1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Splice
679       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
680 
681       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
682       // type that can represent the value exactly.
683       if (VT.getVectorElementType() != MVT::i64) {
684         MVT FloatEltVT =
685             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
686         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
687         if (isTypeLegal(FloatVT)) {
688           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
689           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
690         }
691       }
692     }
693 
694     // Expand various CCs to best match the RVV ISA, which natively supports UNE
695     // but no other unordered comparisons, and supports all ordered comparisons
696     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
697     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
698     // and we pattern-match those back to the "original", swapping operands once
699     // more. This way we catch both operations and both "vf" and "fv" forms with
700     // fewer patterns.
701     static const ISD::CondCode VFPCCToExpand[] = {
702         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
703         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
704         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
705     };
706 
707     // Sets common operation actions on RVV floating-point vector types.
708     const auto SetCommonVFPActions = [&](MVT VT) {
709       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
710       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
711       // sizes are within one power-of-two of each other. Therefore conversions
712       // between vXf16 and vXf64 must be lowered as sequences which convert via
713       // vXf32.
714       setOperationAction(ISD::FP_ROUND, VT, Custom);
715       setOperationAction(ISD::FP_EXTEND, VT, Custom);
716       // Custom-lower insert/extract operations to simplify patterns.
717       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
719       // Expand various condition codes (explained above).
720       for (auto CC : VFPCCToExpand)
721         setCondCodeAction(CC, VT, Expand);
722 
723       setOperationAction(ISD::FMINNUM, VT, Legal);
724       setOperationAction(ISD::FMAXNUM, VT, Legal);
725 
726       setOperationAction(ISD::FTRUNC, VT, Custom);
727       setOperationAction(ISD::FCEIL, VT, Custom);
728       setOperationAction(ISD::FFLOOR, VT, Custom);
729       setOperationAction(ISD::FROUND, VT, Custom);
730 
731       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
732       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
733       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
735 
736       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
737 
738       setOperationAction(ISD::LOAD, VT, Custom);
739       setOperationAction(ISD::STORE, VT, Custom);
740 
741       setOperationAction(ISD::MLOAD, VT, Custom);
742       setOperationAction(ISD::MSTORE, VT, Custom);
743       setOperationAction(ISD::MGATHER, VT, Custom);
744       setOperationAction(ISD::MSCATTER, VT, Custom);
745 
746       setOperationAction(ISD::VP_LOAD, VT, Custom);
747       setOperationAction(ISD::VP_STORE, VT, Custom);
748       setOperationAction(ISD::VP_GATHER, VT, Custom);
749       setOperationAction(ISD::VP_SCATTER, VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
755       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
759       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
760 
761       for (unsigned VPOpc : FloatingPointVPOps)
762         setOperationAction(VPOpc, VT, Custom);
763     };
764 
765     // Sets common extload/truncstore actions on RVV floating-point vector
766     // types.
767     const auto SetCommonVFPExtLoadTruncStoreActions =
768         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
769           for (auto SmallVT : SmallerVTs) {
770             setTruncStoreAction(VT, SmallVT, Expand);
771             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
772           }
773         };
774 
775     if (Subtarget.hasVInstructionsF16())
776       for (MVT VT : F16VecVTs)
777         SetCommonVFPActions(VT);
778 
779     for (MVT VT : F32VecVTs) {
780       if (Subtarget.hasVInstructionsF32())
781         SetCommonVFPActions(VT);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
783     }
784 
785     for (MVT VT : F64VecVTs) {
786       if (Subtarget.hasVInstructionsF64())
787         SetCommonVFPActions(VT);
788       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
789       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
790     }
791 
792     if (Subtarget.useRVVForFixedLengthVectors()) {
793       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
794         if (!useRVVForFixedLengthVectorVT(VT))
795           continue;
796 
797         // By default everything must be expanded.
798         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
799           setOperationAction(Op, VT, Expand);
800         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
801           setTruncStoreAction(VT, OtherVT, Expand);
802           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
803           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
804           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
805         }
806 
807         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
808         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
809         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
810 
811         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
812         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
813 
814         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(ISD::LOAD, VT, Custom);
818         setOperationAction(ISD::STORE, VT, Custom);
819 
820         setOperationAction(ISD::SETCC, VT, Custom);
821 
822         setOperationAction(ISD::SELECT, VT, Custom);
823 
824         setOperationAction(ISD::TRUNCATE, VT, Custom);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
833         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
834         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
835 
836         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
837         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
838         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
839         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
840 
841         // Operations below are different for between masks and other vectors.
842         if (VT.getVectorElementType() == MVT::i1) {
843           setOperationAction(ISD::VP_AND, VT, Custom);
844           setOperationAction(ISD::VP_OR, VT, Custom);
845           setOperationAction(ISD::VP_XOR, VT, Custom);
846           setOperationAction(ISD::AND, VT, Custom);
847           setOperationAction(ISD::OR, VT, Custom);
848           setOperationAction(ISD::XOR, VT, Custom);
849           continue;
850         }
851 
852         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
853         // it before type legalization for i64 vectors on RV32. It will then be
854         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
855         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
856         // improvements first.
857         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
858           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
859           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
860         }
861 
862         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
863         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
864 
865         setOperationAction(ISD::MLOAD, VT, Custom);
866         setOperationAction(ISD::MSTORE, VT, Custom);
867         setOperationAction(ISD::MGATHER, VT, Custom);
868         setOperationAction(ISD::MSCATTER, VT, Custom);
869 
870         setOperationAction(ISD::VP_LOAD, VT, Custom);
871         setOperationAction(ISD::VP_STORE, VT, Custom);
872         setOperationAction(ISD::VP_GATHER, VT, Custom);
873         setOperationAction(ISD::VP_SCATTER, VT, Custom);
874 
875         setOperationAction(ISD::ADD, VT, Custom);
876         setOperationAction(ISD::MUL, VT, Custom);
877         setOperationAction(ISD::SUB, VT, Custom);
878         setOperationAction(ISD::AND, VT, Custom);
879         setOperationAction(ISD::OR, VT, Custom);
880         setOperationAction(ISD::XOR, VT, Custom);
881         setOperationAction(ISD::SDIV, VT, Custom);
882         setOperationAction(ISD::SREM, VT, Custom);
883         setOperationAction(ISD::UDIV, VT, Custom);
884         setOperationAction(ISD::UREM, VT, Custom);
885         setOperationAction(ISD::SHL, VT, Custom);
886         setOperationAction(ISD::SRA, VT, Custom);
887         setOperationAction(ISD::SRL, VT, Custom);
888 
889         setOperationAction(ISD::SMIN, VT, Custom);
890         setOperationAction(ISD::SMAX, VT, Custom);
891         setOperationAction(ISD::UMIN, VT, Custom);
892         setOperationAction(ISD::UMAX, VT, Custom);
893         setOperationAction(ISD::ABS,  VT, Custom);
894 
895         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
896         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
897           setOperationAction(ISD::MULHS, VT, Custom);
898           setOperationAction(ISD::MULHU, VT, Custom);
899         }
900 
901         setOperationAction(ISD::SADDSAT, VT, Custom);
902         setOperationAction(ISD::UADDSAT, VT, Custom);
903         setOperationAction(ISD::SSUBSAT, VT, Custom);
904         setOperationAction(ISD::USUBSAT, VT, Custom);
905 
906         setOperationAction(ISD::VSELECT, VT, Custom);
907         setOperationAction(ISD::SELECT_CC, VT, Expand);
908 
909         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
910         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
911         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
912 
913         // Custom-lower reduction operations to set up the corresponding custom
914         // nodes' operands.
915         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
916         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
917         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
918         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
919         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
920 
921         for (unsigned VPOpc : IntegerVPOps)
922           setOperationAction(VPOpc, VT, Custom);
923 
924         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
925         // type that can represent the value exactly.
926         if (VT.getVectorElementType() != MVT::i64) {
927           MVT FloatEltVT =
928               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
929           EVT FloatVT =
930               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
931           if (isTypeLegal(FloatVT)) {
932             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
933             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
934           }
935         }
936       }
937 
938       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
939         if (!useRVVForFixedLengthVectorVT(VT))
940           continue;
941 
942         // By default everything must be expanded.
943         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
944           setOperationAction(Op, VT, Expand);
945         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
946           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
947           setTruncStoreAction(VT, OtherVT, Expand);
948         }
949 
950         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
951         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
952         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
953 
954         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
955         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
956         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
957         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
959 
960         setOperationAction(ISD::LOAD, VT, Custom);
961         setOperationAction(ISD::STORE, VT, Custom);
962         setOperationAction(ISD::MLOAD, VT, Custom);
963         setOperationAction(ISD::MSTORE, VT, Custom);
964         setOperationAction(ISD::MGATHER, VT, Custom);
965         setOperationAction(ISD::MSCATTER, VT, Custom);
966 
967         setOperationAction(ISD::VP_LOAD, VT, Custom);
968         setOperationAction(ISD::VP_STORE, VT, Custom);
969         setOperationAction(ISD::VP_GATHER, VT, Custom);
970         setOperationAction(ISD::VP_SCATTER, VT, Custom);
971 
972         setOperationAction(ISD::FADD, VT, Custom);
973         setOperationAction(ISD::FSUB, VT, Custom);
974         setOperationAction(ISD::FMUL, VT, Custom);
975         setOperationAction(ISD::FDIV, VT, Custom);
976         setOperationAction(ISD::FNEG, VT, Custom);
977         setOperationAction(ISD::FABS, VT, Custom);
978         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
979         setOperationAction(ISD::FSQRT, VT, Custom);
980         setOperationAction(ISD::FMA, VT, Custom);
981         setOperationAction(ISD::FMINNUM, VT, Custom);
982         setOperationAction(ISD::FMAXNUM, VT, Custom);
983 
984         setOperationAction(ISD::FP_ROUND, VT, Custom);
985         setOperationAction(ISD::FP_EXTEND, VT, Custom);
986 
987         setOperationAction(ISD::FTRUNC, VT, Custom);
988         setOperationAction(ISD::FCEIL, VT, Custom);
989         setOperationAction(ISD::FFLOOR, VT, Custom);
990         setOperationAction(ISD::FROUND, VT, Custom);
991 
992         for (auto CC : VFPCCToExpand)
993           setCondCodeAction(CC, VT, Expand);
994 
995         setOperationAction(ISD::VSELECT, VT, Custom);
996         setOperationAction(ISD::SELECT, VT, Custom);
997         setOperationAction(ISD::SELECT_CC, VT, Expand);
998 
999         setOperationAction(ISD::BITCAST, VT, Custom);
1000 
1001         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1002         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1003         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1004         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1005 
1006         for (unsigned VPOpc : FloatingPointVPOps)
1007           setOperationAction(VPOpc, VT, Custom);
1008       }
1009 
1010       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1011       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1012       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1013       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1014       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1015       if (Subtarget.hasStdExtZfh())
1016         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1017       if (Subtarget.hasStdExtF())
1018         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1019       if (Subtarget.hasStdExtD())
1020         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1021     }
1022   }
1023 
1024   // Function alignments.
1025   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1026   setMinFunctionAlignment(FunctionAlignment);
1027   setPrefFunctionAlignment(FunctionAlignment);
1028 
1029   setMinimumJumpTableEntries(5);
1030 
1031   // Jumps are expensive, compared to logic
1032   setJumpIsExpensive();
1033 
1034   setTargetDAGCombine(ISD::ADD);
1035   setTargetDAGCombine(ISD::SUB);
1036   setTargetDAGCombine(ISD::AND);
1037   setTargetDAGCombine(ISD::OR);
1038   setTargetDAGCombine(ISD::XOR);
1039   if (Subtarget.hasStdExtZbp()) {
1040     setTargetDAGCombine(ISD::ROTL);
1041     setTargetDAGCombine(ISD::ROTR);
1042   }
1043   if (Subtarget.hasStdExtZbkb())
1044     setTargetDAGCombine(ISD::BITREVERSE);
1045   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1046   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1047     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1048   if (Subtarget.hasStdExtF()) {
1049     setTargetDAGCombine(ISD::ZERO_EXTEND);
1050     setTargetDAGCombine(ISD::FP_TO_SINT);
1051     setTargetDAGCombine(ISD::FP_TO_UINT);
1052     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1066   }
1067 
1068   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1069   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1070 }
1071 
1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1073                                             LLVMContext &Context,
1074                                             EVT VT) const {
1075   if (!VT.isVector())
1076     return getPointerTy(DL);
1077   if (Subtarget.hasVInstructions() &&
1078       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1079     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1080   return VT.changeVectorElementTypeToInteger();
1081 }
1082 
1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1084   return Subtarget.getXLenVT();
1085 }
1086 
1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1088                                              const CallInst &I,
1089                                              MachineFunction &MF,
1090                                              unsigned Intrinsic) const {
1091   auto &DL = I.getModule()->getDataLayout();
1092   switch (Intrinsic) {
1093   default:
1094     return false;
1095   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1101   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1102   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1103   case Intrinsic::riscv_masked_cmpxchg_i32:
1104     Info.opc = ISD::INTRINSIC_W_CHAIN;
1105     Info.memVT = MVT::i32;
1106     Info.ptrVal = I.getArgOperand(0);
1107     Info.offset = 0;
1108     Info.align = Align(4);
1109     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1110                  MachineMemOperand::MOVolatile;
1111     return true;
1112   case Intrinsic::riscv_masked_strided_load:
1113     Info.opc = ISD::INTRINSIC_W_CHAIN;
1114     Info.ptrVal = I.getArgOperand(1);
1115     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1116     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1117     Info.size = MemoryLocation::UnknownSize;
1118     Info.flags |= MachineMemOperand::MOLoad;
1119     return true;
1120   case Intrinsic::riscv_masked_strided_store:
1121     Info.opc = ISD::INTRINSIC_VOID;
1122     Info.ptrVal = I.getArgOperand(1);
1123     Info.memVT =
1124         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1125     Info.align = Align(
1126         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1127         8);
1128     Info.size = MemoryLocation::UnknownSize;
1129     Info.flags |= MachineMemOperand::MOStore;
1130     return true;
1131   case Intrinsic::riscv_seg2_load:
1132   case Intrinsic::riscv_seg3_load:
1133   case Intrinsic::riscv_seg4_load:
1134   case Intrinsic::riscv_seg5_load:
1135   case Intrinsic::riscv_seg6_load:
1136   case Intrinsic::riscv_seg7_load:
1137   case Intrinsic::riscv_seg8_load:
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.ptrVal = I.getArgOperand(0);
1140     Info.memVT =
1141         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1142     Info.align =
1143         Align(DL.getTypeSizeInBits(
1144                   I.getType()->getStructElementType(0)->getScalarType()) /
1145               8);
1146     Info.size = MemoryLocation::UnknownSize;
1147     Info.flags |= MachineMemOperand::MOLoad;
1148     return true;
1149   }
1150 }
1151 
1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1153                                                 const AddrMode &AM, Type *Ty,
1154                                                 unsigned AS,
1155                                                 Instruction *I) const {
1156   // No global is ever allowed as a base.
1157   if (AM.BaseGV)
1158     return false;
1159 
1160   // Require a 12-bit signed offset.
1161   if (!isInt<12>(AM.BaseOffs))
1162     return false;
1163 
1164   switch (AM.Scale) {
1165   case 0: // "r+i" or just "i", depending on HasBaseReg.
1166     break;
1167   case 1:
1168     if (!AM.HasBaseReg) // allow "r+i".
1169       break;
1170     return false; // disallow "r+r" or "r+r+i".
1171   default:
1172     return false;
1173   }
1174 
1175   return true;
1176 }
1177 
1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1179   return isInt<12>(Imm);
1180 }
1181 
1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1183   return isInt<12>(Imm);
1184 }
1185 
1186 // On RV32, 64-bit integers are split into their high and low parts and held
1187 // in two different registers, so the trunc is free since the low register can
1188 // just be used.
1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1190   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1191     return false;
1192   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1193   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1194   return (SrcBits == 64 && DestBits == 32);
1195 }
1196 
1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1198   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1199       !SrcVT.isInteger() || !DstVT.isInteger())
1200     return false;
1201   unsigned SrcBits = SrcVT.getSizeInBits();
1202   unsigned DestBits = DstVT.getSizeInBits();
1203   return (SrcBits == 64 && DestBits == 32);
1204 }
1205 
1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1207   // Zexts are free if they can be combined with a load.
1208   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1209   // poorly with type legalization of compares preferring sext.
1210   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1211     EVT MemVT = LD->getMemoryVT();
1212     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1213         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1214          LD->getExtensionType() == ISD::ZEXTLOAD))
1215       return true;
1216   }
1217 
1218   return TargetLowering::isZExtFree(Val, VT2);
1219 }
1220 
1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1222   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1223 }
1224 
1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1226   return Subtarget.hasStdExtZbb();
1227 }
1228 
1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1230   return Subtarget.hasStdExtZbb();
1231 }
1232 
1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1234   EVT VT = Y.getValueType();
1235 
1236   // FIXME: Support vectors once we have tests.
1237   if (VT.isVector())
1238     return false;
1239 
1240   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1241           Subtarget.hasStdExtZbkb()) &&
1242          !isa<ConstantSDNode>(Y);
1243 }
1244 
1245 /// Check if sinking \p I's operands to I's basic block is profitable, because
1246 /// the operands can be folded into a target instruction, e.g.
1247 /// splats of scalars can fold into vector instructions.
1248 bool RISCVTargetLowering::shouldSinkOperands(
1249     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1250   using namespace llvm::PatternMatch;
1251 
1252   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1253     return false;
1254 
1255   auto IsSinker = [&](Instruction *I, int Operand) {
1256     switch (I->getOpcode()) {
1257     case Instruction::Add:
1258     case Instruction::Sub:
1259     case Instruction::Mul:
1260     case Instruction::And:
1261     case Instruction::Or:
1262     case Instruction::Xor:
1263     case Instruction::FAdd:
1264     case Instruction::FSub:
1265     case Instruction::FMul:
1266     case Instruction::FDiv:
1267     case Instruction::ICmp:
1268     case Instruction::FCmp:
1269       return true;
1270     case Instruction::Shl:
1271     case Instruction::LShr:
1272     case Instruction::AShr:
1273     case Instruction::UDiv:
1274     case Instruction::SDiv:
1275     case Instruction::URem:
1276     case Instruction::SRem:
1277       return Operand == 1;
1278     case Instruction::Call:
1279       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1280         switch (II->getIntrinsicID()) {
1281         case Intrinsic::fma:
1282         case Intrinsic::vp_fma:
1283           return Operand == 0 || Operand == 1;
1284         // FIXME: Our patterns can only match vx/vf instructions when the splat
1285         // it on the RHS, because TableGen doesn't recognize our VP operations
1286         // as commutative.
1287         case Intrinsic::vp_add:
1288         case Intrinsic::vp_mul:
1289         case Intrinsic::vp_and:
1290         case Intrinsic::vp_or:
1291         case Intrinsic::vp_xor:
1292         case Intrinsic::vp_fadd:
1293         case Intrinsic::vp_fmul:
1294         case Intrinsic::vp_shl:
1295         case Intrinsic::vp_lshr:
1296         case Intrinsic::vp_ashr:
1297         case Intrinsic::vp_udiv:
1298         case Intrinsic::vp_sdiv:
1299         case Intrinsic::vp_urem:
1300         case Intrinsic::vp_srem:
1301           return Operand == 1;
1302         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1303         // explicit patterns for both LHS and RHS (as 'vr' versions).
1304         case Intrinsic::vp_sub:
1305         case Intrinsic::vp_fsub:
1306         case Intrinsic::vp_fdiv:
1307           return Operand == 0 || Operand == 1;
1308         default:
1309           return false;
1310         }
1311       }
1312       return false;
1313     default:
1314       return false;
1315     }
1316   };
1317 
1318   for (auto OpIdx : enumerate(I->operands())) {
1319     if (!IsSinker(I, OpIdx.index()))
1320       continue;
1321 
1322     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1323     // Make sure we are not already sinking this operand
1324     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1325       continue;
1326 
1327     // We are looking for a splat that can be sunk.
1328     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1329                              m_Undef(), m_ZeroMask())))
1330       continue;
1331 
1332     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1333     // and vector registers
1334     for (Use &U : Op->uses()) {
1335       Instruction *Insn = cast<Instruction>(U.getUser());
1336       if (!IsSinker(Insn, U.getOperandNo()))
1337         return false;
1338     }
1339 
1340     Ops.push_back(&Op->getOperandUse(0));
1341     Ops.push_back(&OpIdx.value());
1342   }
1343   return true;
1344 }
1345 
1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1347                                        bool ForCodeSize) const {
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1350     return false;
1351   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1352     return false;
1353   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1354     return false;
1355   return Imm.isZero();
1356 }
1357 
1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1359   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1360          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1361          (VT == MVT::f64 && Subtarget.hasStdExtD());
1362 }
1363 
1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1365                                                       CallingConv::ID CC,
1366                                                       EVT VT) const {
1367   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1368   // We might still end up using a GPR but that will be decided based on ABI.
1369   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1370   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1371     return MVT::f32;
1372 
1373   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1374 }
1375 
1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1377                                                            CallingConv::ID CC,
1378                                                            EVT VT) const {
1379   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1380   // We might still end up using a GPR but that will be decided based on ABI.
1381   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1382   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1383     return 1;
1384 
1385   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1386 }
1387 
1388 // Changes the condition code and swaps operands if necessary, so the SetCC
1389 // operation matches one of the comparisons supported directly by branches
1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1391 // with 1/-1.
1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1393                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1394   // Convert X > -1 to X >= 0.
1395   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1396     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1397     CC = ISD::SETGE;
1398     return;
1399   }
1400   // Convert X < 1 to 0 >= X.
1401   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1402     RHS = LHS;
1403     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1404     CC = ISD::SETGE;
1405     return;
1406   }
1407 
1408   switch (CC) {
1409   default:
1410     break;
1411   case ISD::SETGT:
1412   case ISD::SETLE:
1413   case ISD::SETUGT:
1414   case ISD::SETULE:
1415     CC = ISD::getSetCCSwappedOperands(CC);
1416     std::swap(LHS, RHS);
1417     break;
1418   }
1419 }
1420 
1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1422   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1423   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1424   if (VT.getVectorElementType() == MVT::i1)
1425     KnownSize *= 8;
1426 
1427   switch (KnownSize) {
1428   default:
1429     llvm_unreachable("Invalid LMUL.");
1430   case 8:
1431     return RISCVII::VLMUL::LMUL_F8;
1432   case 16:
1433     return RISCVII::VLMUL::LMUL_F4;
1434   case 32:
1435     return RISCVII::VLMUL::LMUL_F2;
1436   case 64:
1437     return RISCVII::VLMUL::LMUL_1;
1438   case 128:
1439     return RISCVII::VLMUL::LMUL_2;
1440   case 256:
1441     return RISCVII::VLMUL::LMUL_4;
1442   case 512:
1443     return RISCVII::VLMUL::LMUL_8;
1444   }
1445 }
1446 
1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1448   switch (LMul) {
1449   default:
1450     llvm_unreachable("Invalid LMUL.");
1451   case RISCVII::VLMUL::LMUL_F8:
1452   case RISCVII::VLMUL::LMUL_F4:
1453   case RISCVII::VLMUL::LMUL_F2:
1454   case RISCVII::VLMUL::LMUL_1:
1455     return RISCV::VRRegClassID;
1456   case RISCVII::VLMUL::LMUL_2:
1457     return RISCV::VRM2RegClassID;
1458   case RISCVII::VLMUL::LMUL_4:
1459     return RISCV::VRM4RegClassID;
1460   case RISCVII::VLMUL::LMUL_8:
1461     return RISCV::VRM8RegClassID;
1462   }
1463 }
1464 
1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1466   RISCVII::VLMUL LMUL = getLMUL(VT);
1467   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1468       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1469       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1470       LMUL == RISCVII::VLMUL::LMUL_1) {
1471     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1472                   "Unexpected subreg numbering");
1473     return RISCV::sub_vrm1_0 + Index;
1474   }
1475   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1476     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1477                   "Unexpected subreg numbering");
1478     return RISCV::sub_vrm2_0 + Index;
1479   }
1480   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1481     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1482                   "Unexpected subreg numbering");
1483     return RISCV::sub_vrm4_0 + Index;
1484   }
1485   llvm_unreachable("Invalid vector type.");
1486 }
1487 
1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1489   if (VT.getVectorElementType() == MVT::i1)
1490     return RISCV::VRRegClassID;
1491   return getRegClassIDForLMUL(getLMUL(VT));
1492 }
1493 
1494 // Attempt to decompose a subvector insert/extract between VecVT and
1495 // SubVecVT via subregister indices. Returns the subregister index that
1496 // can perform the subvector insert/extract with the given element index, as
1497 // well as the index corresponding to any leftover subvectors that must be
1498 // further inserted/extracted within the register class for SubVecVT.
1499 std::pair<unsigned, unsigned>
1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1501     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1502     const RISCVRegisterInfo *TRI) {
1503   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1504                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1505                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1506                 "Register classes not ordered");
1507   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1508   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1509   // Try to compose a subregister index that takes us from the incoming
1510   // LMUL>1 register class down to the outgoing one. At each step we half
1511   // the LMUL:
1512   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1513   // Note that this is not guaranteed to find a subregister index, such as
1514   // when we are extracting from one VR type to another.
1515   unsigned SubRegIdx = RISCV::NoSubRegister;
1516   for (const unsigned RCID :
1517        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1518     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1519       VecVT = VecVT.getHalfNumVectorElementsVT();
1520       bool IsHi =
1521           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1522       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1523                                             getSubregIndexByMVT(VecVT, IsHi));
1524       if (IsHi)
1525         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1526     }
1527   return {SubRegIdx, InsertExtractIdx};
1528 }
1529 
1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1531 // stores for those types.
1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1533   return !Subtarget.useRVVForFixedLengthVectors() ||
1534          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1535 }
1536 
1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1538   if (ScalarTy->isPointerTy())
1539     return true;
1540 
1541   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1542       ScalarTy->isIntegerTy(32))
1543     return true;
1544 
1545   if (ScalarTy->isIntegerTy(64))
1546     return Subtarget.hasVInstructionsI64();
1547 
1548   if (ScalarTy->isHalfTy())
1549     return Subtarget.hasVInstructionsF16();
1550   if (ScalarTy->isFloatTy())
1551     return Subtarget.hasVInstructionsF32();
1552   if (ScalarTy->isDoubleTy())
1553     return Subtarget.hasVInstructionsF64();
1554 
1555   return false;
1556 }
1557 
1558 static SDValue getVLOperand(SDValue Op) {
1559   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1560           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1561          "Unexpected opcode");
1562   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1563   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1564   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1565       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1566   if (!II)
1567     return SDValue();
1568   return Op.getOperand(II->VLOperand + 1 + HasChain);
1569 }
1570 
1571 static bool useRVVForFixedLengthVectorVT(MVT VT,
1572                                          const RISCVSubtarget &Subtarget) {
1573   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1574   if (!Subtarget.useRVVForFixedLengthVectors())
1575     return false;
1576 
1577   // We only support a set of vector types with a consistent maximum fixed size
1578   // across all supported vector element types to avoid legalization issues.
1579   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1580   // fixed-length vector type we support is 1024 bytes.
1581   if (VT.getFixedSizeInBits() > 1024 * 8)
1582     return false;
1583 
1584   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1585 
1586   MVT EltVT = VT.getVectorElementType();
1587 
1588   // Don't use RVV for vectors we cannot scalarize if required.
1589   switch (EltVT.SimpleTy) {
1590   // i1 is supported but has different rules.
1591   default:
1592     return false;
1593   case MVT::i1:
1594     // Masks can only use a single register.
1595     if (VT.getVectorNumElements() > MinVLen)
1596       return false;
1597     MinVLen /= 8;
1598     break;
1599   case MVT::i8:
1600   case MVT::i16:
1601   case MVT::i32:
1602     break;
1603   case MVT::i64:
1604     if (!Subtarget.hasVInstructionsI64())
1605       return false;
1606     break;
1607   case MVT::f16:
1608     if (!Subtarget.hasVInstructionsF16())
1609       return false;
1610     break;
1611   case MVT::f32:
1612     if (!Subtarget.hasVInstructionsF32())
1613       return false;
1614     break;
1615   case MVT::f64:
1616     if (!Subtarget.hasVInstructionsF64())
1617       return false;
1618     break;
1619   }
1620 
1621   // Reject elements larger than ELEN.
1622   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1623     return false;
1624 
1625   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1626   // Don't use RVV for types that don't fit.
1627   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1628     return false;
1629 
1630   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1631   // the base fixed length RVV support in place.
1632   if (!VT.isPow2VectorType())
1633     return false;
1634 
1635   return true;
1636 }
1637 
1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1639   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1640 }
1641 
1642 // Return the largest legal scalable vector type that matches VT's element type.
1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1644                                             const RISCVSubtarget &Subtarget) {
1645   // This may be called before legal types are setup.
1646   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1647           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1648          "Expected legal fixed length vector!");
1649 
1650   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1651   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1652 
1653   MVT EltVT = VT.getVectorElementType();
1654   switch (EltVT.SimpleTy) {
1655   default:
1656     llvm_unreachable("unexpected element type for RVV container");
1657   case MVT::i1:
1658   case MVT::i8:
1659   case MVT::i16:
1660   case MVT::i32:
1661   case MVT::i64:
1662   case MVT::f16:
1663   case MVT::f32:
1664   case MVT::f64: {
1665     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1666     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1667     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1668     unsigned NumElts =
1669         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1670     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1671     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1672     return MVT::getScalableVectorVT(EltVT, NumElts);
1673   }
1674   }
1675 }
1676 
1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1678                                             const RISCVSubtarget &Subtarget) {
1679   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1680                                           Subtarget);
1681 }
1682 
1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1684   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1685 }
1686 
1687 // Grow V to consume an entire RVV register.
1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1689                                        const RISCVSubtarget &Subtarget) {
1690   assert(VT.isScalableVector() &&
1691          "Expected to convert into a scalable vector!");
1692   assert(V.getValueType().isFixedLengthVector() &&
1693          "Expected a fixed length vector operand!");
1694   SDLoc DL(V);
1695   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1696   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1697 }
1698 
1699 // Shrink V so it's just big enough to maintain a VT's worth of data.
1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1701                                          const RISCVSubtarget &Subtarget) {
1702   assert(VT.isFixedLengthVector() &&
1703          "Expected to convert into a fixed length vector!");
1704   assert(V.getValueType().isScalableVector() &&
1705          "Expected a scalable vector operand!");
1706   SDLoc DL(V);
1707   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1708   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1709 }
1710 
1711 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1713 // the vector type that it is contained in.
1714 static std::pair<SDValue, SDValue>
1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1716                 const RISCVSubtarget &Subtarget) {
1717   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1718   MVT XLenVT = Subtarget.getXLenVT();
1719   SDValue VL = VecVT.isFixedLengthVector()
1720                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1721                    : DAG.getRegister(RISCV::X0, XLenVT);
1722   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1723   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1724   return {Mask, VL};
1725 }
1726 
1727 // As above but assuming the given type is a scalable vector type.
1728 static std::pair<SDValue, SDValue>
1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1730                         const RISCVSubtarget &Subtarget) {
1731   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1732   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1733 }
1734 
1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1736 // of either is (currently) supported. This can get us into an infinite loop
1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1738 // as a ..., etc.
1739 // Until either (or both) of these can reliably lower any node, reporting that
1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1742 // which is not desirable.
1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1744     EVT VT, unsigned DefinedValues) const {
1745   return false;
1746 }
1747 
1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1749                                   const RISCVSubtarget &Subtarget) {
1750   // RISCV FP-to-int conversions saturate to the destination register size, but
1751   // don't produce 0 for nan. We can use a conversion instruction and fix the
1752   // nan case with a compare and a select.
1753   SDValue Src = Op.getOperand(0);
1754 
1755   EVT DstVT = Op.getValueType();
1756   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757 
1758   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1759   unsigned Opc;
1760   if (SatVT == DstVT)
1761     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1762   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1763     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1764   else
1765     return SDValue();
1766   // FIXME: Support other SatVTs by clamping before or after the conversion.
1767 
1768   SDLoc DL(Op);
1769   SDValue FpToInt = DAG.getNode(
1770       Opc, DL, DstVT, Src,
1771       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1772 
1773   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1774   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1775 }
1776 
1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1778 // and back. Taking care to avoid converting values that are nan or already
1779 // correct.
1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1781 // have FRM dependencies modeled yet.
1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1783   MVT VT = Op.getSimpleValueType();
1784   assert(VT.isVector() && "Unexpected type");
1785 
1786   SDLoc DL(Op);
1787 
1788   // Freeze the source since we are increasing the number of uses.
1789   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1790 
1791   // Truncate to integer and convert back to FP.
1792   MVT IntVT = VT.changeVectorElementTypeToInteger();
1793   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1794   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1795 
1796   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1797 
1798   if (Op.getOpcode() == ISD::FCEIL) {
1799     // If the truncated value is the greater than or equal to the original
1800     // value, we've computed the ceil. Otherwise, we went the wrong way and
1801     // need to increase by 1.
1802     // FIXME: This should use a masked operation. Handle here or in isel?
1803     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1804                                  DAG.getConstantFP(1.0, DL, VT));
1805     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1806     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1807   } else if (Op.getOpcode() == ISD::FFLOOR) {
1808     // If the truncated value is the less than or equal to the original value,
1809     // we've computed the floor. Otherwise, we went the wrong way and need to
1810     // decrease by 1.
1811     // FIXME: This should use a masked operation. Handle here or in isel?
1812     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1813                                  DAG.getConstantFP(1.0, DL, VT));
1814     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1815     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1816   }
1817 
1818   // Restore the original sign so that -0.0 is preserved.
1819   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1820 
1821   // Determine the largest integer that can be represented exactly. This and
1822   // values larger than it don't have any fractional bits so don't need to
1823   // be converted.
1824   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1825   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1826   APFloat MaxVal = APFloat(FltSem);
1827   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1828                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1829   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1830 
1831   // If abs(Src) was larger than MaxVal or nan, keep it.
1832   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1833   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1834   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1835 }
1836 
1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1838 // This mode isn't supported in vector hardware on RISCV. But as long as we
1839 // aren't compiling with trapping math, we can emulate this with
1840 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1842 // dependencies modeled yet.
1843 // FIXME: Use masked operations to avoid final merge.
1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1845   MVT VT = Op.getSimpleValueType();
1846   assert(VT.isVector() && "Unexpected type");
1847 
1848   SDLoc DL(Op);
1849 
1850   // Freeze the source since we are increasing the number of uses.
1851   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1852 
1853   // We do the conversion on the absolute value and fix the sign at the end.
1854   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1855 
1856   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1857   bool Ignored;
1858   APFloat Point5Pred = APFloat(0.5f);
1859   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1860   Point5Pred.next(/*nextDown*/ true);
1861 
1862   // Add the adjustment.
1863   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1864                                DAG.getConstantFP(Point5Pred, DL, VT));
1865 
1866   // Truncate to integer and convert back to fp.
1867   MVT IntVT = VT.changeVectorElementTypeToInteger();
1868   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1869   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1870 
1871   // Restore the original sign.
1872   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1873 
1874   // Determine the largest integer that can be represented exactly. This and
1875   // values larger than it don't have any fractional bits so don't need to
1876   // be converted.
1877   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1878   APFloat MaxVal = APFloat(FltSem);
1879   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1880                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1881   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1882 
1883   // If abs(Src) was larger than MaxVal or nan, keep it.
1884   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1885   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1886   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1887 }
1888 
1889 struct VIDSequence {
1890   int64_t StepNumerator;
1891   unsigned StepDenominator;
1892   int64_t Addend;
1893 };
1894 
1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1896 // to the (non-zero) step S and start value X. This can be then lowered as the
1897 // RVV sequence (VID * S) + X, for example.
1898 // The step S is represented as an integer numerator divided by a positive
1899 // denominator. Note that the implementation currently only identifies
1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1901 // cannot detect 2/3, for example.
1902 // Note that this method will also match potentially unappealing index
1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1904 // determine whether this is worth generating code for.
1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1906   unsigned NumElts = Op.getNumOperands();
1907   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1908   if (!Op.getValueType().isInteger())
1909     return None;
1910 
1911   Optional<unsigned> SeqStepDenom;
1912   Optional<int64_t> SeqStepNum, SeqAddend;
1913   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1914   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1915   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1916     // Assume undef elements match the sequence; we just have to be careful
1917     // when interpolating across them.
1918     if (Op.getOperand(Idx).isUndef())
1919       continue;
1920     // The BUILD_VECTOR must be all constants.
1921     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1922       return None;
1923 
1924     uint64_t Val = Op.getConstantOperandVal(Idx) &
1925                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1926 
1927     if (PrevElt) {
1928       // Calculate the step since the last non-undef element, and ensure
1929       // it's consistent across the entire sequence.
1930       unsigned IdxDiff = Idx - PrevElt->second;
1931       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1932 
1933       // A zero-value value difference means that we're somewhere in the middle
1934       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1935       // step change before evaluating the sequence.
1936       if (ValDiff != 0) {
1937         int64_t Remainder = ValDiff % IdxDiff;
1938         // Normalize the step if it's greater than 1.
1939         if (Remainder != ValDiff) {
1940           // The difference must cleanly divide the element span.
1941           if (Remainder != 0)
1942             return None;
1943           ValDiff /= IdxDiff;
1944           IdxDiff = 1;
1945         }
1946 
1947         if (!SeqStepNum)
1948           SeqStepNum = ValDiff;
1949         else if (ValDiff != SeqStepNum)
1950           return None;
1951 
1952         if (!SeqStepDenom)
1953           SeqStepDenom = IdxDiff;
1954         else if (IdxDiff != *SeqStepDenom)
1955           return None;
1956       }
1957     }
1958 
1959     // Record and/or check any addend.
1960     if (SeqStepNum && SeqStepDenom) {
1961       uint64_t ExpectedVal =
1962           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1963       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1964       if (!SeqAddend)
1965         SeqAddend = Addend;
1966       else if (SeqAddend != Addend)
1967         return None;
1968     }
1969 
1970     // Record this non-undef element for later.
1971     if (!PrevElt || PrevElt->first != Val)
1972       PrevElt = std::make_pair(Val, Idx);
1973   }
1974   // We need to have logged both a step and an addend for this to count as
1975   // a legal index sequence.
1976   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1977     return None;
1978 
1979   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1980 }
1981 
1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1983 // and lower it as a VRGATHER_VX_VL from the source vector.
1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1985                                   SelectionDAG &DAG,
1986                                   const RISCVSubtarget &Subtarget) {
1987   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1988     return SDValue();
1989   SDValue Vec = SplatVal.getOperand(0);
1990   // Only perform this optimization on vectors of the same size for simplicity.
1991   if (Vec.getValueType() != VT)
1992     return SDValue();
1993   SDValue Idx = SplatVal.getOperand(1);
1994   // The index must be a legal type.
1995   if (Idx.getValueType() != Subtarget.getXLenVT())
1996     return SDValue();
1997 
1998   MVT ContainerVT = VT;
1999   if (VT.isFixedLengthVector()) {
2000     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2001     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2002   }
2003 
2004   SDValue Mask, VL;
2005   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2006 
2007   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2008                                Idx, Mask, VL);
2009 
2010   if (!VT.isFixedLengthVector())
2011     return Gather;
2012 
2013   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2014 }
2015 
2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2017                                  const RISCVSubtarget &Subtarget) {
2018   MVT VT = Op.getSimpleValueType();
2019   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2020 
2021   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2022 
2023   SDLoc DL(Op);
2024   SDValue Mask, VL;
2025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2026 
2027   MVT XLenVT = Subtarget.getXLenVT();
2028   unsigned NumElts = Op.getNumOperands();
2029 
2030   if (VT.getVectorElementType() == MVT::i1) {
2031     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2032       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2033       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2034     }
2035 
2036     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2037       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2038       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2039     }
2040 
2041     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2042     // scalar integer chunks whose bit-width depends on the number of mask
2043     // bits and XLEN.
2044     // First, determine the most appropriate scalar integer type to use. This
2045     // is at most XLenVT, but may be shrunk to a smaller vector element type
2046     // according to the size of the final vector - use i8 chunks rather than
2047     // XLenVT if we're producing a v8i1. This results in more consistent
2048     // codegen across RV32 and RV64.
2049     unsigned NumViaIntegerBits =
2050         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2051     NumViaIntegerBits = std::min(NumViaIntegerBits,
2052                                  Subtarget.getMaxELENForFixedLengthVectors());
2053     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2054       // If we have to use more than one INSERT_VECTOR_ELT then this
2055       // optimization is likely to increase code size; avoid peforming it in
2056       // such a case. We can use a load from a constant pool in this case.
2057       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2058         return SDValue();
2059       // Now we can create our integer vector type. Note that it may be larger
2060       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2061       MVT IntegerViaVecVT =
2062           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2063                            divideCeil(NumElts, NumViaIntegerBits));
2064 
2065       uint64_t Bits = 0;
2066       unsigned BitPos = 0, IntegerEltIdx = 0;
2067       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2068 
2069       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2070         // Once we accumulate enough bits to fill our scalar type, insert into
2071         // our vector and clear our accumulated data.
2072         if (I != 0 && I % NumViaIntegerBits == 0) {
2073           if (NumViaIntegerBits <= 32)
2074             Bits = SignExtend64(Bits, 32);
2075           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2076           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2077                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2078           Bits = 0;
2079           BitPos = 0;
2080           IntegerEltIdx++;
2081         }
2082         SDValue V = Op.getOperand(I);
2083         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2084         Bits |= ((uint64_t)BitValue << BitPos);
2085       }
2086 
2087       // Insert the (remaining) scalar value into position in our integer
2088       // vector type.
2089       if (NumViaIntegerBits <= 32)
2090         Bits = SignExtend64(Bits, 32);
2091       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2092       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2093                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2094 
2095       if (NumElts < NumViaIntegerBits) {
2096         // If we're producing a smaller vector than our minimum legal integer
2097         // type, bitcast to the equivalent (known-legal) mask type, and extract
2098         // our final mask.
2099         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2100         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2101         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2102                           DAG.getConstant(0, DL, XLenVT));
2103       } else {
2104         // Else we must have produced an integer type with the same size as the
2105         // mask type; bitcast for the final result.
2106         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2107         Vec = DAG.getBitcast(VT, Vec);
2108       }
2109 
2110       return Vec;
2111     }
2112 
2113     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2114     // vector type, we have a legal equivalently-sized i8 type, so we can use
2115     // that.
2116     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2117     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2118 
2119     SDValue WideVec;
2120     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2121       // For a splat, perform a scalar truncate before creating the wider
2122       // vector.
2123       assert(Splat.getValueType() == XLenVT &&
2124              "Unexpected type for i1 splat value");
2125       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2126                           DAG.getConstant(1, DL, XLenVT));
2127       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2128     } else {
2129       SmallVector<SDValue, 8> Ops(Op->op_values());
2130       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2131       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2132       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2133     }
2134 
2135     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2136   }
2137 
2138   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2139     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2140       return Gather;
2141     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2142                                         : RISCVISD::VMV_V_X_VL;
2143     Splat =
2144         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2145     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2146   }
2147 
2148   // Try and match index sequences, which we can lower to the vid instruction
2149   // with optional modifications. An all-undef vector is matched by
2150   // getSplatValue, above.
2151   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2152     int64_t StepNumerator = SimpleVID->StepNumerator;
2153     unsigned StepDenominator = SimpleVID->StepDenominator;
2154     int64_t Addend = SimpleVID->Addend;
2155 
2156     assert(StepNumerator != 0 && "Invalid step");
2157     bool Negate = false;
2158     int64_t SplatStepVal = StepNumerator;
2159     unsigned StepOpcode = ISD::MUL;
2160     if (StepNumerator != 1) {
2161       if (isPowerOf2_64(std::abs(StepNumerator))) {
2162         Negate = StepNumerator < 0;
2163         StepOpcode = ISD::SHL;
2164         SplatStepVal = Log2_64(std::abs(StepNumerator));
2165       }
2166     }
2167 
2168     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2169     // threshold since it's the immediate value many RVV instructions accept.
2170     // There is no vmul.vi instruction so ensure multiply constant can fit in
2171     // a single addi instruction.
2172     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2173          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2174         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2175       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2176       // Convert right out of the scalable type so we can use standard ISD
2177       // nodes for the rest of the computation. If we used scalable types with
2178       // these, we'd lose the fixed-length vector info and generate worse
2179       // vsetvli code.
2180       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2181       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2182           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2183         SDValue SplatStep = DAG.getSplatVector(
2184             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2185         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2186       }
2187       if (StepDenominator != 1) {
2188         SDValue SplatStep = DAG.getSplatVector(
2189             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2190         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2191       }
2192       if (Addend != 0 || Negate) {
2193         SDValue SplatAddend =
2194             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2195         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2196       }
2197       return VID;
2198     }
2199   }
2200 
2201   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2202   // when re-interpreted as a vector with a larger element type. For example,
2203   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2204   // could be instead splat as
2205   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2206   // TODO: This optimization could also work on non-constant splats, but it
2207   // would require bit-manipulation instructions to construct the splat value.
2208   SmallVector<SDValue> Sequence;
2209   unsigned EltBitSize = VT.getScalarSizeInBits();
2210   const auto *BV = cast<BuildVectorSDNode>(Op);
2211   if (VT.isInteger() && EltBitSize < 64 &&
2212       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2213       BV->getRepeatedSequence(Sequence) &&
2214       (Sequence.size() * EltBitSize) <= 64) {
2215     unsigned SeqLen = Sequence.size();
2216     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2217     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2218     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2219             ViaIntVT == MVT::i64) &&
2220            "Unexpected sequence type");
2221 
2222     unsigned EltIdx = 0;
2223     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2224     uint64_t SplatValue = 0;
2225     // Construct the amalgamated value which can be splatted as this larger
2226     // vector type.
2227     for (const auto &SeqV : Sequence) {
2228       if (!SeqV.isUndef())
2229         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2230                        << (EltIdx * EltBitSize));
2231       EltIdx++;
2232     }
2233 
2234     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2235     // achieve better constant materializion.
2236     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2237       SplatValue = SignExtend64(SplatValue, 32);
2238 
2239     // Since we can't introduce illegal i64 types at this stage, we can only
2240     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2241     // way we can use RVV instructions to splat.
2242     assert((ViaIntVT.bitsLE(XLenVT) ||
2243             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2244            "Unexpected bitcast sequence");
2245     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2246       SDValue ViaVL =
2247           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2248       MVT ViaContainerVT =
2249           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2250       SDValue Splat =
2251           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2252                       DAG.getUNDEF(ViaContainerVT),
2253                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2254       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2255       return DAG.getBitcast(VT, Splat);
2256     }
2257   }
2258 
2259   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2260   // which constitute a large proportion of the elements. In such cases we can
2261   // splat a vector with the dominant element and make up the shortfall with
2262   // INSERT_VECTOR_ELTs.
2263   // Note that this includes vectors of 2 elements by association. The
2264   // upper-most element is the "dominant" one, allowing us to use a splat to
2265   // "insert" the upper element, and an insert of the lower element at position
2266   // 0, which improves codegen.
2267   SDValue DominantValue;
2268   unsigned MostCommonCount = 0;
2269   DenseMap<SDValue, unsigned> ValueCounts;
2270   unsigned NumUndefElts =
2271       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2272 
2273   // Track the number of scalar loads we know we'd be inserting, estimated as
2274   // any non-zero floating-point constant. Other kinds of element are either
2275   // already in registers or are materialized on demand. The threshold at which
2276   // a vector load is more desirable than several scalar materializion and
2277   // vector-insertion instructions is not known.
2278   unsigned NumScalarLoads = 0;
2279 
2280   for (SDValue V : Op->op_values()) {
2281     if (V.isUndef())
2282       continue;
2283 
2284     ValueCounts.insert(std::make_pair(V, 0));
2285     unsigned &Count = ValueCounts[V];
2286 
2287     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2288       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2289 
2290     // Is this value dominant? In case of a tie, prefer the highest element as
2291     // it's cheaper to insert near the beginning of a vector than it is at the
2292     // end.
2293     if (++Count >= MostCommonCount) {
2294       DominantValue = V;
2295       MostCommonCount = Count;
2296     }
2297   }
2298 
2299   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2300   unsigned NumDefElts = NumElts - NumUndefElts;
2301   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2302 
2303   // Don't perform this optimization when optimizing for size, since
2304   // materializing elements and inserting them tends to cause code bloat.
2305   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2306       ((MostCommonCount > DominantValueCountThreshold) ||
2307        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2308     // Start by splatting the most common element.
2309     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2310 
2311     DenseSet<SDValue> Processed{DominantValue};
2312     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2313     for (const auto &OpIdx : enumerate(Op->ops())) {
2314       const SDValue &V = OpIdx.value();
2315       if (V.isUndef() || !Processed.insert(V).second)
2316         continue;
2317       if (ValueCounts[V] == 1) {
2318         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2319                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2320       } else {
2321         // Blend in all instances of this value using a VSELECT, using a
2322         // mask where each bit signals whether that element is the one
2323         // we're after.
2324         SmallVector<SDValue> Ops;
2325         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2326           return DAG.getConstant(V == V1, DL, XLenVT);
2327         });
2328         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2329                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2330                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2331       }
2332     }
2333 
2334     return Vec;
2335   }
2336 
2337   return SDValue();
2338 }
2339 
2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2341                                    SDValue Lo, SDValue Hi, SDValue VL,
2342                                    SelectionDAG &DAG) {
2343   if (!Passthru)
2344     Passthru = DAG.getUNDEF(VT);
2345   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2346     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2347     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2348     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2349     // node in order to try and match RVV vector/scalar instructions.
2350     if ((LoC >> 31) == HiC)
2351       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2352 
2353     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2354     // vmv.v.x whose EEW = 32 to lower it.
2355     auto *Const = dyn_cast<ConstantSDNode>(VL);
2356     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2357       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2358       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2359       // access the subtarget here now.
2360       auto InterVec = DAG.getNode(
2361           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2362                                   DAG.getRegister(RISCV::X0, MVT::i32));
2363       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2364     }
2365   }
2366 
2367   // Fall back to a stack store and stride x0 vector load.
2368   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2369                      Hi, VL);
2370 }
2371 
2372 // Called by type legalization to handle splat of i64 on RV32.
2373 // FIXME: We can optimize this when the type has sign or zero bits in one
2374 // of the halves.
2375 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2376                                    SDValue Scalar, SDValue VL,
2377                                    SelectionDAG &DAG) {
2378   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2379   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2380                            DAG.getConstant(0, DL, MVT::i32));
2381   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2382                            DAG.getConstant(1, DL, MVT::i32));
2383   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2384 }
2385 
2386 // This function lowers a splat of a scalar operand Splat with the vector
2387 // length VL. It ensures the final sequence is type legal, which is useful when
2388 // lowering a splat after type legalization.
2389 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2390                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2391                                 const RISCVSubtarget &Subtarget) {
2392   bool HasPassthru = Passthru && !Passthru.isUndef();
2393   if (!HasPassthru && !Passthru)
2394     Passthru = DAG.getUNDEF(VT);
2395   if (VT.isFloatingPoint()) {
2396     // If VL is 1, we could use vfmv.s.f.
2397     if (isOneConstant(VL))
2398       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2399     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2400   }
2401 
2402   MVT XLenVT = Subtarget.getXLenVT();
2403 
2404   // Simplest case is that the operand needs to be promoted to XLenVT.
2405   if (Scalar.getValueType().bitsLE(XLenVT)) {
2406     // If the operand is a constant, sign extend to increase our chances
2407     // of being able to use a .vi instruction. ANY_EXTEND would become a
2408     // a zero extend and the simm5 check in isel would fail.
2409     // FIXME: Should we ignore the upper bits in isel instead?
2410     unsigned ExtOpc =
2411         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2412     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2413     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2414     // If VL is 1 and the scalar value won't benefit from immediate, we could
2415     // use vmv.s.x.
2416     if (isOneConstant(VL) &&
2417         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2418       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2419     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2420   }
2421 
2422   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2423          "Unexpected scalar for splat lowering!");
2424 
2425   if (isOneConstant(VL) && isNullConstant(Scalar))
2426     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2427                        DAG.getConstant(0, DL, XLenVT), VL);
2428 
2429   // Otherwise use the more complicated splatting algorithm.
2430   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2431 }
2432 
2433 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2434                                 const RISCVSubtarget &Subtarget) {
2435   // We need to be able to widen elements to the next larger integer type.
2436   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2437     return false;
2438 
2439   int Size = Mask.size();
2440   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2441 
2442   int Srcs[] = {-1, -1};
2443   for (int i = 0; i != Size; ++i) {
2444     // Ignore undef elements.
2445     if (Mask[i] < 0)
2446       continue;
2447 
2448     // Is this an even or odd element.
2449     int Pol = i % 2;
2450 
2451     // Ensure we consistently use the same source for this element polarity.
2452     int Src = Mask[i] / Size;
2453     if (Srcs[Pol] < 0)
2454       Srcs[Pol] = Src;
2455     if (Srcs[Pol] != Src)
2456       return false;
2457 
2458     // Make sure the element within the source is appropriate for this element
2459     // in the destination.
2460     int Elt = Mask[i] % Size;
2461     if (Elt != i / 2)
2462       return false;
2463   }
2464 
2465   // We need to find a source for each polarity and they can't be the same.
2466   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2467     return false;
2468 
2469   // Swap the sources if the second source was in the even polarity.
2470   SwapSources = Srcs[0] > Srcs[1];
2471 
2472   return true;
2473 }
2474 
2475 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2476 /// and then extract the original number of elements from the rotated result.
2477 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2478 /// returned rotation amount is for a rotate right, where elements move from
2479 /// higher elements to lower elements. \p LoSrc indicates the first source
2480 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2481 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2482 /// 0 or 1 if a rotation is found.
2483 ///
2484 /// NOTE: We talk about rotate to the right which matches how bit shift and
2485 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2486 /// and the table below write vectors with the lowest elements on the left.
2487 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2488   int Size = Mask.size();
2489 
2490   // We need to detect various ways of spelling a rotation:
2491   //   [11, 12, 13, 14, 15,  0,  1,  2]
2492   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2493   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2494   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2495   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2496   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2497   int Rotation = 0;
2498   LoSrc = -1;
2499   HiSrc = -1;
2500   for (int i = 0; i != Size; ++i) {
2501     int M = Mask[i];
2502     if (M < 0)
2503       continue;
2504 
2505     // Determine where a rotate vector would have started.
2506     int StartIdx = i - (M % Size);
2507     // The identity rotation isn't interesting, stop.
2508     if (StartIdx == 0)
2509       return -1;
2510 
2511     // If we found the tail of a vector the rotation must be the missing
2512     // front. If we found the head of a vector, it must be how much of the
2513     // head.
2514     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2515 
2516     if (Rotation == 0)
2517       Rotation = CandidateRotation;
2518     else if (Rotation != CandidateRotation)
2519       // The rotations don't match, so we can't match this mask.
2520       return -1;
2521 
2522     // Compute which value this mask is pointing at.
2523     int MaskSrc = M < Size ? 0 : 1;
2524 
2525     // Compute which of the two target values this index should be assigned to.
2526     // This reflects whether the high elements are remaining or the low elemnts
2527     // are remaining.
2528     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2529 
2530     // Either set up this value if we've not encountered it before, or check
2531     // that it remains consistent.
2532     if (TargetSrc < 0)
2533       TargetSrc = MaskSrc;
2534     else if (TargetSrc != MaskSrc)
2535       // This may be a rotation, but it pulls from the inputs in some
2536       // unsupported interleaving.
2537       return -1;
2538   }
2539 
2540   // Check that we successfully analyzed the mask, and normalize the results.
2541   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2542   assert((LoSrc >= 0 || HiSrc >= 0) &&
2543          "Failed to find a rotated input vector!");
2544 
2545   return Rotation;
2546 }
2547 
2548 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2549                                    const RISCVSubtarget &Subtarget) {
2550   SDValue V1 = Op.getOperand(0);
2551   SDValue V2 = Op.getOperand(1);
2552   SDLoc DL(Op);
2553   MVT XLenVT = Subtarget.getXLenVT();
2554   MVT VT = Op.getSimpleValueType();
2555   unsigned NumElts = VT.getVectorNumElements();
2556   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2557 
2558   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2559 
2560   SDValue TrueMask, VL;
2561   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2562 
2563   if (SVN->isSplat()) {
2564     const int Lane = SVN->getSplatIndex();
2565     if (Lane >= 0) {
2566       MVT SVT = VT.getVectorElementType();
2567 
2568       // Turn splatted vector load into a strided load with an X0 stride.
2569       SDValue V = V1;
2570       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2571       // with undef.
2572       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2573       int Offset = Lane;
2574       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2575         int OpElements =
2576             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2577         V = V.getOperand(Offset / OpElements);
2578         Offset %= OpElements;
2579       }
2580 
2581       // We need to ensure the load isn't atomic or volatile.
2582       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2583         auto *Ld = cast<LoadSDNode>(V);
2584         Offset *= SVT.getStoreSize();
2585         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2586                                                    TypeSize::Fixed(Offset), DL);
2587 
2588         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2589         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2590           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2591           SDValue IntID =
2592               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2593           SDValue Ops[] = {Ld->getChain(),
2594                            IntID,
2595                            DAG.getUNDEF(ContainerVT),
2596                            NewAddr,
2597                            DAG.getRegister(RISCV::X0, XLenVT),
2598                            VL};
2599           SDValue NewLoad = DAG.getMemIntrinsicNode(
2600               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2601               DAG.getMachineFunction().getMachineMemOperand(
2602                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2603           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2604           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2605         }
2606 
2607         // Otherwise use a scalar load and splat. This will give the best
2608         // opportunity to fold a splat into the operation. ISel can turn it into
2609         // the x0 strided load if we aren't able to fold away the select.
2610         if (SVT.isFloatingPoint())
2611           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2612                           Ld->getPointerInfo().getWithOffset(Offset),
2613                           Ld->getOriginalAlign(),
2614                           Ld->getMemOperand()->getFlags());
2615         else
2616           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2617                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2618                              Ld->getOriginalAlign(),
2619                              Ld->getMemOperand()->getFlags());
2620         DAG.makeEquivalentMemoryOrdering(Ld, V);
2621 
2622         unsigned Opc =
2623             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2624         SDValue Splat =
2625             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2626         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2627       }
2628 
2629       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2630       assert(Lane < (int)NumElts && "Unexpected lane!");
2631       SDValue Gather =
2632           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2633                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2634       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2635     }
2636   }
2637 
2638   ArrayRef<int> Mask = SVN->getMask();
2639 
2640   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2641   // be undef which can be handled with a single SLIDEDOWN/UP.
2642   int LoSrc, HiSrc;
2643   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2644   if (Rotation > 0) {
2645     SDValue LoV, HiV;
2646     if (LoSrc >= 0) {
2647       LoV = LoSrc == 0 ? V1 : V2;
2648       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2649     }
2650     if (HiSrc >= 0) {
2651       HiV = HiSrc == 0 ? V1 : V2;
2652       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2653     }
2654 
2655     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2656     // to slide LoV up by (NumElts - Rotation).
2657     unsigned InvRotate = NumElts - Rotation;
2658 
2659     SDValue Res = DAG.getUNDEF(ContainerVT);
2660     if (HiV) {
2661       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2662       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2663       // causes multiple vsetvlis in some test cases such as lowering
2664       // reduce.mul
2665       SDValue DownVL = VL;
2666       if (LoV)
2667         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2668       Res =
2669           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2670                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2671     }
2672     if (LoV)
2673       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2674                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2675 
2676     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2677   }
2678 
2679   // Detect an interleave shuffle and lower to
2680   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2681   bool SwapSources;
2682   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2683     // Swap sources if needed.
2684     if (SwapSources)
2685       std::swap(V1, V2);
2686 
2687     // Extract the lower half of the vectors.
2688     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2689     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2690                      DAG.getConstant(0, DL, XLenVT));
2691     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2692                      DAG.getConstant(0, DL, XLenVT));
2693 
2694     // Double the element width and halve the number of elements in an int type.
2695     unsigned EltBits = VT.getScalarSizeInBits();
2696     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2697     MVT WideIntVT =
2698         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2699     // Convert this to a scalable vector. We need to base this on the
2700     // destination size to ensure there's always a type with a smaller LMUL.
2701     MVT WideIntContainerVT =
2702         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2703 
2704     // Convert sources to scalable vectors with the same element count as the
2705     // larger type.
2706     MVT HalfContainerVT = MVT::getVectorVT(
2707         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2708     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2709     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2710 
2711     // Cast sources to integer.
2712     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2713     MVT IntHalfVT =
2714         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2715     V1 = DAG.getBitcast(IntHalfVT, V1);
2716     V2 = DAG.getBitcast(IntHalfVT, V2);
2717 
2718     // Freeze V2 since we use it twice and we need to be sure that the add and
2719     // multiply see the same value.
2720     V2 = DAG.getFreeze(V2);
2721 
2722     // Recreate TrueMask using the widened type's element count.
2723     MVT MaskVT =
2724         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2725     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2726 
2727     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2728     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2729                               V2, TrueMask, VL);
2730     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2731     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2732                                      DAG.getUNDEF(IntHalfVT),
2733                                      DAG.getAllOnesConstant(DL, XLenVT));
2734     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2735                                    V2, Multiplier, TrueMask, VL);
2736     // Add the new copies to our previous addition giving us 2^eltbits copies of
2737     // V2. This is equivalent to shifting V2 left by eltbits. This should
2738     // combine with the vwmulu.vv above to form vwmaccu.vv.
2739     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2740                       TrueMask, VL);
2741     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2742     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2743     // vector VT.
2744     ContainerVT =
2745         MVT::getVectorVT(VT.getVectorElementType(),
2746                          WideIntContainerVT.getVectorElementCount() * 2);
2747     Add = DAG.getBitcast(ContainerVT, Add);
2748     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2749   }
2750 
2751   // Detect shuffles which can be re-expressed as vector selects; these are
2752   // shuffles in which each element in the destination is taken from an element
2753   // at the corresponding index in either source vectors.
2754   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2755     int MaskIndex = MaskIdx.value();
2756     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2757   });
2758 
2759   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2760 
2761   SmallVector<SDValue> MaskVals;
2762   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2763   // merged with a second vrgather.
2764   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2765 
2766   // By default we preserve the original operand order, and use a mask to
2767   // select LHS as true and RHS as false. However, since RVV vector selects may
2768   // feature splats but only on the LHS, we may choose to invert our mask and
2769   // instead select between RHS and LHS.
2770   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2771   bool InvertMask = IsSelect == SwapOps;
2772 
2773   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2774   // half.
2775   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2776 
2777   // Now construct the mask that will be used by the vselect or blended
2778   // vrgather operation. For vrgathers, construct the appropriate indices into
2779   // each vector.
2780   for (int MaskIndex : Mask) {
2781     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2782     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2783     if (!IsSelect) {
2784       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2785       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2786                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2787                                      : DAG.getUNDEF(XLenVT));
2788       GatherIndicesRHS.push_back(
2789           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2790                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2791       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2792         ++LHSIndexCounts[MaskIndex];
2793       if (!IsLHSOrUndefIndex)
2794         ++RHSIndexCounts[MaskIndex - NumElts];
2795     }
2796   }
2797 
2798   if (SwapOps) {
2799     std::swap(V1, V2);
2800     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2801   }
2802 
2803   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2804   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2805   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2806 
2807   if (IsSelect)
2808     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2809 
2810   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2811     // On such a large vector we're unable to use i8 as the index type.
2812     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2813     // may involve vector splitting if we're already at LMUL=8, or our
2814     // user-supplied maximum fixed-length LMUL.
2815     return SDValue();
2816   }
2817 
2818   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2819   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2820   MVT IndexVT = VT.changeTypeToInteger();
2821   // Since we can't introduce illegal index types at this stage, use i16 and
2822   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2823   // than XLenVT.
2824   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2825     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2826     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2827   }
2828 
2829   MVT IndexContainerVT =
2830       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2831 
2832   SDValue Gather;
2833   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2834   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2835   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2836     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2837                               Subtarget);
2838   } else {
2839     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2840     // If only one index is used, we can use a "splat" vrgather.
2841     // TODO: We can splat the most-common index and fix-up any stragglers, if
2842     // that's beneficial.
2843     if (LHSIndexCounts.size() == 1) {
2844       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2845       Gather =
2846           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2847                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2848     } else {
2849       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2850       LHSIndices =
2851           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2852 
2853       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2854                            TrueMask, VL);
2855     }
2856   }
2857 
2858   // If a second vector operand is used by this shuffle, blend it in with an
2859   // additional vrgather.
2860   if (!V2.isUndef()) {
2861     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2862     // If only one index is used, we can use a "splat" vrgather.
2863     // TODO: We can splat the most-common index and fix-up any stragglers, if
2864     // that's beneficial.
2865     if (RHSIndexCounts.size() == 1) {
2866       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2867       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2868                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2869     } else {
2870       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2871       RHSIndices =
2872           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2873       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2874                        VL);
2875     }
2876 
2877     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2878     SelectMask =
2879         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2880 
2881     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2882                          Gather, VL);
2883   }
2884 
2885   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2886 }
2887 
2888 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2889   // Support splats for any type. These should type legalize well.
2890   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2891     return true;
2892 
2893   // Only support legal VTs for other shuffles for now.
2894   if (!isTypeLegal(VT))
2895     return false;
2896 
2897   MVT SVT = VT.getSimpleVT();
2898 
2899   bool SwapSources;
2900   int LoSrc, HiSrc;
2901   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2902          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2903 }
2904 
2905 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2906                                      SDLoc DL, SelectionDAG &DAG,
2907                                      const RISCVSubtarget &Subtarget) {
2908   if (VT.isScalableVector())
2909     return DAG.getFPExtendOrRound(Op, DL, VT);
2910   assert(VT.isFixedLengthVector() &&
2911          "Unexpected value type for RVV FP extend/round lowering");
2912   SDValue Mask, VL;
2913   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2914   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2915                         ? RISCVISD::FP_EXTEND_VL
2916                         : RISCVISD::FP_ROUND_VL;
2917   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2918 }
2919 
2920 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2921 // the exponent.
2922 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2923   MVT VT = Op.getSimpleValueType();
2924   unsigned EltSize = VT.getScalarSizeInBits();
2925   SDValue Src = Op.getOperand(0);
2926   SDLoc DL(Op);
2927 
2928   // We need a FP type that can represent the value.
2929   // TODO: Use f16 for i8 when possible?
2930   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2931   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2932 
2933   // Legal types should have been checked in the RISCVTargetLowering
2934   // constructor.
2935   // TODO: Splitting may make sense in some cases.
2936   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2937          "Expected legal float type!");
2938 
2939   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2940   // The trailing zero count is equal to log2 of this single bit value.
2941   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2942     SDValue Neg =
2943         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2944     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2945   }
2946 
2947   // We have a legal FP type, convert to it.
2948   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2949   // Bitcast to integer and shift the exponent to the LSB.
2950   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2951   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2952   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2953   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2954                               DAG.getConstant(ShiftAmt, DL, IntVT));
2955   // Truncate back to original type to allow vnsrl.
2956   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2957   // The exponent contains log2 of the value in biased form.
2958   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2959 
2960   // For trailing zeros, we just need to subtract the bias.
2961   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2962     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2963                        DAG.getConstant(ExponentBias, DL, VT));
2964 
2965   // For leading zeros, we need to remove the bias and convert from log2 to
2966   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2967   unsigned Adjust = ExponentBias + (EltSize - 1);
2968   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2969 }
2970 
2971 // While RVV has alignment restrictions, we should always be able to load as a
2972 // legal equivalently-sized byte-typed vector instead. This method is
2973 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2974 // the load is already correctly-aligned, it returns SDValue().
2975 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2976                                                     SelectionDAG &DAG) const {
2977   auto *Load = cast<LoadSDNode>(Op);
2978   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2979 
2980   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2981                                      Load->getMemoryVT(),
2982                                      *Load->getMemOperand()))
2983     return SDValue();
2984 
2985   SDLoc DL(Op);
2986   MVT VT = Op.getSimpleValueType();
2987   unsigned EltSizeBits = VT.getScalarSizeInBits();
2988   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2989          "Unexpected unaligned RVV load type");
2990   MVT NewVT =
2991       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2992   assert(NewVT.isValid() &&
2993          "Expecting equally-sized RVV vector types to be legal");
2994   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2995                           Load->getPointerInfo(), Load->getOriginalAlign(),
2996                           Load->getMemOperand()->getFlags());
2997   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2998 }
2999 
3000 // While RVV has alignment restrictions, we should always be able to store as a
3001 // legal equivalently-sized byte-typed vector instead. This method is
3002 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3003 // returns SDValue() if the store is already correctly aligned.
3004 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3005                                                      SelectionDAG &DAG) const {
3006   auto *Store = cast<StoreSDNode>(Op);
3007   assert(Store && Store->getValue().getValueType().isVector() &&
3008          "Expected vector store");
3009 
3010   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3011                                      Store->getMemoryVT(),
3012                                      *Store->getMemOperand()))
3013     return SDValue();
3014 
3015   SDLoc DL(Op);
3016   SDValue StoredVal = Store->getValue();
3017   MVT VT = StoredVal.getSimpleValueType();
3018   unsigned EltSizeBits = VT.getScalarSizeInBits();
3019   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3020          "Unexpected unaligned RVV store type");
3021   MVT NewVT =
3022       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3023   assert(NewVT.isValid() &&
3024          "Expecting equally-sized RVV vector types to be legal");
3025   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3026   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3027                       Store->getPointerInfo(), Store->getOriginalAlign(),
3028                       Store->getMemOperand()->getFlags());
3029 }
3030 
3031 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3032                                             SelectionDAG &DAG) const {
3033   switch (Op.getOpcode()) {
3034   default:
3035     report_fatal_error("unimplemented operand");
3036   case ISD::GlobalAddress:
3037     return lowerGlobalAddress(Op, DAG);
3038   case ISD::BlockAddress:
3039     return lowerBlockAddress(Op, DAG);
3040   case ISD::ConstantPool:
3041     return lowerConstantPool(Op, DAG);
3042   case ISD::JumpTable:
3043     return lowerJumpTable(Op, DAG);
3044   case ISD::GlobalTLSAddress:
3045     return lowerGlobalTLSAddress(Op, DAG);
3046   case ISD::SELECT:
3047     return lowerSELECT(Op, DAG);
3048   case ISD::BRCOND:
3049     return lowerBRCOND(Op, DAG);
3050   case ISD::VASTART:
3051     return lowerVASTART(Op, DAG);
3052   case ISD::FRAMEADDR:
3053     return lowerFRAMEADDR(Op, DAG);
3054   case ISD::RETURNADDR:
3055     return lowerRETURNADDR(Op, DAG);
3056   case ISD::SHL_PARTS:
3057     return lowerShiftLeftParts(Op, DAG);
3058   case ISD::SRA_PARTS:
3059     return lowerShiftRightParts(Op, DAG, true);
3060   case ISD::SRL_PARTS:
3061     return lowerShiftRightParts(Op, DAG, false);
3062   case ISD::BITCAST: {
3063     SDLoc DL(Op);
3064     EVT VT = Op.getValueType();
3065     SDValue Op0 = Op.getOperand(0);
3066     EVT Op0VT = Op0.getValueType();
3067     MVT XLenVT = Subtarget.getXLenVT();
3068     if (VT.isFixedLengthVector()) {
3069       // We can handle fixed length vector bitcasts with a simple replacement
3070       // in isel.
3071       if (Op0VT.isFixedLengthVector())
3072         return Op;
3073       // When bitcasting from scalar to fixed-length vector, insert the scalar
3074       // into a one-element vector of the result type, and perform a vector
3075       // bitcast.
3076       if (!Op0VT.isVector()) {
3077         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3078         if (!isTypeLegal(BVT))
3079           return SDValue();
3080         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3081                                               DAG.getUNDEF(BVT), Op0,
3082                                               DAG.getConstant(0, DL, XLenVT)));
3083       }
3084       return SDValue();
3085     }
3086     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3087     // thus: bitcast the vector to a one-element vector type whose element type
3088     // is the same as the result type, and extract the first element.
3089     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3090       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3091       if (!isTypeLegal(BVT))
3092         return SDValue();
3093       SDValue BVec = DAG.getBitcast(BVT, Op0);
3094       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3095                          DAG.getConstant(0, DL, XLenVT));
3096     }
3097     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3098       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3099       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3100       return FPConv;
3101     }
3102     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3103         Subtarget.hasStdExtF()) {
3104       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3105       SDValue FPConv =
3106           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3107       return FPConv;
3108     }
3109     return SDValue();
3110   }
3111   case ISD::INTRINSIC_WO_CHAIN:
3112     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3113   case ISD::INTRINSIC_W_CHAIN:
3114     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3115   case ISD::INTRINSIC_VOID:
3116     return LowerINTRINSIC_VOID(Op, DAG);
3117   case ISD::BSWAP:
3118   case ISD::BITREVERSE: {
3119     MVT VT = Op.getSimpleValueType();
3120     SDLoc DL(Op);
3121     if (Subtarget.hasStdExtZbp()) {
3122       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3123       // Start with the maximum immediate value which is the bitwidth - 1.
3124       unsigned Imm = VT.getSizeInBits() - 1;
3125       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3126       if (Op.getOpcode() == ISD::BSWAP)
3127         Imm &= ~0x7U;
3128       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3129                          DAG.getConstant(Imm, DL, VT));
3130     }
3131     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3132     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3133     // Expand bitreverse to a bswap(rev8) followed by brev8.
3134     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3135     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3136     // as brev8 by an isel pattern.
3137     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3138                        DAG.getConstant(7, DL, VT));
3139   }
3140   case ISD::FSHL:
3141   case ISD::FSHR: {
3142     MVT VT = Op.getSimpleValueType();
3143     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3144     SDLoc DL(Op);
3145     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3146     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3147     // accidentally setting the extra bit.
3148     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3149     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3150                                 DAG.getConstant(ShAmtWidth, DL, VT));
3151     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3152     // instruction use different orders. fshl will return its first operand for
3153     // shift of zero, fshr will return its second operand. fsl and fsr both
3154     // return rs1 so the ISD nodes need to have different operand orders.
3155     // Shift amount is in rs2.
3156     SDValue Op0 = Op.getOperand(0);
3157     SDValue Op1 = Op.getOperand(1);
3158     unsigned Opc = RISCVISD::FSL;
3159     if (Op.getOpcode() == ISD::FSHR) {
3160       std::swap(Op0, Op1);
3161       Opc = RISCVISD::FSR;
3162     }
3163     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3164   }
3165   case ISD::TRUNCATE: {
3166     SDLoc DL(Op);
3167     MVT VT = Op.getSimpleValueType();
3168     // Only custom-lower vector truncates
3169     if (!VT.isVector())
3170       return Op;
3171 
3172     // Truncates to mask types are handled differently
3173     if (VT.getVectorElementType() == MVT::i1)
3174       return lowerVectorMaskTrunc(Op, DAG);
3175 
3176     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3177     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3178     // truncate by one power of two at a time.
3179     MVT DstEltVT = VT.getVectorElementType();
3180 
3181     SDValue Src = Op.getOperand(0);
3182     MVT SrcVT = Src.getSimpleValueType();
3183     MVT SrcEltVT = SrcVT.getVectorElementType();
3184 
3185     assert(DstEltVT.bitsLT(SrcEltVT) &&
3186            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3187            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3188            "Unexpected vector truncate lowering");
3189 
3190     MVT ContainerVT = SrcVT;
3191     if (SrcVT.isFixedLengthVector()) {
3192       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3193       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3194     }
3195 
3196     SDValue Result = Src;
3197     SDValue Mask, VL;
3198     std::tie(Mask, VL) =
3199         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3200     LLVMContext &Context = *DAG.getContext();
3201     const ElementCount Count = ContainerVT.getVectorElementCount();
3202     do {
3203       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3204       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3205       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3206                            Mask, VL);
3207     } while (SrcEltVT != DstEltVT);
3208 
3209     if (SrcVT.isFixedLengthVector())
3210       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3211 
3212     return Result;
3213   }
3214   case ISD::ANY_EXTEND:
3215   case ISD::ZERO_EXTEND:
3216     if (Op.getOperand(0).getValueType().isVector() &&
3217         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3218       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3219     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3220   case ISD::SIGN_EXTEND:
3221     if (Op.getOperand(0).getValueType().isVector() &&
3222         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3223       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3224     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3225   case ISD::SPLAT_VECTOR_PARTS:
3226     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3227   case ISD::INSERT_VECTOR_ELT:
3228     return lowerINSERT_VECTOR_ELT(Op, DAG);
3229   case ISD::EXTRACT_VECTOR_ELT:
3230     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3231   case ISD::VSCALE: {
3232     MVT VT = Op.getSimpleValueType();
3233     SDLoc DL(Op);
3234     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3235     // We define our scalable vector types for lmul=1 to use a 64 bit known
3236     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3237     // vscale as VLENB / 8.
3238     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3239     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3240       report_fatal_error("Support for VLEN==32 is incomplete.");
3241     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3242       // We assume VLENB is a multiple of 8. We manually choose the best shift
3243       // here because SimplifyDemandedBits isn't always able to simplify it.
3244       uint64_t Val = Op.getConstantOperandVal(0);
3245       if (isPowerOf2_64(Val)) {
3246         uint64_t Log2 = Log2_64(Val);
3247         if (Log2 < 3)
3248           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3249                              DAG.getConstant(3 - Log2, DL, VT));
3250         if (Log2 > 3)
3251           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3252                              DAG.getConstant(Log2 - 3, DL, VT));
3253         return VLENB;
3254       }
3255       // If the multiplier is a multiple of 8, scale it down to avoid needing
3256       // to shift the VLENB value.
3257       if ((Val % 8) == 0)
3258         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3259                            DAG.getConstant(Val / 8, DL, VT));
3260     }
3261 
3262     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3263                                  DAG.getConstant(3, DL, VT));
3264     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3265   }
3266   case ISD::FPOWI: {
3267     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3268     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3269     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3270         Op.getOperand(1).getValueType() == MVT::i32) {
3271       SDLoc DL(Op);
3272       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3273       SDValue Powi =
3274           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3275       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3276                          DAG.getIntPtrConstant(0, DL));
3277     }
3278     return SDValue();
3279   }
3280   case ISD::FP_EXTEND: {
3281     // RVV can only do fp_extend to types double the size as the source. We
3282     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3283     // via f32.
3284     SDLoc DL(Op);
3285     MVT VT = Op.getSimpleValueType();
3286     SDValue Src = Op.getOperand(0);
3287     MVT SrcVT = Src.getSimpleValueType();
3288 
3289     // Prepare any fixed-length vector operands.
3290     MVT ContainerVT = VT;
3291     if (SrcVT.isFixedLengthVector()) {
3292       ContainerVT = getContainerForFixedLengthVector(VT);
3293       MVT SrcContainerVT =
3294           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3295       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3296     }
3297 
3298     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3299         SrcVT.getVectorElementType() != MVT::f16) {
3300       // For scalable vectors, we only need to close the gap between
3301       // vXf16->vXf64.
3302       if (!VT.isFixedLengthVector())
3303         return Op;
3304       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3305       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3306       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3307     }
3308 
3309     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3310     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3311     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3312         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3313 
3314     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3315                                            DL, DAG, Subtarget);
3316     if (VT.isFixedLengthVector())
3317       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3318     return Extend;
3319   }
3320   case ISD::FP_ROUND: {
3321     // RVV can only do fp_round to types half the size as the source. We
3322     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3323     // conversion instruction.
3324     SDLoc DL(Op);
3325     MVT VT = Op.getSimpleValueType();
3326     SDValue Src = Op.getOperand(0);
3327     MVT SrcVT = Src.getSimpleValueType();
3328 
3329     // Prepare any fixed-length vector operands.
3330     MVT ContainerVT = VT;
3331     if (VT.isFixedLengthVector()) {
3332       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3333       ContainerVT =
3334           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3335       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3336     }
3337 
3338     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3339         SrcVT.getVectorElementType() != MVT::f64) {
3340       // For scalable vectors, we only need to close the gap between
3341       // vXf64<->vXf16.
3342       if (!VT.isFixedLengthVector())
3343         return Op;
3344       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3345       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3346       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3347     }
3348 
3349     SDValue Mask, VL;
3350     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3351 
3352     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3353     SDValue IntermediateRound =
3354         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3355     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3356                                           DL, DAG, Subtarget);
3357 
3358     if (VT.isFixedLengthVector())
3359       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3360     return Round;
3361   }
3362   case ISD::FP_TO_SINT:
3363   case ISD::FP_TO_UINT:
3364   case ISD::SINT_TO_FP:
3365   case ISD::UINT_TO_FP: {
3366     // RVV can only do fp<->int conversions to types half/double the size as
3367     // the source. We custom-lower any conversions that do two hops into
3368     // sequences.
3369     MVT VT = Op.getSimpleValueType();
3370     if (!VT.isVector())
3371       return Op;
3372     SDLoc DL(Op);
3373     SDValue Src = Op.getOperand(0);
3374     MVT EltVT = VT.getVectorElementType();
3375     MVT SrcVT = Src.getSimpleValueType();
3376     MVT SrcEltVT = SrcVT.getVectorElementType();
3377     unsigned EltSize = EltVT.getSizeInBits();
3378     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3379     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3380            "Unexpected vector element types");
3381 
3382     bool IsInt2FP = SrcEltVT.isInteger();
3383     // Widening conversions
3384     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3385       if (IsInt2FP) {
3386         // Do a regular integer sign/zero extension then convert to float.
3387         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3388                                       VT.getVectorElementCount());
3389         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3390                                  ? ISD::ZERO_EXTEND
3391                                  : ISD::SIGN_EXTEND;
3392         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3393         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3394       }
3395       // FP2Int
3396       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3397       // Do one doubling fp_extend then complete the operation by converting
3398       // to int.
3399       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3400       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3401       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3402     }
3403 
3404     // Narrowing conversions
3405     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3406       if (IsInt2FP) {
3407         // One narrowing int_to_fp, then an fp_round.
3408         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3409         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3410         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3411         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3412       }
3413       // FP2Int
3414       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3415       // representable by the integer, the result is poison.
3416       MVT IVecVT =
3417           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3418                            VT.getVectorElementCount());
3419       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3420       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3421     }
3422 
3423     // Scalable vectors can exit here. Patterns will handle equally-sized
3424     // conversions halving/doubling ones.
3425     if (!VT.isFixedLengthVector())
3426       return Op;
3427 
3428     // For fixed-length vectors we lower to a custom "VL" node.
3429     unsigned RVVOpc = 0;
3430     switch (Op.getOpcode()) {
3431     default:
3432       llvm_unreachable("Impossible opcode");
3433     case ISD::FP_TO_SINT:
3434       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3435       break;
3436     case ISD::FP_TO_UINT:
3437       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3438       break;
3439     case ISD::SINT_TO_FP:
3440       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3441       break;
3442     case ISD::UINT_TO_FP:
3443       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3444       break;
3445     }
3446 
3447     MVT ContainerVT, SrcContainerVT;
3448     // Derive the reference container type from the larger vector type.
3449     if (SrcEltSize > EltSize) {
3450       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3451       ContainerVT =
3452           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3453     } else {
3454       ContainerVT = getContainerForFixedLengthVector(VT);
3455       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3456     }
3457 
3458     SDValue Mask, VL;
3459     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3460 
3461     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3462     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3463     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3464   }
3465   case ISD::FP_TO_SINT_SAT:
3466   case ISD::FP_TO_UINT_SAT:
3467     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3468   case ISD::FTRUNC:
3469   case ISD::FCEIL:
3470   case ISD::FFLOOR:
3471     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3472   case ISD::FROUND:
3473     return lowerFROUND(Op, DAG);
3474   case ISD::VECREDUCE_ADD:
3475   case ISD::VECREDUCE_UMAX:
3476   case ISD::VECREDUCE_SMAX:
3477   case ISD::VECREDUCE_UMIN:
3478   case ISD::VECREDUCE_SMIN:
3479     return lowerVECREDUCE(Op, DAG);
3480   case ISD::VECREDUCE_AND:
3481   case ISD::VECREDUCE_OR:
3482   case ISD::VECREDUCE_XOR:
3483     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3484       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3485     return lowerVECREDUCE(Op, DAG);
3486   case ISD::VECREDUCE_FADD:
3487   case ISD::VECREDUCE_SEQ_FADD:
3488   case ISD::VECREDUCE_FMIN:
3489   case ISD::VECREDUCE_FMAX:
3490     return lowerFPVECREDUCE(Op, DAG);
3491   case ISD::VP_REDUCE_ADD:
3492   case ISD::VP_REDUCE_UMAX:
3493   case ISD::VP_REDUCE_SMAX:
3494   case ISD::VP_REDUCE_UMIN:
3495   case ISD::VP_REDUCE_SMIN:
3496   case ISD::VP_REDUCE_FADD:
3497   case ISD::VP_REDUCE_SEQ_FADD:
3498   case ISD::VP_REDUCE_FMIN:
3499   case ISD::VP_REDUCE_FMAX:
3500     return lowerVPREDUCE(Op, DAG);
3501   case ISD::VP_REDUCE_AND:
3502   case ISD::VP_REDUCE_OR:
3503   case ISD::VP_REDUCE_XOR:
3504     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3505       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3506     return lowerVPREDUCE(Op, DAG);
3507   case ISD::INSERT_SUBVECTOR:
3508     return lowerINSERT_SUBVECTOR(Op, DAG);
3509   case ISD::EXTRACT_SUBVECTOR:
3510     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3511   case ISD::STEP_VECTOR:
3512     return lowerSTEP_VECTOR(Op, DAG);
3513   case ISD::VECTOR_REVERSE:
3514     return lowerVECTOR_REVERSE(Op, DAG);
3515   case ISD::VECTOR_SPLICE:
3516     return lowerVECTOR_SPLICE(Op, DAG);
3517   case ISD::BUILD_VECTOR:
3518     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3519   case ISD::SPLAT_VECTOR:
3520     if (Op.getValueType().getVectorElementType() == MVT::i1)
3521       return lowerVectorMaskSplat(Op, DAG);
3522     return SDValue();
3523   case ISD::VECTOR_SHUFFLE:
3524     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3525   case ISD::CONCAT_VECTORS: {
3526     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3527     // better than going through the stack, as the default expansion does.
3528     SDLoc DL(Op);
3529     MVT VT = Op.getSimpleValueType();
3530     unsigned NumOpElts =
3531         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3532     SDValue Vec = DAG.getUNDEF(VT);
3533     for (const auto &OpIdx : enumerate(Op->ops())) {
3534       SDValue SubVec = OpIdx.value();
3535       // Don't insert undef subvectors.
3536       if (SubVec.isUndef())
3537         continue;
3538       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3539                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3540     }
3541     return Vec;
3542   }
3543   case ISD::LOAD:
3544     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3545       return V;
3546     if (Op.getValueType().isFixedLengthVector())
3547       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3548     return Op;
3549   case ISD::STORE:
3550     if (auto V = expandUnalignedRVVStore(Op, DAG))
3551       return V;
3552     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3553       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3554     return Op;
3555   case ISD::MLOAD:
3556   case ISD::VP_LOAD:
3557     return lowerMaskedLoad(Op, DAG);
3558   case ISD::MSTORE:
3559   case ISD::VP_STORE:
3560     return lowerMaskedStore(Op, DAG);
3561   case ISD::SETCC:
3562     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3563   case ISD::ADD:
3564     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3565   case ISD::SUB:
3566     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3567   case ISD::MUL:
3568     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3569   case ISD::MULHS:
3570     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3571   case ISD::MULHU:
3572     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3573   case ISD::AND:
3574     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3575                                               RISCVISD::AND_VL);
3576   case ISD::OR:
3577     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3578                                               RISCVISD::OR_VL);
3579   case ISD::XOR:
3580     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3581                                               RISCVISD::XOR_VL);
3582   case ISD::SDIV:
3583     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3584   case ISD::SREM:
3585     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3586   case ISD::UDIV:
3587     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3588   case ISD::UREM:
3589     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3590   case ISD::SHL:
3591   case ISD::SRA:
3592   case ISD::SRL:
3593     if (Op.getSimpleValueType().isFixedLengthVector())
3594       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3595     // This can be called for an i32 shift amount that needs to be promoted.
3596     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3597            "Unexpected custom legalisation");
3598     return SDValue();
3599   case ISD::SADDSAT:
3600     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3601   case ISD::UADDSAT:
3602     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3603   case ISD::SSUBSAT:
3604     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3605   case ISD::USUBSAT:
3606     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3607   case ISD::FADD:
3608     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3609   case ISD::FSUB:
3610     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3611   case ISD::FMUL:
3612     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3613   case ISD::FDIV:
3614     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3615   case ISD::FNEG:
3616     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3617   case ISD::FABS:
3618     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3619   case ISD::FSQRT:
3620     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3621   case ISD::FMA:
3622     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3623   case ISD::SMIN:
3624     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3625   case ISD::SMAX:
3626     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3627   case ISD::UMIN:
3628     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3629   case ISD::UMAX:
3630     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3631   case ISD::FMINNUM:
3632     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3633   case ISD::FMAXNUM:
3634     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3635   case ISD::ABS:
3636     return lowerABS(Op, DAG);
3637   case ISD::CTLZ_ZERO_UNDEF:
3638   case ISD::CTTZ_ZERO_UNDEF:
3639     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3640   case ISD::VSELECT:
3641     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3642   case ISD::FCOPYSIGN:
3643     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3644   case ISD::MGATHER:
3645   case ISD::VP_GATHER:
3646     return lowerMaskedGather(Op, DAG);
3647   case ISD::MSCATTER:
3648   case ISD::VP_SCATTER:
3649     return lowerMaskedScatter(Op, DAG);
3650   case ISD::FLT_ROUNDS_:
3651     return lowerGET_ROUNDING(Op, DAG);
3652   case ISD::SET_ROUNDING:
3653     return lowerSET_ROUNDING(Op, DAG);
3654   case ISD::VP_SELECT:
3655     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3656   case ISD::VP_MERGE:
3657     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3658   case ISD::VP_ADD:
3659     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3660   case ISD::VP_SUB:
3661     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3662   case ISD::VP_MUL:
3663     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3664   case ISD::VP_SDIV:
3665     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3666   case ISD::VP_UDIV:
3667     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3668   case ISD::VP_SREM:
3669     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3670   case ISD::VP_UREM:
3671     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3672   case ISD::VP_AND:
3673     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3674   case ISD::VP_OR:
3675     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3676   case ISD::VP_XOR:
3677     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3678   case ISD::VP_ASHR:
3679     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3680   case ISD::VP_LSHR:
3681     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3682   case ISD::VP_SHL:
3683     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3684   case ISD::VP_FADD:
3685     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3686   case ISD::VP_FSUB:
3687     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3688   case ISD::VP_FMUL:
3689     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3690   case ISD::VP_FDIV:
3691     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3692   case ISD::VP_FNEG:
3693     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3694   case ISD::VP_FMA:
3695     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3696   }
3697 }
3698 
3699 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3700                              SelectionDAG &DAG, unsigned Flags) {
3701   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3702 }
3703 
3704 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3705                              SelectionDAG &DAG, unsigned Flags) {
3706   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3707                                    Flags);
3708 }
3709 
3710 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3711                              SelectionDAG &DAG, unsigned Flags) {
3712   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3713                                    N->getOffset(), Flags);
3714 }
3715 
3716 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3717                              SelectionDAG &DAG, unsigned Flags) {
3718   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3719 }
3720 
3721 template <class NodeTy>
3722 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3723                                      bool IsLocal) const {
3724   SDLoc DL(N);
3725   EVT Ty = getPointerTy(DAG.getDataLayout());
3726 
3727   if (isPositionIndependent()) {
3728     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3729     if (IsLocal)
3730       // Use PC-relative addressing to access the symbol. This generates the
3731       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3732       // %pcrel_lo(auipc)).
3733       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3734 
3735     // Use PC-relative addressing to access the GOT for this symbol, then load
3736     // the address from the GOT. This generates the pattern (PseudoLA sym),
3737     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3738     SDValue Load =
3739         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3740     MachineFunction &MF = DAG.getMachineFunction();
3741     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3742         MachinePointerInfo::getGOT(MF),
3743         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3744             MachineMemOperand::MOInvariant,
3745         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3746     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3747     return Load;
3748   }
3749 
3750   switch (getTargetMachine().getCodeModel()) {
3751   default:
3752     report_fatal_error("Unsupported code model for lowering");
3753   case CodeModel::Small: {
3754     // Generate a sequence for accessing addresses within the first 2 GiB of
3755     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3756     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3757     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3758     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3759     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3760   }
3761   case CodeModel::Medium: {
3762     // Generate a sequence for accessing addresses within any 2GiB range within
3763     // the address space. This generates the pattern (PseudoLLA sym), which
3764     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3765     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3766     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3767   }
3768   }
3769 }
3770 
3771 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3772     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3773 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3774     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3775 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3776     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3777 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3778     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3779 
3780 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3781                                                 SelectionDAG &DAG) const {
3782   SDLoc DL(Op);
3783   EVT Ty = Op.getValueType();
3784   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3785   int64_t Offset = N->getOffset();
3786   MVT XLenVT = Subtarget.getXLenVT();
3787 
3788   const GlobalValue *GV = N->getGlobal();
3789   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3790   SDValue Addr = getAddr(N, DAG, IsLocal);
3791 
3792   // In order to maximise the opportunity for common subexpression elimination,
3793   // emit a separate ADD node for the global address offset instead of folding
3794   // it in the global address node. Later peephole optimisations may choose to
3795   // fold it back in when profitable.
3796   if (Offset != 0)
3797     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3798                        DAG.getConstant(Offset, DL, XLenVT));
3799   return Addr;
3800 }
3801 
3802 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3803                                                SelectionDAG &DAG) const {
3804   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3805 
3806   return getAddr(N, DAG);
3807 }
3808 
3809 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3810                                                SelectionDAG &DAG) const {
3811   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3812 
3813   return getAddr(N, DAG);
3814 }
3815 
3816 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3817                                             SelectionDAG &DAG) const {
3818   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3819 
3820   return getAddr(N, DAG);
3821 }
3822 
3823 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3824                                               SelectionDAG &DAG,
3825                                               bool UseGOT) const {
3826   SDLoc DL(N);
3827   EVT Ty = getPointerTy(DAG.getDataLayout());
3828   const GlobalValue *GV = N->getGlobal();
3829   MVT XLenVT = Subtarget.getXLenVT();
3830 
3831   if (UseGOT) {
3832     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3833     // load the address from the GOT and add the thread pointer. This generates
3834     // the pattern (PseudoLA_TLS_IE sym), which expands to
3835     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3836     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3837     SDValue Load =
3838         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3839     MachineFunction &MF = DAG.getMachineFunction();
3840     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3841         MachinePointerInfo::getGOT(MF),
3842         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3843             MachineMemOperand::MOInvariant,
3844         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3845     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3846 
3847     // Add the thread pointer.
3848     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3849     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3850   }
3851 
3852   // Generate a sequence for accessing the address relative to the thread
3853   // pointer, with the appropriate adjustment for the thread pointer offset.
3854   // This generates the pattern
3855   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3856   SDValue AddrHi =
3857       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3858   SDValue AddrAdd =
3859       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3860   SDValue AddrLo =
3861       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3862 
3863   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3864   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3865   SDValue MNAdd = SDValue(
3866       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3867       0);
3868   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3869 }
3870 
3871 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3872                                                SelectionDAG &DAG) const {
3873   SDLoc DL(N);
3874   EVT Ty = getPointerTy(DAG.getDataLayout());
3875   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3876   const GlobalValue *GV = N->getGlobal();
3877 
3878   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3879   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3880   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3881   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3882   SDValue Load =
3883       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3884 
3885   // Prepare argument list to generate call.
3886   ArgListTy Args;
3887   ArgListEntry Entry;
3888   Entry.Node = Load;
3889   Entry.Ty = CallTy;
3890   Args.push_back(Entry);
3891 
3892   // Setup call to __tls_get_addr.
3893   TargetLowering::CallLoweringInfo CLI(DAG);
3894   CLI.setDebugLoc(DL)
3895       .setChain(DAG.getEntryNode())
3896       .setLibCallee(CallingConv::C, CallTy,
3897                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3898                     std::move(Args));
3899 
3900   return LowerCallTo(CLI).first;
3901 }
3902 
3903 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3904                                                    SelectionDAG &DAG) const {
3905   SDLoc DL(Op);
3906   EVT Ty = Op.getValueType();
3907   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3908   int64_t Offset = N->getOffset();
3909   MVT XLenVT = Subtarget.getXLenVT();
3910 
3911   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3912 
3913   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3914       CallingConv::GHC)
3915     report_fatal_error("In GHC calling convention TLS is not supported");
3916 
3917   SDValue Addr;
3918   switch (Model) {
3919   case TLSModel::LocalExec:
3920     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3921     break;
3922   case TLSModel::InitialExec:
3923     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3924     break;
3925   case TLSModel::LocalDynamic:
3926   case TLSModel::GeneralDynamic:
3927     Addr = getDynamicTLSAddr(N, DAG);
3928     break;
3929   }
3930 
3931   // In order to maximise the opportunity for common subexpression elimination,
3932   // emit a separate ADD node for the global address offset instead of folding
3933   // it in the global address node. Later peephole optimisations may choose to
3934   // fold it back in when profitable.
3935   if (Offset != 0)
3936     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3937                        DAG.getConstant(Offset, DL, XLenVT));
3938   return Addr;
3939 }
3940 
3941 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3942   SDValue CondV = Op.getOperand(0);
3943   SDValue TrueV = Op.getOperand(1);
3944   SDValue FalseV = Op.getOperand(2);
3945   SDLoc DL(Op);
3946   MVT VT = Op.getSimpleValueType();
3947   MVT XLenVT = Subtarget.getXLenVT();
3948 
3949   // Lower vector SELECTs to VSELECTs by splatting the condition.
3950   if (VT.isVector()) {
3951     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3952     SDValue CondSplat = VT.isScalableVector()
3953                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3954                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3955     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3956   }
3957 
3958   // If the result type is XLenVT and CondV is the output of a SETCC node
3959   // which also operated on XLenVT inputs, then merge the SETCC node into the
3960   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3961   // compare+branch instructions. i.e.:
3962   // (select (setcc lhs, rhs, cc), truev, falsev)
3963   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3964   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3965       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3966     SDValue LHS = CondV.getOperand(0);
3967     SDValue RHS = CondV.getOperand(1);
3968     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3969     ISD::CondCode CCVal = CC->get();
3970 
3971     // Special case for a select of 2 constants that have a diffence of 1.
3972     // Normally this is done by DAGCombine, but if the select is introduced by
3973     // type legalization or op legalization, we miss it. Restricting to SETLT
3974     // case for now because that is what signed saturating add/sub need.
3975     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3976     // but we would probably want to swap the true/false values if the condition
3977     // is SETGE/SETLE to avoid an XORI.
3978     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3979         CCVal == ISD::SETLT) {
3980       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3981       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3982       if (TrueVal - 1 == FalseVal)
3983         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3984       if (TrueVal + 1 == FalseVal)
3985         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3986     }
3987 
3988     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3989 
3990     SDValue TargetCC = DAG.getCondCode(CCVal);
3991     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3992     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3993   }
3994 
3995   // Otherwise:
3996   // (select condv, truev, falsev)
3997   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3998   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3999   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
4000 
4001   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4002 
4003   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4004 }
4005 
4006 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4007   SDValue CondV = Op.getOperand(1);
4008   SDLoc DL(Op);
4009   MVT XLenVT = Subtarget.getXLenVT();
4010 
4011   if (CondV.getOpcode() == ISD::SETCC &&
4012       CondV.getOperand(0).getValueType() == XLenVT) {
4013     SDValue LHS = CondV.getOperand(0);
4014     SDValue RHS = CondV.getOperand(1);
4015     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4016 
4017     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4018 
4019     SDValue TargetCC = DAG.getCondCode(CCVal);
4020     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4021                        LHS, RHS, TargetCC, Op.getOperand(2));
4022   }
4023 
4024   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4025                      CondV, DAG.getConstant(0, DL, XLenVT),
4026                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4027 }
4028 
4029 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4030   MachineFunction &MF = DAG.getMachineFunction();
4031   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4032 
4033   SDLoc DL(Op);
4034   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4035                                  getPointerTy(MF.getDataLayout()));
4036 
4037   // vastart just stores the address of the VarArgsFrameIndex slot into the
4038   // memory location argument.
4039   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4040   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4041                       MachinePointerInfo(SV));
4042 }
4043 
4044 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4045                                             SelectionDAG &DAG) const {
4046   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4047   MachineFunction &MF = DAG.getMachineFunction();
4048   MachineFrameInfo &MFI = MF.getFrameInfo();
4049   MFI.setFrameAddressIsTaken(true);
4050   Register FrameReg = RI.getFrameRegister(MF);
4051   int XLenInBytes = Subtarget.getXLen() / 8;
4052 
4053   EVT VT = Op.getValueType();
4054   SDLoc DL(Op);
4055   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4056   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4057   while (Depth--) {
4058     int Offset = -(XLenInBytes * 2);
4059     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4060                               DAG.getIntPtrConstant(Offset, DL));
4061     FrameAddr =
4062         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4063   }
4064   return FrameAddr;
4065 }
4066 
4067 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4068                                              SelectionDAG &DAG) const {
4069   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4070   MachineFunction &MF = DAG.getMachineFunction();
4071   MachineFrameInfo &MFI = MF.getFrameInfo();
4072   MFI.setReturnAddressIsTaken(true);
4073   MVT XLenVT = Subtarget.getXLenVT();
4074   int XLenInBytes = Subtarget.getXLen() / 8;
4075 
4076   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4077     return SDValue();
4078 
4079   EVT VT = Op.getValueType();
4080   SDLoc DL(Op);
4081   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4082   if (Depth) {
4083     int Off = -XLenInBytes;
4084     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4085     SDValue Offset = DAG.getConstant(Off, DL, VT);
4086     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4087                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4088                        MachinePointerInfo());
4089   }
4090 
4091   // Return the value of the return address register, marking it an implicit
4092   // live-in.
4093   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4094   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4095 }
4096 
4097 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4098                                                  SelectionDAG &DAG) const {
4099   SDLoc DL(Op);
4100   SDValue Lo = Op.getOperand(0);
4101   SDValue Hi = Op.getOperand(1);
4102   SDValue Shamt = Op.getOperand(2);
4103   EVT VT = Lo.getValueType();
4104 
4105   // if Shamt-XLEN < 0: // Shamt < XLEN
4106   //   Lo = Lo << Shamt
4107   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4108   // else:
4109   //   Lo = 0
4110   //   Hi = Lo << (Shamt-XLEN)
4111 
4112   SDValue Zero = DAG.getConstant(0, DL, VT);
4113   SDValue One = DAG.getConstant(1, DL, VT);
4114   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4115   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4116   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4117   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4118 
4119   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4120   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4121   SDValue ShiftRightLo =
4122       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4123   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4124   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4125   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4126 
4127   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4128 
4129   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4130   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4131 
4132   SDValue Parts[2] = {Lo, Hi};
4133   return DAG.getMergeValues(Parts, DL);
4134 }
4135 
4136 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4137                                                   bool IsSRA) const {
4138   SDLoc DL(Op);
4139   SDValue Lo = Op.getOperand(0);
4140   SDValue Hi = Op.getOperand(1);
4141   SDValue Shamt = Op.getOperand(2);
4142   EVT VT = Lo.getValueType();
4143 
4144   // SRA expansion:
4145   //   if Shamt-XLEN < 0: // Shamt < XLEN
4146   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4147   //     Hi = Hi >>s Shamt
4148   //   else:
4149   //     Lo = Hi >>s (Shamt-XLEN);
4150   //     Hi = Hi >>s (XLEN-1)
4151   //
4152   // SRL expansion:
4153   //   if Shamt-XLEN < 0: // Shamt < XLEN
4154   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4155   //     Hi = Hi >>u Shamt
4156   //   else:
4157   //     Lo = Hi >>u (Shamt-XLEN);
4158   //     Hi = 0;
4159 
4160   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4161 
4162   SDValue Zero = DAG.getConstant(0, DL, VT);
4163   SDValue One = DAG.getConstant(1, DL, VT);
4164   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4165   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4166   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4167   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4168 
4169   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4170   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4171   SDValue ShiftLeftHi =
4172       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4173   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4174   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4175   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4176   SDValue HiFalse =
4177       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4178 
4179   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4180 
4181   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4182   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4183 
4184   SDValue Parts[2] = {Lo, Hi};
4185   return DAG.getMergeValues(Parts, DL);
4186 }
4187 
4188 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4189 // legal equivalently-sized i8 type, so we can use that as a go-between.
4190 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4191                                                   SelectionDAG &DAG) const {
4192   SDLoc DL(Op);
4193   MVT VT = Op.getSimpleValueType();
4194   SDValue SplatVal = Op.getOperand(0);
4195   // All-zeros or all-ones splats are handled specially.
4196   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4197     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4198     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4199   }
4200   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4201     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4202     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4203   }
4204   MVT XLenVT = Subtarget.getXLenVT();
4205   assert(SplatVal.getValueType() == XLenVT &&
4206          "Unexpected type for i1 splat value");
4207   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4208   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4209                          DAG.getConstant(1, DL, XLenVT));
4210   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4211   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4212   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4213 }
4214 
4215 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4216 // illegal (currently only vXi64 RV32).
4217 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4218 // them to VMV_V_X_VL.
4219 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4220                                                      SelectionDAG &DAG) const {
4221   SDLoc DL(Op);
4222   MVT VecVT = Op.getSimpleValueType();
4223   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4224          "Unexpected SPLAT_VECTOR_PARTS lowering");
4225 
4226   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4227   SDValue Lo = Op.getOperand(0);
4228   SDValue Hi = Op.getOperand(1);
4229 
4230   if (VecVT.isFixedLengthVector()) {
4231     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4232     SDLoc DL(Op);
4233     SDValue Mask, VL;
4234     std::tie(Mask, VL) =
4235         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4236 
4237     SDValue Res =
4238         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4239     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4240   }
4241 
4242   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4243     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4244     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4245     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4246     // node in order to try and match RVV vector/scalar instructions.
4247     if ((LoC >> 31) == HiC)
4248       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4249                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4250   }
4251 
4252   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4253   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4254       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4255       Hi.getConstantOperandVal(1) == 31)
4256     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4257                        DAG.getRegister(RISCV::X0, MVT::i32));
4258 
4259   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4260   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4261                      DAG.getUNDEF(VecVT), Lo, Hi,
4262                      DAG.getRegister(RISCV::X0, MVT::i32));
4263 }
4264 
4265 // Custom-lower extensions from mask vectors by using a vselect either with 1
4266 // for zero/any-extension or -1 for sign-extension:
4267 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4268 // Note that any-extension is lowered identically to zero-extension.
4269 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4270                                                 int64_t ExtTrueVal) const {
4271   SDLoc DL(Op);
4272   MVT VecVT = Op.getSimpleValueType();
4273   SDValue Src = Op.getOperand(0);
4274   // Only custom-lower extensions from mask types
4275   assert(Src.getValueType().isVector() &&
4276          Src.getValueType().getVectorElementType() == MVT::i1);
4277 
4278   if (VecVT.isScalableVector()) {
4279     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4280     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4281     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4282   }
4283 
4284   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4285   MVT I1ContainerVT =
4286       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4287 
4288   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4289 
4290   SDValue Mask, VL;
4291   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4292 
4293   MVT XLenVT = Subtarget.getXLenVT();
4294   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4295   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4296 
4297   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4298                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4299   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4300                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4301   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4302                                SplatTrueVal, SplatZero, VL);
4303 
4304   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4305 }
4306 
4307 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4308     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4309   MVT ExtVT = Op.getSimpleValueType();
4310   // Only custom-lower extensions from fixed-length vector types.
4311   if (!ExtVT.isFixedLengthVector())
4312     return Op;
4313   MVT VT = Op.getOperand(0).getSimpleValueType();
4314   // Grab the canonical container type for the extended type. Infer the smaller
4315   // type from that to ensure the same number of vector elements, as we know
4316   // the LMUL will be sufficient to hold the smaller type.
4317   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4318   // Get the extended container type manually to ensure the same number of
4319   // vector elements between source and dest.
4320   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4321                                      ContainerExtVT.getVectorElementCount());
4322 
4323   SDValue Op1 =
4324       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4325 
4326   SDLoc DL(Op);
4327   SDValue Mask, VL;
4328   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4329 
4330   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4331 
4332   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4333 }
4334 
4335 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4336 // setcc operation:
4337 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4338 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4339                                                   SelectionDAG &DAG) const {
4340   SDLoc DL(Op);
4341   EVT MaskVT = Op.getValueType();
4342   // Only expect to custom-lower truncations to mask types
4343   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4344          "Unexpected type for vector mask lowering");
4345   SDValue Src = Op.getOperand(0);
4346   MVT VecVT = Src.getSimpleValueType();
4347 
4348   // If this is a fixed vector, we need to convert it to a scalable vector.
4349   MVT ContainerVT = VecVT;
4350   if (VecVT.isFixedLengthVector()) {
4351     ContainerVT = getContainerForFixedLengthVector(VecVT);
4352     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4353   }
4354 
4355   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4356   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4357 
4358   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4359                          DAG.getUNDEF(ContainerVT), SplatOne);
4360   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4361                           DAG.getUNDEF(ContainerVT), SplatZero);
4362 
4363   if (VecVT.isScalableVector()) {
4364     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4365     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4366   }
4367 
4368   SDValue Mask, VL;
4369   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4370 
4371   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4372   SDValue Trunc =
4373       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4374   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4375                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4376   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4377 }
4378 
4379 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4380 // first position of a vector, and that vector is slid up to the insert index.
4381 // By limiting the active vector length to index+1 and merging with the
4382 // original vector (with an undisturbed tail policy for elements >= VL), we
4383 // achieve the desired result of leaving all elements untouched except the one
4384 // at VL-1, which is replaced with the desired value.
4385 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4386                                                     SelectionDAG &DAG) const {
4387   SDLoc DL(Op);
4388   MVT VecVT = Op.getSimpleValueType();
4389   SDValue Vec = Op.getOperand(0);
4390   SDValue Val = Op.getOperand(1);
4391   SDValue Idx = Op.getOperand(2);
4392 
4393   if (VecVT.getVectorElementType() == MVT::i1) {
4394     // FIXME: For now we just promote to an i8 vector and insert into that,
4395     // but this is probably not optimal.
4396     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4397     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4398     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4399     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4400   }
4401 
4402   MVT ContainerVT = VecVT;
4403   // If the operand is a fixed-length vector, convert to a scalable one.
4404   if (VecVT.isFixedLengthVector()) {
4405     ContainerVT = getContainerForFixedLengthVector(VecVT);
4406     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4407   }
4408 
4409   MVT XLenVT = Subtarget.getXLenVT();
4410 
4411   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4412   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4413   // Even i64-element vectors on RV32 can be lowered without scalar
4414   // legalization if the most-significant 32 bits of the value are not affected
4415   // by the sign-extension of the lower 32 bits.
4416   // TODO: We could also catch sign extensions of a 32-bit value.
4417   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4418     const auto *CVal = cast<ConstantSDNode>(Val);
4419     if (isInt<32>(CVal->getSExtValue())) {
4420       IsLegalInsert = true;
4421       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4422     }
4423   }
4424 
4425   SDValue Mask, VL;
4426   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4427 
4428   SDValue ValInVec;
4429 
4430   if (IsLegalInsert) {
4431     unsigned Opc =
4432         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4433     if (isNullConstant(Idx)) {
4434       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4435       if (!VecVT.isFixedLengthVector())
4436         return Vec;
4437       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4438     }
4439     ValInVec =
4440         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4441   } else {
4442     // On RV32, i64-element vectors must be specially handled to place the
4443     // value at element 0, by using two vslide1up instructions in sequence on
4444     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4445     // this.
4446     SDValue One = DAG.getConstant(1, DL, XLenVT);
4447     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4448     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4449     MVT I32ContainerVT =
4450         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4451     SDValue I32Mask =
4452         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4453     // Limit the active VL to two.
4454     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4455     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4456     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4457     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4458                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4459     // First slide in the hi value, then the lo in underneath it.
4460     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4461                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4462                            I32Mask, InsertI64VL);
4463     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4464                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4465                            I32Mask, InsertI64VL);
4466     // Bitcast back to the right container type.
4467     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4468   }
4469 
4470   // Now that the value is in a vector, slide it into position.
4471   SDValue InsertVL =
4472       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4473   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4474                                 ValInVec, Idx, Mask, InsertVL);
4475   if (!VecVT.isFixedLengthVector())
4476     return Slideup;
4477   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4478 }
4479 
4480 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4481 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4482 // types this is done using VMV_X_S to allow us to glean information about the
4483 // sign bits of the result.
4484 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4485                                                      SelectionDAG &DAG) const {
4486   SDLoc DL(Op);
4487   SDValue Idx = Op.getOperand(1);
4488   SDValue Vec = Op.getOperand(0);
4489   EVT EltVT = Op.getValueType();
4490   MVT VecVT = Vec.getSimpleValueType();
4491   MVT XLenVT = Subtarget.getXLenVT();
4492 
4493   if (VecVT.getVectorElementType() == MVT::i1) {
4494     if (VecVT.isFixedLengthVector()) {
4495       unsigned NumElts = VecVT.getVectorNumElements();
4496       if (NumElts >= 8) {
4497         MVT WideEltVT;
4498         unsigned WidenVecLen;
4499         SDValue ExtractElementIdx;
4500         SDValue ExtractBitIdx;
4501         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4502         MVT LargestEltVT = MVT::getIntegerVT(
4503             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4504         if (NumElts <= LargestEltVT.getSizeInBits()) {
4505           assert(isPowerOf2_32(NumElts) &&
4506                  "the number of elements should be power of 2");
4507           WideEltVT = MVT::getIntegerVT(NumElts);
4508           WidenVecLen = 1;
4509           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4510           ExtractBitIdx = Idx;
4511         } else {
4512           WideEltVT = LargestEltVT;
4513           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4514           // extract element index = index / element width
4515           ExtractElementIdx = DAG.getNode(
4516               ISD::SRL, DL, XLenVT, Idx,
4517               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4518           // mask bit index = index % element width
4519           ExtractBitIdx = DAG.getNode(
4520               ISD::AND, DL, XLenVT, Idx,
4521               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4522         }
4523         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4524         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4525         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4526                                          Vec, ExtractElementIdx);
4527         // Extract the bit from GPR.
4528         SDValue ShiftRight =
4529             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4530         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4531                            DAG.getConstant(1, DL, XLenVT));
4532       }
4533     }
4534     // Otherwise, promote to an i8 vector and extract from that.
4535     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4536     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4537     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4538   }
4539 
4540   // If this is a fixed vector, we need to convert it to a scalable vector.
4541   MVT ContainerVT = VecVT;
4542   if (VecVT.isFixedLengthVector()) {
4543     ContainerVT = getContainerForFixedLengthVector(VecVT);
4544     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4545   }
4546 
4547   // If the index is 0, the vector is already in the right position.
4548   if (!isNullConstant(Idx)) {
4549     // Use a VL of 1 to avoid processing more elements than we need.
4550     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4551     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4552     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4553     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4554                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4555   }
4556 
4557   if (!EltVT.isInteger()) {
4558     // Floating-point extracts are handled in TableGen.
4559     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4560                        DAG.getConstant(0, DL, XLenVT));
4561   }
4562 
4563   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4564   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4565 }
4566 
4567 // Some RVV intrinsics may claim that they want an integer operand to be
4568 // promoted or expanded.
4569 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4570                                            const RISCVSubtarget &Subtarget) {
4571   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4572           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4573          "Unexpected opcode");
4574 
4575   if (!Subtarget.hasVInstructions())
4576     return SDValue();
4577 
4578   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4579   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4580   SDLoc DL(Op);
4581 
4582   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4583       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4584   if (!II || !II->hasScalarOperand())
4585     return SDValue();
4586 
4587   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4588   assert(SplatOp < Op.getNumOperands());
4589 
4590   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4591   SDValue &ScalarOp = Operands[SplatOp];
4592   MVT OpVT = ScalarOp.getSimpleValueType();
4593   MVT XLenVT = Subtarget.getXLenVT();
4594 
4595   // If this isn't a scalar, or its type is XLenVT we're done.
4596   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4597     return SDValue();
4598 
4599   // Simplest case is that the operand needs to be promoted to XLenVT.
4600   if (OpVT.bitsLT(XLenVT)) {
4601     // If the operand is a constant, sign extend to increase our chances
4602     // of being able to use a .vi instruction. ANY_EXTEND would become a
4603     // a zero extend and the simm5 check in isel would fail.
4604     // FIXME: Should we ignore the upper bits in isel instead?
4605     unsigned ExtOpc =
4606         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4607     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4608     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4609   }
4610 
4611   // Use the previous operand to get the vXi64 VT. The result might be a mask
4612   // VT for compares. Using the previous operand assumes that the previous
4613   // operand will never have a smaller element size than a scalar operand and
4614   // that a widening operation never uses SEW=64.
4615   // NOTE: If this fails the below assert, we can probably just find the
4616   // element count from any operand or result and use it to construct the VT.
4617   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4618   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4619 
4620   // The more complex case is when the scalar is larger than XLenVT.
4621   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4622          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4623 
4624   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4625   // instruction to sign-extend since SEW>XLEN.
4626   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4627     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4628     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4629   }
4630 
4631   switch (IntNo) {
4632   case Intrinsic::riscv_vslide1up:
4633   case Intrinsic::riscv_vslide1down:
4634   case Intrinsic::riscv_vslide1up_mask:
4635   case Intrinsic::riscv_vslide1down_mask: {
4636     // We need to special case these when the scalar is larger than XLen.
4637     unsigned NumOps = Op.getNumOperands();
4638     bool IsMasked = NumOps == 7;
4639 
4640     // Convert the vector source to the equivalent nxvXi32 vector.
4641     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4642     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4643 
4644     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4645                                    DAG.getConstant(0, DL, XLenVT));
4646     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4647                                    DAG.getConstant(1, DL, XLenVT));
4648 
4649     // Double the VL since we halved SEW.
4650     SDValue AVL = getVLOperand(Op);
4651     SDValue I32VL;
4652 
4653     // Optimize for constant AVL
4654     if (isa<ConstantSDNode>(AVL)) {
4655       unsigned EltSize = VT.getScalarSizeInBits();
4656       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4657 
4658       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4659       unsigned MaxVLMAX =
4660           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4661 
4662       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4663       unsigned MinVLMAX =
4664           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4665 
4666       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4667       if (AVLInt <= MinVLMAX) {
4668         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4669       } else if (AVLInt >= 2 * MaxVLMAX) {
4670         // Just set vl to VLMAX in this situation
4671         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4672         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4673         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4674         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4675         SDValue SETVLMAX = DAG.getTargetConstant(
4676             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4677         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4678                             LMUL);
4679       } else {
4680         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4681         // is related to the hardware implementation.
4682         // So let the following code handle
4683       }
4684     }
4685     if (!I32VL) {
4686       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4687       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4688       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4689       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4690       SDValue SETVL =
4691           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4692       // Using vsetvli instruction to get actually used length which related to
4693       // the hardware implementation
4694       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4695                                SEW, LMUL);
4696       I32VL =
4697           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4698     }
4699 
4700     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4701     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4702 
4703     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4704     // instructions.
4705     SDValue Passthru;
4706     if (IsMasked)
4707       Passthru = DAG.getUNDEF(I32VT);
4708     else
4709       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4710 
4711     if (IntNo == Intrinsic::riscv_vslide1up ||
4712         IntNo == Intrinsic::riscv_vslide1up_mask) {
4713       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4714                         ScalarHi, I32Mask, I32VL);
4715       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4716                         ScalarLo, I32Mask, I32VL);
4717     } else {
4718       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4719                         ScalarLo, I32Mask, I32VL);
4720       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4721                         ScalarHi, I32Mask, I32VL);
4722     }
4723 
4724     // Convert back to nxvXi64.
4725     Vec = DAG.getBitcast(VT, Vec);
4726 
4727     if (!IsMasked)
4728       return Vec;
4729     // Apply mask after the operation.
4730     SDValue Mask = Operands[NumOps - 3];
4731     SDValue MaskedOff = Operands[1];
4732     // Assume Policy operand is the last operand.
4733     uint64_t Policy =
4734         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4735     // We don't need to select maskedoff if it's undef.
4736     if (MaskedOff.isUndef())
4737       return Vec;
4738     // TAMU
4739     if (Policy == RISCVII::TAIL_AGNOSTIC)
4740       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4741                          AVL);
4742     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4743     // It's fine because vmerge does not care mask policy.
4744     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4745                        AVL);
4746   }
4747   }
4748 
4749   // We need to convert the scalar to a splat vector.
4750   SDValue VL = getVLOperand(Op);
4751   assert(VL.getValueType() == XLenVT);
4752   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4753   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4754 }
4755 
4756 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4757                                                      SelectionDAG &DAG) const {
4758   unsigned IntNo = Op.getConstantOperandVal(0);
4759   SDLoc DL(Op);
4760   MVT XLenVT = Subtarget.getXLenVT();
4761 
4762   switch (IntNo) {
4763   default:
4764     break; // Don't custom lower most intrinsics.
4765   case Intrinsic::thread_pointer: {
4766     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4767     return DAG.getRegister(RISCV::X4, PtrVT);
4768   }
4769   case Intrinsic::riscv_orc_b:
4770   case Intrinsic::riscv_brev8: {
4771     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4772     unsigned Opc =
4773         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4774     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4775                        DAG.getConstant(7, DL, XLenVT));
4776   }
4777   case Intrinsic::riscv_grev:
4778   case Intrinsic::riscv_gorc: {
4779     unsigned Opc =
4780         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4781     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4782   }
4783   case Intrinsic::riscv_zip:
4784   case Intrinsic::riscv_unzip: {
4785     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4786     // For i32 the immediate is 15. For i64 the immediate is 31.
4787     unsigned Opc =
4788         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4789     unsigned BitWidth = Op.getValueSizeInBits();
4790     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4791     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4792                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4793   }
4794   case Intrinsic::riscv_shfl:
4795   case Intrinsic::riscv_unshfl: {
4796     unsigned Opc =
4797         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4798     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4799   }
4800   case Intrinsic::riscv_bcompress:
4801   case Intrinsic::riscv_bdecompress: {
4802     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4803                                                        : RISCVISD::BDECOMPRESS;
4804     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4805   }
4806   case Intrinsic::riscv_bfp:
4807     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4808                        Op.getOperand(2));
4809   case Intrinsic::riscv_fsl:
4810     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4811                        Op.getOperand(2), Op.getOperand(3));
4812   case Intrinsic::riscv_fsr:
4813     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4814                        Op.getOperand(2), Op.getOperand(3));
4815   case Intrinsic::riscv_vmv_x_s:
4816     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4817     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4818                        Op.getOperand(1));
4819   case Intrinsic::riscv_vmv_v_x:
4820     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4821                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4822                             Subtarget);
4823   case Intrinsic::riscv_vfmv_v_f:
4824     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4825                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4826   case Intrinsic::riscv_vmv_s_x: {
4827     SDValue Scalar = Op.getOperand(2);
4828 
4829     if (Scalar.getValueType().bitsLE(XLenVT)) {
4830       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4831       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4832                          Op.getOperand(1), Scalar, Op.getOperand(3));
4833     }
4834 
4835     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4836 
4837     // This is an i64 value that lives in two scalar registers. We have to
4838     // insert this in a convoluted way. First we build vXi64 splat containing
4839     // the two values that we assemble using some bit math. Next we'll use
4840     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4841     // to merge element 0 from our splat into the source vector.
4842     // FIXME: This is probably not the best way to do this, but it is
4843     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4844     // point.
4845     //   sw lo, (a0)
4846     //   sw hi, 4(a0)
4847     //   vlse vX, (a0)
4848     //
4849     //   vid.v      vVid
4850     //   vmseq.vx   mMask, vVid, 0
4851     //   vmerge.vvm vDest, vSrc, vVal, mMask
4852     MVT VT = Op.getSimpleValueType();
4853     SDValue Vec = Op.getOperand(1);
4854     SDValue VL = getVLOperand(Op);
4855 
4856     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4857     if (Op.getOperand(1).isUndef())
4858       return SplattedVal;
4859     SDValue SplattedIdx =
4860         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4861                     DAG.getConstant(0, DL, MVT::i32), VL);
4862 
4863     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4864     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4865     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4866     SDValue SelectCond =
4867         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4868                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4869     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4870                        Vec, VL);
4871   }
4872   }
4873 
4874   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4875 }
4876 
4877 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4878                                                     SelectionDAG &DAG) const {
4879   unsigned IntNo = Op.getConstantOperandVal(1);
4880   switch (IntNo) {
4881   default:
4882     break;
4883   case Intrinsic::riscv_masked_strided_load: {
4884     SDLoc DL(Op);
4885     MVT XLenVT = Subtarget.getXLenVT();
4886 
4887     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4888     // the selection of the masked intrinsics doesn't do this for us.
4889     SDValue Mask = Op.getOperand(5);
4890     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4891 
4892     MVT VT = Op->getSimpleValueType(0);
4893     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4894 
4895     SDValue PassThru = Op.getOperand(2);
4896     if (!IsUnmasked) {
4897       MVT MaskVT =
4898           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4899       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4900       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4901     }
4902 
4903     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4904 
4905     SDValue IntID = DAG.getTargetConstant(
4906         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4907         XLenVT);
4908 
4909     auto *Load = cast<MemIntrinsicSDNode>(Op);
4910     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4911     if (IsUnmasked)
4912       Ops.push_back(DAG.getUNDEF(ContainerVT));
4913     else
4914       Ops.push_back(PassThru);
4915     Ops.push_back(Op.getOperand(3)); // Ptr
4916     Ops.push_back(Op.getOperand(4)); // Stride
4917     if (!IsUnmasked)
4918       Ops.push_back(Mask);
4919     Ops.push_back(VL);
4920     if (!IsUnmasked) {
4921       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4922       Ops.push_back(Policy);
4923     }
4924 
4925     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4926     SDValue Result =
4927         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4928                                 Load->getMemoryVT(), Load->getMemOperand());
4929     SDValue Chain = Result.getValue(1);
4930     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4931     return DAG.getMergeValues({Result, Chain}, DL);
4932   }
4933   case Intrinsic::riscv_seg2_load:
4934   case Intrinsic::riscv_seg3_load:
4935   case Intrinsic::riscv_seg4_load:
4936   case Intrinsic::riscv_seg5_load:
4937   case Intrinsic::riscv_seg6_load:
4938   case Intrinsic::riscv_seg7_load:
4939   case Intrinsic::riscv_seg8_load: {
4940     SDLoc DL(Op);
4941     static const Intrinsic::ID VlsegInts[7] = {
4942         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4943         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4944         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4945         Intrinsic::riscv_vlseg8};
4946     unsigned NF = Op->getNumValues() - 1;
4947     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4948     MVT XLenVT = Subtarget.getXLenVT();
4949     MVT VT = Op->getSimpleValueType(0);
4950     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4951 
4952     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4953     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4954     auto *Load = cast<MemIntrinsicSDNode>(Op);
4955     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4956     ContainerVTs.push_back(MVT::Other);
4957     SDVTList VTs = DAG.getVTList(ContainerVTs);
4958     SDValue Result =
4959         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4960                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4961                                 Load->getMemoryVT(), Load->getMemOperand());
4962     SmallVector<SDValue, 9> Results;
4963     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4964       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4965                                                   DAG, Subtarget));
4966     Results.push_back(Result.getValue(NF));
4967     return DAG.getMergeValues(Results, DL);
4968   }
4969   }
4970 
4971   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4972 }
4973 
4974 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4975                                                  SelectionDAG &DAG) const {
4976   unsigned IntNo = Op.getConstantOperandVal(1);
4977   switch (IntNo) {
4978   default:
4979     break;
4980   case Intrinsic::riscv_masked_strided_store: {
4981     SDLoc DL(Op);
4982     MVT XLenVT = Subtarget.getXLenVT();
4983 
4984     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4985     // the selection of the masked intrinsics doesn't do this for us.
4986     SDValue Mask = Op.getOperand(5);
4987     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4988 
4989     SDValue Val = Op.getOperand(2);
4990     MVT VT = Val.getSimpleValueType();
4991     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4992 
4993     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4994     if (!IsUnmasked) {
4995       MVT MaskVT =
4996           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4997       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4998     }
4999 
5000     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5001 
5002     SDValue IntID = DAG.getTargetConstant(
5003         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5004         XLenVT);
5005 
5006     auto *Store = cast<MemIntrinsicSDNode>(Op);
5007     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5008     Ops.push_back(Val);
5009     Ops.push_back(Op.getOperand(3)); // Ptr
5010     Ops.push_back(Op.getOperand(4)); // Stride
5011     if (!IsUnmasked)
5012       Ops.push_back(Mask);
5013     Ops.push_back(VL);
5014 
5015     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5016                                    Ops, Store->getMemoryVT(),
5017                                    Store->getMemOperand());
5018   }
5019   }
5020 
5021   return SDValue();
5022 }
5023 
5024 static MVT getLMUL1VT(MVT VT) {
5025   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5026          "Unexpected vector MVT");
5027   return MVT::getScalableVectorVT(
5028       VT.getVectorElementType(),
5029       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5030 }
5031 
5032 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5033   switch (ISDOpcode) {
5034   default:
5035     llvm_unreachable("Unhandled reduction");
5036   case ISD::VECREDUCE_ADD:
5037     return RISCVISD::VECREDUCE_ADD_VL;
5038   case ISD::VECREDUCE_UMAX:
5039     return RISCVISD::VECREDUCE_UMAX_VL;
5040   case ISD::VECREDUCE_SMAX:
5041     return RISCVISD::VECREDUCE_SMAX_VL;
5042   case ISD::VECREDUCE_UMIN:
5043     return RISCVISD::VECREDUCE_UMIN_VL;
5044   case ISD::VECREDUCE_SMIN:
5045     return RISCVISD::VECREDUCE_SMIN_VL;
5046   case ISD::VECREDUCE_AND:
5047     return RISCVISD::VECREDUCE_AND_VL;
5048   case ISD::VECREDUCE_OR:
5049     return RISCVISD::VECREDUCE_OR_VL;
5050   case ISD::VECREDUCE_XOR:
5051     return RISCVISD::VECREDUCE_XOR_VL;
5052   }
5053 }
5054 
5055 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5056                                                          SelectionDAG &DAG,
5057                                                          bool IsVP) const {
5058   SDLoc DL(Op);
5059   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5060   MVT VecVT = Vec.getSimpleValueType();
5061   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5062           Op.getOpcode() == ISD::VECREDUCE_OR ||
5063           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5064           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5065           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5066           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5067          "Unexpected reduction lowering");
5068 
5069   MVT XLenVT = Subtarget.getXLenVT();
5070   assert(Op.getValueType() == XLenVT &&
5071          "Expected reduction output to be legalized to XLenVT");
5072 
5073   MVT ContainerVT = VecVT;
5074   if (VecVT.isFixedLengthVector()) {
5075     ContainerVT = getContainerForFixedLengthVector(VecVT);
5076     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5077   }
5078 
5079   SDValue Mask, VL;
5080   if (IsVP) {
5081     Mask = Op.getOperand(2);
5082     VL = Op.getOperand(3);
5083   } else {
5084     std::tie(Mask, VL) =
5085         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5086   }
5087 
5088   unsigned BaseOpc;
5089   ISD::CondCode CC;
5090   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5091 
5092   switch (Op.getOpcode()) {
5093   default:
5094     llvm_unreachable("Unhandled reduction");
5095   case ISD::VECREDUCE_AND:
5096   case ISD::VP_REDUCE_AND: {
5097     // vcpop ~x == 0
5098     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5099     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5100     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5101     CC = ISD::SETEQ;
5102     BaseOpc = ISD::AND;
5103     break;
5104   }
5105   case ISD::VECREDUCE_OR:
5106   case ISD::VP_REDUCE_OR:
5107     // vcpop x != 0
5108     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5109     CC = ISD::SETNE;
5110     BaseOpc = ISD::OR;
5111     break;
5112   case ISD::VECREDUCE_XOR:
5113   case ISD::VP_REDUCE_XOR: {
5114     // ((vcpop x) & 1) != 0
5115     SDValue One = DAG.getConstant(1, DL, XLenVT);
5116     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5117     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5118     CC = ISD::SETNE;
5119     BaseOpc = ISD::XOR;
5120     break;
5121   }
5122   }
5123 
5124   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5125 
5126   if (!IsVP)
5127     return SetCC;
5128 
5129   // Now include the start value in the operation.
5130   // Note that we must return the start value when no elements are operated
5131   // upon. The vcpop instructions we've emitted in each case above will return
5132   // 0 for an inactive vector, and so we've already received the neutral value:
5133   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5134   // can simply include the start value.
5135   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5136 }
5137 
5138 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5139                                             SelectionDAG &DAG) const {
5140   SDLoc DL(Op);
5141   SDValue Vec = Op.getOperand(0);
5142   EVT VecEVT = Vec.getValueType();
5143 
5144   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5145 
5146   // Due to ordering in legalize types we may have a vector type that needs to
5147   // be split. Do that manually so we can get down to a legal type.
5148   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5149          TargetLowering::TypeSplitVector) {
5150     SDValue Lo, Hi;
5151     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5152     VecEVT = Lo.getValueType();
5153     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5154   }
5155 
5156   // TODO: The type may need to be widened rather than split. Or widened before
5157   // it can be split.
5158   if (!isTypeLegal(VecEVT))
5159     return SDValue();
5160 
5161   MVT VecVT = VecEVT.getSimpleVT();
5162   MVT VecEltVT = VecVT.getVectorElementType();
5163   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5164 
5165   MVT ContainerVT = VecVT;
5166   if (VecVT.isFixedLengthVector()) {
5167     ContainerVT = getContainerForFixedLengthVector(VecVT);
5168     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5169   }
5170 
5171   MVT M1VT = getLMUL1VT(ContainerVT);
5172   MVT XLenVT = Subtarget.getXLenVT();
5173 
5174   SDValue Mask, VL;
5175   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5176 
5177   SDValue NeutralElem =
5178       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5179   SDValue IdentitySplat =
5180       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5181                        M1VT, DL, DAG, Subtarget);
5182   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5183                                   IdentitySplat, Mask, VL);
5184   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5185                              DAG.getConstant(0, DL, XLenVT));
5186   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5187 }
5188 
5189 // Given a reduction op, this function returns the matching reduction opcode,
5190 // the vector SDValue and the scalar SDValue required to lower this to a
5191 // RISCVISD node.
5192 static std::tuple<unsigned, SDValue, SDValue>
5193 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5194   SDLoc DL(Op);
5195   auto Flags = Op->getFlags();
5196   unsigned Opcode = Op.getOpcode();
5197   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5198   switch (Opcode) {
5199   default:
5200     llvm_unreachable("Unhandled reduction");
5201   case ISD::VECREDUCE_FADD: {
5202     // Use positive zero if we can. It is cheaper to materialize.
5203     SDValue Zero =
5204         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5205     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5206   }
5207   case ISD::VECREDUCE_SEQ_FADD:
5208     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5209                            Op.getOperand(0));
5210   case ISD::VECREDUCE_FMIN:
5211     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5212                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5213   case ISD::VECREDUCE_FMAX:
5214     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5215                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5216   }
5217 }
5218 
5219 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5220                                               SelectionDAG &DAG) const {
5221   SDLoc DL(Op);
5222   MVT VecEltVT = Op.getSimpleValueType();
5223 
5224   unsigned RVVOpcode;
5225   SDValue VectorVal, ScalarVal;
5226   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5227       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5228   MVT VecVT = VectorVal.getSimpleValueType();
5229 
5230   MVT ContainerVT = VecVT;
5231   if (VecVT.isFixedLengthVector()) {
5232     ContainerVT = getContainerForFixedLengthVector(VecVT);
5233     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5234   }
5235 
5236   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5237   MVT XLenVT = Subtarget.getXLenVT();
5238 
5239   SDValue Mask, VL;
5240   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5241 
5242   SDValue ScalarSplat =
5243       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5244                        M1VT, DL, DAG, Subtarget);
5245   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5246                                   VectorVal, ScalarSplat, Mask, VL);
5247   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5248                      DAG.getConstant(0, DL, XLenVT));
5249 }
5250 
5251 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5252   switch (ISDOpcode) {
5253   default:
5254     llvm_unreachable("Unhandled reduction");
5255   case ISD::VP_REDUCE_ADD:
5256     return RISCVISD::VECREDUCE_ADD_VL;
5257   case ISD::VP_REDUCE_UMAX:
5258     return RISCVISD::VECREDUCE_UMAX_VL;
5259   case ISD::VP_REDUCE_SMAX:
5260     return RISCVISD::VECREDUCE_SMAX_VL;
5261   case ISD::VP_REDUCE_UMIN:
5262     return RISCVISD::VECREDUCE_UMIN_VL;
5263   case ISD::VP_REDUCE_SMIN:
5264     return RISCVISD::VECREDUCE_SMIN_VL;
5265   case ISD::VP_REDUCE_AND:
5266     return RISCVISD::VECREDUCE_AND_VL;
5267   case ISD::VP_REDUCE_OR:
5268     return RISCVISD::VECREDUCE_OR_VL;
5269   case ISD::VP_REDUCE_XOR:
5270     return RISCVISD::VECREDUCE_XOR_VL;
5271   case ISD::VP_REDUCE_FADD:
5272     return RISCVISD::VECREDUCE_FADD_VL;
5273   case ISD::VP_REDUCE_SEQ_FADD:
5274     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5275   case ISD::VP_REDUCE_FMAX:
5276     return RISCVISD::VECREDUCE_FMAX_VL;
5277   case ISD::VP_REDUCE_FMIN:
5278     return RISCVISD::VECREDUCE_FMIN_VL;
5279   }
5280 }
5281 
5282 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5283                                            SelectionDAG &DAG) const {
5284   SDLoc DL(Op);
5285   SDValue Vec = Op.getOperand(1);
5286   EVT VecEVT = Vec.getValueType();
5287 
5288   // TODO: The type may need to be widened rather than split. Or widened before
5289   // it can be split.
5290   if (!isTypeLegal(VecEVT))
5291     return SDValue();
5292 
5293   MVT VecVT = VecEVT.getSimpleVT();
5294   MVT VecEltVT = VecVT.getVectorElementType();
5295   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5296 
5297   MVT ContainerVT = VecVT;
5298   if (VecVT.isFixedLengthVector()) {
5299     ContainerVT = getContainerForFixedLengthVector(VecVT);
5300     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5301   }
5302 
5303   SDValue VL = Op.getOperand(3);
5304   SDValue Mask = Op.getOperand(2);
5305 
5306   MVT M1VT = getLMUL1VT(ContainerVT);
5307   MVT XLenVT = Subtarget.getXLenVT();
5308   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5309 
5310   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5311                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5312                                         DL, DAG, Subtarget);
5313   SDValue Reduction =
5314       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5315   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5316                              DAG.getConstant(0, DL, XLenVT));
5317   if (!VecVT.isInteger())
5318     return Elt0;
5319   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5320 }
5321 
5322 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5323                                                    SelectionDAG &DAG) const {
5324   SDValue Vec = Op.getOperand(0);
5325   SDValue SubVec = Op.getOperand(1);
5326   MVT VecVT = Vec.getSimpleValueType();
5327   MVT SubVecVT = SubVec.getSimpleValueType();
5328 
5329   SDLoc DL(Op);
5330   MVT XLenVT = Subtarget.getXLenVT();
5331   unsigned OrigIdx = Op.getConstantOperandVal(2);
5332   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5333 
5334   // We don't have the ability to slide mask vectors up indexed by their i1
5335   // elements; the smallest we can do is i8. Often we are able to bitcast to
5336   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5337   // into a scalable one, we might not necessarily have enough scalable
5338   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5339   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5340       (OrigIdx != 0 || !Vec.isUndef())) {
5341     if (VecVT.getVectorMinNumElements() >= 8 &&
5342         SubVecVT.getVectorMinNumElements() >= 8) {
5343       assert(OrigIdx % 8 == 0 && "Invalid index");
5344       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5345              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5346              "Unexpected mask vector lowering");
5347       OrigIdx /= 8;
5348       SubVecVT =
5349           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5350                            SubVecVT.isScalableVector());
5351       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5352                                VecVT.isScalableVector());
5353       Vec = DAG.getBitcast(VecVT, Vec);
5354       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5355     } else {
5356       // We can't slide this mask vector up indexed by its i1 elements.
5357       // This poses a problem when we wish to insert a scalable vector which
5358       // can't be re-expressed as a larger type. Just choose the slow path and
5359       // extend to a larger type, then truncate back down.
5360       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5361       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5362       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5363       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5364       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5365                         Op.getOperand(2));
5366       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5367       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5368     }
5369   }
5370 
5371   // If the subvector vector is a fixed-length type, we cannot use subregister
5372   // manipulation to simplify the codegen; we don't know which register of a
5373   // LMUL group contains the specific subvector as we only know the minimum
5374   // register size. Therefore we must slide the vector group up the full
5375   // amount.
5376   if (SubVecVT.isFixedLengthVector()) {
5377     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5378       return Op;
5379     MVT ContainerVT = VecVT;
5380     if (VecVT.isFixedLengthVector()) {
5381       ContainerVT = getContainerForFixedLengthVector(VecVT);
5382       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5383     }
5384     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5385                          DAG.getUNDEF(ContainerVT), SubVec,
5386                          DAG.getConstant(0, DL, XLenVT));
5387     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5388       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5389       return DAG.getBitcast(Op.getValueType(), SubVec);
5390     }
5391     SDValue Mask =
5392         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5393     // Set the vector length to only the number of elements we care about. Note
5394     // that for slideup this includes the offset.
5395     SDValue VL =
5396         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5397     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5398     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5399                                   SubVec, SlideupAmt, Mask, VL);
5400     if (VecVT.isFixedLengthVector())
5401       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5402     return DAG.getBitcast(Op.getValueType(), Slideup);
5403   }
5404 
5405   unsigned SubRegIdx, RemIdx;
5406   std::tie(SubRegIdx, RemIdx) =
5407       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5408           VecVT, SubVecVT, OrigIdx, TRI);
5409 
5410   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5411   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5412                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5413                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5414 
5415   // 1. If the Idx has been completely eliminated and this subvector's size is
5416   // a vector register or a multiple thereof, or the surrounding elements are
5417   // undef, then this is a subvector insert which naturally aligns to a vector
5418   // register. These can easily be handled using subregister manipulation.
5419   // 2. If the subvector is smaller than a vector register, then the insertion
5420   // must preserve the undisturbed elements of the register. We do this by
5421   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5422   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5423   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5424   // LMUL=1 type back into the larger vector (resolving to another subregister
5425   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5426   // to avoid allocating a large register group to hold our subvector.
5427   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5428     return Op;
5429 
5430   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5431   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5432   // (in our case undisturbed). This means we can set up a subvector insertion
5433   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5434   // size of the subvector.
5435   MVT InterSubVT = VecVT;
5436   SDValue AlignedExtract = Vec;
5437   unsigned AlignedIdx = OrigIdx - RemIdx;
5438   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5439     InterSubVT = getLMUL1VT(VecVT);
5440     // Extract a subvector equal to the nearest full vector register type. This
5441     // should resolve to a EXTRACT_SUBREG instruction.
5442     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5443                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5444   }
5445 
5446   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5447   // For scalable vectors this must be further multiplied by vscale.
5448   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5449 
5450   SDValue Mask, VL;
5451   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5452 
5453   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5454   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5455   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5456   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5457 
5458   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5459                        DAG.getUNDEF(InterSubVT), SubVec,
5460                        DAG.getConstant(0, DL, XLenVT));
5461 
5462   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5463                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5464 
5465   // If required, insert this subvector back into the correct vector register.
5466   // This should resolve to an INSERT_SUBREG instruction.
5467   if (VecVT.bitsGT(InterSubVT))
5468     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5469                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5470 
5471   // We might have bitcast from a mask type: cast back to the original type if
5472   // required.
5473   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5474 }
5475 
5476 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5477                                                     SelectionDAG &DAG) const {
5478   SDValue Vec = Op.getOperand(0);
5479   MVT SubVecVT = Op.getSimpleValueType();
5480   MVT VecVT = Vec.getSimpleValueType();
5481 
5482   SDLoc DL(Op);
5483   MVT XLenVT = Subtarget.getXLenVT();
5484   unsigned OrigIdx = Op.getConstantOperandVal(1);
5485   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5486 
5487   // We don't have the ability to slide mask vectors down indexed by their i1
5488   // elements; the smallest we can do is i8. Often we are able to bitcast to
5489   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5490   // from a scalable one, we might not necessarily have enough scalable
5491   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5492   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5493     if (VecVT.getVectorMinNumElements() >= 8 &&
5494         SubVecVT.getVectorMinNumElements() >= 8) {
5495       assert(OrigIdx % 8 == 0 && "Invalid index");
5496       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5497              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5498              "Unexpected mask vector lowering");
5499       OrigIdx /= 8;
5500       SubVecVT =
5501           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5502                            SubVecVT.isScalableVector());
5503       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5504                                VecVT.isScalableVector());
5505       Vec = DAG.getBitcast(VecVT, Vec);
5506     } else {
5507       // We can't slide this mask vector down, indexed by its i1 elements.
5508       // This poses a problem when we wish to extract a scalable vector which
5509       // can't be re-expressed as a larger type. Just choose the slow path and
5510       // extend to a larger type, then truncate back down.
5511       // TODO: We could probably improve this when extracting certain fixed
5512       // from fixed, where we can extract as i8 and shift the correct element
5513       // right to reach the desired subvector?
5514       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5515       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5516       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5517       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5518                         Op.getOperand(1));
5519       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5520       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5521     }
5522   }
5523 
5524   // If the subvector vector is a fixed-length type, we cannot use subregister
5525   // manipulation to simplify the codegen; we don't know which register of a
5526   // LMUL group contains the specific subvector as we only know the minimum
5527   // register size. Therefore we must slide the vector group down the full
5528   // amount.
5529   if (SubVecVT.isFixedLengthVector()) {
5530     // With an index of 0 this is a cast-like subvector, which can be performed
5531     // with subregister operations.
5532     if (OrigIdx == 0)
5533       return Op;
5534     MVT ContainerVT = VecVT;
5535     if (VecVT.isFixedLengthVector()) {
5536       ContainerVT = getContainerForFixedLengthVector(VecVT);
5537       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5538     }
5539     SDValue Mask =
5540         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5541     // Set the vector length to only the number of elements we care about. This
5542     // avoids sliding down elements we're going to discard straight away.
5543     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5544     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5545     SDValue Slidedown =
5546         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5547                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5548     // Now we can use a cast-like subvector extract to get the result.
5549     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5550                             DAG.getConstant(0, DL, XLenVT));
5551     return DAG.getBitcast(Op.getValueType(), Slidedown);
5552   }
5553 
5554   unsigned SubRegIdx, RemIdx;
5555   std::tie(SubRegIdx, RemIdx) =
5556       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5557           VecVT, SubVecVT, OrigIdx, TRI);
5558 
5559   // If the Idx has been completely eliminated then this is a subvector extract
5560   // which naturally aligns to a vector register. These can easily be handled
5561   // using subregister manipulation.
5562   if (RemIdx == 0)
5563     return Op;
5564 
5565   // Else we must shift our vector register directly to extract the subvector.
5566   // Do this using VSLIDEDOWN.
5567 
5568   // If the vector type is an LMUL-group type, extract a subvector equal to the
5569   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5570   // instruction.
5571   MVT InterSubVT = VecVT;
5572   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5573     InterSubVT = getLMUL1VT(VecVT);
5574     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5575                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5576   }
5577 
5578   // Slide this vector register down by the desired number of elements in order
5579   // to place the desired subvector starting at element 0.
5580   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5581   // For scalable vectors this must be further multiplied by vscale.
5582   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5583 
5584   SDValue Mask, VL;
5585   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5586   SDValue Slidedown =
5587       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5588                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5589 
5590   // Now the vector is in the right position, extract our final subvector. This
5591   // should resolve to a COPY.
5592   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5593                           DAG.getConstant(0, DL, XLenVT));
5594 
5595   // We might have bitcast from a mask type: cast back to the original type if
5596   // required.
5597   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5598 }
5599 
5600 // Lower step_vector to the vid instruction. Any non-identity step value must
5601 // be accounted for my manual expansion.
5602 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5603                                               SelectionDAG &DAG) const {
5604   SDLoc DL(Op);
5605   MVT VT = Op.getSimpleValueType();
5606   MVT XLenVT = Subtarget.getXLenVT();
5607   SDValue Mask, VL;
5608   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5609   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5610   uint64_t StepValImm = Op.getConstantOperandVal(0);
5611   if (StepValImm != 1) {
5612     if (isPowerOf2_64(StepValImm)) {
5613       SDValue StepVal =
5614           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5615                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5616       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5617     } else {
5618       SDValue StepVal = lowerScalarSplat(
5619           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5620           VL, VT, DL, DAG, Subtarget);
5621       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5622     }
5623   }
5624   return StepVec;
5625 }
5626 
5627 // Implement vector_reverse using vrgather.vv with indices determined by
5628 // subtracting the id of each element from (VLMAX-1). This will convert
5629 // the indices like so:
5630 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5631 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5632 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5633                                                  SelectionDAG &DAG) const {
5634   SDLoc DL(Op);
5635   MVT VecVT = Op.getSimpleValueType();
5636   unsigned EltSize = VecVT.getScalarSizeInBits();
5637   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5638 
5639   unsigned MaxVLMAX = 0;
5640   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5641   if (VectorBitsMax != 0)
5642     MaxVLMAX =
5643         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5644 
5645   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5646   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5647 
5648   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5649   // to use vrgatherei16.vv.
5650   // TODO: It's also possible to use vrgatherei16.vv for other types to
5651   // decrease register width for the index calculation.
5652   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5653     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5654     // Reverse each half, then reassemble them in reverse order.
5655     // NOTE: It's also possible that after splitting that VLMAX no longer
5656     // requires vrgatherei16.vv.
5657     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5658       SDValue Lo, Hi;
5659       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5660       EVT LoVT, HiVT;
5661       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5662       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5663       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5664       // Reassemble the low and high pieces reversed.
5665       // FIXME: This is a CONCAT_VECTORS.
5666       SDValue Res =
5667           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5668                       DAG.getIntPtrConstant(0, DL));
5669       return DAG.getNode(
5670           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5671           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5672     }
5673 
5674     // Just promote the int type to i16 which will double the LMUL.
5675     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5676     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5677   }
5678 
5679   MVT XLenVT = Subtarget.getXLenVT();
5680   SDValue Mask, VL;
5681   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5682 
5683   // Calculate VLMAX-1 for the desired SEW.
5684   unsigned MinElts = VecVT.getVectorMinNumElements();
5685   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5686                               DAG.getConstant(MinElts, DL, XLenVT));
5687   SDValue VLMinus1 =
5688       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5689 
5690   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5691   bool IsRV32E64 =
5692       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5693   SDValue SplatVL;
5694   if (!IsRV32E64)
5695     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5696   else
5697     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5698                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5699 
5700   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5701   SDValue Indices =
5702       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5703 
5704   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5705 }
5706 
5707 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5708                                                 SelectionDAG &DAG) const {
5709   SDLoc DL(Op);
5710   SDValue V1 = Op.getOperand(0);
5711   SDValue V2 = Op.getOperand(1);
5712   MVT XLenVT = Subtarget.getXLenVT();
5713   MVT VecVT = Op.getSimpleValueType();
5714 
5715   unsigned MinElts = VecVT.getVectorMinNumElements();
5716   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5717                               DAG.getConstant(MinElts, DL, XLenVT));
5718 
5719   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5720   SDValue DownOffset, UpOffset;
5721   if (ImmValue >= 0) {
5722     // The operand is a TargetConstant, we need to rebuild it as a regular
5723     // constant.
5724     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5725     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5726   } else {
5727     // The operand is a TargetConstant, we need to rebuild it as a regular
5728     // constant rather than negating the original operand.
5729     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5730     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5731   }
5732 
5733   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5734   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5735 
5736   SDValue SlideDown =
5737       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5738                   DownOffset, TrueMask, UpOffset);
5739   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5740                      TrueMask,
5741                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5742 }
5743 
5744 SDValue
5745 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5746                                                      SelectionDAG &DAG) const {
5747   SDLoc DL(Op);
5748   auto *Load = cast<LoadSDNode>(Op);
5749 
5750   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5751                                         Load->getMemoryVT(),
5752                                         *Load->getMemOperand()) &&
5753          "Expecting a correctly-aligned load");
5754 
5755   MVT VT = Op.getSimpleValueType();
5756   MVT XLenVT = Subtarget.getXLenVT();
5757   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5758 
5759   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5760 
5761   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5762   SDValue IntID = DAG.getTargetConstant(
5763       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5764   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5765   if (!IsMaskOp)
5766     Ops.push_back(DAG.getUNDEF(ContainerVT));
5767   Ops.push_back(Load->getBasePtr());
5768   Ops.push_back(VL);
5769   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5770   SDValue NewLoad =
5771       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5772                               Load->getMemoryVT(), Load->getMemOperand());
5773 
5774   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5775   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5776 }
5777 
5778 SDValue
5779 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5780                                                       SelectionDAG &DAG) const {
5781   SDLoc DL(Op);
5782   auto *Store = cast<StoreSDNode>(Op);
5783 
5784   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5785                                         Store->getMemoryVT(),
5786                                         *Store->getMemOperand()) &&
5787          "Expecting a correctly-aligned store");
5788 
5789   SDValue StoreVal = Store->getValue();
5790   MVT VT = StoreVal.getSimpleValueType();
5791   MVT XLenVT = Subtarget.getXLenVT();
5792 
5793   // If the size less than a byte, we need to pad with zeros to make a byte.
5794   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5795     VT = MVT::v8i1;
5796     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5797                            DAG.getConstant(0, DL, VT), StoreVal,
5798                            DAG.getIntPtrConstant(0, DL));
5799   }
5800 
5801   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5802 
5803   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5804 
5805   SDValue NewValue =
5806       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5807 
5808   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5809   SDValue IntID = DAG.getTargetConstant(
5810       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5811   return DAG.getMemIntrinsicNode(
5812       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5813       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5814       Store->getMemoryVT(), Store->getMemOperand());
5815 }
5816 
5817 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5818                                              SelectionDAG &DAG) const {
5819   SDLoc DL(Op);
5820   MVT VT = Op.getSimpleValueType();
5821 
5822   const auto *MemSD = cast<MemSDNode>(Op);
5823   EVT MemVT = MemSD->getMemoryVT();
5824   MachineMemOperand *MMO = MemSD->getMemOperand();
5825   SDValue Chain = MemSD->getChain();
5826   SDValue BasePtr = MemSD->getBasePtr();
5827 
5828   SDValue Mask, PassThru, VL;
5829   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5830     Mask = VPLoad->getMask();
5831     PassThru = DAG.getUNDEF(VT);
5832     VL = VPLoad->getVectorLength();
5833   } else {
5834     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5835     Mask = MLoad->getMask();
5836     PassThru = MLoad->getPassThru();
5837   }
5838 
5839   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5840 
5841   MVT XLenVT = Subtarget.getXLenVT();
5842 
5843   MVT ContainerVT = VT;
5844   if (VT.isFixedLengthVector()) {
5845     ContainerVT = getContainerForFixedLengthVector(VT);
5846     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5847     if (!IsUnmasked) {
5848       MVT MaskVT =
5849           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5850       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5851     }
5852   }
5853 
5854   if (!VL)
5855     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5856 
5857   unsigned IntID =
5858       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5859   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5860   if (IsUnmasked)
5861     Ops.push_back(DAG.getUNDEF(ContainerVT));
5862   else
5863     Ops.push_back(PassThru);
5864   Ops.push_back(BasePtr);
5865   if (!IsUnmasked)
5866     Ops.push_back(Mask);
5867   Ops.push_back(VL);
5868   if (!IsUnmasked)
5869     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5870 
5871   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5872 
5873   SDValue Result =
5874       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5875   Chain = Result.getValue(1);
5876 
5877   if (VT.isFixedLengthVector())
5878     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5879 
5880   return DAG.getMergeValues({Result, Chain}, DL);
5881 }
5882 
5883 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5884                                               SelectionDAG &DAG) const {
5885   SDLoc DL(Op);
5886 
5887   const auto *MemSD = cast<MemSDNode>(Op);
5888   EVT MemVT = MemSD->getMemoryVT();
5889   MachineMemOperand *MMO = MemSD->getMemOperand();
5890   SDValue Chain = MemSD->getChain();
5891   SDValue BasePtr = MemSD->getBasePtr();
5892   SDValue Val, Mask, VL;
5893 
5894   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5895     Val = VPStore->getValue();
5896     Mask = VPStore->getMask();
5897     VL = VPStore->getVectorLength();
5898   } else {
5899     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5900     Val = MStore->getValue();
5901     Mask = MStore->getMask();
5902   }
5903 
5904   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5905 
5906   MVT VT = Val.getSimpleValueType();
5907   MVT XLenVT = Subtarget.getXLenVT();
5908 
5909   MVT ContainerVT = VT;
5910   if (VT.isFixedLengthVector()) {
5911     ContainerVT = getContainerForFixedLengthVector(VT);
5912 
5913     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5914     if (!IsUnmasked) {
5915       MVT MaskVT =
5916           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5917       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5918     }
5919   }
5920 
5921   if (!VL)
5922     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5923 
5924   unsigned IntID =
5925       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5926   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5927   Ops.push_back(Val);
5928   Ops.push_back(BasePtr);
5929   if (!IsUnmasked)
5930     Ops.push_back(Mask);
5931   Ops.push_back(VL);
5932 
5933   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5934                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5935 }
5936 
5937 SDValue
5938 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5939                                                       SelectionDAG &DAG) const {
5940   MVT InVT = Op.getOperand(0).getSimpleValueType();
5941   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5942 
5943   MVT VT = Op.getSimpleValueType();
5944 
5945   SDValue Op1 =
5946       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5947   SDValue Op2 =
5948       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5949 
5950   SDLoc DL(Op);
5951   SDValue VL =
5952       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5953 
5954   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5955   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5956 
5957   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5958                             Op.getOperand(2), Mask, VL);
5959 
5960   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5961 }
5962 
5963 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5964     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5965   MVT VT = Op.getSimpleValueType();
5966 
5967   if (VT.getVectorElementType() == MVT::i1)
5968     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5969 
5970   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5971 }
5972 
5973 SDValue
5974 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5975                                                       SelectionDAG &DAG) const {
5976   unsigned Opc;
5977   switch (Op.getOpcode()) {
5978   default: llvm_unreachable("Unexpected opcode!");
5979   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5980   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5981   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5982   }
5983 
5984   return lowerToScalableOp(Op, DAG, Opc);
5985 }
5986 
5987 // Lower vector ABS to smax(X, sub(0, X)).
5988 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5989   SDLoc DL(Op);
5990   MVT VT = Op.getSimpleValueType();
5991   SDValue X = Op.getOperand(0);
5992 
5993   assert(VT.isFixedLengthVector() && "Unexpected type");
5994 
5995   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5996   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5997 
5998   SDValue Mask, VL;
5999   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6000 
6001   SDValue SplatZero = DAG.getNode(
6002       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6003       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6004   SDValue NegX =
6005       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6006   SDValue Max =
6007       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6008 
6009   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6010 }
6011 
6012 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6013     SDValue Op, SelectionDAG &DAG) const {
6014   SDLoc DL(Op);
6015   MVT VT = Op.getSimpleValueType();
6016   SDValue Mag = Op.getOperand(0);
6017   SDValue Sign = Op.getOperand(1);
6018   assert(Mag.getValueType() == Sign.getValueType() &&
6019          "Can only handle COPYSIGN with matching types.");
6020 
6021   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6022   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6023   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6024 
6025   SDValue Mask, VL;
6026   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6027 
6028   SDValue CopySign =
6029       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6030 
6031   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6032 }
6033 
6034 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6035     SDValue Op, SelectionDAG &DAG) const {
6036   MVT VT = Op.getSimpleValueType();
6037   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6038 
6039   MVT I1ContainerVT =
6040       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6041 
6042   SDValue CC =
6043       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6044   SDValue Op1 =
6045       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6046   SDValue Op2 =
6047       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6048 
6049   SDLoc DL(Op);
6050   SDValue Mask, VL;
6051   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6052 
6053   SDValue Select =
6054       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6055 
6056   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6057 }
6058 
6059 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6060                                                unsigned NewOpc,
6061                                                bool HasMask) const {
6062   MVT VT = Op.getSimpleValueType();
6063   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6064 
6065   // Create list of operands by converting existing ones to scalable types.
6066   SmallVector<SDValue, 6> Ops;
6067   for (const SDValue &V : Op->op_values()) {
6068     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6069 
6070     // Pass through non-vector operands.
6071     if (!V.getValueType().isVector()) {
6072       Ops.push_back(V);
6073       continue;
6074     }
6075 
6076     // "cast" fixed length vector to a scalable vector.
6077     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6078            "Only fixed length vectors are supported!");
6079     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6080   }
6081 
6082   SDLoc DL(Op);
6083   SDValue Mask, VL;
6084   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6085   if (HasMask)
6086     Ops.push_back(Mask);
6087   Ops.push_back(VL);
6088 
6089   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6090   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6091 }
6092 
6093 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6094 // * Operands of each node are assumed to be in the same order.
6095 // * The EVL operand is promoted from i32 to i64 on RV64.
6096 // * Fixed-length vectors are converted to their scalable-vector container
6097 //   types.
6098 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6099                                        unsigned RISCVISDOpc) const {
6100   SDLoc DL(Op);
6101   MVT VT = Op.getSimpleValueType();
6102   SmallVector<SDValue, 4> Ops;
6103 
6104   for (const auto &OpIdx : enumerate(Op->ops())) {
6105     SDValue V = OpIdx.value();
6106     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6107     // Pass through operands which aren't fixed-length vectors.
6108     if (!V.getValueType().isFixedLengthVector()) {
6109       Ops.push_back(V);
6110       continue;
6111     }
6112     // "cast" fixed length vector to a scalable vector.
6113     MVT OpVT = V.getSimpleValueType();
6114     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6115     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6116            "Only fixed length vectors are supported!");
6117     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6118   }
6119 
6120   if (!VT.isFixedLengthVector())
6121     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6122 
6123   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6124 
6125   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6126 
6127   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6128 }
6129 
6130 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6131                                             unsigned MaskOpc,
6132                                             unsigned VecOpc) const {
6133   MVT VT = Op.getSimpleValueType();
6134   if (VT.getVectorElementType() != MVT::i1)
6135     return lowerVPOp(Op, DAG, VecOpc);
6136 
6137   // It is safe to drop mask parameter as masked-off elements are undef.
6138   SDValue Op1 = Op->getOperand(0);
6139   SDValue Op2 = Op->getOperand(1);
6140   SDValue VL = Op->getOperand(3);
6141 
6142   MVT ContainerVT = VT;
6143   const bool IsFixed = VT.isFixedLengthVector();
6144   if (IsFixed) {
6145     ContainerVT = getContainerForFixedLengthVector(VT);
6146     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6147     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6148   }
6149 
6150   SDLoc DL(Op);
6151   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6152   if (!IsFixed)
6153     return Val;
6154   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6155 }
6156 
6157 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6158 // matched to a RVV indexed load. The RVV indexed load instructions only
6159 // support the "unsigned unscaled" addressing mode; indices are implicitly
6160 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6161 // signed or scaled indexing is extended to the XLEN value type and scaled
6162 // accordingly.
6163 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6164                                                SelectionDAG &DAG) const {
6165   SDLoc DL(Op);
6166   MVT VT = Op.getSimpleValueType();
6167 
6168   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6169   EVT MemVT = MemSD->getMemoryVT();
6170   MachineMemOperand *MMO = MemSD->getMemOperand();
6171   SDValue Chain = MemSD->getChain();
6172   SDValue BasePtr = MemSD->getBasePtr();
6173 
6174   ISD::LoadExtType LoadExtType;
6175   SDValue Index, Mask, PassThru, VL;
6176 
6177   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6178     Index = VPGN->getIndex();
6179     Mask = VPGN->getMask();
6180     PassThru = DAG.getUNDEF(VT);
6181     VL = VPGN->getVectorLength();
6182     // VP doesn't support extending loads.
6183     LoadExtType = ISD::NON_EXTLOAD;
6184   } else {
6185     // Else it must be a MGATHER.
6186     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6187     Index = MGN->getIndex();
6188     Mask = MGN->getMask();
6189     PassThru = MGN->getPassThru();
6190     LoadExtType = MGN->getExtensionType();
6191   }
6192 
6193   MVT IndexVT = Index.getSimpleValueType();
6194   MVT XLenVT = Subtarget.getXLenVT();
6195 
6196   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6197          "Unexpected VTs!");
6198   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6199   // Targets have to explicitly opt-in for extending vector loads.
6200   assert(LoadExtType == ISD::NON_EXTLOAD &&
6201          "Unexpected extending MGATHER/VP_GATHER");
6202   (void)LoadExtType;
6203 
6204   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6205   // the selection of the masked intrinsics doesn't do this for us.
6206   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6207 
6208   MVT ContainerVT = VT;
6209   if (VT.isFixedLengthVector()) {
6210     // We need to use the larger of the result and index type to determine the
6211     // scalable type to use so we don't increase LMUL for any operand/result.
6212     if (VT.bitsGE(IndexVT)) {
6213       ContainerVT = getContainerForFixedLengthVector(VT);
6214       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6215                                  ContainerVT.getVectorElementCount());
6216     } else {
6217       IndexVT = getContainerForFixedLengthVector(IndexVT);
6218       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6219                                      IndexVT.getVectorElementCount());
6220     }
6221 
6222     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6223 
6224     if (!IsUnmasked) {
6225       MVT MaskVT =
6226           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6227       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6228       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6229     }
6230   }
6231 
6232   if (!VL)
6233     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6234 
6235   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6236     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6237     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6238                                    VL);
6239     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6240                         TrueMask, VL);
6241   }
6242 
6243   unsigned IntID =
6244       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6245   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6246   if (IsUnmasked)
6247     Ops.push_back(DAG.getUNDEF(ContainerVT));
6248   else
6249     Ops.push_back(PassThru);
6250   Ops.push_back(BasePtr);
6251   Ops.push_back(Index);
6252   if (!IsUnmasked)
6253     Ops.push_back(Mask);
6254   Ops.push_back(VL);
6255   if (!IsUnmasked)
6256     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6257 
6258   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6259   SDValue Result =
6260       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6261   Chain = Result.getValue(1);
6262 
6263   if (VT.isFixedLengthVector())
6264     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6265 
6266   return DAG.getMergeValues({Result, Chain}, DL);
6267 }
6268 
6269 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6270 // matched to a RVV indexed store. The RVV indexed store instructions only
6271 // support the "unsigned unscaled" addressing mode; indices are implicitly
6272 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6273 // signed or scaled indexing is extended to the XLEN value type and scaled
6274 // accordingly.
6275 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6276                                                 SelectionDAG &DAG) const {
6277   SDLoc DL(Op);
6278   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6279   EVT MemVT = MemSD->getMemoryVT();
6280   MachineMemOperand *MMO = MemSD->getMemOperand();
6281   SDValue Chain = MemSD->getChain();
6282   SDValue BasePtr = MemSD->getBasePtr();
6283 
6284   bool IsTruncatingStore = false;
6285   SDValue Index, Mask, Val, VL;
6286 
6287   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6288     Index = VPSN->getIndex();
6289     Mask = VPSN->getMask();
6290     Val = VPSN->getValue();
6291     VL = VPSN->getVectorLength();
6292     // VP doesn't support truncating stores.
6293     IsTruncatingStore = false;
6294   } else {
6295     // Else it must be a MSCATTER.
6296     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6297     Index = MSN->getIndex();
6298     Mask = MSN->getMask();
6299     Val = MSN->getValue();
6300     IsTruncatingStore = MSN->isTruncatingStore();
6301   }
6302 
6303   MVT VT = Val.getSimpleValueType();
6304   MVT IndexVT = Index.getSimpleValueType();
6305   MVT XLenVT = Subtarget.getXLenVT();
6306 
6307   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6308          "Unexpected VTs!");
6309   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6310   // Targets have to explicitly opt-in for extending vector loads and
6311   // truncating vector stores.
6312   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6313   (void)IsTruncatingStore;
6314 
6315   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6316   // the selection of the masked intrinsics doesn't do this for us.
6317   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6318 
6319   MVT ContainerVT = VT;
6320   if (VT.isFixedLengthVector()) {
6321     // We need to use the larger of the value and index type to determine the
6322     // scalable type to use so we don't increase LMUL for any operand/result.
6323     if (VT.bitsGE(IndexVT)) {
6324       ContainerVT = getContainerForFixedLengthVector(VT);
6325       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6326                                  ContainerVT.getVectorElementCount());
6327     } else {
6328       IndexVT = getContainerForFixedLengthVector(IndexVT);
6329       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6330                                      IndexVT.getVectorElementCount());
6331     }
6332 
6333     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6334     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6335 
6336     if (!IsUnmasked) {
6337       MVT MaskVT =
6338           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6339       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6340     }
6341   }
6342 
6343   if (!VL)
6344     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6345 
6346   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6347     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6348     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6349                                    VL);
6350     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6351                         TrueMask, VL);
6352   }
6353 
6354   unsigned IntID =
6355       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6356   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6357   Ops.push_back(Val);
6358   Ops.push_back(BasePtr);
6359   Ops.push_back(Index);
6360   if (!IsUnmasked)
6361     Ops.push_back(Mask);
6362   Ops.push_back(VL);
6363 
6364   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6365                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6366 }
6367 
6368 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6369                                                SelectionDAG &DAG) const {
6370   const MVT XLenVT = Subtarget.getXLenVT();
6371   SDLoc DL(Op);
6372   SDValue Chain = Op->getOperand(0);
6373   SDValue SysRegNo = DAG.getTargetConstant(
6374       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6375   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6376   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6377 
6378   // Encoding used for rounding mode in RISCV differs from that used in
6379   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6380   // table, which consists of a sequence of 4-bit fields, each representing
6381   // corresponding FLT_ROUNDS mode.
6382   static const int Table =
6383       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6384       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6385       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6386       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6387       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6388 
6389   SDValue Shift =
6390       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6391   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6392                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6393   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6394                                DAG.getConstant(7, DL, XLenVT));
6395 
6396   return DAG.getMergeValues({Masked, Chain}, DL);
6397 }
6398 
6399 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6400                                                SelectionDAG &DAG) const {
6401   const MVT XLenVT = Subtarget.getXLenVT();
6402   SDLoc DL(Op);
6403   SDValue Chain = Op->getOperand(0);
6404   SDValue RMValue = Op->getOperand(1);
6405   SDValue SysRegNo = DAG.getTargetConstant(
6406       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6407 
6408   // Encoding used for rounding mode in RISCV differs from that used in
6409   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6410   // a table, which consists of a sequence of 4-bit fields, each representing
6411   // corresponding RISCV mode.
6412   static const unsigned Table =
6413       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6414       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6415       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6416       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6417       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6418 
6419   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6420                               DAG.getConstant(2, DL, XLenVT));
6421   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6422                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6423   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6424                         DAG.getConstant(0x7, DL, XLenVT));
6425   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6426                      RMValue);
6427 }
6428 
6429 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6430   switch (IntNo) {
6431   default:
6432     llvm_unreachable("Unexpected Intrinsic");
6433   case Intrinsic::riscv_bcompress:
6434     return RISCVISD::BCOMPRESSW;
6435   case Intrinsic::riscv_bdecompress:
6436     return RISCVISD::BDECOMPRESSW;
6437   case Intrinsic::riscv_bfp:
6438     return RISCVISD::BFPW;
6439   case Intrinsic::riscv_fsl:
6440     return RISCVISD::FSLW;
6441   case Intrinsic::riscv_fsr:
6442     return RISCVISD::FSRW;
6443   }
6444 }
6445 
6446 // Converts the given intrinsic to a i64 operation with any extension.
6447 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6448                                          unsigned IntNo) {
6449   SDLoc DL(N);
6450   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6451   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6452   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6453   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6454   // ReplaceNodeResults requires we maintain the same type for the return value.
6455   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6456 }
6457 
6458 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6459 // form of the given Opcode.
6460 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6461   switch (Opcode) {
6462   default:
6463     llvm_unreachable("Unexpected opcode");
6464   case ISD::SHL:
6465     return RISCVISD::SLLW;
6466   case ISD::SRA:
6467     return RISCVISD::SRAW;
6468   case ISD::SRL:
6469     return RISCVISD::SRLW;
6470   case ISD::SDIV:
6471     return RISCVISD::DIVW;
6472   case ISD::UDIV:
6473     return RISCVISD::DIVUW;
6474   case ISD::UREM:
6475     return RISCVISD::REMUW;
6476   case ISD::ROTL:
6477     return RISCVISD::ROLW;
6478   case ISD::ROTR:
6479     return RISCVISD::RORW;
6480   }
6481 }
6482 
6483 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6484 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6485 // otherwise be promoted to i64, making it difficult to select the
6486 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6487 // type i8/i16/i32 is lost.
6488 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6489                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6490   SDLoc DL(N);
6491   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6492   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6493   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6494   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6495   // ReplaceNodeResults requires we maintain the same type for the return value.
6496   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6497 }
6498 
6499 // Converts the given 32-bit operation to a i64 operation with signed extension
6500 // semantic to reduce the signed extension instructions.
6501 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6502   SDLoc DL(N);
6503   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6504   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6505   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6506   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6507                                DAG.getValueType(MVT::i32));
6508   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6509 }
6510 
6511 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6512                                              SmallVectorImpl<SDValue> &Results,
6513                                              SelectionDAG &DAG) const {
6514   SDLoc DL(N);
6515   switch (N->getOpcode()) {
6516   default:
6517     llvm_unreachable("Don't know how to custom type legalize this operation!");
6518   case ISD::STRICT_FP_TO_SINT:
6519   case ISD::STRICT_FP_TO_UINT:
6520   case ISD::FP_TO_SINT:
6521   case ISD::FP_TO_UINT: {
6522     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6523            "Unexpected custom legalisation");
6524     bool IsStrict = N->isStrictFPOpcode();
6525     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6526                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6527     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6528     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6529         TargetLowering::TypeSoftenFloat) {
6530       if (!isTypeLegal(Op0.getValueType()))
6531         return;
6532       if (IsStrict) {
6533         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6534                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6535         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6536         SDValue Res = DAG.getNode(
6537             Opc, DL, VTs, N->getOperand(0), Op0,
6538             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6539         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6540         Results.push_back(Res.getValue(1));
6541         return;
6542       }
6543       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6544       SDValue Res =
6545           DAG.getNode(Opc, DL, MVT::i64, Op0,
6546                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6547       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6548       return;
6549     }
6550     // If the FP type needs to be softened, emit a library call using the 'si'
6551     // version. If we left it to default legalization we'd end up with 'di'. If
6552     // the FP type doesn't need to be softened just let generic type
6553     // legalization promote the result type.
6554     RTLIB::Libcall LC;
6555     if (IsSigned)
6556       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6557     else
6558       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6559     MakeLibCallOptions CallOptions;
6560     EVT OpVT = Op0.getValueType();
6561     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6562     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6563     SDValue Result;
6564     std::tie(Result, Chain) =
6565         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6566     Results.push_back(Result);
6567     if (IsStrict)
6568       Results.push_back(Chain);
6569     break;
6570   }
6571   case ISD::READCYCLECOUNTER: {
6572     assert(!Subtarget.is64Bit() &&
6573            "READCYCLECOUNTER only has custom type legalization on riscv32");
6574 
6575     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6576     SDValue RCW =
6577         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6578 
6579     Results.push_back(
6580         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6581     Results.push_back(RCW.getValue(2));
6582     break;
6583   }
6584   case ISD::MUL: {
6585     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6586     unsigned XLen = Subtarget.getXLen();
6587     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6588     if (Size > XLen) {
6589       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6590       SDValue LHS = N->getOperand(0);
6591       SDValue RHS = N->getOperand(1);
6592       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6593 
6594       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6595       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6596       // We need exactly one side to be unsigned.
6597       if (LHSIsU == RHSIsU)
6598         return;
6599 
6600       auto MakeMULPair = [&](SDValue S, SDValue U) {
6601         MVT XLenVT = Subtarget.getXLenVT();
6602         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6603         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6604         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6605         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6606         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6607       };
6608 
6609       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6610       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6611 
6612       // The other operand should be signed, but still prefer MULH when
6613       // possible.
6614       if (RHSIsU && LHSIsS && !RHSIsS)
6615         Results.push_back(MakeMULPair(LHS, RHS));
6616       else if (LHSIsU && RHSIsS && !LHSIsS)
6617         Results.push_back(MakeMULPair(RHS, LHS));
6618 
6619       return;
6620     }
6621     LLVM_FALLTHROUGH;
6622   }
6623   case ISD::ADD:
6624   case ISD::SUB:
6625     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6626            "Unexpected custom legalisation");
6627     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6628     break;
6629   case ISD::SHL:
6630   case ISD::SRA:
6631   case ISD::SRL:
6632     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6633            "Unexpected custom legalisation");
6634     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6635       Results.push_back(customLegalizeToWOp(N, DAG));
6636       break;
6637     }
6638 
6639     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6640     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6641     // shift amount.
6642     if (N->getOpcode() == ISD::SHL) {
6643       SDLoc DL(N);
6644       SDValue NewOp0 =
6645           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6646       SDValue NewOp1 =
6647           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6648       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6649       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6650                                    DAG.getValueType(MVT::i32));
6651       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6652     }
6653 
6654     break;
6655   case ISD::ROTL:
6656   case ISD::ROTR:
6657     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6658            "Unexpected custom legalisation");
6659     Results.push_back(customLegalizeToWOp(N, DAG));
6660     break;
6661   case ISD::CTTZ:
6662   case ISD::CTTZ_ZERO_UNDEF:
6663   case ISD::CTLZ:
6664   case ISD::CTLZ_ZERO_UNDEF: {
6665     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6666            "Unexpected custom legalisation");
6667 
6668     SDValue NewOp0 =
6669         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6670     bool IsCTZ =
6671         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6672     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6673     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6674     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6675     return;
6676   }
6677   case ISD::SDIV:
6678   case ISD::UDIV:
6679   case ISD::UREM: {
6680     MVT VT = N->getSimpleValueType(0);
6681     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6682            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6683            "Unexpected custom legalisation");
6684     // Don't promote division/remainder by constant since we should expand those
6685     // to multiply by magic constant.
6686     // FIXME: What if the expansion is disabled for minsize.
6687     if (N->getOperand(1).getOpcode() == ISD::Constant)
6688       return;
6689 
6690     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6691     // the upper 32 bits. For other types we need to sign or zero extend
6692     // based on the opcode.
6693     unsigned ExtOpc = ISD::ANY_EXTEND;
6694     if (VT != MVT::i32)
6695       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6696                                            : ISD::ZERO_EXTEND;
6697 
6698     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6699     break;
6700   }
6701   case ISD::UADDO:
6702   case ISD::USUBO: {
6703     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6704            "Unexpected custom legalisation");
6705     bool IsAdd = N->getOpcode() == ISD::UADDO;
6706     // Create an ADDW or SUBW.
6707     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6708     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6709     SDValue Res =
6710         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6711     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6712                       DAG.getValueType(MVT::i32));
6713 
6714     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6715     // Since the inputs are sign extended from i32, this is equivalent to
6716     // comparing the lower 32 bits.
6717     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6718     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6719                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6720 
6721     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6722     Results.push_back(Overflow);
6723     return;
6724   }
6725   case ISD::UADDSAT:
6726   case ISD::USUBSAT: {
6727     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6728            "Unexpected custom legalisation");
6729     if (Subtarget.hasStdExtZbb()) {
6730       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6731       // sign extend allows overflow of the lower 32 bits to be detected on
6732       // the promoted size.
6733       SDValue LHS =
6734           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6735       SDValue RHS =
6736           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6737       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6738       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6739       return;
6740     }
6741 
6742     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6743     // promotion for UADDO/USUBO.
6744     Results.push_back(expandAddSubSat(N, DAG));
6745     return;
6746   }
6747   case ISD::ABS: {
6748     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6749            "Unexpected custom legalisation");
6750           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6751 
6752     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6753 
6754     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6755 
6756     // Freeze the source so we can increase it's use count.
6757     Src = DAG.getFreeze(Src);
6758 
6759     // Copy sign bit to all bits using the sraiw pattern.
6760     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6761                                    DAG.getValueType(MVT::i32));
6762     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6763                            DAG.getConstant(31, DL, MVT::i64));
6764 
6765     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6766     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6767 
6768     // NOTE: The result is only required to be anyextended, but sext is
6769     // consistent with type legalization of sub.
6770     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6771                          DAG.getValueType(MVT::i32));
6772     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6773     return;
6774   }
6775   case ISD::BITCAST: {
6776     EVT VT = N->getValueType(0);
6777     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6778     SDValue Op0 = N->getOperand(0);
6779     EVT Op0VT = Op0.getValueType();
6780     MVT XLenVT = Subtarget.getXLenVT();
6781     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6782       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6783       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6784     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6785                Subtarget.hasStdExtF()) {
6786       SDValue FPConv =
6787           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6788       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6789     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6790                isTypeLegal(Op0VT)) {
6791       // Custom-legalize bitcasts from fixed-length vector types to illegal
6792       // scalar types in order to improve codegen. Bitcast the vector to a
6793       // one-element vector type whose element type is the same as the result
6794       // type, and extract the first element.
6795       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6796       if (isTypeLegal(BVT)) {
6797         SDValue BVec = DAG.getBitcast(BVT, Op0);
6798         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6799                                       DAG.getConstant(0, DL, XLenVT)));
6800       }
6801     }
6802     break;
6803   }
6804   case RISCVISD::GREV:
6805   case RISCVISD::GORC:
6806   case RISCVISD::SHFL: {
6807     MVT VT = N->getSimpleValueType(0);
6808     MVT XLenVT = Subtarget.getXLenVT();
6809     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6810            "Unexpected custom legalisation");
6811     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6812     assert((Subtarget.hasStdExtZbp() ||
6813             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6814              N->getConstantOperandVal(1) == 7)) &&
6815            "Unexpected extension");
6816     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6817     SDValue NewOp1 =
6818         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6819     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6820     // ReplaceNodeResults requires we maintain the same type for the return
6821     // value.
6822     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6823     break;
6824   }
6825   case ISD::BSWAP:
6826   case ISD::BITREVERSE: {
6827     MVT VT = N->getSimpleValueType(0);
6828     MVT XLenVT = Subtarget.getXLenVT();
6829     assert((VT == MVT::i8 || VT == MVT::i16 ||
6830             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6831            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6832     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6833     unsigned Imm = VT.getSizeInBits() - 1;
6834     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6835     if (N->getOpcode() == ISD::BSWAP)
6836       Imm &= ~0x7U;
6837     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6838                                 DAG.getConstant(Imm, DL, XLenVT));
6839     // ReplaceNodeResults requires we maintain the same type for the return
6840     // value.
6841     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6842     break;
6843   }
6844   case ISD::FSHL:
6845   case ISD::FSHR: {
6846     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6847            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6848     SDValue NewOp0 =
6849         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6850     SDValue NewOp1 =
6851         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6852     SDValue NewShAmt =
6853         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6854     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6855     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6856     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6857                            DAG.getConstant(0x1f, DL, MVT::i64));
6858     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6859     // instruction use different orders. fshl will return its first operand for
6860     // shift of zero, fshr will return its second operand. fsl and fsr both
6861     // return rs1 so the ISD nodes need to have different operand orders.
6862     // Shift amount is in rs2.
6863     unsigned Opc = RISCVISD::FSLW;
6864     if (N->getOpcode() == ISD::FSHR) {
6865       std::swap(NewOp0, NewOp1);
6866       Opc = RISCVISD::FSRW;
6867     }
6868     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6869     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6870     break;
6871   }
6872   case ISD::EXTRACT_VECTOR_ELT: {
6873     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6874     // type is illegal (currently only vXi64 RV32).
6875     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6876     // transferred to the destination register. We issue two of these from the
6877     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6878     // first element.
6879     SDValue Vec = N->getOperand(0);
6880     SDValue Idx = N->getOperand(1);
6881 
6882     // The vector type hasn't been legalized yet so we can't issue target
6883     // specific nodes if it needs legalization.
6884     // FIXME: We would manually legalize if it's important.
6885     if (!isTypeLegal(Vec.getValueType()))
6886       return;
6887 
6888     MVT VecVT = Vec.getSimpleValueType();
6889 
6890     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6891            VecVT.getVectorElementType() == MVT::i64 &&
6892            "Unexpected EXTRACT_VECTOR_ELT legalization");
6893 
6894     // If this is a fixed vector, we need to convert it to a scalable vector.
6895     MVT ContainerVT = VecVT;
6896     if (VecVT.isFixedLengthVector()) {
6897       ContainerVT = getContainerForFixedLengthVector(VecVT);
6898       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6899     }
6900 
6901     MVT XLenVT = Subtarget.getXLenVT();
6902 
6903     // Use a VL of 1 to avoid processing more elements than we need.
6904     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6905     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6906     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6907 
6908     // Unless the index is known to be 0, we must slide the vector down to get
6909     // the desired element into index 0.
6910     if (!isNullConstant(Idx)) {
6911       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6912                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6913     }
6914 
6915     // Extract the lower XLEN bits of the correct vector element.
6916     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6917 
6918     // To extract the upper XLEN bits of the vector element, shift the first
6919     // element right by 32 bits and re-extract the lower XLEN bits.
6920     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6921                                      DAG.getUNDEF(ContainerVT),
6922                                      DAG.getConstant(32, DL, XLenVT), VL);
6923     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6924                                  ThirtyTwoV, Mask, VL);
6925 
6926     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6927 
6928     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6929     break;
6930   }
6931   case ISD::INTRINSIC_WO_CHAIN: {
6932     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6933     switch (IntNo) {
6934     default:
6935       llvm_unreachable(
6936           "Don't know how to custom type legalize this intrinsic!");
6937     case Intrinsic::riscv_grev:
6938     case Intrinsic::riscv_gorc: {
6939       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6940              "Unexpected custom legalisation");
6941       SDValue NewOp1 =
6942           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6943       SDValue NewOp2 =
6944           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6945       unsigned Opc =
6946           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6947       // If the control is a constant, promote the node by clearing any extra
6948       // bits bits in the control. isel will form greviw/gorciw if the result is
6949       // sign extended.
6950       if (isa<ConstantSDNode>(NewOp2)) {
6951         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6952                              DAG.getConstant(0x1f, DL, MVT::i64));
6953         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
6954       }
6955       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6956       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6957       break;
6958     }
6959     case Intrinsic::riscv_bcompress:
6960     case Intrinsic::riscv_bdecompress:
6961     case Intrinsic::riscv_bfp: {
6962       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6963              "Unexpected custom legalisation");
6964       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6965       break;
6966     }
6967     case Intrinsic::riscv_fsl:
6968     case Intrinsic::riscv_fsr: {
6969       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6970              "Unexpected custom legalisation");
6971       SDValue NewOp1 =
6972           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6973       SDValue NewOp2 =
6974           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6975       SDValue NewOp3 =
6976           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6977       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6978       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6979       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6980       break;
6981     }
6982     case Intrinsic::riscv_orc_b: {
6983       // Lower to the GORCI encoding for orc.b with the operand extended.
6984       SDValue NewOp =
6985           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6986       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
6987                                 DAG.getConstant(7, DL, MVT::i64));
6988       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6989       return;
6990     }
6991     case Intrinsic::riscv_shfl:
6992     case Intrinsic::riscv_unshfl: {
6993       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6994              "Unexpected custom legalisation");
6995       SDValue NewOp1 =
6996           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6997       SDValue NewOp2 =
6998           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6999       unsigned Opc =
7000           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7001       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7002       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7003       // will be shuffled the same way as the lower 32 bit half, but the two
7004       // halves won't cross.
7005       if (isa<ConstantSDNode>(NewOp2)) {
7006         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7007                              DAG.getConstant(0xf, DL, MVT::i64));
7008         Opc =
7009             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7010       }
7011       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7012       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7013       break;
7014     }
7015     case Intrinsic::riscv_vmv_x_s: {
7016       EVT VT = N->getValueType(0);
7017       MVT XLenVT = Subtarget.getXLenVT();
7018       if (VT.bitsLT(XLenVT)) {
7019         // Simple case just extract using vmv.x.s and truncate.
7020         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7021                                       Subtarget.getXLenVT(), N->getOperand(1));
7022         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7023         return;
7024       }
7025 
7026       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7027              "Unexpected custom legalization");
7028 
7029       // We need to do the move in two steps.
7030       SDValue Vec = N->getOperand(1);
7031       MVT VecVT = Vec.getSimpleValueType();
7032 
7033       // First extract the lower XLEN bits of the element.
7034       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7035 
7036       // To extract the upper XLEN bits of the vector element, shift the first
7037       // element right by 32 bits and re-extract the lower XLEN bits.
7038       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7039       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7040       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7041       SDValue ThirtyTwoV =
7042           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7043                       DAG.getConstant(32, DL, XLenVT), VL);
7044       SDValue LShr32 =
7045           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7046       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7047 
7048       Results.push_back(
7049           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7050       break;
7051     }
7052     }
7053     break;
7054   }
7055   case ISD::VECREDUCE_ADD:
7056   case ISD::VECREDUCE_AND:
7057   case ISD::VECREDUCE_OR:
7058   case ISD::VECREDUCE_XOR:
7059   case ISD::VECREDUCE_SMAX:
7060   case ISD::VECREDUCE_UMAX:
7061   case ISD::VECREDUCE_SMIN:
7062   case ISD::VECREDUCE_UMIN:
7063     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7064       Results.push_back(V);
7065     break;
7066   case ISD::VP_REDUCE_ADD:
7067   case ISD::VP_REDUCE_AND:
7068   case ISD::VP_REDUCE_OR:
7069   case ISD::VP_REDUCE_XOR:
7070   case ISD::VP_REDUCE_SMAX:
7071   case ISD::VP_REDUCE_UMAX:
7072   case ISD::VP_REDUCE_SMIN:
7073   case ISD::VP_REDUCE_UMIN:
7074     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7075       Results.push_back(V);
7076     break;
7077   case ISD::FLT_ROUNDS_: {
7078     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7079     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7080     Results.push_back(Res.getValue(0));
7081     Results.push_back(Res.getValue(1));
7082     break;
7083   }
7084   }
7085 }
7086 
7087 // A structure to hold one of the bit-manipulation patterns below. Together, a
7088 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7089 //   (or (and (shl x, 1), 0xAAAAAAAA),
7090 //       (and (srl x, 1), 0x55555555))
7091 struct RISCVBitmanipPat {
7092   SDValue Op;
7093   unsigned ShAmt;
7094   bool IsSHL;
7095 
7096   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7097     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7098   }
7099 };
7100 
7101 // Matches patterns of the form
7102 //   (and (shl x, C2), (C1 << C2))
7103 //   (and (srl x, C2), C1)
7104 //   (shl (and x, C1), C2)
7105 //   (srl (and x, (C1 << C2)), C2)
7106 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7107 // The expected masks for each shift amount are specified in BitmanipMasks where
7108 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7109 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7110 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7111 // XLen is 64.
7112 static Optional<RISCVBitmanipPat>
7113 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7114   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7115          "Unexpected number of masks");
7116   Optional<uint64_t> Mask;
7117   // Optionally consume a mask around the shift operation.
7118   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7119     Mask = Op.getConstantOperandVal(1);
7120     Op = Op.getOperand(0);
7121   }
7122   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7123     return None;
7124   bool IsSHL = Op.getOpcode() == ISD::SHL;
7125 
7126   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7127     return None;
7128   uint64_t ShAmt = Op.getConstantOperandVal(1);
7129 
7130   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7131   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7132     return None;
7133   // If we don't have enough masks for 64 bit, then we must be trying to
7134   // match SHFL so we're only allowed to shift 1/4 of the width.
7135   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7136     return None;
7137 
7138   SDValue Src = Op.getOperand(0);
7139 
7140   // The expected mask is shifted left when the AND is found around SHL
7141   // patterns.
7142   //   ((x >> 1) & 0x55555555)
7143   //   ((x << 1) & 0xAAAAAAAA)
7144   bool SHLExpMask = IsSHL;
7145 
7146   if (!Mask) {
7147     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7148     // the mask is all ones: consume that now.
7149     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7150       Mask = Src.getConstantOperandVal(1);
7151       Src = Src.getOperand(0);
7152       // The expected mask is now in fact shifted left for SRL, so reverse the
7153       // decision.
7154       //   ((x & 0xAAAAAAAA) >> 1)
7155       //   ((x & 0x55555555) << 1)
7156       SHLExpMask = !SHLExpMask;
7157     } else {
7158       // Use a default shifted mask of all-ones if there's no AND, truncated
7159       // down to the expected width. This simplifies the logic later on.
7160       Mask = maskTrailingOnes<uint64_t>(Width);
7161       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7162     }
7163   }
7164 
7165   unsigned MaskIdx = Log2_32(ShAmt);
7166   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7167 
7168   if (SHLExpMask)
7169     ExpMask <<= ShAmt;
7170 
7171   if (Mask != ExpMask)
7172     return None;
7173 
7174   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7175 }
7176 
7177 // Matches any of the following bit-manipulation patterns:
7178 //   (and (shl x, 1), (0x55555555 << 1))
7179 //   (and (srl x, 1), 0x55555555)
7180 //   (shl (and x, 0x55555555), 1)
7181 //   (srl (and x, (0x55555555 << 1)), 1)
7182 // where the shift amount and mask may vary thus:
7183 //   [1]  = 0x55555555 / 0xAAAAAAAA
7184 //   [2]  = 0x33333333 / 0xCCCCCCCC
7185 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7186 //   [8]  = 0x00FF00FF / 0xFF00FF00
7187 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7188 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7189 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7190   // These are the unshifted masks which we use to match bit-manipulation
7191   // patterns. They may be shifted left in certain circumstances.
7192   static const uint64_t BitmanipMasks[] = {
7193       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7194       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7195 
7196   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7197 }
7198 
7199 // Match the following pattern as a GREVI(W) operation
7200 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7201 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7202                                const RISCVSubtarget &Subtarget) {
7203   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7204   EVT VT = Op.getValueType();
7205 
7206   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7207     auto LHS = matchGREVIPat(Op.getOperand(0));
7208     auto RHS = matchGREVIPat(Op.getOperand(1));
7209     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7210       SDLoc DL(Op);
7211       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7212                          DAG.getConstant(LHS->ShAmt, DL, VT));
7213     }
7214   }
7215   return SDValue();
7216 }
7217 
7218 // Matches any the following pattern as a GORCI(W) operation
7219 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7220 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7221 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7222 // Note that with the variant of 3.,
7223 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7224 // the inner pattern will first be matched as GREVI and then the outer
7225 // pattern will be matched to GORC via the first rule above.
7226 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7227 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7228                                const RISCVSubtarget &Subtarget) {
7229   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7230   EVT VT = Op.getValueType();
7231 
7232   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7233     SDLoc DL(Op);
7234     SDValue Op0 = Op.getOperand(0);
7235     SDValue Op1 = Op.getOperand(1);
7236 
7237     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7238       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7239           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7240           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7241         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7242       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7243       if ((Reverse.getOpcode() == ISD::ROTL ||
7244            Reverse.getOpcode() == ISD::ROTR) &&
7245           Reverse.getOperand(0) == X &&
7246           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7247         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7248         if (RotAmt == (VT.getSizeInBits() / 2))
7249           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7250                              DAG.getConstant(RotAmt, DL, VT));
7251       }
7252       return SDValue();
7253     };
7254 
7255     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7256     if (SDValue V = MatchOROfReverse(Op0, Op1))
7257       return V;
7258     if (SDValue V = MatchOROfReverse(Op1, Op0))
7259       return V;
7260 
7261     // OR is commutable so canonicalize its OR operand to the left
7262     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7263       std::swap(Op0, Op1);
7264     if (Op0.getOpcode() != ISD::OR)
7265       return SDValue();
7266     SDValue OrOp0 = Op0.getOperand(0);
7267     SDValue OrOp1 = Op0.getOperand(1);
7268     auto LHS = matchGREVIPat(OrOp0);
7269     // OR is commutable so swap the operands and try again: x might have been
7270     // on the left
7271     if (!LHS) {
7272       std::swap(OrOp0, OrOp1);
7273       LHS = matchGREVIPat(OrOp0);
7274     }
7275     auto RHS = matchGREVIPat(Op1);
7276     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7277       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7278                          DAG.getConstant(LHS->ShAmt, DL, VT));
7279     }
7280   }
7281   return SDValue();
7282 }
7283 
7284 // Matches any of the following bit-manipulation patterns:
7285 //   (and (shl x, 1), (0x22222222 << 1))
7286 //   (and (srl x, 1), 0x22222222)
7287 //   (shl (and x, 0x22222222), 1)
7288 //   (srl (and x, (0x22222222 << 1)), 1)
7289 // where the shift amount and mask may vary thus:
7290 //   [1]  = 0x22222222 / 0x44444444
7291 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7292 //   [4]  = 0x00F000F0 / 0x0F000F00
7293 //   [8]  = 0x0000FF00 / 0x00FF0000
7294 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7295 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7296   // These are the unshifted masks which we use to match bit-manipulation
7297   // patterns. They may be shifted left in certain circumstances.
7298   static const uint64_t BitmanipMasks[] = {
7299       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7300       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7301 
7302   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7303 }
7304 
7305 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7306 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7307                                const RISCVSubtarget &Subtarget) {
7308   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7309   EVT VT = Op.getValueType();
7310 
7311   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7312     return SDValue();
7313 
7314   SDValue Op0 = Op.getOperand(0);
7315   SDValue Op1 = Op.getOperand(1);
7316 
7317   // Or is commutable so canonicalize the second OR to the LHS.
7318   if (Op0.getOpcode() != ISD::OR)
7319     std::swap(Op0, Op1);
7320   if (Op0.getOpcode() != ISD::OR)
7321     return SDValue();
7322 
7323   // We found an inner OR, so our operands are the operands of the inner OR
7324   // and the other operand of the outer OR.
7325   SDValue A = Op0.getOperand(0);
7326   SDValue B = Op0.getOperand(1);
7327   SDValue C = Op1;
7328 
7329   auto Match1 = matchSHFLPat(A);
7330   auto Match2 = matchSHFLPat(B);
7331 
7332   // If neither matched, we failed.
7333   if (!Match1 && !Match2)
7334     return SDValue();
7335 
7336   // We had at least one match. if one failed, try the remaining C operand.
7337   if (!Match1) {
7338     std::swap(A, C);
7339     Match1 = matchSHFLPat(A);
7340     if (!Match1)
7341       return SDValue();
7342   } else if (!Match2) {
7343     std::swap(B, C);
7344     Match2 = matchSHFLPat(B);
7345     if (!Match2)
7346       return SDValue();
7347   }
7348   assert(Match1 && Match2);
7349 
7350   // Make sure our matches pair up.
7351   if (!Match1->formsPairWith(*Match2))
7352     return SDValue();
7353 
7354   // All the remains is to make sure C is an AND with the same input, that masks
7355   // out the bits that are being shuffled.
7356   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7357       C.getOperand(0) != Match1->Op)
7358     return SDValue();
7359 
7360   uint64_t Mask = C.getConstantOperandVal(1);
7361 
7362   static const uint64_t BitmanipMasks[] = {
7363       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7364       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7365   };
7366 
7367   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7368   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7369   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7370 
7371   if (Mask != ExpMask)
7372     return SDValue();
7373 
7374   SDLoc DL(Op);
7375   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7376                      DAG.getConstant(Match1->ShAmt, DL, VT));
7377 }
7378 
7379 // Optimize (add (shl x, c0), (shl y, c1)) ->
7380 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7381 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7382                                   const RISCVSubtarget &Subtarget) {
7383   // Perform this optimization only in the zba extension.
7384   if (!Subtarget.hasStdExtZba())
7385     return SDValue();
7386 
7387   // Skip for vector types and larger types.
7388   EVT VT = N->getValueType(0);
7389   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7390     return SDValue();
7391 
7392   // The two operand nodes must be SHL and have no other use.
7393   SDValue N0 = N->getOperand(0);
7394   SDValue N1 = N->getOperand(1);
7395   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7396       !N0->hasOneUse() || !N1->hasOneUse())
7397     return SDValue();
7398 
7399   // Check c0 and c1.
7400   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7401   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7402   if (!N0C || !N1C)
7403     return SDValue();
7404   int64_t C0 = N0C->getSExtValue();
7405   int64_t C1 = N1C->getSExtValue();
7406   if (C0 <= 0 || C1 <= 0)
7407     return SDValue();
7408 
7409   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7410   int64_t Bits = std::min(C0, C1);
7411   int64_t Diff = std::abs(C0 - C1);
7412   if (Diff != 1 && Diff != 2 && Diff != 3)
7413     return SDValue();
7414 
7415   // Build nodes.
7416   SDLoc DL(N);
7417   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7418   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7419   SDValue NA0 =
7420       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7421   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7422   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7423 }
7424 
7425 // Combine
7426 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7427 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7428 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7429 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7430 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7431 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7432 // The grev patterns represents BSWAP.
7433 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7434 // off the grev.
7435 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7436                                           const RISCVSubtarget &Subtarget) {
7437   bool IsWInstruction =
7438       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7439   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7440           IsWInstruction) &&
7441          "Unexpected opcode!");
7442   SDValue Src = N->getOperand(0);
7443   EVT VT = N->getValueType(0);
7444   SDLoc DL(N);
7445 
7446   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7447     return SDValue();
7448 
7449   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7450       !isa<ConstantSDNode>(Src.getOperand(1)))
7451     return SDValue();
7452 
7453   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7454   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7455 
7456   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7457   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7458   unsigned ShAmt1 = N->getConstantOperandVal(1);
7459   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7460   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7461     return SDValue();
7462 
7463   Src = Src.getOperand(0);
7464 
7465   // Toggle bit the MSB of the shift.
7466   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7467   if (CombinedShAmt == 0)
7468     return Src;
7469 
7470   SDValue Res = DAG.getNode(
7471       RISCVISD::GREV, DL, VT, Src,
7472       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7473   if (!IsWInstruction)
7474     return Res;
7475 
7476   // Sign extend the result to match the behavior of the rotate. This will be
7477   // selected to GREVIW in isel.
7478   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7479                      DAG.getValueType(MVT::i32));
7480 }
7481 
7482 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7483 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7484 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7485 // not undo itself, but they are redundant.
7486 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7487   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7488   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7489   SDValue Src = N->getOperand(0);
7490 
7491   if (Src.getOpcode() != N->getOpcode())
7492     return SDValue();
7493 
7494   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7495       !isa<ConstantSDNode>(Src.getOperand(1)))
7496     return SDValue();
7497 
7498   unsigned ShAmt1 = N->getConstantOperandVal(1);
7499   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7500   Src = Src.getOperand(0);
7501 
7502   unsigned CombinedShAmt;
7503   if (IsGORC)
7504     CombinedShAmt = ShAmt1 | ShAmt2;
7505   else
7506     CombinedShAmt = ShAmt1 ^ ShAmt2;
7507 
7508   if (CombinedShAmt == 0)
7509     return Src;
7510 
7511   SDLoc DL(N);
7512   return DAG.getNode(
7513       N->getOpcode(), DL, N->getValueType(0), Src,
7514       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7515 }
7516 
7517 // Combine a constant select operand into its use:
7518 //
7519 // (and (select cond, -1, c), x)
7520 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7521 // (or  (select cond, 0, c), x)
7522 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7523 // (xor (select cond, 0, c), x)
7524 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7525 // (add (select cond, 0, c), x)
7526 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7527 // (sub x, (select cond, 0, c))
7528 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7529 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7530                                    SelectionDAG &DAG, bool AllOnes) {
7531   EVT VT = N->getValueType(0);
7532 
7533   // Skip vectors.
7534   if (VT.isVector())
7535     return SDValue();
7536 
7537   if ((Slct.getOpcode() != ISD::SELECT &&
7538        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7539       !Slct.hasOneUse())
7540     return SDValue();
7541 
7542   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7543     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7544   };
7545 
7546   bool SwapSelectOps;
7547   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7548   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7549   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7550   SDValue NonConstantVal;
7551   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7552     SwapSelectOps = false;
7553     NonConstantVal = FalseVal;
7554   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7555     SwapSelectOps = true;
7556     NonConstantVal = TrueVal;
7557   } else
7558     return SDValue();
7559 
7560   // Slct is now know to be the desired identity constant when CC is true.
7561   TrueVal = OtherOp;
7562   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7563   // Unless SwapSelectOps says the condition should be false.
7564   if (SwapSelectOps)
7565     std::swap(TrueVal, FalseVal);
7566 
7567   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7568     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7569                        {Slct.getOperand(0), Slct.getOperand(1),
7570                         Slct.getOperand(2), TrueVal, FalseVal});
7571 
7572   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7573                      {Slct.getOperand(0), TrueVal, FalseVal});
7574 }
7575 
7576 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7577 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7578                                               bool AllOnes) {
7579   SDValue N0 = N->getOperand(0);
7580   SDValue N1 = N->getOperand(1);
7581   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7582     return Result;
7583   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7584     return Result;
7585   return SDValue();
7586 }
7587 
7588 // Transform (add (mul x, c0), c1) ->
7589 //           (add (mul (add x, c1/c0), c0), c1%c0).
7590 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7591 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7592 // to an infinite loop in DAGCombine if transformed.
7593 // Or transform (add (mul x, c0), c1) ->
7594 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7595 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7596 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7597 // lead to an infinite loop in DAGCombine if transformed.
7598 // Or transform (add (mul x, c0), c1) ->
7599 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7600 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7601 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7602 // lead to an infinite loop in DAGCombine if transformed.
7603 // Or transform (add (mul x, c0), c1) ->
7604 //              (mul (add x, c1/c0), c0).
7605 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7606 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7607                                      const RISCVSubtarget &Subtarget) {
7608   // Skip for vector types and larger types.
7609   EVT VT = N->getValueType(0);
7610   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7611     return SDValue();
7612   // The first operand node must be a MUL and has no other use.
7613   SDValue N0 = N->getOperand(0);
7614   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7615     return SDValue();
7616   // Check if c0 and c1 match above conditions.
7617   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7618   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7619   if (!N0C || !N1C)
7620     return SDValue();
7621   // If N0C has multiple uses it's possible one of the cases in
7622   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7623   // in an infinite loop.
7624   if (!N0C->hasOneUse())
7625     return SDValue();
7626   int64_t C0 = N0C->getSExtValue();
7627   int64_t C1 = N1C->getSExtValue();
7628   int64_t CA, CB;
7629   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7630     return SDValue();
7631   // Search for proper CA (non-zero) and CB that both are simm12.
7632   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7633       !isInt<12>(C0 * (C1 / C0))) {
7634     CA = C1 / C0;
7635     CB = C1 % C0;
7636   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7637              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7638     CA = C1 / C0 + 1;
7639     CB = C1 % C0 - C0;
7640   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7641              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7642     CA = C1 / C0 - 1;
7643     CB = C1 % C0 + C0;
7644   } else
7645     return SDValue();
7646   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7647   SDLoc DL(N);
7648   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7649                              DAG.getConstant(CA, DL, VT));
7650   SDValue New1 =
7651       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7652   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7653 }
7654 
7655 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7656                                  const RISCVSubtarget &Subtarget) {
7657   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7658     return V;
7659   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7660     return V;
7661   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7662   //      (select lhs, rhs, cc, x, (add x, y))
7663   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7664 }
7665 
7666 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7667   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7668   //      (select lhs, rhs, cc, x, (sub x, y))
7669   SDValue N0 = N->getOperand(0);
7670   SDValue N1 = N->getOperand(1);
7671   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7672 }
7673 
7674 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7675   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7676   //      (select lhs, rhs, cc, x, (and x, y))
7677   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7678 }
7679 
7680 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7681                                 const RISCVSubtarget &Subtarget) {
7682   if (Subtarget.hasStdExtZbp()) {
7683     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7684       return GREV;
7685     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7686       return GORC;
7687     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7688       return SHFL;
7689   }
7690 
7691   // fold (or (select cond, 0, y), x) ->
7692   //      (select cond, x, (or x, y))
7693   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7694 }
7695 
7696 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7697   // fold (xor (select cond, 0, y), x) ->
7698   //      (select cond, x, (xor x, y))
7699   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7700 }
7701 
7702 static SDValue
7703 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7704                                 const RISCVSubtarget &Subtarget) {
7705   SDValue Src = N->getOperand(0);
7706   EVT VT = N->getValueType(0);
7707 
7708   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7709   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7710       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7711     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7712                        Src.getOperand(0));
7713 
7714   // Fold (i64 (sext_inreg (abs X), i32)) ->
7715   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7716   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7717   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7718   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7719   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7720   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7721   // may get combined into an earlier operation so we need to use
7722   // ComputeNumSignBits.
7723   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7724   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7725   // we can't assume that X has 33 sign bits. We must check.
7726   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7727       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7728       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7729       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7730     SDLoc DL(N);
7731     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7732     SDValue Neg =
7733         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7734     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7735                       DAG.getValueType(MVT::i32));
7736     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7737   }
7738 
7739   return SDValue();
7740 }
7741 
7742 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7743 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7744 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7745                                              bool Commute = false) {
7746   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7747           N->getOpcode() == RISCVISD::SUB_VL) &&
7748          "Unexpected opcode");
7749   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7750   SDValue Op0 = N->getOperand(0);
7751   SDValue Op1 = N->getOperand(1);
7752   if (Commute)
7753     std::swap(Op0, Op1);
7754 
7755   MVT VT = N->getSimpleValueType(0);
7756 
7757   // Determine the narrow size for a widening add/sub.
7758   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7759   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7760                                   VT.getVectorElementCount());
7761 
7762   SDValue Mask = N->getOperand(2);
7763   SDValue VL = N->getOperand(3);
7764 
7765   SDLoc DL(N);
7766 
7767   // If the RHS is a sext or zext, we can form a widening op.
7768   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7769        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7770       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7771     unsigned ExtOpc = Op1.getOpcode();
7772     Op1 = Op1.getOperand(0);
7773     // Re-introduce narrower extends if needed.
7774     if (Op1.getValueType() != NarrowVT)
7775       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7776 
7777     unsigned WOpc;
7778     if (ExtOpc == RISCVISD::VSEXT_VL)
7779       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7780     else
7781       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7782 
7783     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7784   }
7785 
7786   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7787   // sext/zext?
7788 
7789   return SDValue();
7790 }
7791 
7792 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7793 // vwsub(u).vv/vx.
7794 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7795   SDValue Op0 = N->getOperand(0);
7796   SDValue Op1 = N->getOperand(1);
7797   SDValue Mask = N->getOperand(2);
7798   SDValue VL = N->getOperand(3);
7799 
7800   MVT VT = N->getSimpleValueType(0);
7801   MVT NarrowVT = Op1.getSimpleValueType();
7802   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7803 
7804   unsigned VOpc;
7805   switch (N->getOpcode()) {
7806   default: llvm_unreachable("Unexpected opcode");
7807   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7808   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7809   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7810   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7811   }
7812 
7813   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7814                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7815 
7816   SDLoc DL(N);
7817 
7818   // If the LHS is a sext or zext, we can narrow this op to the same size as
7819   // the RHS.
7820   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7821        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7822       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7823     unsigned ExtOpc = Op0.getOpcode();
7824     Op0 = Op0.getOperand(0);
7825     // Re-introduce narrower extends if needed.
7826     if (Op0.getValueType() != NarrowVT)
7827       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7828     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7829   }
7830 
7831   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7832                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7833 
7834   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7835   // to commute and use a vwadd(u).vx instead.
7836   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7837       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7838     Op0 = Op0.getOperand(1);
7839 
7840     // See if have enough sign bits or zero bits in the scalar to use a
7841     // widening add/sub by splatting to smaller element size.
7842     unsigned EltBits = VT.getScalarSizeInBits();
7843     unsigned ScalarBits = Op0.getValueSizeInBits();
7844     // Make sure we're getting all element bits from the scalar register.
7845     // FIXME: Support implicit sign extension of vmv.v.x?
7846     if (ScalarBits < EltBits)
7847       return SDValue();
7848 
7849     if (IsSigned) {
7850       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7851         return SDValue();
7852     } else {
7853       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7854       if (!DAG.MaskedValueIsZero(Op0, Mask))
7855         return SDValue();
7856     }
7857 
7858     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7859                       DAG.getUNDEF(NarrowVT), Op0, VL);
7860     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7861   }
7862 
7863   return SDValue();
7864 }
7865 
7866 // Try to form VWMUL, VWMULU or VWMULSU.
7867 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7868 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7869                                        bool Commute) {
7870   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7871   SDValue Op0 = N->getOperand(0);
7872   SDValue Op1 = N->getOperand(1);
7873   if (Commute)
7874     std::swap(Op0, Op1);
7875 
7876   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7877   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7878   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7879   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7880     return SDValue();
7881 
7882   SDValue Mask = N->getOperand(2);
7883   SDValue VL = N->getOperand(3);
7884 
7885   // Make sure the mask and VL match.
7886   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7887     return SDValue();
7888 
7889   MVT VT = N->getSimpleValueType(0);
7890 
7891   // Determine the narrow size for a widening multiply.
7892   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7893   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7894                                   VT.getVectorElementCount());
7895 
7896   SDLoc DL(N);
7897 
7898   // See if the other operand is the same opcode.
7899   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7900     if (!Op1.hasOneUse())
7901       return SDValue();
7902 
7903     // Make sure the mask and VL match.
7904     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7905       return SDValue();
7906 
7907     Op1 = Op1.getOperand(0);
7908   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7909     // The operand is a splat of a scalar.
7910 
7911     // The pasthru must be undef for tail agnostic
7912     if (!Op1.getOperand(0).isUndef())
7913       return SDValue();
7914     // The VL must be the same.
7915     if (Op1.getOperand(2) != VL)
7916       return SDValue();
7917 
7918     // Get the scalar value.
7919     Op1 = Op1.getOperand(1);
7920 
7921     // See if have enough sign bits or zero bits in the scalar to use a
7922     // widening multiply by splatting to smaller element size.
7923     unsigned EltBits = VT.getScalarSizeInBits();
7924     unsigned ScalarBits = Op1.getValueSizeInBits();
7925     // Make sure we're getting all element bits from the scalar register.
7926     // FIXME: Support implicit sign extension of vmv.v.x?
7927     if (ScalarBits < EltBits)
7928       return SDValue();
7929 
7930     // If the LHS is a sign extend, try to use vwmul.
7931     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7932       // Can use vwmul.
7933     } else {
7934       // Otherwise try to use vwmulu or vwmulsu.
7935       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7936       if (DAG.MaskedValueIsZero(Op1, Mask))
7937         IsVWMULSU = IsSignExt;
7938       else
7939         return SDValue();
7940     }
7941 
7942     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7943                       DAG.getUNDEF(NarrowVT), Op1, VL);
7944   } else
7945     return SDValue();
7946 
7947   Op0 = Op0.getOperand(0);
7948 
7949   // Re-introduce narrower extends if needed.
7950   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7951   if (Op0.getValueType() != NarrowVT)
7952     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7953   // vwmulsu requires second operand to be zero extended.
7954   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7955   if (Op1.getValueType() != NarrowVT)
7956     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7957 
7958   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7959   if (!IsVWMULSU)
7960     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7961   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7962 }
7963 
7964 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7965   switch (Op.getOpcode()) {
7966   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7967   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7968   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7969   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7970   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7971   }
7972 
7973   return RISCVFPRndMode::Invalid;
7974 }
7975 
7976 // Fold
7977 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7978 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7979 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7980 //   (fp_to_int (fceil X))      -> fcvt X, rup
7981 //   (fp_to_int (fround X))     -> fcvt X, rmm
7982 static SDValue performFP_TO_INTCombine(SDNode *N,
7983                                        TargetLowering::DAGCombinerInfo &DCI,
7984                                        const RISCVSubtarget &Subtarget) {
7985   SelectionDAG &DAG = DCI.DAG;
7986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7987   MVT XLenVT = Subtarget.getXLenVT();
7988 
7989   // Only handle XLen or i32 types. Other types narrower than XLen will
7990   // eventually be legalized to XLenVT.
7991   EVT VT = N->getValueType(0);
7992   if (VT != MVT::i32 && VT != XLenVT)
7993     return SDValue();
7994 
7995   SDValue Src = N->getOperand(0);
7996 
7997   // Ensure the FP type is also legal.
7998   if (!TLI.isTypeLegal(Src.getValueType()))
7999     return SDValue();
8000 
8001   // Don't do this for f16 with Zfhmin and not Zfh.
8002   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8003     return SDValue();
8004 
8005   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8006   if (FRM == RISCVFPRndMode::Invalid)
8007     return SDValue();
8008 
8009   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8010 
8011   unsigned Opc;
8012   if (VT == XLenVT)
8013     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8014   else
8015     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8016 
8017   SDLoc DL(N);
8018   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8019                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8020   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8021 }
8022 
8023 // Fold
8024 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8025 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8026 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8027 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8028 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8029 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8030                                        TargetLowering::DAGCombinerInfo &DCI,
8031                                        const RISCVSubtarget &Subtarget) {
8032   SelectionDAG &DAG = DCI.DAG;
8033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8034   MVT XLenVT = Subtarget.getXLenVT();
8035 
8036   // Only handle XLen types. Other types narrower than XLen will eventually be
8037   // legalized to XLenVT.
8038   EVT DstVT = N->getValueType(0);
8039   if (DstVT != XLenVT)
8040     return SDValue();
8041 
8042   SDValue Src = N->getOperand(0);
8043 
8044   // Ensure the FP type is also legal.
8045   if (!TLI.isTypeLegal(Src.getValueType()))
8046     return SDValue();
8047 
8048   // Don't do this for f16 with Zfhmin and not Zfh.
8049   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8050     return SDValue();
8051 
8052   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8053 
8054   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8055   if (FRM == RISCVFPRndMode::Invalid)
8056     return SDValue();
8057 
8058   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8059 
8060   unsigned Opc;
8061   if (SatVT == DstVT)
8062     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8063   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8064     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8065   else
8066     return SDValue();
8067   // FIXME: Support other SatVTs by clamping before or after the conversion.
8068 
8069   Src = Src.getOperand(0);
8070 
8071   SDLoc DL(N);
8072   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8073                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8074 
8075   // RISCV FP-to-int conversions saturate to the destination register size, but
8076   // don't produce 0 for nan.
8077   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8078   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8079 }
8080 
8081 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8082 // smaller than XLenVT.
8083 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8084                                         const RISCVSubtarget &Subtarget) {
8085   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8086 
8087   SDValue Src = N->getOperand(0);
8088   if (Src.getOpcode() != ISD::BSWAP)
8089     return SDValue();
8090 
8091   EVT VT = N->getValueType(0);
8092   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8093       !isPowerOf2_32(VT.getSizeInBits()))
8094     return SDValue();
8095 
8096   SDLoc DL(N);
8097   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8098                      DAG.getConstant(7, DL, VT));
8099 }
8100 
8101 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8102                                                DAGCombinerInfo &DCI) const {
8103   SelectionDAG &DAG = DCI.DAG;
8104 
8105   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8106   // bits are demanded. N will be added to the Worklist if it was not deleted.
8107   // Caller should return SDValue(N, 0) if this returns true.
8108   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8109     SDValue Op = N->getOperand(OpNo);
8110     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8111     if (!SimplifyDemandedBits(Op, Mask, DCI))
8112       return false;
8113 
8114     if (N->getOpcode() != ISD::DELETED_NODE)
8115       DCI.AddToWorklist(N);
8116     return true;
8117   };
8118 
8119   switch (N->getOpcode()) {
8120   default:
8121     break;
8122   case RISCVISD::SplitF64: {
8123     SDValue Op0 = N->getOperand(0);
8124     // If the input to SplitF64 is just BuildPairF64 then the operation is
8125     // redundant. Instead, use BuildPairF64's operands directly.
8126     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8127       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8128 
8129     if (Op0->isUndef()) {
8130       SDValue Lo = DAG.getUNDEF(MVT::i32);
8131       SDValue Hi = DAG.getUNDEF(MVT::i32);
8132       return DCI.CombineTo(N, Lo, Hi);
8133     }
8134 
8135     SDLoc DL(N);
8136 
8137     // It's cheaper to materialise two 32-bit integers than to load a double
8138     // from the constant pool and transfer it to integer registers through the
8139     // stack.
8140     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8141       APInt V = C->getValueAPF().bitcastToAPInt();
8142       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8143       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8144       return DCI.CombineTo(N, Lo, Hi);
8145     }
8146 
8147     // This is a target-specific version of a DAGCombine performed in
8148     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8149     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8150     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8151     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8152         !Op0.getNode()->hasOneUse())
8153       break;
8154     SDValue NewSplitF64 =
8155         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8156                     Op0.getOperand(0));
8157     SDValue Lo = NewSplitF64.getValue(0);
8158     SDValue Hi = NewSplitF64.getValue(1);
8159     APInt SignBit = APInt::getSignMask(32);
8160     if (Op0.getOpcode() == ISD::FNEG) {
8161       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8162                                   DAG.getConstant(SignBit, DL, MVT::i32));
8163       return DCI.CombineTo(N, Lo, NewHi);
8164     }
8165     assert(Op0.getOpcode() == ISD::FABS);
8166     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8167                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8168     return DCI.CombineTo(N, Lo, NewHi);
8169   }
8170   case RISCVISD::SLLW:
8171   case RISCVISD::SRAW:
8172   case RISCVISD::SRLW: {
8173     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8174     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8175         SimplifyDemandedLowBitsHelper(1, 5))
8176       return SDValue(N, 0);
8177 
8178     break;
8179   }
8180   case ISD::ROTR:
8181   case ISD::ROTL:
8182   case RISCVISD::RORW:
8183   case RISCVISD::ROLW: {
8184     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8185       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8186       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8187           SimplifyDemandedLowBitsHelper(1, 5))
8188         return SDValue(N, 0);
8189     }
8190 
8191     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8192   }
8193   case RISCVISD::CLZW:
8194   case RISCVISD::CTZW: {
8195     // Only the lower 32 bits of the first operand are read
8196     if (SimplifyDemandedLowBitsHelper(0, 32))
8197       return SDValue(N, 0);
8198     break;
8199   }
8200   case RISCVISD::GREV:
8201   case RISCVISD::GORC: {
8202     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8203     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8204     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8205     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8206       return SDValue(N, 0);
8207 
8208     return combineGREVI_GORCI(N, DAG);
8209   }
8210   case RISCVISD::GREVW:
8211   case RISCVISD::GORCW: {
8212     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8213     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8214         SimplifyDemandedLowBitsHelper(1, 5))
8215       return SDValue(N, 0);
8216 
8217     break;
8218   }
8219   case RISCVISD::SHFL:
8220   case RISCVISD::UNSHFL: {
8221     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8222     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8223     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8224     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8225       return SDValue(N, 0);
8226 
8227     break;
8228   }
8229   case RISCVISD::SHFLW:
8230   case RISCVISD::UNSHFLW: {
8231     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8232     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8233         SimplifyDemandedLowBitsHelper(1, 4))
8234       return SDValue(N, 0);
8235 
8236     break;
8237   }
8238   case RISCVISD::BCOMPRESSW:
8239   case RISCVISD::BDECOMPRESSW: {
8240     // Only the lower 32 bits of LHS and RHS are read.
8241     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8242         SimplifyDemandedLowBitsHelper(1, 32))
8243       return SDValue(N, 0);
8244 
8245     break;
8246   }
8247   case RISCVISD::FSR:
8248   case RISCVISD::FSL:
8249   case RISCVISD::FSRW:
8250   case RISCVISD::FSLW: {
8251     bool IsWInstruction =
8252         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8253     unsigned BitWidth =
8254         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8255     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8256     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8257     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8258       return SDValue(N, 0);
8259 
8260     break;
8261   }
8262   case RISCVISD::FMV_X_ANYEXTH:
8263   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8264     SDLoc DL(N);
8265     SDValue Op0 = N->getOperand(0);
8266     MVT VT = N->getSimpleValueType(0);
8267     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8268     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8269     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8270     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8271          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8272         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8273          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8274       assert(Op0.getOperand(0).getValueType() == VT &&
8275              "Unexpected value type!");
8276       return Op0.getOperand(0);
8277     }
8278 
8279     // This is a target-specific version of a DAGCombine performed in
8280     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8281     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8282     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8283     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8284         !Op0.getNode()->hasOneUse())
8285       break;
8286     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8287     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8288     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8289     if (Op0.getOpcode() == ISD::FNEG)
8290       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8291                          DAG.getConstant(SignBit, DL, VT));
8292 
8293     assert(Op0.getOpcode() == ISD::FABS);
8294     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8295                        DAG.getConstant(~SignBit, DL, VT));
8296   }
8297   case ISD::ADD:
8298     return performADDCombine(N, DAG, Subtarget);
8299   case ISD::SUB:
8300     return performSUBCombine(N, DAG);
8301   case ISD::AND:
8302     return performANDCombine(N, DAG);
8303   case ISD::OR:
8304     return performORCombine(N, DAG, Subtarget);
8305   case ISD::XOR:
8306     return performXORCombine(N, DAG);
8307   case ISD::SIGN_EXTEND_INREG:
8308     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8309   case ISD::ZERO_EXTEND:
8310     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8311     // type legalization. This is safe because fp_to_uint produces poison if
8312     // it overflows.
8313     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8314       SDValue Src = N->getOperand(0);
8315       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8316           isTypeLegal(Src.getOperand(0).getValueType()))
8317         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8318                            Src.getOperand(0));
8319       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8320           isTypeLegal(Src.getOperand(1).getValueType())) {
8321         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8322         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8323                                   Src.getOperand(0), Src.getOperand(1));
8324         DCI.CombineTo(N, Res);
8325         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8326         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8327         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8328       }
8329     }
8330     return SDValue();
8331   case RISCVISD::SELECT_CC: {
8332     // Transform
8333     SDValue LHS = N->getOperand(0);
8334     SDValue RHS = N->getOperand(1);
8335     SDValue TrueV = N->getOperand(3);
8336     SDValue FalseV = N->getOperand(4);
8337 
8338     // If the True and False values are the same, we don't need a select_cc.
8339     if (TrueV == FalseV)
8340       return TrueV;
8341 
8342     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8343     if (!ISD::isIntEqualitySetCC(CCVal))
8344       break;
8345 
8346     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8347     //      (select_cc X, Y, lt, trueV, falseV)
8348     // Sometimes the setcc is introduced after select_cc has been formed.
8349     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8350         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8351       // If we're looking for eq 0 instead of ne 0, we need to invert the
8352       // condition.
8353       bool Invert = CCVal == ISD::SETEQ;
8354       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8355       if (Invert)
8356         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8357 
8358       SDLoc DL(N);
8359       RHS = LHS.getOperand(1);
8360       LHS = LHS.getOperand(0);
8361       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8362 
8363       SDValue TargetCC = DAG.getCondCode(CCVal);
8364       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8365                          {LHS, RHS, TargetCC, TrueV, FalseV});
8366     }
8367 
8368     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8369     //      (select_cc X, Y, eq/ne, trueV, falseV)
8370     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8371       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8372                          {LHS.getOperand(0), LHS.getOperand(1),
8373                           N->getOperand(2), TrueV, FalseV});
8374     // (select_cc X, 1, setne, trueV, falseV) ->
8375     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8376     // This can occur when legalizing some floating point comparisons.
8377     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8378     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8379       SDLoc DL(N);
8380       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8381       SDValue TargetCC = DAG.getCondCode(CCVal);
8382       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8383       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8384                          {LHS, RHS, TargetCC, TrueV, FalseV});
8385     }
8386 
8387     break;
8388   }
8389   case RISCVISD::BR_CC: {
8390     SDValue LHS = N->getOperand(1);
8391     SDValue RHS = N->getOperand(2);
8392     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8393     if (!ISD::isIntEqualitySetCC(CCVal))
8394       break;
8395 
8396     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8397     //      (br_cc X, Y, lt, dest)
8398     // Sometimes the setcc is introduced after br_cc has been formed.
8399     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8400         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8401       // If we're looking for eq 0 instead of ne 0, we need to invert the
8402       // condition.
8403       bool Invert = CCVal == ISD::SETEQ;
8404       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8405       if (Invert)
8406         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8407 
8408       SDLoc DL(N);
8409       RHS = LHS.getOperand(1);
8410       LHS = LHS.getOperand(0);
8411       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8412 
8413       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8414                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8415                          N->getOperand(4));
8416     }
8417 
8418     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8419     //      (br_cc X, Y, eq/ne, trueV, falseV)
8420     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8421       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8422                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8423                          N->getOperand(3), N->getOperand(4));
8424 
8425     // (br_cc X, 1, setne, br_cc) ->
8426     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8427     // This can occur when legalizing some floating point comparisons.
8428     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8429     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8430       SDLoc DL(N);
8431       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8432       SDValue TargetCC = DAG.getCondCode(CCVal);
8433       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8434       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8435                          N->getOperand(0), LHS, RHS, TargetCC,
8436                          N->getOperand(4));
8437     }
8438     break;
8439   }
8440   case ISD::BITREVERSE:
8441     return performBITREVERSECombine(N, DAG, Subtarget);
8442   case ISD::FP_TO_SINT:
8443   case ISD::FP_TO_UINT:
8444     return performFP_TO_INTCombine(N, DCI, Subtarget);
8445   case ISD::FP_TO_SINT_SAT:
8446   case ISD::FP_TO_UINT_SAT:
8447     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8448   case ISD::FCOPYSIGN: {
8449     EVT VT = N->getValueType(0);
8450     if (!VT.isVector())
8451       break;
8452     // There is a form of VFSGNJ which injects the negated sign of its second
8453     // operand. Try and bubble any FNEG up after the extend/round to produce
8454     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8455     // TRUNC=1.
8456     SDValue In2 = N->getOperand(1);
8457     // Avoid cases where the extend/round has multiple uses, as duplicating
8458     // those is typically more expensive than removing a fneg.
8459     if (!In2.hasOneUse())
8460       break;
8461     if (In2.getOpcode() != ISD::FP_EXTEND &&
8462         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8463       break;
8464     In2 = In2.getOperand(0);
8465     if (In2.getOpcode() != ISD::FNEG)
8466       break;
8467     SDLoc DL(N);
8468     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8469     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8470                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8471   }
8472   case ISD::MGATHER:
8473   case ISD::MSCATTER:
8474   case ISD::VP_GATHER:
8475   case ISD::VP_SCATTER: {
8476     if (!DCI.isBeforeLegalize())
8477       break;
8478     SDValue Index, ScaleOp;
8479     bool IsIndexScaled = false;
8480     bool IsIndexSigned = false;
8481     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8482       Index = VPGSN->getIndex();
8483       ScaleOp = VPGSN->getScale();
8484       IsIndexScaled = VPGSN->isIndexScaled();
8485       IsIndexSigned = VPGSN->isIndexSigned();
8486     } else {
8487       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8488       Index = MGSN->getIndex();
8489       ScaleOp = MGSN->getScale();
8490       IsIndexScaled = MGSN->isIndexScaled();
8491       IsIndexSigned = MGSN->isIndexSigned();
8492     }
8493     EVT IndexVT = Index.getValueType();
8494     MVT XLenVT = Subtarget.getXLenVT();
8495     // RISCV indexed loads only support the "unsigned unscaled" addressing
8496     // mode, so anything else must be manually legalized.
8497     bool NeedsIdxLegalization =
8498         IsIndexScaled ||
8499         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8500     if (!NeedsIdxLegalization)
8501       break;
8502 
8503     SDLoc DL(N);
8504 
8505     // Any index legalization should first promote to XLenVT, so we don't lose
8506     // bits when scaling. This may create an illegal index type so we let
8507     // LLVM's legalization take care of the splitting.
8508     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8509     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8510       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8511       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8512                           DL, IndexVT, Index);
8513     }
8514 
8515     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8516     if (IsIndexScaled && Scale != 1) {
8517       // Manually scale the indices by the element size.
8518       // TODO: Sanitize the scale operand here?
8519       // TODO: For VP nodes, should we use VP_SHL here?
8520       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8521       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8522       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8523     }
8524 
8525     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8526     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8527       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8528                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8529                               VPGN->getScale(), VPGN->getMask(),
8530                               VPGN->getVectorLength()},
8531                              VPGN->getMemOperand(), NewIndexTy);
8532     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8533       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8534                               {VPSN->getChain(), VPSN->getValue(),
8535                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8536                                VPSN->getMask(), VPSN->getVectorLength()},
8537                               VPSN->getMemOperand(), NewIndexTy);
8538     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8539       return DAG.getMaskedGather(
8540           N->getVTList(), MGN->getMemoryVT(), DL,
8541           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8542            MGN->getBasePtr(), Index, MGN->getScale()},
8543           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8544     const auto *MSN = cast<MaskedScatterSDNode>(N);
8545     return DAG.getMaskedScatter(
8546         N->getVTList(), MSN->getMemoryVT(), DL,
8547         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8548          Index, MSN->getScale()},
8549         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8550   }
8551   case RISCVISD::SRA_VL:
8552   case RISCVISD::SRL_VL:
8553   case RISCVISD::SHL_VL: {
8554     SDValue ShAmt = N->getOperand(1);
8555     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8556       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8557       SDLoc DL(N);
8558       SDValue VL = N->getOperand(3);
8559       EVT VT = N->getValueType(0);
8560       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8561                           ShAmt.getOperand(1), VL);
8562       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8563                          N->getOperand(2), N->getOperand(3));
8564     }
8565     break;
8566   }
8567   case ISD::SRA:
8568   case ISD::SRL:
8569   case ISD::SHL: {
8570     SDValue ShAmt = N->getOperand(1);
8571     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8572       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8573       SDLoc DL(N);
8574       EVT VT = N->getValueType(0);
8575       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8576                           ShAmt.getOperand(1),
8577                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8578       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8579     }
8580     break;
8581   }
8582   case RISCVISD::ADD_VL:
8583     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8584       return V;
8585     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8586   case RISCVISD::SUB_VL:
8587     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8588   case RISCVISD::VWADD_W_VL:
8589   case RISCVISD::VWADDU_W_VL:
8590   case RISCVISD::VWSUB_W_VL:
8591   case RISCVISD::VWSUBU_W_VL:
8592     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8593   case RISCVISD::MUL_VL:
8594     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8595       return V;
8596     // Mul is commutative.
8597     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8598   case ISD::STORE: {
8599     auto *Store = cast<StoreSDNode>(N);
8600     SDValue Val = Store->getValue();
8601     // Combine store of vmv.x.s to vse with VL of 1.
8602     // FIXME: Support FP.
8603     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8604       SDValue Src = Val.getOperand(0);
8605       EVT VecVT = Src.getValueType();
8606       EVT MemVT = Store->getMemoryVT();
8607       // The memory VT and the element type must match.
8608       if (VecVT.getVectorElementType() == MemVT) {
8609         SDLoc DL(N);
8610         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8611         return DAG.getStoreVP(
8612             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8613             DAG.getConstant(1, DL, MaskVT),
8614             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8615             Store->getMemOperand(), Store->getAddressingMode(),
8616             Store->isTruncatingStore(), /*IsCompress*/ false);
8617       }
8618     }
8619 
8620     break;
8621   }
8622   case ISD::SPLAT_VECTOR: {
8623     EVT VT = N->getValueType(0);
8624     // Only perform this combine on legal MVT types.
8625     if (!isTypeLegal(VT))
8626       break;
8627     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8628                                          DAG, Subtarget))
8629       return Gather;
8630     break;
8631   }
8632   case RISCVISD::VMV_V_X_VL: {
8633     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8634     // scalar input.
8635     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8636     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8637     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8638       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8639         return SDValue(N, 0);
8640 
8641     break;
8642   }
8643   case ISD::INTRINSIC_WO_CHAIN: {
8644     unsigned IntNo = N->getConstantOperandVal(0);
8645     switch (IntNo) {
8646       // By default we do not combine any intrinsic.
8647     default:
8648       return SDValue();
8649     case Intrinsic::riscv_vcpop:
8650     case Intrinsic::riscv_vcpop_mask:
8651     case Intrinsic::riscv_vfirst:
8652     case Intrinsic::riscv_vfirst_mask: {
8653       SDValue VL = N->getOperand(2);
8654       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8655           IntNo == Intrinsic::riscv_vfirst_mask)
8656         VL = N->getOperand(3);
8657       if (!isNullConstant(VL))
8658         return SDValue();
8659       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8660       SDLoc DL(N);
8661       EVT VT = N->getValueType(0);
8662       if (IntNo == Intrinsic::riscv_vfirst ||
8663           IntNo == Intrinsic::riscv_vfirst_mask)
8664         return DAG.getConstant(-1, DL, VT);
8665       return DAG.getConstant(0, DL, VT);
8666     }
8667     }
8668   }
8669   }
8670 
8671   return SDValue();
8672 }
8673 
8674 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8675     const SDNode *N, CombineLevel Level) const {
8676   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8677   // materialised in fewer instructions than `(OP _, c1)`:
8678   //
8679   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8680   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8681   SDValue N0 = N->getOperand(0);
8682   EVT Ty = N0.getValueType();
8683   if (Ty.isScalarInteger() &&
8684       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8685     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8686     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8687     if (C1 && C2) {
8688       const APInt &C1Int = C1->getAPIntValue();
8689       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8690 
8691       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8692       // and the combine should happen, to potentially allow further combines
8693       // later.
8694       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8695           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8696         return true;
8697 
8698       // We can materialise `c1` in an add immediate, so it's "free", and the
8699       // combine should be prevented.
8700       if (C1Int.getMinSignedBits() <= 64 &&
8701           isLegalAddImmediate(C1Int.getSExtValue()))
8702         return false;
8703 
8704       // Neither constant will fit into an immediate, so find materialisation
8705       // costs.
8706       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8707                                               Subtarget.getFeatureBits(),
8708                                               /*CompressionCost*/true);
8709       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8710           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8711           /*CompressionCost*/true);
8712 
8713       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8714       // combine should be prevented.
8715       if (C1Cost < ShiftedC1Cost)
8716         return false;
8717     }
8718   }
8719   return true;
8720 }
8721 
8722 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8723     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8724     TargetLoweringOpt &TLO) const {
8725   // Delay this optimization as late as possible.
8726   if (!TLO.LegalOps)
8727     return false;
8728 
8729   EVT VT = Op.getValueType();
8730   if (VT.isVector())
8731     return false;
8732 
8733   // Only handle AND for now.
8734   if (Op.getOpcode() != ISD::AND)
8735     return false;
8736 
8737   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8738   if (!C)
8739     return false;
8740 
8741   const APInt &Mask = C->getAPIntValue();
8742 
8743   // Clear all non-demanded bits initially.
8744   APInt ShrunkMask = Mask & DemandedBits;
8745 
8746   // Try to make a smaller immediate by setting undemanded bits.
8747 
8748   APInt ExpandedMask = Mask | ~DemandedBits;
8749 
8750   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8751     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8752   };
8753   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8754     if (NewMask == Mask)
8755       return true;
8756     SDLoc DL(Op);
8757     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8758     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8759     return TLO.CombineTo(Op, NewOp);
8760   };
8761 
8762   // If the shrunk mask fits in sign extended 12 bits, let the target
8763   // independent code apply it.
8764   if (ShrunkMask.isSignedIntN(12))
8765     return false;
8766 
8767   // Preserve (and X, 0xffff) when zext.h is supported.
8768   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8769     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8770     if (IsLegalMask(NewMask))
8771       return UseMask(NewMask);
8772   }
8773 
8774   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8775   if (VT == MVT::i64) {
8776     APInt NewMask = APInt(64, 0xffffffff);
8777     if (IsLegalMask(NewMask))
8778       return UseMask(NewMask);
8779   }
8780 
8781   // For the remaining optimizations, we need to be able to make a negative
8782   // number through a combination of mask and undemanded bits.
8783   if (!ExpandedMask.isNegative())
8784     return false;
8785 
8786   // What is the fewest number of bits we need to represent the negative number.
8787   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8788 
8789   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8790   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8791   APInt NewMask = ShrunkMask;
8792   if (MinSignedBits <= 12)
8793     NewMask.setBitsFrom(11);
8794   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8795     NewMask.setBitsFrom(31);
8796   else
8797     return false;
8798 
8799   // Check that our new mask is a subset of the demanded mask.
8800   assert(IsLegalMask(NewMask));
8801   return UseMask(NewMask);
8802 }
8803 
8804 static void computeGREV(APInt &Src, unsigned ShAmt) {
8805   ShAmt &= Src.getBitWidth() - 1;
8806   uint64_t x = Src.getZExtValue();
8807   if (ShAmt & 1)
8808     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8809   if (ShAmt & 2)
8810     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8811   if (ShAmt & 4)
8812     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8813   if (ShAmt & 8)
8814     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8815   if (ShAmt & 16)
8816     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8817   if (ShAmt & 32)
8818     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8819   Src = x;
8820 }
8821 
8822 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8823                                                         KnownBits &Known,
8824                                                         const APInt &DemandedElts,
8825                                                         const SelectionDAG &DAG,
8826                                                         unsigned Depth) const {
8827   unsigned BitWidth = Known.getBitWidth();
8828   unsigned Opc = Op.getOpcode();
8829   assert((Opc >= ISD::BUILTIN_OP_END ||
8830           Opc == ISD::INTRINSIC_WO_CHAIN ||
8831           Opc == ISD::INTRINSIC_W_CHAIN ||
8832           Opc == ISD::INTRINSIC_VOID) &&
8833          "Should use MaskedValueIsZero if you don't know whether Op"
8834          " is a target node!");
8835 
8836   Known.resetAll();
8837   switch (Opc) {
8838   default: break;
8839   case RISCVISD::SELECT_CC: {
8840     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8841     // If we don't know any bits, early out.
8842     if (Known.isUnknown())
8843       break;
8844     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8845 
8846     // Only known if known in both the LHS and RHS.
8847     Known = KnownBits::commonBits(Known, Known2);
8848     break;
8849   }
8850   case RISCVISD::REMUW: {
8851     KnownBits Known2;
8852     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8853     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8854     // We only care about the lower 32 bits.
8855     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8856     // Restore the original width by sign extending.
8857     Known = Known.sext(BitWidth);
8858     break;
8859   }
8860   case RISCVISD::DIVUW: {
8861     KnownBits Known2;
8862     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8863     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8864     // We only care about the lower 32 bits.
8865     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8866     // Restore the original width by sign extending.
8867     Known = Known.sext(BitWidth);
8868     break;
8869   }
8870   case RISCVISD::CTZW: {
8871     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8872     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8873     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8874     Known.Zero.setBitsFrom(LowBits);
8875     break;
8876   }
8877   case RISCVISD::CLZW: {
8878     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8879     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8880     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8881     Known.Zero.setBitsFrom(LowBits);
8882     break;
8883   }
8884   case RISCVISD::GREV: {
8885     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8886       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8887       unsigned ShAmt = C->getZExtValue();
8888       computeGREV(Known.Zero, ShAmt);
8889       computeGREV(Known.One, ShAmt);
8890     }
8891     break;
8892   }
8893   case RISCVISD::READ_VLENB: {
8894     // If we know the minimum VLen from Zvl extensions, we can use that to
8895     // determine the trailing zeros of VLENB.
8896     // FIXME: Limit to 128 bit vectors until we have more testing.
8897     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8898     if (MinVLenB > 0)
8899       Known.Zero.setLowBits(Log2_32(MinVLenB));
8900     // We assume VLENB is no more than 65536 / 8 bytes.
8901     Known.Zero.setBitsFrom(14);
8902     break;
8903   }
8904   case ISD::INTRINSIC_W_CHAIN:
8905   case ISD::INTRINSIC_WO_CHAIN: {
8906     unsigned IntNo =
8907         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8908     switch (IntNo) {
8909     default:
8910       // We can't do anything for most intrinsics.
8911       break;
8912     case Intrinsic::riscv_vsetvli:
8913     case Intrinsic::riscv_vsetvlimax:
8914     case Intrinsic::riscv_vsetvli_opt:
8915     case Intrinsic::riscv_vsetvlimax_opt:
8916       // Assume that VL output is positive and would fit in an int32_t.
8917       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8918       if (BitWidth >= 32)
8919         Known.Zero.setBitsFrom(31);
8920       break;
8921     }
8922     break;
8923   }
8924   }
8925 }
8926 
8927 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8928     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8929     unsigned Depth) const {
8930   switch (Op.getOpcode()) {
8931   default:
8932     break;
8933   case RISCVISD::SELECT_CC: {
8934     unsigned Tmp =
8935         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8936     if (Tmp == 1) return 1;  // Early out.
8937     unsigned Tmp2 =
8938         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8939     return std::min(Tmp, Tmp2);
8940   }
8941   case RISCVISD::SLLW:
8942   case RISCVISD::SRAW:
8943   case RISCVISD::SRLW:
8944   case RISCVISD::DIVW:
8945   case RISCVISD::DIVUW:
8946   case RISCVISD::REMUW:
8947   case RISCVISD::ROLW:
8948   case RISCVISD::RORW:
8949   case RISCVISD::GREVW:
8950   case RISCVISD::GORCW:
8951   case RISCVISD::FSLW:
8952   case RISCVISD::FSRW:
8953   case RISCVISD::SHFLW:
8954   case RISCVISD::UNSHFLW:
8955   case RISCVISD::BCOMPRESSW:
8956   case RISCVISD::BDECOMPRESSW:
8957   case RISCVISD::BFPW:
8958   case RISCVISD::FCVT_W_RV64:
8959   case RISCVISD::FCVT_WU_RV64:
8960   case RISCVISD::STRICT_FCVT_W_RV64:
8961   case RISCVISD::STRICT_FCVT_WU_RV64:
8962     // TODO: As the result is sign-extended, this is conservatively correct. A
8963     // more precise answer could be calculated for SRAW depending on known
8964     // bits in the shift amount.
8965     return 33;
8966   case RISCVISD::SHFL:
8967   case RISCVISD::UNSHFL: {
8968     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8969     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8970     // will stay within the upper 32 bits. If there were more than 32 sign bits
8971     // before there will be at least 33 sign bits after.
8972     if (Op.getValueType() == MVT::i64 &&
8973         isa<ConstantSDNode>(Op.getOperand(1)) &&
8974         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8975       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8976       if (Tmp > 32)
8977         return 33;
8978     }
8979     break;
8980   }
8981   case RISCVISD::VMV_X_S: {
8982     // The number of sign bits of the scalar result is computed by obtaining the
8983     // element type of the input vector operand, subtracting its width from the
8984     // XLEN, and then adding one (sign bit within the element type). If the
8985     // element type is wider than XLen, the least-significant XLEN bits are
8986     // taken.
8987     unsigned XLen = Subtarget.getXLen();
8988     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8989     if (EltBits <= XLen)
8990       return XLen - EltBits + 1;
8991     break;
8992   }
8993   }
8994 
8995   return 1;
8996 }
8997 
8998 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8999                                                   MachineBasicBlock *BB) {
9000   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9001 
9002   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9003   // Should the count have wrapped while it was being read, we need to try
9004   // again.
9005   // ...
9006   // read:
9007   // rdcycleh x3 # load high word of cycle
9008   // rdcycle  x2 # load low word of cycle
9009   // rdcycleh x4 # load high word of cycle
9010   // bne x3, x4, read # check if high word reads match, otherwise try again
9011   // ...
9012 
9013   MachineFunction &MF = *BB->getParent();
9014   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9015   MachineFunction::iterator It = ++BB->getIterator();
9016 
9017   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9018   MF.insert(It, LoopMBB);
9019 
9020   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9021   MF.insert(It, DoneMBB);
9022 
9023   // Transfer the remainder of BB and its successor edges to DoneMBB.
9024   DoneMBB->splice(DoneMBB->begin(), BB,
9025                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9026   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9027 
9028   BB->addSuccessor(LoopMBB);
9029 
9030   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9031   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9032   Register LoReg = MI.getOperand(0).getReg();
9033   Register HiReg = MI.getOperand(1).getReg();
9034   DebugLoc DL = MI.getDebugLoc();
9035 
9036   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9037   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9038       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9039       .addReg(RISCV::X0);
9040   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9041       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9042       .addReg(RISCV::X0);
9043   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9044       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9045       .addReg(RISCV::X0);
9046 
9047   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9048       .addReg(HiReg)
9049       .addReg(ReadAgainReg)
9050       .addMBB(LoopMBB);
9051 
9052   LoopMBB->addSuccessor(LoopMBB);
9053   LoopMBB->addSuccessor(DoneMBB);
9054 
9055   MI.eraseFromParent();
9056 
9057   return DoneMBB;
9058 }
9059 
9060 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9061                                              MachineBasicBlock *BB) {
9062   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9063 
9064   MachineFunction &MF = *BB->getParent();
9065   DebugLoc DL = MI.getDebugLoc();
9066   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9067   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9068   Register LoReg = MI.getOperand(0).getReg();
9069   Register HiReg = MI.getOperand(1).getReg();
9070   Register SrcReg = MI.getOperand(2).getReg();
9071   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9072   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9073 
9074   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9075                           RI);
9076   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9077   MachineMemOperand *MMOLo =
9078       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9079   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9080       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9081   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9082       .addFrameIndex(FI)
9083       .addImm(0)
9084       .addMemOperand(MMOLo);
9085   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9086       .addFrameIndex(FI)
9087       .addImm(4)
9088       .addMemOperand(MMOHi);
9089   MI.eraseFromParent(); // The pseudo instruction is gone now.
9090   return BB;
9091 }
9092 
9093 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9094                                                  MachineBasicBlock *BB) {
9095   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9096          "Unexpected instruction");
9097 
9098   MachineFunction &MF = *BB->getParent();
9099   DebugLoc DL = MI.getDebugLoc();
9100   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9101   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9102   Register DstReg = MI.getOperand(0).getReg();
9103   Register LoReg = MI.getOperand(1).getReg();
9104   Register HiReg = MI.getOperand(2).getReg();
9105   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9106   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9107 
9108   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9109   MachineMemOperand *MMOLo =
9110       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9111   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9112       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9113   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9114       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9115       .addFrameIndex(FI)
9116       .addImm(0)
9117       .addMemOperand(MMOLo);
9118   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9119       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9120       .addFrameIndex(FI)
9121       .addImm(4)
9122       .addMemOperand(MMOHi);
9123   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9124   MI.eraseFromParent(); // The pseudo instruction is gone now.
9125   return BB;
9126 }
9127 
9128 static bool isSelectPseudo(MachineInstr &MI) {
9129   switch (MI.getOpcode()) {
9130   default:
9131     return false;
9132   case RISCV::Select_GPR_Using_CC_GPR:
9133   case RISCV::Select_FPR16_Using_CC_GPR:
9134   case RISCV::Select_FPR32_Using_CC_GPR:
9135   case RISCV::Select_FPR64_Using_CC_GPR:
9136     return true;
9137   }
9138 }
9139 
9140 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9141                                         unsigned RelOpcode, unsigned EqOpcode,
9142                                         const RISCVSubtarget &Subtarget) {
9143   DebugLoc DL = MI.getDebugLoc();
9144   Register DstReg = MI.getOperand(0).getReg();
9145   Register Src1Reg = MI.getOperand(1).getReg();
9146   Register Src2Reg = MI.getOperand(2).getReg();
9147   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9148   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9149   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9150 
9151   // Save the current FFLAGS.
9152   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9153 
9154   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9155                  .addReg(Src1Reg)
9156                  .addReg(Src2Reg);
9157   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9158     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9159 
9160   // Restore the FFLAGS.
9161   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9162       .addReg(SavedFFlags, RegState::Kill);
9163 
9164   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9165   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9166                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9167                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9168   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9169     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9170 
9171   // Erase the pseudoinstruction.
9172   MI.eraseFromParent();
9173   return BB;
9174 }
9175 
9176 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9177                                            MachineBasicBlock *BB,
9178                                            const RISCVSubtarget &Subtarget) {
9179   // To "insert" Select_* instructions, we actually have to insert the triangle
9180   // control-flow pattern.  The incoming instructions know the destination vreg
9181   // to set, the condition code register to branch on, the true/false values to
9182   // select between, and the condcode to use to select the appropriate branch.
9183   //
9184   // We produce the following control flow:
9185   //     HeadMBB
9186   //     |  \
9187   //     |  IfFalseMBB
9188   //     | /
9189   //    TailMBB
9190   //
9191   // When we find a sequence of selects we attempt to optimize their emission
9192   // by sharing the control flow. Currently we only handle cases where we have
9193   // multiple selects with the exact same condition (same LHS, RHS and CC).
9194   // The selects may be interleaved with other instructions if the other
9195   // instructions meet some requirements we deem safe:
9196   // - They are debug instructions. Otherwise,
9197   // - They do not have side-effects, do not access memory and their inputs do
9198   //   not depend on the results of the select pseudo-instructions.
9199   // The TrueV/FalseV operands of the selects cannot depend on the result of
9200   // previous selects in the sequence.
9201   // These conditions could be further relaxed. See the X86 target for a
9202   // related approach and more information.
9203   Register LHS = MI.getOperand(1).getReg();
9204   Register RHS = MI.getOperand(2).getReg();
9205   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9206 
9207   SmallVector<MachineInstr *, 4> SelectDebugValues;
9208   SmallSet<Register, 4> SelectDests;
9209   SelectDests.insert(MI.getOperand(0).getReg());
9210 
9211   MachineInstr *LastSelectPseudo = &MI;
9212 
9213   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9214        SequenceMBBI != E; ++SequenceMBBI) {
9215     if (SequenceMBBI->isDebugInstr())
9216       continue;
9217     else if (isSelectPseudo(*SequenceMBBI)) {
9218       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9219           SequenceMBBI->getOperand(2).getReg() != RHS ||
9220           SequenceMBBI->getOperand(3).getImm() != CC ||
9221           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9222           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9223         break;
9224       LastSelectPseudo = &*SequenceMBBI;
9225       SequenceMBBI->collectDebugValues(SelectDebugValues);
9226       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9227     } else {
9228       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9229           SequenceMBBI->mayLoadOrStore())
9230         break;
9231       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9232             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9233           }))
9234         break;
9235     }
9236   }
9237 
9238   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9239   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9240   DebugLoc DL = MI.getDebugLoc();
9241   MachineFunction::iterator I = ++BB->getIterator();
9242 
9243   MachineBasicBlock *HeadMBB = BB;
9244   MachineFunction *F = BB->getParent();
9245   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9246   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9247 
9248   F->insert(I, IfFalseMBB);
9249   F->insert(I, TailMBB);
9250 
9251   // Transfer debug instructions associated with the selects to TailMBB.
9252   for (MachineInstr *DebugInstr : SelectDebugValues) {
9253     TailMBB->push_back(DebugInstr->removeFromParent());
9254   }
9255 
9256   // Move all instructions after the sequence to TailMBB.
9257   TailMBB->splice(TailMBB->end(), HeadMBB,
9258                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9259   // Update machine-CFG edges by transferring all successors of the current
9260   // block to the new block which will contain the Phi nodes for the selects.
9261   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9262   // Set the successors for HeadMBB.
9263   HeadMBB->addSuccessor(IfFalseMBB);
9264   HeadMBB->addSuccessor(TailMBB);
9265 
9266   // Insert appropriate branch.
9267   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9268     .addReg(LHS)
9269     .addReg(RHS)
9270     .addMBB(TailMBB);
9271 
9272   // IfFalseMBB just falls through to TailMBB.
9273   IfFalseMBB->addSuccessor(TailMBB);
9274 
9275   // Create PHIs for all of the select pseudo-instructions.
9276   auto SelectMBBI = MI.getIterator();
9277   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9278   auto InsertionPoint = TailMBB->begin();
9279   while (SelectMBBI != SelectEnd) {
9280     auto Next = std::next(SelectMBBI);
9281     if (isSelectPseudo(*SelectMBBI)) {
9282       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9283       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9284               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9285           .addReg(SelectMBBI->getOperand(4).getReg())
9286           .addMBB(HeadMBB)
9287           .addReg(SelectMBBI->getOperand(5).getReg())
9288           .addMBB(IfFalseMBB);
9289       SelectMBBI->eraseFromParent();
9290     }
9291     SelectMBBI = Next;
9292   }
9293 
9294   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9295   return TailMBB;
9296 }
9297 
9298 MachineBasicBlock *
9299 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9300                                                  MachineBasicBlock *BB) const {
9301   switch (MI.getOpcode()) {
9302   default:
9303     llvm_unreachable("Unexpected instr type to insert");
9304   case RISCV::ReadCycleWide:
9305     assert(!Subtarget.is64Bit() &&
9306            "ReadCycleWrite is only to be used on riscv32");
9307     return emitReadCycleWidePseudo(MI, BB);
9308   case RISCV::Select_GPR_Using_CC_GPR:
9309   case RISCV::Select_FPR16_Using_CC_GPR:
9310   case RISCV::Select_FPR32_Using_CC_GPR:
9311   case RISCV::Select_FPR64_Using_CC_GPR:
9312     return emitSelectPseudo(MI, BB, Subtarget);
9313   case RISCV::BuildPairF64Pseudo:
9314     return emitBuildPairF64Pseudo(MI, BB);
9315   case RISCV::SplitF64Pseudo:
9316     return emitSplitF64Pseudo(MI, BB);
9317   case RISCV::PseudoQuietFLE_H:
9318     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9319   case RISCV::PseudoQuietFLT_H:
9320     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9321   case RISCV::PseudoQuietFLE_S:
9322     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9323   case RISCV::PseudoQuietFLT_S:
9324     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9325   case RISCV::PseudoQuietFLE_D:
9326     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9327   case RISCV::PseudoQuietFLT_D:
9328     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9329   }
9330 }
9331 
9332 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9333                                                         SDNode *Node) const {
9334   // Add FRM dependency to any instructions with dynamic rounding mode.
9335   unsigned Opc = MI.getOpcode();
9336   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9337   if (Idx < 0)
9338     return;
9339   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9340     return;
9341   // If the instruction already reads FRM, don't add another read.
9342   if (MI.readsRegister(RISCV::FRM))
9343     return;
9344   MI.addOperand(
9345       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9346 }
9347 
9348 // Calling Convention Implementation.
9349 // The expectations for frontend ABI lowering vary from target to target.
9350 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9351 // details, but this is a longer term goal. For now, we simply try to keep the
9352 // role of the frontend as simple and well-defined as possible. The rules can
9353 // be summarised as:
9354 // * Never split up large scalar arguments. We handle them here.
9355 // * If a hardfloat calling convention is being used, and the struct may be
9356 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9357 // available, then pass as two separate arguments. If either the GPRs or FPRs
9358 // are exhausted, then pass according to the rule below.
9359 // * If a struct could never be passed in registers or directly in a stack
9360 // slot (as it is larger than 2*XLEN and the floating point rules don't
9361 // apply), then pass it using a pointer with the byval attribute.
9362 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9363 // word-sized array or a 2*XLEN scalar (depending on alignment).
9364 // * The frontend can determine whether a struct is returned by reference or
9365 // not based on its size and fields. If it will be returned by reference, the
9366 // frontend must modify the prototype so a pointer with the sret annotation is
9367 // passed as the first argument. This is not necessary for large scalar
9368 // returns.
9369 // * Struct return values and varargs should be coerced to structs containing
9370 // register-size fields in the same situations they would be for fixed
9371 // arguments.
9372 
9373 static const MCPhysReg ArgGPRs[] = {
9374   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9375   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9376 };
9377 static const MCPhysReg ArgFPR16s[] = {
9378   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9379   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9380 };
9381 static const MCPhysReg ArgFPR32s[] = {
9382   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9383   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9384 };
9385 static const MCPhysReg ArgFPR64s[] = {
9386   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9387   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9388 };
9389 // This is an interim calling convention and it may be changed in the future.
9390 static const MCPhysReg ArgVRs[] = {
9391     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9392     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9393     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9394 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9395                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9396                                      RISCV::V20M2, RISCV::V22M2};
9397 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9398                                      RISCV::V20M4};
9399 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9400 
9401 // Pass a 2*XLEN argument that has been split into two XLEN values through
9402 // registers or the stack as necessary.
9403 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9404                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9405                                 MVT ValVT2, MVT LocVT2,
9406                                 ISD::ArgFlagsTy ArgFlags2) {
9407   unsigned XLenInBytes = XLen / 8;
9408   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9409     // At least one half can be passed via register.
9410     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9411                                      VA1.getLocVT(), CCValAssign::Full));
9412   } else {
9413     // Both halves must be passed on the stack, with proper alignment.
9414     Align StackAlign =
9415         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9416     State.addLoc(
9417         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9418                             State.AllocateStack(XLenInBytes, StackAlign),
9419                             VA1.getLocVT(), CCValAssign::Full));
9420     State.addLoc(CCValAssign::getMem(
9421         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9422         LocVT2, CCValAssign::Full));
9423     return false;
9424   }
9425 
9426   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9427     // The second half can also be passed via register.
9428     State.addLoc(
9429         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9430   } else {
9431     // The second half is passed via the stack, without additional alignment.
9432     State.addLoc(CCValAssign::getMem(
9433         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9434         LocVT2, CCValAssign::Full));
9435   }
9436 
9437   return false;
9438 }
9439 
9440 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9441                                Optional<unsigned> FirstMaskArgument,
9442                                CCState &State, const RISCVTargetLowering &TLI) {
9443   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9444   if (RC == &RISCV::VRRegClass) {
9445     // Assign the first mask argument to V0.
9446     // This is an interim calling convention and it may be changed in the
9447     // future.
9448     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9449       return State.AllocateReg(RISCV::V0);
9450     return State.AllocateReg(ArgVRs);
9451   }
9452   if (RC == &RISCV::VRM2RegClass)
9453     return State.AllocateReg(ArgVRM2s);
9454   if (RC == &RISCV::VRM4RegClass)
9455     return State.AllocateReg(ArgVRM4s);
9456   if (RC == &RISCV::VRM8RegClass)
9457     return State.AllocateReg(ArgVRM8s);
9458   llvm_unreachable("Unhandled register class for ValueType");
9459 }
9460 
9461 // Implements the RISC-V calling convention. Returns true upon failure.
9462 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9463                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9464                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9465                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9466                      Optional<unsigned> FirstMaskArgument) {
9467   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9468   assert(XLen == 32 || XLen == 64);
9469   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9470 
9471   // Any return value split in to more than two values can't be returned
9472   // directly. Vectors are returned via the available vector registers.
9473   if (!LocVT.isVector() && IsRet && ValNo > 1)
9474     return true;
9475 
9476   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9477   // variadic argument, or if no F16/F32 argument registers are available.
9478   bool UseGPRForF16_F32 = true;
9479   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9480   // variadic argument, or if no F64 argument registers are available.
9481   bool UseGPRForF64 = true;
9482 
9483   switch (ABI) {
9484   default:
9485     llvm_unreachable("Unexpected ABI");
9486   case RISCVABI::ABI_ILP32:
9487   case RISCVABI::ABI_LP64:
9488     break;
9489   case RISCVABI::ABI_ILP32F:
9490   case RISCVABI::ABI_LP64F:
9491     UseGPRForF16_F32 = !IsFixed;
9492     break;
9493   case RISCVABI::ABI_ILP32D:
9494   case RISCVABI::ABI_LP64D:
9495     UseGPRForF16_F32 = !IsFixed;
9496     UseGPRForF64 = !IsFixed;
9497     break;
9498   }
9499 
9500   // FPR16, FPR32, and FPR64 alias each other.
9501   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9502     UseGPRForF16_F32 = true;
9503     UseGPRForF64 = true;
9504   }
9505 
9506   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9507   // similar local variables rather than directly checking against the target
9508   // ABI.
9509 
9510   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9511     LocVT = XLenVT;
9512     LocInfo = CCValAssign::BCvt;
9513   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9514     LocVT = MVT::i64;
9515     LocInfo = CCValAssign::BCvt;
9516   }
9517 
9518   // If this is a variadic argument, the RISC-V calling convention requires
9519   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9520   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9521   // be used regardless of whether the original argument was split during
9522   // legalisation or not. The argument will not be passed by registers if the
9523   // original type is larger than 2*XLEN, so the register alignment rule does
9524   // not apply.
9525   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9526   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9527       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9528     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9529     // Skip 'odd' register if necessary.
9530     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9531       State.AllocateReg(ArgGPRs);
9532   }
9533 
9534   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9535   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9536       State.getPendingArgFlags();
9537 
9538   assert(PendingLocs.size() == PendingArgFlags.size() &&
9539          "PendingLocs and PendingArgFlags out of sync");
9540 
9541   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9542   // registers are exhausted.
9543   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9544     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9545            "Can't lower f64 if it is split");
9546     // Depending on available argument GPRS, f64 may be passed in a pair of
9547     // GPRs, split between a GPR and the stack, or passed completely on the
9548     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9549     // cases.
9550     Register Reg = State.AllocateReg(ArgGPRs);
9551     LocVT = MVT::i32;
9552     if (!Reg) {
9553       unsigned StackOffset = State.AllocateStack(8, Align(8));
9554       State.addLoc(
9555           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9556       return false;
9557     }
9558     if (!State.AllocateReg(ArgGPRs))
9559       State.AllocateStack(4, Align(4));
9560     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9561     return false;
9562   }
9563 
9564   // Fixed-length vectors are located in the corresponding scalable-vector
9565   // container types.
9566   if (ValVT.isFixedLengthVector())
9567     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9568 
9569   // Split arguments might be passed indirectly, so keep track of the pending
9570   // values. Split vectors are passed via a mix of registers and indirectly, so
9571   // treat them as we would any other argument.
9572   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9573     LocVT = XLenVT;
9574     LocInfo = CCValAssign::Indirect;
9575     PendingLocs.push_back(
9576         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9577     PendingArgFlags.push_back(ArgFlags);
9578     if (!ArgFlags.isSplitEnd()) {
9579       return false;
9580     }
9581   }
9582 
9583   // If the split argument only had two elements, it should be passed directly
9584   // in registers or on the stack.
9585   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9586       PendingLocs.size() <= 2) {
9587     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9588     // Apply the normal calling convention rules to the first half of the
9589     // split argument.
9590     CCValAssign VA = PendingLocs[0];
9591     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9592     PendingLocs.clear();
9593     PendingArgFlags.clear();
9594     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9595                                ArgFlags);
9596   }
9597 
9598   // Allocate to a register if possible, or else a stack slot.
9599   Register Reg;
9600   unsigned StoreSizeBytes = XLen / 8;
9601   Align StackAlign = Align(XLen / 8);
9602 
9603   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9604     Reg = State.AllocateReg(ArgFPR16s);
9605   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9606     Reg = State.AllocateReg(ArgFPR32s);
9607   else if (ValVT == MVT::f64 && !UseGPRForF64)
9608     Reg = State.AllocateReg(ArgFPR64s);
9609   else if (ValVT.isVector()) {
9610     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9611     if (!Reg) {
9612       // For return values, the vector must be passed fully via registers or
9613       // via the stack.
9614       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9615       // but we're using all of them.
9616       if (IsRet)
9617         return true;
9618       // Try using a GPR to pass the address
9619       if ((Reg = State.AllocateReg(ArgGPRs))) {
9620         LocVT = XLenVT;
9621         LocInfo = CCValAssign::Indirect;
9622       } else if (ValVT.isScalableVector()) {
9623         LocVT = XLenVT;
9624         LocInfo = CCValAssign::Indirect;
9625       } else {
9626         // Pass fixed-length vectors on the stack.
9627         LocVT = ValVT;
9628         StoreSizeBytes = ValVT.getStoreSize();
9629         // Align vectors to their element sizes, being careful for vXi1
9630         // vectors.
9631         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9632       }
9633     }
9634   } else {
9635     Reg = State.AllocateReg(ArgGPRs);
9636   }
9637 
9638   unsigned StackOffset =
9639       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9640 
9641   // If we reach this point and PendingLocs is non-empty, we must be at the
9642   // end of a split argument that must be passed indirectly.
9643   if (!PendingLocs.empty()) {
9644     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9645     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9646 
9647     for (auto &It : PendingLocs) {
9648       if (Reg)
9649         It.convertToReg(Reg);
9650       else
9651         It.convertToMem(StackOffset);
9652       State.addLoc(It);
9653     }
9654     PendingLocs.clear();
9655     PendingArgFlags.clear();
9656     return false;
9657   }
9658 
9659   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9660           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9661          "Expected an XLenVT or vector types at this stage");
9662 
9663   if (Reg) {
9664     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9665     return false;
9666   }
9667 
9668   // When a floating-point value is passed on the stack, no bit-conversion is
9669   // needed.
9670   if (ValVT.isFloatingPoint()) {
9671     LocVT = ValVT;
9672     LocInfo = CCValAssign::Full;
9673   }
9674   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9675   return false;
9676 }
9677 
9678 template <typename ArgTy>
9679 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9680   for (const auto &ArgIdx : enumerate(Args)) {
9681     MVT ArgVT = ArgIdx.value().VT;
9682     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9683       return ArgIdx.index();
9684   }
9685   return None;
9686 }
9687 
9688 void RISCVTargetLowering::analyzeInputArgs(
9689     MachineFunction &MF, CCState &CCInfo,
9690     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9691     RISCVCCAssignFn Fn) const {
9692   unsigned NumArgs = Ins.size();
9693   FunctionType *FType = MF.getFunction().getFunctionType();
9694 
9695   Optional<unsigned> FirstMaskArgument;
9696   if (Subtarget.hasVInstructions())
9697     FirstMaskArgument = preAssignMask(Ins);
9698 
9699   for (unsigned i = 0; i != NumArgs; ++i) {
9700     MVT ArgVT = Ins[i].VT;
9701     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9702 
9703     Type *ArgTy = nullptr;
9704     if (IsRet)
9705       ArgTy = FType->getReturnType();
9706     else if (Ins[i].isOrigArg())
9707       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9708 
9709     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9710     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9711            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9712            FirstMaskArgument)) {
9713       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9714                         << EVT(ArgVT).getEVTString() << '\n');
9715       llvm_unreachable(nullptr);
9716     }
9717   }
9718 }
9719 
9720 void RISCVTargetLowering::analyzeOutputArgs(
9721     MachineFunction &MF, CCState &CCInfo,
9722     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9723     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9724   unsigned NumArgs = Outs.size();
9725 
9726   Optional<unsigned> FirstMaskArgument;
9727   if (Subtarget.hasVInstructions())
9728     FirstMaskArgument = preAssignMask(Outs);
9729 
9730   for (unsigned i = 0; i != NumArgs; i++) {
9731     MVT ArgVT = Outs[i].VT;
9732     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9733     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9734 
9735     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9736     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9737            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9738            FirstMaskArgument)) {
9739       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9740                         << EVT(ArgVT).getEVTString() << "\n");
9741       llvm_unreachable(nullptr);
9742     }
9743   }
9744 }
9745 
9746 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9747 // values.
9748 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9749                                    const CCValAssign &VA, const SDLoc &DL,
9750                                    const RISCVSubtarget &Subtarget) {
9751   switch (VA.getLocInfo()) {
9752   default:
9753     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9754   case CCValAssign::Full:
9755     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9756       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9757     break;
9758   case CCValAssign::BCvt:
9759     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9760       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9761     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9762       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9763     else
9764       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9765     break;
9766   }
9767   return Val;
9768 }
9769 
9770 // The caller is responsible for loading the full value if the argument is
9771 // passed with CCValAssign::Indirect.
9772 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9773                                 const CCValAssign &VA, const SDLoc &DL,
9774                                 const RISCVTargetLowering &TLI) {
9775   MachineFunction &MF = DAG.getMachineFunction();
9776   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9777   EVT LocVT = VA.getLocVT();
9778   SDValue Val;
9779   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9780   Register VReg = RegInfo.createVirtualRegister(RC);
9781   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9782   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9783 
9784   if (VA.getLocInfo() == CCValAssign::Indirect)
9785     return Val;
9786 
9787   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9788 }
9789 
9790 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9791                                    const CCValAssign &VA, const SDLoc &DL,
9792                                    const RISCVSubtarget &Subtarget) {
9793   EVT LocVT = VA.getLocVT();
9794 
9795   switch (VA.getLocInfo()) {
9796   default:
9797     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9798   case CCValAssign::Full:
9799     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9800       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9801     break;
9802   case CCValAssign::BCvt:
9803     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9804       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9805     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9806       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9807     else
9808       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9809     break;
9810   }
9811   return Val;
9812 }
9813 
9814 // The caller is responsible for loading the full value if the argument is
9815 // passed with CCValAssign::Indirect.
9816 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9817                                 const CCValAssign &VA, const SDLoc &DL) {
9818   MachineFunction &MF = DAG.getMachineFunction();
9819   MachineFrameInfo &MFI = MF.getFrameInfo();
9820   EVT LocVT = VA.getLocVT();
9821   EVT ValVT = VA.getValVT();
9822   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9823   if (ValVT.isScalableVector()) {
9824     // When the value is a scalable vector, we save the pointer which points to
9825     // the scalable vector value in the stack. The ValVT will be the pointer
9826     // type, instead of the scalable vector type.
9827     ValVT = LocVT;
9828   }
9829   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9830                                  /*IsImmutable=*/true);
9831   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9832   SDValue Val;
9833 
9834   ISD::LoadExtType ExtType;
9835   switch (VA.getLocInfo()) {
9836   default:
9837     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9838   case CCValAssign::Full:
9839   case CCValAssign::Indirect:
9840   case CCValAssign::BCvt:
9841     ExtType = ISD::NON_EXTLOAD;
9842     break;
9843   }
9844   Val = DAG.getExtLoad(
9845       ExtType, DL, LocVT, Chain, FIN,
9846       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9847   return Val;
9848 }
9849 
9850 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9851                                        const CCValAssign &VA, const SDLoc &DL) {
9852   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9853          "Unexpected VA");
9854   MachineFunction &MF = DAG.getMachineFunction();
9855   MachineFrameInfo &MFI = MF.getFrameInfo();
9856   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9857 
9858   if (VA.isMemLoc()) {
9859     // f64 is passed on the stack.
9860     int FI =
9861         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9862     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9863     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9864                        MachinePointerInfo::getFixedStack(MF, FI));
9865   }
9866 
9867   assert(VA.isRegLoc() && "Expected register VA assignment");
9868 
9869   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9870   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9871   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9872   SDValue Hi;
9873   if (VA.getLocReg() == RISCV::X17) {
9874     // Second half of f64 is passed on the stack.
9875     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9876     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9877     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9878                      MachinePointerInfo::getFixedStack(MF, FI));
9879   } else {
9880     // Second half of f64 is passed in another GPR.
9881     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9882     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9883     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9884   }
9885   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9886 }
9887 
9888 // FastCC has less than 1% performance improvement for some particular
9889 // benchmark. But theoretically, it may has benenfit for some cases.
9890 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9891                             unsigned ValNo, MVT ValVT, MVT LocVT,
9892                             CCValAssign::LocInfo LocInfo,
9893                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9894                             bool IsFixed, bool IsRet, Type *OrigTy,
9895                             const RISCVTargetLowering &TLI,
9896                             Optional<unsigned> FirstMaskArgument) {
9897 
9898   // X5 and X6 might be used for save-restore libcall.
9899   static const MCPhysReg GPRList[] = {
9900       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9901       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9902       RISCV::X29, RISCV::X30, RISCV::X31};
9903 
9904   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9905     if (unsigned Reg = State.AllocateReg(GPRList)) {
9906       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9907       return false;
9908     }
9909   }
9910 
9911   if (LocVT == MVT::f16) {
9912     static const MCPhysReg FPR16List[] = {
9913         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9914         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9915         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9916         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9917     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9918       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9919       return false;
9920     }
9921   }
9922 
9923   if (LocVT == MVT::f32) {
9924     static const MCPhysReg FPR32List[] = {
9925         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9926         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9927         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9928         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9929     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9930       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9931       return false;
9932     }
9933   }
9934 
9935   if (LocVT == MVT::f64) {
9936     static const MCPhysReg FPR64List[] = {
9937         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9938         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9939         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9940         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9941     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9942       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9943       return false;
9944     }
9945   }
9946 
9947   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9948     unsigned Offset4 = State.AllocateStack(4, Align(4));
9949     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9950     return false;
9951   }
9952 
9953   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9954     unsigned Offset5 = State.AllocateStack(8, Align(8));
9955     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9956     return false;
9957   }
9958 
9959   if (LocVT.isVector()) {
9960     if (unsigned Reg =
9961             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9962       // Fixed-length vectors are located in the corresponding scalable-vector
9963       // container types.
9964       if (ValVT.isFixedLengthVector())
9965         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9966       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9967     } else {
9968       // Try and pass the address via a "fast" GPR.
9969       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9970         LocInfo = CCValAssign::Indirect;
9971         LocVT = TLI.getSubtarget().getXLenVT();
9972         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9973       } else if (ValVT.isFixedLengthVector()) {
9974         auto StackAlign =
9975             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9976         unsigned StackOffset =
9977             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9978         State.addLoc(
9979             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9980       } else {
9981         // Can't pass scalable vectors on the stack.
9982         return true;
9983       }
9984     }
9985 
9986     return false;
9987   }
9988 
9989   return true; // CC didn't match.
9990 }
9991 
9992 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9993                          CCValAssign::LocInfo LocInfo,
9994                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9995 
9996   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9997     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9998     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9999     static const MCPhysReg GPRList[] = {
10000         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10001         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10002     if (unsigned Reg = State.AllocateReg(GPRList)) {
10003       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10004       return false;
10005     }
10006   }
10007 
10008   if (LocVT == MVT::f32) {
10009     // Pass in STG registers: F1, ..., F6
10010     //                        fs0 ... fs5
10011     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10012                                           RISCV::F18_F, RISCV::F19_F,
10013                                           RISCV::F20_F, RISCV::F21_F};
10014     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10015       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10016       return false;
10017     }
10018   }
10019 
10020   if (LocVT == MVT::f64) {
10021     // Pass in STG registers: D1, ..., D6
10022     //                        fs6 ... fs11
10023     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10024                                           RISCV::F24_D, RISCV::F25_D,
10025                                           RISCV::F26_D, RISCV::F27_D};
10026     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10027       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10028       return false;
10029     }
10030   }
10031 
10032   report_fatal_error("No registers left in GHC calling convention");
10033   return true;
10034 }
10035 
10036 // Transform physical registers into virtual registers.
10037 SDValue RISCVTargetLowering::LowerFormalArguments(
10038     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10039     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10040     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10041 
10042   MachineFunction &MF = DAG.getMachineFunction();
10043 
10044   switch (CallConv) {
10045   default:
10046     report_fatal_error("Unsupported calling convention");
10047   case CallingConv::C:
10048   case CallingConv::Fast:
10049     break;
10050   case CallingConv::GHC:
10051     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10052         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10053       report_fatal_error(
10054         "GHC calling convention requires the F and D instruction set extensions");
10055   }
10056 
10057   const Function &Func = MF.getFunction();
10058   if (Func.hasFnAttribute("interrupt")) {
10059     if (!Func.arg_empty())
10060       report_fatal_error(
10061         "Functions with the interrupt attribute cannot have arguments!");
10062 
10063     StringRef Kind =
10064       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10065 
10066     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10067       report_fatal_error(
10068         "Function interrupt attribute argument not supported!");
10069   }
10070 
10071   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10072   MVT XLenVT = Subtarget.getXLenVT();
10073   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10074   // Used with vargs to acumulate store chains.
10075   std::vector<SDValue> OutChains;
10076 
10077   // Assign locations to all of the incoming arguments.
10078   SmallVector<CCValAssign, 16> ArgLocs;
10079   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10080 
10081   if (CallConv == CallingConv::GHC)
10082     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10083   else
10084     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10085                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10086                                                    : CC_RISCV);
10087 
10088   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10089     CCValAssign &VA = ArgLocs[i];
10090     SDValue ArgValue;
10091     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10092     // case.
10093     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10094       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10095     else if (VA.isRegLoc())
10096       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10097     else
10098       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10099 
10100     if (VA.getLocInfo() == CCValAssign::Indirect) {
10101       // If the original argument was split and passed by reference (e.g. i128
10102       // on RV32), we need to load all parts of it here (using the same
10103       // address). Vectors may be partly split to registers and partly to the
10104       // stack, in which case the base address is partly offset and subsequent
10105       // stores are relative to that.
10106       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10107                                    MachinePointerInfo()));
10108       unsigned ArgIndex = Ins[i].OrigArgIndex;
10109       unsigned ArgPartOffset = Ins[i].PartOffset;
10110       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10111       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10112         CCValAssign &PartVA = ArgLocs[i + 1];
10113         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10114         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10115         if (PartVA.getValVT().isScalableVector())
10116           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10117         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10118         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10119                                      MachinePointerInfo()));
10120         ++i;
10121       }
10122       continue;
10123     }
10124     InVals.push_back(ArgValue);
10125   }
10126 
10127   if (IsVarArg) {
10128     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10129     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10130     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10131     MachineFrameInfo &MFI = MF.getFrameInfo();
10132     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10133     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10134 
10135     // Offset of the first variable argument from stack pointer, and size of
10136     // the vararg save area. For now, the varargs save area is either zero or
10137     // large enough to hold a0-a7.
10138     int VaArgOffset, VarArgsSaveSize;
10139 
10140     // If all registers are allocated, then all varargs must be passed on the
10141     // stack and we don't need to save any argregs.
10142     if (ArgRegs.size() == Idx) {
10143       VaArgOffset = CCInfo.getNextStackOffset();
10144       VarArgsSaveSize = 0;
10145     } else {
10146       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10147       VaArgOffset = -VarArgsSaveSize;
10148     }
10149 
10150     // Record the frame index of the first variable argument
10151     // which is a value necessary to VASTART.
10152     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10153     RVFI->setVarArgsFrameIndex(FI);
10154 
10155     // If saving an odd number of registers then create an extra stack slot to
10156     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10157     // offsets to even-numbered registered remain 2*XLEN-aligned.
10158     if (Idx % 2) {
10159       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10160       VarArgsSaveSize += XLenInBytes;
10161     }
10162 
10163     // Copy the integer registers that may have been used for passing varargs
10164     // to the vararg save area.
10165     for (unsigned I = Idx; I < ArgRegs.size();
10166          ++I, VaArgOffset += XLenInBytes) {
10167       const Register Reg = RegInfo.createVirtualRegister(RC);
10168       RegInfo.addLiveIn(ArgRegs[I], Reg);
10169       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10170       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10171       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10172       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10173                                    MachinePointerInfo::getFixedStack(MF, FI));
10174       cast<StoreSDNode>(Store.getNode())
10175           ->getMemOperand()
10176           ->setValue((Value *)nullptr);
10177       OutChains.push_back(Store);
10178     }
10179     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10180   }
10181 
10182   // All stores are grouped in one node to allow the matching between
10183   // the size of Ins and InVals. This only happens for vararg functions.
10184   if (!OutChains.empty()) {
10185     OutChains.push_back(Chain);
10186     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10187   }
10188 
10189   return Chain;
10190 }
10191 
10192 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10193 /// for tail call optimization.
10194 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10195 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10196     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10197     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10198 
10199   auto &Callee = CLI.Callee;
10200   auto CalleeCC = CLI.CallConv;
10201   auto &Outs = CLI.Outs;
10202   auto &Caller = MF.getFunction();
10203   auto CallerCC = Caller.getCallingConv();
10204 
10205   // Exception-handling functions need a special set of instructions to
10206   // indicate a return to the hardware. Tail-calling another function would
10207   // probably break this.
10208   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10209   // should be expanded as new function attributes are introduced.
10210   if (Caller.hasFnAttribute("interrupt"))
10211     return false;
10212 
10213   // Do not tail call opt if the stack is used to pass parameters.
10214   if (CCInfo.getNextStackOffset() != 0)
10215     return false;
10216 
10217   // Do not tail call opt if any parameters need to be passed indirectly.
10218   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10219   // passed indirectly. So the address of the value will be passed in a
10220   // register, or if not available, then the address is put on the stack. In
10221   // order to pass indirectly, space on the stack often needs to be allocated
10222   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10223   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10224   // are passed CCValAssign::Indirect.
10225   for (auto &VA : ArgLocs)
10226     if (VA.getLocInfo() == CCValAssign::Indirect)
10227       return false;
10228 
10229   // Do not tail call opt if either caller or callee uses struct return
10230   // semantics.
10231   auto IsCallerStructRet = Caller.hasStructRetAttr();
10232   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10233   if (IsCallerStructRet || IsCalleeStructRet)
10234     return false;
10235 
10236   // Externally-defined functions with weak linkage should not be
10237   // tail-called. The behaviour of branch instructions in this situation (as
10238   // used for tail calls) is implementation-defined, so we cannot rely on the
10239   // linker replacing the tail call with a return.
10240   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10241     const GlobalValue *GV = G->getGlobal();
10242     if (GV->hasExternalWeakLinkage())
10243       return false;
10244   }
10245 
10246   // The callee has to preserve all registers the caller needs to preserve.
10247   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10248   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10249   if (CalleeCC != CallerCC) {
10250     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10251     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10252       return false;
10253   }
10254 
10255   // Byval parameters hand the function a pointer directly into the stack area
10256   // we want to reuse during a tail call. Working around this *is* possible
10257   // but less efficient and uglier in LowerCall.
10258   for (auto &Arg : Outs)
10259     if (Arg.Flags.isByVal())
10260       return false;
10261 
10262   return true;
10263 }
10264 
10265 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10266   return DAG.getDataLayout().getPrefTypeAlign(
10267       VT.getTypeForEVT(*DAG.getContext()));
10268 }
10269 
10270 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10271 // and output parameter nodes.
10272 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10273                                        SmallVectorImpl<SDValue> &InVals) const {
10274   SelectionDAG &DAG = CLI.DAG;
10275   SDLoc &DL = CLI.DL;
10276   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10277   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10278   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10279   SDValue Chain = CLI.Chain;
10280   SDValue Callee = CLI.Callee;
10281   bool &IsTailCall = CLI.IsTailCall;
10282   CallingConv::ID CallConv = CLI.CallConv;
10283   bool IsVarArg = CLI.IsVarArg;
10284   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10285   MVT XLenVT = Subtarget.getXLenVT();
10286 
10287   MachineFunction &MF = DAG.getMachineFunction();
10288 
10289   // Analyze the operands of the call, assigning locations to each operand.
10290   SmallVector<CCValAssign, 16> ArgLocs;
10291   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10292 
10293   if (CallConv == CallingConv::GHC)
10294     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10295   else
10296     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10297                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10298                                                     : CC_RISCV);
10299 
10300   // Check if it's really possible to do a tail call.
10301   if (IsTailCall)
10302     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10303 
10304   if (IsTailCall)
10305     ++NumTailCalls;
10306   else if (CLI.CB && CLI.CB->isMustTailCall())
10307     report_fatal_error("failed to perform tail call elimination on a call "
10308                        "site marked musttail");
10309 
10310   // Get a count of how many bytes are to be pushed on the stack.
10311   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10312 
10313   // Create local copies for byval args
10314   SmallVector<SDValue, 8> ByValArgs;
10315   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10316     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10317     if (!Flags.isByVal())
10318       continue;
10319 
10320     SDValue Arg = OutVals[i];
10321     unsigned Size = Flags.getByValSize();
10322     Align Alignment = Flags.getNonZeroByValAlign();
10323 
10324     int FI =
10325         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10326     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10327     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10328 
10329     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10330                           /*IsVolatile=*/false,
10331                           /*AlwaysInline=*/false, IsTailCall,
10332                           MachinePointerInfo(), MachinePointerInfo());
10333     ByValArgs.push_back(FIPtr);
10334   }
10335 
10336   if (!IsTailCall)
10337     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10338 
10339   // Copy argument values to their designated locations.
10340   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10341   SmallVector<SDValue, 8> MemOpChains;
10342   SDValue StackPtr;
10343   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10344     CCValAssign &VA = ArgLocs[i];
10345     SDValue ArgValue = OutVals[i];
10346     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10347 
10348     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10349     bool IsF64OnRV32DSoftABI =
10350         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10351     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10352       SDValue SplitF64 = DAG.getNode(
10353           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10354       SDValue Lo = SplitF64.getValue(0);
10355       SDValue Hi = SplitF64.getValue(1);
10356 
10357       Register RegLo = VA.getLocReg();
10358       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10359 
10360       if (RegLo == RISCV::X17) {
10361         // Second half of f64 is passed on the stack.
10362         // Work out the address of the stack slot.
10363         if (!StackPtr.getNode())
10364           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10365         // Emit the store.
10366         MemOpChains.push_back(
10367             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10368       } else {
10369         // Second half of f64 is passed in another GPR.
10370         assert(RegLo < RISCV::X31 && "Invalid register pair");
10371         Register RegHigh = RegLo + 1;
10372         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10373       }
10374       continue;
10375     }
10376 
10377     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10378     // as any other MemLoc.
10379 
10380     // Promote the value if needed.
10381     // For now, only handle fully promoted and indirect arguments.
10382     if (VA.getLocInfo() == CCValAssign::Indirect) {
10383       // Store the argument in a stack slot and pass its address.
10384       Align StackAlign =
10385           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10386                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10387       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10388       // If the original argument was split (e.g. i128), we need
10389       // to store the required parts of it here (and pass just one address).
10390       // Vectors may be partly split to registers and partly to the stack, in
10391       // which case the base address is partly offset and subsequent stores are
10392       // relative to that.
10393       unsigned ArgIndex = Outs[i].OrigArgIndex;
10394       unsigned ArgPartOffset = Outs[i].PartOffset;
10395       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10396       // Calculate the total size to store. We don't have access to what we're
10397       // actually storing other than performing the loop and collecting the
10398       // info.
10399       SmallVector<std::pair<SDValue, SDValue>> Parts;
10400       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10401         SDValue PartValue = OutVals[i + 1];
10402         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10403         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10404         EVT PartVT = PartValue.getValueType();
10405         if (PartVT.isScalableVector())
10406           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10407         StoredSize += PartVT.getStoreSize();
10408         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10409         Parts.push_back(std::make_pair(PartValue, Offset));
10410         ++i;
10411       }
10412       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10413       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10414       MemOpChains.push_back(
10415           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10416                        MachinePointerInfo::getFixedStack(MF, FI)));
10417       for (const auto &Part : Parts) {
10418         SDValue PartValue = Part.first;
10419         SDValue PartOffset = Part.second;
10420         SDValue Address =
10421             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10422         MemOpChains.push_back(
10423             DAG.getStore(Chain, DL, PartValue, Address,
10424                          MachinePointerInfo::getFixedStack(MF, FI)));
10425       }
10426       ArgValue = SpillSlot;
10427     } else {
10428       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10429     }
10430 
10431     // Use local copy if it is a byval arg.
10432     if (Flags.isByVal())
10433       ArgValue = ByValArgs[j++];
10434 
10435     if (VA.isRegLoc()) {
10436       // Queue up the argument copies and emit them at the end.
10437       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10438     } else {
10439       assert(VA.isMemLoc() && "Argument not register or memory");
10440       assert(!IsTailCall && "Tail call not allowed if stack is used "
10441                             "for passing parameters");
10442 
10443       // Work out the address of the stack slot.
10444       if (!StackPtr.getNode())
10445         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10446       SDValue Address =
10447           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10448                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10449 
10450       // Emit the store.
10451       MemOpChains.push_back(
10452           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10453     }
10454   }
10455 
10456   // Join the stores, which are independent of one another.
10457   if (!MemOpChains.empty())
10458     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10459 
10460   SDValue Glue;
10461 
10462   // Build a sequence of copy-to-reg nodes, chained and glued together.
10463   for (auto &Reg : RegsToPass) {
10464     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10465     Glue = Chain.getValue(1);
10466   }
10467 
10468   // Validate that none of the argument registers have been marked as
10469   // reserved, if so report an error. Do the same for the return address if this
10470   // is not a tailcall.
10471   validateCCReservedRegs(RegsToPass, MF);
10472   if (!IsTailCall &&
10473       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10474     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10475         MF.getFunction(),
10476         "Return address register required, but has been reserved."});
10477 
10478   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10479   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10480   // split it and then direct call can be matched by PseudoCALL.
10481   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10482     const GlobalValue *GV = S->getGlobal();
10483 
10484     unsigned OpFlags = RISCVII::MO_CALL;
10485     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10486       OpFlags = RISCVII::MO_PLT;
10487 
10488     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10489   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10490     unsigned OpFlags = RISCVII::MO_CALL;
10491 
10492     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10493                                                  nullptr))
10494       OpFlags = RISCVII::MO_PLT;
10495 
10496     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10497   }
10498 
10499   // The first call operand is the chain and the second is the target address.
10500   SmallVector<SDValue, 8> Ops;
10501   Ops.push_back(Chain);
10502   Ops.push_back(Callee);
10503 
10504   // Add argument registers to the end of the list so that they are
10505   // known live into the call.
10506   for (auto &Reg : RegsToPass)
10507     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10508 
10509   if (!IsTailCall) {
10510     // Add a register mask operand representing the call-preserved registers.
10511     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10512     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10513     assert(Mask && "Missing call preserved mask for calling convention");
10514     Ops.push_back(DAG.getRegisterMask(Mask));
10515   }
10516 
10517   // Glue the call to the argument copies, if any.
10518   if (Glue.getNode())
10519     Ops.push_back(Glue);
10520 
10521   // Emit the call.
10522   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10523 
10524   if (IsTailCall) {
10525     MF.getFrameInfo().setHasTailCall();
10526     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10527   }
10528 
10529   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10530   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10531   Glue = Chain.getValue(1);
10532 
10533   // Mark the end of the call, which is glued to the call itself.
10534   Chain = DAG.getCALLSEQ_END(Chain,
10535                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10536                              DAG.getConstant(0, DL, PtrVT, true),
10537                              Glue, DL);
10538   Glue = Chain.getValue(1);
10539 
10540   // Assign locations to each value returned by this call.
10541   SmallVector<CCValAssign, 16> RVLocs;
10542   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10543   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10544 
10545   // Copy all of the result registers out of their specified physreg.
10546   for (auto &VA : RVLocs) {
10547     // Copy the value out
10548     SDValue RetValue =
10549         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10550     // Glue the RetValue to the end of the call sequence
10551     Chain = RetValue.getValue(1);
10552     Glue = RetValue.getValue(2);
10553 
10554     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10555       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10556       SDValue RetValue2 =
10557           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10558       Chain = RetValue2.getValue(1);
10559       Glue = RetValue2.getValue(2);
10560       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10561                              RetValue2);
10562     }
10563 
10564     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10565 
10566     InVals.push_back(RetValue);
10567   }
10568 
10569   return Chain;
10570 }
10571 
10572 bool RISCVTargetLowering::CanLowerReturn(
10573     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10574     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10575   SmallVector<CCValAssign, 16> RVLocs;
10576   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10577 
10578   Optional<unsigned> FirstMaskArgument;
10579   if (Subtarget.hasVInstructions())
10580     FirstMaskArgument = preAssignMask(Outs);
10581 
10582   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10583     MVT VT = Outs[i].VT;
10584     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10585     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10586     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10587                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10588                  *this, FirstMaskArgument))
10589       return false;
10590   }
10591   return true;
10592 }
10593 
10594 SDValue
10595 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10596                                  bool IsVarArg,
10597                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10598                                  const SmallVectorImpl<SDValue> &OutVals,
10599                                  const SDLoc &DL, SelectionDAG &DAG) const {
10600   const MachineFunction &MF = DAG.getMachineFunction();
10601   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10602 
10603   // Stores the assignment of the return value to a location.
10604   SmallVector<CCValAssign, 16> RVLocs;
10605 
10606   // Info about the registers and stack slot.
10607   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10608                  *DAG.getContext());
10609 
10610   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10611                     nullptr, CC_RISCV);
10612 
10613   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10614     report_fatal_error("GHC functions return void only");
10615 
10616   SDValue Glue;
10617   SmallVector<SDValue, 4> RetOps(1, Chain);
10618 
10619   // Copy the result values into the output registers.
10620   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10621     SDValue Val = OutVals[i];
10622     CCValAssign &VA = RVLocs[i];
10623     assert(VA.isRegLoc() && "Can only return in registers!");
10624 
10625     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10626       // Handle returning f64 on RV32D with a soft float ABI.
10627       assert(VA.isRegLoc() && "Expected return via registers");
10628       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10629                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10630       SDValue Lo = SplitF64.getValue(0);
10631       SDValue Hi = SplitF64.getValue(1);
10632       Register RegLo = VA.getLocReg();
10633       assert(RegLo < RISCV::X31 && "Invalid register pair");
10634       Register RegHi = RegLo + 1;
10635 
10636       if (STI.isRegisterReservedByUser(RegLo) ||
10637           STI.isRegisterReservedByUser(RegHi))
10638         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10639             MF.getFunction(),
10640             "Return value register required, but has been reserved."});
10641 
10642       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10643       Glue = Chain.getValue(1);
10644       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10645       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10646       Glue = Chain.getValue(1);
10647       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10648     } else {
10649       // Handle a 'normal' return.
10650       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10651       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10652 
10653       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10654         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10655             MF.getFunction(),
10656             "Return value register required, but has been reserved."});
10657 
10658       // Guarantee that all emitted copies are stuck together.
10659       Glue = Chain.getValue(1);
10660       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10661     }
10662   }
10663 
10664   RetOps[0] = Chain; // Update chain.
10665 
10666   // Add the glue node if we have it.
10667   if (Glue.getNode()) {
10668     RetOps.push_back(Glue);
10669   }
10670 
10671   unsigned RetOpc = RISCVISD::RET_FLAG;
10672   // Interrupt service routines use different return instructions.
10673   const Function &Func = DAG.getMachineFunction().getFunction();
10674   if (Func.hasFnAttribute("interrupt")) {
10675     if (!Func.getReturnType()->isVoidTy())
10676       report_fatal_error(
10677           "Functions with the interrupt attribute must have void return type!");
10678 
10679     MachineFunction &MF = DAG.getMachineFunction();
10680     StringRef Kind =
10681       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10682 
10683     if (Kind == "user")
10684       RetOpc = RISCVISD::URET_FLAG;
10685     else if (Kind == "supervisor")
10686       RetOpc = RISCVISD::SRET_FLAG;
10687     else
10688       RetOpc = RISCVISD::MRET_FLAG;
10689   }
10690 
10691   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10692 }
10693 
10694 void RISCVTargetLowering::validateCCReservedRegs(
10695     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10696     MachineFunction &MF) const {
10697   const Function &F = MF.getFunction();
10698   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10699 
10700   if (llvm::any_of(Regs, [&STI](auto Reg) {
10701         return STI.isRegisterReservedByUser(Reg.first);
10702       }))
10703     F.getContext().diagnose(DiagnosticInfoUnsupported{
10704         F, "Argument register required, but has been reserved."});
10705 }
10706 
10707 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10708   return CI->isTailCall();
10709 }
10710 
10711 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10712 #define NODE_NAME_CASE(NODE)                                                   \
10713   case RISCVISD::NODE:                                                         \
10714     return "RISCVISD::" #NODE;
10715   // clang-format off
10716   switch ((RISCVISD::NodeType)Opcode) {
10717   case RISCVISD::FIRST_NUMBER:
10718     break;
10719   NODE_NAME_CASE(RET_FLAG)
10720   NODE_NAME_CASE(URET_FLAG)
10721   NODE_NAME_CASE(SRET_FLAG)
10722   NODE_NAME_CASE(MRET_FLAG)
10723   NODE_NAME_CASE(CALL)
10724   NODE_NAME_CASE(SELECT_CC)
10725   NODE_NAME_CASE(BR_CC)
10726   NODE_NAME_CASE(BuildPairF64)
10727   NODE_NAME_CASE(SplitF64)
10728   NODE_NAME_CASE(TAIL)
10729   NODE_NAME_CASE(MULHSU)
10730   NODE_NAME_CASE(SLLW)
10731   NODE_NAME_CASE(SRAW)
10732   NODE_NAME_CASE(SRLW)
10733   NODE_NAME_CASE(DIVW)
10734   NODE_NAME_CASE(DIVUW)
10735   NODE_NAME_CASE(REMUW)
10736   NODE_NAME_CASE(ROLW)
10737   NODE_NAME_CASE(RORW)
10738   NODE_NAME_CASE(CLZW)
10739   NODE_NAME_CASE(CTZW)
10740   NODE_NAME_CASE(FSLW)
10741   NODE_NAME_CASE(FSRW)
10742   NODE_NAME_CASE(FSL)
10743   NODE_NAME_CASE(FSR)
10744   NODE_NAME_CASE(FMV_H_X)
10745   NODE_NAME_CASE(FMV_X_ANYEXTH)
10746   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10747   NODE_NAME_CASE(FMV_W_X_RV64)
10748   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10749   NODE_NAME_CASE(FCVT_X)
10750   NODE_NAME_CASE(FCVT_XU)
10751   NODE_NAME_CASE(FCVT_W_RV64)
10752   NODE_NAME_CASE(FCVT_WU_RV64)
10753   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10754   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10755   NODE_NAME_CASE(READ_CYCLE_WIDE)
10756   NODE_NAME_CASE(GREV)
10757   NODE_NAME_CASE(GREVW)
10758   NODE_NAME_CASE(GORC)
10759   NODE_NAME_CASE(GORCW)
10760   NODE_NAME_CASE(SHFL)
10761   NODE_NAME_CASE(SHFLW)
10762   NODE_NAME_CASE(UNSHFL)
10763   NODE_NAME_CASE(UNSHFLW)
10764   NODE_NAME_CASE(BFP)
10765   NODE_NAME_CASE(BFPW)
10766   NODE_NAME_CASE(BCOMPRESS)
10767   NODE_NAME_CASE(BCOMPRESSW)
10768   NODE_NAME_CASE(BDECOMPRESS)
10769   NODE_NAME_CASE(BDECOMPRESSW)
10770   NODE_NAME_CASE(VMV_V_X_VL)
10771   NODE_NAME_CASE(VFMV_V_F_VL)
10772   NODE_NAME_CASE(VMV_X_S)
10773   NODE_NAME_CASE(VMV_S_X_VL)
10774   NODE_NAME_CASE(VFMV_S_F_VL)
10775   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10776   NODE_NAME_CASE(READ_VLENB)
10777   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10778   NODE_NAME_CASE(VSLIDEUP_VL)
10779   NODE_NAME_CASE(VSLIDE1UP_VL)
10780   NODE_NAME_CASE(VSLIDEDOWN_VL)
10781   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10782   NODE_NAME_CASE(VID_VL)
10783   NODE_NAME_CASE(VFNCVT_ROD_VL)
10784   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10785   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10786   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10787   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10788   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10789   NODE_NAME_CASE(VECREDUCE_AND_VL)
10790   NODE_NAME_CASE(VECREDUCE_OR_VL)
10791   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10792   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10793   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10794   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10795   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10796   NODE_NAME_CASE(ADD_VL)
10797   NODE_NAME_CASE(AND_VL)
10798   NODE_NAME_CASE(MUL_VL)
10799   NODE_NAME_CASE(OR_VL)
10800   NODE_NAME_CASE(SDIV_VL)
10801   NODE_NAME_CASE(SHL_VL)
10802   NODE_NAME_CASE(SREM_VL)
10803   NODE_NAME_CASE(SRA_VL)
10804   NODE_NAME_CASE(SRL_VL)
10805   NODE_NAME_CASE(SUB_VL)
10806   NODE_NAME_CASE(UDIV_VL)
10807   NODE_NAME_CASE(UREM_VL)
10808   NODE_NAME_CASE(XOR_VL)
10809   NODE_NAME_CASE(SADDSAT_VL)
10810   NODE_NAME_CASE(UADDSAT_VL)
10811   NODE_NAME_CASE(SSUBSAT_VL)
10812   NODE_NAME_CASE(USUBSAT_VL)
10813   NODE_NAME_CASE(FADD_VL)
10814   NODE_NAME_CASE(FSUB_VL)
10815   NODE_NAME_CASE(FMUL_VL)
10816   NODE_NAME_CASE(FDIV_VL)
10817   NODE_NAME_CASE(FNEG_VL)
10818   NODE_NAME_CASE(FABS_VL)
10819   NODE_NAME_CASE(FSQRT_VL)
10820   NODE_NAME_CASE(FMA_VL)
10821   NODE_NAME_CASE(FCOPYSIGN_VL)
10822   NODE_NAME_CASE(SMIN_VL)
10823   NODE_NAME_CASE(SMAX_VL)
10824   NODE_NAME_CASE(UMIN_VL)
10825   NODE_NAME_CASE(UMAX_VL)
10826   NODE_NAME_CASE(FMINNUM_VL)
10827   NODE_NAME_CASE(FMAXNUM_VL)
10828   NODE_NAME_CASE(MULHS_VL)
10829   NODE_NAME_CASE(MULHU_VL)
10830   NODE_NAME_CASE(FP_TO_SINT_VL)
10831   NODE_NAME_CASE(FP_TO_UINT_VL)
10832   NODE_NAME_CASE(SINT_TO_FP_VL)
10833   NODE_NAME_CASE(UINT_TO_FP_VL)
10834   NODE_NAME_CASE(FP_EXTEND_VL)
10835   NODE_NAME_CASE(FP_ROUND_VL)
10836   NODE_NAME_CASE(VWMUL_VL)
10837   NODE_NAME_CASE(VWMULU_VL)
10838   NODE_NAME_CASE(VWMULSU_VL)
10839   NODE_NAME_CASE(VWADD_VL)
10840   NODE_NAME_CASE(VWADDU_VL)
10841   NODE_NAME_CASE(VWSUB_VL)
10842   NODE_NAME_CASE(VWSUBU_VL)
10843   NODE_NAME_CASE(VWADD_W_VL)
10844   NODE_NAME_CASE(VWADDU_W_VL)
10845   NODE_NAME_CASE(VWSUB_W_VL)
10846   NODE_NAME_CASE(VWSUBU_W_VL)
10847   NODE_NAME_CASE(SETCC_VL)
10848   NODE_NAME_CASE(VSELECT_VL)
10849   NODE_NAME_CASE(VP_MERGE_VL)
10850   NODE_NAME_CASE(VMAND_VL)
10851   NODE_NAME_CASE(VMOR_VL)
10852   NODE_NAME_CASE(VMXOR_VL)
10853   NODE_NAME_CASE(VMCLR_VL)
10854   NODE_NAME_CASE(VMSET_VL)
10855   NODE_NAME_CASE(VRGATHER_VX_VL)
10856   NODE_NAME_CASE(VRGATHER_VV_VL)
10857   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10858   NODE_NAME_CASE(VSEXT_VL)
10859   NODE_NAME_CASE(VZEXT_VL)
10860   NODE_NAME_CASE(VCPOP_VL)
10861   NODE_NAME_CASE(READ_CSR)
10862   NODE_NAME_CASE(WRITE_CSR)
10863   NODE_NAME_CASE(SWAP_CSR)
10864   }
10865   // clang-format on
10866   return nullptr;
10867 #undef NODE_NAME_CASE
10868 }
10869 
10870 /// getConstraintType - Given a constraint letter, return the type of
10871 /// constraint it is for this target.
10872 RISCVTargetLowering::ConstraintType
10873 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10874   if (Constraint.size() == 1) {
10875     switch (Constraint[0]) {
10876     default:
10877       break;
10878     case 'f':
10879       return C_RegisterClass;
10880     case 'I':
10881     case 'J':
10882     case 'K':
10883       return C_Immediate;
10884     case 'A':
10885       return C_Memory;
10886     case 'S': // A symbolic address
10887       return C_Other;
10888     }
10889   } else {
10890     if (Constraint == "vr" || Constraint == "vm")
10891       return C_RegisterClass;
10892   }
10893   return TargetLowering::getConstraintType(Constraint);
10894 }
10895 
10896 std::pair<unsigned, const TargetRegisterClass *>
10897 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10898                                                   StringRef Constraint,
10899                                                   MVT VT) const {
10900   // First, see if this is a constraint that directly corresponds to a
10901   // RISCV register class.
10902   if (Constraint.size() == 1) {
10903     switch (Constraint[0]) {
10904     case 'r':
10905       // TODO: Support fixed vectors up to XLen for P extension?
10906       if (VT.isVector())
10907         break;
10908       return std::make_pair(0U, &RISCV::GPRRegClass);
10909     case 'f':
10910       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10911         return std::make_pair(0U, &RISCV::FPR16RegClass);
10912       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10913         return std::make_pair(0U, &RISCV::FPR32RegClass);
10914       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10915         return std::make_pair(0U, &RISCV::FPR64RegClass);
10916       break;
10917     default:
10918       break;
10919     }
10920   } else if (Constraint == "vr") {
10921     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10922                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10923       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10924         return std::make_pair(0U, RC);
10925     }
10926   } else if (Constraint == "vm") {
10927     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10928       return std::make_pair(0U, &RISCV::VMV0RegClass);
10929   }
10930 
10931   // Clang will correctly decode the usage of register name aliases into their
10932   // official names. However, other frontends like `rustc` do not. This allows
10933   // users of these frontends to use the ABI names for registers in LLVM-style
10934   // register constraints.
10935   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10936                                .Case("{zero}", RISCV::X0)
10937                                .Case("{ra}", RISCV::X1)
10938                                .Case("{sp}", RISCV::X2)
10939                                .Case("{gp}", RISCV::X3)
10940                                .Case("{tp}", RISCV::X4)
10941                                .Case("{t0}", RISCV::X5)
10942                                .Case("{t1}", RISCV::X6)
10943                                .Case("{t2}", RISCV::X7)
10944                                .Cases("{s0}", "{fp}", RISCV::X8)
10945                                .Case("{s1}", RISCV::X9)
10946                                .Case("{a0}", RISCV::X10)
10947                                .Case("{a1}", RISCV::X11)
10948                                .Case("{a2}", RISCV::X12)
10949                                .Case("{a3}", RISCV::X13)
10950                                .Case("{a4}", RISCV::X14)
10951                                .Case("{a5}", RISCV::X15)
10952                                .Case("{a6}", RISCV::X16)
10953                                .Case("{a7}", RISCV::X17)
10954                                .Case("{s2}", RISCV::X18)
10955                                .Case("{s3}", RISCV::X19)
10956                                .Case("{s4}", RISCV::X20)
10957                                .Case("{s5}", RISCV::X21)
10958                                .Case("{s6}", RISCV::X22)
10959                                .Case("{s7}", RISCV::X23)
10960                                .Case("{s8}", RISCV::X24)
10961                                .Case("{s9}", RISCV::X25)
10962                                .Case("{s10}", RISCV::X26)
10963                                .Case("{s11}", RISCV::X27)
10964                                .Case("{t3}", RISCV::X28)
10965                                .Case("{t4}", RISCV::X29)
10966                                .Case("{t5}", RISCV::X30)
10967                                .Case("{t6}", RISCV::X31)
10968                                .Default(RISCV::NoRegister);
10969   if (XRegFromAlias != RISCV::NoRegister)
10970     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10971 
10972   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10973   // TableGen record rather than the AsmName to choose registers for InlineAsm
10974   // constraints, plus we want to match those names to the widest floating point
10975   // register type available, manually select floating point registers here.
10976   //
10977   // The second case is the ABI name of the register, so that frontends can also
10978   // use the ABI names in register constraint lists.
10979   if (Subtarget.hasStdExtF()) {
10980     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10981                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10982                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10983                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10984                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10985                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10986                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10987                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10988                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10989                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10990                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10991                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10992                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10993                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10994                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10995                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10996                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10997                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10998                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10999                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11000                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11001                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11002                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11003                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11004                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11005                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11006                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11007                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11008                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11009                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11010                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11011                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11012                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11013                         .Default(RISCV::NoRegister);
11014     if (FReg != RISCV::NoRegister) {
11015       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11016       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11017         unsigned RegNo = FReg - RISCV::F0_F;
11018         unsigned DReg = RISCV::F0_D + RegNo;
11019         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11020       }
11021       if (VT == MVT::f32 || VT == MVT::Other)
11022         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11023       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11024         unsigned RegNo = FReg - RISCV::F0_F;
11025         unsigned HReg = RISCV::F0_H + RegNo;
11026         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11027       }
11028     }
11029   }
11030 
11031   if (Subtarget.hasVInstructions()) {
11032     Register VReg = StringSwitch<Register>(Constraint.lower())
11033                         .Case("{v0}", RISCV::V0)
11034                         .Case("{v1}", RISCV::V1)
11035                         .Case("{v2}", RISCV::V2)
11036                         .Case("{v3}", RISCV::V3)
11037                         .Case("{v4}", RISCV::V4)
11038                         .Case("{v5}", RISCV::V5)
11039                         .Case("{v6}", RISCV::V6)
11040                         .Case("{v7}", RISCV::V7)
11041                         .Case("{v8}", RISCV::V8)
11042                         .Case("{v9}", RISCV::V9)
11043                         .Case("{v10}", RISCV::V10)
11044                         .Case("{v11}", RISCV::V11)
11045                         .Case("{v12}", RISCV::V12)
11046                         .Case("{v13}", RISCV::V13)
11047                         .Case("{v14}", RISCV::V14)
11048                         .Case("{v15}", RISCV::V15)
11049                         .Case("{v16}", RISCV::V16)
11050                         .Case("{v17}", RISCV::V17)
11051                         .Case("{v18}", RISCV::V18)
11052                         .Case("{v19}", RISCV::V19)
11053                         .Case("{v20}", RISCV::V20)
11054                         .Case("{v21}", RISCV::V21)
11055                         .Case("{v22}", RISCV::V22)
11056                         .Case("{v23}", RISCV::V23)
11057                         .Case("{v24}", RISCV::V24)
11058                         .Case("{v25}", RISCV::V25)
11059                         .Case("{v26}", RISCV::V26)
11060                         .Case("{v27}", RISCV::V27)
11061                         .Case("{v28}", RISCV::V28)
11062                         .Case("{v29}", RISCV::V29)
11063                         .Case("{v30}", RISCV::V30)
11064                         .Case("{v31}", RISCV::V31)
11065                         .Default(RISCV::NoRegister);
11066     if (VReg != RISCV::NoRegister) {
11067       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11068         return std::make_pair(VReg, &RISCV::VMRegClass);
11069       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11070         return std::make_pair(VReg, &RISCV::VRRegClass);
11071       for (const auto *RC :
11072            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11073         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11074           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11075           return std::make_pair(VReg, RC);
11076         }
11077       }
11078     }
11079   }
11080 
11081   std::pair<Register, const TargetRegisterClass *> Res =
11082       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11083 
11084   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11085   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11086   // Subtarget into account.
11087   if (Res.second == &RISCV::GPRF16RegClass ||
11088       Res.second == &RISCV::GPRF32RegClass ||
11089       Res.second == &RISCV::GPRF64RegClass)
11090     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11091 
11092   return Res;
11093 }
11094 
11095 unsigned
11096 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11097   // Currently only support length 1 constraints.
11098   if (ConstraintCode.size() == 1) {
11099     switch (ConstraintCode[0]) {
11100     case 'A':
11101       return InlineAsm::Constraint_A;
11102     default:
11103       break;
11104     }
11105   }
11106 
11107   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11108 }
11109 
11110 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11111     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11112     SelectionDAG &DAG) const {
11113   // Currently only support length 1 constraints.
11114   if (Constraint.length() == 1) {
11115     switch (Constraint[0]) {
11116     case 'I':
11117       // Validate & create a 12-bit signed immediate operand.
11118       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11119         uint64_t CVal = C->getSExtValue();
11120         if (isInt<12>(CVal))
11121           Ops.push_back(
11122               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11123       }
11124       return;
11125     case 'J':
11126       // Validate & create an integer zero operand.
11127       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11128         if (C->getZExtValue() == 0)
11129           Ops.push_back(
11130               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11131       return;
11132     case 'K':
11133       // Validate & create a 5-bit unsigned immediate operand.
11134       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11135         uint64_t CVal = C->getZExtValue();
11136         if (isUInt<5>(CVal))
11137           Ops.push_back(
11138               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11139       }
11140       return;
11141     case 'S':
11142       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11143         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11144                                                  GA->getValueType(0)));
11145       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11146         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11147                                                 BA->getValueType(0)));
11148       }
11149       return;
11150     default:
11151       break;
11152     }
11153   }
11154   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11155 }
11156 
11157 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11158                                                    Instruction *Inst,
11159                                                    AtomicOrdering Ord) const {
11160   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11161     return Builder.CreateFence(Ord);
11162   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11163     return Builder.CreateFence(AtomicOrdering::Release);
11164   return nullptr;
11165 }
11166 
11167 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11168                                                     Instruction *Inst,
11169                                                     AtomicOrdering Ord) const {
11170   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11171     return Builder.CreateFence(AtomicOrdering::Acquire);
11172   return nullptr;
11173 }
11174 
11175 TargetLowering::AtomicExpansionKind
11176 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11177   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11178   // point operations can't be used in an lr/sc sequence without breaking the
11179   // forward-progress guarantee.
11180   if (AI->isFloatingPointOperation())
11181     return AtomicExpansionKind::CmpXChg;
11182 
11183   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11184   if (Size == 8 || Size == 16)
11185     return AtomicExpansionKind::MaskedIntrinsic;
11186   return AtomicExpansionKind::None;
11187 }
11188 
11189 static Intrinsic::ID
11190 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11191   if (XLen == 32) {
11192     switch (BinOp) {
11193     default:
11194       llvm_unreachable("Unexpected AtomicRMW BinOp");
11195     case AtomicRMWInst::Xchg:
11196       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11197     case AtomicRMWInst::Add:
11198       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11199     case AtomicRMWInst::Sub:
11200       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11201     case AtomicRMWInst::Nand:
11202       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11203     case AtomicRMWInst::Max:
11204       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11205     case AtomicRMWInst::Min:
11206       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11207     case AtomicRMWInst::UMax:
11208       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11209     case AtomicRMWInst::UMin:
11210       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11211     }
11212   }
11213 
11214   if (XLen == 64) {
11215     switch (BinOp) {
11216     default:
11217       llvm_unreachable("Unexpected AtomicRMW BinOp");
11218     case AtomicRMWInst::Xchg:
11219       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11220     case AtomicRMWInst::Add:
11221       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11222     case AtomicRMWInst::Sub:
11223       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11224     case AtomicRMWInst::Nand:
11225       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11226     case AtomicRMWInst::Max:
11227       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11228     case AtomicRMWInst::Min:
11229       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11230     case AtomicRMWInst::UMax:
11231       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11232     case AtomicRMWInst::UMin:
11233       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11234     }
11235   }
11236 
11237   llvm_unreachable("Unexpected XLen\n");
11238 }
11239 
11240 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11241     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11242     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11243   unsigned XLen = Subtarget.getXLen();
11244   Value *Ordering =
11245       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11246   Type *Tys[] = {AlignedAddr->getType()};
11247   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11248       AI->getModule(),
11249       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11250 
11251   if (XLen == 64) {
11252     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11253     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11254     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11255   }
11256 
11257   Value *Result;
11258 
11259   // Must pass the shift amount needed to sign extend the loaded value prior
11260   // to performing a signed comparison for min/max. ShiftAmt is the number of
11261   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11262   // is the number of bits to left+right shift the value in order to
11263   // sign-extend.
11264   if (AI->getOperation() == AtomicRMWInst::Min ||
11265       AI->getOperation() == AtomicRMWInst::Max) {
11266     const DataLayout &DL = AI->getModule()->getDataLayout();
11267     unsigned ValWidth =
11268         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11269     Value *SextShamt =
11270         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11271     Result = Builder.CreateCall(LrwOpScwLoop,
11272                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11273   } else {
11274     Result =
11275         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11276   }
11277 
11278   if (XLen == 64)
11279     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11280   return Result;
11281 }
11282 
11283 TargetLowering::AtomicExpansionKind
11284 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11285     AtomicCmpXchgInst *CI) const {
11286   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11287   if (Size == 8 || Size == 16)
11288     return AtomicExpansionKind::MaskedIntrinsic;
11289   return AtomicExpansionKind::None;
11290 }
11291 
11292 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11293     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11294     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11295   unsigned XLen = Subtarget.getXLen();
11296   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11297   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11298   if (XLen == 64) {
11299     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11300     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11301     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11302     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11303   }
11304   Type *Tys[] = {AlignedAddr->getType()};
11305   Function *MaskedCmpXchg =
11306       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11307   Value *Result = Builder.CreateCall(
11308       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11309   if (XLen == 64)
11310     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11311   return Result;
11312 }
11313 
11314 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11315   return false;
11316 }
11317 
11318 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11319                                                EVT VT) const {
11320   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11321     return false;
11322 
11323   switch (FPVT.getSimpleVT().SimpleTy) {
11324   case MVT::f16:
11325     return Subtarget.hasStdExtZfh();
11326   case MVT::f32:
11327     return Subtarget.hasStdExtF();
11328   case MVT::f64:
11329     return Subtarget.hasStdExtD();
11330   default:
11331     return false;
11332   }
11333 }
11334 
11335 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11336   // If we are using the small code model, we can reduce size of jump table
11337   // entry to 4 bytes.
11338   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11339       getTargetMachine().getCodeModel() == CodeModel::Small) {
11340     return MachineJumpTableInfo::EK_Custom32;
11341   }
11342   return TargetLowering::getJumpTableEncoding();
11343 }
11344 
11345 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11346     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11347     unsigned uid, MCContext &Ctx) const {
11348   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11349          getTargetMachine().getCodeModel() == CodeModel::Small);
11350   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11351 }
11352 
11353 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11354                                                      EVT VT) const {
11355   VT = VT.getScalarType();
11356 
11357   if (!VT.isSimple())
11358     return false;
11359 
11360   switch (VT.getSimpleVT().SimpleTy) {
11361   case MVT::f16:
11362     return Subtarget.hasStdExtZfh();
11363   case MVT::f32:
11364     return Subtarget.hasStdExtF();
11365   case MVT::f64:
11366     return Subtarget.hasStdExtD();
11367   default:
11368     break;
11369   }
11370 
11371   return false;
11372 }
11373 
11374 Register RISCVTargetLowering::getExceptionPointerRegister(
11375     const Constant *PersonalityFn) const {
11376   return RISCV::X10;
11377 }
11378 
11379 Register RISCVTargetLowering::getExceptionSelectorRegister(
11380     const Constant *PersonalityFn) const {
11381   return RISCV::X11;
11382 }
11383 
11384 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11385   // Return false to suppress the unnecessary extensions if the LibCall
11386   // arguments or return value is f32 type for LP64 ABI.
11387   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11388   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11389     return false;
11390 
11391   return true;
11392 }
11393 
11394 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11395   if (Subtarget.is64Bit() && Type == MVT::i32)
11396     return true;
11397 
11398   return IsSigned;
11399 }
11400 
11401 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11402                                                  SDValue C) const {
11403   // Check integral scalar types.
11404   if (VT.isScalarInteger()) {
11405     // Omit the optimization if the sub target has the M extension and the data
11406     // size exceeds XLen.
11407     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11408       return false;
11409     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11410       // Break the MUL to a SLLI and an ADD/SUB.
11411       const APInt &Imm = ConstNode->getAPIntValue();
11412       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11413           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11414         return true;
11415       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11416       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11417           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11418            (Imm - 8).isPowerOf2()))
11419         return true;
11420       // Omit the following optimization if the sub target has the M extension
11421       // and the data size >= XLen.
11422       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11423         return false;
11424       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11425       // a pair of LUI/ADDI.
11426       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11427         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11428         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11429             (1 - ImmS).isPowerOf2())
11430         return true;
11431       }
11432     }
11433   }
11434 
11435   return false;
11436 }
11437 
11438 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11439                                                       SDValue ConstNode) const {
11440   // Let the DAGCombiner decide for vectors.
11441   EVT VT = AddNode.getValueType();
11442   if (VT.isVector())
11443     return true;
11444 
11445   // Let the DAGCombiner decide for larger types.
11446   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11447     return true;
11448 
11449   // It is worse if c1 is simm12 while c1*c2 is not.
11450   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11451   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11452   const APInt &C1 = C1Node->getAPIntValue();
11453   const APInt &C2 = C2Node->getAPIntValue();
11454   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11455     return false;
11456 
11457   // Default to true and let the DAGCombiner decide.
11458   return true;
11459 }
11460 
11461 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11462     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11463     bool *Fast) const {
11464   if (!VT.isVector())
11465     return false;
11466 
11467   EVT ElemVT = VT.getVectorElementType();
11468   if (Alignment >= ElemVT.getStoreSize()) {
11469     if (Fast)
11470       *Fast = true;
11471     return true;
11472   }
11473 
11474   return false;
11475 }
11476 
11477 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11478     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11479     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11480   bool IsABIRegCopy = CC.hasValue();
11481   EVT ValueVT = Val.getValueType();
11482   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11483     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11484     // and cast to f32.
11485     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11486     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11487     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11488                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11489     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11490     Parts[0] = Val;
11491     return true;
11492   }
11493 
11494   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11495     LLVMContext &Context = *DAG.getContext();
11496     EVT ValueEltVT = ValueVT.getVectorElementType();
11497     EVT PartEltVT = PartVT.getVectorElementType();
11498     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11499     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11500     if (PartVTBitSize % ValueVTBitSize == 0) {
11501       assert(PartVTBitSize >= ValueVTBitSize);
11502       // If the element types are different, bitcast to the same element type of
11503       // PartVT first.
11504       // Give an example here, we want copy a <vscale x 1 x i8> value to
11505       // <vscale x 4 x i16>.
11506       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11507       // subvector, then we can bitcast to <vscale x 4 x i16>.
11508       if (ValueEltVT != PartEltVT) {
11509         if (PartVTBitSize > ValueVTBitSize) {
11510           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11511           assert(Count != 0 && "The number of element should not be zero.");
11512           EVT SameEltTypeVT =
11513               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11514           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11515                             DAG.getUNDEF(SameEltTypeVT), Val,
11516                             DAG.getVectorIdxConstant(0, DL));
11517         }
11518         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11519       } else {
11520         Val =
11521             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11522                         Val, DAG.getVectorIdxConstant(0, DL));
11523       }
11524       Parts[0] = Val;
11525       return true;
11526     }
11527   }
11528   return false;
11529 }
11530 
11531 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11532     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11533     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11534   bool IsABIRegCopy = CC.hasValue();
11535   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11536     SDValue Val = Parts[0];
11537 
11538     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11539     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11540     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11541     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11542     return Val;
11543   }
11544 
11545   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11546     LLVMContext &Context = *DAG.getContext();
11547     SDValue Val = Parts[0];
11548     EVT ValueEltVT = ValueVT.getVectorElementType();
11549     EVT PartEltVT = PartVT.getVectorElementType();
11550     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11551     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11552     if (PartVTBitSize % ValueVTBitSize == 0) {
11553       assert(PartVTBitSize >= ValueVTBitSize);
11554       EVT SameEltTypeVT = ValueVT;
11555       // If the element types are different, convert it to the same element type
11556       // of PartVT.
11557       // Give an example here, we want copy a <vscale x 1 x i8> value from
11558       // <vscale x 4 x i16>.
11559       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11560       // then we can extract <vscale x 1 x i8>.
11561       if (ValueEltVT != PartEltVT) {
11562         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11563         assert(Count != 0 && "The number of element should not be zero.");
11564         SameEltTypeVT =
11565             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11566         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11567       }
11568       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11569                         DAG.getVectorIdxConstant(0, DL));
11570       return Val;
11571     }
11572   }
11573   return SDValue();
11574 }
11575 
11576 SDValue
11577 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11578                                    SelectionDAG &DAG,
11579                                    SmallVectorImpl<SDNode *> &Created) const {
11580   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11581   if (isIntDivCheap(N->getValueType(0), Attr))
11582     return SDValue(N, 0); // Lower SDIV as SDIV
11583 
11584   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11585          "Unexpected divisor!");
11586 
11587   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11588   if (!Subtarget.hasStdExtZbt())
11589     return SDValue();
11590 
11591   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11592   // Besides, more critical path instructions will be generated when dividing
11593   // by 2. So we keep using the original DAGs for these cases.
11594   unsigned Lg2 = Divisor.countTrailingZeros();
11595   if (Lg2 == 1 || Lg2 >= 12)
11596     return SDValue();
11597 
11598   // fold (sdiv X, pow2)
11599   EVT VT = N->getValueType(0);
11600   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11601     return SDValue();
11602 
11603   SDLoc DL(N);
11604   SDValue N0 = N->getOperand(0);
11605   SDValue Zero = DAG.getConstant(0, DL, VT);
11606   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11607 
11608   // Add (N0 < 0) ? Pow2 - 1 : 0;
11609   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11610   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11611   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11612 
11613   Created.push_back(Cmp.getNode());
11614   Created.push_back(Add.getNode());
11615   Created.push_back(Sel.getNode());
11616 
11617   // Divide by pow2.
11618   SDValue SRA =
11619       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11620 
11621   // If we're dividing by a positive value, we're done.  Otherwise, we must
11622   // negate the result.
11623   if (Divisor.isNonNegative())
11624     return SRA;
11625 
11626   Created.push_back(SRA.getNode());
11627   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11628 }
11629 
11630 #define GET_REGISTER_MATCHER
11631 #include "RISCVGenAsmMatcher.inc"
11632 
11633 Register
11634 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11635                                        const MachineFunction &MF) const {
11636   Register Reg = MatchRegisterAltName(RegName);
11637   if (Reg == RISCV::NoRegister)
11638     Reg = MatchRegisterName(RegName);
11639   if (Reg == RISCV::NoRegister)
11640     report_fatal_error(
11641         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11642   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11643   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11644     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11645                              StringRef(RegName) + "\"."));
11646   return Reg;
11647 }
11648 
11649 namespace llvm {
11650 namespace RISCVVIntrinsicsTable {
11651 
11652 #define GET_RISCVVIntrinsicsTable_IMPL
11653 #include "RISCVGenSearchableTables.inc"
11654 
11655 } // namespace RISCVVIntrinsicsTable
11656 
11657 } // namespace llvm
11658