1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 498 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 499 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT}; 500 501 if (!Subtarget.is64Bit()) { 502 // We must custom-lower certain vXi64 operations on RV32 due to the vector 503 // element type being illegal. 504 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 506 507 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 508 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 515 516 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 517 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 524 } 525 526 for (MVT VT : BoolVecVTs) { 527 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 528 529 // Mask VTs are custom-expanded into a series of standard nodes 530 setOperationAction(ISD::TRUNCATE, VT, Custom); 531 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 532 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 533 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 534 535 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 537 538 setOperationAction(ISD::SELECT, VT, Custom); 539 setOperationAction(ISD::SELECT_CC, VT, Expand); 540 setOperationAction(ISD::VSELECT, VT, Expand); 541 setOperationAction(ISD::VP_MERGE, VT, Expand); 542 setOperationAction(ISD::VP_SELECT, VT, Expand); 543 544 setOperationAction(ISD::VP_AND, VT, Custom); 545 setOperationAction(ISD::VP_OR, VT, Custom); 546 setOperationAction(ISD::VP_XOR, VT, Custom); 547 548 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 551 552 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 553 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 554 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 555 556 // RVV has native int->float & float->int conversions where the 557 // element type sizes are within one power-of-two of each other. Any 558 // wider distances between type sizes have to be lowered as sequences 559 // which progressively narrow the gap in stages. 560 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 561 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 562 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 563 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 564 565 // Expand all extending loads to types larger than this, and truncating 566 // stores from types larger than this. 567 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 568 setTruncStoreAction(OtherVT, VT, Expand); 569 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 570 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 571 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 572 } 573 } 574 575 for (MVT VT : IntVecVTs) { 576 if (VT.getVectorElementType() == MVT::i64 && 577 !Subtarget.hasVInstructionsI64()) 578 continue; 579 580 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 581 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 582 583 // Vectors implement MULHS/MULHU. 584 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 585 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 586 587 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 588 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 589 setOperationAction(ISD::MULHU, VT, Expand); 590 setOperationAction(ISD::MULHS, VT, Expand); 591 } 592 593 setOperationAction(ISD::SMIN, VT, Legal); 594 setOperationAction(ISD::SMAX, VT, Legal); 595 setOperationAction(ISD::UMIN, VT, Legal); 596 setOperationAction(ISD::UMAX, VT, Legal); 597 598 setOperationAction(ISD::ROTL, VT, Expand); 599 setOperationAction(ISD::ROTR, VT, Expand); 600 601 setOperationAction(ISD::CTTZ, VT, Expand); 602 setOperationAction(ISD::CTLZ, VT, Expand); 603 setOperationAction(ISD::CTPOP, VT, Expand); 604 605 setOperationAction(ISD::BSWAP, VT, Expand); 606 607 // Custom-lower extensions and truncations from/to mask types. 608 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 609 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 610 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 611 612 // RVV has native int->float & float->int conversions where the 613 // element type sizes are within one power-of-two of each other. Any 614 // wider distances between type sizes have to be lowered as sequences 615 // which progressively narrow the gap in stages. 616 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 617 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 618 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 619 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 620 621 setOperationAction(ISD::SADDSAT, VT, Legal); 622 setOperationAction(ISD::UADDSAT, VT, Legal); 623 setOperationAction(ISD::SSUBSAT, VT, Legal); 624 setOperationAction(ISD::USUBSAT, VT, Legal); 625 626 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 627 // nodes which truncate by one power of two at a time. 628 setOperationAction(ISD::TRUNCATE, VT, Custom); 629 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 634 // Custom-lower reduction operations to set up the corresponding custom 635 // nodes' operands. 636 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 637 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 638 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 639 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 640 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 644 645 for (unsigned VPOpc : IntegerVPOps) 646 setOperationAction(VPOpc, VT, Custom); 647 648 setOperationAction(ISD::LOAD, VT, Custom); 649 setOperationAction(ISD::STORE, VT, Custom); 650 651 setOperationAction(ISD::MLOAD, VT, Custom); 652 setOperationAction(ISD::MSTORE, VT, Custom); 653 setOperationAction(ISD::MGATHER, VT, Custom); 654 setOperationAction(ISD::MSCATTER, VT, Custom); 655 656 setOperationAction(ISD::VP_LOAD, VT, Custom); 657 setOperationAction(ISD::VP_STORE, VT, Custom); 658 setOperationAction(ISD::VP_GATHER, VT, Custom); 659 setOperationAction(ISD::VP_SCATTER, VT, Custom); 660 661 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 662 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 663 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 664 665 setOperationAction(ISD::SELECT, VT, Custom); 666 setOperationAction(ISD::SELECT_CC, VT, Expand); 667 668 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 669 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 670 671 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 672 setTruncStoreAction(VT, OtherVT, Expand); 673 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 674 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 675 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 676 } 677 678 // Splice 679 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 680 681 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 682 // type that can represent the value exactly. 683 if (VT.getVectorElementType() != MVT::i64) { 684 MVT FloatEltVT = 685 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 686 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 687 if (isTypeLegal(FloatVT)) { 688 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 689 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 690 } 691 } 692 } 693 694 // Expand various CCs to best match the RVV ISA, which natively supports UNE 695 // but no other unordered comparisons, and supports all ordered comparisons 696 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 697 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 698 // and we pattern-match those back to the "original", swapping operands once 699 // more. This way we catch both operations and both "vf" and "fv" forms with 700 // fewer patterns. 701 static const ISD::CondCode VFPCCToExpand[] = { 702 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 703 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 704 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 705 }; 706 707 // Sets common operation actions on RVV floating-point vector types. 708 const auto SetCommonVFPActions = [&](MVT VT) { 709 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 710 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 711 // sizes are within one power-of-two of each other. Therefore conversions 712 // between vXf16 and vXf64 must be lowered as sequences which convert via 713 // vXf32. 714 setOperationAction(ISD::FP_ROUND, VT, Custom); 715 setOperationAction(ISD::FP_EXTEND, VT, Custom); 716 // Custom-lower insert/extract operations to simplify patterns. 717 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 718 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 719 // Expand various condition codes (explained above). 720 for (auto CC : VFPCCToExpand) 721 setCondCodeAction(CC, VT, Expand); 722 723 setOperationAction(ISD::FMINNUM, VT, Legal); 724 setOperationAction(ISD::FMAXNUM, VT, Legal); 725 726 setOperationAction(ISD::FTRUNC, VT, Custom); 727 setOperationAction(ISD::FCEIL, VT, Custom); 728 setOperationAction(ISD::FFLOOR, VT, Custom); 729 setOperationAction(ISD::FROUND, VT, Custom); 730 731 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 732 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 733 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 734 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 735 736 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 737 738 setOperationAction(ISD::LOAD, VT, Custom); 739 setOperationAction(ISD::STORE, VT, Custom); 740 741 setOperationAction(ISD::MLOAD, VT, Custom); 742 setOperationAction(ISD::MSTORE, VT, Custom); 743 setOperationAction(ISD::MGATHER, VT, Custom); 744 setOperationAction(ISD::MSCATTER, VT, Custom); 745 746 setOperationAction(ISD::VP_LOAD, VT, Custom); 747 setOperationAction(ISD::VP_STORE, VT, Custom); 748 setOperationAction(ISD::VP_GATHER, VT, Custom); 749 setOperationAction(ISD::VP_SCATTER, VT, Custom); 750 751 setOperationAction(ISD::SELECT, VT, Custom); 752 setOperationAction(ISD::SELECT_CC, VT, Expand); 753 754 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 755 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 756 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 757 758 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 759 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 760 761 for (unsigned VPOpc : FloatingPointVPOps) 762 setOperationAction(VPOpc, VT, Custom); 763 }; 764 765 // Sets common extload/truncstore actions on RVV floating-point vector 766 // types. 767 const auto SetCommonVFPExtLoadTruncStoreActions = 768 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 769 for (auto SmallVT : SmallerVTs) { 770 setTruncStoreAction(VT, SmallVT, Expand); 771 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 772 } 773 }; 774 775 if (Subtarget.hasVInstructionsF16()) 776 for (MVT VT : F16VecVTs) 777 SetCommonVFPActions(VT); 778 779 for (MVT VT : F32VecVTs) { 780 if (Subtarget.hasVInstructionsF32()) 781 SetCommonVFPActions(VT); 782 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 783 } 784 785 for (MVT VT : F64VecVTs) { 786 if (Subtarget.hasVInstructionsF64()) 787 SetCommonVFPActions(VT); 788 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 789 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 790 } 791 792 if (Subtarget.useRVVForFixedLengthVectors()) { 793 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 794 if (!useRVVForFixedLengthVectorVT(VT)) 795 continue; 796 797 // By default everything must be expanded. 798 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 799 setOperationAction(Op, VT, Expand); 800 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 801 setTruncStoreAction(VT, OtherVT, Expand); 802 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 803 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 804 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 805 } 806 807 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 808 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 809 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 810 811 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 812 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 813 814 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 816 817 setOperationAction(ISD::LOAD, VT, Custom); 818 setOperationAction(ISD::STORE, VT, Custom); 819 820 setOperationAction(ISD::SETCC, VT, Custom); 821 822 setOperationAction(ISD::SELECT, VT, Custom); 823 824 setOperationAction(ISD::TRUNCATE, VT, Custom); 825 826 setOperationAction(ISD::BITCAST, VT, Custom); 827 828 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 829 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 831 832 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 833 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 834 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 835 836 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 837 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 838 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 839 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 840 841 // Operations below are different for between masks and other vectors. 842 if (VT.getVectorElementType() == MVT::i1) { 843 setOperationAction(ISD::VP_AND, VT, Custom); 844 setOperationAction(ISD::VP_OR, VT, Custom); 845 setOperationAction(ISD::VP_XOR, VT, Custom); 846 setOperationAction(ISD::AND, VT, Custom); 847 setOperationAction(ISD::OR, VT, Custom); 848 setOperationAction(ISD::XOR, VT, Custom); 849 continue; 850 } 851 852 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 853 // it before type legalization for i64 vectors on RV32. It will then be 854 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 855 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 856 // improvements first. 857 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 858 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 859 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 860 } 861 862 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 863 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 864 865 setOperationAction(ISD::MLOAD, VT, Custom); 866 setOperationAction(ISD::MSTORE, VT, Custom); 867 setOperationAction(ISD::MGATHER, VT, Custom); 868 setOperationAction(ISD::MSCATTER, VT, Custom); 869 870 setOperationAction(ISD::VP_LOAD, VT, Custom); 871 setOperationAction(ISD::VP_STORE, VT, Custom); 872 setOperationAction(ISD::VP_GATHER, VT, Custom); 873 setOperationAction(ISD::VP_SCATTER, VT, Custom); 874 875 setOperationAction(ISD::ADD, VT, Custom); 876 setOperationAction(ISD::MUL, VT, Custom); 877 setOperationAction(ISD::SUB, VT, Custom); 878 setOperationAction(ISD::AND, VT, Custom); 879 setOperationAction(ISD::OR, VT, Custom); 880 setOperationAction(ISD::XOR, VT, Custom); 881 setOperationAction(ISD::SDIV, VT, Custom); 882 setOperationAction(ISD::SREM, VT, Custom); 883 setOperationAction(ISD::UDIV, VT, Custom); 884 setOperationAction(ISD::UREM, VT, Custom); 885 setOperationAction(ISD::SHL, VT, Custom); 886 setOperationAction(ISD::SRA, VT, Custom); 887 setOperationAction(ISD::SRL, VT, Custom); 888 889 setOperationAction(ISD::SMIN, VT, Custom); 890 setOperationAction(ISD::SMAX, VT, Custom); 891 setOperationAction(ISD::UMIN, VT, Custom); 892 setOperationAction(ISD::UMAX, VT, Custom); 893 setOperationAction(ISD::ABS, VT, Custom); 894 895 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 896 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 897 setOperationAction(ISD::MULHS, VT, Custom); 898 setOperationAction(ISD::MULHU, VT, Custom); 899 } 900 901 setOperationAction(ISD::SADDSAT, VT, Custom); 902 setOperationAction(ISD::UADDSAT, VT, Custom); 903 setOperationAction(ISD::SSUBSAT, VT, Custom); 904 setOperationAction(ISD::USUBSAT, VT, Custom); 905 906 setOperationAction(ISD::VSELECT, VT, Custom); 907 setOperationAction(ISD::SELECT_CC, VT, Expand); 908 909 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 910 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 911 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 912 913 // Custom-lower reduction operations to set up the corresponding custom 914 // nodes' operands. 915 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 916 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 917 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 918 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 919 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 920 921 for (unsigned VPOpc : IntegerVPOps) 922 setOperationAction(VPOpc, VT, Custom); 923 924 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 925 // type that can represent the value exactly. 926 if (VT.getVectorElementType() != MVT::i64) { 927 MVT FloatEltVT = 928 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 929 EVT FloatVT = 930 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 931 if (isTypeLegal(FloatVT)) { 932 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 933 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 934 } 935 } 936 } 937 938 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 939 if (!useRVVForFixedLengthVectorVT(VT)) 940 continue; 941 942 // By default everything must be expanded. 943 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 944 setOperationAction(Op, VT, Expand); 945 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 946 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 947 setTruncStoreAction(VT, OtherVT, Expand); 948 } 949 950 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 951 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 952 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 953 954 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 955 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 956 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 957 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 959 960 setOperationAction(ISD::LOAD, VT, Custom); 961 setOperationAction(ISD::STORE, VT, Custom); 962 setOperationAction(ISD::MLOAD, VT, Custom); 963 setOperationAction(ISD::MSTORE, VT, Custom); 964 setOperationAction(ISD::MGATHER, VT, Custom); 965 setOperationAction(ISD::MSCATTER, VT, Custom); 966 967 setOperationAction(ISD::VP_LOAD, VT, Custom); 968 setOperationAction(ISD::VP_STORE, VT, Custom); 969 setOperationAction(ISD::VP_GATHER, VT, Custom); 970 setOperationAction(ISD::VP_SCATTER, VT, Custom); 971 972 setOperationAction(ISD::FADD, VT, Custom); 973 setOperationAction(ISD::FSUB, VT, Custom); 974 setOperationAction(ISD::FMUL, VT, Custom); 975 setOperationAction(ISD::FDIV, VT, Custom); 976 setOperationAction(ISD::FNEG, VT, Custom); 977 setOperationAction(ISD::FABS, VT, Custom); 978 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 979 setOperationAction(ISD::FSQRT, VT, Custom); 980 setOperationAction(ISD::FMA, VT, Custom); 981 setOperationAction(ISD::FMINNUM, VT, Custom); 982 setOperationAction(ISD::FMAXNUM, VT, Custom); 983 984 setOperationAction(ISD::FP_ROUND, VT, Custom); 985 setOperationAction(ISD::FP_EXTEND, VT, Custom); 986 987 setOperationAction(ISD::FTRUNC, VT, Custom); 988 setOperationAction(ISD::FCEIL, VT, Custom); 989 setOperationAction(ISD::FFLOOR, VT, Custom); 990 setOperationAction(ISD::FROUND, VT, Custom); 991 992 for (auto CC : VFPCCToExpand) 993 setCondCodeAction(CC, VT, Expand); 994 995 setOperationAction(ISD::VSELECT, VT, Custom); 996 setOperationAction(ISD::SELECT, VT, Custom); 997 setOperationAction(ISD::SELECT_CC, VT, Expand); 998 999 setOperationAction(ISD::BITCAST, VT, Custom); 1000 1001 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1002 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1003 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1004 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1005 1006 for (unsigned VPOpc : FloatingPointVPOps) 1007 setOperationAction(VPOpc, VT, Custom); 1008 } 1009 1010 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1011 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1012 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1013 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1014 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1015 if (Subtarget.hasStdExtZfh()) 1016 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1017 if (Subtarget.hasStdExtF()) 1018 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1019 if (Subtarget.hasStdExtD()) 1020 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1021 } 1022 } 1023 1024 // Function alignments. 1025 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1026 setMinFunctionAlignment(FunctionAlignment); 1027 setPrefFunctionAlignment(FunctionAlignment); 1028 1029 setMinimumJumpTableEntries(5); 1030 1031 // Jumps are expensive, compared to logic 1032 setJumpIsExpensive(); 1033 1034 setTargetDAGCombine(ISD::ADD); 1035 setTargetDAGCombine(ISD::SUB); 1036 setTargetDAGCombine(ISD::AND); 1037 setTargetDAGCombine(ISD::OR); 1038 setTargetDAGCombine(ISD::XOR); 1039 if (Subtarget.hasStdExtZbp()) { 1040 setTargetDAGCombine(ISD::ROTL); 1041 setTargetDAGCombine(ISD::ROTR); 1042 } 1043 if (Subtarget.hasStdExtZbkb()) 1044 setTargetDAGCombine(ISD::BITREVERSE); 1045 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1046 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1047 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1048 if (Subtarget.hasStdExtF()) { 1049 setTargetDAGCombine(ISD::ZERO_EXTEND); 1050 setTargetDAGCombine(ISD::FP_TO_SINT); 1051 setTargetDAGCombine(ISD::FP_TO_UINT); 1052 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1066 } 1067 1068 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1069 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1070 } 1071 1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1073 LLVMContext &Context, 1074 EVT VT) const { 1075 if (!VT.isVector()) 1076 return getPointerTy(DL); 1077 if (Subtarget.hasVInstructions() && 1078 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1079 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1080 return VT.changeVectorElementTypeToInteger(); 1081 } 1082 1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1084 return Subtarget.getXLenVT(); 1085 } 1086 1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1088 const CallInst &I, 1089 MachineFunction &MF, 1090 unsigned Intrinsic) const { 1091 auto &DL = I.getModule()->getDataLayout(); 1092 switch (Intrinsic) { 1093 default: 1094 return false; 1095 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1101 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1102 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1103 case Intrinsic::riscv_masked_cmpxchg_i32: 1104 Info.opc = ISD::INTRINSIC_W_CHAIN; 1105 Info.memVT = MVT::i32; 1106 Info.ptrVal = I.getArgOperand(0); 1107 Info.offset = 0; 1108 Info.align = Align(4); 1109 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1110 MachineMemOperand::MOVolatile; 1111 return true; 1112 case Intrinsic::riscv_masked_strided_load: 1113 Info.opc = ISD::INTRINSIC_W_CHAIN; 1114 Info.ptrVal = I.getArgOperand(1); 1115 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1116 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1117 Info.size = MemoryLocation::UnknownSize; 1118 Info.flags |= MachineMemOperand::MOLoad; 1119 return true; 1120 case Intrinsic::riscv_masked_strided_store: 1121 Info.opc = ISD::INTRINSIC_VOID; 1122 Info.ptrVal = I.getArgOperand(1); 1123 Info.memVT = 1124 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1125 Info.align = Align( 1126 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1127 8); 1128 Info.size = MemoryLocation::UnknownSize; 1129 Info.flags |= MachineMemOperand::MOStore; 1130 return true; 1131 case Intrinsic::riscv_seg2_load: 1132 case Intrinsic::riscv_seg3_load: 1133 case Intrinsic::riscv_seg4_load: 1134 case Intrinsic::riscv_seg5_load: 1135 case Intrinsic::riscv_seg6_load: 1136 case Intrinsic::riscv_seg7_load: 1137 case Intrinsic::riscv_seg8_load: 1138 Info.opc = ISD::INTRINSIC_W_CHAIN; 1139 Info.ptrVal = I.getArgOperand(0); 1140 Info.memVT = 1141 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1142 Info.align = 1143 Align(DL.getTypeSizeInBits( 1144 I.getType()->getStructElementType(0)->getScalarType()) / 1145 8); 1146 Info.size = MemoryLocation::UnknownSize; 1147 Info.flags |= MachineMemOperand::MOLoad; 1148 return true; 1149 } 1150 } 1151 1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1153 const AddrMode &AM, Type *Ty, 1154 unsigned AS, 1155 Instruction *I) const { 1156 // No global is ever allowed as a base. 1157 if (AM.BaseGV) 1158 return false; 1159 1160 // Require a 12-bit signed offset. 1161 if (!isInt<12>(AM.BaseOffs)) 1162 return false; 1163 1164 switch (AM.Scale) { 1165 case 0: // "r+i" or just "i", depending on HasBaseReg. 1166 break; 1167 case 1: 1168 if (!AM.HasBaseReg) // allow "r+i". 1169 break; 1170 return false; // disallow "r+r" or "r+r+i". 1171 default: 1172 return false; 1173 } 1174 1175 return true; 1176 } 1177 1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1179 return isInt<12>(Imm); 1180 } 1181 1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1183 return isInt<12>(Imm); 1184 } 1185 1186 // On RV32, 64-bit integers are split into their high and low parts and held 1187 // in two different registers, so the trunc is free since the low register can 1188 // just be used. 1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1190 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1191 return false; 1192 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1193 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1194 return (SrcBits == 64 && DestBits == 32); 1195 } 1196 1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1198 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1199 !SrcVT.isInteger() || !DstVT.isInteger()) 1200 return false; 1201 unsigned SrcBits = SrcVT.getSizeInBits(); 1202 unsigned DestBits = DstVT.getSizeInBits(); 1203 return (SrcBits == 64 && DestBits == 32); 1204 } 1205 1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1207 // Zexts are free if they can be combined with a load. 1208 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1209 // poorly with type legalization of compares preferring sext. 1210 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1211 EVT MemVT = LD->getMemoryVT(); 1212 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1213 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1214 LD->getExtensionType() == ISD::ZEXTLOAD)) 1215 return true; 1216 } 1217 1218 return TargetLowering::isZExtFree(Val, VT2); 1219 } 1220 1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1222 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1223 } 1224 1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1226 return Subtarget.hasStdExtZbb(); 1227 } 1228 1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1230 return Subtarget.hasStdExtZbb(); 1231 } 1232 1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1234 EVT VT = Y.getValueType(); 1235 1236 // FIXME: Support vectors once we have tests. 1237 if (VT.isVector()) 1238 return false; 1239 1240 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1241 Subtarget.hasStdExtZbkb()) && 1242 !isa<ConstantSDNode>(Y); 1243 } 1244 1245 /// Check if sinking \p I's operands to I's basic block is profitable, because 1246 /// the operands can be folded into a target instruction, e.g. 1247 /// splats of scalars can fold into vector instructions. 1248 bool RISCVTargetLowering::shouldSinkOperands( 1249 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1250 using namespace llvm::PatternMatch; 1251 1252 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1253 return false; 1254 1255 auto IsSinker = [&](Instruction *I, int Operand) { 1256 switch (I->getOpcode()) { 1257 case Instruction::Add: 1258 case Instruction::Sub: 1259 case Instruction::Mul: 1260 case Instruction::And: 1261 case Instruction::Or: 1262 case Instruction::Xor: 1263 case Instruction::FAdd: 1264 case Instruction::FSub: 1265 case Instruction::FMul: 1266 case Instruction::FDiv: 1267 case Instruction::ICmp: 1268 case Instruction::FCmp: 1269 return true; 1270 case Instruction::Shl: 1271 case Instruction::LShr: 1272 case Instruction::AShr: 1273 case Instruction::UDiv: 1274 case Instruction::SDiv: 1275 case Instruction::URem: 1276 case Instruction::SRem: 1277 return Operand == 1; 1278 case Instruction::Call: 1279 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1280 switch (II->getIntrinsicID()) { 1281 case Intrinsic::fma: 1282 case Intrinsic::vp_fma: 1283 return Operand == 0 || Operand == 1; 1284 // FIXME: Our patterns can only match vx/vf instructions when the splat 1285 // it on the RHS, because TableGen doesn't recognize our VP operations 1286 // as commutative. 1287 case Intrinsic::vp_add: 1288 case Intrinsic::vp_mul: 1289 case Intrinsic::vp_and: 1290 case Intrinsic::vp_or: 1291 case Intrinsic::vp_xor: 1292 case Intrinsic::vp_fadd: 1293 case Intrinsic::vp_fmul: 1294 case Intrinsic::vp_shl: 1295 case Intrinsic::vp_lshr: 1296 case Intrinsic::vp_ashr: 1297 case Intrinsic::vp_udiv: 1298 case Intrinsic::vp_sdiv: 1299 case Intrinsic::vp_urem: 1300 case Intrinsic::vp_srem: 1301 return Operand == 1; 1302 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1303 // explicit patterns for both LHS and RHS (as 'vr' versions). 1304 case Intrinsic::vp_sub: 1305 case Intrinsic::vp_fsub: 1306 case Intrinsic::vp_fdiv: 1307 return Operand == 0 || Operand == 1; 1308 default: 1309 return false; 1310 } 1311 } 1312 return false; 1313 default: 1314 return false; 1315 } 1316 }; 1317 1318 for (auto OpIdx : enumerate(I->operands())) { 1319 if (!IsSinker(I, OpIdx.index())) 1320 continue; 1321 1322 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1323 // Make sure we are not already sinking this operand 1324 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1325 continue; 1326 1327 // We are looking for a splat that can be sunk. 1328 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1329 m_Undef(), m_ZeroMask()))) 1330 continue; 1331 1332 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1333 // and vector registers 1334 for (Use &U : Op->uses()) { 1335 Instruction *Insn = cast<Instruction>(U.getUser()); 1336 if (!IsSinker(Insn, U.getOperandNo())) 1337 return false; 1338 } 1339 1340 Ops.push_back(&Op->getOperandUse(0)); 1341 Ops.push_back(&OpIdx.value()); 1342 } 1343 return true; 1344 } 1345 1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1347 bool ForCodeSize) const { 1348 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1349 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1350 return false; 1351 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1352 return false; 1353 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1354 return false; 1355 return Imm.isZero(); 1356 } 1357 1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1359 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1360 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1361 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1362 } 1363 1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1365 CallingConv::ID CC, 1366 EVT VT) const { 1367 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1368 // We might still end up using a GPR but that will be decided based on ABI. 1369 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1370 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1371 return MVT::f32; 1372 1373 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1374 } 1375 1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1377 CallingConv::ID CC, 1378 EVT VT) const { 1379 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1380 // We might still end up using a GPR but that will be decided based on ABI. 1381 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1382 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1383 return 1; 1384 1385 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1386 } 1387 1388 // Changes the condition code and swaps operands if necessary, so the SetCC 1389 // operation matches one of the comparisons supported directly by branches 1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1391 // with 1/-1. 1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1393 ISD::CondCode &CC, SelectionDAG &DAG) { 1394 // Convert X > -1 to X >= 0. 1395 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1396 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1397 CC = ISD::SETGE; 1398 return; 1399 } 1400 // Convert X < 1 to 0 >= X. 1401 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1402 RHS = LHS; 1403 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1404 CC = ISD::SETGE; 1405 return; 1406 } 1407 1408 switch (CC) { 1409 default: 1410 break; 1411 case ISD::SETGT: 1412 case ISD::SETLE: 1413 case ISD::SETUGT: 1414 case ISD::SETULE: 1415 CC = ISD::getSetCCSwappedOperands(CC); 1416 std::swap(LHS, RHS); 1417 break; 1418 } 1419 } 1420 1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1422 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1423 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1424 if (VT.getVectorElementType() == MVT::i1) 1425 KnownSize *= 8; 1426 1427 switch (KnownSize) { 1428 default: 1429 llvm_unreachable("Invalid LMUL."); 1430 case 8: 1431 return RISCVII::VLMUL::LMUL_F8; 1432 case 16: 1433 return RISCVII::VLMUL::LMUL_F4; 1434 case 32: 1435 return RISCVII::VLMUL::LMUL_F2; 1436 case 64: 1437 return RISCVII::VLMUL::LMUL_1; 1438 case 128: 1439 return RISCVII::VLMUL::LMUL_2; 1440 case 256: 1441 return RISCVII::VLMUL::LMUL_4; 1442 case 512: 1443 return RISCVII::VLMUL::LMUL_8; 1444 } 1445 } 1446 1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1448 switch (LMul) { 1449 default: 1450 llvm_unreachable("Invalid LMUL."); 1451 case RISCVII::VLMUL::LMUL_F8: 1452 case RISCVII::VLMUL::LMUL_F4: 1453 case RISCVII::VLMUL::LMUL_F2: 1454 case RISCVII::VLMUL::LMUL_1: 1455 return RISCV::VRRegClassID; 1456 case RISCVII::VLMUL::LMUL_2: 1457 return RISCV::VRM2RegClassID; 1458 case RISCVII::VLMUL::LMUL_4: 1459 return RISCV::VRM4RegClassID; 1460 case RISCVII::VLMUL::LMUL_8: 1461 return RISCV::VRM8RegClassID; 1462 } 1463 } 1464 1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1466 RISCVII::VLMUL LMUL = getLMUL(VT); 1467 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1468 LMUL == RISCVII::VLMUL::LMUL_F4 || 1469 LMUL == RISCVII::VLMUL::LMUL_F2 || 1470 LMUL == RISCVII::VLMUL::LMUL_1) { 1471 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1472 "Unexpected subreg numbering"); 1473 return RISCV::sub_vrm1_0 + Index; 1474 } 1475 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1476 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1477 "Unexpected subreg numbering"); 1478 return RISCV::sub_vrm2_0 + Index; 1479 } 1480 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1481 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1482 "Unexpected subreg numbering"); 1483 return RISCV::sub_vrm4_0 + Index; 1484 } 1485 llvm_unreachable("Invalid vector type."); 1486 } 1487 1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1489 if (VT.getVectorElementType() == MVT::i1) 1490 return RISCV::VRRegClassID; 1491 return getRegClassIDForLMUL(getLMUL(VT)); 1492 } 1493 1494 // Attempt to decompose a subvector insert/extract between VecVT and 1495 // SubVecVT via subregister indices. Returns the subregister index that 1496 // can perform the subvector insert/extract with the given element index, as 1497 // well as the index corresponding to any leftover subvectors that must be 1498 // further inserted/extracted within the register class for SubVecVT. 1499 std::pair<unsigned, unsigned> 1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1501 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1502 const RISCVRegisterInfo *TRI) { 1503 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1504 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1505 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1506 "Register classes not ordered"); 1507 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1508 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1509 // Try to compose a subregister index that takes us from the incoming 1510 // LMUL>1 register class down to the outgoing one. At each step we half 1511 // the LMUL: 1512 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1513 // Note that this is not guaranteed to find a subregister index, such as 1514 // when we are extracting from one VR type to another. 1515 unsigned SubRegIdx = RISCV::NoSubRegister; 1516 for (const unsigned RCID : 1517 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1518 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1519 VecVT = VecVT.getHalfNumVectorElementsVT(); 1520 bool IsHi = 1521 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1522 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1523 getSubregIndexByMVT(VecVT, IsHi)); 1524 if (IsHi) 1525 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1526 } 1527 return {SubRegIdx, InsertExtractIdx}; 1528 } 1529 1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1531 // stores for those types. 1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1533 return !Subtarget.useRVVForFixedLengthVectors() || 1534 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1535 } 1536 1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1538 if (ScalarTy->isPointerTy()) 1539 return true; 1540 1541 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1542 ScalarTy->isIntegerTy(32)) 1543 return true; 1544 1545 if (ScalarTy->isIntegerTy(64)) 1546 return Subtarget.hasVInstructionsI64(); 1547 1548 if (ScalarTy->isHalfTy()) 1549 return Subtarget.hasVInstructionsF16(); 1550 if (ScalarTy->isFloatTy()) 1551 return Subtarget.hasVInstructionsF32(); 1552 if (ScalarTy->isDoubleTy()) 1553 return Subtarget.hasVInstructionsF64(); 1554 1555 return false; 1556 } 1557 1558 static SDValue getVLOperand(SDValue Op) { 1559 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1560 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1561 "Unexpected opcode"); 1562 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1563 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1564 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1565 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1566 if (!II) 1567 return SDValue(); 1568 return Op.getOperand(II->VLOperand + 1 + HasChain); 1569 } 1570 1571 static bool useRVVForFixedLengthVectorVT(MVT VT, 1572 const RISCVSubtarget &Subtarget) { 1573 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1574 if (!Subtarget.useRVVForFixedLengthVectors()) 1575 return false; 1576 1577 // We only support a set of vector types with a consistent maximum fixed size 1578 // across all supported vector element types to avoid legalization issues. 1579 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1580 // fixed-length vector type we support is 1024 bytes. 1581 if (VT.getFixedSizeInBits() > 1024 * 8) 1582 return false; 1583 1584 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1585 1586 MVT EltVT = VT.getVectorElementType(); 1587 1588 // Don't use RVV for vectors we cannot scalarize if required. 1589 switch (EltVT.SimpleTy) { 1590 // i1 is supported but has different rules. 1591 default: 1592 return false; 1593 case MVT::i1: 1594 // Masks can only use a single register. 1595 if (VT.getVectorNumElements() > MinVLen) 1596 return false; 1597 MinVLen /= 8; 1598 break; 1599 case MVT::i8: 1600 case MVT::i16: 1601 case MVT::i32: 1602 break; 1603 case MVT::i64: 1604 if (!Subtarget.hasVInstructionsI64()) 1605 return false; 1606 break; 1607 case MVT::f16: 1608 if (!Subtarget.hasVInstructionsF16()) 1609 return false; 1610 break; 1611 case MVT::f32: 1612 if (!Subtarget.hasVInstructionsF32()) 1613 return false; 1614 break; 1615 case MVT::f64: 1616 if (!Subtarget.hasVInstructionsF64()) 1617 return false; 1618 break; 1619 } 1620 1621 // Reject elements larger than ELEN. 1622 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1623 return false; 1624 1625 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1626 // Don't use RVV for types that don't fit. 1627 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1628 return false; 1629 1630 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1631 // the base fixed length RVV support in place. 1632 if (!VT.isPow2VectorType()) 1633 return false; 1634 1635 return true; 1636 } 1637 1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1639 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1640 } 1641 1642 // Return the largest legal scalable vector type that matches VT's element type. 1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1644 const RISCVSubtarget &Subtarget) { 1645 // This may be called before legal types are setup. 1646 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1647 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1648 "Expected legal fixed length vector!"); 1649 1650 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1651 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1652 1653 MVT EltVT = VT.getVectorElementType(); 1654 switch (EltVT.SimpleTy) { 1655 default: 1656 llvm_unreachable("unexpected element type for RVV container"); 1657 case MVT::i1: 1658 case MVT::i8: 1659 case MVT::i16: 1660 case MVT::i32: 1661 case MVT::i64: 1662 case MVT::f16: 1663 case MVT::f32: 1664 case MVT::f64: { 1665 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1666 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1667 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1668 unsigned NumElts = 1669 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1670 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1671 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1672 return MVT::getScalableVectorVT(EltVT, NumElts); 1673 } 1674 } 1675 } 1676 1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1678 const RISCVSubtarget &Subtarget) { 1679 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1680 Subtarget); 1681 } 1682 1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1684 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1685 } 1686 1687 // Grow V to consume an entire RVV register. 1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1689 const RISCVSubtarget &Subtarget) { 1690 assert(VT.isScalableVector() && 1691 "Expected to convert into a scalable vector!"); 1692 assert(V.getValueType().isFixedLengthVector() && 1693 "Expected a fixed length vector operand!"); 1694 SDLoc DL(V); 1695 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1696 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1697 } 1698 1699 // Shrink V so it's just big enough to maintain a VT's worth of data. 1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1701 const RISCVSubtarget &Subtarget) { 1702 assert(VT.isFixedLengthVector() && 1703 "Expected to convert into a fixed length vector!"); 1704 assert(V.getValueType().isScalableVector() && 1705 "Expected a scalable vector operand!"); 1706 SDLoc DL(V); 1707 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1708 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1709 } 1710 1711 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1713 // the vector type that it is contained in. 1714 static std::pair<SDValue, SDValue> 1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1716 const RISCVSubtarget &Subtarget) { 1717 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1718 MVT XLenVT = Subtarget.getXLenVT(); 1719 SDValue VL = VecVT.isFixedLengthVector() 1720 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1721 : DAG.getRegister(RISCV::X0, XLenVT); 1722 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1723 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1724 return {Mask, VL}; 1725 } 1726 1727 // As above but assuming the given type is a scalable vector type. 1728 static std::pair<SDValue, SDValue> 1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1730 const RISCVSubtarget &Subtarget) { 1731 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1732 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1733 } 1734 1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1736 // of either is (currently) supported. This can get us into an infinite loop 1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1738 // as a ..., etc. 1739 // Until either (or both) of these can reliably lower any node, reporting that 1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1742 // which is not desirable. 1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1744 EVT VT, unsigned DefinedValues) const { 1745 return false; 1746 } 1747 1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1749 const RISCVSubtarget &Subtarget) { 1750 // RISCV FP-to-int conversions saturate to the destination register size, but 1751 // don't produce 0 for nan. We can use a conversion instruction and fix the 1752 // nan case with a compare and a select. 1753 SDValue Src = Op.getOperand(0); 1754 1755 EVT DstVT = Op.getValueType(); 1756 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1757 1758 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1759 unsigned Opc; 1760 if (SatVT == DstVT) 1761 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1762 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1763 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1764 else 1765 return SDValue(); 1766 // FIXME: Support other SatVTs by clamping before or after the conversion. 1767 1768 SDLoc DL(Op); 1769 SDValue FpToInt = DAG.getNode( 1770 Opc, DL, DstVT, Src, 1771 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1772 1773 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1774 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1775 } 1776 1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1778 // and back. Taking care to avoid converting values that are nan or already 1779 // correct. 1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1781 // have FRM dependencies modeled yet. 1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1783 MVT VT = Op.getSimpleValueType(); 1784 assert(VT.isVector() && "Unexpected type"); 1785 1786 SDLoc DL(Op); 1787 1788 // Freeze the source since we are increasing the number of uses. 1789 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1790 1791 // Truncate to integer and convert back to FP. 1792 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1793 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1794 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1795 1796 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1797 1798 if (Op.getOpcode() == ISD::FCEIL) { 1799 // If the truncated value is the greater than or equal to the original 1800 // value, we've computed the ceil. Otherwise, we went the wrong way and 1801 // need to increase by 1. 1802 // FIXME: This should use a masked operation. Handle here or in isel? 1803 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1804 DAG.getConstantFP(1.0, DL, VT)); 1805 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1806 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1807 } else if (Op.getOpcode() == ISD::FFLOOR) { 1808 // If the truncated value is the less than or equal to the original value, 1809 // we've computed the floor. Otherwise, we went the wrong way and need to 1810 // decrease by 1. 1811 // FIXME: This should use a masked operation. Handle here or in isel? 1812 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1813 DAG.getConstantFP(1.0, DL, VT)); 1814 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1815 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1816 } 1817 1818 // Restore the original sign so that -0.0 is preserved. 1819 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1820 1821 // Determine the largest integer that can be represented exactly. This and 1822 // values larger than it don't have any fractional bits so don't need to 1823 // be converted. 1824 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1825 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1826 APFloat MaxVal = APFloat(FltSem); 1827 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1828 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1829 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1830 1831 // If abs(Src) was larger than MaxVal or nan, keep it. 1832 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1833 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1834 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1835 } 1836 1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1838 // This mode isn't supported in vector hardware on RISCV. But as long as we 1839 // aren't compiling with trapping math, we can emulate this with 1840 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1842 // dependencies modeled yet. 1843 // FIXME: Use masked operations to avoid final merge. 1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1845 MVT VT = Op.getSimpleValueType(); 1846 assert(VT.isVector() && "Unexpected type"); 1847 1848 SDLoc DL(Op); 1849 1850 // Freeze the source since we are increasing the number of uses. 1851 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1852 1853 // We do the conversion on the absolute value and fix the sign at the end. 1854 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1855 1856 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1857 bool Ignored; 1858 APFloat Point5Pred = APFloat(0.5f); 1859 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1860 Point5Pred.next(/*nextDown*/ true); 1861 1862 // Add the adjustment. 1863 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1864 DAG.getConstantFP(Point5Pred, DL, VT)); 1865 1866 // Truncate to integer and convert back to fp. 1867 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1868 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1869 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1870 1871 // Restore the original sign. 1872 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1873 1874 // Determine the largest integer that can be represented exactly. This and 1875 // values larger than it don't have any fractional bits so don't need to 1876 // be converted. 1877 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1878 APFloat MaxVal = APFloat(FltSem); 1879 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1880 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1881 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1882 1883 // If abs(Src) was larger than MaxVal or nan, keep it. 1884 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1885 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1886 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1887 } 1888 1889 struct VIDSequence { 1890 int64_t StepNumerator; 1891 unsigned StepDenominator; 1892 int64_t Addend; 1893 }; 1894 1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1896 // to the (non-zero) step S and start value X. This can be then lowered as the 1897 // RVV sequence (VID * S) + X, for example. 1898 // The step S is represented as an integer numerator divided by a positive 1899 // denominator. Note that the implementation currently only identifies 1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1901 // cannot detect 2/3, for example. 1902 // Note that this method will also match potentially unappealing index 1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1904 // determine whether this is worth generating code for. 1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1906 unsigned NumElts = Op.getNumOperands(); 1907 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1908 if (!Op.getValueType().isInteger()) 1909 return None; 1910 1911 Optional<unsigned> SeqStepDenom; 1912 Optional<int64_t> SeqStepNum, SeqAddend; 1913 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1914 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1915 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1916 // Assume undef elements match the sequence; we just have to be careful 1917 // when interpolating across them. 1918 if (Op.getOperand(Idx).isUndef()) 1919 continue; 1920 // The BUILD_VECTOR must be all constants. 1921 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1922 return None; 1923 1924 uint64_t Val = Op.getConstantOperandVal(Idx) & 1925 maskTrailingOnes<uint64_t>(EltSizeInBits); 1926 1927 if (PrevElt) { 1928 // Calculate the step since the last non-undef element, and ensure 1929 // it's consistent across the entire sequence. 1930 unsigned IdxDiff = Idx - PrevElt->second; 1931 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1932 1933 // A zero-value value difference means that we're somewhere in the middle 1934 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1935 // step change before evaluating the sequence. 1936 if (ValDiff != 0) { 1937 int64_t Remainder = ValDiff % IdxDiff; 1938 // Normalize the step if it's greater than 1. 1939 if (Remainder != ValDiff) { 1940 // The difference must cleanly divide the element span. 1941 if (Remainder != 0) 1942 return None; 1943 ValDiff /= IdxDiff; 1944 IdxDiff = 1; 1945 } 1946 1947 if (!SeqStepNum) 1948 SeqStepNum = ValDiff; 1949 else if (ValDiff != SeqStepNum) 1950 return None; 1951 1952 if (!SeqStepDenom) 1953 SeqStepDenom = IdxDiff; 1954 else if (IdxDiff != *SeqStepDenom) 1955 return None; 1956 } 1957 } 1958 1959 // Record and/or check any addend. 1960 if (SeqStepNum && SeqStepDenom) { 1961 uint64_t ExpectedVal = 1962 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1963 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1964 if (!SeqAddend) 1965 SeqAddend = Addend; 1966 else if (SeqAddend != Addend) 1967 return None; 1968 } 1969 1970 // Record this non-undef element for later. 1971 if (!PrevElt || PrevElt->first != Val) 1972 PrevElt = std::make_pair(Val, Idx); 1973 } 1974 // We need to have logged both a step and an addend for this to count as 1975 // a legal index sequence. 1976 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1977 return None; 1978 1979 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1980 } 1981 1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1983 // and lower it as a VRGATHER_VX_VL from the source vector. 1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1985 SelectionDAG &DAG, 1986 const RISCVSubtarget &Subtarget) { 1987 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1988 return SDValue(); 1989 SDValue Vec = SplatVal.getOperand(0); 1990 // Only perform this optimization on vectors of the same size for simplicity. 1991 if (Vec.getValueType() != VT) 1992 return SDValue(); 1993 SDValue Idx = SplatVal.getOperand(1); 1994 // The index must be a legal type. 1995 if (Idx.getValueType() != Subtarget.getXLenVT()) 1996 return SDValue(); 1997 1998 MVT ContainerVT = VT; 1999 if (VT.isFixedLengthVector()) { 2000 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2001 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2002 } 2003 2004 SDValue Mask, VL; 2005 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2006 2007 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2008 Idx, Mask, VL); 2009 2010 if (!VT.isFixedLengthVector()) 2011 return Gather; 2012 2013 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2014 } 2015 2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2017 const RISCVSubtarget &Subtarget) { 2018 MVT VT = Op.getSimpleValueType(); 2019 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2020 2021 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2022 2023 SDLoc DL(Op); 2024 SDValue Mask, VL; 2025 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2026 2027 MVT XLenVT = Subtarget.getXLenVT(); 2028 unsigned NumElts = Op.getNumOperands(); 2029 2030 if (VT.getVectorElementType() == MVT::i1) { 2031 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2032 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2033 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2034 } 2035 2036 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2037 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2038 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2039 } 2040 2041 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2042 // scalar integer chunks whose bit-width depends on the number of mask 2043 // bits and XLEN. 2044 // First, determine the most appropriate scalar integer type to use. This 2045 // is at most XLenVT, but may be shrunk to a smaller vector element type 2046 // according to the size of the final vector - use i8 chunks rather than 2047 // XLenVT if we're producing a v8i1. This results in more consistent 2048 // codegen across RV32 and RV64. 2049 unsigned NumViaIntegerBits = 2050 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2051 NumViaIntegerBits = std::min(NumViaIntegerBits, 2052 Subtarget.getMaxELENForFixedLengthVectors()); 2053 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2054 // If we have to use more than one INSERT_VECTOR_ELT then this 2055 // optimization is likely to increase code size; avoid peforming it in 2056 // such a case. We can use a load from a constant pool in this case. 2057 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2058 return SDValue(); 2059 // Now we can create our integer vector type. Note that it may be larger 2060 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2061 MVT IntegerViaVecVT = 2062 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2063 divideCeil(NumElts, NumViaIntegerBits)); 2064 2065 uint64_t Bits = 0; 2066 unsigned BitPos = 0, IntegerEltIdx = 0; 2067 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2068 2069 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2070 // Once we accumulate enough bits to fill our scalar type, insert into 2071 // our vector and clear our accumulated data. 2072 if (I != 0 && I % NumViaIntegerBits == 0) { 2073 if (NumViaIntegerBits <= 32) 2074 Bits = SignExtend64(Bits, 32); 2075 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2076 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2077 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2078 Bits = 0; 2079 BitPos = 0; 2080 IntegerEltIdx++; 2081 } 2082 SDValue V = Op.getOperand(I); 2083 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2084 Bits |= ((uint64_t)BitValue << BitPos); 2085 } 2086 2087 // Insert the (remaining) scalar value into position in our integer 2088 // vector type. 2089 if (NumViaIntegerBits <= 32) 2090 Bits = SignExtend64(Bits, 32); 2091 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2092 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2093 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2094 2095 if (NumElts < NumViaIntegerBits) { 2096 // If we're producing a smaller vector than our minimum legal integer 2097 // type, bitcast to the equivalent (known-legal) mask type, and extract 2098 // our final mask. 2099 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2100 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2101 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2102 DAG.getConstant(0, DL, XLenVT)); 2103 } else { 2104 // Else we must have produced an integer type with the same size as the 2105 // mask type; bitcast for the final result. 2106 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2107 Vec = DAG.getBitcast(VT, Vec); 2108 } 2109 2110 return Vec; 2111 } 2112 2113 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2114 // vector type, we have a legal equivalently-sized i8 type, so we can use 2115 // that. 2116 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2117 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2118 2119 SDValue WideVec; 2120 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2121 // For a splat, perform a scalar truncate before creating the wider 2122 // vector. 2123 assert(Splat.getValueType() == XLenVT && 2124 "Unexpected type for i1 splat value"); 2125 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2126 DAG.getConstant(1, DL, XLenVT)); 2127 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2128 } else { 2129 SmallVector<SDValue, 8> Ops(Op->op_values()); 2130 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2131 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2132 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2133 } 2134 2135 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2136 } 2137 2138 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2139 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2140 return Gather; 2141 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2142 : RISCVISD::VMV_V_X_VL; 2143 Splat = 2144 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2145 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2146 } 2147 2148 // Try and match index sequences, which we can lower to the vid instruction 2149 // with optional modifications. An all-undef vector is matched by 2150 // getSplatValue, above. 2151 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2152 int64_t StepNumerator = SimpleVID->StepNumerator; 2153 unsigned StepDenominator = SimpleVID->StepDenominator; 2154 int64_t Addend = SimpleVID->Addend; 2155 2156 assert(StepNumerator != 0 && "Invalid step"); 2157 bool Negate = false; 2158 int64_t SplatStepVal = StepNumerator; 2159 unsigned StepOpcode = ISD::MUL; 2160 if (StepNumerator != 1) { 2161 if (isPowerOf2_64(std::abs(StepNumerator))) { 2162 Negate = StepNumerator < 0; 2163 StepOpcode = ISD::SHL; 2164 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2165 } 2166 } 2167 2168 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2169 // threshold since it's the immediate value many RVV instructions accept. 2170 // There is no vmul.vi instruction so ensure multiply constant can fit in 2171 // a single addi instruction. 2172 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2173 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2174 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2175 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2176 // Convert right out of the scalable type so we can use standard ISD 2177 // nodes for the rest of the computation. If we used scalable types with 2178 // these, we'd lose the fixed-length vector info and generate worse 2179 // vsetvli code. 2180 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2181 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2182 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2183 SDValue SplatStep = DAG.getSplatVector( 2184 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2185 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2186 } 2187 if (StepDenominator != 1) { 2188 SDValue SplatStep = DAG.getSplatVector( 2189 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2190 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2191 } 2192 if (Addend != 0 || Negate) { 2193 SDValue SplatAddend = 2194 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2195 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2196 } 2197 return VID; 2198 } 2199 } 2200 2201 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2202 // when re-interpreted as a vector with a larger element type. For example, 2203 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2204 // could be instead splat as 2205 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2206 // TODO: This optimization could also work on non-constant splats, but it 2207 // would require bit-manipulation instructions to construct the splat value. 2208 SmallVector<SDValue> Sequence; 2209 unsigned EltBitSize = VT.getScalarSizeInBits(); 2210 const auto *BV = cast<BuildVectorSDNode>(Op); 2211 if (VT.isInteger() && EltBitSize < 64 && 2212 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2213 BV->getRepeatedSequence(Sequence) && 2214 (Sequence.size() * EltBitSize) <= 64) { 2215 unsigned SeqLen = Sequence.size(); 2216 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2217 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2218 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2219 ViaIntVT == MVT::i64) && 2220 "Unexpected sequence type"); 2221 2222 unsigned EltIdx = 0; 2223 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2224 uint64_t SplatValue = 0; 2225 // Construct the amalgamated value which can be splatted as this larger 2226 // vector type. 2227 for (const auto &SeqV : Sequence) { 2228 if (!SeqV.isUndef()) 2229 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2230 << (EltIdx * EltBitSize)); 2231 EltIdx++; 2232 } 2233 2234 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2235 // achieve better constant materializion. 2236 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2237 SplatValue = SignExtend64(SplatValue, 32); 2238 2239 // Since we can't introduce illegal i64 types at this stage, we can only 2240 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2241 // way we can use RVV instructions to splat. 2242 assert((ViaIntVT.bitsLE(XLenVT) || 2243 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2244 "Unexpected bitcast sequence"); 2245 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2246 SDValue ViaVL = 2247 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2248 MVT ViaContainerVT = 2249 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2250 SDValue Splat = 2251 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2252 DAG.getUNDEF(ViaContainerVT), 2253 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2254 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2255 return DAG.getBitcast(VT, Splat); 2256 } 2257 } 2258 2259 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2260 // which constitute a large proportion of the elements. In such cases we can 2261 // splat a vector with the dominant element and make up the shortfall with 2262 // INSERT_VECTOR_ELTs. 2263 // Note that this includes vectors of 2 elements by association. The 2264 // upper-most element is the "dominant" one, allowing us to use a splat to 2265 // "insert" the upper element, and an insert of the lower element at position 2266 // 0, which improves codegen. 2267 SDValue DominantValue; 2268 unsigned MostCommonCount = 0; 2269 DenseMap<SDValue, unsigned> ValueCounts; 2270 unsigned NumUndefElts = 2271 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2272 2273 // Track the number of scalar loads we know we'd be inserting, estimated as 2274 // any non-zero floating-point constant. Other kinds of element are either 2275 // already in registers or are materialized on demand. The threshold at which 2276 // a vector load is more desirable than several scalar materializion and 2277 // vector-insertion instructions is not known. 2278 unsigned NumScalarLoads = 0; 2279 2280 for (SDValue V : Op->op_values()) { 2281 if (V.isUndef()) 2282 continue; 2283 2284 ValueCounts.insert(std::make_pair(V, 0)); 2285 unsigned &Count = ValueCounts[V]; 2286 2287 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2288 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2289 2290 // Is this value dominant? In case of a tie, prefer the highest element as 2291 // it's cheaper to insert near the beginning of a vector than it is at the 2292 // end. 2293 if (++Count >= MostCommonCount) { 2294 DominantValue = V; 2295 MostCommonCount = Count; 2296 } 2297 } 2298 2299 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2300 unsigned NumDefElts = NumElts - NumUndefElts; 2301 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2302 2303 // Don't perform this optimization when optimizing for size, since 2304 // materializing elements and inserting them tends to cause code bloat. 2305 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2306 ((MostCommonCount > DominantValueCountThreshold) || 2307 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2308 // Start by splatting the most common element. 2309 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2310 2311 DenseSet<SDValue> Processed{DominantValue}; 2312 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2313 for (const auto &OpIdx : enumerate(Op->ops())) { 2314 const SDValue &V = OpIdx.value(); 2315 if (V.isUndef() || !Processed.insert(V).second) 2316 continue; 2317 if (ValueCounts[V] == 1) { 2318 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2319 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2320 } else { 2321 // Blend in all instances of this value using a VSELECT, using a 2322 // mask where each bit signals whether that element is the one 2323 // we're after. 2324 SmallVector<SDValue> Ops; 2325 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2326 return DAG.getConstant(V == V1, DL, XLenVT); 2327 }); 2328 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2329 DAG.getBuildVector(SelMaskTy, DL, Ops), 2330 DAG.getSplatBuildVector(VT, DL, V), Vec); 2331 } 2332 } 2333 2334 return Vec; 2335 } 2336 2337 return SDValue(); 2338 } 2339 2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2341 SDValue Lo, SDValue Hi, SDValue VL, 2342 SelectionDAG &DAG) { 2343 if (!Passthru) 2344 Passthru = DAG.getUNDEF(VT); 2345 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2346 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2347 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2348 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2349 // node in order to try and match RVV vector/scalar instructions. 2350 if ((LoC >> 31) == HiC) 2351 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2352 2353 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2354 // vmv.v.x whose EEW = 32 to lower it. 2355 auto *Const = dyn_cast<ConstantSDNode>(VL); 2356 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2357 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2358 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2359 // access the subtarget here now. 2360 auto InterVec = DAG.getNode( 2361 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2362 DAG.getRegister(RISCV::X0, MVT::i32)); 2363 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2364 } 2365 } 2366 2367 // Fall back to a stack store and stride x0 vector load. 2368 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2369 Hi, VL); 2370 } 2371 2372 // Called by type legalization to handle splat of i64 on RV32. 2373 // FIXME: We can optimize this when the type has sign or zero bits in one 2374 // of the halves. 2375 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2376 SDValue Scalar, SDValue VL, 2377 SelectionDAG &DAG) { 2378 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2379 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2380 DAG.getConstant(0, DL, MVT::i32)); 2381 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2382 DAG.getConstant(1, DL, MVT::i32)); 2383 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2384 } 2385 2386 // This function lowers a splat of a scalar operand Splat with the vector 2387 // length VL. It ensures the final sequence is type legal, which is useful when 2388 // lowering a splat after type legalization. 2389 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2390 MVT VT, SDLoc DL, SelectionDAG &DAG, 2391 const RISCVSubtarget &Subtarget) { 2392 bool HasPassthru = Passthru && !Passthru.isUndef(); 2393 if (!HasPassthru && !Passthru) 2394 Passthru = DAG.getUNDEF(VT); 2395 if (VT.isFloatingPoint()) { 2396 // If VL is 1, we could use vfmv.s.f. 2397 if (isOneConstant(VL)) 2398 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2399 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2400 } 2401 2402 MVT XLenVT = Subtarget.getXLenVT(); 2403 2404 // Simplest case is that the operand needs to be promoted to XLenVT. 2405 if (Scalar.getValueType().bitsLE(XLenVT)) { 2406 // If the operand is a constant, sign extend to increase our chances 2407 // of being able to use a .vi instruction. ANY_EXTEND would become a 2408 // a zero extend and the simm5 check in isel would fail. 2409 // FIXME: Should we ignore the upper bits in isel instead? 2410 unsigned ExtOpc = 2411 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2412 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2413 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2414 // If VL is 1 and the scalar value won't benefit from immediate, we could 2415 // use vmv.s.x. 2416 if (isOneConstant(VL) && 2417 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2418 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2419 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2420 } 2421 2422 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2423 "Unexpected scalar for splat lowering!"); 2424 2425 if (isOneConstant(VL) && isNullConstant(Scalar)) 2426 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2427 DAG.getConstant(0, DL, XLenVT), VL); 2428 2429 // Otherwise use the more complicated splatting algorithm. 2430 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2431 } 2432 2433 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2434 const RISCVSubtarget &Subtarget) { 2435 // We need to be able to widen elements to the next larger integer type. 2436 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2437 return false; 2438 2439 int Size = Mask.size(); 2440 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2441 2442 int Srcs[] = {-1, -1}; 2443 for (int i = 0; i != Size; ++i) { 2444 // Ignore undef elements. 2445 if (Mask[i] < 0) 2446 continue; 2447 2448 // Is this an even or odd element. 2449 int Pol = i % 2; 2450 2451 // Ensure we consistently use the same source for this element polarity. 2452 int Src = Mask[i] / Size; 2453 if (Srcs[Pol] < 0) 2454 Srcs[Pol] = Src; 2455 if (Srcs[Pol] != Src) 2456 return false; 2457 2458 // Make sure the element within the source is appropriate for this element 2459 // in the destination. 2460 int Elt = Mask[i] % Size; 2461 if (Elt != i / 2) 2462 return false; 2463 } 2464 2465 // We need to find a source for each polarity and they can't be the same. 2466 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2467 return false; 2468 2469 // Swap the sources if the second source was in the even polarity. 2470 SwapSources = Srcs[0] > Srcs[1]; 2471 2472 return true; 2473 } 2474 2475 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2476 /// and then extract the original number of elements from the rotated result. 2477 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2478 /// returned rotation amount is for a rotate right, where elements move from 2479 /// higher elements to lower elements. \p LoSrc indicates the first source 2480 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2481 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2482 /// 0 or 1 if a rotation is found. 2483 /// 2484 /// NOTE: We talk about rotate to the right which matches how bit shift and 2485 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2486 /// and the table below write vectors with the lowest elements on the left. 2487 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2488 int Size = Mask.size(); 2489 2490 // We need to detect various ways of spelling a rotation: 2491 // [11, 12, 13, 14, 15, 0, 1, 2] 2492 // [-1, 12, 13, 14, -1, -1, 1, -1] 2493 // [-1, -1, -1, -1, -1, -1, 1, 2] 2494 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2495 // [-1, 4, 5, 6, -1, -1, 9, -1] 2496 // [-1, 4, 5, 6, -1, -1, -1, -1] 2497 int Rotation = 0; 2498 LoSrc = -1; 2499 HiSrc = -1; 2500 for (int i = 0; i != Size; ++i) { 2501 int M = Mask[i]; 2502 if (M < 0) 2503 continue; 2504 2505 // Determine where a rotate vector would have started. 2506 int StartIdx = i - (M % Size); 2507 // The identity rotation isn't interesting, stop. 2508 if (StartIdx == 0) 2509 return -1; 2510 2511 // If we found the tail of a vector the rotation must be the missing 2512 // front. If we found the head of a vector, it must be how much of the 2513 // head. 2514 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2515 2516 if (Rotation == 0) 2517 Rotation = CandidateRotation; 2518 else if (Rotation != CandidateRotation) 2519 // The rotations don't match, so we can't match this mask. 2520 return -1; 2521 2522 // Compute which value this mask is pointing at. 2523 int MaskSrc = M < Size ? 0 : 1; 2524 2525 // Compute which of the two target values this index should be assigned to. 2526 // This reflects whether the high elements are remaining or the low elemnts 2527 // are remaining. 2528 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2529 2530 // Either set up this value if we've not encountered it before, or check 2531 // that it remains consistent. 2532 if (TargetSrc < 0) 2533 TargetSrc = MaskSrc; 2534 else if (TargetSrc != MaskSrc) 2535 // This may be a rotation, but it pulls from the inputs in some 2536 // unsupported interleaving. 2537 return -1; 2538 } 2539 2540 // Check that we successfully analyzed the mask, and normalize the results. 2541 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2542 assert((LoSrc >= 0 || HiSrc >= 0) && 2543 "Failed to find a rotated input vector!"); 2544 2545 return Rotation; 2546 } 2547 2548 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2549 const RISCVSubtarget &Subtarget) { 2550 SDValue V1 = Op.getOperand(0); 2551 SDValue V2 = Op.getOperand(1); 2552 SDLoc DL(Op); 2553 MVT XLenVT = Subtarget.getXLenVT(); 2554 MVT VT = Op.getSimpleValueType(); 2555 unsigned NumElts = VT.getVectorNumElements(); 2556 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2557 2558 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2559 2560 SDValue TrueMask, VL; 2561 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2562 2563 if (SVN->isSplat()) { 2564 const int Lane = SVN->getSplatIndex(); 2565 if (Lane >= 0) { 2566 MVT SVT = VT.getVectorElementType(); 2567 2568 // Turn splatted vector load into a strided load with an X0 stride. 2569 SDValue V = V1; 2570 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2571 // with undef. 2572 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2573 int Offset = Lane; 2574 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2575 int OpElements = 2576 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2577 V = V.getOperand(Offset / OpElements); 2578 Offset %= OpElements; 2579 } 2580 2581 // We need to ensure the load isn't atomic or volatile. 2582 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2583 auto *Ld = cast<LoadSDNode>(V); 2584 Offset *= SVT.getStoreSize(); 2585 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2586 TypeSize::Fixed(Offset), DL); 2587 2588 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2589 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2590 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2591 SDValue IntID = 2592 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2593 SDValue Ops[] = {Ld->getChain(), 2594 IntID, 2595 DAG.getUNDEF(ContainerVT), 2596 NewAddr, 2597 DAG.getRegister(RISCV::X0, XLenVT), 2598 VL}; 2599 SDValue NewLoad = DAG.getMemIntrinsicNode( 2600 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2601 DAG.getMachineFunction().getMachineMemOperand( 2602 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2603 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2604 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2605 } 2606 2607 // Otherwise use a scalar load and splat. This will give the best 2608 // opportunity to fold a splat into the operation. ISel can turn it into 2609 // the x0 strided load if we aren't able to fold away the select. 2610 if (SVT.isFloatingPoint()) 2611 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2612 Ld->getPointerInfo().getWithOffset(Offset), 2613 Ld->getOriginalAlign(), 2614 Ld->getMemOperand()->getFlags()); 2615 else 2616 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2617 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2618 Ld->getOriginalAlign(), 2619 Ld->getMemOperand()->getFlags()); 2620 DAG.makeEquivalentMemoryOrdering(Ld, V); 2621 2622 unsigned Opc = 2623 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2624 SDValue Splat = 2625 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2626 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2627 } 2628 2629 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2630 assert(Lane < (int)NumElts && "Unexpected lane!"); 2631 SDValue Gather = 2632 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2633 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2634 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2635 } 2636 } 2637 2638 ArrayRef<int> Mask = SVN->getMask(); 2639 2640 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2641 // be undef which can be handled with a single SLIDEDOWN/UP. 2642 int LoSrc, HiSrc; 2643 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2644 if (Rotation > 0) { 2645 SDValue LoV, HiV; 2646 if (LoSrc >= 0) { 2647 LoV = LoSrc == 0 ? V1 : V2; 2648 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2649 } 2650 if (HiSrc >= 0) { 2651 HiV = HiSrc == 0 ? V1 : V2; 2652 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2653 } 2654 2655 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2656 // to slide LoV up by (NumElts - Rotation). 2657 unsigned InvRotate = NumElts - Rotation; 2658 2659 SDValue Res = DAG.getUNDEF(ContainerVT); 2660 if (HiV) { 2661 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2662 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2663 // causes multiple vsetvlis in some test cases such as lowering 2664 // reduce.mul 2665 SDValue DownVL = VL; 2666 if (LoV) 2667 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2668 Res = 2669 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2670 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2671 } 2672 if (LoV) 2673 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2674 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2675 2676 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2677 } 2678 2679 // Detect an interleave shuffle and lower to 2680 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2681 bool SwapSources; 2682 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2683 // Swap sources if needed. 2684 if (SwapSources) 2685 std::swap(V1, V2); 2686 2687 // Extract the lower half of the vectors. 2688 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2689 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2690 DAG.getConstant(0, DL, XLenVT)); 2691 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2692 DAG.getConstant(0, DL, XLenVT)); 2693 2694 // Double the element width and halve the number of elements in an int type. 2695 unsigned EltBits = VT.getScalarSizeInBits(); 2696 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2697 MVT WideIntVT = 2698 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2699 // Convert this to a scalable vector. We need to base this on the 2700 // destination size to ensure there's always a type with a smaller LMUL. 2701 MVT WideIntContainerVT = 2702 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2703 2704 // Convert sources to scalable vectors with the same element count as the 2705 // larger type. 2706 MVT HalfContainerVT = MVT::getVectorVT( 2707 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2708 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2709 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2710 2711 // Cast sources to integer. 2712 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2713 MVT IntHalfVT = 2714 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2715 V1 = DAG.getBitcast(IntHalfVT, V1); 2716 V2 = DAG.getBitcast(IntHalfVT, V2); 2717 2718 // Freeze V2 since we use it twice and we need to be sure that the add and 2719 // multiply see the same value. 2720 V2 = DAG.getFreeze(V2); 2721 2722 // Recreate TrueMask using the widened type's element count. 2723 MVT MaskVT = 2724 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2725 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2726 2727 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2728 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2729 V2, TrueMask, VL); 2730 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2731 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2732 DAG.getUNDEF(IntHalfVT), 2733 DAG.getAllOnesConstant(DL, XLenVT)); 2734 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2735 V2, Multiplier, TrueMask, VL); 2736 // Add the new copies to our previous addition giving us 2^eltbits copies of 2737 // V2. This is equivalent to shifting V2 left by eltbits. This should 2738 // combine with the vwmulu.vv above to form vwmaccu.vv. 2739 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2740 TrueMask, VL); 2741 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2742 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2743 // vector VT. 2744 ContainerVT = 2745 MVT::getVectorVT(VT.getVectorElementType(), 2746 WideIntContainerVT.getVectorElementCount() * 2); 2747 Add = DAG.getBitcast(ContainerVT, Add); 2748 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2749 } 2750 2751 // Detect shuffles which can be re-expressed as vector selects; these are 2752 // shuffles in which each element in the destination is taken from an element 2753 // at the corresponding index in either source vectors. 2754 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2755 int MaskIndex = MaskIdx.value(); 2756 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2757 }); 2758 2759 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2760 2761 SmallVector<SDValue> MaskVals; 2762 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2763 // merged with a second vrgather. 2764 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2765 2766 // By default we preserve the original operand order, and use a mask to 2767 // select LHS as true and RHS as false. However, since RVV vector selects may 2768 // feature splats but only on the LHS, we may choose to invert our mask and 2769 // instead select between RHS and LHS. 2770 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2771 bool InvertMask = IsSelect == SwapOps; 2772 2773 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2774 // half. 2775 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2776 2777 // Now construct the mask that will be used by the vselect or blended 2778 // vrgather operation. For vrgathers, construct the appropriate indices into 2779 // each vector. 2780 for (int MaskIndex : Mask) { 2781 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2782 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2783 if (!IsSelect) { 2784 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2785 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2786 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2787 : DAG.getUNDEF(XLenVT)); 2788 GatherIndicesRHS.push_back( 2789 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2790 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2791 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2792 ++LHSIndexCounts[MaskIndex]; 2793 if (!IsLHSOrUndefIndex) 2794 ++RHSIndexCounts[MaskIndex - NumElts]; 2795 } 2796 } 2797 2798 if (SwapOps) { 2799 std::swap(V1, V2); 2800 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2801 } 2802 2803 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2804 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2805 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2806 2807 if (IsSelect) 2808 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2809 2810 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2811 // On such a large vector we're unable to use i8 as the index type. 2812 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2813 // may involve vector splitting if we're already at LMUL=8, or our 2814 // user-supplied maximum fixed-length LMUL. 2815 return SDValue(); 2816 } 2817 2818 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2819 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2820 MVT IndexVT = VT.changeTypeToInteger(); 2821 // Since we can't introduce illegal index types at this stage, use i16 and 2822 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2823 // than XLenVT. 2824 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2825 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2826 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2827 } 2828 2829 MVT IndexContainerVT = 2830 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2831 2832 SDValue Gather; 2833 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2834 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2835 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2836 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2837 Subtarget); 2838 } else { 2839 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2840 // If only one index is used, we can use a "splat" vrgather. 2841 // TODO: We can splat the most-common index and fix-up any stragglers, if 2842 // that's beneficial. 2843 if (LHSIndexCounts.size() == 1) { 2844 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2845 Gather = 2846 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2847 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2848 } else { 2849 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2850 LHSIndices = 2851 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2852 2853 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2854 TrueMask, VL); 2855 } 2856 } 2857 2858 // If a second vector operand is used by this shuffle, blend it in with an 2859 // additional vrgather. 2860 if (!V2.isUndef()) { 2861 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2862 // If only one index is used, we can use a "splat" vrgather. 2863 // TODO: We can splat the most-common index and fix-up any stragglers, if 2864 // that's beneficial. 2865 if (RHSIndexCounts.size() == 1) { 2866 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2867 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2868 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2869 } else { 2870 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2871 RHSIndices = 2872 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2873 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2874 VL); 2875 } 2876 2877 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2878 SelectMask = 2879 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2880 2881 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2882 Gather, VL); 2883 } 2884 2885 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2886 } 2887 2888 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2889 // Support splats for any type. These should type legalize well. 2890 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2891 return true; 2892 2893 // Only support legal VTs for other shuffles for now. 2894 if (!isTypeLegal(VT)) 2895 return false; 2896 2897 MVT SVT = VT.getSimpleVT(); 2898 2899 bool SwapSources; 2900 int LoSrc, HiSrc; 2901 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2902 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2903 } 2904 2905 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2906 SDLoc DL, SelectionDAG &DAG, 2907 const RISCVSubtarget &Subtarget) { 2908 if (VT.isScalableVector()) 2909 return DAG.getFPExtendOrRound(Op, DL, VT); 2910 assert(VT.isFixedLengthVector() && 2911 "Unexpected value type for RVV FP extend/round lowering"); 2912 SDValue Mask, VL; 2913 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2914 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2915 ? RISCVISD::FP_EXTEND_VL 2916 : RISCVISD::FP_ROUND_VL; 2917 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2918 } 2919 2920 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2921 // the exponent. 2922 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2923 MVT VT = Op.getSimpleValueType(); 2924 unsigned EltSize = VT.getScalarSizeInBits(); 2925 SDValue Src = Op.getOperand(0); 2926 SDLoc DL(Op); 2927 2928 // We need a FP type that can represent the value. 2929 // TODO: Use f16 for i8 when possible? 2930 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2931 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2932 2933 // Legal types should have been checked in the RISCVTargetLowering 2934 // constructor. 2935 // TODO: Splitting may make sense in some cases. 2936 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2937 "Expected legal float type!"); 2938 2939 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2940 // The trailing zero count is equal to log2 of this single bit value. 2941 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2942 SDValue Neg = 2943 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2944 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2945 } 2946 2947 // We have a legal FP type, convert to it. 2948 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2949 // Bitcast to integer and shift the exponent to the LSB. 2950 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2951 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2952 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2953 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2954 DAG.getConstant(ShiftAmt, DL, IntVT)); 2955 // Truncate back to original type to allow vnsrl. 2956 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2957 // The exponent contains log2 of the value in biased form. 2958 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2959 2960 // For trailing zeros, we just need to subtract the bias. 2961 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2962 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2963 DAG.getConstant(ExponentBias, DL, VT)); 2964 2965 // For leading zeros, we need to remove the bias and convert from log2 to 2966 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2967 unsigned Adjust = ExponentBias + (EltSize - 1); 2968 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2969 } 2970 2971 // While RVV has alignment restrictions, we should always be able to load as a 2972 // legal equivalently-sized byte-typed vector instead. This method is 2973 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2974 // the load is already correctly-aligned, it returns SDValue(). 2975 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2976 SelectionDAG &DAG) const { 2977 auto *Load = cast<LoadSDNode>(Op); 2978 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2979 2980 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2981 Load->getMemoryVT(), 2982 *Load->getMemOperand())) 2983 return SDValue(); 2984 2985 SDLoc DL(Op); 2986 MVT VT = Op.getSimpleValueType(); 2987 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2988 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2989 "Unexpected unaligned RVV load type"); 2990 MVT NewVT = 2991 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2992 assert(NewVT.isValid() && 2993 "Expecting equally-sized RVV vector types to be legal"); 2994 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2995 Load->getPointerInfo(), Load->getOriginalAlign(), 2996 Load->getMemOperand()->getFlags()); 2997 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2998 } 2999 3000 // While RVV has alignment restrictions, we should always be able to store as a 3001 // legal equivalently-sized byte-typed vector instead. This method is 3002 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3003 // returns SDValue() if the store is already correctly aligned. 3004 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3005 SelectionDAG &DAG) const { 3006 auto *Store = cast<StoreSDNode>(Op); 3007 assert(Store && Store->getValue().getValueType().isVector() && 3008 "Expected vector store"); 3009 3010 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3011 Store->getMemoryVT(), 3012 *Store->getMemOperand())) 3013 return SDValue(); 3014 3015 SDLoc DL(Op); 3016 SDValue StoredVal = Store->getValue(); 3017 MVT VT = StoredVal.getSimpleValueType(); 3018 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3019 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3020 "Unexpected unaligned RVV store type"); 3021 MVT NewVT = 3022 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3023 assert(NewVT.isValid() && 3024 "Expecting equally-sized RVV vector types to be legal"); 3025 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3026 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3027 Store->getPointerInfo(), Store->getOriginalAlign(), 3028 Store->getMemOperand()->getFlags()); 3029 } 3030 3031 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3032 SelectionDAG &DAG) const { 3033 switch (Op.getOpcode()) { 3034 default: 3035 report_fatal_error("unimplemented operand"); 3036 case ISD::GlobalAddress: 3037 return lowerGlobalAddress(Op, DAG); 3038 case ISD::BlockAddress: 3039 return lowerBlockAddress(Op, DAG); 3040 case ISD::ConstantPool: 3041 return lowerConstantPool(Op, DAG); 3042 case ISD::JumpTable: 3043 return lowerJumpTable(Op, DAG); 3044 case ISD::GlobalTLSAddress: 3045 return lowerGlobalTLSAddress(Op, DAG); 3046 case ISD::SELECT: 3047 return lowerSELECT(Op, DAG); 3048 case ISD::BRCOND: 3049 return lowerBRCOND(Op, DAG); 3050 case ISD::VASTART: 3051 return lowerVASTART(Op, DAG); 3052 case ISD::FRAMEADDR: 3053 return lowerFRAMEADDR(Op, DAG); 3054 case ISD::RETURNADDR: 3055 return lowerRETURNADDR(Op, DAG); 3056 case ISD::SHL_PARTS: 3057 return lowerShiftLeftParts(Op, DAG); 3058 case ISD::SRA_PARTS: 3059 return lowerShiftRightParts(Op, DAG, true); 3060 case ISD::SRL_PARTS: 3061 return lowerShiftRightParts(Op, DAG, false); 3062 case ISD::BITCAST: { 3063 SDLoc DL(Op); 3064 EVT VT = Op.getValueType(); 3065 SDValue Op0 = Op.getOperand(0); 3066 EVT Op0VT = Op0.getValueType(); 3067 MVT XLenVT = Subtarget.getXLenVT(); 3068 if (VT.isFixedLengthVector()) { 3069 // We can handle fixed length vector bitcasts with a simple replacement 3070 // in isel. 3071 if (Op0VT.isFixedLengthVector()) 3072 return Op; 3073 // When bitcasting from scalar to fixed-length vector, insert the scalar 3074 // into a one-element vector of the result type, and perform a vector 3075 // bitcast. 3076 if (!Op0VT.isVector()) { 3077 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3078 if (!isTypeLegal(BVT)) 3079 return SDValue(); 3080 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3081 DAG.getUNDEF(BVT), Op0, 3082 DAG.getConstant(0, DL, XLenVT))); 3083 } 3084 return SDValue(); 3085 } 3086 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3087 // thus: bitcast the vector to a one-element vector type whose element type 3088 // is the same as the result type, and extract the first element. 3089 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3090 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3091 if (!isTypeLegal(BVT)) 3092 return SDValue(); 3093 SDValue BVec = DAG.getBitcast(BVT, Op0); 3094 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3095 DAG.getConstant(0, DL, XLenVT)); 3096 } 3097 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3098 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3099 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3100 return FPConv; 3101 } 3102 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3103 Subtarget.hasStdExtF()) { 3104 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3105 SDValue FPConv = 3106 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3107 return FPConv; 3108 } 3109 return SDValue(); 3110 } 3111 case ISD::INTRINSIC_WO_CHAIN: 3112 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3113 case ISD::INTRINSIC_W_CHAIN: 3114 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3115 case ISD::INTRINSIC_VOID: 3116 return LowerINTRINSIC_VOID(Op, DAG); 3117 case ISD::BSWAP: 3118 case ISD::BITREVERSE: { 3119 MVT VT = Op.getSimpleValueType(); 3120 SDLoc DL(Op); 3121 if (Subtarget.hasStdExtZbp()) { 3122 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3123 // Start with the maximum immediate value which is the bitwidth - 1. 3124 unsigned Imm = VT.getSizeInBits() - 1; 3125 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3126 if (Op.getOpcode() == ISD::BSWAP) 3127 Imm &= ~0x7U; 3128 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3129 DAG.getConstant(Imm, DL, VT)); 3130 } 3131 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3132 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3133 // Expand bitreverse to a bswap(rev8) followed by brev8. 3134 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3135 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3136 // as brev8 by an isel pattern. 3137 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3138 DAG.getConstant(7, DL, VT)); 3139 } 3140 case ISD::FSHL: 3141 case ISD::FSHR: { 3142 MVT VT = Op.getSimpleValueType(); 3143 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3144 SDLoc DL(Op); 3145 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3146 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3147 // accidentally setting the extra bit. 3148 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3149 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3150 DAG.getConstant(ShAmtWidth, DL, VT)); 3151 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3152 // instruction use different orders. fshl will return its first operand for 3153 // shift of zero, fshr will return its second operand. fsl and fsr both 3154 // return rs1 so the ISD nodes need to have different operand orders. 3155 // Shift amount is in rs2. 3156 SDValue Op0 = Op.getOperand(0); 3157 SDValue Op1 = Op.getOperand(1); 3158 unsigned Opc = RISCVISD::FSL; 3159 if (Op.getOpcode() == ISD::FSHR) { 3160 std::swap(Op0, Op1); 3161 Opc = RISCVISD::FSR; 3162 } 3163 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3164 } 3165 case ISD::TRUNCATE: { 3166 SDLoc DL(Op); 3167 MVT VT = Op.getSimpleValueType(); 3168 // Only custom-lower vector truncates 3169 if (!VT.isVector()) 3170 return Op; 3171 3172 // Truncates to mask types are handled differently 3173 if (VT.getVectorElementType() == MVT::i1) 3174 return lowerVectorMaskTrunc(Op, DAG); 3175 3176 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3177 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3178 // truncate by one power of two at a time. 3179 MVT DstEltVT = VT.getVectorElementType(); 3180 3181 SDValue Src = Op.getOperand(0); 3182 MVT SrcVT = Src.getSimpleValueType(); 3183 MVT SrcEltVT = SrcVT.getVectorElementType(); 3184 3185 assert(DstEltVT.bitsLT(SrcEltVT) && 3186 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3187 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3188 "Unexpected vector truncate lowering"); 3189 3190 MVT ContainerVT = SrcVT; 3191 if (SrcVT.isFixedLengthVector()) { 3192 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3193 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3194 } 3195 3196 SDValue Result = Src; 3197 SDValue Mask, VL; 3198 std::tie(Mask, VL) = 3199 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3200 LLVMContext &Context = *DAG.getContext(); 3201 const ElementCount Count = ContainerVT.getVectorElementCount(); 3202 do { 3203 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3204 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3205 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3206 Mask, VL); 3207 } while (SrcEltVT != DstEltVT); 3208 3209 if (SrcVT.isFixedLengthVector()) 3210 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3211 3212 return Result; 3213 } 3214 case ISD::ANY_EXTEND: 3215 case ISD::ZERO_EXTEND: 3216 if (Op.getOperand(0).getValueType().isVector() && 3217 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3218 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3219 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3220 case ISD::SIGN_EXTEND: 3221 if (Op.getOperand(0).getValueType().isVector() && 3222 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3223 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3224 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3225 case ISD::SPLAT_VECTOR_PARTS: 3226 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3227 case ISD::INSERT_VECTOR_ELT: 3228 return lowerINSERT_VECTOR_ELT(Op, DAG); 3229 case ISD::EXTRACT_VECTOR_ELT: 3230 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3231 case ISD::VSCALE: { 3232 MVT VT = Op.getSimpleValueType(); 3233 SDLoc DL(Op); 3234 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3235 // We define our scalable vector types for lmul=1 to use a 64 bit known 3236 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3237 // vscale as VLENB / 8. 3238 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3239 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3240 report_fatal_error("Support for VLEN==32 is incomplete."); 3241 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3242 // We assume VLENB is a multiple of 8. We manually choose the best shift 3243 // here because SimplifyDemandedBits isn't always able to simplify it. 3244 uint64_t Val = Op.getConstantOperandVal(0); 3245 if (isPowerOf2_64(Val)) { 3246 uint64_t Log2 = Log2_64(Val); 3247 if (Log2 < 3) 3248 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3249 DAG.getConstant(3 - Log2, DL, VT)); 3250 if (Log2 > 3) 3251 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3252 DAG.getConstant(Log2 - 3, DL, VT)); 3253 return VLENB; 3254 } 3255 // If the multiplier is a multiple of 8, scale it down to avoid needing 3256 // to shift the VLENB value. 3257 if ((Val % 8) == 0) 3258 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3259 DAG.getConstant(Val / 8, DL, VT)); 3260 } 3261 3262 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3263 DAG.getConstant(3, DL, VT)); 3264 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3265 } 3266 case ISD::FPOWI: { 3267 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3268 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3269 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3270 Op.getOperand(1).getValueType() == MVT::i32) { 3271 SDLoc DL(Op); 3272 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3273 SDValue Powi = 3274 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3275 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3276 DAG.getIntPtrConstant(0, DL)); 3277 } 3278 return SDValue(); 3279 } 3280 case ISD::FP_EXTEND: { 3281 // RVV can only do fp_extend to types double the size as the source. We 3282 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3283 // via f32. 3284 SDLoc DL(Op); 3285 MVT VT = Op.getSimpleValueType(); 3286 SDValue Src = Op.getOperand(0); 3287 MVT SrcVT = Src.getSimpleValueType(); 3288 3289 // Prepare any fixed-length vector operands. 3290 MVT ContainerVT = VT; 3291 if (SrcVT.isFixedLengthVector()) { 3292 ContainerVT = getContainerForFixedLengthVector(VT); 3293 MVT SrcContainerVT = 3294 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3295 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3296 } 3297 3298 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3299 SrcVT.getVectorElementType() != MVT::f16) { 3300 // For scalable vectors, we only need to close the gap between 3301 // vXf16->vXf64. 3302 if (!VT.isFixedLengthVector()) 3303 return Op; 3304 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3305 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3306 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3307 } 3308 3309 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3310 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3311 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3312 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3313 3314 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3315 DL, DAG, Subtarget); 3316 if (VT.isFixedLengthVector()) 3317 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3318 return Extend; 3319 } 3320 case ISD::FP_ROUND: { 3321 // RVV can only do fp_round to types half the size as the source. We 3322 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3323 // conversion instruction. 3324 SDLoc DL(Op); 3325 MVT VT = Op.getSimpleValueType(); 3326 SDValue Src = Op.getOperand(0); 3327 MVT SrcVT = Src.getSimpleValueType(); 3328 3329 // Prepare any fixed-length vector operands. 3330 MVT ContainerVT = VT; 3331 if (VT.isFixedLengthVector()) { 3332 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3333 ContainerVT = 3334 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3335 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3336 } 3337 3338 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3339 SrcVT.getVectorElementType() != MVT::f64) { 3340 // For scalable vectors, we only need to close the gap between 3341 // vXf64<->vXf16. 3342 if (!VT.isFixedLengthVector()) 3343 return Op; 3344 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3345 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3346 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3347 } 3348 3349 SDValue Mask, VL; 3350 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3351 3352 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3353 SDValue IntermediateRound = 3354 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3355 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3356 DL, DAG, Subtarget); 3357 3358 if (VT.isFixedLengthVector()) 3359 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3360 return Round; 3361 } 3362 case ISD::FP_TO_SINT: 3363 case ISD::FP_TO_UINT: 3364 case ISD::SINT_TO_FP: 3365 case ISD::UINT_TO_FP: { 3366 // RVV can only do fp<->int conversions to types half/double the size as 3367 // the source. We custom-lower any conversions that do two hops into 3368 // sequences. 3369 MVT VT = Op.getSimpleValueType(); 3370 if (!VT.isVector()) 3371 return Op; 3372 SDLoc DL(Op); 3373 SDValue Src = Op.getOperand(0); 3374 MVT EltVT = VT.getVectorElementType(); 3375 MVT SrcVT = Src.getSimpleValueType(); 3376 MVT SrcEltVT = SrcVT.getVectorElementType(); 3377 unsigned EltSize = EltVT.getSizeInBits(); 3378 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3379 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3380 "Unexpected vector element types"); 3381 3382 bool IsInt2FP = SrcEltVT.isInteger(); 3383 // Widening conversions 3384 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3385 if (IsInt2FP) { 3386 // Do a regular integer sign/zero extension then convert to float. 3387 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3388 VT.getVectorElementCount()); 3389 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3390 ? ISD::ZERO_EXTEND 3391 : ISD::SIGN_EXTEND; 3392 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3393 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3394 } 3395 // FP2Int 3396 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3397 // Do one doubling fp_extend then complete the operation by converting 3398 // to int. 3399 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3400 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3401 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3402 } 3403 3404 // Narrowing conversions 3405 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3406 if (IsInt2FP) { 3407 // One narrowing int_to_fp, then an fp_round. 3408 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3409 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3410 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3411 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3412 } 3413 // FP2Int 3414 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3415 // representable by the integer, the result is poison. 3416 MVT IVecVT = 3417 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3418 VT.getVectorElementCount()); 3419 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3420 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3421 } 3422 3423 // Scalable vectors can exit here. Patterns will handle equally-sized 3424 // conversions halving/doubling ones. 3425 if (!VT.isFixedLengthVector()) 3426 return Op; 3427 3428 // For fixed-length vectors we lower to a custom "VL" node. 3429 unsigned RVVOpc = 0; 3430 switch (Op.getOpcode()) { 3431 default: 3432 llvm_unreachable("Impossible opcode"); 3433 case ISD::FP_TO_SINT: 3434 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3435 break; 3436 case ISD::FP_TO_UINT: 3437 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3438 break; 3439 case ISD::SINT_TO_FP: 3440 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3441 break; 3442 case ISD::UINT_TO_FP: 3443 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3444 break; 3445 } 3446 3447 MVT ContainerVT, SrcContainerVT; 3448 // Derive the reference container type from the larger vector type. 3449 if (SrcEltSize > EltSize) { 3450 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3451 ContainerVT = 3452 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3453 } else { 3454 ContainerVT = getContainerForFixedLengthVector(VT); 3455 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3456 } 3457 3458 SDValue Mask, VL; 3459 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3460 3461 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3462 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3463 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3464 } 3465 case ISD::FP_TO_SINT_SAT: 3466 case ISD::FP_TO_UINT_SAT: 3467 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3468 case ISD::FTRUNC: 3469 case ISD::FCEIL: 3470 case ISD::FFLOOR: 3471 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3472 case ISD::FROUND: 3473 return lowerFROUND(Op, DAG); 3474 case ISD::VECREDUCE_ADD: 3475 case ISD::VECREDUCE_UMAX: 3476 case ISD::VECREDUCE_SMAX: 3477 case ISD::VECREDUCE_UMIN: 3478 case ISD::VECREDUCE_SMIN: 3479 return lowerVECREDUCE(Op, DAG); 3480 case ISD::VECREDUCE_AND: 3481 case ISD::VECREDUCE_OR: 3482 case ISD::VECREDUCE_XOR: 3483 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3484 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3485 return lowerVECREDUCE(Op, DAG); 3486 case ISD::VECREDUCE_FADD: 3487 case ISD::VECREDUCE_SEQ_FADD: 3488 case ISD::VECREDUCE_FMIN: 3489 case ISD::VECREDUCE_FMAX: 3490 return lowerFPVECREDUCE(Op, DAG); 3491 case ISD::VP_REDUCE_ADD: 3492 case ISD::VP_REDUCE_UMAX: 3493 case ISD::VP_REDUCE_SMAX: 3494 case ISD::VP_REDUCE_UMIN: 3495 case ISD::VP_REDUCE_SMIN: 3496 case ISD::VP_REDUCE_FADD: 3497 case ISD::VP_REDUCE_SEQ_FADD: 3498 case ISD::VP_REDUCE_FMIN: 3499 case ISD::VP_REDUCE_FMAX: 3500 return lowerVPREDUCE(Op, DAG); 3501 case ISD::VP_REDUCE_AND: 3502 case ISD::VP_REDUCE_OR: 3503 case ISD::VP_REDUCE_XOR: 3504 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3505 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3506 return lowerVPREDUCE(Op, DAG); 3507 case ISD::INSERT_SUBVECTOR: 3508 return lowerINSERT_SUBVECTOR(Op, DAG); 3509 case ISD::EXTRACT_SUBVECTOR: 3510 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3511 case ISD::STEP_VECTOR: 3512 return lowerSTEP_VECTOR(Op, DAG); 3513 case ISD::VECTOR_REVERSE: 3514 return lowerVECTOR_REVERSE(Op, DAG); 3515 case ISD::VECTOR_SPLICE: 3516 return lowerVECTOR_SPLICE(Op, DAG); 3517 case ISD::BUILD_VECTOR: 3518 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3519 case ISD::SPLAT_VECTOR: 3520 if (Op.getValueType().getVectorElementType() == MVT::i1) 3521 return lowerVectorMaskSplat(Op, DAG); 3522 return SDValue(); 3523 case ISD::VECTOR_SHUFFLE: 3524 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3525 case ISD::CONCAT_VECTORS: { 3526 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3527 // better than going through the stack, as the default expansion does. 3528 SDLoc DL(Op); 3529 MVT VT = Op.getSimpleValueType(); 3530 unsigned NumOpElts = 3531 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3532 SDValue Vec = DAG.getUNDEF(VT); 3533 for (const auto &OpIdx : enumerate(Op->ops())) { 3534 SDValue SubVec = OpIdx.value(); 3535 // Don't insert undef subvectors. 3536 if (SubVec.isUndef()) 3537 continue; 3538 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3539 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3540 } 3541 return Vec; 3542 } 3543 case ISD::LOAD: 3544 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3545 return V; 3546 if (Op.getValueType().isFixedLengthVector()) 3547 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3548 return Op; 3549 case ISD::STORE: 3550 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3551 return V; 3552 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3553 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3554 return Op; 3555 case ISD::MLOAD: 3556 case ISD::VP_LOAD: 3557 return lowerMaskedLoad(Op, DAG); 3558 case ISD::MSTORE: 3559 case ISD::VP_STORE: 3560 return lowerMaskedStore(Op, DAG); 3561 case ISD::SETCC: 3562 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3563 case ISD::ADD: 3564 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3565 case ISD::SUB: 3566 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3567 case ISD::MUL: 3568 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3569 case ISD::MULHS: 3570 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3571 case ISD::MULHU: 3572 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3573 case ISD::AND: 3574 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3575 RISCVISD::AND_VL); 3576 case ISD::OR: 3577 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3578 RISCVISD::OR_VL); 3579 case ISD::XOR: 3580 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3581 RISCVISD::XOR_VL); 3582 case ISD::SDIV: 3583 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3584 case ISD::SREM: 3585 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3586 case ISD::UDIV: 3587 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3588 case ISD::UREM: 3589 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3590 case ISD::SHL: 3591 case ISD::SRA: 3592 case ISD::SRL: 3593 if (Op.getSimpleValueType().isFixedLengthVector()) 3594 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3595 // This can be called for an i32 shift amount that needs to be promoted. 3596 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3597 "Unexpected custom legalisation"); 3598 return SDValue(); 3599 case ISD::SADDSAT: 3600 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3601 case ISD::UADDSAT: 3602 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3603 case ISD::SSUBSAT: 3604 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3605 case ISD::USUBSAT: 3606 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3607 case ISD::FADD: 3608 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3609 case ISD::FSUB: 3610 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3611 case ISD::FMUL: 3612 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3613 case ISD::FDIV: 3614 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3615 case ISD::FNEG: 3616 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3617 case ISD::FABS: 3618 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3619 case ISD::FSQRT: 3620 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3621 case ISD::FMA: 3622 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3623 case ISD::SMIN: 3624 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3625 case ISD::SMAX: 3626 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3627 case ISD::UMIN: 3628 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3629 case ISD::UMAX: 3630 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3631 case ISD::FMINNUM: 3632 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3633 case ISD::FMAXNUM: 3634 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3635 case ISD::ABS: 3636 return lowerABS(Op, DAG); 3637 case ISD::CTLZ_ZERO_UNDEF: 3638 case ISD::CTTZ_ZERO_UNDEF: 3639 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3640 case ISD::VSELECT: 3641 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3642 case ISD::FCOPYSIGN: 3643 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3644 case ISD::MGATHER: 3645 case ISD::VP_GATHER: 3646 return lowerMaskedGather(Op, DAG); 3647 case ISD::MSCATTER: 3648 case ISD::VP_SCATTER: 3649 return lowerMaskedScatter(Op, DAG); 3650 case ISD::FLT_ROUNDS_: 3651 return lowerGET_ROUNDING(Op, DAG); 3652 case ISD::SET_ROUNDING: 3653 return lowerSET_ROUNDING(Op, DAG); 3654 case ISD::VP_SELECT: 3655 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3656 case ISD::VP_MERGE: 3657 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3658 case ISD::VP_ADD: 3659 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3660 case ISD::VP_SUB: 3661 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3662 case ISD::VP_MUL: 3663 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3664 case ISD::VP_SDIV: 3665 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3666 case ISD::VP_UDIV: 3667 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3668 case ISD::VP_SREM: 3669 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3670 case ISD::VP_UREM: 3671 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3672 case ISD::VP_AND: 3673 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3674 case ISD::VP_OR: 3675 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3676 case ISD::VP_XOR: 3677 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3678 case ISD::VP_ASHR: 3679 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3680 case ISD::VP_LSHR: 3681 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3682 case ISD::VP_SHL: 3683 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3684 case ISD::VP_FADD: 3685 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3686 case ISD::VP_FSUB: 3687 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3688 case ISD::VP_FMUL: 3689 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3690 case ISD::VP_FDIV: 3691 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3692 case ISD::VP_FNEG: 3693 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3694 case ISD::VP_FMA: 3695 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3696 } 3697 } 3698 3699 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3700 SelectionDAG &DAG, unsigned Flags) { 3701 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3702 } 3703 3704 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3705 SelectionDAG &DAG, unsigned Flags) { 3706 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3707 Flags); 3708 } 3709 3710 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3711 SelectionDAG &DAG, unsigned Flags) { 3712 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3713 N->getOffset(), Flags); 3714 } 3715 3716 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3717 SelectionDAG &DAG, unsigned Flags) { 3718 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3719 } 3720 3721 template <class NodeTy> 3722 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3723 bool IsLocal) const { 3724 SDLoc DL(N); 3725 EVT Ty = getPointerTy(DAG.getDataLayout()); 3726 3727 if (isPositionIndependent()) { 3728 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3729 if (IsLocal) 3730 // Use PC-relative addressing to access the symbol. This generates the 3731 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3732 // %pcrel_lo(auipc)). 3733 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3734 3735 // Use PC-relative addressing to access the GOT for this symbol, then load 3736 // the address from the GOT. This generates the pattern (PseudoLA sym), 3737 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3738 SDValue Load = 3739 SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3740 MachineFunction &MF = DAG.getMachineFunction(); 3741 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3742 MachinePointerInfo::getGOT(MF), 3743 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3744 MachineMemOperand::MOInvariant, 3745 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3746 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3747 return Load; 3748 } 3749 3750 switch (getTargetMachine().getCodeModel()) { 3751 default: 3752 report_fatal_error("Unsupported code model for lowering"); 3753 case CodeModel::Small: { 3754 // Generate a sequence for accessing addresses within the first 2 GiB of 3755 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3756 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3757 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3758 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3759 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3760 } 3761 case CodeModel::Medium: { 3762 // Generate a sequence for accessing addresses within any 2GiB range within 3763 // the address space. This generates the pattern (PseudoLLA sym), which 3764 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3765 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3766 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3767 } 3768 } 3769 } 3770 3771 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>( 3772 GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3773 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>( 3774 BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3775 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>( 3776 ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3777 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>( 3778 JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const; 3779 3780 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3781 SelectionDAG &DAG) const { 3782 SDLoc DL(Op); 3783 EVT Ty = Op.getValueType(); 3784 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3785 int64_t Offset = N->getOffset(); 3786 MVT XLenVT = Subtarget.getXLenVT(); 3787 3788 const GlobalValue *GV = N->getGlobal(); 3789 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3790 SDValue Addr = getAddr(N, DAG, IsLocal); 3791 3792 // In order to maximise the opportunity for common subexpression elimination, 3793 // emit a separate ADD node for the global address offset instead of folding 3794 // it in the global address node. Later peephole optimisations may choose to 3795 // fold it back in when profitable. 3796 if (Offset != 0) 3797 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3798 DAG.getConstant(Offset, DL, XLenVT)); 3799 return Addr; 3800 } 3801 3802 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3803 SelectionDAG &DAG) const { 3804 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3805 3806 return getAddr(N, DAG); 3807 } 3808 3809 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3810 SelectionDAG &DAG) const { 3811 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3812 3813 return getAddr(N, DAG); 3814 } 3815 3816 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3817 SelectionDAG &DAG) const { 3818 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3819 3820 return getAddr(N, DAG); 3821 } 3822 3823 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3824 SelectionDAG &DAG, 3825 bool UseGOT) const { 3826 SDLoc DL(N); 3827 EVT Ty = getPointerTy(DAG.getDataLayout()); 3828 const GlobalValue *GV = N->getGlobal(); 3829 MVT XLenVT = Subtarget.getXLenVT(); 3830 3831 if (UseGOT) { 3832 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3833 // load the address from the GOT and add the thread pointer. This generates 3834 // the pattern (PseudoLA_TLS_IE sym), which expands to 3835 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3836 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3837 SDValue Load = 3838 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3839 MachineFunction &MF = DAG.getMachineFunction(); 3840 MachineMemOperand *MemOp = MF.getMachineMemOperand( 3841 MachinePointerInfo::getGOT(MF), 3842 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 3843 MachineMemOperand::MOInvariant, 3844 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); 3845 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp}); 3846 3847 // Add the thread pointer. 3848 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3849 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3850 } 3851 3852 // Generate a sequence for accessing the address relative to the thread 3853 // pointer, with the appropriate adjustment for the thread pointer offset. 3854 // This generates the pattern 3855 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3856 SDValue AddrHi = 3857 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3858 SDValue AddrAdd = 3859 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3860 SDValue AddrLo = 3861 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3862 3863 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3864 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3865 SDValue MNAdd = SDValue( 3866 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3867 0); 3868 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3869 } 3870 3871 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3872 SelectionDAG &DAG) const { 3873 SDLoc DL(N); 3874 EVT Ty = getPointerTy(DAG.getDataLayout()); 3875 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3876 const GlobalValue *GV = N->getGlobal(); 3877 3878 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3879 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3880 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3881 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3882 SDValue Load = 3883 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3884 3885 // Prepare argument list to generate call. 3886 ArgListTy Args; 3887 ArgListEntry Entry; 3888 Entry.Node = Load; 3889 Entry.Ty = CallTy; 3890 Args.push_back(Entry); 3891 3892 // Setup call to __tls_get_addr. 3893 TargetLowering::CallLoweringInfo CLI(DAG); 3894 CLI.setDebugLoc(DL) 3895 .setChain(DAG.getEntryNode()) 3896 .setLibCallee(CallingConv::C, CallTy, 3897 DAG.getExternalSymbol("__tls_get_addr", Ty), 3898 std::move(Args)); 3899 3900 return LowerCallTo(CLI).first; 3901 } 3902 3903 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3904 SelectionDAG &DAG) const { 3905 SDLoc DL(Op); 3906 EVT Ty = Op.getValueType(); 3907 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3908 int64_t Offset = N->getOffset(); 3909 MVT XLenVT = Subtarget.getXLenVT(); 3910 3911 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3912 3913 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3914 CallingConv::GHC) 3915 report_fatal_error("In GHC calling convention TLS is not supported"); 3916 3917 SDValue Addr; 3918 switch (Model) { 3919 case TLSModel::LocalExec: 3920 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3921 break; 3922 case TLSModel::InitialExec: 3923 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3924 break; 3925 case TLSModel::LocalDynamic: 3926 case TLSModel::GeneralDynamic: 3927 Addr = getDynamicTLSAddr(N, DAG); 3928 break; 3929 } 3930 3931 // In order to maximise the opportunity for common subexpression elimination, 3932 // emit a separate ADD node for the global address offset instead of folding 3933 // it in the global address node. Later peephole optimisations may choose to 3934 // fold it back in when profitable. 3935 if (Offset != 0) 3936 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3937 DAG.getConstant(Offset, DL, XLenVT)); 3938 return Addr; 3939 } 3940 3941 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3942 SDValue CondV = Op.getOperand(0); 3943 SDValue TrueV = Op.getOperand(1); 3944 SDValue FalseV = Op.getOperand(2); 3945 SDLoc DL(Op); 3946 MVT VT = Op.getSimpleValueType(); 3947 MVT XLenVT = Subtarget.getXLenVT(); 3948 3949 // Lower vector SELECTs to VSELECTs by splatting the condition. 3950 if (VT.isVector()) { 3951 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3952 SDValue CondSplat = VT.isScalableVector() 3953 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3954 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3955 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3956 } 3957 3958 // If the result type is XLenVT and CondV is the output of a SETCC node 3959 // which also operated on XLenVT inputs, then merge the SETCC node into the 3960 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3961 // compare+branch instructions. i.e.: 3962 // (select (setcc lhs, rhs, cc), truev, falsev) 3963 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3964 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3965 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3966 SDValue LHS = CondV.getOperand(0); 3967 SDValue RHS = CondV.getOperand(1); 3968 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3969 ISD::CondCode CCVal = CC->get(); 3970 3971 // Special case for a select of 2 constants that have a diffence of 1. 3972 // Normally this is done by DAGCombine, but if the select is introduced by 3973 // type legalization or op legalization, we miss it. Restricting to SETLT 3974 // case for now because that is what signed saturating add/sub need. 3975 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3976 // but we would probably want to swap the true/false values if the condition 3977 // is SETGE/SETLE to avoid an XORI. 3978 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3979 CCVal == ISD::SETLT) { 3980 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3981 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3982 if (TrueVal - 1 == FalseVal) 3983 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3984 if (TrueVal + 1 == FalseVal) 3985 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3986 } 3987 3988 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3989 3990 SDValue TargetCC = DAG.getCondCode(CCVal); 3991 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3992 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3993 } 3994 3995 // Otherwise: 3996 // (select condv, truev, falsev) 3997 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3998 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3999 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 4000 4001 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 4002 4003 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 4004 } 4005 4006 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 4007 SDValue CondV = Op.getOperand(1); 4008 SDLoc DL(Op); 4009 MVT XLenVT = Subtarget.getXLenVT(); 4010 4011 if (CondV.getOpcode() == ISD::SETCC && 4012 CondV.getOperand(0).getValueType() == XLenVT) { 4013 SDValue LHS = CondV.getOperand(0); 4014 SDValue RHS = CondV.getOperand(1); 4015 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 4016 4017 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4018 4019 SDValue TargetCC = DAG.getCondCode(CCVal); 4020 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4021 LHS, RHS, TargetCC, Op.getOperand(2)); 4022 } 4023 4024 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4025 CondV, DAG.getConstant(0, DL, XLenVT), 4026 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4027 } 4028 4029 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4030 MachineFunction &MF = DAG.getMachineFunction(); 4031 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4032 4033 SDLoc DL(Op); 4034 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4035 getPointerTy(MF.getDataLayout())); 4036 4037 // vastart just stores the address of the VarArgsFrameIndex slot into the 4038 // memory location argument. 4039 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4040 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4041 MachinePointerInfo(SV)); 4042 } 4043 4044 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4045 SelectionDAG &DAG) const { 4046 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4047 MachineFunction &MF = DAG.getMachineFunction(); 4048 MachineFrameInfo &MFI = MF.getFrameInfo(); 4049 MFI.setFrameAddressIsTaken(true); 4050 Register FrameReg = RI.getFrameRegister(MF); 4051 int XLenInBytes = Subtarget.getXLen() / 8; 4052 4053 EVT VT = Op.getValueType(); 4054 SDLoc DL(Op); 4055 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4056 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4057 while (Depth--) { 4058 int Offset = -(XLenInBytes * 2); 4059 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4060 DAG.getIntPtrConstant(Offset, DL)); 4061 FrameAddr = 4062 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4063 } 4064 return FrameAddr; 4065 } 4066 4067 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4068 SelectionDAG &DAG) const { 4069 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4070 MachineFunction &MF = DAG.getMachineFunction(); 4071 MachineFrameInfo &MFI = MF.getFrameInfo(); 4072 MFI.setReturnAddressIsTaken(true); 4073 MVT XLenVT = Subtarget.getXLenVT(); 4074 int XLenInBytes = Subtarget.getXLen() / 8; 4075 4076 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4077 return SDValue(); 4078 4079 EVT VT = Op.getValueType(); 4080 SDLoc DL(Op); 4081 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4082 if (Depth) { 4083 int Off = -XLenInBytes; 4084 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4085 SDValue Offset = DAG.getConstant(Off, DL, VT); 4086 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4087 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4088 MachinePointerInfo()); 4089 } 4090 4091 // Return the value of the return address register, marking it an implicit 4092 // live-in. 4093 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4094 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4095 } 4096 4097 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4098 SelectionDAG &DAG) const { 4099 SDLoc DL(Op); 4100 SDValue Lo = Op.getOperand(0); 4101 SDValue Hi = Op.getOperand(1); 4102 SDValue Shamt = Op.getOperand(2); 4103 EVT VT = Lo.getValueType(); 4104 4105 // if Shamt-XLEN < 0: // Shamt < XLEN 4106 // Lo = Lo << Shamt 4107 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4108 // else: 4109 // Lo = 0 4110 // Hi = Lo << (Shamt-XLEN) 4111 4112 SDValue Zero = DAG.getConstant(0, DL, VT); 4113 SDValue One = DAG.getConstant(1, DL, VT); 4114 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4115 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4116 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4117 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4118 4119 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4120 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4121 SDValue ShiftRightLo = 4122 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4123 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4124 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4125 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4126 4127 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4128 4129 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4130 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4131 4132 SDValue Parts[2] = {Lo, Hi}; 4133 return DAG.getMergeValues(Parts, DL); 4134 } 4135 4136 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4137 bool IsSRA) const { 4138 SDLoc DL(Op); 4139 SDValue Lo = Op.getOperand(0); 4140 SDValue Hi = Op.getOperand(1); 4141 SDValue Shamt = Op.getOperand(2); 4142 EVT VT = Lo.getValueType(); 4143 4144 // SRA expansion: 4145 // if Shamt-XLEN < 0: // Shamt < XLEN 4146 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4147 // Hi = Hi >>s Shamt 4148 // else: 4149 // Lo = Hi >>s (Shamt-XLEN); 4150 // Hi = Hi >>s (XLEN-1) 4151 // 4152 // SRL expansion: 4153 // if Shamt-XLEN < 0: // Shamt < XLEN 4154 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4155 // Hi = Hi >>u Shamt 4156 // else: 4157 // Lo = Hi >>u (Shamt-XLEN); 4158 // Hi = 0; 4159 4160 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4161 4162 SDValue Zero = DAG.getConstant(0, DL, VT); 4163 SDValue One = DAG.getConstant(1, DL, VT); 4164 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4165 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4166 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4167 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4168 4169 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4170 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4171 SDValue ShiftLeftHi = 4172 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4173 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4174 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4175 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4176 SDValue HiFalse = 4177 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4178 4179 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4180 4181 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4182 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4183 4184 SDValue Parts[2] = {Lo, Hi}; 4185 return DAG.getMergeValues(Parts, DL); 4186 } 4187 4188 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4189 // legal equivalently-sized i8 type, so we can use that as a go-between. 4190 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4191 SelectionDAG &DAG) const { 4192 SDLoc DL(Op); 4193 MVT VT = Op.getSimpleValueType(); 4194 SDValue SplatVal = Op.getOperand(0); 4195 // All-zeros or all-ones splats are handled specially. 4196 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4197 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4198 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4199 } 4200 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4201 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4202 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4203 } 4204 MVT XLenVT = Subtarget.getXLenVT(); 4205 assert(SplatVal.getValueType() == XLenVT && 4206 "Unexpected type for i1 splat value"); 4207 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4208 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4209 DAG.getConstant(1, DL, XLenVT)); 4210 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4211 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4212 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4213 } 4214 4215 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4216 // illegal (currently only vXi64 RV32). 4217 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4218 // them to VMV_V_X_VL. 4219 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4220 SelectionDAG &DAG) const { 4221 SDLoc DL(Op); 4222 MVT VecVT = Op.getSimpleValueType(); 4223 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4224 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4225 4226 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4227 SDValue Lo = Op.getOperand(0); 4228 SDValue Hi = Op.getOperand(1); 4229 4230 if (VecVT.isFixedLengthVector()) { 4231 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4232 SDLoc DL(Op); 4233 SDValue Mask, VL; 4234 std::tie(Mask, VL) = 4235 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4236 4237 SDValue Res = 4238 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4239 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4240 } 4241 4242 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4243 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4244 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4245 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4246 // node in order to try and match RVV vector/scalar instructions. 4247 if ((LoC >> 31) == HiC) 4248 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4249 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4250 } 4251 4252 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4253 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4254 isa<ConstantSDNode>(Hi.getOperand(1)) && 4255 Hi.getConstantOperandVal(1) == 31) 4256 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4257 DAG.getRegister(RISCV::X0, MVT::i32)); 4258 4259 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4260 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4261 DAG.getUNDEF(VecVT), Lo, Hi, 4262 DAG.getRegister(RISCV::X0, MVT::i32)); 4263 } 4264 4265 // Custom-lower extensions from mask vectors by using a vselect either with 1 4266 // for zero/any-extension or -1 for sign-extension: 4267 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4268 // Note that any-extension is lowered identically to zero-extension. 4269 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4270 int64_t ExtTrueVal) const { 4271 SDLoc DL(Op); 4272 MVT VecVT = Op.getSimpleValueType(); 4273 SDValue Src = Op.getOperand(0); 4274 // Only custom-lower extensions from mask types 4275 assert(Src.getValueType().isVector() && 4276 Src.getValueType().getVectorElementType() == MVT::i1); 4277 4278 if (VecVT.isScalableVector()) { 4279 SDValue SplatZero = DAG.getConstant(0, DL, VecVT); 4280 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); 4281 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4282 } 4283 4284 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4285 MVT I1ContainerVT = 4286 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4287 4288 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4289 4290 SDValue Mask, VL; 4291 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4292 4293 MVT XLenVT = Subtarget.getXLenVT(); 4294 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4295 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4296 4297 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4298 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4299 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4300 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4301 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4302 SplatTrueVal, SplatZero, VL); 4303 4304 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4305 } 4306 4307 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4308 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4309 MVT ExtVT = Op.getSimpleValueType(); 4310 // Only custom-lower extensions from fixed-length vector types. 4311 if (!ExtVT.isFixedLengthVector()) 4312 return Op; 4313 MVT VT = Op.getOperand(0).getSimpleValueType(); 4314 // Grab the canonical container type for the extended type. Infer the smaller 4315 // type from that to ensure the same number of vector elements, as we know 4316 // the LMUL will be sufficient to hold the smaller type. 4317 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4318 // Get the extended container type manually to ensure the same number of 4319 // vector elements between source and dest. 4320 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4321 ContainerExtVT.getVectorElementCount()); 4322 4323 SDValue Op1 = 4324 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4325 4326 SDLoc DL(Op); 4327 SDValue Mask, VL; 4328 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4329 4330 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4331 4332 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4333 } 4334 4335 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4336 // setcc operation: 4337 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4338 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4339 SelectionDAG &DAG) const { 4340 SDLoc DL(Op); 4341 EVT MaskVT = Op.getValueType(); 4342 // Only expect to custom-lower truncations to mask types 4343 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4344 "Unexpected type for vector mask lowering"); 4345 SDValue Src = Op.getOperand(0); 4346 MVT VecVT = Src.getSimpleValueType(); 4347 4348 // If this is a fixed vector, we need to convert it to a scalable vector. 4349 MVT ContainerVT = VecVT; 4350 if (VecVT.isFixedLengthVector()) { 4351 ContainerVT = getContainerForFixedLengthVector(VecVT); 4352 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4353 } 4354 4355 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4356 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4357 4358 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4359 DAG.getUNDEF(ContainerVT), SplatOne); 4360 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4361 DAG.getUNDEF(ContainerVT), SplatZero); 4362 4363 if (VecVT.isScalableVector()) { 4364 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4365 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4366 } 4367 4368 SDValue Mask, VL; 4369 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4370 4371 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4372 SDValue Trunc = 4373 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4374 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4375 DAG.getCondCode(ISD::SETNE), Mask, VL); 4376 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4377 } 4378 4379 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4380 // first position of a vector, and that vector is slid up to the insert index. 4381 // By limiting the active vector length to index+1 and merging with the 4382 // original vector (with an undisturbed tail policy for elements >= VL), we 4383 // achieve the desired result of leaving all elements untouched except the one 4384 // at VL-1, which is replaced with the desired value. 4385 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4386 SelectionDAG &DAG) const { 4387 SDLoc DL(Op); 4388 MVT VecVT = Op.getSimpleValueType(); 4389 SDValue Vec = Op.getOperand(0); 4390 SDValue Val = Op.getOperand(1); 4391 SDValue Idx = Op.getOperand(2); 4392 4393 if (VecVT.getVectorElementType() == MVT::i1) { 4394 // FIXME: For now we just promote to an i8 vector and insert into that, 4395 // but this is probably not optimal. 4396 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4397 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4398 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4399 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4400 } 4401 4402 MVT ContainerVT = VecVT; 4403 // If the operand is a fixed-length vector, convert to a scalable one. 4404 if (VecVT.isFixedLengthVector()) { 4405 ContainerVT = getContainerForFixedLengthVector(VecVT); 4406 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4407 } 4408 4409 MVT XLenVT = Subtarget.getXLenVT(); 4410 4411 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4412 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4413 // Even i64-element vectors on RV32 can be lowered without scalar 4414 // legalization if the most-significant 32 bits of the value are not affected 4415 // by the sign-extension of the lower 32 bits. 4416 // TODO: We could also catch sign extensions of a 32-bit value. 4417 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4418 const auto *CVal = cast<ConstantSDNode>(Val); 4419 if (isInt<32>(CVal->getSExtValue())) { 4420 IsLegalInsert = true; 4421 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4422 } 4423 } 4424 4425 SDValue Mask, VL; 4426 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4427 4428 SDValue ValInVec; 4429 4430 if (IsLegalInsert) { 4431 unsigned Opc = 4432 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4433 if (isNullConstant(Idx)) { 4434 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4435 if (!VecVT.isFixedLengthVector()) 4436 return Vec; 4437 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4438 } 4439 ValInVec = 4440 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4441 } else { 4442 // On RV32, i64-element vectors must be specially handled to place the 4443 // value at element 0, by using two vslide1up instructions in sequence on 4444 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4445 // this. 4446 SDValue One = DAG.getConstant(1, DL, XLenVT); 4447 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4448 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4449 MVT I32ContainerVT = 4450 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4451 SDValue I32Mask = 4452 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4453 // Limit the active VL to two. 4454 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4455 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4456 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4457 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4458 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4459 // First slide in the hi value, then the lo in underneath it. 4460 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4461 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4462 I32Mask, InsertI64VL); 4463 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4464 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4465 I32Mask, InsertI64VL); 4466 // Bitcast back to the right container type. 4467 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4468 } 4469 4470 // Now that the value is in a vector, slide it into position. 4471 SDValue InsertVL = 4472 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4473 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4474 ValInVec, Idx, Mask, InsertVL); 4475 if (!VecVT.isFixedLengthVector()) 4476 return Slideup; 4477 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4478 } 4479 4480 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4481 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4482 // types this is done using VMV_X_S to allow us to glean information about the 4483 // sign bits of the result. 4484 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4485 SelectionDAG &DAG) const { 4486 SDLoc DL(Op); 4487 SDValue Idx = Op.getOperand(1); 4488 SDValue Vec = Op.getOperand(0); 4489 EVT EltVT = Op.getValueType(); 4490 MVT VecVT = Vec.getSimpleValueType(); 4491 MVT XLenVT = Subtarget.getXLenVT(); 4492 4493 if (VecVT.getVectorElementType() == MVT::i1) { 4494 if (VecVT.isFixedLengthVector()) { 4495 unsigned NumElts = VecVT.getVectorNumElements(); 4496 if (NumElts >= 8) { 4497 MVT WideEltVT; 4498 unsigned WidenVecLen; 4499 SDValue ExtractElementIdx; 4500 SDValue ExtractBitIdx; 4501 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4502 MVT LargestEltVT = MVT::getIntegerVT( 4503 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4504 if (NumElts <= LargestEltVT.getSizeInBits()) { 4505 assert(isPowerOf2_32(NumElts) && 4506 "the number of elements should be power of 2"); 4507 WideEltVT = MVT::getIntegerVT(NumElts); 4508 WidenVecLen = 1; 4509 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4510 ExtractBitIdx = Idx; 4511 } else { 4512 WideEltVT = LargestEltVT; 4513 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4514 // extract element index = index / element width 4515 ExtractElementIdx = DAG.getNode( 4516 ISD::SRL, DL, XLenVT, Idx, 4517 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4518 // mask bit index = index % element width 4519 ExtractBitIdx = DAG.getNode( 4520 ISD::AND, DL, XLenVT, Idx, 4521 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4522 } 4523 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4524 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4525 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4526 Vec, ExtractElementIdx); 4527 // Extract the bit from GPR. 4528 SDValue ShiftRight = 4529 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4530 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4531 DAG.getConstant(1, DL, XLenVT)); 4532 } 4533 } 4534 // Otherwise, promote to an i8 vector and extract from that. 4535 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4536 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4537 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4538 } 4539 4540 // If this is a fixed vector, we need to convert it to a scalable vector. 4541 MVT ContainerVT = VecVT; 4542 if (VecVT.isFixedLengthVector()) { 4543 ContainerVT = getContainerForFixedLengthVector(VecVT); 4544 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4545 } 4546 4547 // If the index is 0, the vector is already in the right position. 4548 if (!isNullConstant(Idx)) { 4549 // Use a VL of 1 to avoid processing more elements than we need. 4550 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4551 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4552 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4553 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4554 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4555 } 4556 4557 if (!EltVT.isInteger()) { 4558 // Floating-point extracts are handled in TableGen. 4559 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4560 DAG.getConstant(0, DL, XLenVT)); 4561 } 4562 4563 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4564 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4565 } 4566 4567 // Some RVV intrinsics may claim that they want an integer operand to be 4568 // promoted or expanded. 4569 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4570 const RISCVSubtarget &Subtarget) { 4571 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4572 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4573 "Unexpected opcode"); 4574 4575 if (!Subtarget.hasVInstructions()) 4576 return SDValue(); 4577 4578 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4579 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4580 SDLoc DL(Op); 4581 4582 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4583 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4584 if (!II || !II->hasScalarOperand()) 4585 return SDValue(); 4586 4587 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4588 assert(SplatOp < Op.getNumOperands()); 4589 4590 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4591 SDValue &ScalarOp = Operands[SplatOp]; 4592 MVT OpVT = ScalarOp.getSimpleValueType(); 4593 MVT XLenVT = Subtarget.getXLenVT(); 4594 4595 // If this isn't a scalar, or its type is XLenVT we're done. 4596 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4597 return SDValue(); 4598 4599 // Simplest case is that the operand needs to be promoted to XLenVT. 4600 if (OpVT.bitsLT(XLenVT)) { 4601 // If the operand is a constant, sign extend to increase our chances 4602 // of being able to use a .vi instruction. ANY_EXTEND would become a 4603 // a zero extend and the simm5 check in isel would fail. 4604 // FIXME: Should we ignore the upper bits in isel instead? 4605 unsigned ExtOpc = 4606 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4607 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4608 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4609 } 4610 4611 // Use the previous operand to get the vXi64 VT. The result might be a mask 4612 // VT for compares. Using the previous operand assumes that the previous 4613 // operand will never have a smaller element size than a scalar operand and 4614 // that a widening operation never uses SEW=64. 4615 // NOTE: If this fails the below assert, we can probably just find the 4616 // element count from any operand or result and use it to construct the VT. 4617 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4618 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4619 4620 // The more complex case is when the scalar is larger than XLenVT. 4621 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4622 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4623 4624 // If this is a sign-extended 32-bit value, we can truncate it and rely on the 4625 // instruction to sign-extend since SEW>XLEN. 4626 if (DAG.ComputeNumSignBits(ScalarOp) > 32) { 4627 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); 4628 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4629 } 4630 4631 switch (IntNo) { 4632 case Intrinsic::riscv_vslide1up: 4633 case Intrinsic::riscv_vslide1down: 4634 case Intrinsic::riscv_vslide1up_mask: 4635 case Intrinsic::riscv_vslide1down_mask: { 4636 // We need to special case these when the scalar is larger than XLen. 4637 unsigned NumOps = Op.getNumOperands(); 4638 bool IsMasked = NumOps == 7; 4639 4640 // Convert the vector source to the equivalent nxvXi32 vector. 4641 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4642 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4643 4644 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4645 DAG.getConstant(0, DL, XLenVT)); 4646 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4647 DAG.getConstant(1, DL, XLenVT)); 4648 4649 // Double the VL since we halved SEW. 4650 SDValue AVL = getVLOperand(Op); 4651 SDValue I32VL; 4652 4653 // Optimize for constant AVL 4654 if (isa<ConstantSDNode>(AVL)) { 4655 unsigned EltSize = VT.getScalarSizeInBits(); 4656 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4657 4658 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4659 unsigned MaxVLMAX = 4660 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4661 4662 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4663 unsigned MinVLMAX = 4664 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4665 4666 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4667 if (AVLInt <= MinVLMAX) { 4668 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4669 } else if (AVLInt >= 2 * MaxVLMAX) { 4670 // Just set vl to VLMAX in this situation 4671 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4672 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4673 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4674 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4675 SDValue SETVLMAX = DAG.getTargetConstant( 4676 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4677 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4678 LMUL); 4679 } else { 4680 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4681 // is related to the hardware implementation. 4682 // So let the following code handle 4683 } 4684 } 4685 if (!I32VL) { 4686 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4687 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4688 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4689 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4690 SDValue SETVL = 4691 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4692 // Using vsetvli instruction to get actually used length which related to 4693 // the hardware implementation 4694 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4695 SEW, LMUL); 4696 I32VL = 4697 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4698 } 4699 4700 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4701 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4702 4703 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4704 // instructions. 4705 SDValue Passthru; 4706 if (IsMasked) 4707 Passthru = DAG.getUNDEF(I32VT); 4708 else 4709 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4710 4711 if (IntNo == Intrinsic::riscv_vslide1up || 4712 IntNo == Intrinsic::riscv_vslide1up_mask) { 4713 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4714 ScalarHi, I32Mask, I32VL); 4715 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4716 ScalarLo, I32Mask, I32VL); 4717 } else { 4718 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4719 ScalarLo, I32Mask, I32VL); 4720 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4721 ScalarHi, I32Mask, I32VL); 4722 } 4723 4724 // Convert back to nxvXi64. 4725 Vec = DAG.getBitcast(VT, Vec); 4726 4727 if (!IsMasked) 4728 return Vec; 4729 // Apply mask after the operation. 4730 SDValue Mask = Operands[NumOps - 3]; 4731 SDValue MaskedOff = Operands[1]; 4732 // Assume Policy operand is the last operand. 4733 uint64_t Policy = 4734 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4735 // We don't need to select maskedoff if it's undef. 4736 if (MaskedOff.isUndef()) 4737 return Vec; 4738 // TAMU 4739 if (Policy == RISCVII::TAIL_AGNOSTIC) 4740 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4741 AVL); 4742 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4743 // It's fine because vmerge does not care mask policy. 4744 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4745 AVL); 4746 } 4747 } 4748 4749 // We need to convert the scalar to a splat vector. 4750 SDValue VL = getVLOperand(Op); 4751 assert(VL.getValueType() == XLenVT); 4752 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4753 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4754 } 4755 4756 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4757 SelectionDAG &DAG) const { 4758 unsigned IntNo = Op.getConstantOperandVal(0); 4759 SDLoc DL(Op); 4760 MVT XLenVT = Subtarget.getXLenVT(); 4761 4762 switch (IntNo) { 4763 default: 4764 break; // Don't custom lower most intrinsics. 4765 case Intrinsic::thread_pointer: { 4766 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4767 return DAG.getRegister(RISCV::X4, PtrVT); 4768 } 4769 case Intrinsic::riscv_orc_b: 4770 case Intrinsic::riscv_brev8: { 4771 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4772 unsigned Opc = 4773 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4774 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4775 DAG.getConstant(7, DL, XLenVT)); 4776 } 4777 case Intrinsic::riscv_grev: 4778 case Intrinsic::riscv_gorc: { 4779 unsigned Opc = 4780 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4781 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4782 } 4783 case Intrinsic::riscv_zip: 4784 case Intrinsic::riscv_unzip: { 4785 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4786 // For i32 the immediate is 15. For i64 the immediate is 31. 4787 unsigned Opc = 4788 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4789 unsigned BitWidth = Op.getValueSizeInBits(); 4790 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4791 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4792 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4793 } 4794 case Intrinsic::riscv_shfl: 4795 case Intrinsic::riscv_unshfl: { 4796 unsigned Opc = 4797 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4798 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4799 } 4800 case Intrinsic::riscv_bcompress: 4801 case Intrinsic::riscv_bdecompress: { 4802 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4803 : RISCVISD::BDECOMPRESS; 4804 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4805 } 4806 case Intrinsic::riscv_bfp: 4807 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4808 Op.getOperand(2)); 4809 case Intrinsic::riscv_fsl: 4810 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4811 Op.getOperand(2), Op.getOperand(3)); 4812 case Intrinsic::riscv_fsr: 4813 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4814 Op.getOperand(2), Op.getOperand(3)); 4815 case Intrinsic::riscv_vmv_x_s: 4816 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4817 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4818 Op.getOperand(1)); 4819 case Intrinsic::riscv_vmv_v_x: 4820 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4821 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4822 Subtarget); 4823 case Intrinsic::riscv_vfmv_v_f: 4824 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4825 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4826 case Intrinsic::riscv_vmv_s_x: { 4827 SDValue Scalar = Op.getOperand(2); 4828 4829 if (Scalar.getValueType().bitsLE(XLenVT)) { 4830 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4831 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4832 Op.getOperand(1), Scalar, Op.getOperand(3)); 4833 } 4834 4835 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4836 4837 // This is an i64 value that lives in two scalar registers. We have to 4838 // insert this in a convoluted way. First we build vXi64 splat containing 4839 // the two values that we assemble using some bit math. Next we'll use 4840 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4841 // to merge element 0 from our splat into the source vector. 4842 // FIXME: This is probably not the best way to do this, but it is 4843 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4844 // point. 4845 // sw lo, (a0) 4846 // sw hi, 4(a0) 4847 // vlse vX, (a0) 4848 // 4849 // vid.v vVid 4850 // vmseq.vx mMask, vVid, 0 4851 // vmerge.vvm vDest, vSrc, vVal, mMask 4852 MVT VT = Op.getSimpleValueType(); 4853 SDValue Vec = Op.getOperand(1); 4854 SDValue VL = getVLOperand(Op); 4855 4856 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4857 if (Op.getOperand(1).isUndef()) 4858 return SplattedVal; 4859 SDValue SplattedIdx = 4860 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4861 DAG.getConstant(0, DL, MVT::i32), VL); 4862 4863 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4864 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4865 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4866 SDValue SelectCond = 4867 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4868 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4869 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4870 Vec, VL); 4871 } 4872 } 4873 4874 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4875 } 4876 4877 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4878 SelectionDAG &DAG) const { 4879 unsigned IntNo = Op.getConstantOperandVal(1); 4880 switch (IntNo) { 4881 default: 4882 break; 4883 case Intrinsic::riscv_masked_strided_load: { 4884 SDLoc DL(Op); 4885 MVT XLenVT = Subtarget.getXLenVT(); 4886 4887 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4888 // the selection of the masked intrinsics doesn't do this for us. 4889 SDValue Mask = Op.getOperand(5); 4890 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4891 4892 MVT VT = Op->getSimpleValueType(0); 4893 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4894 4895 SDValue PassThru = Op.getOperand(2); 4896 if (!IsUnmasked) { 4897 MVT MaskVT = 4898 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4899 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4900 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4901 } 4902 4903 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4904 4905 SDValue IntID = DAG.getTargetConstant( 4906 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4907 XLenVT); 4908 4909 auto *Load = cast<MemIntrinsicSDNode>(Op); 4910 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4911 if (IsUnmasked) 4912 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4913 else 4914 Ops.push_back(PassThru); 4915 Ops.push_back(Op.getOperand(3)); // Ptr 4916 Ops.push_back(Op.getOperand(4)); // Stride 4917 if (!IsUnmasked) 4918 Ops.push_back(Mask); 4919 Ops.push_back(VL); 4920 if (!IsUnmasked) { 4921 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4922 Ops.push_back(Policy); 4923 } 4924 4925 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4926 SDValue Result = 4927 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4928 Load->getMemoryVT(), Load->getMemOperand()); 4929 SDValue Chain = Result.getValue(1); 4930 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4931 return DAG.getMergeValues({Result, Chain}, DL); 4932 } 4933 case Intrinsic::riscv_seg2_load: 4934 case Intrinsic::riscv_seg3_load: 4935 case Intrinsic::riscv_seg4_load: 4936 case Intrinsic::riscv_seg5_load: 4937 case Intrinsic::riscv_seg6_load: 4938 case Intrinsic::riscv_seg7_load: 4939 case Intrinsic::riscv_seg8_load: { 4940 SDLoc DL(Op); 4941 static const Intrinsic::ID VlsegInts[7] = { 4942 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4943 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4944 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4945 Intrinsic::riscv_vlseg8}; 4946 unsigned NF = Op->getNumValues() - 1; 4947 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4948 MVT XLenVT = Subtarget.getXLenVT(); 4949 MVT VT = Op->getSimpleValueType(0); 4950 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4951 4952 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4953 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4954 auto *Load = cast<MemIntrinsicSDNode>(Op); 4955 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4956 ContainerVTs.push_back(MVT::Other); 4957 SDVTList VTs = DAG.getVTList(ContainerVTs); 4958 SDValue Result = 4959 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 4960 {Load->getChain(), IntID, Op.getOperand(2), VL}, 4961 Load->getMemoryVT(), Load->getMemOperand()); 4962 SmallVector<SDValue, 9> Results; 4963 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4964 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4965 DAG, Subtarget)); 4966 Results.push_back(Result.getValue(NF)); 4967 return DAG.getMergeValues(Results, DL); 4968 } 4969 } 4970 4971 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4972 } 4973 4974 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4975 SelectionDAG &DAG) const { 4976 unsigned IntNo = Op.getConstantOperandVal(1); 4977 switch (IntNo) { 4978 default: 4979 break; 4980 case Intrinsic::riscv_masked_strided_store: { 4981 SDLoc DL(Op); 4982 MVT XLenVT = Subtarget.getXLenVT(); 4983 4984 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4985 // the selection of the masked intrinsics doesn't do this for us. 4986 SDValue Mask = Op.getOperand(5); 4987 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4988 4989 SDValue Val = Op.getOperand(2); 4990 MVT VT = Val.getSimpleValueType(); 4991 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4992 4993 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4994 if (!IsUnmasked) { 4995 MVT MaskVT = 4996 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4997 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4998 } 4999 5000 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5001 5002 SDValue IntID = DAG.getTargetConstant( 5003 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5004 XLenVT); 5005 5006 auto *Store = cast<MemIntrinsicSDNode>(Op); 5007 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5008 Ops.push_back(Val); 5009 Ops.push_back(Op.getOperand(3)); // Ptr 5010 Ops.push_back(Op.getOperand(4)); // Stride 5011 if (!IsUnmasked) 5012 Ops.push_back(Mask); 5013 Ops.push_back(VL); 5014 5015 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5016 Ops, Store->getMemoryVT(), 5017 Store->getMemOperand()); 5018 } 5019 } 5020 5021 return SDValue(); 5022 } 5023 5024 static MVT getLMUL1VT(MVT VT) { 5025 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5026 "Unexpected vector MVT"); 5027 return MVT::getScalableVectorVT( 5028 VT.getVectorElementType(), 5029 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5030 } 5031 5032 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5033 switch (ISDOpcode) { 5034 default: 5035 llvm_unreachable("Unhandled reduction"); 5036 case ISD::VECREDUCE_ADD: 5037 return RISCVISD::VECREDUCE_ADD_VL; 5038 case ISD::VECREDUCE_UMAX: 5039 return RISCVISD::VECREDUCE_UMAX_VL; 5040 case ISD::VECREDUCE_SMAX: 5041 return RISCVISD::VECREDUCE_SMAX_VL; 5042 case ISD::VECREDUCE_UMIN: 5043 return RISCVISD::VECREDUCE_UMIN_VL; 5044 case ISD::VECREDUCE_SMIN: 5045 return RISCVISD::VECREDUCE_SMIN_VL; 5046 case ISD::VECREDUCE_AND: 5047 return RISCVISD::VECREDUCE_AND_VL; 5048 case ISD::VECREDUCE_OR: 5049 return RISCVISD::VECREDUCE_OR_VL; 5050 case ISD::VECREDUCE_XOR: 5051 return RISCVISD::VECREDUCE_XOR_VL; 5052 } 5053 } 5054 5055 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5056 SelectionDAG &DAG, 5057 bool IsVP) const { 5058 SDLoc DL(Op); 5059 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5060 MVT VecVT = Vec.getSimpleValueType(); 5061 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5062 Op.getOpcode() == ISD::VECREDUCE_OR || 5063 Op.getOpcode() == ISD::VECREDUCE_XOR || 5064 Op.getOpcode() == ISD::VP_REDUCE_AND || 5065 Op.getOpcode() == ISD::VP_REDUCE_OR || 5066 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5067 "Unexpected reduction lowering"); 5068 5069 MVT XLenVT = Subtarget.getXLenVT(); 5070 assert(Op.getValueType() == XLenVT && 5071 "Expected reduction output to be legalized to XLenVT"); 5072 5073 MVT ContainerVT = VecVT; 5074 if (VecVT.isFixedLengthVector()) { 5075 ContainerVT = getContainerForFixedLengthVector(VecVT); 5076 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5077 } 5078 5079 SDValue Mask, VL; 5080 if (IsVP) { 5081 Mask = Op.getOperand(2); 5082 VL = Op.getOperand(3); 5083 } else { 5084 std::tie(Mask, VL) = 5085 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5086 } 5087 5088 unsigned BaseOpc; 5089 ISD::CondCode CC; 5090 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5091 5092 switch (Op.getOpcode()) { 5093 default: 5094 llvm_unreachable("Unhandled reduction"); 5095 case ISD::VECREDUCE_AND: 5096 case ISD::VP_REDUCE_AND: { 5097 // vcpop ~x == 0 5098 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5099 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5100 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5101 CC = ISD::SETEQ; 5102 BaseOpc = ISD::AND; 5103 break; 5104 } 5105 case ISD::VECREDUCE_OR: 5106 case ISD::VP_REDUCE_OR: 5107 // vcpop x != 0 5108 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5109 CC = ISD::SETNE; 5110 BaseOpc = ISD::OR; 5111 break; 5112 case ISD::VECREDUCE_XOR: 5113 case ISD::VP_REDUCE_XOR: { 5114 // ((vcpop x) & 1) != 0 5115 SDValue One = DAG.getConstant(1, DL, XLenVT); 5116 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5117 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5118 CC = ISD::SETNE; 5119 BaseOpc = ISD::XOR; 5120 break; 5121 } 5122 } 5123 5124 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5125 5126 if (!IsVP) 5127 return SetCC; 5128 5129 // Now include the start value in the operation. 5130 // Note that we must return the start value when no elements are operated 5131 // upon. The vcpop instructions we've emitted in each case above will return 5132 // 0 for an inactive vector, and so we've already received the neutral value: 5133 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5134 // can simply include the start value. 5135 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5136 } 5137 5138 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5139 SelectionDAG &DAG) const { 5140 SDLoc DL(Op); 5141 SDValue Vec = Op.getOperand(0); 5142 EVT VecEVT = Vec.getValueType(); 5143 5144 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5145 5146 // Due to ordering in legalize types we may have a vector type that needs to 5147 // be split. Do that manually so we can get down to a legal type. 5148 while (getTypeAction(*DAG.getContext(), VecEVT) == 5149 TargetLowering::TypeSplitVector) { 5150 SDValue Lo, Hi; 5151 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5152 VecEVT = Lo.getValueType(); 5153 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5154 } 5155 5156 // TODO: The type may need to be widened rather than split. Or widened before 5157 // it can be split. 5158 if (!isTypeLegal(VecEVT)) 5159 return SDValue(); 5160 5161 MVT VecVT = VecEVT.getSimpleVT(); 5162 MVT VecEltVT = VecVT.getVectorElementType(); 5163 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5164 5165 MVT ContainerVT = VecVT; 5166 if (VecVT.isFixedLengthVector()) { 5167 ContainerVT = getContainerForFixedLengthVector(VecVT); 5168 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5169 } 5170 5171 MVT M1VT = getLMUL1VT(ContainerVT); 5172 MVT XLenVT = Subtarget.getXLenVT(); 5173 5174 SDValue Mask, VL; 5175 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5176 5177 SDValue NeutralElem = 5178 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5179 SDValue IdentitySplat = 5180 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5181 M1VT, DL, DAG, Subtarget); 5182 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5183 IdentitySplat, Mask, VL); 5184 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5185 DAG.getConstant(0, DL, XLenVT)); 5186 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5187 } 5188 5189 // Given a reduction op, this function returns the matching reduction opcode, 5190 // the vector SDValue and the scalar SDValue required to lower this to a 5191 // RISCVISD node. 5192 static std::tuple<unsigned, SDValue, SDValue> 5193 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5194 SDLoc DL(Op); 5195 auto Flags = Op->getFlags(); 5196 unsigned Opcode = Op.getOpcode(); 5197 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5198 switch (Opcode) { 5199 default: 5200 llvm_unreachable("Unhandled reduction"); 5201 case ISD::VECREDUCE_FADD: { 5202 // Use positive zero if we can. It is cheaper to materialize. 5203 SDValue Zero = 5204 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5205 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5206 } 5207 case ISD::VECREDUCE_SEQ_FADD: 5208 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5209 Op.getOperand(0)); 5210 case ISD::VECREDUCE_FMIN: 5211 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5212 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5213 case ISD::VECREDUCE_FMAX: 5214 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5215 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5216 } 5217 } 5218 5219 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5220 SelectionDAG &DAG) const { 5221 SDLoc DL(Op); 5222 MVT VecEltVT = Op.getSimpleValueType(); 5223 5224 unsigned RVVOpcode; 5225 SDValue VectorVal, ScalarVal; 5226 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5227 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5228 MVT VecVT = VectorVal.getSimpleValueType(); 5229 5230 MVT ContainerVT = VecVT; 5231 if (VecVT.isFixedLengthVector()) { 5232 ContainerVT = getContainerForFixedLengthVector(VecVT); 5233 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5234 } 5235 5236 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5237 MVT XLenVT = Subtarget.getXLenVT(); 5238 5239 SDValue Mask, VL; 5240 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5241 5242 SDValue ScalarSplat = 5243 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5244 M1VT, DL, DAG, Subtarget); 5245 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5246 VectorVal, ScalarSplat, Mask, VL); 5247 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5248 DAG.getConstant(0, DL, XLenVT)); 5249 } 5250 5251 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5252 switch (ISDOpcode) { 5253 default: 5254 llvm_unreachable("Unhandled reduction"); 5255 case ISD::VP_REDUCE_ADD: 5256 return RISCVISD::VECREDUCE_ADD_VL; 5257 case ISD::VP_REDUCE_UMAX: 5258 return RISCVISD::VECREDUCE_UMAX_VL; 5259 case ISD::VP_REDUCE_SMAX: 5260 return RISCVISD::VECREDUCE_SMAX_VL; 5261 case ISD::VP_REDUCE_UMIN: 5262 return RISCVISD::VECREDUCE_UMIN_VL; 5263 case ISD::VP_REDUCE_SMIN: 5264 return RISCVISD::VECREDUCE_SMIN_VL; 5265 case ISD::VP_REDUCE_AND: 5266 return RISCVISD::VECREDUCE_AND_VL; 5267 case ISD::VP_REDUCE_OR: 5268 return RISCVISD::VECREDUCE_OR_VL; 5269 case ISD::VP_REDUCE_XOR: 5270 return RISCVISD::VECREDUCE_XOR_VL; 5271 case ISD::VP_REDUCE_FADD: 5272 return RISCVISD::VECREDUCE_FADD_VL; 5273 case ISD::VP_REDUCE_SEQ_FADD: 5274 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5275 case ISD::VP_REDUCE_FMAX: 5276 return RISCVISD::VECREDUCE_FMAX_VL; 5277 case ISD::VP_REDUCE_FMIN: 5278 return RISCVISD::VECREDUCE_FMIN_VL; 5279 } 5280 } 5281 5282 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5283 SelectionDAG &DAG) const { 5284 SDLoc DL(Op); 5285 SDValue Vec = Op.getOperand(1); 5286 EVT VecEVT = Vec.getValueType(); 5287 5288 // TODO: The type may need to be widened rather than split. Or widened before 5289 // it can be split. 5290 if (!isTypeLegal(VecEVT)) 5291 return SDValue(); 5292 5293 MVT VecVT = VecEVT.getSimpleVT(); 5294 MVT VecEltVT = VecVT.getVectorElementType(); 5295 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5296 5297 MVT ContainerVT = VecVT; 5298 if (VecVT.isFixedLengthVector()) { 5299 ContainerVT = getContainerForFixedLengthVector(VecVT); 5300 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5301 } 5302 5303 SDValue VL = Op.getOperand(3); 5304 SDValue Mask = Op.getOperand(2); 5305 5306 MVT M1VT = getLMUL1VT(ContainerVT); 5307 MVT XLenVT = Subtarget.getXLenVT(); 5308 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5309 5310 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5311 DAG.getConstant(1, DL, XLenVT), M1VT, 5312 DL, DAG, Subtarget); 5313 SDValue Reduction = 5314 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5315 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5316 DAG.getConstant(0, DL, XLenVT)); 5317 if (!VecVT.isInteger()) 5318 return Elt0; 5319 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5320 } 5321 5322 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5323 SelectionDAG &DAG) const { 5324 SDValue Vec = Op.getOperand(0); 5325 SDValue SubVec = Op.getOperand(1); 5326 MVT VecVT = Vec.getSimpleValueType(); 5327 MVT SubVecVT = SubVec.getSimpleValueType(); 5328 5329 SDLoc DL(Op); 5330 MVT XLenVT = Subtarget.getXLenVT(); 5331 unsigned OrigIdx = Op.getConstantOperandVal(2); 5332 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5333 5334 // We don't have the ability to slide mask vectors up indexed by their i1 5335 // elements; the smallest we can do is i8. Often we are able to bitcast to 5336 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5337 // into a scalable one, we might not necessarily have enough scalable 5338 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5339 if (SubVecVT.getVectorElementType() == MVT::i1 && 5340 (OrigIdx != 0 || !Vec.isUndef())) { 5341 if (VecVT.getVectorMinNumElements() >= 8 && 5342 SubVecVT.getVectorMinNumElements() >= 8) { 5343 assert(OrigIdx % 8 == 0 && "Invalid index"); 5344 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5345 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5346 "Unexpected mask vector lowering"); 5347 OrigIdx /= 8; 5348 SubVecVT = 5349 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5350 SubVecVT.isScalableVector()); 5351 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5352 VecVT.isScalableVector()); 5353 Vec = DAG.getBitcast(VecVT, Vec); 5354 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5355 } else { 5356 // We can't slide this mask vector up indexed by its i1 elements. 5357 // This poses a problem when we wish to insert a scalable vector which 5358 // can't be re-expressed as a larger type. Just choose the slow path and 5359 // extend to a larger type, then truncate back down. 5360 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5361 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5362 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5363 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5364 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5365 Op.getOperand(2)); 5366 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5367 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5368 } 5369 } 5370 5371 // If the subvector vector is a fixed-length type, we cannot use subregister 5372 // manipulation to simplify the codegen; we don't know which register of a 5373 // LMUL group contains the specific subvector as we only know the minimum 5374 // register size. Therefore we must slide the vector group up the full 5375 // amount. 5376 if (SubVecVT.isFixedLengthVector()) { 5377 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5378 return Op; 5379 MVT ContainerVT = VecVT; 5380 if (VecVT.isFixedLengthVector()) { 5381 ContainerVT = getContainerForFixedLengthVector(VecVT); 5382 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5383 } 5384 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5385 DAG.getUNDEF(ContainerVT), SubVec, 5386 DAG.getConstant(0, DL, XLenVT)); 5387 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5388 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5389 return DAG.getBitcast(Op.getValueType(), SubVec); 5390 } 5391 SDValue Mask = 5392 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5393 // Set the vector length to only the number of elements we care about. Note 5394 // that for slideup this includes the offset. 5395 SDValue VL = 5396 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5397 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5398 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5399 SubVec, SlideupAmt, Mask, VL); 5400 if (VecVT.isFixedLengthVector()) 5401 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5402 return DAG.getBitcast(Op.getValueType(), Slideup); 5403 } 5404 5405 unsigned SubRegIdx, RemIdx; 5406 std::tie(SubRegIdx, RemIdx) = 5407 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5408 VecVT, SubVecVT, OrigIdx, TRI); 5409 5410 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5411 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5412 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5413 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5414 5415 // 1. If the Idx has been completely eliminated and this subvector's size is 5416 // a vector register or a multiple thereof, or the surrounding elements are 5417 // undef, then this is a subvector insert which naturally aligns to a vector 5418 // register. These can easily be handled using subregister manipulation. 5419 // 2. If the subvector is smaller than a vector register, then the insertion 5420 // must preserve the undisturbed elements of the register. We do this by 5421 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5422 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5423 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5424 // LMUL=1 type back into the larger vector (resolving to another subregister 5425 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5426 // to avoid allocating a large register group to hold our subvector. 5427 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5428 return Op; 5429 5430 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5431 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5432 // (in our case undisturbed). This means we can set up a subvector insertion 5433 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5434 // size of the subvector. 5435 MVT InterSubVT = VecVT; 5436 SDValue AlignedExtract = Vec; 5437 unsigned AlignedIdx = OrigIdx - RemIdx; 5438 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5439 InterSubVT = getLMUL1VT(VecVT); 5440 // Extract a subvector equal to the nearest full vector register type. This 5441 // should resolve to a EXTRACT_SUBREG instruction. 5442 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5443 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5444 } 5445 5446 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5447 // For scalable vectors this must be further multiplied by vscale. 5448 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5449 5450 SDValue Mask, VL; 5451 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5452 5453 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5454 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5455 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5456 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5457 5458 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5459 DAG.getUNDEF(InterSubVT), SubVec, 5460 DAG.getConstant(0, DL, XLenVT)); 5461 5462 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5463 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5464 5465 // If required, insert this subvector back into the correct vector register. 5466 // This should resolve to an INSERT_SUBREG instruction. 5467 if (VecVT.bitsGT(InterSubVT)) 5468 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5469 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5470 5471 // We might have bitcast from a mask type: cast back to the original type if 5472 // required. 5473 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5474 } 5475 5476 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5477 SelectionDAG &DAG) const { 5478 SDValue Vec = Op.getOperand(0); 5479 MVT SubVecVT = Op.getSimpleValueType(); 5480 MVT VecVT = Vec.getSimpleValueType(); 5481 5482 SDLoc DL(Op); 5483 MVT XLenVT = Subtarget.getXLenVT(); 5484 unsigned OrigIdx = Op.getConstantOperandVal(1); 5485 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5486 5487 // We don't have the ability to slide mask vectors down indexed by their i1 5488 // elements; the smallest we can do is i8. Often we are able to bitcast to 5489 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5490 // from a scalable one, we might not necessarily have enough scalable 5491 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5492 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5493 if (VecVT.getVectorMinNumElements() >= 8 && 5494 SubVecVT.getVectorMinNumElements() >= 8) { 5495 assert(OrigIdx % 8 == 0 && "Invalid index"); 5496 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5497 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5498 "Unexpected mask vector lowering"); 5499 OrigIdx /= 8; 5500 SubVecVT = 5501 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5502 SubVecVT.isScalableVector()); 5503 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5504 VecVT.isScalableVector()); 5505 Vec = DAG.getBitcast(VecVT, Vec); 5506 } else { 5507 // We can't slide this mask vector down, indexed by its i1 elements. 5508 // This poses a problem when we wish to extract a scalable vector which 5509 // can't be re-expressed as a larger type. Just choose the slow path and 5510 // extend to a larger type, then truncate back down. 5511 // TODO: We could probably improve this when extracting certain fixed 5512 // from fixed, where we can extract as i8 and shift the correct element 5513 // right to reach the desired subvector? 5514 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5515 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5516 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5517 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5518 Op.getOperand(1)); 5519 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5520 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5521 } 5522 } 5523 5524 // If the subvector vector is a fixed-length type, we cannot use subregister 5525 // manipulation to simplify the codegen; we don't know which register of a 5526 // LMUL group contains the specific subvector as we only know the minimum 5527 // register size. Therefore we must slide the vector group down the full 5528 // amount. 5529 if (SubVecVT.isFixedLengthVector()) { 5530 // With an index of 0 this is a cast-like subvector, which can be performed 5531 // with subregister operations. 5532 if (OrigIdx == 0) 5533 return Op; 5534 MVT ContainerVT = VecVT; 5535 if (VecVT.isFixedLengthVector()) { 5536 ContainerVT = getContainerForFixedLengthVector(VecVT); 5537 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5538 } 5539 SDValue Mask = 5540 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5541 // Set the vector length to only the number of elements we care about. This 5542 // avoids sliding down elements we're going to discard straight away. 5543 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5544 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5545 SDValue Slidedown = 5546 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5547 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5548 // Now we can use a cast-like subvector extract to get the result. 5549 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5550 DAG.getConstant(0, DL, XLenVT)); 5551 return DAG.getBitcast(Op.getValueType(), Slidedown); 5552 } 5553 5554 unsigned SubRegIdx, RemIdx; 5555 std::tie(SubRegIdx, RemIdx) = 5556 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5557 VecVT, SubVecVT, OrigIdx, TRI); 5558 5559 // If the Idx has been completely eliminated then this is a subvector extract 5560 // which naturally aligns to a vector register. These can easily be handled 5561 // using subregister manipulation. 5562 if (RemIdx == 0) 5563 return Op; 5564 5565 // Else we must shift our vector register directly to extract the subvector. 5566 // Do this using VSLIDEDOWN. 5567 5568 // If the vector type is an LMUL-group type, extract a subvector equal to the 5569 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5570 // instruction. 5571 MVT InterSubVT = VecVT; 5572 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5573 InterSubVT = getLMUL1VT(VecVT); 5574 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5575 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5576 } 5577 5578 // Slide this vector register down by the desired number of elements in order 5579 // to place the desired subvector starting at element 0. 5580 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5581 // For scalable vectors this must be further multiplied by vscale. 5582 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5583 5584 SDValue Mask, VL; 5585 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5586 SDValue Slidedown = 5587 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5588 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5589 5590 // Now the vector is in the right position, extract our final subvector. This 5591 // should resolve to a COPY. 5592 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5593 DAG.getConstant(0, DL, XLenVT)); 5594 5595 // We might have bitcast from a mask type: cast back to the original type if 5596 // required. 5597 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5598 } 5599 5600 // Lower step_vector to the vid instruction. Any non-identity step value must 5601 // be accounted for my manual expansion. 5602 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5603 SelectionDAG &DAG) const { 5604 SDLoc DL(Op); 5605 MVT VT = Op.getSimpleValueType(); 5606 MVT XLenVT = Subtarget.getXLenVT(); 5607 SDValue Mask, VL; 5608 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5609 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5610 uint64_t StepValImm = Op.getConstantOperandVal(0); 5611 if (StepValImm != 1) { 5612 if (isPowerOf2_64(StepValImm)) { 5613 SDValue StepVal = 5614 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5615 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5616 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5617 } else { 5618 SDValue StepVal = lowerScalarSplat( 5619 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5620 VL, VT, DL, DAG, Subtarget); 5621 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5622 } 5623 } 5624 return StepVec; 5625 } 5626 5627 // Implement vector_reverse using vrgather.vv with indices determined by 5628 // subtracting the id of each element from (VLMAX-1). This will convert 5629 // the indices like so: 5630 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5631 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5632 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5633 SelectionDAG &DAG) const { 5634 SDLoc DL(Op); 5635 MVT VecVT = Op.getSimpleValueType(); 5636 unsigned EltSize = VecVT.getScalarSizeInBits(); 5637 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5638 5639 unsigned MaxVLMAX = 0; 5640 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5641 if (VectorBitsMax != 0) 5642 MaxVLMAX = 5643 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5644 5645 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5646 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5647 5648 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5649 // to use vrgatherei16.vv. 5650 // TODO: It's also possible to use vrgatherei16.vv for other types to 5651 // decrease register width for the index calculation. 5652 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5653 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5654 // Reverse each half, then reassemble them in reverse order. 5655 // NOTE: It's also possible that after splitting that VLMAX no longer 5656 // requires vrgatherei16.vv. 5657 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5658 SDValue Lo, Hi; 5659 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5660 EVT LoVT, HiVT; 5661 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5662 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5663 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5664 // Reassemble the low and high pieces reversed. 5665 // FIXME: This is a CONCAT_VECTORS. 5666 SDValue Res = 5667 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5668 DAG.getIntPtrConstant(0, DL)); 5669 return DAG.getNode( 5670 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5671 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5672 } 5673 5674 // Just promote the int type to i16 which will double the LMUL. 5675 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5676 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5677 } 5678 5679 MVT XLenVT = Subtarget.getXLenVT(); 5680 SDValue Mask, VL; 5681 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5682 5683 // Calculate VLMAX-1 for the desired SEW. 5684 unsigned MinElts = VecVT.getVectorMinNumElements(); 5685 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5686 DAG.getConstant(MinElts, DL, XLenVT)); 5687 SDValue VLMinus1 = 5688 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5689 5690 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5691 bool IsRV32E64 = 5692 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5693 SDValue SplatVL; 5694 if (!IsRV32E64) 5695 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5696 else 5697 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5698 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5699 5700 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5701 SDValue Indices = 5702 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5703 5704 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5705 } 5706 5707 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5708 SelectionDAG &DAG) const { 5709 SDLoc DL(Op); 5710 SDValue V1 = Op.getOperand(0); 5711 SDValue V2 = Op.getOperand(1); 5712 MVT XLenVT = Subtarget.getXLenVT(); 5713 MVT VecVT = Op.getSimpleValueType(); 5714 5715 unsigned MinElts = VecVT.getVectorMinNumElements(); 5716 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5717 DAG.getConstant(MinElts, DL, XLenVT)); 5718 5719 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5720 SDValue DownOffset, UpOffset; 5721 if (ImmValue >= 0) { 5722 // The operand is a TargetConstant, we need to rebuild it as a regular 5723 // constant. 5724 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5725 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5726 } else { 5727 // The operand is a TargetConstant, we need to rebuild it as a regular 5728 // constant rather than negating the original operand. 5729 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5730 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5731 } 5732 5733 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5734 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5735 5736 SDValue SlideDown = 5737 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5738 DownOffset, TrueMask, UpOffset); 5739 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5740 TrueMask, 5741 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5742 } 5743 5744 SDValue 5745 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5746 SelectionDAG &DAG) const { 5747 SDLoc DL(Op); 5748 auto *Load = cast<LoadSDNode>(Op); 5749 5750 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5751 Load->getMemoryVT(), 5752 *Load->getMemOperand()) && 5753 "Expecting a correctly-aligned load"); 5754 5755 MVT VT = Op.getSimpleValueType(); 5756 MVT XLenVT = Subtarget.getXLenVT(); 5757 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5758 5759 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5760 5761 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5762 SDValue IntID = DAG.getTargetConstant( 5763 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5764 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5765 if (!IsMaskOp) 5766 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5767 Ops.push_back(Load->getBasePtr()); 5768 Ops.push_back(VL); 5769 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5770 SDValue NewLoad = 5771 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5772 Load->getMemoryVT(), Load->getMemOperand()); 5773 5774 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5775 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5776 } 5777 5778 SDValue 5779 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5780 SelectionDAG &DAG) const { 5781 SDLoc DL(Op); 5782 auto *Store = cast<StoreSDNode>(Op); 5783 5784 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5785 Store->getMemoryVT(), 5786 *Store->getMemOperand()) && 5787 "Expecting a correctly-aligned store"); 5788 5789 SDValue StoreVal = Store->getValue(); 5790 MVT VT = StoreVal.getSimpleValueType(); 5791 MVT XLenVT = Subtarget.getXLenVT(); 5792 5793 // If the size less than a byte, we need to pad with zeros to make a byte. 5794 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5795 VT = MVT::v8i1; 5796 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5797 DAG.getConstant(0, DL, VT), StoreVal, 5798 DAG.getIntPtrConstant(0, DL)); 5799 } 5800 5801 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5802 5803 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5804 5805 SDValue NewValue = 5806 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5807 5808 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5809 SDValue IntID = DAG.getTargetConstant( 5810 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5811 return DAG.getMemIntrinsicNode( 5812 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5813 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5814 Store->getMemoryVT(), Store->getMemOperand()); 5815 } 5816 5817 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5818 SelectionDAG &DAG) const { 5819 SDLoc DL(Op); 5820 MVT VT = Op.getSimpleValueType(); 5821 5822 const auto *MemSD = cast<MemSDNode>(Op); 5823 EVT MemVT = MemSD->getMemoryVT(); 5824 MachineMemOperand *MMO = MemSD->getMemOperand(); 5825 SDValue Chain = MemSD->getChain(); 5826 SDValue BasePtr = MemSD->getBasePtr(); 5827 5828 SDValue Mask, PassThru, VL; 5829 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5830 Mask = VPLoad->getMask(); 5831 PassThru = DAG.getUNDEF(VT); 5832 VL = VPLoad->getVectorLength(); 5833 } else { 5834 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5835 Mask = MLoad->getMask(); 5836 PassThru = MLoad->getPassThru(); 5837 } 5838 5839 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5840 5841 MVT XLenVT = Subtarget.getXLenVT(); 5842 5843 MVT ContainerVT = VT; 5844 if (VT.isFixedLengthVector()) { 5845 ContainerVT = getContainerForFixedLengthVector(VT); 5846 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5847 if (!IsUnmasked) { 5848 MVT MaskVT = 5849 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5850 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5851 } 5852 } 5853 5854 if (!VL) 5855 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5856 5857 unsigned IntID = 5858 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5859 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5860 if (IsUnmasked) 5861 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5862 else 5863 Ops.push_back(PassThru); 5864 Ops.push_back(BasePtr); 5865 if (!IsUnmasked) 5866 Ops.push_back(Mask); 5867 Ops.push_back(VL); 5868 if (!IsUnmasked) 5869 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5870 5871 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5872 5873 SDValue Result = 5874 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5875 Chain = Result.getValue(1); 5876 5877 if (VT.isFixedLengthVector()) 5878 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5879 5880 return DAG.getMergeValues({Result, Chain}, DL); 5881 } 5882 5883 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5884 SelectionDAG &DAG) const { 5885 SDLoc DL(Op); 5886 5887 const auto *MemSD = cast<MemSDNode>(Op); 5888 EVT MemVT = MemSD->getMemoryVT(); 5889 MachineMemOperand *MMO = MemSD->getMemOperand(); 5890 SDValue Chain = MemSD->getChain(); 5891 SDValue BasePtr = MemSD->getBasePtr(); 5892 SDValue Val, Mask, VL; 5893 5894 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5895 Val = VPStore->getValue(); 5896 Mask = VPStore->getMask(); 5897 VL = VPStore->getVectorLength(); 5898 } else { 5899 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5900 Val = MStore->getValue(); 5901 Mask = MStore->getMask(); 5902 } 5903 5904 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5905 5906 MVT VT = Val.getSimpleValueType(); 5907 MVT XLenVT = Subtarget.getXLenVT(); 5908 5909 MVT ContainerVT = VT; 5910 if (VT.isFixedLengthVector()) { 5911 ContainerVT = getContainerForFixedLengthVector(VT); 5912 5913 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5914 if (!IsUnmasked) { 5915 MVT MaskVT = 5916 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5917 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5918 } 5919 } 5920 5921 if (!VL) 5922 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5923 5924 unsigned IntID = 5925 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5926 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5927 Ops.push_back(Val); 5928 Ops.push_back(BasePtr); 5929 if (!IsUnmasked) 5930 Ops.push_back(Mask); 5931 Ops.push_back(VL); 5932 5933 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5934 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5935 } 5936 5937 SDValue 5938 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5939 SelectionDAG &DAG) const { 5940 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5941 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5942 5943 MVT VT = Op.getSimpleValueType(); 5944 5945 SDValue Op1 = 5946 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5947 SDValue Op2 = 5948 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5949 5950 SDLoc DL(Op); 5951 SDValue VL = 5952 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5953 5954 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5955 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5956 5957 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5958 Op.getOperand(2), Mask, VL); 5959 5960 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5961 } 5962 5963 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5964 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5965 MVT VT = Op.getSimpleValueType(); 5966 5967 if (VT.getVectorElementType() == MVT::i1) 5968 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5969 5970 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5971 } 5972 5973 SDValue 5974 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5975 SelectionDAG &DAG) const { 5976 unsigned Opc; 5977 switch (Op.getOpcode()) { 5978 default: llvm_unreachable("Unexpected opcode!"); 5979 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5980 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5981 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5982 } 5983 5984 return lowerToScalableOp(Op, DAG, Opc); 5985 } 5986 5987 // Lower vector ABS to smax(X, sub(0, X)). 5988 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5989 SDLoc DL(Op); 5990 MVT VT = Op.getSimpleValueType(); 5991 SDValue X = Op.getOperand(0); 5992 5993 assert(VT.isFixedLengthVector() && "Unexpected type"); 5994 5995 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5996 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5997 5998 SDValue Mask, VL; 5999 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6000 6001 SDValue SplatZero = DAG.getNode( 6002 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6003 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6004 SDValue NegX = 6005 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6006 SDValue Max = 6007 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6008 6009 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6010 } 6011 6012 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6013 SDValue Op, SelectionDAG &DAG) const { 6014 SDLoc DL(Op); 6015 MVT VT = Op.getSimpleValueType(); 6016 SDValue Mag = Op.getOperand(0); 6017 SDValue Sign = Op.getOperand(1); 6018 assert(Mag.getValueType() == Sign.getValueType() && 6019 "Can only handle COPYSIGN with matching types."); 6020 6021 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6022 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6023 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6024 6025 SDValue Mask, VL; 6026 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6027 6028 SDValue CopySign = 6029 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6030 6031 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6032 } 6033 6034 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6035 SDValue Op, SelectionDAG &DAG) const { 6036 MVT VT = Op.getSimpleValueType(); 6037 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6038 6039 MVT I1ContainerVT = 6040 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6041 6042 SDValue CC = 6043 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6044 SDValue Op1 = 6045 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6046 SDValue Op2 = 6047 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6048 6049 SDLoc DL(Op); 6050 SDValue Mask, VL; 6051 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6052 6053 SDValue Select = 6054 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6055 6056 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6057 } 6058 6059 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6060 unsigned NewOpc, 6061 bool HasMask) const { 6062 MVT VT = Op.getSimpleValueType(); 6063 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6064 6065 // Create list of operands by converting existing ones to scalable types. 6066 SmallVector<SDValue, 6> Ops; 6067 for (const SDValue &V : Op->op_values()) { 6068 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6069 6070 // Pass through non-vector operands. 6071 if (!V.getValueType().isVector()) { 6072 Ops.push_back(V); 6073 continue; 6074 } 6075 6076 // "cast" fixed length vector to a scalable vector. 6077 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6078 "Only fixed length vectors are supported!"); 6079 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6080 } 6081 6082 SDLoc DL(Op); 6083 SDValue Mask, VL; 6084 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6085 if (HasMask) 6086 Ops.push_back(Mask); 6087 Ops.push_back(VL); 6088 6089 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6090 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6091 } 6092 6093 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6094 // * Operands of each node are assumed to be in the same order. 6095 // * The EVL operand is promoted from i32 to i64 on RV64. 6096 // * Fixed-length vectors are converted to their scalable-vector container 6097 // types. 6098 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6099 unsigned RISCVISDOpc) const { 6100 SDLoc DL(Op); 6101 MVT VT = Op.getSimpleValueType(); 6102 SmallVector<SDValue, 4> Ops; 6103 6104 for (const auto &OpIdx : enumerate(Op->ops())) { 6105 SDValue V = OpIdx.value(); 6106 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6107 // Pass through operands which aren't fixed-length vectors. 6108 if (!V.getValueType().isFixedLengthVector()) { 6109 Ops.push_back(V); 6110 continue; 6111 } 6112 // "cast" fixed length vector to a scalable vector. 6113 MVT OpVT = V.getSimpleValueType(); 6114 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6115 assert(useRVVForFixedLengthVectorVT(OpVT) && 6116 "Only fixed length vectors are supported!"); 6117 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6118 } 6119 6120 if (!VT.isFixedLengthVector()) 6121 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6122 6123 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6124 6125 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6126 6127 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6128 } 6129 6130 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6131 unsigned MaskOpc, 6132 unsigned VecOpc) const { 6133 MVT VT = Op.getSimpleValueType(); 6134 if (VT.getVectorElementType() != MVT::i1) 6135 return lowerVPOp(Op, DAG, VecOpc); 6136 6137 // It is safe to drop mask parameter as masked-off elements are undef. 6138 SDValue Op1 = Op->getOperand(0); 6139 SDValue Op2 = Op->getOperand(1); 6140 SDValue VL = Op->getOperand(3); 6141 6142 MVT ContainerVT = VT; 6143 const bool IsFixed = VT.isFixedLengthVector(); 6144 if (IsFixed) { 6145 ContainerVT = getContainerForFixedLengthVector(VT); 6146 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6147 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6148 } 6149 6150 SDLoc DL(Op); 6151 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6152 if (!IsFixed) 6153 return Val; 6154 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6155 } 6156 6157 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6158 // matched to a RVV indexed load. The RVV indexed load instructions only 6159 // support the "unsigned unscaled" addressing mode; indices are implicitly 6160 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6161 // signed or scaled indexing is extended to the XLEN value type and scaled 6162 // accordingly. 6163 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6164 SelectionDAG &DAG) const { 6165 SDLoc DL(Op); 6166 MVT VT = Op.getSimpleValueType(); 6167 6168 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6169 EVT MemVT = MemSD->getMemoryVT(); 6170 MachineMemOperand *MMO = MemSD->getMemOperand(); 6171 SDValue Chain = MemSD->getChain(); 6172 SDValue BasePtr = MemSD->getBasePtr(); 6173 6174 ISD::LoadExtType LoadExtType; 6175 SDValue Index, Mask, PassThru, VL; 6176 6177 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6178 Index = VPGN->getIndex(); 6179 Mask = VPGN->getMask(); 6180 PassThru = DAG.getUNDEF(VT); 6181 VL = VPGN->getVectorLength(); 6182 // VP doesn't support extending loads. 6183 LoadExtType = ISD::NON_EXTLOAD; 6184 } else { 6185 // Else it must be a MGATHER. 6186 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6187 Index = MGN->getIndex(); 6188 Mask = MGN->getMask(); 6189 PassThru = MGN->getPassThru(); 6190 LoadExtType = MGN->getExtensionType(); 6191 } 6192 6193 MVT IndexVT = Index.getSimpleValueType(); 6194 MVT XLenVT = Subtarget.getXLenVT(); 6195 6196 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6197 "Unexpected VTs!"); 6198 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6199 // Targets have to explicitly opt-in for extending vector loads. 6200 assert(LoadExtType == ISD::NON_EXTLOAD && 6201 "Unexpected extending MGATHER/VP_GATHER"); 6202 (void)LoadExtType; 6203 6204 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6205 // the selection of the masked intrinsics doesn't do this for us. 6206 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6207 6208 MVT ContainerVT = VT; 6209 if (VT.isFixedLengthVector()) { 6210 // We need to use the larger of the result and index type to determine the 6211 // scalable type to use so we don't increase LMUL for any operand/result. 6212 if (VT.bitsGE(IndexVT)) { 6213 ContainerVT = getContainerForFixedLengthVector(VT); 6214 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6215 ContainerVT.getVectorElementCount()); 6216 } else { 6217 IndexVT = getContainerForFixedLengthVector(IndexVT); 6218 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6219 IndexVT.getVectorElementCount()); 6220 } 6221 6222 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6223 6224 if (!IsUnmasked) { 6225 MVT MaskVT = 6226 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6227 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6228 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6229 } 6230 } 6231 6232 if (!VL) 6233 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6234 6235 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6236 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6237 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6238 VL); 6239 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6240 TrueMask, VL); 6241 } 6242 6243 unsigned IntID = 6244 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6245 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6246 if (IsUnmasked) 6247 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6248 else 6249 Ops.push_back(PassThru); 6250 Ops.push_back(BasePtr); 6251 Ops.push_back(Index); 6252 if (!IsUnmasked) 6253 Ops.push_back(Mask); 6254 Ops.push_back(VL); 6255 if (!IsUnmasked) 6256 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6257 6258 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6259 SDValue Result = 6260 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6261 Chain = Result.getValue(1); 6262 6263 if (VT.isFixedLengthVector()) 6264 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6265 6266 return DAG.getMergeValues({Result, Chain}, DL); 6267 } 6268 6269 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6270 // matched to a RVV indexed store. The RVV indexed store instructions only 6271 // support the "unsigned unscaled" addressing mode; indices are implicitly 6272 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6273 // signed or scaled indexing is extended to the XLEN value type and scaled 6274 // accordingly. 6275 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6276 SelectionDAG &DAG) const { 6277 SDLoc DL(Op); 6278 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6279 EVT MemVT = MemSD->getMemoryVT(); 6280 MachineMemOperand *MMO = MemSD->getMemOperand(); 6281 SDValue Chain = MemSD->getChain(); 6282 SDValue BasePtr = MemSD->getBasePtr(); 6283 6284 bool IsTruncatingStore = false; 6285 SDValue Index, Mask, Val, VL; 6286 6287 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6288 Index = VPSN->getIndex(); 6289 Mask = VPSN->getMask(); 6290 Val = VPSN->getValue(); 6291 VL = VPSN->getVectorLength(); 6292 // VP doesn't support truncating stores. 6293 IsTruncatingStore = false; 6294 } else { 6295 // Else it must be a MSCATTER. 6296 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6297 Index = MSN->getIndex(); 6298 Mask = MSN->getMask(); 6299 Val = MSN->getValue(); 6300 IsTruncatingStore = MSN->isTruncatingStore(); 6301 } 6302 6303 MVT VT = Val.getSimpleValueType(); 6304 MVT IndexVT = Index.getSimpleValueType(); 6305 MVT XLenVT = Subtarget.getXLenVT(); 6306 6307 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6308 "Unexpected VTs!"); 6309 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6310 // Targets have to explicitly opt-in for extending vector loads and 6311 // truncating vector stores. 6312 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6313 (void)IsTruncatingStore; 6314 6315 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6316 // the selection of the masked intrinsics doesn't do this for us. 6317 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6318 6319 MVT ContainerVT = VT; 6320 if (VT.isFixedLengthVector()) { 6321 // We need to use the larger of the value and index type to determine the 6322 // scalable type to use so we don't increase LMUL for any operand/result. 6323 if (VT.bitsGE(IndexVT)) { 6324 ContainerVT = getContainerForFixedLengthVector(VT); 6325 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6326 ContainerVT.getVectorElementCount()); 6327 } else { 6328 IndexVT = getContainerForFixedLengthVector(IndexVT); 6329 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6330 IndexVT.getVectorElementCount()); 6331 } 6332 6333 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6334 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6335 6336 if (!IsUnmasked) { 6337 MVT MaskVT = 6338 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6339 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6340 } 6341 } 6342 6343 if (!VL) 6344 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6345 6346 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6347 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6348 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6349 VL); 6350 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6351 TrueMask, VL); 6352 } 6353 6354 unsigned IntID = 6355 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6356 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6357 Ops.push_back(Val); 6358 Ops.push_back(BasePtr); 6359 Ops.push_back(Index); 6360 if (!IsUnmasked) 6361 Ops.push_back(Mask); 6362 Ops.push_back(VL); 6363 6364 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6365 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6366 } 6367 6368 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6369 SelectionDAG &DAG) const { 6370 const MVT XLenVT = Subtarget.getXLenVT(); 6371 SDLoc DL(Op); 6372 SDValue Chain = Op->getOperand(0); 6373 SDValue SysRegNo = DAG.getTargetConstant( 6374 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6375 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6376 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6377 6378 // Encoding used for rounding mode in RISCV differs from that used in 6379 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6380 // table, which consists of a sequence of 4-bit fields, each representing 6381 // corresponding FLT_ROUNDS mode. 6382 static const int Table = 6383 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6384 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6385 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6386 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6387 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6388 6389 SDValue Shift = 6390 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6391 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6392 DAG.getConstant(Table, DL, XLenVT), Shift); 6393 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6394 DAG.getConstant(7, DL, XLenVT)); 6395 6396 return DAG.getMergeValues({Masked, Chain}, DL); 6397 } 6398 6399 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6400 SelectionDAG &DAG) const { 6401 const MVT XLenVT = Subtarget.getXLenVT(); 6402 SDLoc DL(Op); 6403 SDValue Chain = Op->getOperand(0); 6404 SDValue RMValue = Op->getOperand(1); 6405 SDValue SysRegNo = DAG.getTargetConstant( 6406 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6407 6408 // Encoding used for rounding mode in RISCV differs from that used in 6409 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6410 // a table, which consists of a sequence of 4-bit fields, each representing 6411 // corresponding RISCV mode. 6412 static const unsigned Table = 6413 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6414 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6415 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6416 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6417 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6418 6419 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6420 DAG.getConstant(2, DL, XLenVT)); 6421 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6422 DAG.getConstant(Table, DL, XLenVT), Shift); 6423 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6424 DAG.getConstant(0x7, DL, XLenVT)); 6425 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6426 RMValue); 6427 } 6428 6429 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6430 switch (IntNo) { 6431 default: 6432 llvm_unreachable("Unexpected Intrinsic"); 6433 case Intrinsic::riscv_bcompress: 6434 return RISCVISD::BCOMPRESSW; 6435 case Intrinsic::riscv_bdecompress: 6436 return RISCVISD::BDECOMPRESSW; 6437 case Intrinsic::riscv_bfp: 6438 return RISCVISD::BFPW; 6439 case Intrinsic::riscv_fsl: 6440 return RISCVISD::FSLW; 6441 case Intrinsic::riscv_fsr: 6442 return RISCVISD::FSRW; 6443 } 6444 } 6445 6446 // Converts the given intrinsic to a i64 operation with any extension. 6447 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6448 unsigned IntNo) { 6449 SDLoc DL(N); 6450 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6451 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6452 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6453 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6454 // ReplaceNodeResults requires we maintain the same type for the return value. 6455 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6456 } 6457 6458 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6459 // form of the given Opcode. 6460 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6461 switch (Opcode) { 6462 default: 6463 llvm_unreachable("Unexpected opcode"); 6464 case ISD::SHL: 6465 return RISCVISD::SLLW; 6466 case ISD::SRA: 6467 return RISCVISD::SRAW; 6468 case ISD::SRL: 6469 return RISCVISD::SRLW; 6470 case ISD::SDIV: 6471 return RISCVISD::DIVW; 6472 case ISD::UDIV: 6473 return RISCVISD::DIVUW; 6474 case ISD::UREM: 6475 return RISCVISD::REMUW; 6476 case ISD::ROTL: 6477 return RISCVISD::ROLW; 6478 case ISD::ROTR: 6479 return RISCVISD::RORW; 6480 } 6481 } 6482 6483 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6484 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6485 // otherwise be promoted to i64, making it difficult to select the 6486 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6487 // type i8/i16/i32 is lost. 6488 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6489 unsigned ExtOpc = ISD::ANY_EXTEND) { 6490 SDLoc DL(N); 6491 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6492 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6493 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6494 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6495 // ReplaceNodeResults requires we maintain the same type for the return value. 6496 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6497 } 6498 6499 // Converts the given 32-bit operation to a i64 operation with signed extension 6500 // semantic to reduce the signed extension instructions. 6501 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6502 SDLoc DL(N); 6503 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6504 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6505 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6506 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6507 DAG.getValueType(MVT::i32)); 6508 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6509 } 6510 6511 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6512 SmallVectorImpl<SDValue> &Results, 6513 SelectionDAG &DAG) const { 6514 SDLoc DL(N); 6515 switch (N->getOpcode()) { 6516 default: 6517 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6518 case ISD::STRICT_FP_TO_SINT: 6519 case ISD::STRICT_FP_TO_UINT: 6520 case ISD::FP_TO_SINT: 6521 case ISD::FP_TO_UINT: { 6522 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6523 "Unexpected custom legalisation"); 6524 bool IsStrict = N->isStrictFPOpcode(); 6525 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6526 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6527 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6528 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6529 TargetLowering::TypeSoftenFloat) { 6530 if (!isTypeLegal(Op0.getValueType())) 6531 return; 6532 if (IsStrict) { 6533 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6534 : RISCVISD::STRICT_FCVT_WU_RV64; 6535 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6536 SDValue Res = DAG.getNode( 6537 Opc, DL, VTs, N->getOperand(0), Op0, 6538 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6539 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6540 Results.push_back(Res.getValue(1)); 6541 return; 6542 } 6543 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6544 SDValue Res = 6545 DAG.getNode(Opc, DL, MVT::i64, Op0, 6546 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6547 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6548 return; 6549 } 6550 // If the FP type needs to be softened, emit a library call using the 'si' 6551 // version. If we left it to default legalization we'd end up with 'di'. If 6552 // the FP type doesn't need to be softened just let generic type 6553 // legalization promote the result type. 6554 RTLIB::Libcall LC; 6555 if (IsSigned) 6556 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6557 else 6558 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6559 MakeLibCallOptions CallOptions; 6560 EVT OpVT = Op0.getValueType(); 6561 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6562 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6563 SDValue Result; 6564 std::tie(Result, Chain) = 6565 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6566 Results.push_back(Result); 6567 if (IsStrict) 6568 Results.push_back(Chain); 6569 break; 6570 } 6571 case ISD::READCYCLECOUNTER: { 6572 assert(!Subtarget.is64Bit() && 6573 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6574 6575 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6576 SDValue RCW = 6577 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6578 6579 Results.push_back( 6580 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6581 Results.push_back(RCW.getValue(2)); 6582 break; 6583 } 6584 case ISD::MUL: { 6585 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6586 unsigned XLen = Subtarget.getXLen(); 6587 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6588 if (Size > XLen) { 6589 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6590 SDValue LHS = N->getOperand(0); 6591 SDValue RHS = N->getOperand(1); 6592 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6593 6594 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6595 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6596 // We need exactly one side to be unsigned. 6597 if (LHSIsU == RHSIsU) 6598 return; 6599 6600 auto MakeMULPair = [&](SDValue S, SDValue U) { 6601 MVT XLenVT = Subtarget.getXLenVT(); 6602 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6603 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6604 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6605 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6606 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6607 }; 6608 6609 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6610 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6611 6612 // The other operand should be signed, but still prefer MULH when 6613 // possible. 6614 if (RHSIsU && LHSIsS && !RHSIsS) 6615 Results.push_back(MakeMULPair(LHS, RHS)); 6616 else if (LHSIsU && RHSIsS && !LHSIsS) 6617 Results.push_back(MakeMULPair(RHS, LHS)); 6618 6619 return; 6620 } 6621 LLVM_FALLTHROUGH; 6622 } 6623 case ISD::ADD: 6624 case ISD::SUB: 6625 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6626 "Unexpected custom legalisation"); 6627 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6628 break; 6629 case ISD::SHL: 6630 case ISD::SRA: 6631 case ISD::SRL: 6632 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6633 "Unexpected custom legalisation"); 6634 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6635 Results.push_back(customLegalizeToWOp(N, DAG)); 6636 break; 6637 } 6638 6639 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6640 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6641 // shift amount. 6642 if (N->getOpcode() == ISD::SHL) { 6643 SDLoc DL(N); 6644 SDValue NewOp0 = 6645 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6646 SDValue NewOp1 = 6647 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6648 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6649 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6650 DAG.getValueType(MVT::i32)); 6651 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6652 } 6653 6654 break; 6655 case ISD::ROTL: 6656 case ISD::ROTR: 6657 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6658 "Unexpected custom legalisation"); 6659 Results.push_back(customLegalizeToWOp(N, DAG)); 6660 break; 6661 case ISD::CTTZ: 6662 case ISD::CTTZ_ZERO_UNDEF: 6663 case ISD::CTLZ: 6664 case ISD::CTLZ_ZERO_UNDEF: { 6665 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6666 "Unexpected custom legalisation"); 6667 6668 SDValue NewOp0 = 6669 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6670 bool IsCTZ = 6671 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6672 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6673 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6674 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6675 return; 6676 } 6677 case ISD::SDIV: 6678 case ISD::UDIV: 6679 case ISD::UREM: { 6680 MVT VT = N->getSimpleValueType(0); 6681 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6682 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6683 "Unexpected custom legalisation"); 6684 // Don't promote division/remainder by constant since we should expand those 6685 // to multiply by magic constant. 6686 // FIXME: What if the expansion is disabled for minsize. 6687 if (N->getOperand(1).getOpcode() == ISD::Constant) 6688 return; 6689 6690 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6691 // the upper 32 bits. For other types we need to sign or zero extend 6692 // based on the opcode. 6693 unsigned ExtOpc = ISD::ANY_EXTEND; 6694 if (VT != MVT::i32) 6695 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6696 : ISD::ZERO_EXTEND; 6697 6698 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6699 break; 6700 } 6701 case ISD::UADDO: 6702 case ISD::USUBO: { 6703 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6704 "Unexpected custom legalisation"); 6705 bool IsAdd = N->getOpcode() == ISD::UADDO; 6706 // Create an ADDW or SUBW. 6707 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6708 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6709 SDValue Res = 6710 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6711 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6712 DAG.getValueType(MVT::i32)); 6713 6714 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6715 // Since the inputs are sign extended from i32, this is equivalent to 6716 // comparing the lower 32 bits. 6717 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6718 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6719 IsAdd ? ISD::SETULT : ISD::SETUGT); 6720 6721 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6722 Results.push_back(Overflow); 6723 return; 6724 } 6725 case ISD::UADDSAT: 6726 case ISD::USUBSAT: { 6727 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6728 "Unexpected custom legalisation"); 6729 if (Subtarget.hasStdExtZbb()) { 6730 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6731 // sign extend allows overflow of the lower 32 bits to be detected on 6732 // the promoted size. 6733 SDValue LHS = 6734 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6735 SDValue RHS = 6736 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6737 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6738 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6739 return; 6740 } 6741 6742 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6743 // promotion for UADDO/USUBO. 6744 Results.push_back(expandAddSubSat(N, DAG)); 6745 return; 6746 } 6747 case ISD::ABS: { 6748 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6749 "Unexpected custom legalisation"); 6750 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6751 6752 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6753 6754 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6755 6756 // Freeze the source so we can increase it's use count. 6757 Src = DAG.getFreeze(Src); 6758 6759 // Copy sign bit to all bits using the sraiw pattern. 6760 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6761 DAG.getValueType(MVT::i32)); 6762 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6763 DAG.getConstant(31, DL, MVT::i64)); 6764 6765 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6766 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6767 6768 // NOTE: The result is only required to be anyextended, but sext is 6769 // consistent with type legalization of sub. 6770 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 6771 DAG.getValueType(MVT::i32)); 6772 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6773 return; 6774 } 6775 case ISD::BITCAST: { 6776 EVT VT = N->getValueType(0); 6777 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6778 SDValue Op0 = N->getOperand(0); 6779 EVT Op0VT = Op0.getValueType(); 6780 MVT XLenVT = Subtarget.getXLenVT(); 6781 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6782 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6783 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6784 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6785 Subtarget.hasStdExtF()) { 6786 SDValue FPConv = 6787 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6788 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6789 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6790 isTypeLegal(Op0VT)) { 6791 // Custom-legalize bitcasts from fixed-length vector types to illegal 6792 // scalar types in order to improve codegen. Bitcast the vector to a 6793 // one-element vector type whose element type is the same as the result 6794 // type, and extract the first element. 6795 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6796 if (isTypeLegal(BVT)) { 6797 SDValue BVec = DAG.getBitcast(BVT, Op0); 6798 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6799 DAG.getConstant(0, DL, XLenVT))); 6800 } 6801 } 6802 break; 6803 } 6804 case RISCVISD::GREV: 6805 case RISCVISD::GORC: 6806 case RISCVISD::SHFL: { 6807 MVT VT = N->getSimpleValueType(0); 6808 MVT XLenVT = Subtarget.getXLenVT(); 6809 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 6810 "Unexpected custom legalisation"); 6811 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6812 assert((Subtarget.hasStdExtZbp() || 6813 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 6814 N->getConstantOperandVal(1) == 7)) && 6815 "Unexpected extension"); 6816 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6817 SDValue NewOp1 = 6818 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 6819 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 6820 // ReplaceNodeResults requires we maintain the same type for the return 6821 // value. 6822 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 6823 break; 6824 } 6825 case ISD::BSWAP: 6826 case ISD::BITREVERSE: { 6827 MVT VT = N->getSimpleValueType(0); 6828 MVT XLenVT = Subtarget.getXLenVT(); 6829 assert((VT == MVT::i8 || VT == MVT::i16 || 6830 (VT == MVT::i32 && Subtarget.is64Bit())) && 6831 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6832 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6833 unsigned Imm = VT.getSizeInBits() - 1; 6834 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6835 if (N->getOpcode() == ISD::BSWAP) 6836 Imm &= ~0x7U; 6837 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 6838 DAG.getConstant(Imm, DL, XLenVT)); 6839 // ReplaceNodeResults requires we maintain the same type for the return 6840 // value. 6841 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6842 break; 6843 } 6844 case ISD::FSHL: 6845 case ISD::FSHR: { 6846 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6847 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6848 SDValue NewOp0 = 6849 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6850 SDValue NewOp1 = 6851 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6852 SDValue NewShAmt = 6853 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6854 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6855 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6856 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6857 DAG.getConstant(0x1f, DL, MVT::i64)); 6858 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6859 // instruction use different orders. fshl will return its first operand for 6860 // shift of zero, fshr will return its second operand. fsl and fsr both 6861 // return rs1 so the ISD nodes need to have different operand orders. 6862 // Shift amount is in rs2. 6863 unsigned Opc = RISCVISD::FSLW; 6864 if (N->getOpcode() == ISD::FSHR) { 6865 std::swap(NewOp0, NewOp1); 6866 Opc = RISCVISD::FSRW; 6867 } 6868 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6869 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6870 break; 6871 } 6872 case ISD::EXTRACT_VECTOR_ELT: { 6873 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6874 // type is illegal (currently only vXi64 RV32). 6875 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6876 // transferred to the destination register. We issue two of these from the 6877 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6878 // first element. 6879 SDValue Vec = N->getOperand(0); 6880 SDValue Idx = N->getOperand(1); 6881 6882 // The vector type hasn't been legalized yet so we can't issue target 6883 // specific nodes if it needs legalization. 6884 // FIXME: We would manually legalize if it's important. 6885 if (!isTypeLegal(Vec.getValueType())) 6886 return; 6887 6888 MVT VecVT = Vec.getSimpleValueType(); 6889 6890 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6891 VecVT.getVectorElementType() == MVT::i64 && 6892 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6893 6894 // If this is a fixed vector, we need to convert it to a scalable vector. 6895 MVT ContainerVT = VecVT; 6896 if (VecVT.isFixedLengthVector()) { 6897 ContainerVT = getContainerForFixedLengthVector(VecVT); 6898 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6899 } 6900 6901 MVT XLenVT = Subtarget.getXLenVT(); 6902 6903 // Use a VL of 1 to avoid processing more elements than we need. 6904 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6905 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6906 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6907 6908 // Unless the index is known to be 0, we must slide the vector down to get 6909 // the desired element into index 0. 6910 if (!isNullConstant(Idx)) { 6911 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6912 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6913 } 6914 6915 // Extract the lower XLEN bits of the correct vector element. 6916 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6917 6918 // To extract the upper XLEN bits of the vector element, shift the first 6919 // element right by 32 bits and re-extract the lower XLEN bits. 6920 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6921 DAG.getUNDEF(ContainerVT), 6922 DAG.getConstant(32, DL, XLenVT), VL); 6923 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6924 ThirtyTwoV, Mask, VL); 6925 6926 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6927 6928 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6929 break; 6930 } 6931 case ISD::INTRINSIC_WO_CHAIN: { 6932 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6933 switch (IntNo) { 6934 default: 6935 llvm_unreachable( 6936 "Don't know how to custom type legalize this intrinsic!"); 6937 case Intrinsic::riscv_grev: 6938 case Intrinsic::riscv_gorc: { 6939 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6940 "Unexpected custom legalisation"); 6941 SDValue NewOp1 = 6942 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6943 SDValue NewOp2 = 6944 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6945 unsigned Opc = 6946 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6947 // If the control is a constant, promote the node by clearing any extra 6948 // bits bits in the control. isel will form greviw/gorciw if the result is 6949 // sign extended. 6950 if (isa<ConstantSDNode>(NewOp2)) { 6951 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6952 DAG.getConstant(0x1f, DL, MVT::i64)); 6953 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 6954 } 6955 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6956 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6957 break; 6958 } 6959 case Intrinsic::riscv_bcompress: 6960 case Intrinsic::riscv_bdecompress: 6961 case Intrinsic::riscv_bfp: { 6962 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6963 "Unexpected custom legalisation"); 6964 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6965 break; 6966 } 6967 case Intrinsic::riscv_fsl: 6968 case Intrinsic::riscv_fsr: { 6969 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6970 "Unexpected custom legalisation"); 6971 SDValue NewOp1 = 6972 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6973 SDValue NewOp2 = 6974 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6975 SDValue NewOp3 = 6976 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6977 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6978 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6979 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6980 break; 6981 } 6982 case Intrinsic::riscv_orc_b: { 6983 // Lower to the GORCI encoding for orc.b with the operand extended. 6984 SDValue NewOp = 6985 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6986 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 6987 DAG.getConstant(7, DL, MVT::i64)); 6988 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6989 return; 6990 } 6991 case Intrinsic::riscv_shfl: 6992 case Intrinsic::riscv_unshfl: { 6993 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6994 "Unexpected custom legalisation"); 6995 SDValue NewOp1 = 6996 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6997 SDValue NewOp2 = 6998 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6999 unsigned Opc = 7000 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 7001 // There is no (UN)SHFLIW. If the control word is a constant, we can use 7002 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7003 // will be shuffled the same way as the lower 32 bit half, but the two 7004 // halves won't cross. 7005 if (isa<ConstantSDNode>(NewOp2)) { 7006 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7007 DAG.getConstant(0xf, DL, MVT::i64)); 7008 Opc = 7009 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7010 } 7011 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7012 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7013 break; 7014 } 7015 case Intrinsic::riscv_vmv_x_s: { 7016 EVT VT = N->getValueType(0); 7017 MVT XLenVT = Subtarget.getXLenVT(); 7018 if (VT.bitsLT(XLenVT)) { 7019 // Simple case just extract using vmv.x.s and truncate. 7020 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7021 Subtarget.getXLenVT(), N->getOperand(1)); 7022 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7023 return; 7024 } 7025 7026 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7027 "Unexpected custom legalization"); 7028 7029 // We need to do the move in two steps. 7030 SDValue Vec = N->getOperand(1); 7031 MVT VecVT = Vec.getSimpleValueType(); 7032 7033 // First extract the lower XLEN bits of the element. 7034 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7035 7036 // To extract the upper XLEN bits of the vector element, shift the first 7037 // element right by 32 bits and re-extract the lower XLEN bits. 7038 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7039 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7040 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7041 SDValue ThirtyTwoV = 7042 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7043 DAG.getConstant(32, DL, XLenVT), VL); 7044 SDValue LShr32 = 7045 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7046 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7047 7048 Results.push_back( 7049 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7050 break; 7051 } 7052 } 7053 break; 7054 } 7055 case ISD::VECREDUCE_ADD: 7056 case ISD::VECREDUCE_AND: 7057 case ISD::VECREDUCE_OR: 7058 case ISD::VECREDUCE_XOR: 7059 case ISD::VECREDUCE_SMAX: 7060 case ISD::VECREDUCE_UMAX: 7061 case ISD::VECREDUCE_SMIN: 7062 case ISD::VECREDUCE_UMIN: 7063 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7064 Results.push_back(V); 7065 break; 7066 case ISD::VP_REDUCE_ADD: 7067 case ISD::VP_REDUCE_AND: 7068 case ISD::VP_REDUCE_OR: 7069 case ISD::VP_REDUCE_XOR: 7070 case ISD::VP_REDUCE_SMAX: 7071 case ISD::VP_REDUCE_UMAX: 7072 case ISD::VP_REDUCE_SMIN: 7073 case ISD::VP_REDUCE_UMIN: 7074 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7075 Results.push_back(V); 7076 break; 7077 case ISD::FLT_ROUNDS_: { 7078 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7079 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7080 Results.push_back(Res.getValue(0)); 7081 Results.push_back(Res.getValue(1)); 7082 break; 7083 } 7084 } 7085 } 7086 7087 // A structure to hold one of the bit-manipulation patterns below. Together, a 7088 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7089 // (or (and (shl x, 1), 0xAAAAAAAA), 7090 // (and (srl x, 1), 0x55555555)) 7091 struct RISCVBitmanipPat { 7092 SDValue Op; 7093 unsigned ShAmt; 7094 bool IsSHL; 7095 7096 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7097 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7098 } 7099 }; 7100 7101 // Matches patterns of the form 7102 // (and (shl x, C2), (C1 << C2)) 7103 // (and (srl x, C2), C1) 7104 // (shl (and x, C1), C2) 7105 // (srl (and x, (C1 << C2)), C2) 7106 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7107 // The expected masks for each shift amount are specified in BitmanipMasks where 7108 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7109 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7110 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7111 // XLen is 64. 7112 static Optional<RISCVBitmanipPat> 7113 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7114 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7115 "Unexpected number of masks"); 7116 Optional<uint64_t> Mask; 7117 // Optionally consume a mask around the shift operation. 7118 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7119 Mask = Op.getConstantOperandVal(1); 7120 Op = Op.getOperand(0); 7121 } 7122 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7123 return None; 7124 bool IsSHL = Op.getOpcode() == ISD::SHL; 7125 7126 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7127 return None; 7128 uint64_t ShAmt = Op.getConstantOperandVal(1); 7129 7130 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7131 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7132 return None; 7133 // If we don't have enough masks for 64 bit, then we must be trying to 7134 // match SHFL so we're only allowed to shift 1/4 of the width. 7135 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7136 return None; 7137 7138 SDValue Src = Op.getOperand(0); 7139 7140 // The expected mask is shifted left when the AND is found around SHL 7141 // patterns. 7142 // ((x >> 1) & 0x55555555) 7143 // ((x << 1) & 0xAAAAAAAA) 7144 bool SHLExpMask = IsSHL; 7145 7146 if (!Mask) { 7147 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7148 // the mask is all ones: consume that now. 7149 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7150 Mask = Src.getConstantOperandVal(1); 7151 Src = Src.getOperand(0); 7152 // The expected mask is now in fact shifted left for SRL, so reverse the 7153 // decision. 7154 // ((x & 0xAAAAAAAA) >> 1) 7155 // ((x & 0x55555555) << 1) 7156 SHLExpMask = !SHLExpMask; 7157 } else { 7158 // Use a default shifted mask of all-ones if there's no AND, truncated 7159 // down to the expected width. This simplifies the logic later on. 7160 Mask = maskTrailingOnes<uint64_t>(Width); 7161 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7162 } 7163 } 7164 7165 unsigned MaskIdx = Log2_32(ShAmt); 7166 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7167 7168 if (SHLExpMask) 7169 ExpMask <<= ShAmt; 7170 7171 if (Mask != ExpMask) 7172 return None; 7173 7174 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7175 } 7176 7177 // Matches any of the following bit-manipulation patterns: 7178 // (and (shl x, 1), (0x55555555 << 1)) 7179 // (and (srl x, 1), 0x55555555) 7180 // (shl (and x, 0x55555555), 1) 7181 // (srl (and x, (0x55555555 << 1)), 1) 7182 // where the shift amount and mask may vary thus: 7183 // [1] = 0x55555555 / 0xAAAAAAAA 7184 // [2] = 0x33333333 / 0xCCCCCCCC 7185 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7186 // [8] = 0x00FF00FF / 0xFF00FF00 7187 // [16] = 0x0000FFFF / 0xFFFFFFFF 7188 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7189 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7190 // These are the unshifted masks which we use to match bit-manipulation 7191 // patterns. They may be shifted left in certain circumstances. 7192 static const uint64_t BitmanipMasks[] = { 7193 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7194 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7195 7196 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7197 } 7198 7199 // Match the following pattern as a GREVI(W) operation 7200 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7201 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7202 const RISCVSubtarget &Subtarget) { 7203 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7204 EVT VT = Op.getValueType(); 7205 7206 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7207 auto LHS = matchGREVIPat(Op.getOperand(0)); 7208 auto RHS = matchGREVIPat(Op.getOperand(1)); 7209 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7210 SDLoc DL(Op); 7211 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7212 DAG.getConstant(LHS->ShAmt, DL, VT)); 7213 } 7214 } 7215 return SDValue(); 7216 } 7217 7218 // Matches any the following pattern as a GORCI(W) operation 7219 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7220 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7221 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7222 // Note that with the variant of 3., 7223 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7224 // the inner pattern will first be matched as GREVI and then the outer 7225 // pattern will be matched to GORC via the first rule above. 7226 // 4. (or (rotl/rotr x, bitwidth/2), x) 7227 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7228 const RISCVSubtarget &Subtarget) { 7229 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7230 EVT VT = Op.getValueType(); 7231 7232 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7233 SDLoc DL(Op); 7234 SDValue Op0 = Op.getOperand(0); 7235 SDValue Op1 = Op.getOperand(1); 7236 7237 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7238 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7239 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7240 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7241 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7242 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7243 if ((Reverse.getOpcode() == ISD::ROTL || 7244 Reverse.getOpcode() == ISD::ROTR) && 7245 Reverse.getOperand(0) == X && 7246 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7247 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7248 if (RotAmt == (VT.getSizeInBits() / 2)) 7249 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7250 DAG.getConstant(RotAmt, DL, VT)); 7251 } 7252 return SDValue(); 7253 }; 7254 7255 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7256 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7257 return V; 7258 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7259 return V; 7260 7261 // OR is commutable so canonicalize its OR operand to the left 7262 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7263 std::swap(Op0, Op1); 7264 if (Op0.getOpcode() != ISD::OR) 7265 return SDValue(); 7266 SDValue OrOp0 = Op0.getOperand(0); 7267 SDValue OrOp1 = Op0.getOperand(1); 7268 auto LHS = matchGREVIPat(OrOp0); 7269 // OR is commutable so swap the operands and try again: x might have been 7270 // on the left 7271 if (!LHS) { 7272 std::swap(OrOp0, OrOp1); 7273 LHS = matchGREVIPat(OrOp0); 7274 } 7275 auto RHS = matchGREVIPat(Op1); 7276 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7277 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7278 DAG.getConstant(LHS->ShAmt, DL, VT)); 7279 } 7280 } 7281 return SDValue(); 7282 } 7283 7284 // Matches any of the following bit-manipulation patterns: 7285 // (and (shl x, 1), (0x22222222 << 1)) 7286 // (and (srl x, 1), 0x22222222) 7287 // (shl (and x, 0x22222222), 1) 7288 // (srl (and x, (0x22222222 << 1)), 1) 7289 // where the shift amount and mask may vary thus: 7290 // [1] = 0x22222222 / 0x44444444 7291 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7292 // [4] = 0x00F000F0 / 0x0F000F00 7293 // [8] = 0x0000FF00 / 0x00FF0000 7294 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7295 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7296 // These are the unshifted masks which we use to match bit-manipulation 7297 // patterns. They may be shifted left in certain circumstances. 7298 static const uint64_t BitmanipMasks[] = { 7299 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7300 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7301 7302 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7303 } 7304 7305 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7306 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7307 const RISCVSubtarget &Subtarget) { 7308 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7309 EVT VT = Op.getValueType(); 7310 7311 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7312 return SDValue(); 7313 7314 SDValue Op0 = Op.getOperand(0); 7315 SDValue Op1 = Op.getOperand(1); 7316 7317 // Or is commutable so canonicalize the second OR to the LHS. 7318 if (Op0.getOpcode() != ISD::OR) 7319 std::swap(Op0, Op1); 7320 if (Op0.getOpcode() != ISD::OR) 7321 return SDValue(); 7322 7323 // We found an inner OR, so our operands are the operands of the inner OR 7324 // and the other operand of the outer OR. 7325 SDValue A = Op0.getOperand(0); 7326 SDValue B = Op0.getOperand(1); 7327 SDValue C = Op1; 7328 7329 auto Match1 = matchSHFLPat(A); 7330 auto Match2 = matchSHFLPat(B); 7331 7332 // If neither matched, we failed. 7333 if (!Match1 && !Match2) 7334 return SDValue(); 7335 7336 // We had at least one match. if one failed, try the remaining C operand. 7337 if (!Match1) { 7338 std::swap(A, C); 7339 Match1 = matchSHFLPat(A); 7340 if (!Match1) 7341 return SDValue(); 7342 } else if (!Match2) { 7343 std::swap(B, C); 7344 Match2 = matchSHFLPat(B); 7345 if (!Match2) 7346 return SDValue(); 7347 } 7348 assert(Match1 && Match2); 7349 7350 // Make sure our matches pair up. 7351 if (!Match1->formsPairWith(*Match2)) 7352 return SDValue(); 7353 7354 // All the remains is to make sure C is an AND with the same input, that masks 7355 // out the bits that are being shuffled. 7356 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7357 C.getOperand(0) != Match1->Op) 7358 return SDValue(); 7359 7360 uint64_t Mask = C.getConstantOperandVal(1); 7361 7362 static const uint64_t BitmanipMasks[] = { 7363 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7364 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7365 }; 7366 7367 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7368 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7369 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7370 7371 if (Mask != ExpMask) 7372 return SDValue(); 7373 7374 SDLoc DL(Op); 7375 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7376 DAG.getConstant(Match1->ShAmt, DL, VT)); 7377 } 7378 7379 // Optimize (add (shl x, c0), (shl y, c1)) -> 7380 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7381 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7382 const RISCVSubtarget &Subtarget) { 7383 // Perform this optimization only in the zba extension. 7384 if (!Subtarget.hasStdExtZba()) 7385 return SDValue(); 7386 7387 // Skip for vector types and larger types. 7388 EVT VT = N->getValueType(0); 7389 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7390 return SDValue(); 7391 7392 // The two operand nodes must be SHL and have no other use. 7393 SDValue N0 = N->getOperand(0); 7394 SDValue N1 = N->getOperand(1); 7395 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7396 !N0->hasOneUse() || !N1->hasOneUse()) 7397 return SDValue(); 7398 7399 // Check c0 and c1. 7400 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7401 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7402 if (!N0C || !N1C) 7403 return SDValue(); 7404 int64_t C0 = N0C->getSExtValue(); 7405 int64_t C1 = N1C->getSExtValue(); 7406 if (C0 <= 0 || C1 <= 0) 7407 return SDValue(); 7408 7409 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7410 int64_t Bits = std::min(C0, C1); 7411 int64_t Diff = std::abs(C0 - C1); 7412 if (Diff != 1 && Diff != 2 && Diff != 3) 7413 return SDValue(); 7414 7415 // Build nodes. 7416 SDLoc DL(N); 7417 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7418 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7419 SDValue NA0 = 7420 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7421 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7422 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7423 } 7424 7425 // Combine 7426 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7427 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7428 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7429 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7430 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7431 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7432 // The grev patterns represents BSWAP. 7433 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7434 // off the grev. 7435 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7436 const RISCVSubtarget &Subtarget) { 7437 bool IsWInstruction = 7438 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7439 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7440 IsWInstruction) && 7441 "Unexpected opcode!"); 7442 SDValue Src = N->getOperand(0); 7443 EVT VT = N->getValueType(0); 7444 SDLoc DL(N); 7445 7446 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7447 return SDValue(); 7448 7449 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7450 !isa<ConstantSDNode>(Src.getOperand(1))) 7451 return SDValue(); 7452 7453 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7454 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7455 7456 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7457 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7458 unsigned ShAmt1 = N->getConstantOperandVal(1); 7459 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7460 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7461 return SDValue(); 7462 7463 Src = Src.getOperand(0); 7464 7465 // Toggle bit the MSB of the shift. 7466 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7467 if (CombinedShAmt == 0) 7468 return Src; 7469 7470 SDValue Res = DAG.getNode( 7471 RISCVISD::GREV, DL, VT, Src, 7472 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7473 if (!IsWInstruction) 7474 return Res; 7475 7476 // Sign extend the result to match the behavior of the rotate. This will be 7477 // selected to GREVIW in isel. 7478 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7479 DAG.getValueType(MVT::i32)); 7480 } 7481 7482 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7483 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7484 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7485 // not undo itself, but they are redundant. 7486 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7487 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7488 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7489 SDValue Src = N->getOperand(0); 7490 7491 if (Src.getOpcode() != N->getOpcode()) 7492 return SDValue(); 7493 7494 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7495 !isa<ConstantSDNode>(Src.getOperand(1))) 7496 return SDValue(); 7497 7498 unsigned ShAmt1 = N->getConstantOperandVal(1); 7499 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7500 Src = Src.getOperand(0); 7501 7502 unsigned CombinedShAmt; 7503 if (IsGORC) 7504 CombinedShAmt = ShAmt1 | ShAmt2; 7505 else 7506 CombinedShAmt = ShAmt1 ^ ShAmt2; 7507 7508 if (CombinedShAmt == 0) 7509 return Src; 7510 7511 SDLoc DL(N); 7512 return DAG.getNode( 7513 N->getOpcode(), DL, N->getValueType(0), Src, 7514 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7515 } 7516 7517 // Combine a constant select operand into its use: 7518 // 7519 // (and (select cond, -1, c), x) 7520 // -> (select cond, x, (and x, c)) [AllOnes=1] 7521 // (or (select cond, 0, c), x) 7522 // -> (select cond, x, (or x, c)) [AllOnes=0] 7523 // (xor (select cond, 0, c), x) 7524 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7525 // (add (select cond, 0, c), x) 7526 // -> (select cond, x, (add x, c)) [AllOnes=0] 7527 // (sub x, (select cond, 0, c)) 7528 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7529 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7530 SelectionDAG &DAG, bool AllOnes) { 7531 EVT VT = N->getValueType(0); 7532 7533 // Skip vectors. 7534 if (VT.isVector()) 7535 return SDValue(); 7536 7537 if ((Slct.getOpcode() != ISD::SELECT && 7538 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7539 !Slct.hasOneUse()) 7540 return SDValue(); 7541 7542 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7543 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7544 }; 7545 7546 bool SwapSelectOps; 7547 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7548 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7549 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7550 SDValue NonConstantVal; 7551 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7552 SwapSelectOps = false; 7553 NonConstantVal = FalseVal; 7554 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7555 SwapSelectOps = true; 7556 NonConstantVal = TrueVal; 7557 } else 7558 return SDValue(); 7559 7560 // Slct is now know to be the desired identity constant when CC is true. 7561 TrueVal = OtherOp; 7562 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7563 // Unless SwapSelectOps says the condition should be false. 7564 if (SwapSelectOps) 7565 std::swap(TrueVal, FalseVal); 7566 7567 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7568 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7569 {Slct.getOperand(0), Slct.getOperand(1), 7570 Slct.getOperand(2), TrueVal, FalseVal}); 7571 7572 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7573 {Slct.getOperand(0), TrueVal, FalseVal}); 7574 } 7575 7576 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7577 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7578 bool AllOnes) { 7579 SDValue N0 = N->getOperand(0); 7580 SDValue N1 = N->getOperand(1); 7581 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7582 return Result; 7583 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7584 return Result; 7585 return SDValue(); 7586 } 7587 7588 // Transform (add (mul x, c0), c1) -> 7589 // (add (mul (add x, c1/c0), c0), c1%c0). 7590 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7591 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7592 // to an infinite loop in DAGCombine if transformed. 7593 // Or transform (add (mul x, c0), c1) -> 7594 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7595 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7596 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7597 // lead to an infinite loop in DAGCombine if transformed. 7598 // Or transform (add (mul x, c0), c1) -> 7599 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7600 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7601 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7602 // lead to an infinite loop in DAGCombine if transformed. 7603 // Or transform (add (mul x, c0), c1) -> 7604 // (mul (add x, c1/c0), c0). 7605 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7606 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7607 const RISCVSubtarget &Subtarget) { 7608 // Skip for vector types and larger types. 7609 EVT VT = N->getValueType(0); 7610 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7611 return SDValue(); 7612 // The first operand node must be a MUL and has no other use. 7613 SDValue N0 = N->getOperand(0); 7614 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7615 return SDValue(); 7616 // Check if c0 and c1 match above conditions. 7617 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7618 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7619 if (!N0C || !N1C) 7620 return SDValue(); 7621 // If N0C has multiple uses it's possible one of the cases in 7622 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7623 // in an infinite loop. 7624 if (!N0C->hasOneUse()) 7625 return SDValue(); 7626 int64_t C0 = N0C->getSExtValue(); 7627 int64_t C1 = N1C->getSExtValue(); 7628 int64_t CA, CB; 7629 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7630 return SDValue(); 7631 // Search for proper CA (non-zero) and CB that both are simm12. 7632 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7633 !isInt<12>(C0 * (C1 / C0))) { 7634 CA = C1 / C0; 7635 CB = C1 % C0; 7636 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7637 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7638 CA = C1 / C0 + 1; 7639 CB = C1 % C0 - C0; 7640 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7641 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7642 CA = C1 / C0 - 1; 7643 CB = C1 % C0 + C0; 7644 } else 7645 return SDValue(); 7646 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7647 SDLoc DL(N); 7648 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7649 DAG.getConstant(CA, DL, VT)); 7650 SDValue New1 = 7651 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7652 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7653 } 7654 7655 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7656 const RISCVSubtarget &Subtarget) { 7657 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7658 return V; 7659 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7660 return V; 7661 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7662 // (select lhs, rhs, cc, x, (add x, y)) 7663 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7664 } 7665 7666 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7667 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7668 // (select lhs, rhs, cc, x, (sub x, y)) 7669 SDValue N0 = N->getOperand(0); 7670 SDValue N1 = N->getOperand(1); 7671 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7672 } 7673 7674 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7675 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7676 // (select lhs, rhs, cc, x, (and x, y)) 7677 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7678 } 7679 7680 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7681 const RISCVSubtarget &Subtarget) { 7682 if (Subtarget.hasStdExtZbp()) { 7683 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7684 return GREV; 7685 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7686 return GORC; 7687 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7688 return SHFL; 7689 } 7690 7691 // fold (or (select cond, 0, y), x) -> 7692 // (select cond, x, (or x, y)) 7693 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7694 } 7695 7696 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7697 // fold (xor (select cond, 0, y), x) -> 7698 // (select cond, x, (xor x, y)) 7699 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7700 } 7701 7702 static SDValue 7703 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7704 const RISCVSubtarget &Subtarget) { 7705 SDValue Src = N->getOperand(0); 7706 EVT VT = N->getValueType(0); 7707 7708 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7709 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7710 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7711 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7712 Src.getOperand(0)); 7713 7714 // Fold (i64 (sext_inreg (abs X), i32)) -> 7715 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7716 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7717 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7718 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7719 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7720 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7721 // may get combined into an earlier operation so we need to use 7722 // ComputeNumSignBits. 7723 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7724 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7725 // we can't assume that X has 33 sign bits. We must check. 7726 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7727 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7728 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7729 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7730 SDLoc DL(N); 7731 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7732 SDValue Neg = 7733 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7734 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7735 DAG.getValueType(MVT::i32)); 7736 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7737 } 7738 7739 return SDValue(); 7740 } 7741 7742 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7743 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7744 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7745 bool Commute = false) { 7746 assert((N->getOpcode() == RISCVISD::ADD_VL || 7747 N->getOpcode() == RISCVISD::SUB_VL) && 7748 "Unexpected opcode"); 7749 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7750 SDValue Op0 = N->getOperand(0); 7751 SDValue Op1 = N->getOperand(1); 7752 if (Commute) 7753 std::swap(Op0, Op1); 7754 7755 MVT VT = N->getSimpleValueType(0); 7756 7757 // Determine the narrow size for a widening add/sub. 7758 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7759 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7760 VT.getVectorElementCount()); 7761 7762 SDValue Mask = N->getOperand(2); 7763 SDValue VL = N->getOperand(3); 7764 7765 SDLoc DL(N); 7766 7767 // If the RHS is a sext or zext, we can form a widening op. 7768 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7769 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7770 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7771 unsigned ExtOpc = Op1.getOpcode(); 7772 Op1 = Op1.getOperand(0); 7773 // Re-introduce narrower extends if needed. 7774 if (Op1.getValueType() != NarrowVT) 7775 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7776 7777 unsigned WOpc; 7778 if (ExtOpc == RISCVISD::VSEXT_VL) 7779 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7780 else 7781 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7782 7783 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7784 } 7785 7786 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7787 // sext/zext? 7788 7789 return SDValue(); 7790 } 7791 7792 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7793 // vwsub(u).vv/vx. 7794 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7795 SDValue Op0 = N->getOperand(0); 7796 SDValue Op1 = N->getOperand(1); 7797 SDValue Mask = N->getOperand(2); 7798 SDValue VL = N->getOperand(3); 7799 7800 MVT VT = N->getSimpleValueType(0); 7801 MVT NarrowVT = Op1.getSimpleValueType(); 7802 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7803 7804 unsigned VOpc; 7805 switch (N->getOpcode()) { 7806 default: llvm_unreachable("Unexpected opcode"); 7807 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7808 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7809 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7810 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7811 } 7812 7813 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7814 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7815 7816 SDLoc DL(N); 7817 7818 // If the LHS is a sext or zext, we can narrow this op to the same size as 7819 // the RHS. 7820 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7821 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7822 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7823 unsigned ExtOpc = Op0.getOpcode(); 7824 Op0 = Op0.getOperand(0); 7825 // Re-introduce narrower extends if needed. 7826 if (Op0.getValueType() != NarrowVT) 7827 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7828 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7829 } 7830 7831 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7832 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7833 7834 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7835 // to commute and use a vwadd(u).vx instead. 7836 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7837 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 7838 Op0 = Op0.getOperand(1); 7839 7840 // See if have enough sign bits or zero bits in the scalar to use a 7841 // widening add/sub by splatting to smaller element size. 7842 unsigned EltBits = VT.getScalarSizeInBits(); 7843 unsigned ScalarBits = Op0.getValueSizeInBits(); 7844 // Make sure we're getting all element bits from the scalar register. 7845 // FIXME: Support implicit sign extension of vmv.v.x? 7846 if (ScalarBits < EltBits) 7847 return SDValue(); 7848 7849 if (IsSigned) { 7850 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7851 return SDValue(); 7852 } else { 7853 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7854 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7855 return SDValue(); 7856 } 7857 7858 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7859 DAG.getUNDEF(NarrowVT), Op0, VL); 7860 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7861 } 7862 7863 return SDValue(); 7864 } 7865 7866 // Try to form VWMUL, VWMULU or VWMULSU. 7867 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7868 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7869 bool Commute) { 7870 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7871 SDValue Op0 = N->getOperand(0); 7872 SDValue Op1 = N->getOperand(1); 7873 if (Commute) 7874 std::swap(Op0, Op1); 7875 7876 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7877 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7878 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7879 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7880 return SDValue(); 7881 7882 SDValue Mask = N->getOperand(2); 7883 SDValue VL = N->getOperand(3); 7884 7885 // Make sure the mask and VL match. 7886 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7887 return SDValue(); 7888 7889 MVT VT = N->getSimpleValueType(0); 7890 7891 // Determine the narrow size for a widening multiply. 7892 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7893 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7894 VT.getVectorElementCount()); 7895 7896 SDLoc DL(N); 7897 7898 // See if the other operand is the same opcode. 7899 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7900 if (!Op1.hasOneUse()) 7901 return SDValue(); 7902 7903 // Make sure the mask and VL match. 7904 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7905 return SDValue(); 7906 7907 Op1 = Op1.getOperand(0); 7908 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7909 // The operand is a splat of a scalar. 7910 7911 // The pasthru must be undef for tail agnostic 7912 if (!Op1.getOperand(0).isUndef()) 7913 return SDValue(); 7914 // The VL must be the same. 7915 if (Op1.getOperand(2) != VL) 7916 return SDValue(); 7917 7918 // Get the scalar value. 7919 Op1 = Op1.getOperand(1); 7920 7921 // See if have enough sign bits or zero bits in the scalar to use a 7922 // widening multiply by splatting to smaller element size. 7923 unsigned EltBits = VT.getScalarSizeInBits(); 7924 unsigned ScalarBits = Op1.getValueSizeInBits(); 7925 // Make sure we're getting all element bits from the scalar register. 7926 // FIXME: Support implicit sign extension of vmv.v.x? 7927 if (ScalarBits < EltBits) 7928 return SDValue(); 7929 7930 // If the LHS is a sign extend, try to use vwmul. 7931 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 7932 // Can use vwmul. 7933 } else { 7934 // Otherwise try to use vwmulu or vwmulsu. 7935 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7936 if (DAG.MaskedValueIsZero(Op1, Mask)) 7937 IsVWMULSU = IsSignExt; 7938 else 7939 return SDValue(); 7940 } 7941 7942 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7943 DAG.getUNDEF(NarrowVT), Op1, VL); 7944 } else 7945 return SDValue(); 7946 7947 Op0 = Op0.getOperand(0); 7948 7949 // Re-introduce narrower extends if needed. 7950 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7951 if (Op0.getValueType() != NarrowVT) 7952 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7953 // vwmulsu requires second operand to be zero extended. 7954 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7955 if (Op1.getValueType() != NarrowVT) 7956 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7957 7958 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7959 if (!IsVWMULSU) 7960 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7961 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7962 } 7963 7964 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7965 switch (Op.getOpcode()) { 7966 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7967 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7968 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7969 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7970 case ISD::FROUND: return RISCVFPRndMode::RMM; 7971 } 7972 7973 return RISCVFPRndMode::Invalid; 7974 } 7975 7976 // Fold 7977 // (fp_to_int (froundeven X)) -> fcvt X, rne 7978 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7979 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7980 // (fp_to_int (fceil X)) -> fcvt X, rup 7981 // (fp_to_int (fround X)) -> fcvt X, rmm 7982 static SDValue performFP_TO_INTCombine(SDNode *N, 7983 TargetLowering::DAGCombinerInfo &DCI, 7984 const RISCVSubtarget &Subtarget) { 7985 SelectionDAG &DAG = DCI.DAG; 7986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7987 MVT XLenVT = Subtarget.getXLenVT(); 7988 7989 // Only handle XLen or i32 types. Other types narrower than XLen will 7990 // eventually be legalized to XLenVT. 7991 EVT VT = N->getValueType(0); 7992 if (VT != MVT::i32 && VT != XLenVT) 7993 return SDValue(); 7994 7995 SDValue Src = N->getOperand(0); 7996 7997 // Ensure the FP type is also legal. 7998 if (!TLI.isTypeLegal(Src.getValueType())) 7999 return SDValue(); 8000 8001 // Don't do this for f16 with Zfhmin and not Zfh. 8002 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8003 return SDValue(); 8004 8005 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8006 if (FRM == RISCVFPRndMode::Invalid) 8007 return SDValue(); 8008 8009 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8010 8011 unsigned Opc; 8012 if (VT == XLenVT) 8013 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8014 else 8015 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8016 8017 SDLoc DL(N); 8018 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8019 DAG.getTargetConstant(FRM, DL, XLenVT)); 8020 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8021 } 8022 8023 // Fold 8024 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8025 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8026 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8027 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8028 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8029 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8030 TargetLowering::DAGCombinerInfo &DCI, 8031 const RISCVSubtarget &Subtarget) { 8032 SelectionDAG &DAG = DCI.DAG; 8033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8034 MVT XLenVT = Subtarget.getXLenVT(); 8035 8036 // Only handle XLen types. Other types narrower than XLen will eventually be 8037 // legalized to XLenVT. 8038 EVT DstVT = N->getValueType(0); 8039 if (DstVT != XLenVT) 8040 return SDValue(); 8041 8042 SDValue Src = N->getOperand(0); 8043 8044 // Ensure the FP type is also legal. 8045 if (!TLI.isTypeLegal(Src.getValueType())) 8046 return SDValue(); 8047 8048 // Don't do this for f16 with Zfhmin and not Zfh. 8049 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8050 return SDValue(); 8051 8052 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8053 8054 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8055 if (FRM == RISCVFPRndMode::Invalid) 8056 return SDValue(); 8057 8058 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8059 8060 unsigned Opc; 8061 if (SatVT == DstVT) 8062 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8063 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8064 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8065 else 8066 return SDValue(); 8067 // FIXME: Support other SatVTs by clamping before or after the conversion. 8068 8069 Src = Src.getOperand(0); 8070 8071 SDLoc DL(N); 8072 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8073 DAG.getTargetConstant(FRM, DL, XLenVT)); 8074 8075 // RISCV FP-to-int conversions saturate to the destination register size, but 8076 // don't produce 0 for nan. 8077 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8078 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8079 } 8080 8081 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8082 // smaller than XLenVT. 8083 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8084 const RISCVSubtarget &Subtarget) { 8085 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8086 8087 SDValue Src = N->getOperand(0); 8088 if (Src.getOpcode() != ISD::BSWAP) 8089 return SDValue(); 8090 8091 EVT VT = N->getValueType(0); 8092 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8093 !isPowerOf2_32(VT.getSizeInBits())) 8094 return SDValue(); 8095 8096 SDLoc DL(N); 8097 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8098 DAG.getConstant(7, DL, VT)); 8099 } 8100 8101 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8102 DAGCombinerInfo &DCI) const { 8103 SelectionDAG &DAG = DCI.DAG; 8104 8105 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8106 // bits are demanded. N will be added to the Worklist if it was not deleted. 8107 // Caller should return SDValue(N, 0) if this returns true. 8108 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8109 SDValue Op = N->getOperand(OpNo); 8110 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8111 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8112 return false; 8113 8114 if (N->getOpcode() != ISD::DELETED_NODE) 8115 DCI.AddToWorklist(N); 8116 return true; 8117 }; 8118 8119 switch (N->getOpcode()) { 8120 default: 8121 break; 8122 case RISCVISD::SplitF64: { 8123 SDValue Op0 = N->getOperand(0); 8124 // If the input to SplitF64 is just BuildPairF64 then the operation is 8125 // redundant. Instead, use BuildPairF64's operands directly. 8126 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8127 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8128 8129 if (Op0->isUndef()) { 8130 SDValue Lo = DAG.getUNDEF(MVT::i32); 8131 SDValue Hi = DAG.getUNDEF(MVT::i32); 8132 return DCI.CombineTo(N, Lo, Hi); 8133 } 8134 8135 SDLoc DL(N); 8136 8137 // It's cheaper to materialise two 32-bit integers than to load a double 8138 // from the constant pool and transfer it to integer registers through the 8139 // stack. 8140 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8141 APInt V = C->getValueAPF().bitcastToAPInt(); 8142 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8143 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8144 return DCI.CombineTo(N, Lo, Hi); 8145 } 8146 8147 // This is a target-specific version of a DAGCombine performed in 8148 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8149 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8150 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8151 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8152 !Op0.getNode()->hasOneUse()) 8153 break; 8154 SDValue NewSplitF64 = 8155 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8156 Op0.getOperand(0)); 8157 SDValue Lo = NewSplitF64.getValue(0); 8158 SDValue Hi = NewSplitF64.getValue(1); 8159 APInt SignBit = APInt::getSignMask(32); 8160 if (Op0.getOpcode() == ISD::FNEG) { 8161 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8162 DAG.getConstant(SignBit, DL, MVT::i32)); 8163 return DCI.CombineTo(N, Lo, NewHi); 8164 } 8165 assert(Op0.getOpcode() == ISD::FABS); 8166 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8167 DAG.getConstant(~SignBit, DL, MVT::i32)); 8168 return DCI.CombineTo(N, Lo, NewHi); 8169 } 8170 case RISCVISD::SLLW: 8171 case RISCVISD::SRAW: 8172 case RISCVISD::SRLW: { 8173 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8174 if (SimplifyDemandedLowBitsHelper(0, 32) || 8175 SimplifyDemandedLowBitsHelper(1, 5)) 8176 return SDValue(N, 0); 8177 8178 break; 8179 } 8180 case ISD::ROTR: 8181 case ISD::ROTL: 8182 case RISCVISD::RORW: 8183 case RISCVISD::ROLW: { 8184 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8185 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8186 if (SimplifyDemandedLowBitsHelper(0, 32) || 8187 SimplifyDemandedLowBitsHelper(1, 5)) 8188 return SDValue(N, 0); 8189 } 8190 8191 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8192 } 8193 case RISCVISD::CLZW: 8194 case RISCVISD::CTZW: { 8195 // Only the lower 32 bits of the first operand are read 8196 if (SimplifyDemandedLowBitsHelper(0, 32)) 8197 return SDValue(N, 0); 8198 break; 8199 } 8200 case RISCVISD::GREV: 8201 case RISCVISD::GORC: { 8202 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8203 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8204 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8205 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8206 return SDValue(N, 0); 8207 8208 return combineGREVI_GORCI(N, DAG); 8209 } 8210 case RISCVISD::GREVW: 8211 case RISCVISD::GORCW: { 8212 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8213 if (SimplifyDemandedLowBitsHelper(0, 32) || 8214 SimplifyDemandedLowBitsHelper(1, 5)) 8215 return SDValue(N, 0); 8216 8217 break; 8218 } 8219 case RISCVISD::SHFL: 8220 case RISCVISD::UNSHFL: { 8221 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8222 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8223 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8224 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8225 return SDValue(N, 0); 8226 8227 break; 8228 } 8229 case RISCVISD::SHFLW: 8230 case RISCVISD::UNSHFLW: { 8231 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8232 if (SimplifyDemandedLowBitsHelper(0, 32) || 8233 SimplifyDemandedLowBitsHelper(1, 4)) 8234 return SDValue(N, 0); 8235 8236 break; 8237 } 8238 case RISCVISD::BCOMPRESSW: 8239 case RISCVISD::BDECOMPRESSW: { 8240 // Only the lower 32 bits of LHS and RHS are read. 8241 if (SimplifyDemandedLowBitsHelper(0, 32) || 8242 SimplifyDemandedLowBitsHelper(1, 32)) 8243 return SDValue(N, 0); 8244 8245 break; 8246 } 8247 case RISCVISD::FSR: 8248 case RISCVISD::FSL: 8249 case RISCVISD::FSRW: 8250 case RISCVISD::FSLW: { 8251 bool IsWInstruction = 8252 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8253 unsigned BitWidth = 8254 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8255 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8256 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8257 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8258 return SDValue(N, 0); 8259 8260 break; 8261 } 8262 case RISCVISD::FMV_X_ANYEXTH: 8263 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8264 SDLoc DL(N); 8265 SDValue Op0 = N->getOperand(0); 8266 MVT VT = N->getSimpleValueType(0); 8267 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8268 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8269 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8270 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8271 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8272 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8273 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8274 assert(Op0.getOperand(0).getValueType() == VT && 8275 "Unexpected value type!"); 8276 return Op0.getOperand(0); 8277 } 8278 8279 // This is a target-specific version of a DAGCombine performed in 8280 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8281 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8282 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8283 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8284 !Op0.getNode()->hasOneUse()) 8285 break; 8286 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8287 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8288 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8289 if (Op0.getOpcode() == ISD::FNEG) 8290 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8291 DAG.getConstant(SignBit, DL, VT)); 8292 8293 assert(Op0.getOpcode() == ISD::FABS); 8294 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8295 DAG.getConstant(~SignBit, DL, VT)); 8296 } 8297 case ISD::ADD: 8298 return performADDCombine(N, DAG, Subtarget); 8299 case ISD::SUB: 8300 return performSUBCombine(N, DAG); 8301 case ISD::AND: 8302 return performANDCombine(N, DAG); 8303 case ISD::OR: 8304 return performORCombine(N, DAG, Subtarget); 8305 case ISD::XOR: 8306 return performXORCombine(N, DAG); 8307 case ISD::SIGN_EXTEND_INREG: 8308 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8309 case ISD::ZERO_EXTEND: 8310 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8311 // type legalization. This is safe because fp_to_uint produces poison if 8312 // it overflows. 8313 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8314 SDValue Src = N->getOperand(0); 8315 if (Src.getOpcode() == ISD::FP_TO_UINT && 8316 isTypeLegal(Src.getOperand(0).getValueType())) 8317 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8318 Src.getOperand(0)); 8319 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8320 isTypeLegal(Src.getOperand(1).getValueType())) { 8321 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8322 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8323 Src.getOperand(0), Src.getOperand(1)); 8324 DCI.CombineTo(N, Res); 8325 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8326 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8327 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8328 } 8329 } 8330 return SDValue(); 8331 case RISCVISD::SELECT_CC: { 8332 // Transform 8333 SDValue LHS = N->getOperand(0); 8334 SDValue RHS = N->getOperand(1); 8335 SDValue TrueV = N->getOperand(3); 8336 SDValue FalseV = N->getOperand(4); 8337 8338 // If the True and False values are the same, we don't need a select_cc. 8339 if (TrueV == FalseV) 8340 return TrueV; 8341 8342 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8343 if (!ISD::isIntEqualitySetCC(CCVal)) 8344 break; 8345 8346 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8347 // (select_cc X, Y, lt, trueV, falseV) 8348 // Sometimes the setcc is introduced after select_cc has been formed. 8349 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8350 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8351 // If we're looking for eq 0 instead of ne 0, we need to invert the 8352 // condition. 8353 bool Invert = CCVal == ISD::SETEQ; 8354 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8355 if (Invert) 8356 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8357 8358 SDLoc DL(N); 8359 RHS = LHS.getOperand(1); 8360 LHS = LHS.getOperand(0); 8361 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8362 8363 SDValue TargetCC = DAG.getCondCode(CCVal); 8364 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8365 {LHS, RHS, TargetCC, TrueV, FalseV}); 8366 } 8367 8368 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8369 // (select_cc X, Y, eq/ne, trueV, falseV) 8370 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8371 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8372 {LHS.getOperand(0), LHS.getOperand(1), 8373 N->getOperand(2), TrueV, FalseV}); 8374 // (select_cc X, 1, setne, trueV, falseV) -> 8375 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8376 // This can occur when legalizing some floating point comparisons. 8377 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8378 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8379 SDLoc DL(N); 8380 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8381 SDValue TargetCC = DAG.getCondCode(CCVal); 8382 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8383 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8384 {LHS, RHS, TargetCC, TrueV, FalseV}); 8385 } 8386 8387 break; 8388 } 8389 case RISCVISD::BR_CC: { 8390 SDValue LHS = N->getOperand(1); 8391 SDValue RHS = N->getOperand(2); 8392 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8393 if (!ISD::isIntEqualitySetCC(CCVal)) 8394 break; 8395 8396 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8397 // (br_cc X, Y, lt, dest) 8398 // Sometimes the setcc is introduced after br_cc has been formed. 8399 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8400 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8401 // If we're looking for eq 0 instead of ne 0, we need to invert the 8402 // condition. 8403 bool Invert = CCVal == ISD::SETEQ; 8404 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8405 if (Invert) 8406 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8407 8408 SDLoc DL(N); 8409 RHS = LHS.getOperand(1); 8410 LHS = LHS.getOperand(0); 8411 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8412 8413 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8414 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8415 N->getOperand(4)); 8416 } 8417 8418 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8419 // (br_cc X, Y, eq/ne, trueV, falseV) 8420 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8421 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8422 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8423 N->getOperand(3), N->getOperand(4)); 8424 8425 // (br_cc X, 1, setne, br_cc) -> 8426 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8427 // This can occur when legalizing some floating point comparisons. 8428 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8429 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8430 SDLoc DL(N); 8431 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8432 SDValue TargetCC = DAG.getCondCode(CCVal); 8433 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8434 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8435 N->getOperand(0), LHS, RHS, TargetCC, 8436 N->getOperand(4)); 8437 } 8438 break; 8439 } 8440 case ISD::BITREVERSE: 8441 return performBITREVERSECombine(N, DAG, Subtarget); 8442 case ISD::FP_TO_SINT: 8443 case ISD::FP_TO_UINT: 8444 return performFP_TO_INTCombine(N, DCI, Subtarget); 8445 case ISD::FP_TO_SINT_SAT: 8446 case ISD::FP_TO_UINT_SAT: 8447 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8448 case ISD::FCOPYSIGN: { 8449 EVT VT = N->getValueType(0); 8450 if (!VT.isVector()) 8451 break; 8452 // There is a form of VFSGNJ which injects the negated sign of its second 8453 // operand. Try and bubble any FNEG up after the extend/round to produce 8454 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8455 // TRUNC=1. 8456 SDValue In2 = N->getOperand(1); 8457 // Avoid cases where the extend/round has multiple uses, as duplicating 8458 // those is typically more expensive than removing a fneg. 8459 if (!In2.hasOneUse()) 8460 break; 8461 if (In2.getOpcode() != ISD::FP_EXTEND && 8462 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8463 break; 8464 In2 = In2.getOperand(0); 8465 if (In2.getOpcode() != ISD::FNEG) 8466 break; 8467 SDLoc DL(N); 8468 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8469 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8470 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8471 } 8472 case ISD::MGATHER: 8473 case ISD::MSCATTER: 8474 case ISD::VP_GATHER: 8475 case ISD::VP_SCATTER: { 8476 if (!DCI.isBeforeLegalize()) 8477 break; 8478 SDValue Index, ScaleOp; 8479 bool IsIndexScaled = false; 8480 bool IsIndexSigned = false; 8481 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8482 Index = VPGSN->getIndex(); 8483 ScaleOp = VPGSN->getScale(); 8484 IsIndexScaled = VPGSN->isIndexScaled(); 8485 IsIndexSigned = VPGSN->isIndexSigned(); 8486 } else { 8487 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8488 Index = MGSN->getIndex(); 8489 ScaleOp = MGSN->getScale(); 8490 IsIndexScaled = MGSN->isIndexScaled(); 8491 IsIndexSigned = MGSN->isIndexSigned(); 8492 } 8493 EVT IndexVT = Index.getValueType(); 8494 MVT XLenVT = Subtarget.getXLenVT(); 8495 // RISCV indexed loads only support the "unsigned unscaled" addressing 8496 // mode, so anything else must be manually legalized. 8497 bool NeedsIdxLegalization = 8498 IsIndexScaled || 8499 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8500 if (!NeedsIdxLegalization) 8501 break; 8502 8503 SDLoc DL(N); 8504 8505 // Any index legalization should first promote to XLenVT, so we don't lose 8506 // bits when scaling. This may create an illegal index type so we let 8507 // LLVM's legalization take care of the splitting. 8508 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8509 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8510 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8511 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8512 DL, IndexVT, Index); 8513 } 8514 8515 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8516 if (IsIndexScaled && Scale != 1) { 8517 // Manually scale the indices by the element size. 8518 // TODO: Sanitize the scale operand here? 8519 // TODO: For VP nodes, should we use VP_SHL here? 8520 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8521 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8522 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8523 } 8524 8525 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8526 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8527 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8528 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8529 VPGN->getScale(), VPGN->getMask(), 8530 VPGN->getVectorLength()}, 8531 VPGN->getMemOperand(), NewIndexTy); 8532 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8533 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8534 {VPSN->getChain(), VPSN->getValue(), 8535 VPSN->getBasePtr(), Index, VPSN->getScale(), 8536 VPSN->getMask(), VPSN->getVectorLength()}, 8537 VPSN->getMemOperand(), NewIndexTy); 8538 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8539 return DAG.getMaskedGather( 8540 N->getVTList(), MGN->getMemoryVT(), DL, 8541 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8542 MGN->getBasePtr(), Index, MGN->getScale()}, 8543 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8544 const auto *MSN = cast<MaskedScatterSDNode>(N); 8545 return DAG.getMaskedScatter( 8546 N->getVTList(), MSN->getMemoryVT(), DL, 8547 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8548 Index, MSN->getScale()}, 8549 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8550 } 8551 case RISCVISD::SRA_VL: 8552 case RISCVISD::SRL_VL: 8553 case RISCVISD::SHL_VL: { 8554 SDValue ShAmt = N->getOperand(1); 8555 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8556 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8557 SDLoc DL(N); 8558 SDValue VL = N->getOperand(3); 8559 EVT VT = N->getValueType(0); 8560 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8561 ShAmt.getOperand(1), VL); 8562 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8563 N->getOperand(2), N->getOperand(3)); 8564 } 8565 break; 8566 } 8567 case ISD::SRA: 8568 case ISD::SRL: 8569 case ISD::SHL: { 8570 SDValue ShAmt = N->getOperand(1); 8571 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8572 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8573 SDLoc DL(N); 8574 EVT VT = N->getValueType(0); 8575 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8576 ShAmt.getOperand(1), 8577 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8578 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8579 } 8580 break; 8581 } 8582 case RISCVISD::ADD_VL: 8583 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8584 return V; 8585 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8586 case RISCVISD::SUB_VL: 8587 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8588 case RISCVISD::VWADD_W_VL: 8589 case RISCVISD::VWADDU_W_VL: 8590 case RISCVISD::VWSUB_W_VL: 8591 case RISCVISD::VWSUBU_W_VL: 8592 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8593 case RISCVISD::MUL_VL: 8594 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8595 return V; 8596 // Mul is commutative. 8597 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8598 case ISD::STORE: { 8599 auto *Store = cast<StoreSDNode>(N); 8600 SDValue Val = Store->getValue(); 8601 // Combine store of vmv.x.s to vse with VL of 1. 8602 // FIXME: Support FP. 8603 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8604 SDValue Src = Val.getOperand(0); 8605 EVT VecVT = Src.getValueType(); 8606 EVT MemVT = Store->getMemoryVT(); 8607 // The memory VT and the element type must match. 8608 if (VecVT.getVectorElementType() == MemVT) { 8609 SDLoc DL(N); 8610 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8611 return DAG.getStoreVP( 8612 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8613 DAG.getConstant(1, DL, MaskVT), 8614 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8615 Store->getMemOperand(), Store->getAddressingMode(), 8616 Store->isTruncatingStore(), /*IsCompress*/ false); 8617 } 8618 } 8619 8620 break; 8621 } 8622 case ISD::SPLAT_VECTOR: { 8623 EVT VT = N->getValueType(0); 8624 // Only perform this combine on legal MVT types. 8625 if (!isTypeLegal(VT)) 8626 break; 8627 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8628 DAG, Subtarget)) 8629 return Gather; 8630 break; 8631 } 8632 case RISCVISD::VMV_V_X_VL: { 8633 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8634 // scalar input. 8635 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8636 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8637 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8638 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8639 return SDValue(N, 0); 8640 8641 break; 8642 } 8643 case ISD::INTRINSIC_WO_CHAIN: { 8644 unsigned IntNo = N->getConstantOperandVal(0); 8645 switch (IntNo) { 8646 // By default we do not combine any intrinsic. 8647 default: 8648 return SDValue(); 8649 case Intrinsic::riscv_vcpop: 8650 case Intrinsic::riscv_vcpop_mask: 8651 case Intrinsic::riscv_vfirst: 8652 case Intrinsic::riscv_vfirst_mask: { 8653 SDValue VL = N->getOperand(2); 8654 if (IntNo == Intrinsic::riscv_vcpop_mask || 8655 IntNo == Intrinsic::riscv_vfirst_mask) 8656 VL = N->getOperand(3); 8657 if (!isNullConstant(VL)) 8658 return SDValue(); 8659 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8660 SDLoc DL(N); 8661 EVT VT = N->getValueType(0); 8662 if (IntNo == Intrinsic::riscv_vfirst || 8663 IntNo == Intrinsic::riscv_vfirst_mask) 8664 return DAG.getConstant(-1, DL, VT); 8665 return DAG.getConstant(0, DL, VT); 8666 } 8667 } 8668 } 8669 } 8670 8671 return SDValue(); 8672 } 8673 8674 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8675 const SDNode *N, CombineLevel Level) const { 8676 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8677 // materialised in fewer instructions than `(OP _, c1)`: 8678 // 8679 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8680 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8681 SDValue N0 = N->getOperand(0); 8682 EVT Ty = N0.getValueType(); 8683 if (Ty.isScalarInteger() && 8684 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8685 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8686 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8687 if (C1 && C2) { 8688 const APInt &C1Int = C1->getAPIntValue(); 8689 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8690 8691 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8692 // and the combine should happen, to potentially allow further combines 8693 // later. 8694 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8695 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8696 return true; 8697 8698 // We can materialise `c1` in an add immediate, so it's "free", and the 8699 // combine should be prevented. 8700 if (C1Int.getMinSignedBits() <= 64 && 8701 isLegalAddImmediate(C1Int.getSExtValue())) 8702 return false; 8703 8704 // Neither constant will fit into an immediate, so find materialisation 8705 // costs. 8706 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8707 Subtarget.getFeatureBits(), 8708 /*CompressionCost*/true); 8709 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8710 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8711 /*CompressionCost*/true); 8712 8713 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8714 // combine should be prevented. 8715 if (C1Cost < ShiftedC1Cost) 8716 return false; 8717 } 8718 } 8719 return true; 8720 } 8721 8722 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8723 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8724 TargetLoweringOpt &TLO) const { 8725 // Delay this optimization as late as possible. 8726 if (!TLO.LegalOps) 8727 return false; 8728 8729 EVT VT = Op.getValueType(); 8730 if (VT.isVector()) 8731 return false; 8732 8733 // Only handle AND for now. 8734 if (Op.getOpcode() != ISD::AND) 8735 return false; 8736 8737 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8738 if (!C) 8739 return false; 8740 8741 const APInt &Mask = C->getAPIntValue(); 8742 8743 // Clear all non-demanded bits initially. 8744 APInt ShrunkMask = Mask & DemandedBits; 8745 8746 // Try to make a smaller immediate by setting undemanded bits. 8747 8748 APInt ExpandedMask = Mask | ~DemandedBits; 8749 8750 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8751 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8752 }; 8753 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8754 if (NewMask == Mask) 8755 return true; 8756 SDLoc DL(Op); 8757 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8758 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8759 return TLO.CombineTo(Op, NewOp); 8760 }; 8761 8762 // If the shrunk mask fits in sign extended 12 bits, let the target 8763 // independent code apply it. 8764 if (ShrunkMask.isSignedIntN(12)) 8765 return false; 8766 8767 // Preserve (and X, 0xffff) when zext.h is supported. 8768 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8769 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8770 if (IsLegalMask(NewMask)) 8771 return UseMask(NewMask); 8772 } 8773 8774 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8775 if (VT == MVT::i64) { 8776 APInt NewMask = APInt(64, 0xffffffff); 8777 if (IsLegalMask(NewMask)) 8778 return UseMask(NewMask); 8779 } 8780 8781 // For the remaining optimizations, we need to be able to make a negative 8782 // number through a combination of mask and undemanded bits. 8783 if (!ExpandedMask.isNegative()) 8784 return false; 8785 8786 // What is the fewest number of bits we need to represent the negative number. 8787 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8788 8789 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8790 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8791 APInt NewMask = ShrunkMask; 8792 if (MinSignedBits <= 12) 8793 NewMask.setBitsFrom(11); 8794 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8795 NewMask.setBitsFrom(31); 8796 else 8797 return false; 8798 8799 // Check that our new mask is a subset of the demanded mask. 8800 assert(IsLegalMask(NewMask)); 8801 return UseMask(NewMask); 8802 } 8803 8804 static void computeGREV(APInt &Src, unsigned ShAmt) { 8805 ShAmt &= Src.getBitWidth() - 1; 8806 uint64_t x = Src.getZExtValue(); 8807 if (ShAmt & 1) 8808 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8809 if (ShAmt & 2) 8810 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8811 if (ShAmt & 4) 8812 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8813 if (ShAmt & 8) 8814 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8815 if (ShAmt & 16) 8816 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8817 if (ShAmt & 32) 8818 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8819 Src = x; 8820 } 8821 8822 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8823 KnownBits &Known, 8824 const APInt &DemandedElts, 8825 const SelectionDAG &DAG, 8826 unsigned Depth) const { 8827 unsigned BitWidth = Known.getBitWidth(); 8828 unsigned Opc = Op.getOpcode(); 8829 assert((Opc >= ISD::BUILTIN_OP_END || 8830 Opc == ISD::INTRINSIC_WO_CHAIN || 8831 Opc == ISD::INTRINSIC_W_CHAIN || 8832 Opc == ISD::INTRINSIC_VOID) && 8833 "Should use MaskedValueIsZero if you don't know whether Op" 8834 " is a target node!"); 8835 8836 Known.resetAll(); 8837 switch (Opc) { 8838 default: break; 8839 case RISCVISD::SELECT_CC: { 8840 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8841 // If we don't know any bits, early out. 8842 if (Known.isUnknown()) 8843 break; 8844 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8845 8846 // Only known if known in both the LHS and RHS. 8847 Known = KnownBits::commonBits(Known, Known2); 8848 break; 8849 } 8850 case RISCVISD::REMUW: { 8851 KnownBits Known2; 8852 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8853 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8854 // We only care about the lower 32 bits. 8855 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8856 // Restore the original width by sign extending. 8857 Known = Known.sext(BitWidth); 8858 break; 8859 } 8860 case RISCVISD::DIVUW: { 8861 KnownBits Known2; 8862 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8863 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8864 // We only care about the lower 32 bits. 8865 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8866 // Restore the original width by sign extending. 8867 Known = Known.sext(BitWidth); 8868 break; 8869 } 8870 case RISCVISD::CTZW: { 8871 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8872 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8873 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8874 Known.Zero.setBitsFrom(LowBits); 8875 break; 8876 } 8877 case RISCVISD::CLZW: { 8878 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8879 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8880 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8881 Known.Zero.setBitsFrom(LowBits); 8882 break; 8883 } 8884 case RISCVISD::GREV: { 8885 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8886 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8887 unsigned ShAmt = C->getZExtValue(); 8888 computeGREV(Known.Zero, ShAmt); 8889 computeGREV(Known.One, ShAmt); 8890 } 8891 break; 8892 } 8893 case RISCVISD::READ_VLENB: { 8894 // If we know the minimum VLen from Zvl extensions, we can use that to 8895 // determine the trailing zeros of VLENB. 8896 // FIXME: Limit to 128 bit vectors until we have more testing. 8897 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8898 if (MinVLenB > 0) 8899 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8900 // We assume VLENB is no more than 65536 / 8 bytes. 8901 Known.Zero.setBitsFrom(14); 8902 break; 8903 } 8904 case ISD::INTRINSIC_W_CHAIN: 8905 case ISD::INTRINSIC_WO_CHAIN: { 8906 unsigned IntNo = 8907 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8908 switch (IntNo) { 8909 default: 8910 // We can't do anything for most intrinsics. 8911 break; 8912 case Intrinsic::riscv_vsetvli: 8913 case Intrinsic::riscv_vsetvlimax: 8914 case Intrinsic::riscv_vsetvli_opt: 8915 case Intrinsic::riscv_vsetvlimax_opt: 8916 // Assume that VL output is positive and would fit in an int32_t. 8917 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8918 if (BitWidth >= 32) 8919 Known.Zero.setBitsFrom(31); 8920 break; 8921 } 8922 break; 8923 } 8924 } 8925 } 8926 8927 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8928 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8929 unsigned Depth) const { 8930 switch (Op.getOpcode()) { 8931 default: 8932 break; 8933 case RISCVISD::SELECT_CC: { 8934 unsigned Tmp = 8935 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8936 if (Tmp == 1) return 1; // Early out. 8937 unsigned Tmp2 = 8938 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8939 return std::min(Tmp, Tmp2); 8940 } 8941 case RISCVISD::SLLW: 8942 case RISCVISD::SRAW: 8943 case RISCVISD::SRLW: 8944 case RISCVISD::DIVW: 8945 case RISCVISD::DIVUW: 8946 case RISCVISD::REMUW: 8947 case RISCVISD::ROLW: 8948 case RISCVISD::RORW: 8949 case RISCVISD::GREVW: 8950 case RISCVISD::GORCW: 8951 case RISCVISD::FSLW: 8952 case RISCVISD::FSRW: 8953 case RISCVISD::SHFLW: 8954 case RISCVISD::UNSHFLW: 8955 case RISCVISD::BCOMPRESSW: 8956 case RISCVISD::BDECOMPRESSW: 8957 case RISCVISD::BFPW: 8958 case RISCVISD::FCVT_W_RV64: 8959 case RISCVISD::FCVT_WU_RV64: 8960 case RISCVISD::STRICT_FCVT_W_RV64: 8961 case RISCVISD::STRICT_FCVT_WU_RV64: 8962 // TODO: As the result is sign-extended, this is conservatively correct. A 8963 // more precise answer could be calculated for SRAW depending on known 8964 // bits in the shift amount. 8965 return 33; 8966 case RISCVISD::SHFL: 8967 case RISCVISD::UNSHFL: { 8968 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8969 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8970 // will stay within the upper 32 bits. If there were more than 32 sign bits 8971 // before there will be at least 33 sign bits after. 8972 if (Op.getValueType() == MVT::i64 && 8973 isa<ConstantSDNode>(Op.getOperand(1)) && 8974 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8975 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8976 if (Tmp > 32) 8977 return 33; 8978 } 8979 break; 8980 } 8981 case RISCVISD::VMV_X_S: { 8982 // The number of sign bits of the scalar result is computed by obtaining the 8983 // element type of the input vector operand, subtracting its width from the 8984 // XLEN, and then adding one (sign bit within the element type). If the 8985 // element type is wider than XLen, the least-significant XLEN bits are 8986 // taken. 8987 unsigned XLen = Subtarget.getXLen(); 8988 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8989 if (EltBits <= XLen) 8990 return XLen - EltBits + 1; 8991 break; 8992 } 8993 } 8994 8995 return 1; 8996 } 8997 8998 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8999 MachineBasicBlock *BB) { 9000 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 9001 9002 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9003 // Should the count have wrapped while it was being read, we need to try 9004 // again. 9005 // ... 9006 // read: 9007 // rdcycleh x3 # load high word of cycle 9008 // rdcycle x2 # load low word of cycle 9009 // rdcycleh x4 # load high word of cycle 9010 // bne x3, x4, read # check if high word reads match, otherwise try again 9011 // ... 9012 9013 MachineFunction &MF = *BB->getParent(); 9014 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9015 MachineFunction::iterator It = ++BB->getIterator(); 9016 9017 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9018 MF.insert(It, LoopMBB); 9019 9020 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9021 MF.insert(It, DoneMBB); 9022 9023 // Transfer the remainder of BB and its successor edges to DoneMBB. 9024 DoneMBB->splice(DoneMBB->begin(), BB, 9025 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9026 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9027 9028 BB->addSuccessor(LoopMBB); 9029 9030 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9031 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9032 Register LoReg = MI.getOperand(0).getReg(); 9033 Register HiReg = MI.getOperand(1).getReg(); 9034 DebugLoc DL = MI.getDebugLoc(); 9035 9036 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9037 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9038 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9039 .addReg(RISCV::X0); 9040 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9041 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9042 .addReg(RISCV::X0); 9043 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9044 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9045 .addReg(RISCV::X0); 9046 9047 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9048 .addReg(HiReg) 9049 .addReg(ReadAgainReg) 9050 .addMBB(LoopMBB); 9051 9052 LoopMBB->addSuccessor(LoopMBB); 9053 LoopMBB->addSuccessor(DoneMBB); 9054 9055 MI.eraseFromParent(); 9056 9057 return DoneMBB; 9058 } 9059 9060 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9061 MachineBasicBlock *BB) { 9062 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9063 9064 MachineFunction &MF = *BB->getParent(); 9065 DebugLoc DL = MI.getDebugLoc(); 9066 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9067 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9068 Register LoReg = MI.getOperand(0).getReg(); 9069 Register HiReg = MI.getOperand(1).getReg(); 9070 Register SrcReg = MI.getOperand(2).getReg(); 9071 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9072 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9073 9074 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9075 RI); 9076 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9077 MachineMemOperand *MMOLo = 9078 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9079 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9080 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9081 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9082 .addFrameIndex(FI) 9083 .addImm(0) 9084 .addMemOperand(MMOLo); 9085 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9086 .addFrameIndex(FI) 9087 .addImm(4) 9088 .addMemOperand(MMOHi); 9089 MI.eraseFromParent(); // The pseudo instruction is gone now. 9090 return BB; 9091 } 9092 9093 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9094 MachineBasicBlock *BB) { 9095 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9096 "Unexpected instruction"); 9097 9098 MachineFunction &MF = *BB->getParent(); 9099 DebugLoc DL = MI.getDebugLoc(); 9100 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9101 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9102 Register DstReg = MI.getOperand(0).getReg(); 9103 Register LoReg = MI.getOperand(1).getReg(); 9104 Register HiReg = MI.getOperand(2).getReg(); 9105 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9106 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9107 9108 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9109 MachineMemOperand *MMOLo = 9110 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9111 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9112 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9113 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9114 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9115 .addFrameIndex(FI) 9116 .addImm(0) 9117 .addMemOperand(MMOLo); 9118 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9119 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9120 .addFrameIndex(FI) 9121 .addImm(4) 9122 .addMemOperand(MMOHi); 9123 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9124 MI.eraseFromParent(); // The pseudo instruction is gone now. 9125 return BB; 9126 } 9127 9128 static bool isSelectPseudo(MachineInstr &MI) { 9129 switch (MI.getOpcode()) { 9130 default: 9131 return false; 9132 case RISCV::Select_GPR_Using_CC_GPR: 9133 case RISCV::Select_FPR16_Using_CC_GPR: 9134 case RISCV::Select_FPR32_Using_CC_GPR: 9135 case RISCV::Select_FPR64_Using_CC_GPR: 9136 return true; 9137 } 9138 } 9139 9140 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9141 unsigned RelOpcode, unsigned EqOpcode, 9142 const RISCVSubtarget &Subtarget) { 9143 DebugLoc DL = MI.getDebugLoc(); 9144 Register DstReg = MI.getOperand(0).getReg(); 9145 Register Src1Reg = MI.getOperand(1).getReg(); 9146 Register Src2Reg = MI.getOperand(2).getReg(); 9147 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9148 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9149 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9150 9151 // Save the current FFLAGS. 9152 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9153 9154 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9155 .addReg(Src1Reg) 9156 .addReg(Src2Reg); 9157 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9158 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9159 9160 // Restore the FFLAGS. 9161 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9162 .addReg(SavedFFlags, RegState::Kill); 9163 9164 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9165 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9166 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9167 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9168 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9169 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9170 9171 // Erase the pseudoinstruction. 9172 MI.eraseFromParent(); 9173 return BB; 9174 } 9175 9176 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9177 MachineBasicBlock *BB, 9178 const RISCVSubtarget &Subtarget) { 9179 // To "insert" Select_* instructions, we actually have to insert the triangle 9180 // control-flow pattern. The incoming instructions know the destination vreg 9181 // to set, the condition code register to branch on, the true/false values to 9182 // select between, and the condcode to use to select the appropriate branch. 9183 // 9184 // We produce the following control flow: 9185 // HeadMBB 9186 // | \ 9187 // | IfFalseMBB 9188 // | / 9189 // TailMBB 9190 // 9191 // When we find a sequence of selects we attempt to optimize their emission 9192 // by sharing the control flow. Currently we only handle cases where we have 9193 // multiple selects with the exact same condition (same LHS, RHS and CC). 9194 // The selects may be interleaved with other instructions if the other 9195 // instructions meet some requirements we deem safe: 9196 // - They are debug instructions. Otherwise, 9197 // - They do not have side-effects, do not access memory and their inputs do 9198 // not depend on the results of the select pseudo-instructions. 9199 // The TrueV/FalseV operands of the selects cannot depend on the result of 9200 // previous selects in the sequence. 9201 // These conditions could be further relaxed. See the X86 target for a 9202 // related approach and more information. 9203 Register LHS = MI.getOperand(1).getReg(); 9204 Register RHS = MI.getOperand(2).getReg(); 9205 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9206 9207 SmallVector<MachineInstr *, 4> SelectDebugValues; 9208 SmallSet<Register, 4> SelectDests; 9209 SelectDests.insert(MI.getOperand(0).getReg()); 9210 9211 MachineInstr *LastSelectPseudo = &MI; 9212 9213 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9214 SequenceMBBI != E; ++SequenceMBBI) { 9215 if (SequenceMBBI->isDebugInstr()) 9216 continue; 9217 else if (isSelectPseudo(*SequenceMBBI)) { 9218 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9219 SequenceMBBI->getOperand(2).getReg() != RHS || 9220 SequenceMBBI->getOperand(3).getImm() != CC || 9221 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9222 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9223 break; 9224 LastSelectPseudo = &*SequenceMBBI; 9225 SequenceMBBI->collectDebugValues(SelectDebugValues); 9226 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9227 } else { 9228 if (SequenceMBBI->hasUnmodeledSideEffects() || 9229 SequenceMBBI->mayLoadOrStore()) 9230 break; 9231 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9232 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9233 })) 9234 break; 9235 } 9236 } 9237 9238 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9239 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9240 DebugLoc DL = MI.getDebugLoc(); 9241 MachineFunction::iterator I = ++BB->getIterator(); 9242 9243 MachineBasicBlock *HeadMBB = BB; 9244 MachineFunction *F = BB->getParent(); 9245 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9246 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9247 9248 F->insert(I, IfFalseMBB); 9249 F->insert(I, TailMBB); 9250 9251 // Transfer debug instructions associated with the selects to TailMBB. 9252 for (MachineInstr *DebugInstr : SelectDebugValues) { 9253 TailMBB->push_back(DebugInstr->removeFromParent()); 9254 } 9255 9256 // Move all instructions after the sequence to TailMBB. 9257 TailMBB->splice(TailMBB->end(), HeadMBB, 9258 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9259 // Update machine-CFG edges by transferring all successors of the current 9260 // block to the new block which will contain the Phi nodes for the selects. 9261 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9262 // Set the successors for HeadMBB. 9263 HeadMBB->addSuccessor(IfFalseMBB); 9264 HeadMBB->addSuccessor(TailMBB); 9265 9266 // Insert appropriate branch. 9267 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9268 .addReg(LHS) 9269 .addReg(RHS) 9270 .addMBB(TailMBB); 9271 9272 // IfFalseMBB just falls through to TailMBB. 9273 IfFalseMBB->addSuccessor(TailMBB); 9274 9275 // Create PHIs for all of the select pseudo-instructions. 9276 auto SelectMBBI = MI.getIterator(); 9277 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9278 auto InsertionPoint = TailMBB->begin(); 9279 while (SelectMBBI != SelectEnd) { 9280 auto Next = std::next(SelectMBBI); 9281 if (isSelectPseudo(*SelectMBBI)) { 9282 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9283 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9284 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9285 .addReg(SelectMBBI->getOperand(4).getReg()) 9286 .addMBB(HeadMBB) 9287 .addReg(SelectMBBI->getOperand(5).getReg()) 9288 .addMBB(IfFalseMBB); 9289 SelectMBBI->eraseFromParent(); 9290 } 9291 SelectMBBI = Next; 9292 } 9293 9294 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9295 return TailMBB; 9296 } 9297 9298 MachineBasicBlock * 9299 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9300 MachineBasicBlock *BB) const { 9301 switch (MI.getOpcode()) { 9302 default: 9303 llvm_unreachable("Unexpected instr type to insert"); 9304 case RISCV::ReadCycleWide: 9305 assert(!Subtarget.is64Bit() && 9306 "ReadCycleWrite is only to be used on riscv32"); 9307 return emitReadCycleWidePseudo(MI, BB); 9308 case RISCV::Select_GPR_Using_CC_GPR: 9309 case RISCV::Select_FPR16_Using_CC_GPR: 9310 case RISCV::Select_FPR32_Using_CC_GPR: 9311 case RISCV::Select_FPR64_Using_CC_GPR: 9312 return emitSelectPseudo(MI, BB, Subtarget); 9313 case RISCV::BuildPairF64Pseudo: 9314 return emitBuildPairF64Pseudo(MI, BB); 9315 case RISCV::SplitF64Pseudo: 9316 return emitSplitF64Pseudo(MI, BB); 9317 case RISCV::PseudoQuietFLE_H: 9318 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9319 case RISCV::PseudoQuietFLT_H: 9320 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9321 case RISCV::PseudoQuietFLE_S: 9322 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9323 case RISCV::PseudoQuietFLT_S: 9324 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9325 case RISCV::PseudoQuietFLE_D: 9326 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9327 case RISCV::PseudoQuietFLT_D: 9328 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9329 } 9330 } 9331 9332 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9333 SDNode *Node) const { 9334 // Add FRM dependency to any instructions with dynamic rounding mode. 9335 unsigned Opc = MI.getOpcode(); 9336 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9337 if (Idx < 0) 9338 return; 9339 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9340 return; 9341 // If the instruction already reads FRM, don't add another read. 9342 if (MI.readsRegister(RISCV::FRM)) 9343 return; 9344 MI.addOperand( 9345 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9346 } 9347 9348 // Calling Convention Implementation. 9349 // The expectations for frontend ABI lowering vary from target to target. 9350 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9351 // details, but this is a longer term goal. For now, we simply try to keep the 9352 // role of the frontend as simple and well-defined as possible. The rules can 9353 // be summarised as: 9354 // * Never split up large scalar arguments. We handle them here. 9355 // * If a hardfloat calling convention is being used, and the struct may be 9356 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9357 // available, then pass as two separate arguments. If either the GPRs or FPRs 9358 // are exhausted, then pass according to the rule below. 9359 // * If a struct could never be passed in registers or directly in a stack 9360 // slot (as it is larger than 2*XLEN and the floating point rules don't 9361 // apply), then pass it using a pointer with the byval attribute. 9362 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9363 // word-sized array or a 2*XLEN scalar (depending on alignment). 9364 // * The frontend can determine whether a struct is returned by reference or 9365 // not based on its size and fields. If it will be returned by reference, the 9366 // frontend must modify the prototype so a pointer with the sret annotation is 9367 // passed as the first argument. This is not necessary for large scalar 9368 // returns. 9369 // * Struct return values and varargs should be coerced to structs containing 9370 // register-size fields in the same situations they would be for fixed 9371 // arguments. 9372 9373 static const MCPhysReg ArgGPRs[] = { 9374 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9375 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9376 }; 9377 static const MCPhysReg ArgFPR16s[] = { 9378 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9379 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9380 }; 9381 static const MCPhysReg ArgFPR32s[] = { 9382 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9383 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9384 }; 9385 static const MCPhysReg ArgFPR64s[] = { 9386 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9387 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9388 }; 9389 // This is an interim calling convention and it may be changed in the future. 9390 static const MCPhysReg ArgVRs[] = { 9391 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9392 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9393 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9394 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9395 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9396 RISCV::V20M2, RISCV::V22M2}; 9397 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9398 RISCV::V20M4}; 9399 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9400 9401 // Pass a 2*XLEN argument that has been split into two XLEN values through 9402 // registers or the stack as necessary. 9403 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9404 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9405 MVT ValVT2, MVT LocVT2, 9406 ISD::ArgFlagsTy ArgFlags2) { 9407 unsigned XLenInBytes = XLen / 8; 9408 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9409 // At least one half can be passed via register. 9410 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9411 VA1.getLocVT(), CCValAssign::Full)); 9412 } else { 9413 // Both halves must be passed on the stack, with proper alignment. 9414 Align StackAlign = 9415 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9416 State.addLoc( 9417 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9418 State.AllocateStack(XLenInBytes, StackAlign), 9419 VA1.getLocVT(), CCValAssign::Full)); 9420 State.addLoc(CCValAssign::getMem( 9421 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9422 LocVT2, CCValAssign::Full)); 9423 return false; 9424 } 9425 9426 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9427 // The second half can also be passed via register. 9428 State.addLoc( 9429 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9430 } else { 9431 // The second half is passed via the stack, without additional alignment. 9432 State.addLoc(CCValAssign::getMem( 9433 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9434 LocVT2, CCValAssign::Full)); 9435 } 9436 9437 return false; 9438 } 9439 9440 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9441 Optional<unsigned> FirstMaskArgument, 9442 CCState &State, const RISCVTargetLowering &TLI) { 9443 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9444 if (RC == &RISCV::VRRegClass) { 9445 // Assign the first mask argument to V0. 9446 // This is an interim calling convention and it may be changed in the 9447 // future. 9448 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9449 return State.AllocateReg(RISCV::V0); 9450 return State.AllocateReg(ArgVRs); 9451 } 9452 if (RC == &RISCV::VRM2RegClass) 9453 return State.AllocateReg(ArgVRM2s); 9454 if (RC == &RISCV::VRM4RegClass) 9455 return State.AllocateReg(ArgVRM4s); 9456 if (RC == &RISCV::VRM8RegClass) 9457 return State.AllocateReg(ArgVRM8s); 9458 llvm_unreachable("Unhandled register class for ValueType"); 9459 } 9460 9461 // Implements the RISC-V calling convention. Returns true upon failure. 9462 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9463 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9464 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9465 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9466 Optional<unsigned> FirstMaskArgument) { 9467 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9468 assert(XLen == 32 || XLen == 64); 9469 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9470 9471 // Any return value split in to more than two values can't be returned 9472 // directly. Vectors are returned via the available vector registers. 9473 if (!LocVT.isVector() && IsRet && ValNo > 1) 9474 return true; 9475 9476 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9477 // variadic argument, or if no F16/F32 argument registers are available. 9478 bool UseGPRForF16_F32 = true; 9479 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9480 // variadic argument, or if no F64 argument registers are available. 9481 bool UseGPRForF64 = true; 9482 9483 switch (ABI) { 9484 default: 9485 llvm_unreachable("Unexpected ABI"); 9486 case RISCVABI::ABI_ILP32: 9487 case RISCVABI::ABI_LP64: 9488 break; 9489 case RISCVABI::ABI_ILP32F: 9490 case RISCVABI::ABI_LP64F: 9491 UseGPRForF16_F32 = !IsFixed; 9492 break; 9493 case RISCVABI::ABI_ILP32D: 9494 case RISCVABI::ABI_LP64D: 9495 UseGPRForF16_F32 = !IsFixed; 9496 UseGPRForF64 = !IsFixed; 9497 break; 9498 } 9499 9500 // FPR16, FPR32, and FPR64 alias each other. 9501 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9502 UseGPRForF16_F32 = true; 9503 UseGPRForF64 = true; 9504 } 9505 9506 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9507 // similar local variables rather than directly checking against the target 9508 // ABI. 9509 9510 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9511 LocVT = XLenVT; 9512 LocInfo = CCValAssign::BCvt; 9513 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9514 LocVT = MVT::i64; 9515 LocInfo = CCValAssign::BCvt; 9516 } 9517 9518 // If this is a variadic argument, the RISC-V calling convention requires 9519 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9520 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9521 // be used regardless of whether the original argument was split during 9522 // legalisation or not. The argument will not be passed by registers if the 9523 // original type is larger than 2*XLEN, so the register alignment rule does 9524 // not apply. 9525 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9526 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9527 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9528 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9529 // Skip 'odd' register if necessary. 9530 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9531 State.AllocateReg(ArgGPRs); 9532 } 9533 9534 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9535 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9536 State.getPendingArgFlags(); 9537 9538 assert(PendingLocs.size() == PendingArgFlags.size() && 9539 "PendingLocs and PendingArgFlags out of sync"); 9540 9541 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9542 // registers are exhausted. 9543 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9544 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9545 "Can't lower f64 if it is split"); 9546 // Depending on available argument GPRS, f64 may be passed in a pair of 9547 // GPRs, split between a GPR and the stack, or passed completely on the 9548 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9549 // cases. 9550 Register Reg = State.AllocateReg(ArgGPRs); 9551 LocVT = MVT::i32; 9552 if (!Reg) { 9553 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9554 State.addLoc( 9555 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9556 return false; 9557 } 9558 if (!State.AllocateReg(ArgGPRs)) 9559 State.AllocateStack(4, Align(4)); 9560 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9561 return false; 9562 } 9563 9564 // Fixed-length vectors are located in the corresponding scalable-vector 9565 // container types. 9566 if (ValVT.isFixedLengthVector()) 9567 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9568 9569 // Split arguments might be passed indirectly, so keep track of the pending 9570 // values. Split vectors are passed via a mix of registers and indirectly, so 9571 // treat them as we would any other argument. 9572 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9573 LocVT = XLenVT; 9574 LocInfo = CCValAssign::Indirect; 9575 PendingLocs.push_back( 9576 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9577 PendingArgFlags.push_back(ArgFlags); 9578 if (!ArgFlags.isSplitEnd()) { 9579 return false; 9580 } 9581 } 9582 9583 // If the split argument only had two elements, it should be passed directly 9584 // in registers or on the stack. 9585 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9586 PendingLocs.size() <= 2) { 9587 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9588 // Apply the normal calling convention rules to the first half of the 9589 // split argument. 9590 CCValAssign VA = PendingLocs[0]; 9591 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9592 PendingLocs.clear(); 9593 PendingArgFlags.clear(); 9594 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9595 ArgFlags); 9596 } 9597 9598 // Allocate to a register if possible, or else a stack slot. 9599 Register Reg; 9600 unsigned StoreSizeBytes = XLen / 8; 9601 Align StackAlign = Align(XLen / 8); 9602 9603 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9604 Reg = State.AllocateReg(ArgFPR16s); 9605 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9606 Reg = State.AllocateReg(ArgFPR32s); 9607 else if (ValVT == MVT::f64 && !UseGPRForF64) 9608 Reg = State.AllocateReg(ArgFPR64s); 9609 else if (ValVT.isVector()) { 9610 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9611 if (!Reg) { 9612 // For return values, the vector must be passed fully via registers or 9613 // via the stack. 9614 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9615 // but we're using all of them. 9616 if (IsRet) 9617 return true; 9618 // Try using a GPR to pass the address 9619 if ((Reg = State.AllocateReg(ArgGPRs))) { 9620 LocVT = XLenVT; 9621 LocInfo = CCValAssign::Indirect; 9622 } else if (ValVT.isScalableVector()) { 9623 LocVT = XLenVT; 9624 LocInfo = CCValAssign::Indirect; 9625 } else { 9626 // Pass fixed-length vectors on the stack. 9627 LocVT = ValVT; 9628 StoreSizeBytes = ValVT.getStoreSize(); 9629 // Align vectors to their element sizes, being careful for vXi1 9630 // vectors. 9631 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9632 } 9633 } 9634 } else { 9635 Reg = State.AllocateReg(ArgGPRs); 9636 } 9637 9638 unsigned StackOffset = 9639 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9640 9641 // If we reach this point and PendingLocs is non-empty, we must be at the 9642 // end of a split argument that must be passed indirectly. 9643 if (!PendingLocs.empty()) { 9644 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9645 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9646 9647 for (auto &It : PendingLocs) { 9648 if (Reg) 9649 It.convertToReg(Reg); 9650 else 9651 It.convertToMem(StackOffset); 9652 State.addLoc(It); 9653 } 9654 PendingLocs.clear(); 9655 PendingArgFlags.clear(); 9656 return false; 9657 } 9658 9659 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9660 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9661 "Expected an XLenVT or vector types at this stage"); 9662 9663 if (Reg) { 9664 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9665 return false; 9666 } 9667 9668 // When a floating-point value is passed on the stack, no bit-conversion is 9669 // needed. 9670 if (ValVT.isFloatingPoint()) { 9671 LocVT = ValVT; 9672 LocInfo = CCValAssign::Full; 9673 } 9674 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9675 return false; 9676 } 9677 9678 template <typename ArgTy> 9679 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9680 for (const auto &ArgIdx : enumerate(Args)) { 9681 MVT ArgVT = ArgIdx.value().VT; 9682 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9683 return ArgIdx.index(); 9684 } 9685 return None; 9686 } 9687 9688 void RISCVTargetLowering::analyzeInputArgs( 9689 MachineFunction &MF, CCState &CCInfo, 9690 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9691 RISCVCCAssignFn Fn) const { 9692 unsigned NumArgs = Ins.size(); 9693 FunctionType *FType = MF.getFunction().getFunctionType(); 9694 9695 Optional<unsigned> FirstMaskArgument; 9696 if (Subtarget.hasVInstructions()) 9697 FirstMaskArgument = preAssignMask(Ins); 9698 9699 for (unsigned i = 0; i != NumArgs; ++i) { 9700 MVT ArgVT = Ins[i].VT; 9701 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9702 9703 Type *ArgTy = nullptr; 9704 if (IsRet) 9705 ArgTy = FType->getReturnType(); 9706 else if (Ins[i].isOrigArg()) 9707 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9708 9709 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9710 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9711 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9712 FirstMaskArgument)) { 9713 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9714 << EVT(ArgVT).getEVTString() << '\n'); 9715 llvm_unreachable(nullptr); 9716 } 9717 } 9718 } 9719 9720 void RISCVTargetLowering::analyzeOutputArgs( 9721 MachineFunction &MF, CCState &CCInfo, 9722 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9723 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9724 unsigned NumArgs = Outs.size(); 9725 9726 Optional<unsigned> FirstMaskArgument; 9727 if (Subtarget.hasVInstructions()) 9728 FirstMaskArgument = preAssignMask(Outs); 9729 9730 for (unsigned i = 0; i != NumArgs; i++) { 9731 MVT ArgVT = Outs[i].VT; 9732 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9733 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9734 9735 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9736 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9737 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9738 FirstMaskArgument)) { 9739 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9740 << EVT(ArgVT).getEVTString() << "\n"); 9741 llvm_unreachable(nullptr); 9742 } 9743 } 9744 } 9745 9746 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9747 // values. 9748 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9749 const CCValAssign &VA, const SDLoc &DL, 9750 const RISCVSubtarget &Subtarget) { 9751 switch (VA.getLocInfo()) { 9752 default: 9753 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9754 case CCValAssign::Full: 9755 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9756 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9757 break; 9758 case CCValAssign::BCvt: 9759 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9760 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9761 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9762 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9763 else 9764 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9765 break; 9766 } 9767 return Val; 9768 } 9769 9770 // The caller is responsible for loading the full value if the argument is 9771 // passed with CCValAssign::Indirect. 9772 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9773 const CCValAssign &VA, const SDLoc &DL, 9774 const RISCVTargetLowering &TLI) { 9775 MachineFunction &MF = DAG.getMachineFunction(); 9776 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9777 EVT LocVT = VA.getLocVT(); 9778 SDValue Val; 9779 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9780 Register VReg = RegInfo.createVirtualRegister(RC); 9781 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9782 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9783 9784 if (VA.getLocInfo() == CCValAssign::Indirect) 9785 return Val; 9786 9787 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9788 } 9789 9790 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9791 const CCValAssign &VA, const SDLoc &DL, 9792 const RISCVSubtarget &Subtarget) { 9793 EVT LocVT = VA.getLocVT(); 9794 9795 switch (VA.getLocInfo()) { 9796 default: 9797 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9798 case CCValAssign::Full: 9799 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9800 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9801 break; 9802 case CCValAssign::BCvt: 9803 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9804 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9805 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9806 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9807 else 9808 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9809 break; 9810 } 9811 return Val; 9812 } 9813 9814 // The caller is responsible for loading the full value if the argument is 9815 // passed with CCValAssign::Indirect. 9816 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9817 const CCValAssign &VA, const SDLoc &DL) { 9818 MachineFunction &MF = DAG.getMachineFunction(); 9819 MachineFrameInfo &MFI = MF.getFrameInfo(); 9820 EVT LocVT = VA.getLocVT(); 9821 EVT ValVT = VA.getValVT(); 9822 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9823 if (ValVT.isScalableVector()) { 9824 // When the value is a scalable vector, we save the pointer which points to 9825 // the scalable vector value in the stack. The ValVT will be the pointer 9826 // type, instead of the scalable vector type. 9827 ValVT = LocVT; 9828 } 9829 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9830 /*IsImmutable=*/true); 9831 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9832 SDValue Val; 9833 9834 ISD::LoadExtType ExtType; 9835 switch (VA.getLocInfo()) { 9836 default: 9837 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9838 case CCValAssign::Full: 9839 case CCValAssign::Indirect: 9840 case CCValAssign::BCvt: 9841 ExtType = ISD::NON_EXTLOAD; 9842 break; 9843 } 9844 Val = DAG.getExtLoad( 9845 ExtType, DL, LocVT, Chain, FIN, 9846 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9847 return Val; 9848 } 9849 9850 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9851 const CCValAssign &VA, const SDLoc &DL) { 9852 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9853 "Unexpected VA"); 9854 MachineFunction &MF = DAG.getMachineFunction(); 9855 MachineFrameInfo &MFI = MF.getFrameInfo(); 9856 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9857 9858 if (VA.isMemLoc()) { 9859 // f64 is passed on the stack. 9860 int FI = 9861 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9862 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9863 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9864 MachinePointerInfo::getFixedStack(MF, FI)); 9865 } 9866 9867 assert(VA.isRegLoc() && "Expected register VA assignment"); 9868 9869 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9870 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9871 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9872 SDValue Hi; 9873 if (VA.getLocReg() == RISCV::X17) { 9874 // Second half of f64 is passed on the stack. 9875 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9876 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9877 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9878 MachinePointerInfo::getFixedStack(MF, FI)); 9879 } else { 9880 // Second half of f64 is passed in another GPR. 9881 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9882 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9883 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9884 } 9885 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9886 } 9887 9888 // FastCC has less than 1% performance improvement for some particular 9889 // benchmark. But theoretically, it may has benenfit for some cases. 9890 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9891 unsigned ValNo, MVT ValVT, MVT LocVT, 9892 CCValAssign::LocInfo LocInfo, 9893 ISD::ArgFlagsTy ArgFlags, CCState &State, 9894 bool IsFixed, bool IsRet, Type *OrigTy, 9895 const RISCVTargetLowering &TLI, 9896 Optional<unsigned> FirstMaskArgument) { 9897 9898 // X5 and X6 might be used for save-restore libcall. 9899 static const MCPhysReg GPRList[] = { 9900 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9901 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9902 RISCV::X29, RISCV::X30, RISCV::X31}; 9903 9904 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9905 if (unsigned Reg = State.AllocateReg(GPRList)) { 9906 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9907 return false; 9908 } 9909 } 9910 9911 if (LocVT == MVT::f16) { 9912 static const MCPhysReg FPR16List[] = { 9913 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9914 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9915 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9916 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9917 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9918 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9919 return false; 9920 } 9921 } 9922 9923 if (LocVT == MVT::f32) { 9924 static const MCPhysReg FPR32List[] = { 9925 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9926 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9927 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9928 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9929 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9930 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9931 return false; 9932 } 9933 } 9934 9935 if (LocVT == MVT::f64) { 9936 static const MCPhysReg FPR64List[] = { 9937 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9938 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9939 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9940 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9941 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9942 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9943 return false; 9944 } 9945 } 9946 9947 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9948 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9949 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9950 return false; 9951 } 9952 9953 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9954 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9955 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9956 return false; 9957 } 9958 9959 if (LocVT.isVector()) { 9960 if (unsigned Reg = 9961 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9962 // Fixed-length vectors are located in the corresponding scalable-vector 9963 // container types. 9964 if (ValVT.isFixedLengthVector()) 9965 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9966 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9967 } else { 9968 // Try and pass the address via a "fast" GPR. 9969 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9970 LocInfo = CCValAssign::Indirect; 9971 LocVT = TLI.getSubtarget().getXLenVT(); 9972 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9973 } else if (ValVT.isFixedLengthVector()) { 9974 auto StackAlign = 9975 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9976 unsigned StackOffset = 9977 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9978 State.addLoc( 9979 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9980 } else { 9981 // Can't pass scalable vectors on the stack. 9982 return true; 9983 } 9984 } 9985 9986 return false; 9987 } 9988 9989 return true; // CC didn't match. 9990 } 9991 9992 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9993 CCValAssign::LocInfo LocInfo, 9994 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9995 9996 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9997 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9998 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9999 static const MCPhysReg GPRList[] = { 10000 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 10001 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 10002 if (unsigned Reg = State.AllocateReg(GPRList)) { 10003 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10004 return false; 10005 } 10006 } 10007 10008 if (LocVT == MVT::f32) { 10009 // Pass in STG registers: F1, ..., F6 10010 // fs0 ... fs5 10011 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10012 RISCV::F18_F, RISCV::F19_F, 10013 RISCV::F20_F, RISCV::F21_F}; 10014 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10015 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10016 return false; 10017 } 10018 } 10019 10020 if (LocVT == MVT::f64) { 10021 // Pass in STG registers: D1, ..., D6 10022 // fs6 ... fs11 10023 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10024 RISCV::F24_D, RISCV::F25_D, 10025 RISCV::F26_D, RISCV::F27_D}; 10026 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10027 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10028 return false; 10029 } 10030 } 10031 10032 report_fatal_error("No registers left in GHC calling convention"); 10033 return true; 10034 } 10035 10036 // Transform physical registers into virtual registers. 10037 SDValue RISCVTargetLowering::LowerFormalArguments( 10038 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10039 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10040 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10041 10042 MachineFunction &MF = DAG.getMachineFunction(); 10043 10044 switch (CallConv) { 10045 default: 10046 report_fatal_error("Unsupported calling convention"); 10047 case CallingConv::C: 10048 case CallingConv::Fast: 10049 break; 10050 case CallingConv::GHC: 10051 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10052 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10053 report_fatal_error( 10054 "GHC calling convention requires the F and D instruction set extensions"); 10055 } 10056 10057 const Function &Func = MF.getFunction(); 10058 if (Func.hasFnAttribute("interrupt")) { 10059 if (!Func.arg_empty()) 10060 report_fatal_error( 10061 "Functions with the interrupt attribute cannot have arguments!"); 10062 10063 StringRef Kind = 10064 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10065 10066 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10067 report_fatal_error( 10068 "Function interrupt attribute argument not supported!"); 10069 } 10070 10071 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10072 MVT XLenVT = Subtarget.getXLenVT(); 10073 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10074 // Used with vargs to acumulate store chains. 10075 std::vector<SDValue> OutChains; 10076 10077 // Assign locations to all of the incoming arguments. 10078 SmallVector<CCValAssign, 16> ArgLocs; 10079 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10080 10081 if (CallConv == CallingConv::GHC) 10082 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10083 else 10084 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10085 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10086 : CC_RISCV); 10087 10088 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10089 CCValAssign &VA = ArgLocs[i]; 10090 SDValue ArgValue; 10091 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10092 // case. 10093 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10094 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10095 else if (VA.isRegLoc()) 10096 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10097 else 10098 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10099 10100 if (VA.getLocInfo() == CCValAssign::Indirect) { 10101 // If the original argument was split and passed by reference (e.g. i128 10102 // on RV32), we need to load all parts of it here (using the same 10103 // address). Vectors may be partly split to registers and partly to the 10104 // stack, in which case the base address is partly offset and subsequent 10105 // stores are relative to that. 10106 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10107 MachinePointerInfo())); 10108 unsigned ArgIndex = Ins[i].OrigArgIndex; 10109 unsigned ArgPartOffset = Ins[i].PartOffset; 10110 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10111 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10112 CCValAssign &PartVA = ArgLocs[i + 1]; 10113 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10114 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10115 if (PartVA.getValVT().isScalableVector()) 10116 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10117 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10118 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10119 MachinePointerInfo())); 10120 ++i; 10121 } 10122 continue; 10123 } 10124 InVals.push_back(ArgValue); 10125 } 10126 10127 if (IsVarArg) { 10128 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10129 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10130 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10131 MachineFrameInfo &MFI = MF.getFrameInfo(); 10132 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10133 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10134 10135 // Offset of the first variable argument from stack pointer, and size of 10136 // the vararg save area. For now, the varargs save area is either zero or 10137 // large enough to hold a0-a7. 10138 int VaArgOffset, VarArgsSaveSize; 10139 10140 // If all registers are allocated, then all varargs must be passed on the 10141 // stack and we don't need to save any argregs. 10142 if (ArgRegs.size() == Idx) { 10143 VaArgOffset = CCInfo.getNextStackOffset(); 10144 VarArgsSaveSize = 0; 10145 } else { 10146 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10147 VaArgOffset = -VarArgsSaveSize; 10148 } 10149 10150 // Record the frame index of the first variable argument 10151 // which is a value necessary to VASTART. 10152 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10153 RVFI->setVarArgsFrameIndex(FI); 10154 10155 // If saving an odd number of registers then create an extra stack slot to 10156 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10157 // offsets to even-numbered registered remain 2*XLEN-aligned. 10158 if (Idx % 2) { 10159 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10160 VarArgsSaveSize += XLenInBytes; 10161 } 10162 10163 // Copy the integer registers that may have been used for passing varargs 10164 // to the vararg save area. 10165 for (unsigned I = Idx; I < ArgRegs.size(); 10166 ++I, VaArgOffset += XLenInBytes) { 10167 const Register Reg = RegInfo.createVirtualRegister(RC); 10168 RegInfo.addLiveIn(ArgRegs[I], Reg); 10169 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10170 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10171 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10172 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10173 MachinePointerInfo::getFixedStack(MF, FI)); 10174 cast<StoreSDNode>(Store.getNode()) 10175 ->getMemOperand() 10176 ->setValue((Value *)nullptr); 10177 OutChains.push_back(Store); 10178 } 10179 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10180 } 10181 10182 // All stores are grouped in one node to allow the matching between 10183 // the size of Ins and InVals. This only happens for vararg functions. 10184 if (!OutChains.empty()) { 10185 OutChains.push_back(Chain); 10186 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10187 } 10188 10189 return Chain; 10190 } 10191 10192 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10193 /// for tail call optimization. 10194 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10195 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10196 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10197 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10198 10199 auto &Callee = CLI.Callee; 10200 auto CalleeCC = CLI.CallConv; 10201 auto &Outs = CLI.Outs; 10202 auto &Caller = MF.getFunction(); 10203 auto CallerCC = Caller.getCallingConv(); 10204 10205 // Exception-handling functions need a special set of instructions to 10206 // indicate a return to the hardware. Tail-calling another function would 10207 // probably break this. 10208 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10209 // should be expanded as new function attributes are introduced. 10210 if (Caller.hasFnAttribute("interrupt")) 10211 return false; 10212 10213 // Do not tail call opt if the stack is used to pass parameters. 10214 if (CCInfo.getNextStackOffset() != 0) 10215 return false; 10216 10217 // Do not tail call opt if any parameters need to be passed indirectly. 10218 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10219 // passed indirectly. So the address of the value will be passed in a 10220 // register, or if not available, then the address is put on the stack. In 10221 // order to pass indirectly, space on the stack often needs to be allocated 10222 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10223 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10224 // are passed CCValAssign::Indirect. 10225 for (auto &VA : ArgLocs) 10226 if (VA.getLocInfo() == CCValAssign::Indirect) 10227 return false; 10228 10229 // Do not tail call opt if either caller or callee uses struct return 10230 // semantics. 10231 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10232 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10233 if (IsCallerStructRet || IsCalleeStructRet) 10234 return false; 10235 10236 // Externally-defined functions with weak linkage should not be 10237 // tail-called. The behaviour of branch instructions in this situation (as 10238 // used for tail calls) is implementation-defined, so we cannot rely on the 10239 // linker replacing the tail call with a return. 10240 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10241 const GlobalValue *GV = G->getGlobal(); 10242 if (GV->hasExternalWeakLinkage()) 10243 return false; 10244 } 10245 10246 // The callee has to preserve all registers the caller needs to preserve. 10247 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10248 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10249 if (CalleeCC != CallerCC) { 10250 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10251 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10252 return false; 10253 } 10254 10255 // Byval parameters hand the function a pointer directly into the stack area 10256 // we want to reuse during a tail call. Working around this *is* possible 10257 // but less efficient and uglier in LowerCall. 10258 for (auto &Arg : Outs) 10259 if (Arg.Flags.isByVal()) 10260 return false; 10261 10262 return true; 10263 } 10264 10265 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10266 return DAG.getDataLayout().getPrefTypeAlign( 10267 VT.getTypeForEVT(*DAG.getContext())); 10268 } 10269 10270 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10271 // and output parameter nodes. 10272 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10273 SmallVectorImpl<SDValue> &InVals) const { 10274 SelectionDAG &DAG = CLI.DAG; 10275 SDLoc &DL = CLI.DL; 10276 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10277 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10278 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10279 SDValue Chain = CLI.Chain; 10280 SDValue Callee = CLI.Callee; 10281 bool &IsTailCall = CLI.IsTailCall; 10282 CallingConv::ID CallConv = CLI.CallConv; 10283 bool IsVarArg = CLI.IsVarArg; 10284 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10285 MVT XLenVT = Subtarget.getXLenVT(); 10286 10287 MachineFunction &MF = DAG.getMachineFunction(); 10288 10289 // Analyze the operands of the call, assigning locations to each operand. 10290 SmallVector<CCValAssign, 16> ArgLocs; 10291 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10292 10293 if (CallConv == CallingConv::GHC) 10294 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10295 else 10296 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10297 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10298 : CC_RISCV); 10299 10300 // Check if it's really possible to do a tail call. 10301 if (IsTailCall) 10302 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10303 10304 if (IsTailCall) 10305 ++NumTailCalls; 10306 else if (CLI.CB && CLI.CB->isMustTailCall()) 10307 report_fatal_error("failed to perform tail call elimination on a call " 10308 "site marked musttail"); 10309 10310 // Get a count of how many bytes are to be pushed on the stack. 10311 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10312 10313 // Create local copies for byval args 10314 SmallVector<SDValue, 8> ByValArgs; 10315 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10316 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10317 if (!Flags.isByVal()) 10318 continue; 10319 10320 SDValue Arg = OutVals[i]; 10321 unsigned Size = Flags.getByValSize(); 10322 Align Alignment = Flags.getNonZeroByValAlign(); 10323 10324 int FI = 10325 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10326 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10327 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10328 10329 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10330 /*IsVolatile=*/false, 10331 /*AlwaysInline=*/false, IsTailCall, 10332 MachinePointerInfo(), MachinePointerInfo()); 10333 ByValArgs.push_back(FIPtr); 10334 } 10335 10336 if (!IsTailCall) 10337 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10338 10339 // Copy argument values to their designated locations. 10340 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10341 SmallVector<SDValue, 8> MemOpChains; 10342 SDValue StackPtr; 10343 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10344 CCValAssign &VA = ArgLocs[i]; 10345 SDValue ArgValue = OutVals[i]; 10346 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10347 10348 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10349 bool IsF64OnRV32DSoftABI = 10350 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10351 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10352 SDValue SplitF64 = DAG.getNode( 10353 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10354 SDValue Lo = SplitF64.getValue(0); 10355 SDValue Hi = SplitF64.getValue(1); 10356 10357 Register RegLo = VA.getLocReg(); 10358 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10359 10360 if (RegLo == RISCV::X17) { 10361 // Second half of f64 is passed on the stack. 10362 // Work out the address of the stack slot. 10363 if (!StackPtr.getNode()) 10364 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10365 // Emit the store. 10366 MemOpChains.push_back( 10367 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10368 } else { 10369 // Second half of f64 is passed in another GPR. 10370 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10371 Register RegHigh = RegLo + 1; 10372 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10373 } 10374 continue; 10375 } 10376 10377 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10378 // as any other MemLoc. 10379 10380 // Promote the value if needed. 10381 // For now, only handle fully promoted and indirect arguments. 10382 if (VA.getLocInfo() == CCValAssign::Indirect) { 10383 // Store the argument in a stack slot and pass its address. 10384 Align StackAlign = 10385 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10386 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10387 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10388 // If the original argument was split (e.g. i128), we need 10389 // to store the required parts of it here (and pass just one address). 10390 // Vectors may be partly split to registers and partly to the stack, in 10391 // which case the base address is partly offset and subsequent stores are 10392 // relative to that. 10393 unsigned ArgIndex = Outs[i].OrigArgIndex; 10394 unsigned ArgPartOffset = Outs[i].PartOffset; 10395 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10396 // Calculate the total size to store. We don't have access to what we're 10397 // actually storing other than performing the loop and collecting the 10398 // info. 10399 SmallVector<std::pair<SDValue, SDValue>> Parts; 10400 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10401 SDValue PartValue = OutVals[i + 1]; 10402 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10403 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10404 EVT PartVT = PartValue.getValueType(); 10405 if (PartVT.isScalableVector()) 10406 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10407 StoredSize += PartVT.getStoreSize(); 10408 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10409 Parts.push_back(std::make_pair(PartValue, Offset)); 10410 ++i; 10411 } 10412 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10413 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10414 MemOpChains.push_back( 10415 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10416 MachinePointerInfo::getFixedStack(MF, FI))); 10417 for (const auto &Part : Parts) { 10418 SDValue PartValue = Part.first; 10419 SDValue PartOffset = Part.second; 10420 SDValue Address = 10421 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10422 MemOpChains.push_back( 10423 DAG.getStore(Chain, DL, PartValue, Address, 10424 MachinePointerInfo::getFixedStack(MF, FI))); 10425 } 10426 ArgValue = SpillSlot; 10427 } else { 10428 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10429 } 10430 10431 // Use local copy if it is a byval arg. 10432 if (Flags.isByVal()) 10433 ArgValue = ByValArgs[j++]; 10434 10435 if (VA.isRegLoc()) { 10436 // Queue up the argument copies and emit them at the end. 10437 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10438 } else { 10439 assert(VA.isMemLoc() && "Argument not register or memory"); 10440 assert(!IsTailCall && "Tail call not allowed if stack is used " 10441 "for passing parameters"); 10442 10443 // Work out the address of the stack slot. 10444 if (!StackPtr.getNode()) 10445 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10446 SDValue Address = 10447 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10448 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10449 10450 // Emit the store. 10451 MemOpChains.push_back( 10452 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10453 } 10454 } 10455 10456 // Join the stores, which are independent of one another. 10457 if (!MemOpChains.empty()) 10458 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10459 10460 SDValue Glue; 10461 10462 // Build a sequence of copy-to-reg nodes, chained and glued together. 10463 for (auto &Reg : RegsToPass) { 10464 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10465 Glue = Chain.getValue(1); 10466 } 10467 10468 // Validate that none of the argument registers have been marked as 10469 // reserved, if so report an error. Do the same for the return address if this 10470 // is not a tailcall. 10471 validateCCReservedRegs(RegsToPass, MF); 10472 if (!IsTailCall && 10473 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10474 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10475 MF.getFunction(), 10476 "Return address register required, but has been reserved."}); 10477 10478 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10479 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10480 // split it and then direct call can be matched by PseudoCALL. 10481 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10482 const GlobalValue *GV = S->getGlobal(); 10483 10484 unsigned OpFlags = RISCVII::MO_CALL; 10485 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10486 OpFlags = RISCVII::MO_PLT; 10487 10488 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10489 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10490 unsigned OpFlags = RISCVII::MO_CALL; 10491 10492 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10493 nullptr)) 10494 OpFlags = RISCVII::MO_PLT; 10495 10496 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10497 } 10498 10499 // The first call operand is the chain and the second is the target address. 10500 SmallVector<SDValue, 8> Ops; 10501 Ops.push_back(Chain); 10502 Ops.push_back(Callee); 10503 10504 // Add argument registers to the end of the list so that they are 10505 // known live into the call. 10506 for (auto &Reg : RegsToPass) 10507 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10508 10509 if (!IsTailCall) { 10510 // Add a register mask operand representing the call-preserved registers. 10511 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10512 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10513 assert(Mask && "Missing call preserved mask for calling convention"); 10514 Ops.push_back(DAG.getRegisterMask(Mask)); 10515 } 10516 10517 // Glue the call to the argument copies, if any. 10518 if (Glue.getNode()) 10519 Ops.push_back(Glue); 10520 10521 // Emit the call. 10522 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10523 10524 if (IsTailCall) { 10525 MF.getFrameInfo().setHasTailCall(); 10526 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10527 } 10528 10529 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10530 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10531 Glue = Chain.getValue(1); 10532 10533 // Mark the end of the call, which is glued to the call itself. 10534 Chain = DAG.getCALLSEQ_END(Chain, 10535 DAG.getConstant(NumBytes, DL, PtrVT, true), 10536 DAG.getConstant(0, DL, PtrVT, true), 10537 Glue, DL); 10538 Glue = Chain.getValue(1); 10539 10540 // Assign locations to each value returned by this call. 10541 SmallVector<CCValAssign, 16> RVLocs; 10542 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10543 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10544 10545 // Copy all of the result registers out of their specified physreg. 10546 for (auto &VA : RVLocs) { 10547 // Copy the value out 10548 SDValue RetValue = 10549 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10550 // Glue the RetValue to the end of the call sequence 10551 Chain = RetValue.getValue(1); 10552 Glue = RetValue.getValue(2); 10553 10554 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10555 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10556 SDValue RetValue2 = 10557 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10558 Chain = RetValue2.getValue(1); 10559 Glue = RetValue2.getValue(2); 10560 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10561 RetValue2); 10562 } 10563 10564 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10565 10566 InVals.push_back(RetValue); 10567 } 10568 10569 return Chain; 10570 } 10571 10572 bool RISCVTargetLowering::CanLowerReturn( 10573 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10574 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10575 SmallVector<CCValAssign, 16> RVLocs; 10576 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10577 10578 Optional<unsigned> FirstMaskArgument; 10579 if (Subtarget.hasVInstructions()) 10580 FirstMaskArgument = preAssignMask(Outs); 10581 10582 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10583 MVT VT = Outs[i].VT; 10584 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10585 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10586 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10587 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10588 *this, FirstMaskArgument)) 10589 return false; 10590 } 10591 return true; 10592 } 10593 10594 SDValue 10595 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10596 bool IsVarArg, 10597 const SmallVectorImpl<ISD::OutputArg> &Outs, 10598 const SmallVectorImpl<SDValue> &OutVals, 10599 const SDLoc &DL, SelectionDAG &DAG) const { 10600 const MachineFunction &MF = DAG.getMachineFunction(); 10601 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10602 10603 // Stores the assignment of the return value to a location. 10604 SmallVector<CCValAssign, 16> RVLocs; 10605 10606 // Info about the registers and stack slot. 10607 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10608 *DAG.getContext()); 10609 10610 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10611 nullptr, CC_RISCV); 10612 10613 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10614 report_fatal_error("GHC functions return void only"); 10615 10616 SDValue Glue; 10617 SmallVector<SDValue, 4> RetOps(1, Chain); 10618 10619 // Copy the result values into the output registers. 10620 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10621 SDValue Val = OutVals[i]; 10622 CCValAssign &VA = RVLocs[i]; 10623 assert(VA.isRegLoc() && "Can only return in registers!"); 10624 10625 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10626 // Handle returning f64 on RV32D with a soft float ABI. 10627 assert(VA.isRegLoc() && "Expected return via registers"); 10628 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10629 DAG.getVTList(MVT::i32, MVT::i32), Val); 10630 SDValue Lo = SplitF64.getValue(0); 10631 SDValue Hi = SplitF64.getValue(1); 10632 Register RegLo = VA.getLocReg(); 10633 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10634 Register RegHi = RegLo + 1; 10635 10636 if (STI.isRegisterReservedByUser(RegLo) || 10637 STI.isRegisterReservedByUser(RegHi)) 10638 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10639 MF.getFunction(), 10640 "Return value register required, but has been reserved."}); 10641 10642 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10643 Glue = Chain.getValue(1); 10644 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10645 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10646 Glue = Chain.getValue(1); 10647 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10648 } else { 10649 // Handle a 'normal' return. 10650 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10651 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10652 10653 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10654 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10655 MF.getFunction(), 10656 "Return value register required, but has been reserved."}); 10657 10658 // Guarantee that all emitted copies are stuck together. 10659 Glue = Chain.getValue(1); 10660 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10661 } 10662 } 10663 10664 RetOps[0] = Chain; // Update chain. 10665 10666 // Add the glue node if we have it. 10667 if (Glue.getNode()) { 10668 RetOps.push_back(Glue); 10669 } 10670 10671 unsigned RetOpc = RISCVISD::RET_FLAG; 10672 // Interrupt service routines use different return instructions. 10673 const Function &Func = DAG.getMachineFunction().getFunction(); 10674 if (Func.hasFnAttribute("interrupt")) { 10675 if (!Func.getReturnType()->isVoidTy()) 10676 report_fatal_error( 10677 "Functions with the interrupt attribute must have void return type!"); 10678 10679 MachineFunction &MF = DAG.getMachineFunction(); 10680 StringRef Kind = 10681 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10682 10683 if (Kind == "user") 10684 RetOpc = RISCVISD::URET_FLAG; 10685 else if (Kind == "supervisor") 10686 RetOpc = RISCVISD::SRET_FLAG; 10687 else 10688 RetOpc = RISCVISD::MRET_FLAG; 10689 } 10690 10691 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10692 } 10693 10694 void RISCVTargetLowering::validateCCReservedRegs( 10695 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10696 MachineFunction &MF) const { 10697 const Function &F = MF.getFunction(); 10698 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10699 10700 if (llvm::any_of(Regs, [&STI](auto Reg) { 10701 return STI.isRegisterReservedByUser(Reg.first); 10702 })) 10703 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10704 F, "Argument register required, but has been reserved."}); 10705 } 10706 10707 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10708 return CI->isTailCall(); 10709 } 10710 10711 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10712 #define NODE_NAME_CASE(NODE) \ 10713 case RISCVISD::NODE: \ 10714 return "RISCVISD::" #NODE; 10715 // clang-format off 10716 switch ((RISCVISD::NodeType)Opcode) { 10717 case RISCVISD::FIRST_NUMBER: 10718 break; 10719 NODE_NAME_CASE(RET_FLAG) 10720 NODE_NAME_CASE(URET_FLAG) 10721 NODE_NAME_CASE(SRET_FLAG) 10722 NODE_NAME_CASE(MRET_FLAG) 10723 NODE_NAME_CASE(CALL) 10724 NODE_NAME_CASE(SELECT_CC) 10725 NODE_NAME_CASE(BR_CC) 10726 NODE_NAME_CASE(BuildPairF64) 10727 NODE_NAME_CASE(SplitF64) 10728 NODE_NAME_CASE(TAIL) 10729 NODE_NAME_CASE(MULHSU) 10730 NODE_NAME_CASE(SLLW) 10731 NODE_NAME_CASE(SRAW) 10732 NODE_NAME_CASE(SRLW) 10733 NODE_NAME_CASE(DIVW) 10734 NODE_NAME_CASE(DIVUW) 10735 NODE_NAME_CASE(REMUW) 10736 NODE_NAME_CASE(ROLW) 10737 NODE_NAME_CASE(RORW) 10738 NODE_NAME_CASE(CLZW) 10739 NODE_NAME_CASE(CTZW) 10740 NODE_NAME_CASE(FSLW) 10741 NODE_NAME_CASE(FSRW) 10742 NODE_NAME_CASE(FSL) 10743 NODE_NAME_CASE(FSR) 10744 NODE_NAME_CASE(FMV_H_X) 10745 NODE_NAME_CASE(FMV_X_ANYEXTH) 10746 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10747 NODE_NAME_CASE(FMV_W_X_RV64) 10748 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10749 NODE_NAME_CASE(FCVT_X) 10750 NODE_NAME_CASE(FCVT_XU) 10751 NODE_NAME_CASE(FCVT_W_RV64) 10752 NODE_NAME_CASE(FCVT_WU_RV64) 10753 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10754 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10755 NODE_NAME_CASE(READ_CYCLE_WIDE) 10756 NODE_NAME_CASE(GREV) 10757 NODE_NAME_CASE(GREVW) 10758 NODE_NAME_CASE(GORC) 10759 NODE_NAME_CASE(GORCW) 10760 NODE_NAME_CASE(SHFL) 10761 NODE_NAME_CASE(SHFLW) 10762 NODE_NAME_CASE(UNSHFL) 10763 NODE_NAME_CASE(UNSHFLW) 10764 NODE_NAME_CASE(BFP) 10765 NODE_NAME_CASE(BFPW) 10766 NODE_NAME_CASE(BCOMPRESS) 10767 NODE_NAME_CASE(BCOMPRESSW) 10768 NODE_NAME_CASE(BDECOMPRESS) 10769 NODE_NAME_CASE(BDECOMPRESSW) 10770 NODE_NAME_CASE(VMV_V_X_VL) 10771 NODE_NAME_CASE(VFMV_V_F_VL) 10772 NODE_NAME_CASE(VMV_X_S) 10773 NODE_NAME_CASE(VMV_S_X_VL) 10774 NODE_NAME_CASE(VFMV_S_F_VL) 10775 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10776 NODE_NAME_CASE(READ_VLENB) 10777 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10778 NODE_NAME_CASE(VSLIDEUP_VL) 10779 NODE_NAME_CASE(VSLIDE1UP_VL) 10780 NODE_NAME_CASE(VSLIDEDOWN_VL) 10781 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10782 NODE_NAME_CASE(VID_VL) 10783 NODE_NAME_CASE(VFNCVT_ROD_VL) 10784 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10785 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10786 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10787 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10788 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10789 NODE_NAME_CASE(VECREDUCE_AND_VL) 10790 NODE_NAME_CASE(VECREDUCE_OR_VL) 10791 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10792 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10793 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10794 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10795 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10796 NODE_NAME_CASE(ADD_VL) 10797 NODE_NAME_CASE(AND_VL) 10798 NODE_NAME_CASE(MUL_VL) 10799 NODE_NAME_CASE(OR_VL) 10800 NODE_NAME_CASE(SDIV_VL) 10801 NODE_NAME_CASE(SHL_VL) 10802 NODE_NAME_CASE(SREM_VL) 10803 NODE_NAME_CASE(SRA_VL) 10804 NODE_NAME_CASE(SRL_VL) 10805 NODE_NAME_CASE(SUB_VL) 10806 NODE_NAME_CASE(UDIV_VL) 10807 NODE_NAME_CASE(UREM_VL) 10808 NODE_NAME_CASE(XOR_VL) 10809 NODE_NAME_CASE(SADDSAT_VL) 10810 NODE_NAME_CASE(UADDSAT_VL) 10811 NODE_NAME_CASE(SSUBSAT_VL) 10812 NODE_NAME_CASE(USUBSAT_VL) 10813 NODE_NAME_CASE(FADD_VL) 10814 NODE_NAME_CASE(FSUB_VL) 10815 NODE_NAME_CASE(FMUL_VL) 10816 NODE_NAME_CASE(FDIV_VL) 10817 NODE_NAME_CASE(FNEG_VL) 10818 NODE_NAME_CASE(FABS_VL) 10819 NODE_NAME_CASE(FSQRT_VL) 10820 NODE_NAME_CASE(FMA_VL) 10821 NODE_NAME_CASE(FCOPYSIGN_VL) 10822 NODE_NAME_CASE(SMIN_VL) 10823 NODE_NAME_CASE(SMAX_VL) 10824 NODE_NAME_CASE(UMIN_VL) 10825 NODE_NAME_CASE(UMAX_VL) 10826 NODE_NAME_CASE(FMINNUM_VL) 10827 NODE_NAME_CASE(FMAXNUM_VL) 10828 NODE_NAME_CASE(MULHS_VL) 10829 NODE_NAME_CASE(MULHU_VL) 10830 NODE_NAME_CASE(FP_TO_SINT_VL) 10831 NODE_NAME_CASE(FP_TO_UINT_VL) 10832 NODE_NAME_CASE(SINT_TO_FP_VL) 10833 NODE_NAME_CASE(UINT_TO_FP_VL) 10834 NODE_NAME_CASE(FP_EXTEND_VL) 10835 NODE_NAME_CASE(FP_ROUND_VL) 10836 NODE_NAME_CASE(VWMUL_VL) 10837 NODE_NAME_CASE(VWMULU_VL) 10838 NODE_NAME_CASE(VWMULSU_VL) 10839 NODE_NAME_CASE(VWADD_VL) 10840 NODE_NAME_CASE(VWADDU_VL) 10841 NODE_NAME_CASE(VWSUB_VL) 10842 NODE_NAME_CASE(VWSUBU_VL) 10843 NODE_NAME_CASE(VWADD_W_VL) 10844 NODE_NAME_CASE(VWADDU_W_VL) 10845 NODE_NAME_CASE(VWSUB_W_VL) 10846 NODE_NAME_CASE(VWSUBU_W_VL) 10847 NODE_NAME_CASE(SETCC_VL) 10848 NODE_NAME_CASE(VSELECT_VL) 10849 NODE_NAME_CASE(VP_MERGE_VL) 10850 NODE_NAME_CASE(VMAND_VL) 10851 NODE_NAME_CASE(VMOR_VL) 10852 NODE_NAME_CASE(VMXOR_VL) 10853 NODE_NAME_CASE(VMCLR_VL) 10854 NODE_NAME_CASE(VMSET_VL) 10855 NODE_NAME_CASE(VRGATHER_VX_VL) 10856 NODE_NAME_CASE(VRGATHER_VV_VL) 10857 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10858 NODE_NAME_CASE(VSEXT_VL) 10859 NODE_NAME_CASE(VZEXT_VL) 10860 NODE_NAME_CASE(VCPOP_VL) 10861 NODE_NAME_CASE(READ_CSR) 10862 NODE_NAME_CASE(WRITE_CSR) 10863 NODE_NAME_CASE(SWAP_CSR) 10864 } 10865 // clang-format on 10866 return nullptr; 10867 #undef NODE_NAME_CASE 10868 } 10869 10870 /// getConstraintType - Given a constraint letter, return the type of 10871 /// constraint it is for this target. 10872 RISCVTargetLowering::ConstraintType 10873 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10874 if (Constraint.size() == 1) { 10875 switch (Constraint[0]) { 10876 default: 10877 break; 10878 case 'f': 10879 return C_RegisterClass; 10880 case 'I': 10881 case 'J': 10882 case 'K': 10883 return C_Immediate; 10884 case 'A': 10885 return C_Memory; 10886 case 'S': // A symbolic address 10887 return C_Other; 10888 } 10889 } else { 10890 if (Constraint == "vr" || Constraint == "vm") 10891 return C_RegisterClass; 10892 } 10893 return TargetLowering::getConstraintType(Constraint); 10894 } 10895 10896 std::pair<unsigned, const TargetRegisterClass *> 10897 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10898 StringRef Constraint, 10899 MVT VT) const { 10900 // First, see if this is a constraint that directly corresponds to a 10901 // RISCV register class. 10902 if (Constraint.size() == 1) { 10903 switch (Constraint[0]) { 10904 case 'r': 10905 // TODO: Support fixed vectors up to XLen for P extension? 10906 if (VT.isVector()) 10907 break; 10908 return std::make_pair(0U, &RISCV::GPRRegClass); 10909 case 'f': 10910 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10911 return std::make_pair(0U, &RISCV::FPR16RegClass); 10912 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10913 return std::make_pair(0U, &RISCV::FPR32RegClass); 10914 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10915 return std::make_pair(0U, &RISCV::FPR64RegClass); 10916 break; 10917 default: 10918 break; 10919 } 10920 } else if (Constraint == "vr") { 10921 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10922 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10923 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10924 return std::make_pair(0U, RC); 10925 } 10926 } else if (Constraint == "vm") { 10927 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10928 return std::make_pair(0U, &RISCV::VMV0RegClass); 10929 } 10930 10931 // Clang will correctly decode the usage of register name aliases into their 10932 // official names. However, other frontends like `rustc` do not. This allows 10933 // users of these frontends to use the ABI names for registers in LLVM-style 10934 // register constraints. 10935 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10936 .Case("{zero}", RISCV::X0) 10937 .Case("{ra}", RISCV::X1) 10938 .Case("{sp}", RISCV::X2) 10939 .Case("{gp}", RISCV::X3) 10940 .Case("{tp}", RISCV::X4) 10941 .Case("{t0}", RISCV::X5) 10942 .Case("{t1}", RISCV::X6) 10943 .Case("{t2}", RISCV::X7) 10944 .Cases("{s0}", "{fp}", RISCV::X8) 10945 .Case("{s1}", RISCV::X9) 10946 .Case("{a0}", RISCV::X10) 10947 .Case("{a1}", RISCV::X11) 10948 .Case("{a2}", RISCV::X12) 10949 .Case("{a3}", RISCV::X13) 10950 .Case("{a4}", RISCV::X14) 10951 .Case("{a5}", RISCV::X15) 10952 .Case("{a6}", RISCV::X16) 10953 .Case("{a7}", RISCV::X17) 10954 .Case("{s2}", RISCV::X18) 10955 .Case("{s3}", RISCV::X19) 10956 .Case("{s4}", RISCV::X20) 10957 .Case("{s5}", RISCV::X21) 10958 .Case("{s6}", RISCV::X22) 10959 .Case("{s7}", RISCV::X23) 10960 .Case("{s8}", RISCV::X24) 10961 .Case("{s9}", RISCV::X25) 10962 .Case("{s10}", RISCV::X26) 10963 .Case("{s11}", RISCV::X27) 10964 .Case("{t3}", RISCV::X28) 10965 .Case("{t4}", RISCV::X29) 10966 .Case("{t5}", RISCV::X30) 10967 .Case("{t6}", RISCV::X31) 10968 .Default(RISCV::NoRegister); 10969 if (XRegFromAlias != RISCV::NoRegister) 10970 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10971 10972 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10973 // TableGen record rather than the AsmName to choose registers for InlineAsm 10974 // constraints, plus we want to match those names to the widest floating point 10975 // register type available, manually select floating point registers here. 10976 // 10977 // The second case is the ABI name of the register, so that frontends can also 10978 // use the ABI names in register constraint lists. 10979 if (Subtarget.hasStdExtF()) { 10980 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10981 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10982 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10983 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10984 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10985 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10986 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10987 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10988 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10989 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10990 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10991 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10992 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10993 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10994 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10995 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10996 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10997 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10998 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10999 .Cases("{f18}", "{fs2}", RISCV::F18_F) 11000 .Cases("{f19}", "{fs3}", RISCV::F19_F) 11001 .Cases("{f20}", "{fs4}", RISCV::F20_F) 11002 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11003 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11004 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11005 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11006 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11007 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11008 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11009 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11010 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11011 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11012 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11013 .Default(RISCV::NoRegister); 11014 if (FReg != RISCV::NoRegister) { 11015 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11016 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11017 unsigned RegNo = FReg - RISCV::F0_F; 11018 unsigned DReg = RISCV::F0_D + RegNo; 11019 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11020 } 11021 if (VT == MVT::f32 || VT == MVT::Other) 11022 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11023 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11024 unsigned RegNo = FReg - RISCV::F0_F; 11025 unsigned HReg = RISCV::F0_H + RegNo; 11026 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11027 } 11028 } 11029 } 11030 11031 if (Subtarget.hasVInstructions()) { 11032 Register VReg = StringSwitch<Register>(Constraint.lower()) 11033 .Case("{v0}", RISCV::V0) 11034 .Case("{v1}", RISCV::V1) 11035 .Case("{v2}", RISCV::V2) 11036 .Case("{v3}", RISCV::V3) 11037 .Case("{v4}", RISCV::V4) 11038 .Case("{v5}", RISCV::V5) 11039 .Case("{v6}", RISCV::V6) 11040 .Case("{v7}", RISCV::V7) 11041 .Case("{v8}", RISCV::V8) 11042 .Case("{v9}", RISCV::V9) 11043 .Case("{v10}", RISCV::V10) 11044 .Case("{v11}", RISCV::V11) 11045 .Case("{v12}", RISCV::V12) 11046 .Case("{v13}", RISCV::V13) 11047 .Case("{v14}", RISCV::V14) 11048 .Case("{v15}", RISCV::V15) 11049 .Case("{v16}", RISCV::V16) 11050 .Case("{v17}", RISCV::V17) 11051 .Case("{v18}", RISCV::V18) 11052 .Case("{v19}", RISCV::V19) 11053 .Case("{v20}", RISCV::V20) 11054 .Case("{v21}", RISCV::V21) 11055 .Case("{v22}", RISCV::V22) 11056 .Case("{v23}", RISCV::V23) 11057 .Case("{v24}", RISCV::V24) 11058 .Case("{v25}", RISCV::V25) 11059 .Case("{v26}", RISCV::V26) 11060 .Case("{v27}", RISCV::V27) 11061 .Case("{v28}", RISCV::V28) 11062 .Case("{v29}", RISCV::V29) 11063 .Case("{v30}", RISCV::V30) 11064 .Case("{v31}", RISCV::V31) 11065 .Default(RISCV::NoRegister); 11066 if (VReg != RISCV::NoRegister) { 11067 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11068 return std::make_pair(VReg, &RISCV::VMRegClass); 11069 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11070 return std::make_pair(VReg, &RISCV::VRRegClass); 11071 for (const auto *RC : 11072 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11073 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11074 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11075 return std::make_pair(VReg, RC); 11076 } 11077 } 11078 } 11079 } 11080 11081 std::pair<Register, const TargetRegisterClass *> Res = 11082 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11083 11084 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11085 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11086 // Subtarget into account. 11087 if (Res.second == &RISCV::GPRF16RegClass || 11088 Res.second == &RISCV::GPRF32RegClass || 11089 Res.second == &RISCV::GPRF64RegClass) 11090 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11091 11092 return Res; 11093 } 11094 11095 unsigned 11096 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11097 // Currently only support length 1 constraints. 11098 if (ConstraintCode.size() == 1) { 11099 switch (ConstraintCode[0]) { 11100 case 'A': 11101 return InlineAsm::Constraint_A; 11102 default: 11103 break; 11104 } 11105 } 11106 11107 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11108 } 11109 11110 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11111 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11112 SelectionDAG &DAG) const { 11113 // Currently only support length 1 constraints. 11114 if (Constraint.length() == 1) { 11115 switch (Constraint[0]) { 11116 case 'I': 11117 // Validate & create a 12-bit signed immediate operand. 11118 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11119 uint64_t CVal = C->getSExtValue(); 11120 if (isInt<12>(CVal)) 11121 Ops.push_back( 11122 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11123 } 11124 return; 11125 case 'J': 11126 // Validate & create an integer zero operand. 11127 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11128 if (C->getZExtValue() == 0) 11129 Ops.push_back( 11130 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11131 return; 11132 case 'K': 11133 // Validate & create a 5-bit unsigned immediate operand. 11134 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11135 uint64_t CVal = C->getZExtValue(); 11136 if (isUInt<5>(CVal)) 11137 Ops.push_back( 11138 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11139 } 11140 return; 11141 case 'S': 11142 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11143 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11144 GA->getValueType(0))); 11145 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11146 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11147 BA->getValueType(0))); 11148 } 11149 return; 11150 default: 11151 break; 11152 } 11153 } 11154 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11155 } 11156 11157 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11158 Instruction *Inst, 11159 AtomicOrdering Ord) const { 11160 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11161 return Builder.CreateFence(Ord); 11162 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11163 return Builder.CreateFence(AtomicOrdering::Release); 11164 return nullptr; 11165 } 11166 11167 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11168 Instruction *Inst, 11169 AtomicOrdering Ord) const { 11170 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11171 return Builder.CreateFence(AtomicOrdering::Acquire); 11172 return nullptr; 11173 } 11174 11175 TargetLowering::AtomicExpansionKind 11176 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11177 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11178 // point operations can't be used in an lr/sc sequence without breaking the 11179 // forward-progress guarantee. 11180 if (AI->isFloatingPointOperation()) 11181 return AtomicExpansionKind::CmpXChg; 11182 11183 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11184 if (Size == 8 || Size == 16) 11185 return AtomicExpansionKind::MaskedIntrinsic; 11186 return AtomicExpansionKind::None; 11187 } 11188 11189 static Intrinsic::ID 11190 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11191 if (XLen == 32) { 11192 switch (BinOp) { 11193 default: 11194 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11195 case AtomicRMWInst::Xchg: 11196 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11197 case AtomicRMWInst::Add: 11198 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11199 case AtomicRMWInst::Sub: 11200 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11201 case AtomicRMWInst::Nand: 11202 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11203 case AtomicRMWInst::Max: 11204 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11205 case AtomicRMWInst::Min: 11206 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11207 case AtomicRMWInst::UMax: 11208 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11209 case AtomicRMWInst::UMin: 11210 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11211 } 11212 } 11213 11214 if (XLen == 64) { 11215 switch (BinOp) { 11216 default: 11217 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11218 case AtomicRMWInst::Xchg: 11219 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11220 case AtomicRMWInst::Add: 11221 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11222 case AtomicRMWInst::Sub: 11223 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11224 case AtomicRMWInst::Nand: 11225 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11226 case AtomicRMWInst::Max: 11227 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11228 case AtomicRMWInst::Min: 11229 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11230 case AtomicRMWInst::UMax: 11231 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11232 case AtomicRMWInst::UMin: 11233 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11234 } 11235 } 11236 11237 llvm_unreachable("Unexpected XLen\n"); 11238 } 11239 11240 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11241 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11242 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11243 unsigned XLen = Subtarget.getXLen(); 11244 Value *Ordering = 11245 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11246 Type *Tys[] = {AlignedAddr->getType()}; 11247 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11248 AI->getModule(), 11249 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11250 11251 if (XLen == 64) { 11252 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11253 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11254 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11255 } 11256 11257 Value *Result; 11258 11259 // Must pass the shift amount needed to sign extend the loaded value prior 11260 // to performing a signed comparison for min/max. ShiftAmt is the number of 11261 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11262 // is the number of bits to left+right shift the value in order to 11263 // sign-extend. 11264 if (AI->getOperation() == AtomicRMWInst::Min || 11265 AI->getOperation() == AtomicRMWInst::Max) { 11266 const DataLayout &DL = AI->getModule()->getDataLayout(); 11267 unsigned ValWidth = 11268 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11269 Value *SextShamt = 11270 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11271 Result = Builder.CreateCall(LrwOpScwLoop, 11272 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11273 } else { 11274 Result = 11275 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11276 } 11277 11278 if (XLen == 64) 11279 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11280 return Result; 11281 } 11282 11283 TargetLowering::AtomicExpansionKind 11284 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11285 AtomicCmpXchgInst *CI) const { 11286 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11287 if (Size == 8 || Size == 16) 11288 return AtomicExpansionKind::MaskedIntrinsic; 11289 return AtomicExpansionKind::None; 11290 } 11291 11292 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11293 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11294 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11295 unsigned XLen = Subtarget.getXLen(); 11296 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11297 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11298 if (XLen == 64) { 11299 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11300 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11301 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11302 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11303 } 11304 Type *Tys[] = {AlignedAddr->getType()}; 11305 Function *MaskedCmpXchg = 11306 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11307 Value *Result = Builder.CreateCall( 11308 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11309 if (XLen == 64) 11310 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11311 return Result; 11312 } 11313 11314 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11315 return false; 11316 } 11317 11318 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11319 EVT VT) const { 11320 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11321 return false; 11322 11323 switch (FPVT.getSimpleVT().SimpleTy) { 11324 case MVT::f16: 11325 return Subtarget.hasStdExtZfh(); 11326 case MVT::f32: 11327 return Subtarget.hasStdExtF(); 11328 case MVT::f64: 11329 return Subtarget.hasStdExtD(); 11330 default: 11331 return false; 11332 } 11333 } 11334 11335 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11336 // If we are using the small code model, we can reduce size of jump table 11337 // entry to 4 bytes. 11338 if (Subtarget.is64Bit() && !isPositionIndependent() && 11339 getTargetMachine().getCodeModel() == CodeModel::Small) { 11340 return MachineJumpTableInfo::EK_Custom32; 11341 } 11342 return TargetLowering::getJumpTableEncoding(); 11343 } 11344 11345 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11346 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11347 unsigned uid, MCContext &Ctx) const { 11348 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11349 getTargetMachine().getCodeModel() == CodeModel::Small); 11350 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11351 } 11352 11353 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11354 EVT VT) const { 11355 VT = VT.getScalarType(); 11356 11357 if (!VT.isSimple()) 11358 return false; 11359 11360 switch (VT.getSimpleVT().SimpleTy) { 11361 case MVT::f16: 11362 return Subtarget.hasStdExtZfh(); 11363 case MVT::f32: 11364 return Subtarget.hasStdExtF(); 11365 case MVT::f64: 11366 return Subtarget.hasStdExtD(); 11367 default: 11368 break; 11369 } 11370 11371 return false; 11372 } 11373 11374 Register RISCVTargetLowering::getExceptionPointerRegister( 11375 const Constant *PersonalityFn) const { 11376 return RISCV::X10; 11377 } 11378 11379 Register RISCVTargetLowering::getExceptionSelectorRegister( 11380 const Constant *PersonalityFn) const { 11381 return RISCV::X11; 11382 } 11383 11384 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11385 // Return false to suppress the unnecessary extensions if the LibCall 11386 // arguments or return value is f32 type for LP64 ABI. 11387 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11388 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11389 return false; 11390 11391 return true; 11392 } 11393 11394 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11395 if (Subtarget.is64Bit() && Type == MVT::i32) 11396 return true; 11397 11398 return IsSigned; 11399 } 11400 11401 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11402 SDValue C) const { 11403 // Check integral scalar types. 11404 if (VT.isScalarInteger()) { 11405 // Omit the optimization if the sub target has the M extension and the data 11406 // size exceeds XLen. 11407 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11408 return false; 11409 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11410 // Break the MUL to a SLLI and an ADD/SUB. 11411 const APInt &Imm = ConstNode->getAPIntValue(); 11412 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11413 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11414 return true; 11415 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11416 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11417 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11418 (Imm - 8).isPowerOf2())) 11419 return true; 11420 // Omit the following optimization if the sub target has the M extension 11421 // and the data size >= XLen. 11422 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11423 return false; 11424 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11425 // a pair of LUI/ADDI. 11426 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11427 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11428 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11429 (1 - ImmS).isPowerOf2()) 11430 return true; 11431 } 11432 } 11433 } 11434 11435 return false; 11436 } 11437 11438 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11439 SDValue ConstNode) const { 11440 // Let the DAGCombiner decide for vectors. 11441 EVT VT = AddNode.getValueType(); 11442 if (VT.isVector()) 11443 return true; 11444 11445 // Let the DAGCombiner decide for larger types. 11446 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11447 return true; 11448 11449 // It is worse if c1 is simm12 while c1*c2 is not. 11450 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11451 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11452 const APInt &C1 = C1Node->getAPIntValue(); 11453 const APInt &C2 = C2Node->getAPIntValue(); 11454 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11455 return false; 11456 11457 // Default to true and let the DAGCombiner decide. 11458 return true; 11459 } 11460 11461 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11462 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11463 bool *Fast) const { 11464 if (!VT.isVector()) 11465 return false; 11466 11467 EVT ElemVT = VT.getVectorElementType(); 11468 if (Alignment >= ElemVT.getStoreSize()) { 11469 if (Fast) 11470 *Fast = true; 11471 return true; 11472 } 11473 11474 return false; 11475 } 11476 11477 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11478 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11479 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11480 bool IsABIRegCopy = CC.hasValue(); 11481 EVT ValueVT = Val.getValueType(); 11482 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11483 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11484 // and cast to f32. 11485 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11486 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11487 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11488 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11489 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11490 Parts[0] = Val; 11491 return true; 11492 } 11493 11494 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11495 LLVMContext &Context = *DAG.getContext(); 11496 EVT ValueEltVT = ValueVT.getVectorElementType(); 11497 EVT PartEltVT = PartVT.getVectorElementType(); 11498 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11499 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11500 if (PartVTBitSize % ValueVTBitSize == 0) { 11501 assert(PartVTBitSize >= ValueVTBitSize); 11502 // If the element types are different, bitcast to the same element type of 11503 // PartVT first. 11504 // Give an example here, we want copy a <vscale x 1 x i8> value to 11505 // <vscale x 4 x i16>. 11506 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11507 // subvector, then we can bitcast to <vscale x 4 x i16>. 11508 if (ValueEltVT != PartEltVT) { 11509 if (PartVTBitSize > ValueVTBitSize) { 11510 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11511 assert(Count != 0 && "The number of element should not be zero."); 11512 EVT SameEltTypeVT = 11513 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11514 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11515 DAG.getUNDEF(SameEltTypeVT), Val, 11516 DAG.getVectorIdxConstant(0, DL)); 11517 } 11518 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11519 } else { 11520 Val = 11521 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11522 Val, DAG.getVectorIdxConstant(0, DL)); 11523 } 11524 Parts[0] = Val; 11525 return true; 11526 } 11527 } 11528 return false; 11529 } 11530 11531 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11532 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11533 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11534 bool IsABIRegCopy = CC.hasValue(); 11535 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11536 SDValue Val = Parts[0]; 11537 11538 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11539 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11540 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11541 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11542 return Val; 11543 } 11544 11545 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11546 LLVMContext &Context = *DAG.getContext(); 11547 SDValue Val = Parts[0]; 11548 EVT ValueEltVT = ValueVT.getVectorElementType(); 11549 EVT PartEltVT = PartVT.getVectorElementType(); 11550 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11551 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11552 if (PartVTBitSize % ValueVTBitSize == 0) { 11553 assert(PartVTBitSize >= ValueVTBitSize); 11554 EVT SameEltTypeVT = ValueVT; 11555 // If the element types are different, convert it to the same element type 11556 // of PartVT. 11557 // Give an example here, we want copy a <vscale x 1 x i8> value from 11558 // <vscale x 4 x i16>. 11559 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11560 // then we can extract <vscale x 1 x i8>. 11561 if (ValueEltVT != PartEltVT) { 11562 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11563 assert(Count != 0 && "The number of element should not be zero."); 11564 SameEltTypeVT = 11565 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11566 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11567 } 11568 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11569 DAG.getVectorIdxConstant(0, DL)); 11570 return Val; 11571 } 11572 } 11573 return SDValue(); 11574 } 11575 11576 SDValue 11577 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11578 SelectionDAG &DAG, 11579 SmallVectorImpl<SDNode *> &Created) const { 11580 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11581 if (isIntDivCheap(N->getValueType(0), Attr)) 11582 return SDValue(N, 0); // Lower SDIV as SDIV 11583 11584 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11585 "Unexpected divisor!"); 11586 11587 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11588 if (!Subtarget.hasStdExtZbt()) 11589 return SDValue(); 11590 11591 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11592 // Besides, more critical path instructions will be generated when dividing 11593 // by 2. So we keep using the original DAGs for these cases. 11594 unsigned Lg2 = Divisor.countTrailingZeros(); 11595 if (Lg2 == 1 || Lg2 >= 12) 11596 return SDValue(); 11597 11598 // fold (sdiv X, pow2) 11599 EVT VT = N->getValueType(0); 11600 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11601 return SDValue(); 11602 11603 SDLoc DL(N); 11604 SDValue N0 = N->getOperand(0); 11605 SDValue Zero = DAG.getConstant(0, DL, VT); 11606 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11607 11608 // Add (N0 < 0) ? Pow2 - 1 : 0; 11609 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11610 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11611 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11612 11613 Created.push_back(Cmp.getNode()); 11614 Created.push_back(Add.getNode()); 11615 Created.push_back(Sel.getNode()); 11616 11617 // Divide by pow2. 11618 SDValue SRA = 11619 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11620 11621 // If we're dividing by a positive value, we're done. Otherwise, we must 11622 // negate the result. 11623 if (Divisor.isNonNegative()) 11624 return SRA; 11625 11626 Created.push_back(SRA.getNode()); 11627 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11628 } 11629 11630 #define GET_REGISTER_MATCHER 11631 #include "RISCVGenAsmMatcher.inc" 11632 11633 Register 11634 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11635 const MachineFunction &MF) const { 11636 Register Reg = MatchRegisterAltName(RegName); 11637 if (Reg == RISCV::NoRegister) 11638 Reg = MatchRegisterName(RegName); 11639 if (Reg == RISCV::NoRegister) 11640 report_fatal_error( 11641 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11642 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11643 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11644 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11645 StringRef(RegName) + "\".")); 11646 return Reg; 11647 } 11648 11649 namespace llvm { 11650 namespace RISCVVIntrinsicsTable { 11651 11652 #define GET_RISCVVIntrinsicsTable_IMPL 11653 #include "RISCVGenSearchableTables.inc" 11654 11655 } // namespace RISCVVIntrinsicsTable 11656 11657 } // namespace llvm 11658