argument is 1733 // passed with CCValAssign::Indirect. 1734 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1735 const CCValAssign &VA, const SDLoc &DL) { 1736 MachineFunction &MF = DAG.getMachineFunction(); 1737 MachineFrameInfo &MFI = MF.getFrameInfo(); 1738 EVT LocVT = VA.getLocVT(); 1739 EVT ValVT = VA.getValVT(); 1740 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1741 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1742 VA.getLocMemOffset(), /*Immutable=*/true); 1743 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1744 SDValue Val; 1745 1746 ISD::LoadExtType ExtType; 1747 switch (VA.getLocInfo()) { 1748 default: 1749 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1750 case CCValAssign::Full: 1751 case CCValAssign::Indirect: 1752 case CCValAssign::BCvt: 1753 ExtType = ISD::NON_EXTLOAD; 1754 break; 1755 } 1756 Val = DAG.getExtLoad( 1757 ExtType, DL, LocVT, Chain, FIN, 1758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1759 return Val; 1760 } 1761 1762 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1763 const CCValAssign &VA, const SDLoc &DL) { 1764 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1765 "Unexpected VA"); 1766 MachineFunction &MF = DAG.getMachineFunction(); 1767 MachineFrameInfo &MFI = MF.getFrameInfo(); 1768 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1769 1770 if (VA.isMemLoc()) { 1771 // f64 is passed on the stack. 1772 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1773 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1774 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1775 MachinePointerInfo::getFixedStack(MF, FI)); 1776 } 1777 1778 assert(VA.isRegLoc() && "Expected register VA assignment"); 1779 1780 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1781 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1782 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1783 SDValue Hi; 1784 if (VA.getLocReg() == RISCV::X17) { 1785 // Second half of f64 is passed on the stack. 1786 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1787 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1788 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1789 MachinePointerInfo::getFixedStack(MF, FI)); 1790 } else { 1791 // Second half of f64 is passed in another GPR. 1792 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1793 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1794 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1795 } 1796 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1797 } 1798 1799 // Transform physical registers into virtual registers. 1800 SDValue RISCVTargetLowering::LowerFormalArguments( 1801 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1802 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1803 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1804 1805 switch (CallConv) { 1806 default: 1807 report_fatal_error("Unsupported calling convention"); 1808 case CallingConv::C: 1809 case CallingConv::Fast: 1810 break; 1811 } 1812 1813 MachineFunction &MF = DAG.getMachineFunction(); 1814 1815 const Function &Func = MF.getFunction(); 1816 if (Func.hasFnAttribute("interrupt")) { 1817 if (!Func.arg_empty()) 1818 report_fatal_error( 1819 "Functions with the interrupt attribute cannot have arguments!"); 1820 1821 StringRef Kind = 1822 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1823 1824 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1825 report_fatal_error( 1826 "Function interrupt attribute argument not supported!"); 1827 } 1828 1829 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1830 MVT XLenVT = Subtarget.getXLenVT(); 1831 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1832 // Used with vargs to acumulate store chains. 1833 std::vector<SDValue> OutChains; 1834 1835 // Assign locations to all of the incoming arguments. 1836 SmallVector<CCValAssign, 16> ArgLocs; 1837 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1838 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1839 1840 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1841 CCValAssign &VA = ArgLocs[i]; 1842 SDValue ArgValue; 1843 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1844 // case. 1845 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1846 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1847 else if (VA.isRegLoc()) 1848 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1849 else 1850 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1851 1852 if (VA.getLocInfo() == CCValAssign::Indirect) { 1853 // If the original argument was split and passed by reference (e.g. i128 1854 // on RV32), we need to load all parts of it here (using the same 1855 // address). 1856 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1857 MachinePointerInfo())); 1858 unsigned ArgIndex = Ins[i].OrigArgIndex; 1859 assert(Ins[i].PartOffset == 0); 1860 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1861 CCValAssign &PartVA = ArgLocs[i + 1]; 1862 unsigned PartOffset = Ins[i + 1].PartOffset; 1863 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1864 DAG.getIntPtrConstant(PartOffset, DL)); 1865 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1866 MachinePointerInfo())); 1867 ++i; 1868 } 1869 continue; 1870 } 1871 InVals.push_back(ArgValue); 1872 } 1873 1874 if (IsVarArg) { 1875 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1876 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1877 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1878 MachineFrameInfo &MFI = MF.getFrameInfo(); 1879 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1880 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1881 1882 // Offset of the first variable argument from stack pointer, and size of 1883 // the vararg save area. For now, the varargs save area is either zero or 1884 // large enough to hold a0-a7. 1885 int VaArgOffset, VarArgsSaveSize; 1886 1887 // If all registers are allocated, then all varargs must be passed on the 1888 // stack and we don't need to save any argregs. 1889 if (ArgRegs.size() == Idx) { 1890 VaArgOffset = CCInfo.getNextStackOffset(); 1891 VarArgsSaveSize = 0; 1892 } else { 1893 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1894 VaArgOffset = -VarArgsSaveSize; 1895 } 1896 1897 // Record the frame index of the first variable argument 1898 // which is a value necessary to VASTART. 1899 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1900 RVFI->setVarArgsFrameIndex(FI); 1901 1902 // If saving an odd number of registers then create an extra stack slot to 1903 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1904 // offsets to even-numbered registered remain 2*XLEN-aligned. 1905 if (Idx % 2) { 1906 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 1907 VarArgsSaveSize += XLenInBytes; 1908 } 1909 1910 // Copy the integer registers that may have been used for passing varargs 1911 // to the vararg save area. 1912 for (unsigned I = Idx; I < ArgRegs.size(); 1913 ++I, VaArgOffset += XLenInBytes) { 1914 const Register Reg = RegInfo.createVirtualRegister(RC); 1915 RegInfo.addLiveIn(ArgRegs[I], Reg); 1916 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1917 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1918 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1919 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1920 MachinePointerInfo::getFixedStack(MF, FI)); 1921 cast<StoreSDNode>(Store.getNode()) 1922 ->getMemOperand() 1923 ->setValue((Value *)nullptr); 1924 OutChains.push_back(Store); 1925 } 1926 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1927 } 1928 1929 // All stores are grouped in one node to allow the matching between 1930 // the size of Ins and InVals. This only happens for vararg functions. 1931 if (!OutChains.empty()) { 1932 OutChains.push_back(Chain); 1933 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1934 } 1935 1936 return Chain; 1937 } 1938 1939 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1940 /// for tail call optimization. 1941 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1942 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 1943 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1944 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1945 1946 auto &Callee = CLI.Callee; 1947 auto CalleeCC = CLI.CallConv; 1948 auto &Outs = CLI.Outs; 1949 auto &Caller = MF.getFunction(); 1950 auto CallerCC = Caller.getCallingConv(); 1951 1952 // Do not tail call opt functions with "disable-tail-calls" attribute. 1953 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1954 return false; 1955 1956 // Exception-handling functions need a special set of instructions to 1957 // indicate a return to the hardware. Tail-calling another function would 1958 // probably break this. 1959 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1960 // should be expanded as new function attributes are introduced. 1961 if (Caller.hasFnAttribute("interrupt")) 1962 return false; 1963 1964 // Do not tail call opt if the stack is used to pass parameters. 1965 if (CCInfo.getNextStackOffset() != 0) 1966 return false; 1967 1968 // Do not tail call opt if any parameters need to be passed indirectly. 1969 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1970 // passed indirectly. So the address of the value will be passed in a 1971 // register, or if not available, then the address is put on the stack. In 1972 // order to pass indirectly, space on the stack often needs to be allocated 1973 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1974 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1975 // are passed CCValAssign::Indirect. 1976 for (auto &VA : ArgLocs) 1977 if (VA.getLocInfo() == CCValAssign::Indirect) 1978 return false; 1979 1980 // Do not tail call opt if either caller or callee uses struct return 1981 // semantics. 1982 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1983 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1984 if (IsCallerStructRet || IsCalleeStructRet) 1985 return false; 1986 1987 // Externally-defined functions with weak linkage should not be 1988 // tail-called. The behaviour of branch instructions in this situation (as 1989 // used for tail calls) is implementation-defined, so we cannot rely on the 1990 // linker replacing the tail call with a return. 1991 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1992 const GlobalValue *GV = G->getGlobal(); 1993 if (GV->hasExternalWeakLinkage()) 1994 return false; 1995 } 1996 1997 // The callee has to preserve all registers the caller needs to preserve. 1998 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1999 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2000 if (CalleeCC != CallerCC) { 2001 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2002 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2003 return false; 2004 } 2005 2006 // Byval parameters hand the function a pointer directly into the stack area 2007 // we want to reuse during a tail call. Working around this *is* possible 2008 // but less efficient and uglier in LowerCall. 2009 for (auto &Arg : Outs) 2010 if (Arg.Flags.isByVal()) 2011 return false; 2012 2013 return true; 2014 } 2015 2016 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2017 // and output parameter nodes. 2018 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2019 SmallVectorImpl<SDValue> &InVals) const { 2020 SelectionDAG &DAG = CLI.DAG; 2021 SDLoc &DL = CLI.DL; 2022 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2023 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2024 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2025 SDValue Chain = CLI.Chain; 2026 SDValue Callee = CLI.Callee; 2027 bool &IsTailCall = CLI.IsTailCall; 2028 CallingConv::ID CallConv = CLI.CallConv; 2029 bool IsVarArg = CLI.IsVarArg; 2030 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2031 MVT XLenVT = Subtarget.getXLenVT(); 2032 2033 MachineFunction &MF = DAG.getMachineFunction(); 2034 2035 // Analyze the operands of the call, assigning locations to each operand. 2036 SmallVector<CCValAssign, 16> ArgLocs; 2037 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2038 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2039 2040 // Check if it's really possible to do a tail call. 2041 if (IsTailCall) 2042 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2043 2044 if (IsTailCall) 2045 ++NumTailCalls; 2046 else if (CLI.CS && CLI.CS.isMustTailCall()) 2047 report_fatal_error("failed to perform tail call elimination on a call " 2048 "site marked musttail"); 2049 2050 // Get a count of how many bytes are to be pushed on the stack. 2051 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2052 2053 // Create local copies for byval args 2054 SmallVector<SDValue, 8> ByValArgs; 2055 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2056 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2057 if (!Flags.isByVal()) 2058 continue; 2059 2060 SDValue Arg = OutVals[i]; 2061 unsigned Size = Flags.getByValSize(); 2062 unsigned Align = Flags.getByValAlign(); 2063 2064 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 2065 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2066 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2067 2068 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 2069 /*IsVolatile=*/false, 2070 /*AlwaysInline=*/false, 2071 IsTailCall, MachinePointerInfo(), 2072 MachinePointerInfo()); 2073 ByValArgs.push_back(FIPtr); 2074 } 2075 2076 if (!IsTailCall) 2077 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2078 2079 // Copy argument values to their designated locations. 2080 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2081 SmallVector<SDValue, 8> MemOpChains; 2082 SDValue StackPtr; 2083 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2084 CCValAssign &VA = ArgLocs[i]; 2085 SDValue ArgValue = OutVals[i]; 2086 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2087 2088 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2089 bool IsF64OnRV32DSoftABI = 2090 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2091 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2092 SDValue SplitF64 = DAG.getNode( 2093 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2094 SDValue Lo = SplitF64.getValue(0); 2095 SDValue Hi = SplitF64.getValue(1); 2096 2097 Register RegLo = VA.getLocReg(); 2098 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2099 2100 if (RegLo == RISCV::X17) { 2101 // Second half of f64 is passed on the stack. 2102 // Work out the address of the stack slot. 2103 if (!StackPtr.getNode()) 2104 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2105 // Emit the store. 2106 MemOpChains.push_back( 2107 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2108 } else { 2109 // Second half of f64 is passed in another GPR. 2110 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2111 Register RegHigh = RegLo + 1; 2112 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2113 } 2114 continue; 2115 } 2116 2117 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2118 // as any other MemLoc. 2119 2120 // Promote the value if needed. 2121 // For now, only handle fully promoted and indirect arguments. 2122 if (VA.getLocInfo() == CCValAssign::Indirect) { 2123 // Store the argument in a stack slot and pass its address. 2124 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2125 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2126 MemOpChains.push_back( 2127 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2128 MachinePointerInfo::getFixedStack(MF, FI))); 2129 // If the original argument was split (e.g. i128), we need 2130 // to store all parts of it here (and pass just one address). 2131 unsigned ArgIndex = Outs[i].OrigArgIndex; 2132 assert(Outs[i].PartOffset == 0); 2133 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2134 SDValue PartValue = OutVals[i + 1]; 2135 unsigned PartOffset = Outs[i + 1].PartOffset; 2136 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2137 DAG.getIntPtrConstant(PartOffset, DL)); 2138 MemOpChains.push_back( 2139 DAG.getStore(Chain, DL, PartValue, Address, 2140 MachinePointerInfo::getFixedStack(MF, FI))); 2141 ++i; 2142 } 2143 ArgValue = SpillSlot; 2144 } else { 2145 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2146 } 2147 2148 // Use local copy if it is a byval arg. 2149 if (Flags.isByVal()) 2150 ArgValue = ByValArgs[j++]; 2151 2152 if (VA.isRegLoc()) { 2153 // Queue up the argument copies and emit them at the end. 2154 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2155 } else { 2156 assert(VA.isMemLoc() && "Argument not register or memory"); 2157 assert(!IsTailCall && "Tail call not allowed if stack is used " 2158 "for passing parameters"); 2159 2160 // Work out the address of the stack slot. 2161 if (!StackPtr.getNode()) 2162 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2163 SDValue Address = 2164 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2165 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2166 2167 // Emit the store. 2168 MemOpChains.push_back( 2169 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2170 } 2171 } 2172 2173 // Join the stores, which are independent of one another. 2174 if (!MemOpChains.empty()) 2175 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2176 2177 SDValue Glue; 2178 2179 // Build a sequence of copy-to-reg nodes, chained and glued together. 2180 for (auto &Reg : RegsToPass) { 2181 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2182 Glue = Chain.getValue(1); 2183 } 2184 2185 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2186 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2187 // split it and then direct call can be matched by PseudoCALL. 2188 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2189 const GlobalValue *GV = S->getGlobal(); 2190 2191 unsigned OpFlags = RISCVII::MO_CALL; 2192 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2193 OpFlags = RISCVII::MO_PLT; 2194 2195 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2196 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2197 unsigned OpFlags = RISCVII::MO_CALL; 2198 2199 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2200 nullptr)) 2201 OpFlags = RISCVII::MO_PLT; 2202 2203 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2204 } 2205 2206 // The first call operand is the chain and the second is the target address. 2207 SmallVector<SDValue, 8> Ops; 2208 Ops.push_back(Chain); 2209 Ops.push_back(Callee); 2210 2211 // Add argument registers to the end of the list so that they are 2212 // known live into the call. 2213 for (auto &Reg : RegsToPass) 2214 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2215 2216 if (!IsTailCall) { 2217 // Add a register mask operand representing the call-preserved registers. 2218 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2219 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2220 assert(Mask && "Missing call preserved mask for calling convention"); 2221 Ops.push_back(DAG.getRegisterMask(Mask)); 2222 } 2223 2224 // Glue the call to the argument copies, if any. 2225 if (Glue.getNode()) 2226 Ops.push_back(Glue); 2227 2228 // Emit the call. 2229 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2230 2231 if (IsTailCall) { 2232 MF.getFrameInfo().setHasTailCall(); 2233 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2234 } 2235 2236 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2237 Glue = Chain.getValue(1); 2238 2239 // Mark the end of the call, which is glued to the call itself. 2240 Chain = DAG.getCALLSEQ_END(Chain, 2241 DAG.getConstant(NumBytes, DL, PtrVT, true), 2242 DAG.getConstant(0, DL, PtrVT, true), 2243 Glue, DL); 2244 Glue = Chain.getValue(1); 2245 2246 // Assign locations to each value returned by this call. 2247 SmallVector<CCValAssign, 16> RVLocs; 2248 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2249 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2250 2251 // Copy all of the result registers out of their specified physreg. 2252 for (auto &VA : RVLocs) { 2253 // Copy the value out 2254 SDValue RetValue = 2255 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2256 // Glue the RetValue to the end of the call sequence 2257 Chain = RetValue.getValue(1); 2258 Glue = RetValue.getValue(2); 2259 2260 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2261 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2262 SDValue RetValue2 = 2263 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2264 Chain = RetValue2.getValue(1); 2265 Glue = RetValue2.getValue(2); 2266 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2267 RetValue2); 2268 } 2269 2270 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2271 2272 InVals.push_back(RetValue); 2273 } 2274 2275 return Chain; 2276 } 2277 2278 bool RISCVTargetLowering::CanLowerReturn( 2279 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2280 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2281 SmallVector<CCValAssign, 16> RVLocs; 2282 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2283 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2284 MVT VT = Outs[i].VT; 2285 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2286 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2287 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2288 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2289 return false; 2290 } 2291 return true; 2292 } 2293 2294 SDValue 2295 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2296 bool IsVarArg, 2297 const SmallVectorImpl<ISD::OutputArg> &Outs, 2298 const SmallVectorImpl<SDValue> &OutVals, 2299 const SDLoc &DL, SelectionDAG &DAG) const { 2300 // Stores the assignment of the return value to a location. 2301 SmallVector<CCValAssign, 16> RVLocs; 2302 2303 // Info about the registers and stack slot. 2304 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2305 *DAG.getContext()); 2306 2307 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2308 nullptr); 2309 2310 SDValue Glue; 2311 SmallVector<SDValue, 4> RetOps(1, Chain); 2312 2313 // Copy the result values into the output registers. 2314 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2315 SDValue Val = OutVals[i]; 2316 CCValAssign &VA = RVLocs[i]; 2317 assert(VA.isRegLoc() && "Can only return in registers!"); 2318 2319 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2320 // Handle returning f64 on RV32D with a soft float ABI. 2321 assert(VA.isRegLoc() && "Expected return via registers"); 2322 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2323 DAG.getVTList(MVT::i32, MVT::i32), Val); 2324 SDValue Lo = SplitF64.getValue(0); 2325 SDValue Hi = SplitF64.getValue(1); 2326 Register RegLo = VA.getLocReg(); 2327 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2328 Register RegHi = RegLo + 1; 2329 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2330 Glue = Chain.getValue(1); 2331 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2332 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2333 Glue = Chain.getValue(1); 2334 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2335 } else { 2336 // Handle a 'normal' return. 2337 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2338 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2339 2340 // Guarantee that all emitted copies are stuck together. 2341 Glue = Chain.getValue(1); 2342 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2343 } 2344 } 2345 2346 RetOps[0] = Chain; // Update chain. 2347 2348 // Add the glue node if we have it. 2349 if (Glue.getNode()) { 2350 RetOps.push_back(Glue); 2351 } 2352 2353 // Interrupt service routines use different return instructions. 2354 const Function &Func = DAG.getMachineFunction().getFunction(); 2355 if (Func.hasFnAttribute("interrupt")) { 2356 if (!Func.getReturnType()->isVoidTy()) 2357 report_fatal_error( 2358 "Functions with the interrupt attribute must have void return type!"); 2359 2360 MachineFunction &MF = DAG.getMachineFunction(); 2361 StringRef Kind = 2362 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2363 2364 unsigned RetOpc; 2365 if (Kind == "user") 2366 RetOpc = RISCVISD::URET_FLAG; 2367 else if (Kind == "supervisor") 2368 RetOpc = RISCVISD::SRET_FLAG; 2369 else 2370 RetOpc = RISCVISD::MRET_FLAG; 2371 2372 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2373 } 2374 2375 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2376 } 2377 2378 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2379 switch ((RISCVISD::NodeType)Opcode) { 2380 case RISCVISD::FIRST_NUMBER: 2381 break; 2382 case RISCVISD::RET_FLAG: 2383 return "RISCVISD::RET_FLAG"; 2384 case RISCVISD::URET_FLAG: 2385 return "RISCVISD::URET_FLAG"; 2386 case RISCVISD::SRET_FLAG: 2387 return "RISCVISD::SRET_FLAG"; 2388 case RISCVISD::MRET_FLAG: 2389 return "RISCVISD::MRET_FLAG"; 2390 case RISCVISD::CALL: 2391 return "RISCVISD::CALL"; 2392 case RISCVISD::SELECT_CC: 2393 return "RISCVISD::SELECT_CC"; 2394 case RISCVISD::BuildPairF64: 2395 return "RISCVISD::BuildPairF64"; 2396 case RISCVISD::SplitF64: 2397 return "RISCVISD::SplitF64"; 2398 case RISCVISD::TAIL: 2399 return "RISCVISD::TAIL"; 2400 case RISCVISD::SLLW: 2401 return "RISCVISD::SLLW"; 2402 case RISCVISD::SRAW: 2403 return "RISCVISD::SRAW"; 2404 case RISCVISD::SRLW: 2405 return "RISCVISD::SRLW"; 2406 case RISCVISD::DIVW: 2407 return "RISCVISD::DIVW"; 2408 case RISCVISD::DIVUW: 2409 return "RISCVISD::DIVUW"; 2410 case RISCVISD::REMUW: 2411 return "RISCVISD::REMUW"; 2412 case RISCVISD::FMV_W_X_RV64: 2413 return "RISCVISD::FMV_W_X_RV64"; 2414 case RISCVISD::FMV_X_ANYEXTW_RV64: 2415 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2416 case RISCVISD::READ_CYCLE_WIDE: 2417 return "RISCVISD::READ_CYCLE_WIDE"; 2418 } 2419 return nullptr; 2420 } 2421 2422 /// getConstraintType - Given a constraint letter, return the type of 2423 /// constraint it is for this target. 2424 RISCVTargetLowering::ConstraintType 2425 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2426 if (Constraint.size() == 1) { 2427 switch (Constraint[0]) { 2428 default: 2429 break; 2430 case 'f': 2431 return C_RegisterClass; 2432 case 'I': 2433 case 'J': 2434 case 'K': 2435 return C_Immediate; 2436 case 'A': 2437 return C_Memory; 2438 } 2439 } 2440 return TargetLowering::getConstraintType(Constraint); 2441 } 2442 2443 std::pair<unsigned, const TargetRegisterClass *> 2444 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2445 StringRef Constraint, 2446 MVT VT) const { 2447 // First, see if this is a constraint that directly corresponds to a 2448 // RISCV register class. 2449 if (Constraint.size() == 1) { 2450 switch (Constraint[0]) { 2451 case 'r': 2452 return std::make_pair(0U, &RISCV::GPRRegClass); 2453 case 'f': 2454 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2455 return std::make_pair(0U, &RISCV::FPR32RegClass); 2456 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2457 return std::make_pair(0U, &RISCV::FPR64RegClass); 2458 break; 2459 default: 2460 break; 2461 } 2462 } 2463 2464 // Clang will correctly decode the usage of register name aliases into their 2465 // official names. However, other frontends like `rustc` do not. This allows 2466 // users of these frontends to use the ABI names for registers in LLVM-style 2467 // register constraints. 2468 Register XRegFromAlias = StringSwitch<Register>(Constraint.lower()) 2469 .Case("{zero}", RISCV::X0) 2470 .Case("{ra}", RISCV::X1) 2471 .Case("{sp}", RISCV::X2) 2472 .Case("{gp}", RISCV::X3) 2473 .Case("{tp}", RISCV::X4) 2474 .Case("{t0}", RISCV::X5) 2475 .Case("{t1}", RISCV::X6) 2476 .Case("{t2}", RISCV::X7) 2477 .Cases("{s0}", "{fp}", RISCV::X8) 2478 .Case("{s1}", RISCV::X9) 2479 .Case("{a0}", RISCV::X10) 2480 .Case("{a1}", RISCV::X11) 2481 .Case("{a2}", RISCV::X12) 2482 .Case("{a3}", RISCV::X13) 2483 .Case("{a4}", RISCV::X14) 2484 .Case("{a5}", RISCV::X15) 2485 .Case("{a6}", RISCV::X16) 2486 .Case("{a7}", RISCV::X17) 2487 .Case("{s2}", RISCV::X18) 2488 .Case("{s3}", RISCV::X19) 2489 .Case("{s4}", RISCV::X20) 2490 .Case("{s5}", RISCV::X21) 2491 .Case("{s6}", RISCV::X22) 2492 .Case("{s7}", RISCV::X23) 2493 .Case("{s8}", RISCV::X24) 2494 .Case("{s9}", RISCV::X25) 2495 .Case("{s10}", RISCV::X26) 2496 .Case("{s11}", RISCV::X27) 2497 .Case("{t3}", RISCV::X28) 2498 .Case("{t4}", RISCV::X29) 2499 .Case("{t5}", RISCV::X30) 2500 .Case("{t6}", RISCV::X31) 2501 .Default(RISCV::NoRegister); 2502 if (XRegFromAlias != RISCV::NoRegister) 2503 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 2504 2505 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2506 // TableGen record rather than the AsmName to choose registers for InlineAsm 2507 // constraints, plus we want to match those names to the widest floating point 2508 // register type available, manually select floating point registers here. 2509 // 2510 // The second case is the ABI name of the register, so that frontends can also 2511 // use the ABI names in register constraint lists. 2512 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2513 std::pair<Register, Register> FReg = 2514 StringSwitch<std::pair<Register, Register>>(Constraint.lower()) 2515 .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D}) 2516 .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D}) 2517 .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D}) 2518 .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D}) 2519 .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D}) 2520 .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D}) 2521 .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D}) 2522 .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D}) 2523 .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D}) 2524 .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D}) 2525 .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D}) 2526 .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D}) 2527 .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D}) 2528 .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D}) 2529 .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D}) 2530 .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D}) 2531 .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D}) 2532 .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D}) 2533 .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D}) 2534 .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D}) 2535 .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D}) 2536 .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D}) 2537 .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D}) 2538 .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D}) 2539 .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D}) 2540 .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D}) 2541 .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D}) 2542 .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D}) 2543 .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D}) 2544 .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D}) 2545 .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D}) 2546 .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D}) 2547 .Default({RISCV::NoRegister, RISCV::NoRegister}); 2548 if (FReg.first != RISCV::NoRegister) 2549 return Subtarget.hasStdExtD() 2550 ? std::make_pair(FReg.second, &RISCV::FPR64RegClass) 2551 : std::make_pair(FReg.first, &RISCV::FPR32RegClass); 2552 } 2553 2554 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2555 } 2556 2557 unsigned 2558 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2559 // Currently only support length 1 constraints. 2560 if (ConstraintCode.size() == 1) { 2561 switch (ConstraintCode[0]) { 2562 case 'A': 2563 return InlineAsm::Constraint_A; 2564 default: 2565 break; 2566 } 2567 } 2568 2569 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 2570 } 2571 2572 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2573 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2574 SelectionDAG &DAG) const { 2575 // Currently only support length 1 constraints. 2576 if (Constraint.length() == 1) { 2577 switch (Constraint[0]) { 2578 case 'I': 2579 // Validate & create a 12-bit signed immediate operand. 2580 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2581 uint64_t CVal = C->getSExtValue(); 2582 if (isInt<12>(CVal)) 2583 Ops.push_back( 2584 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2585 } 2586 return; 2587 case 'J': 2588 // Validate & create an integer zero operand. 2589 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2590 if (C->getZExtValue() == 0) 2591 Ops.push_back( 2592 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2593 return; 2594 case 'K': 2595 // Validate & create a 5-bit unsigned immediate operand. 2596 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2597 uint64_t CVal = C->getZExtValue(); 2598 if (isUInt<5>(CVal)) 2599 Ops.push_back( 2600 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2601 } 2602 return; 2603 default: 2604 break; 2605 } 2606 } 2607 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2608 } 2609 2610 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2611 Instruction *Inst, 2612 AtomicOrdering Ord) const { 2613 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2614 return Builder.CreateFence(Ord); 2615 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2616 return Builder.CreateFence(AtomicOrdering::Release); 2617 return nullptr; 2618 } 2619 2620 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2621 Instruction *Inst, 2622 AtomicOrdering Ord) const { 2623 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2624 return Builder.CreateFence(AtomicOrdering::Acquire); 2625 return nullptr; 2626 } 2627 2628 TargetLowering::AtomicExpansionKind 2629 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2630 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2631 // point operations can't be used in an lr/sc sequence without breaking the 2632 // forward-progress guarantee. 2633 if (AI->isFloatingPointOperation()) 2634 return AtomicExpansionKind::CmpXChg; 2635 2636 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2637 if (Size == 8 || Size == 16) 2638 return AtomicExpansionKind::MaskedIntrinsic; 2639 return AtomicExpansionKind::None; 2640 } 2641 2642 static Intrinsic::ID 2643 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2644 if (XLen == 32) { 2645 switch (BinOp) { 2646 default: 2647 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2648 case AtomicRMWInst::Xchg: 2649 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2650 case AtomicRMWInst::Add: 2651 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2652 case AtomicRMWInst::Sub: 2653 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2654 case AtomicRMWInst::Nand: 2655 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2656 case AtomicRMWInst::Max: 2657 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2658 case AtomicRMWInst::Min: 2659 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2660 case AtomicRMWInst::UMax: 2661 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2662 case AtomicRMWInst::UMin: 2663 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2664 } 2665 } 2666 2667 if (XLen == 64) { 2668 switch (BinOp) { 2669 default: 2670 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2671 case AtomicRMWInst::Xchg: 2672 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2673 case AtomicRMWInst::Add: 2674 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2675 case AtomicRMWInst::Sub: 2676 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2677 case AtomicRMWInst::Nand: 2678 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2679 case AtomicRMWInst::Max: 2680 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2681 case AtomicRMWInst::Min: 2682 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2683 case AtomicRMWInst::UMax: 2684 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2685 case AtomicRMWInst::UMin: 2686 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2687 } 2688 } 2689 2690 llvm_unreachable("Unexpected XLen\n"); 2691 } 2692 2693 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2694 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2695 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2696 unsigned XLen = Subtarget.getXLen(); 2697 Value *Ordering = 2698 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2699 Type *Tys[] = {AlignedAddr->getType()}; 2700 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2701 AI->getModule(), 2702 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2703 2704 if (XLen == 64) { 2705 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2706 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2707 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2708 } 2709 2710 Value *Result; 2711 2712 // Must pass the shift amount needed to sign extend the loaded value prior 2713 // to performing a signed comparison for min/max. ShiftAmt is the number of 2714 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2715 // is the number of bits to left+right shift the value in order to 2716 // sign-extend. 2717 if (AI->getOperation() == AtomicRMWInst::Min || 2718 AI->getOperation() == AtomicRMWInst::Max) { 2719 const DataLayout &DL = AI->getModule()->getDataLayout(); 2720 unsigned ValWidth = 2721 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2722 Value *SextShamt = 2723 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2724 Result = Builder.CreateCall(LrwOpScwLoop, 2725 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2726 } else { 2727 Result = 2728 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2729 } 2730 2731 if (XLen == 64) 2732 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2733 return Result; 2734 } 2735 2736 TargetLowering::AtomicExpansionKind 2737 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2738 AtomicCmpXchgInst *CI) const { 2739 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2740 if (Size == 8 || Size == 16) 2741 return AtomicExpansionKind::MaskedIntrinsic; 2742 return AtomicExpansionKind::None; 2743 } 2744 2745 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2746 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2747 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2748 unsigned XLen = Subtarget.getXLen(); 2749 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2750 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2751 if (XLen == 64) { 2752 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2753 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2754 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2755 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2756 } 2757 Type *Tys[] = {AlignedAddr->getType()}; 2758 Function *MaskedCmpXchg = 2759 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2760 Value *Result = Builder.CreateCall( 2761 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2762 if (XLen == 64) 2763 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2764 return Result; 2765 } 2766 2767 unsigned RISCVTargetLowering::getExceptionPointerRegister( 2768 const Constant *PersonalityFn) const { 2769 return RISCV::X10; 2770 } 2771 2772 unsigned RISCVTargetLowering::getExceptionSelectorRegister( 2773 const Constant *PersonalityFn) const { 2774 return RISCV::X11; 2775 } 2776 2777 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 2778 // Return false to suppress the unnecessary extensions if the LibCall 2779 // arguments or return value is f32 type for LP64 ABI. 2780 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 2781 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 2782 return false; 2783 2784 return true; 2785 } 2786