1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasStdExtV()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) 132 addRegClassForRVV(VT); 133 134 if (Subtarget.hasStdExtZfh()) 135 for (MVT VT : F16VecVTs) 136 addRegClassForRVV(VT); 137 138 if (Subtarget.hasStdExtF()) 139 for (MVT VT : F32VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasStdExtD()) 143 for (MVT VT : F64VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.useRVVForFixedLengthVectors()) { 147 auto addRegClassForFixedVectors = [this](MVT VT) { 148 MVT ContainerVT = getContainerForFixedLengthVector(VT); 149 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 150 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 151 addRegisterClass(VT, TRI.getRegClass(RCID)); 152 }; 153 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 154 if (useRVVForFixedLengthVectorVT(VT)) 155 addRegClassForFixedVectors(VT); 156 157 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 } 161 } 162 163 // Compute derived properties from the register classes. 164 computeRegisterProperties(STI.getRegisterInfo()); 165 166 setStackPointerRegisterToSaveRestore(RISCV::X2); 167 168 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 169 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 170 171 // TODO: add all necessary setOperationAction calls. 172 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 setOperationAction(ISD::BR_CC, XLenVT, Expand); 176 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 177 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 178 179 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 180 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 181 182 setOperationAction(ISD::VASTART, MVT::Other, Custom); 183 setOperationAction(ISD::VAARG, MVT::Other, Expand); 184 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 185 setOperationAction(ISD::VAEND, MVT::Other, Expand); 186 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 if (!Subtarget.hasStdExtZbb()) { 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 191 } 192 193 if (Subtarget.is64Bit()) { 194 setOperationAction(ISD::ADD, MVT::i32, Custom); 195 setOperationAction(ISD::SUB, MVT::i32, Custom); 196 setOperationAction(ISD::SHL, MVT::i32, Custom); 197 setOperationAction(ISD::SRA, MVT::i32, Custom); 198 setOperationAction(ISD::SRL, MVT::i32, Custom); 199 200 setOperationAction(ISD::UADDO, MVT::i32, Custom); 201 setOperationAction(ISD::USUBO, MVT::i32, Custom); 202 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 203 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 204 } else { 205 setLibcallName(RTLIB::SHL_I128, nullptr); 206 setLibcallName(RTLIB::SRL_I128, nullptr); 207 setLibcallName(RTLIB::SRA_I128, nullptr); 208 setLibcallName(RTLIB::MUL_I128, nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction(ISD::MUL, XLenVT, Expand); 214 setOperationAction(ISD::MULHS, XLenVT, Expand); 215 setOperationAction(ISD::MULHU, XLenVT, Expand); 216 setOperationAction(ISD::SDIV, XLenVT, Expand); 217 setOperationAction(ISD::UDIV, XLenVT, Expand); 218 setOperationAction(ISD::SREM, XLenVT, Expand); 219 setOperationAction(ISD::UREM, XLenVT, Expand); 220 } else { 221 if (Subtarget.is64Bit()) { 222 setOperationAction(ISD::MUL, MVT::i32, Custom); 223 setOperationAction(ISD::MUL, MVT::i128, Custom); 224 225 setOperationAction(ISD::SDIV, MVT::i8, Custom); 226 setOperationAction(ISD::UDIV, MVT::i8, Custom); 227 setOperationAction(ISD::UREM, MVT::i8, Custom); 228 setOperationAction(ISD::SDIV, MVT::i16, Custom); 229 setOperationAction(ISD::UDIV, MVT::i16, Custom); 230 setOperationAction(ISD::UREM, MVT::i16, Custom); 231 setOperationAction(ISD::SDIV, MVT::i32, Custom); 232 setOperationAction(ISD::UDIV, MVT::i32, Custom); 233 setOperationAction(ISD::UREM, MVT::i32, Custom); 234 } else { 235 setOperationAction(ISD::MUL, MVT::i64, Custom); 236 } 237 } 238 239 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 241 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 242 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 243 244 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 246 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 247 248 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 249 if (Subtarget.is64Bit()) { 250 setOperationAction(ISD::ROTL, MVT::i32, Custom); 251 setOperationAction(ISD::ROTR, MVT::i32, Custom); 252 } 253 } else { 254 setOperationAction(ISD::ROTL, XLenVT, Expand); 255 setOperationAction(ISD::ROTR, XLenVT, Expand); 256 } 257 258 if (Subtarget.hasStdExtZbp()) { 259 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 260 // more combining. 261 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 262 setOperationAction(ISD::BSWAP, XLenVT, Custom); 263 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 264 // BSWAP i8 doesn't exist. 265 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 266 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 267 268 if (Subtarget.is64Bit()) { 269 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 271 } 272 } else { 273 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 274 // pattern match it directly in isel. 275 setOperationAction(ISD::BSWAP, XLenVT, 276 Subtarget.hasStdExtZbb() ? Legal : Expand); 277 } 278 279 if (Subtarget.hasStdExtZbb()) { 280 setOperationAction(ISD::SMIN, XLenVT, Legal); 281 setOperationAction(ISD::SMAX, XLenVT, Legal); 282 setOperationAction(ISD::UMIN, XLenVT, Legal); 283 setOperationAction(ISD::UMAX, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) { 286 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 287 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 288 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 290 } 291 } else { 292 setOperationAction(ISD::CTTZ, XLenVT, Expand); 293 setOperationAction(ISD::CTLZ, XLenVT, Expand); 294 setOperationAction(ISD::CTPOP, XLenVT, Expand); 295 } 296 297 if (Subtarget.hasStdExtZbt()) { 298 setOperationAction(ISD::FSHL, XLenVT, Custom); 299 setOperationAction(ISD::FSHR, XLenVT, Custom); 300 setOperationAction(ISD::SELECT, XLenVT, Legal); 301 302 if (Subtarget.is64Bit()) { 303 setOperationAction(ISD::FSHL, MVT::i32, Custom); 304 setOperationAction(ISD::FSHR, MVT::i32, Custom); 305 } 306 } else { 307 setOperationAction(ISD::SELECT, XLenVT, Custom); 308 } 309 310 static const ISD::CondCode FPCCToExpand[] = { 311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 314 315 static const ISD::NodeType FPOpToExpand[] = { 316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 318 319 if (Subtarget.hasStdExtZfh()) 320 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 321 322 if (Subtarget.hasStdExtZfh()) { 323 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 325 setOperationAction(ISD::LRINT, MVT::f16, Legal); 326 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 327 setOperationAction(ISD::LROUND, MVT::f16, Legal); 328 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f16, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 332 setOperationAction(ISD::SELECT, MVT::f16, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f16, Expand); 336 } 337 338 if (Subtarget.hasStdExtF()) { 339 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 340 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 341 setOperationAction(ISD::LRINT, MVT::f32, Legal); 342 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 343 setOperationAction(ISD::LROUND, MVT::f32, Legal); 344 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 348 setOperationAction(ISD::SELECT, MVT::f32, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 350 for (auto Op : FPOpToExpand) 351 setOperationAction(Op, MVT::f32, Expand); 352 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 353 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 354 } 355 356 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 357 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 358 359 if (Subtarget.hasStdExtD()) { 360 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 361 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 362 setOperationAction(ISD::LRINT, MVT::f64, Legal); 363 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 364 setOperationAction(ISD::LROUND, MVT::f64, Legal); 365 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 366 for (auto CC : FPCCToExpand) 367 setCondCodeAction(CC, MVT::f64, Expand); 368 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Custom); 370 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 373 for (auto Op : FPOpToExpand) 374 setOperationAction(Op, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 377 } 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 383 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 384 } 385 386 if (Subtarget.hasStdExtF()) { 387 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 388 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 389 390 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 391 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 392 } 393 394 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 395 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 396 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 397 setOperationAction(ISD::JumpTable, XLenVT, Custom); 398 399 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction(ISD::TRAP, MVT::Other, Legal); 407 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 409 if (Subtarget.is64Bit()) 410 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 411 412 if (Subtarget.hasStdExtA()) { 413 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 414 setMinCmpXchgSizeInBits(32); 415 } else { 416 setMaxAtomicSizeInBitsSupported(0); 417 } 418 419 setBooleanContents(ZeroOrOneBooleanContent); 420 421 if (Subtarget.hasStdExtV()) { 422 setBooleanVectorContents(ZeroOrOneBooleanContent); 423 424 setOperationAction(ISD::VSCALE, XLenVT, Custom); 425 426 // RVV intrinsics may have illegal operands. 427 // We also need to custom legalize vmv.x.s. 428 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 429 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 432 if (Subtarget.is64Bit()) { 433 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 434 } else { 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 436 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 437 } 438 439 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 440 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 441 442 static const unsigned IntegerVPOps[] = { 443 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 444 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 445 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 446 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 447 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 448 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 449 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 450 451 static const unsigned FloatingPointVPOps[] = { 452 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 453 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 454 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 455 456 if (!Subtarget.is64Bit()) { 457 // We must custom-lower certain vXi64 operations on RV32 due to the vector 458 // element type being illegal. 459 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 460 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 461 462 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 463 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 464 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 465 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 466 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 470 471 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 472 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 473 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 474 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 475 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 479 } 480 481 for (MVT VT : BoolVecVTs) { 482 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 483 484 // Mask VTs are custom-expanded into a series of standard nodes 485 setOperationAction(ISD::TRUNCATE, VT, Custom); 486 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 487 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 488 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 489 490 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 491 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 492 493 setOperationAction(ISD::SELECT, VT, Custom); 494 setOperationAction(ISD::SELECT_CC, VT, Expand); 495 setOperationAction(ISD::VSELECT, VT, Expand); 496 497 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 498 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 499 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 500 501 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 504 505 // RVV has native int->float & float->int conversions where the 506 // element type sizes are within one power-of-two of each other. Any 507 // wider distances between type sizes have to be lowered as sequences 508 // which progressively narrow the gap in stages. 509 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 510 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 511 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 512 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 513 514 // Expand all extending loads to types larger than this, and truncating 515 // stores from types larger than this. 516 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 517 setTruncStoreAction(OtherVT, VT, Expand); 518 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 519 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 520 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 521 } 522 } 523 524 for (MVT VT : IntVecVTs) { 525 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 526 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 527 528 setOperationAction(ISD::SMIN, VT, Legal); 529 setOperationAction(ISD::SMAX, VT, Legal); 530 setOperationAction(ISD::UMIN, VT, Legal); 531 setOperationAction(ISD::UMAX, VT, Legal); 532 533 setOperationAction(ISD::ROTL, VT, Expand); 534 setOperationAction(ISD::ROTR, VT, Expand); 535 536 setOperationAction(ISD::CTTZ, VT, Expand); 537 setOperationAction(ISD::CTLZ, VT, Expand); 538 setOperationAction(ISD::CTPOP, VT, Expand); 539 540 // Custom-lower extensions and truncations from/to mask types. 541 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 542 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 543 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 544 545 // RVV has native int->float & float->int conversions where the 546 // element type sizes are within one power-of-two of each other. Any 547 // wider distances between type sizes have to be lowered as sequences 548 // which progressively narrow the gap in stages. 549 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 550 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 551 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 552 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 553 554 setOperationAction(ISD::SADDSAT, VT, Legal); 555 setOperationAction(ISD::UADDSAT, VT, Legal); 556 setOperationAction(ISD::SSUBSAT, VT, Legal); 557 setOperationAction(ISD::USUBSAT, VT, Legal); 558 559 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 560 // nodes which truncate by one power of two at a time. 561 setOperationAction(ISD::TRUNCATE, VT, Custom); 562 563 // Custom-lower insert/extract operations to simplify patterns. 564 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 565 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 566 567 // Custom-lower reduction operations to set up the corresponding custom 568 // nodes' operands. 569 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 570 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 573 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 574 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 575 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 576 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 577 578 for (unsigned VPOpc : IntegerVPOps) 579 setOperationAction(VPOpc, VT, Custom); 580 581 setOperationAction(ISD::LOAD, VT, Custom); 582 setOperationAction(ISD::STORE, VT, Custom); 583 584 setOperationAction(ISD::MLOAD, VT, Custom); 585 setOperationAction(ISD::MSTORE, VT, Custom); 586 setOperationAction(ISD::MGATHER, VT, Custom); 587 setOperationAction(ISD::MSCATTER, VT, Custom); 588 589 setOperationAction(ISD::VP_LOAD, VT, Custom); 590 setOperationAction(ISD::VP_STORE, VT, Custom); 591 setOperationAction(ISD::VP_GATHER, VT, Custom); 592 setOperationAction(ISD::VP_SCATTER, VT, Custom); 593 594 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 595 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 596 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 597 598 setOperationAction(ISD::SELECT, VT, Custom); 599 setOperationAction(ISD::SELECT_CC, VT, Expand); 600 601 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 602 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 603 604 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 605 setTruncStoreAction(VT, OtherVT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 } 611 612 // Expand various CCs to best match the RVV ISA, which natively supports UNE 613 // but no other unordered comparisons, and supports all ordered comparisons 614 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 615 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 616 // and we pattern-match those back to the "original", swapping operands once 617 // more. This way we catch both operations and both "vf" and "fv" forms with 618 // fewer patterns. 619 static const ISD::CondCode VFPCCToExpand[] = { 620 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 621 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 622 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 623 }; 624 625 // Sets common operation actions on RVV floating-point vector types. 626 const auto SetCommonVFPActions = [&](MVT VT) { 627 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 628 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 629 // sizes are within one power-of-two of each other. Therefore conversions 630 // between vXf16 and vXf64 must be lowered as sequences which convert via 631 // vXf32. 632 setOperationAction(ISD::FP_ROUND, VT, Custom); 633 setOperationAction(ISD::FP_EXTEND, VT, Custom); 634 // Custom-lower insert/extract operations to simplify patterns. 635 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 636 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 637 // Expand various condition codes (explained above). 638 for (auto CC : VFPCCToExpand) 639 setCondCodeAction(CC, VT, Expand); 640 641 setOperationAction(ISD::FMINNUM, VT, Legal); 642 setOperationAction(ISD::FMAXNUM, VT, Legal); 643 644 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 645 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 646 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 647 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 648 649 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 650 651 setOperationAction(ISD::LOAD, VT, Custom); 652 setOperationAction(ISD::STORE, VT, Custom); 653 654 setOperationAction(ISD::MLOAD, VT, Custom); 655 setOperationAction(ISD::MSTORE, VT, Custom); 656 setOperationAction(ISD::MGATHER, VT, Custom); 657 setOperationAction(ISD::MSCATTER, VT, Custom); 658 659 setOperationAction(ISD::VP_LOAD, VT, Custom); 660 setOperationAction(ISD::VP_STORE, VT, Custom); 661 setOperationAction(ISD::VP_GATHER, VT, Custom); 662 setOperationAction(ISD::VP_SCATTER, VT, Custom); 663 664 setOperationAction(ISD::SELECT, VT, Custom); 665 setOperationAction(ISD::SELECT_CC, VT, Expand); 666 667 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 668 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 669 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 670 671 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 672 673 for (unsigned VPOpc : FloatingPointVPOps) 674 setOperationAction(VPOpc, VT, Custom); 675 }; 676 677 // Sets common extload/truncstore actions on RVV floating-point vector 678 // types. 679 const auto SetCommonVFPExtLoadTruncStoreActions = 680 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 681 for (auto SmallVT : SmallerVTs) { 682 setTruncStoreAction(VT, SmallVT, Expand); 683 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 684 } 685 }; 686 687 if (Subtarget.hasStdExtZfh()) 688 for (MVT VT : F16VecVTs) 689 SetCommonVFPActions(VT); 690 691 for (MVT VT : F32VecVTs) { 692 if (Subtarget.hasStdExtF()) 693 SetCommonVFPActions(VT); 694 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 695 } 696 697 for (MVT VT : F64VecVTs) { 698 if (Subtarget.hasStdExtD()) 699 SetCommonVFPActions(VT); 700 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 701 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 702 } 703 704 if (Subtarget.useRVVForFixedLengthVectors()) { 705 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 706 if (!useRVVForFixedLengthVectorVT(VT)) 707 continue; 708 709 // By default everything must be expanded. 710 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 711 setOperationAction(Op, VT, Expand); 712 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 713 setTruncStoreAction(VT, OtherVT, Expand); 714 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 715 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 716 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 717 } 718 719 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 720 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 721 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 722 723 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 724 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 725 726 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 727 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 728 729 setOperationAction(ISD::LOAD, VT, Custom); 730 setOperationAction(ISD::STORE, VT, Custom); 731 732 setOperationAction(ISD::SETCC, VT, Custom); 733 734 setOperationAction(ISD::SELECT, VT, Custom); 735 736 setOperationAction(ISD::TRUNCATE, VT, Custom); 737 738 setOperationAction(ISD::BITCAST, VT, Custom); 739 740 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 741 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 742 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 743 744 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 745 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 746 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 747 748 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 749 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 750 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 751 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 752 753 // Operations below are different for between masks and other vectors. 754 if (VT.getVectorElementType() == MVT::i1) { 755 setOperationAction(ISD::AND, VT, Custom); 756 setOperationAction(ISD::OR, VT, Custom); 757 setOperationAction(ISD::XOR, VT, Custom); 758 continue; 759 } 760 761 // Use SPLAT_VECTOR to prevent type legalization from destroying the 762 // splats when type legalizing i64 scalar on RV32. 763 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 764 // improvements first. 765 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 766 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 767 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 768 } 769 770 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 771 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 772 773 setOperationAction(ISD::MLOAD, VT, Custom); 774 setOperationAction(ISD::MSTORE, VT, Custom); 775 setOperationAction(ISD::MGATHER, VT, Custom); 776 setOperationAction(ISD::MSCATTER, VT, Custom); 777 778 setOperationAction(ISD::VP_LOAD, VT, Custom); 779 setOperationAction(ISD::VP_STORE, VT, Custom); 780 setOperationAction(ISD::VP_GATHER, VT, Custom); 781 setOperationAction(ISD::VP_SCATTER, VT, Custom); 782 783 setOperationAction(ISD::ADD, VT, Custom); 784 setOperationAction(ISD::MUL, VT, Custom); 785 setOperationAction(ISD::SUB, VT, Custom); 786 setOperationAction(ISD::AND, VT, Custom); 787 setOperationAction(ISD::OR, VT, Custom); 788 setOperationAction(ISD::XOR, VT, Custom); 789 setOperationAction(ISD::SDIV, VT, Custom); 790 setOperationAction(ISD::SREM, VT, Custom); 791 setOperationAction(ISD::UDIV, VT, Custom); 792 setOperationAction(ISD::UREM, VT, Custom); 793 setOperationAction(ISD::SHL, VT, Custom); 794 setOperationAction(ISD::SRA, VT, Custom); 795 setOperationAction(ISD::SRL, VT, Custom); 796 797 setOperationAction(ISD::SMIN, VT, Custom); 798 setOperationAction(ISD::SMAX, VT, Custom); 799 setOperationAction(ISD::UMIN, VT, Custom); 800 setOperationAction(ISD::UMAX, VT, Custom); 801 setOperationAction(ISD::ABS, VT, Custom); 802 803 setOperationAction(ISD::MULHS, VT, Custom); 804 setOperationAction(ISD::MULHU, VT, Custom); 805 806 setOperationAction(ISD::SADDSAT, VT, Custom); 807 setOperationAction(ISD::UADDSAT, VT, Custom); 808 setOperationAction(ISD::SSUBSAT, VT, Custom); 809 setOperationAction(ISD::USUBSAT, VT, Custom); 810 811 setOperationAction(ISD::VSELECT, VT, Custom); 812 setOperationAction(ISD::SELECT_CC, VT, Expand); 813 814 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 815 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 816 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 817 818 // Custom-lower reduction operations to set up the corresponding custom 819 // nodes' operands. 820 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 821 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 822 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 823 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 824 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 825 826 for (unsigned VPOpc : IntegerVPOps) 827 setOperationAction(VPOpc, VT, Custom); 828 } 829 830 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 831 if (!useRVVForFixedLengthVectorVT(VT)) 832 continue; 833 834 // By default everything must be expanded. 835 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 836 setOperationAction(Op, VT, Expand); 837 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 838 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 839 setTruncStoreAction(VT, OtherVT, Expand); 840 } 841 842 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 843 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 844 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 845 846 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 847 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 848 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 849 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 850 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 851 852 setOperationAction(ISD::LOAD, VT, Custom); 853 setOperationAction(ISD::STORE, VT, Custom); 854 setOperationAction(ISD::MLOAD, VT, Custom); 855 setOperationAction(ISD::MSTORE, VT, Custom); 856 setOperationAction(ISD::MGATHER, VT, Custom); 857 setOperationAction(ISD::MSCATTER, VT, Custom); 858 859 setOperationAction(ISD::VP_LOAD, VT, Custom); 860 setOperationAction(ISD::VP_STORE, VT, Custom); 861 setOperationAction(ISD::VP_GATHER, VT, Custom); 862 setOperationAction(ISD::VP_SCATTER, VT, Custom); 863 864 setOperationAction(ISD::FADD, VT, Custom); 865 setOperationAction(ISD::FSUB, VT, Custom); 866 setOperationAction(ISD::FMUL, VT, Custom); 867 setOperationAction(ISD::FDIV, VT, Custom); 868 setOperationAction(ISD::FNEG, VT, Custom); 869 setOperationAction(ISD::FABS, VT, Custom); 870 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 871 setOperationAction(ISD::FSQRT, VT, Custom); 872 setOperationAction(ISD::FMA, VT, Custom); 873 setOperationAction(ISD::FMINNUM, VT, Custom); 874 setOperationAction(ISD::FMAXNUM, VT, Custom); 875 876 setOperationAction(ISD::FP_ROUND, VT, Custom); 877 setOperationAction(ISD::FP_EXTEND, VT, Custom); 878 879 for (auto CC : VFPCCToExpand) 880 setCondCodeAction(CC, VT, Expand); 881 882 setOperationAction(ISD::VSELECT, VT, Custom); 883 setOperationAction(ISD::SELECT, VT, Custom); 884 setOperationAction(ISD::SELECT_CC, VT, Expand); 885 886 setOperationAction(ISD::BITCAST, VT, Custom); 887 888 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 889 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 890 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 891 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 892 893 for (unsigned VPOpc : FloatingPointVPOps) 894 setOperationAction(VPOpc, VT, Custom); 895 } 896 897 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 898 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 899 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 900 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 901 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 902 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 903 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 904 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 905 } 906 } 907 908 // Function alignments. 909 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 910 setMinFunctionAlignment(FunctionAlignment); 911 setPrefFunctionAlignment(FunctionAlignment); 912 913 setMinimumJumpTableEntries(5); 914 915 // Jumps are expensive, compared to logic 916 setJumpIsExpensive(); 917 918 // We can use any register for comparisons 919 setHasMultipleConditionRegisters(); 920 921 setTargetDAGCombine(ISD::ADD); 922 setTargetDAGCombine(ISD::SUB); 923 setTargetDAGCombine(ISD::AND); 924 setTargetDAGCombine(ISD::OR); 925 setTargetDAGCombine(ISD::XOR); 926 setTargetDAGCombine(ISD::ANY_EXTEND); 927 setTargetDAGCombine(ISD::ZERO_EXTEND); 928 if (Subtarget.hasStdExtV()) { 929 setTargetDAGCombine(ISD::FCOPYSIGN); 930 setTargetDAGCombine(ISD::MGATHER); 931 setTargetDAGCombine(ISD::MSCATTER); 932 setTargetDAGCombine(ISD::VP_GATHER); 933 setTargetDAGCombine(ISD::VP_SCATTER); 934 setTargetDAGCombine(ISD::SRA); 935 setTargetDAGCombine(ISD::SRL); 936 setTargetDAGCombine(ISD::SHL); 937 setTargetDAGCombine(ISD::STORE); 938 } 939 } 940 941 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 942 LLVMContext &Context, 943 EVT VT) const { 944 if (!VT.isVector()) 945 return getPointerTy(DL); 946 if (Subtarget.hasStdExtV() && 947 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 948 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 949 return VT.changeVectorElementTypeToInteger(); 950 } 951 952 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 953 return Subtarget.getXLenVT(); 954 } 955 956 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 957 const CallInst &I, 958 MachineFunction &MF, 959 unsigned Intrinsic) const { 960 auto &DL = I.getModule()->getDataLayout(); 961 switch (Intrinsic) { 962 default: 963 return false; 964 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 965 case Intrinsic::riscv_masked_atomicrmw_add_i32: 966 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 967 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 968 case Intrinsic::riscv_masked_atomicrmw_max_i32: 969 case Intrinsic::riscv_masked_atomicrmw_min_i32: 970 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 971 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 972 case Intrinsic::riscv_masked_cmpxchg_i32: { 973 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 974 Info.opc = ISD::INTRINSIC_W_CHAIN; 975 Info.memVT = MVT::getVT(PtrTy->getElementType()); 976 Info.ptrVal = I.getArgOperand(0); 977 Info.offset = 0; 978 Info.align = Align(4); 979 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 980 MachineMemOperand::MOVolatile; 981 return true; 982 } 983 case Intrinsic::riscv_masked_strided_load: 984 Info.opc = ISD::INTRINSIC_W_CHAIN; 985 Info.ptrVal = I.getArgOperand(1); 986 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 987 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 988 Info.size = MemoryLocation::UnknownSize; 989 Info.flags |= MachineMemOperand::MOLoad; 990 return true; 991 case Intrinsic::riscv_masked_strided_store: 992 Info.opc = ISD::INTRINSIC_VOID; 993 Info.ptrVal = I.getArgOperand(1); 994 Info.memVT = 995 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 996 Info.align = Align( 997 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 998 8); 999 Info.size = MemoryLocation::UnknownSize; 1000 Info.flags |= MachineMemOperand::MOStore; 1001 return true; 1002 } 1003 } 1004 1005 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1006 const AddrMode &AM, Type *Ty, 1007 unsigned AS, 1008 Instruction *I) const { 1009 // No global is ever allowed as a base. 1010 if (AM.BaseGV) 1011 return false; 1012 1013 // Require a 12-bit signed offset. 1014 if (!isInt<12>(AM.BaseOffs)) 1015 return false; 1016 1017 switch (AM.Scale) { 1018 case 0: // "r+i" or just "i", depending on HasBaseReg. 1019 break; 1020 case 1: 1021 if (!AM.HasBaseReg) // allow "r+i". 1022 break; 1023 return false; // disallow "r+r" or "r+r+i". 1024 default: 1025 return false; 1026 } 1027 1028 return true; 1029 } 1030 1031 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1032 return isInt<12>(Imm); 1033 } 1034 1035 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1036 return isInt<12>(Imm); 1037 } 1038 1039 // On RV32, 64-bit integers are split into their high and low parts and held 1040 // in two different registers, so the trunc is free since the low register can 1041 // just be used. 1042 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1043 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1044 return false; 1045 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1046 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1047 return (SrcBits == 64 && DestBits == 32); 1048 } 1049 1050 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1051 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1052 !SrcVT.isInteger() || !DstVT.isInteger()) 1053 return false; 1054 unsigned SrcBits = SrcVT.getSizeInBits(); 1055 unsigned DestBits = DstVT.getSizeInBits(); 1056 return (SrcBits == 64 && DestBits == 32); 1057 } 1058 1059 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1060 // Zexts are free if they can be combined with a load. 1061 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1062 EVT MemVT = LD->getMemoryVT(); 1063 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1064 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1065 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1066 LD->getExtensionType() == ISD::ZEXTLOAD)) 1067 return true; 1068 } 1069 1070 return TargetLowering::isZExtFree(Val, VT2); 1071 } 1072 1073 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1074 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1075 } 1076 1077 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1078 return Subtarget.hasStdExtZbb(); 1079 } 1080 1081 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1082 return Subtarget.hasStdExtZbb(); 1083 } 1084 1085 /// Check if sinking \p I's operands to I's basic block is profitable, because 1086 /// the operands can be folded into a target instruction, e.g. 1087 /// splats of scalars can fold into vector instructions. 1088 bool RISCVTargetLowering::shouldSinkOperands( 1089 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1090 using namespace llvm::PatternMatch; 1091 1092 if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV()) 1093 return false; 1094 1095 auto IsSinker = [&](Instruction *I, int Operand) { 1096 switch (I->getOpcode()) { 1097 case Instruction::Add: 1098 case Instruction::Sub: 1099 case Instruction::Mul: 1100 case Instruction::And: 1101 case Instruction::Or: 1102 case Instruction::Xor: 1103 case Instruction::FAdd: 1104 case Instruction::FSub: 1105 case Instruction::FMul: 1106 case Instruction::FDiv: 1107 case Instruction::ICmp: 1108 case Instruction::FCmp: 1109 return true; 1110 case Instruction::Shl: 1111 case Instruction::LShr: 1112 case Instruction::AShr: 1113 return Operand == 1; 1114 case Instruction::Call: 1115 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1116 switch (II->getIntrinsicID()) { 1117 case Intrinsic::fma: 1118 return Operand == 0 || Operand == 1; 1119 default: 1120 return false; 1121 } 1122 } 1123 return false; 1124 default: 1125 return false; 1126 } 1127 }; 1128 1129 for (auto OpIdx : enumerate(I->operands())) { 1130 if (!IsSinker(I, OpIdx.index())) 1131 continue; 1132 1133 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1134 // Make sure we are not already sinking this operand 1135 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1136 continue; 1137 1138 // We are looking for a splat that can be sunk. 1139 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1140 m_Undef(), m_ZeroMask()))) 1141 continue; 1142 1143 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1144 // and vector registers 1145 for (Use &U : Op->uses()) { 1146 Instruction *Insn = cast<Instruction>(U.getUser()); 1147 if (!IsSinker(Insn, U.getOperandNo())) 1148 return false; 1149 } 1150 1151 Ops.push_back(&Op->getOperandUse(0)); 1152 Ops.push_back(&OpIdx.value()); 1153 } 1154 return true; 1155 } 1156 1157 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1158 bool ForCodeSize) const { 1159 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1160 return false; 1161 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1162 return false; 1163 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1164 return false; 1165 if (Imm.isNegZero()) 1166 return false; 1167 return Imm.isZero(); 1168 } 1169 1170 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1171 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1172 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1173 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1174 } 1175 1176 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1177 CallingConv::ID CC, 1178 EVT VT) const { 1179 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1180 // end up using a GPR but that will be decided based on ABI. 1181 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1182 return MVT::f32; 1183 1184 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1185 } 1186 1187 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1188 CallingConv::ID CC, 1189 EVT VT) const { 1190 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1191 // end up using a GPR but that will be decided based on ABI. 1192 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1193 return 1; 1194 1195 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1196 } 1197 1198 // Changes the condition code and swaps operands if necessary, so the SetCC 1199 // operation matches one of the comparisons supported directly by branches 1200 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1201 // with 1/-1. 1202 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1203 ISD::CondCode &CC, SelectionDAG &DAG) { 1204 // Convert X > -1 to X >= 0. 1205 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1206 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1207 CC = ISD::SETGE; 1208 return; 1209 } 1210 // Convert X < 1 to 0 >= X. 1211 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1212 RHS = LHS; 1213 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1214 CC = ISD::SETGE; 1215 return; 1216 } 1217 1218 switch (CC) { 1219 default: 1220 break; 1221 case ISD::SETGT: 1222 case ISD::SETLE: 1223 case ISD::SETUGT: 1224 case ISD::SETULE: 1225 CC = ISD::getSetCCSwappedOperands(CC); 1226 std::swap(LHS, RHS); 1227 break; 1228 } 1229 } 1230 1231 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1232 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1233 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1234 if (VT.getVectorElementType() == MVT::i1) 1235 KnownSize *= 8; 1236 1237 switch (KnownSize) { 1238 default: 1239 llvm_unreachable("Invalid LMUL."); 1240 case 8: 1241 return RISCVII::VLMUL::LMUL_F8; 1242 case 16: 1243 return RISCVII::VLMUL::LMUL_F4; 1244 case 32: 1245 return RISCVII::VLMUL::LMUL_F2; 1246 case 64: 1247 return RISCVII::VLMUL::LMUL_1; 1248 case 128: 1249 return RISCVII::VLMUL::LMUL_2; 1250 case 256: 1251 return RISCVII::VLMUL::LMUL_4; 1252 case 512: 1253 return RISCVII::VLMUL::LMUL_8; 1254 } 1255 } 1256 1257 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1258 switch (LMul) { 1259 default: 1260 llvm_unreachable("Invalid LMUL."); 1261 case RISCVII::VLMUL::LMUL_F8: 1262 case RISCVII::VLMUL::LMUL_F4: 1263 case RISCVII::VLMUL::LMUL_F2: 1264 case RISCVII::VLMUL::LMUL_1: 1265 return RISCV::VRRegClassID; 1266 case RISCVII::VLMUL::LMUL_2: 1267 return RISCV::VRM2RegClassID; 1268 case RISCVII::VLMUL::LMUL_4: 1269 return RISCV::VRM4RegClassID; 1270 case RISCVII::VLMUL::LMUL_8: 1271 return RISCV::VRM8RegClassID; 1272 } 1273 } 1274 1275 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1276 RISCVII::VLMUL LMUL = getLMUL(VT); 1277 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1278 LMUL == RISCVII::VLMUL::LMUL_F4 || 1279 LMUL == RISCVII::VLMUL::LMUL_F2 || 1280 LMUL == RISCVII::VLMUL::LMUL_1) { 1281 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1282 "Unexpected subreg numbering"); 1283 return RISCV::sub_vrm1_0 + Index; 1284 } 1285 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1286 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1287 "Unexpected subreg numbering"); 1288 return RISCV::sub_vrm2_0 + Index; 1289 } 1290 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1291 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1292 "Unexpected subreg numbering"); 1293 return RISCV::sub_vrm4_0 + Index; 1294 } 1295 llvm_unreachable("Invalid vector type."); 1296 } 1297 1298 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1299 if (VT.getVectorElementType() == MVT::i1) 1300 return RISCV::VRRegClassID; 1301 return getRegClassIDForLMUL(getLMUL(VT)); 1302 } 1303 1304 // Attempt to decompose a subvector insert/extract between VecVT and 1305 // SubVecVT via subregister indices. Returns the subregister index that 1306 // can perform the subvector insert/extract with the given element index, as 1307 // well as the index corresponding to any leftover subvectors that must be 1308 // further inserted/extracted within the register class for SubVecVT. 1309 std::pair<unsigned, unsigned> 1310 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1311 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1312 const RISCVRegisterInfo *TRI) { 1313 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1314 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1315 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1316 "Register classes not ordered"); 1317 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1318 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1319 // Try to compose a subregister index that takes us from the incoming 1320 // LMUL>1 register class down to the outgoing one. At each step we half 1321 // the LMUL: 1322 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1323 // Note that this is not guaranteed to find a subregister index, such as 1324 // when we are extracting from one VR type to another. 1325 unsigned SubRegIdx = RISCV::NoSubRegister; 1326 for (const unsigned RCID : 1327 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1328 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1329 VecVT = VecVT.getHalfNumVectorElementsVT(); 1330 bool IsHi = 1331 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1332 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1333 getSubregIndexByMVT(VecVT, IsHi)); 1334 if (IsHi) 1335 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1336 } 1337 return {SubRegIdx, InsertExtractIdx}; 1338 } 1339 1340 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1341 // stores for those types. 1342 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1343 return !Subtarget.useRVVForFixedLengthVectors() || 1344 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1345 } 1346 1347 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1348 if (ScalarTy->isPointerTy()) 1349 return true; 1350 1351 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1352 ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64)) 1353 return true; 1354 1355 if (ScalarTy->isHalfTy()) 1356 return Subtarget.hasStdExtZfh(); 1357 if (ScalarTy->isFloatTy()) 1358 return Subtarget.hasStdExtF(); 1359 if (ScalarTy->isDoubleTy()) 1360 return Subtarget.hasStdExtD(); 1361 1362 return false; 1363 } 1364 1365 static bool useRVVForFixedLengthVectorVT(MVT VT, 1366 const RISCVSubtarget &Subtarget) { 1367 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1368 if (!Subtarget.useRVVForFixedLengthVectors()) 1369 return false; 1370 1371 // We only support a set of vector types with a consistent maximum fixed size 1372 // across all supported vector element types to avoid legalization issues. 1373 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1374 // fixed-length vector type we support is 1024 bytes. 1375 if (VT.getFixedSizeInBits() > 1024 * 8) 1376 return false; 1377 1378 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1379 1380 MVT EltVT = VT.getVectorElementType(); 1381 1382 // Don't use RVV for vectors we cannot scalarize if required. 1383 switch (EltVT.SimpleTy) { 1384 // i1 is supported but has different rules. 1385 default: 1386 return false; 1387 case MVT::i1: 1388 // Masks can only use a single register. 1389 if (VT.getVectorNumElements() > MinVLen) 1390 return false; 1391 MinVLen /= 8; 1392 break; 1393 case MVT::i8: 1394 case MVT::i16: 1395 case MVT::i32: 1396 case MVT::i64: 1397 break; 1398 case MVT::f16: 1399 if (!Subtarget.hasStdExtZfh()) 1400 return false; 1401 break; 1402 case MVT::f32: 1403 if (!Subtarget.hasStdExtF()) 1404 return false; 1405 break; 1406 case MVT::f64: 1407 if (!Subtarget.hasStdExtD()) 1408 return false; 1409 break; 1410 } 1411 1412 // Reject elements larger than ELEN. 1413 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1414 return false; 1415 1416 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1417 // Don't use RVV for types that don't fit. 1418 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1419 return false; 1420 1421 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1422 // the base fixed length RVV support in place. 1423 if (!VT.isPow2VectorType()) 1424 return false; 1425 1426 return true; 1427 } 1428 1429 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1430 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1431 } 1432 1433 // Return the largest legal scalable vector type that matches VT's element type. 1434 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1435 const RISCVSubtarget &Subtarget) { 1436 // This may be called before legal types are setup. 1437 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1438 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1439 "Expected legal fixed length vector!"); 1440 1441 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1442 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1443 1444 MVT EltVT = VT.getVectorElementType(); 1445 switch (EltVT.SimpleTy) { 1446 default: 1447 llvm_unreachable("unexpected element type for RVV container"); 1448 case MVT::i1: 1449 case MVT::i8: 1450 case MVT::i16: 1451 case MVT::i32: 1452 case MVT::i64: 1453 case MVT::f16: 1454 case MVT::f32: 1455 case MVT::f64: { 1456 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1457 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1458 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1459 unsigned NumElts = 1460 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1461 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1462 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1463 return MVT::getScalableVectorVT(EltVT, NumElts); 1464 } 1465 } 1466 } 1467 1468 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1469 const RISCVSubtarget &Subtarget) { 1470 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1471 Subtarget); 1472 } 1473 1474 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1475 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1476 } 1477 1478 // Grow V to consume an entire RVV register. 1479 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1480 const RISCVSubtarget &Subtarget) { 1481 assert(VT.isScalableVector() && 1482 "Expected to convert into a scalable vector!"); 1483 assert(V.getValueType().isFixedLengthVector() && 1484 "Expected a fixed length vector operand!"); 1485 SDLoc DL(V); 1486 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1487 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1488 } 1489 1490 // Shrink V so it's just big enough to maintain a VT's worth of data. 1491 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1492 const RISCVSubtarget &Subtarget) { 1493 assert(VT.isFixedLengthVector() && 1494 "Expected to convert into a fixed length vector!"); 1495 assert(V.getValueType().isScalableVector() && 1496 "Expected a scalable vector operand!"); 1497 SDLoc DL(V); 1498 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1499 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1500 } 1501 1502 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1503 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1504 // the vector type that it is contained in. 1505 static std::pair<SDValue, SDValue> 1506 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1507 const RISCVSubtarget &Subtarget) { 1508 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1509 MVT XLenVT = Subtarget.getXLenVT(); 1510 SDValue VL = VecVT.isFixedLengthVector() 1511 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1512 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1513 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1514 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1515 return {Mask, VL}; 1516 } 1517 1518 // As above but assuming the given type is a scalable vector type. 1519 static std::pair<SDValue, SDValue> 1520 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1521 const RISCVSubtarget &Subtarget) { 1522 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1523 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1524 } 1525 1526 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1527 // of either is (currently) supported. This can get us into an infinite loop 1528 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1529 // as a ..., etc. 1530 // Until either (or both) of these can reliably lower any node, reporting that 1531 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1532 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1533 // which is not desirable. 1534 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1535 EVT VT, unsigned DefinedValues) const { 1536 return false; 1537 } 1538 1539 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1540 // Only splats are currently supported. 1541 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1542 return true; 1543 1544 return false; 1545 } 1546 1547 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1548 // RISCV FP-to-int conversions saturate to the destination register size, but 1549 // don't produce 0 for nan. We can use a conversion instruction and fix the 1550 // nan case with a compare and a select. 1551 SDValue Src = Op.getOperand(0); 1552 1553 EVT DstVT = Op.getValueType(); 1554 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1555 1556 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1557 unsigned Opc; 1558 if (SatVT == DstVT) 1559 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1560 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1561 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1562 else 1563 return SDValue(); 1564 // FIXME: Support other SatVTs by clamping before or after the conversion. 1565 1566 SDLoc DL(Op); 1567 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1568 1569 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1570 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1571 } 1572 1573 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1574 const RISCVSubtarget &Subtarget) { 1575 MVT VT = Op.getSimpleValueType(); 1576 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1577 1578 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1579 1580 SDLoc DL(Op); 1581 SDValue Mask, VL; 1582 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1583 1584 unsigned Opc = 1585 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1586 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1587 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1588 } 1589 1590 struct VIDSequence { 1591 int64_t StepNumerator; 1592 unsigned StepDenominator; 1593 int64_t Addend; 1594 }; 1595 1596 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1597 // to the (non-zero) step S and start value X. This can be then lowered as the 1598 // RVV sequence (VID * S) + X, for example. 1599 // The step S is represented as an integer numerator divided by a positive 1600 // denominator. Note that the implementation currently only identifies 1601 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1602 // cannot detect 2/3, for example. 1603 // Note that this method will also match potentially unappealing index 1604 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1605 // determine whether this is worth generating code for. 1606 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1607 unsigned NumElts = Op.getNumOperands(); 1608 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1609 if (!Op.getValueType().isInteger()) 1610 return None; 1611 1612 Optional<unsigned> SeqStepDenom; 1613 Optional<int64_t> SeqStepNum, SeqAddend; 1614 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1615 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1616 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1617 // Assume undef elements match the sequence; we just have to be careful 1618 // when interpolating across them. 1619 if (Op.getOperand(Idx).isUndef()) 1620 continue; 1621 // The BUILD_VECTOR must be all constants. 1622 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1623 return None; 1624 1625 uint64_t Val = Op.getConstantOperandVal(Idx) & 1626 maskTrailingOnes<uint64_t>(EltSizeInBits); 1627 1628 if (PrevElt) { 1629 // Calculate the step since the last non-undef element, and ensure 1630 // it's consistent across the entire sequence. 1631 unsigned IdxDiff = Idx - PrevElt->second; 1632 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1633 1634 // A zero-value value difference means that we're somewhere in the middle 1635 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1636 // step change before evaluating the sequence. 1637 if (ValDiff != 0) { 1638 int64_t Remainder = ValDiff % IdxDiff; 1639 // Normalize the step if it's greater than 1. 1640 if (Remainder != ValDiff) { 1641 // The difference must cleanly divide the element span. 1642 if (Remainder != 0) 1643 return None; 1644 ValDiff /= IdxDiff; 1645 IdxDiff = 1; 1646 } 1647 1648 if (!SeqStepNum) 1649 SeqStepNum = ValDiff; 1650 else if (ValDiff != SeqStepNum) 1651 return None; 1652 1653 if (!SeqStepDenom) 1654 SeqStepDenom = IdxDiff; 1655 else if (IdxDiff != *SeqStepDenom) 1656 return None; 1657 } 1658 } 1659 1660 // Record and/or check any addend. 1661 if (SeqStepNum && SeqStepDenom) { 1662 uint64_t ExpectedVal = 1663 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1664 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1665 if (!SeqAddend) 1666 SeqAddend = Addend; 1667 else if (SeqAddend != Addend) 1668 return None; 1669 } 1670 1671 // Record this non-undef element for later. 1672 if (!PrevElt || PrevElt->first != Val) 1673 PrevElt = std::make_pair(Val, Idx); 1674 } 1675 // We need to have logged both a step and an addend for this to count as 1676 // a legal index sequence. 1677 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1678 return None; 1679 1680 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1681 } 1682 1683 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1684 const RISCVSubtarget &Subtarget) { 1685 MVT VT = Op.getSimpleValueType(); 1686 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1687 1688 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1689 1690 SDLoc DL(Op); 1691 SDValue Mask, VL; 1692 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1693 1694 MVT XLenVT = Subtarget.getXLenVT(); 1695 unsigned NumElts = Op.getNumOperands(); 1696 1697 if (VT.getVectorElementType() == MVT::i1) { 1698 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1699 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1700 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1701 } 1702 1703 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1704 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1705 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1706 } 1707 1708 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1709 // scalar integer chunks whose bit-width depends on the number of mask 1710 // bits and XLEN. 1711 // First, determine the most appropriate scalar integer type to use. This 1712 // is at most XLenVT, but may be shrunk to a smaller vector element type 1713 // according to the size of the final vector - use i8 chunks rather than 1714 // XLenVT if we're producing a v8i1. This results in more consistent 1715 // codegen across RV32 and RV64. 1716 unsigned NumViaIntegerBits = 1717 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1718 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1719 // If we have to use more than one INSERT_VECTOR_ELT then this 1720 // optimization is likely to increase code size; avoid peforming it in 1721 // such a case. We can use a load from a constant pool in this case. 1722 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1723 return SDValue(); 1724 // Now we can create our integer vector type. Note that it may be larger 1725 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1726 MVT IntegerViaVecVT = 1727 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1728 divideCeil(NumElts, NumViaIntegerBits)); 1729 1730 uint64_t Bits = 0; 1731 unsigned BitPos = 0, IntegerEltIdx = 0; 1732 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1733 1734 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1735 // Once we accumulate enough bits to fill our scalar type, insert into 1736 // our vector and clear our accumulated data. 1737 if (I != 0 && I % NumViaIntegerBits == 0) { 1738 if (NumViaIntegerBits <= 32) 1739 Bits = SignExtend64(Bits, 32); 1740 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1741 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1742 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1743 Bits = 0; 1744 BitPos = 0; 1745 IntegerEltIdx++; 1746 } 1747 SDValue V = Op.getOperand(I); 1748 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1749 Bits |= ((uint64_t)BitValue << BitPos); 1750 } 1751 1752 // Insert the (remaining) scalar value into position in our integer 1753 // vector type. 1754 if (NumViaIntegerBits <= 32) 1755 Bits = SignExtend64(Bits, 32); 1756 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1757 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1758 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1759 1760 if (NumElts < NumViaIntegerBits) { 1761 // If we're producing a smaller vector than our minimum legal integer 1762 // type, bitcast to the equivalent (known-legal) mask type, and extract 1763 // our final mask. 1764 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1765 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1766 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1767 DAG.getConstant(0, DL, XLenVT)); 1768 } else { 1769 // Else we must have produced an integer type with the same size as the 1770 // mask type; bitcast for the final result. 1771 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1772 Vec = DAG.getBitcast(VT, Vec); 1773 } 1774 1775 return Vec; 1776 } 1777 1778 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1779 // vector type, we have a legal equivalently-sized i8 type, so we can use 1780 // that. 1781 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1782 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1783 1784 SDValue WideVec; 1785 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1786 // For a splat, perform a scalar truncate before creating the wider 1787 // vector. 1788 assert(Splat.getValueType() == XLenVT && 1789 "Unexpected type for i1 splat value"); 1790 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1791 DAG.getConstant(1, DL, XLenVT)); 1792 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1793 } else { 1794 SmallVector<SDValue, 8> Ops(Op->op_values()); 1795 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1796 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1797 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1798 } 1799 1800 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1801 } 1802 1803 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1804 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1805 : RISCVISD::VMV_V_X_VL; 1806 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1807 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1808 } 1809 1810 // Try and match index sequences, which we can lower to the vid instruction 1811 // with optional modifications. An all-undef vector is matched by 1812 // getSplatValue, above. 1813 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1814 int64_t StepNumerator = SimpleVID->StepNumerator; 1815 unsigned StepDenominator = SimpleVID->StepDenominator; 1816 int64_t Addend = SimpleVID->Addend; 1817 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1818 // threshold since it's the immediate value many RVV instructions accept. 1819 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1820 isInt<5>(Addend)) { 1821 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1822 // Convert right out of the scalable type so we can use standard ISD 1823 // nodes for the rest of the computation. If we used scalable types with 1824 // these, we'd lose the fixed-length vector info and generate worse 1825 // vsetvli code. 1826 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1827 assert(StepNumerator != 0 && "Invalid step"); 1828 bool Negate = false; 1829 if (StepNumerator != 1) { 1830 int64_t SplatStepVal = StepNumerator; 1831 unsigned Opcode = ISD::MUL; 1832 if (isPowerOf2_64(std::abs(StepNumerator))) { 1833 Negate = StepNumerator < 0; 1834 Opcode = ISD::SHL; 1835 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1836 } 1837 SDValue SplatStep = DAG.getSplatVector( 1838 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1839 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1840 } 1841 if (StepDenominator != 1) { 1842 SDValue SplatStep = DAG.getSplatVector( 1843 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1844 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1845 } 1846 if (Addend != 0 || Negate) { 1847 SDValue SplatAddend = 1848 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1849 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1850 } 1851 return VID; 1852 } 1853 } 1854 1855 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1856 // when re-interpreted as a vector with a larger element type. For example, 1857 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1858 // could be instead splat as 1859 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1860 // TODO: This optimization could also work on non-constant splats, but it 1861 // would require bit-manipulation instructions to construct the splat value. 1862 SmallVector<SDValue> Sequence; 1863 unsigned EltBitSize = VT.getScalarSizeInBits(); 1864 const auto *BV = cast<BuildVectorSDNode>(Op); 1865 if (VT.isInteger() && EltBitSize < 64 && 1866 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1867 BV->getRepeatedSequence(Sequence) && 1868 (Sequence.size() * EltBitSize) <= 64) { 1869 unsigned SeqLen = Sequence.size(); 1870 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1871 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1872 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1873 ViaIntVT == MVT::i64) && 1874 "Unexpected sequence type"); 1875 1876 unsigned EltIdx = 0; 1877 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1878 uint64_t SplatValue = 0; 1879 // Construct the amalgamated value which can be splatted as this larger 1880 // vector type. 1881 for (const auto &SeqV : Sequence) { 1882 if (!SeqV.isUndef()) 1883 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1884 << (EltIdx * EltBitSize)); 1885 EltIdx++; 1886 } 1887 1888 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1889 // achieve better constant materializion. 1890 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1891 SplatValue = SignExtend64(SplatValue, 32); 1892 1893 // Since we can't introduce illegal i64 types at this stage, we can only 1894 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1895 // way we can use RVV instructions to splat. 1896 assert((ViaIntVT.bitsLE(XLenVT) || 1897 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1898 "Unexpected bitcast sequence"); 1899 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1900 SDValue ViaVL = 1901 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1902 MVT ViaContainerVT = 1903 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1904 SDValue Splat = 1905 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1906 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1907 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1908 return DAG.getBitcast(VT, Splat); 1909 } 1910 } 1911 1912 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1913 // which constitute a large proportion of the elements. In such cases we can 1914 // splat a vector with the dominant element and make up the shortfall with 1915 // INSERT_VECTOR_ELTs. 1916 // Note that this includes vectors of 2 elements by association. The 1917 // upper-most element is the "dominant" one, allowing us to use a splat to 1918 // "insert" the upper element, and an insert of the lower element at position 1919 // 0, which improves codegen. 1920 SDValue DominantValue; 1921 unsigned MostCommonCount = 0; 1922 DenseMap<SDValue, unsigned> ValueCounts; 1923 unsigned NumUndefElts = 1924 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1925 1926 // Track the number of scalar loads we know we'd be inserting, estimated as 1927 // any non-zero floating-point constant. Other kinds of element are either 1928 // already in registers or are materialized on demand. The threshold at which 1929 // a vector load is more desirable than several scalar materializion and 1930 // vector-insertion instructions is not known. 1931 unsigned NumScalarLoads = 0; 1932 1933 for (SDValue V : Op->op_values()) { 1934 if (V.isUndef()) 1935 continue; 1936 1937 ValueCounts.insert(std::make_pair(V, 0)); 1938 unsigned &Count = ValueCounts[V]; 1939 1940 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1941 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1942 1943 // Is this value dominant? In case of a tie, prefer the highest element as 1944 // it's cheaper to insert near the beginning of a vector than it is at the 1945 // end. 1946 if (++Count >= MostCommonCount) { 1947 DominantValue = V; 1948 MostCommonCount = Count; 1949 } 1950 } 1951 1952 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1953 unsigned NumDefElts = NumElts - NumUndefElts; 1954 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1955 1956 // Don't perform this optimization when optimizing for size, since 1957 // materializing elements and inserting them tends to cause code bloat. 1958 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1959 ((MostCommonCount > DominantValueCountThreshold) || 1960 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1961 // Start by splatting the most common element. 1962 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1963 1964 DenseSet<SDValue> Processed{DominantValue}; 1965 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1966 for (const auto &OpIdx : enumerate(Op->ops())) { 1967 const SDValue &V = OpIdx.value(); 1968 if (V.isUndef() || !Processed.insert(V).second) 1969 continue; 1970 if (ValueCounts[V] == 1) { 1971 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1972 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1973 } else { 1974 // Blend in all instances of this value using a VSELECT, using a 1975 // mask where each bit signals whether that element is the one 1976 // we're after. 1977 SmallVector<SDValue> Ops; 1978 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1979 return DAG.getConstant(V == V1, DL, XLenVT); 1980 }); 1981 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1982 DAG.getBuildVector(SelMaskTy, DL, Ops), 1983 DAG.getSplatBuildVector(VT, DL, V), Vec); 1984 } 1985 } 1986 1987 return Vec; 1988 } 1989 1990 return SDValue(); 1991 } 1992 1993 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1994 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1995 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1996 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1997 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1998 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1999 // node in order to try and match RVV vector/scalar instructions. 2000 if ((LoC >> 31) == HiC) 2001 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2002 } 2003 2004 // Fall back to a stack store and stride x0 vector load. 2005 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2006 } 2007 2008 // Called by type legalization to handle splat of i64 on RV32. 2009 // FIXME: We can optimize this when the type has sign or zero bits in one 2010 // of the halves. 2011 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2012 SDValue VL, SelectionDAG &DAG) { 2013 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2014 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2015 DAG.getConstant(0, DL, MVT::i32)); 2016 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2017 DAG.getConstant(1, DL, MVT::i32)); 2018 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2019 } 2020 2021 // This function lowers a splat of a scalar operand Splat with the vector 2022 // length VL. It ensures the final sequence is type legal, which is useful when 2023 // lowering a splat after type legalization. 2024 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2025 SelectionDAG &DAG, 2026 const RISCVSubtarget &Subtarget) { 2027 if (VT.isFloatingPoint()) 2028 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2029 2030 MVT XLenVT = Subtarget.getXLenVT(); 2031 2032 // Simplest case is that the operand needs to be promoted to XLenVT. 2033 if (Scalar.getValueType().bitsLE(XLenVT)) { 2034 // If the operand is a constant, sign extend to increase our chances 2035 // of being able to use a .vi instruction. ANY_EXTEND would become a 2036 // a zero extend and the simm5 check in isel would fail. 2037 // FIXME: Should we ignore the upper bits in isel instead? 2038 unsigned ExtOpc = 2039 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2040 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2041 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2042 } 2043 2044 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2045 "Unexpected scalar for splat lowering!"); 2046 2047 // Otherwise use the more complicated splatting algorithm. 2048 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2049 } 2050 2051 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2052 const RISCVSubtarget &Subtarget) { 2053 SDValue V1 = Op.getOperand(0); 2054 SDValue V2 = Op.getOperand(1); 2055 SDLoc DL(Op); 2056 MVT XLenVT = Subtarget.getXLenVT(); 2057 MVT VT = Op.getSimpleValueType(); 2058 unsigned NumElts = VT.getVectorNumElements(); 2059 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2060 2061 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2062 2063 SDValue TrueMask, VL; 2064 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2065 2066 if (SVN->isSplat()) { 2067 const int Lane = SVN->getSplatIndex(); 2068 if (Lane >= 0) { 2069 MVT SVT = VT.getVectorElementType(); 2070 2071 // Turn splatted vector load into a strided load with an X0 stride. 2072 SDValue V = V1; 2073 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2074 // with undef. 2075 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2076 int Offset = Lane; 2077 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2078 int OpElements = 2079 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2080 V = V.getOperand(Offset / OpElements); 2081 Offset %= OpElements; 2082 } 2083 2084 // We need to ensure the load isn't atomic or volatile. 2085 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2086 auto *Ld = cast<LoadSDNode>(V); 2087 Offset *= SVT.getStoreSize(); 2088 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2089 TypeSize::Fixed(Offset), DL); 2090 2091 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2092 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2093 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2094 SDValue IntID = 2095 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2096 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2097 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2098 SDValue NewLoad = DAG.getMemIntrinsicNode( 2099 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2100 DAG.getMachineFunction().getMachineMemOperand( 2101 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2102 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2103 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2104 } 2105 2106 // Otherwise use a scalar load and splat. This will give the best 2107 // opportunity to fold a splat into the operation. ISel can turn it into 2108 // the x0 strided load if we aren't able to fold away the select. 2109 if (SVT.isFloatingPoint()) 2110 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2111 Ld->getPointerInfo().getWithOffset(Offset), 2112 Ld->getOriginalAlign(), 2113 Ld->getMemOperand()->getFlags()); 2114 else 2115 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2116 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2117 Ld->getOriginalAlign(), 2118 Ld->getMemOperand()->getFlags()); 2119 DAG.makeEquivalentMemoryOrdering(Ld, V); 2120 2121 unsigned Opc = 2122 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2123 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2124 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2125 } 2126 2127 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2128 assert(Lane < (int)NumElts && "Unexpected lane!"); 2129 SDValue Gather = 2130 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2131 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2132 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2133 } 2134 } 2135 2136 // Detect shuffles which can be re-expressed as vector selects; these are 2137 // shuffles in which each element in the destination is taken from an element 2138 // at the corresponding index in either source vectors. 2139 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2140 int MaskIndex = MaskIdx.value(); 2141 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2142 }); 2143 2144 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2145 2146 SmallVector<SDValue> MaskVals; 2147 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2148 // merged with a second vrgather. 2149 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2150 2151 // By default we preserve the original operand order, and use a mask to 2152 // select LHS as true and RHS as false. However, since RVV vector selects may 2153 // feature splats but only on the LHS, we may choose to invert our mask and 2154 // instead select between RHS and LHS. 2155 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2156 bool InvertMask = IsSelect == SwapOps; 2157 2158 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2159 // half. 2160 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2161 2162 // Now construct the mask that will be used by the vselect or blended 2163 // vrgather operation. For vrgathers, construct the appropriate indices into 2164 // each vector. 2165 for (int MaskIndex : SVN->getMask()) { 2166 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2167 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2168 if (!IsSelect) { 2169 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2170 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2171 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2172 : DAG.getUNDEF(XLenVT)); 2173 GatherIndicesRHS.push_back( 2174 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2175 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2176 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2177 ++LHSIndexCounts[MaskIndex]; 2178 if (!IsLHSOrUndefIndex) 2179 ++RHSIndexCounts[MaskIndex - NumElts]; 2180 } 2181 } 2182 2183 if (SwapOps) { 2184 std::swap(V1, V2); 2185 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2186 } 2187 2188 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2189 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2190 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2191 2192 if (IsSelect) 2193 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2194 2195 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2196 // On such a large vector we're unable to use i8 as the index type. 2197 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2198 // may involve vector splitting if we're already at LMUL=8, or our 2199 // user-supplied maximum fixed-length LMUL. 2200 return SDValue(); 2201 } 2202 2203 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2204 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2205 MVT IndexVT = VT.changeTypeToInteger(); 2206 // Since we can't introduce illegal index types at this stage, use i16 and 2207 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2208 // than XLenVT. 2209 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2210 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2211 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2212 } 2213 2214 MVT IndexContainerVT = 2215 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2216 2217 SDValue Gather; 2218 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2219 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2220 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2221 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2222 } else { 2223 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2224 // If only one index is used, we can use a "splat" vrgather. 2225 // TODO: We can splat the most-common index and fix-up any stragglers, if 2226 // that's beneficial. 2227 if (LHSIndexCounts.size() == 1) { 2228 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2229 Gather = 2230 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2231 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2232 } else { 2233 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2234 LHSIndices = 2235 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2236 2237 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2238 TrueMask, VL); 2239 } 2240 } 2241 2242 // If a second vector operand is used by this shuffle, blend it in with an 2243 // additional vrgather. 2244 if (!V2.isUndef()) { 2245 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2246 // If only one index is used, we can use a "splat" vrgather. 2247 // TODO: We can splat the most-common index and fix-up any stragglers, if 2248 // that's beneficial. 2249 if (RHSIndexCounts.size() == 1) { 2250 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2251 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2252 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2253 } else { 2254 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2255 RHSIndices = 2256 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2257 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2258 VL); 2259 } 2260 2261 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2262 SelectMask = 2263 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2264 2265 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2266 Gather, VL); 2267 } 2268 2269 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2270 } 2271 2272 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2273 SDLoc DL, SelectionDAG &DAG, 2274 const RISCVSubtarget &Subtarget) { 2275 if (VT.isScalableVector()) 2276 return DAG.getFPExtendOrRound(Op, DL, VT); 2277 assert(VT.isFixedLengthVector() && 2278 "Unexpected value type for RVV FP extend/round lowering"); 2279 SDValue Mask, VL; 2280 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2281 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2282 ? RISCVISD::FP_EXTEND_VL 2283 : RISCVISD::FP_ROUND_VL; 2284 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2285 } 2286 2287 // While RVV has alignment restrictions, we should always be able to load as a 2288 // legal equivalently-sized byte-typed vector instead. This method is 2289 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2290 // the load is already correctly-aligned, it returns SDValue(). 2291 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2292 SelectionDAG &DAG) const { 2293 auto *Load = cast<LoadSDNode>(Op); 2294 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2295 2296 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2297 Load->getMemoryVT(), 2298 *Load->getMemOperand())) 2299 return SDValue(); 2300 2301 SDLoc DL(Op); 2302 MVT VT = Op.getSimpleValueType(); 2303 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2304 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2305 "Unexpected unaligned RVV load type"); 2306 MVT NewVT = 2307 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2308 assert(NewVT.isValid() && 2309 "Expecting equally-sized RVV vector types to be legal"); 2310 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2311 Load->getPointerInfo(), Load->getOriginalAlign(), 2312 Load->getMemOperand()->getFlags()); 2313 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2314 } 2315 2316 // While RVV has alignment restrictions, we should always be able to store as a 2317 // legal equivalently-sized byte-typed vector instead. This method is 2318 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2319 // returns SDValue() if the store is already correctly aligned. 2320 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2321 SelectionDAG &DAG) const { 2322 auto *Store = cast<StoreSDNode>(Op); 2323 assert(Store && Store->getValue().getValueType().isVector() && 2324 "Expected vector store"); 2325 2326 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2327 Store->getMemoryVT(), 2328 *Store->getMemOperand())) 2329 return SDValue(); 2330 2331 SDLoc DL(Op); 2332 SDValue StoredVal = Store->getValue(); 2333 MVT VT = StoredVal.getSimpleValueType(); 2334 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2335 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2336 "Unexpected unaligned RVV store type"); 2337 MVT NewVT = 2338 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2339 assert(NewVT.isValid() && 2340 "Expecting equally-sized RVV vector types to be legal"); 2341 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2342 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2343 Store->getPointerInfo(), Store->getOriginalAlign(), 2344 Store->getMemOperand()->getFlags()); 2345 } 2346 2347 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2348 SelectionDAG &DAG) const { 2349 switch (Op.getOpcode()) { 2350 default: 2351 report_fatal_error("unimplemented operand"); 2352 case ISD::GlobalAddress: 2353 return lowerGlobalAddress(Op, DAG); 2354 case ISD::BlockAddress: 2355 return lowerBlockAddress(Op, DAG); 2356 case ISD::ConstantPool: 2357 return lowerConstantPool(Op, DAG); 2358 case ISD::JumpTable: 2359 return lowerJumpTable(Op, DAG); 2360 case ISD::GlobalTLSAddress: 2361 return lowerGlobalTLSAddress(Op, DAG); 2362 case ISD::SELECT: 2363 return lowerSELECT(Op, DAG); 2364 case ISD::BRCOND: 2365 return lowerBRCOND(Op, DAG); 2366 case ISD::VASTART: 2367 return lowerVASTART(Op, DAG); 2368 case ISD::FRAMEADDR: 2369 return lowerFRAMEADDR(Op, DAG); 2370 case ISD::RETURNADDR: 2371 return lowerRETURNADDR(Op, DAG); 2372 case ISD::SHL_PARTS: 2373 return lowerShiftLeftParts(Op, DAG); 2374 case ISD::SRA_PARTS: 2375 return lowerShiftRightParts(Op, DAG, true); 2376 case ISD::SRL_PARTS: 2377 return lowerShiftRightParts(Op, DAG, false); 2378 case ISD::BITCAST: { 2379 SDLoc DL(Op); 2380 EVT VT = Op.getValueType(); 2381 SDValue Op0 = Op.getOperand(0); 2382 EVT Op0VT = Op0.getValueType(); 2383 MVT XLenVT = Subtarget.getXLenVT(); 2384 if (VT.isFixedLengthVector()) { 2385 // We can handle fixed length vector bitcasts with a simple replacement 2386 // in isel. 2387 if (Op0VT.isFixedLengthVector()) 2388 return Op; 2389 // When bitcasting from scalar to fixed-length vector, insert the scalar 2390 // into a one-element vector of the result type, and perform a vector 2391 // bitcast. 2392 if (!Op0VT.isVector()) { 2393 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2394 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2395 DAG.getUNDEF(BVT), Op0, 2396 DAG.getConstant(0, DL, XLenVT))); 2397 } 2398 return SDValue(); 2399 } 2400 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2401 // thus: bitcast the vector to a one-element vector type whose element type 2402 // is the same as the result type, and extract the first element. 2403 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2404 LLVMContext &Context = *DAG.getContext(); 2405 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2406 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2407 DAG.getConstant(0, DL, XLenVT)); 2408 } 2409 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2410 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2411 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2412 return FPConv; 2413 } 2414 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2415 Subtarget.hasStdExtF()) { 2416 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2417 SDValue FPConv = 2418 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2419 return FPConv; 2420 } 2421 return SDValue(); 2422 } 2423 case ISD::INTRINSIC_WO_CHAIN: 2424 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2425 case ISD::INTRINSIC_W_CHAIN: 2426 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2427 case ISD::INTRINSIC_VOID: 2428 return LowerINTRINSIC_VOID(Op, DAG); 2429 case ISD::BSWAP: 2430 case ISD::BITREVERSE: { 2431 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2432 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2433 MVT VT = Op.getSimpleValueType(); 2434 SDLoc DL(Op); 2435 // Start with the maximum immediate value which is the bitwidth - 1. 2436 unsigned Imm = VT.getSizeInBits() - 1; 2437 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2438 if (Op.getOpcode() == ISD::BSWAP) 2439 Imm &= ~0x7U; 2440 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2441 DAG.getConstant(Imm, DL, VT)); 2442 } 2443 case ISD::FSHL: 2444 case ISD::FSHR: { 2445 MVT VT = Op.getSimpleValueType(); 2446 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2447 SDLoc DL(Op); 2448 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2449 return Op; 2450 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2451 // use log(XLen) bits. Mask the shift amount accordingly. 2452 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2453 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2454 DAG.getConstant(ShAmtWidth, DL, VT)); 2455 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2456 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2457 } 2458 case ISD::TRUNCATE: { 2459 SDLoc DL(Op); 2460 MVT VT = Op.getSimpleValueType(); 2461 // Only custom-lower vector truncates 2462 if (!VT.isVector()) 2463 return Op; 2464 2465 // Truncates to mask types are handled differently 2466 if (VT.getVectorElementType() == MVT::i1) 2467 return lowerVectorMaskTrunc(Op, DAG); 2468 2469 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2470 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2471 // truncate by one power of two at a time. 2472 MVT DstEltVT = VT.getVectorElementType(); 2473 2474 SDValue Src = Op.getOperand(0); 2475 MVT SrcVT = Src.getSimpleValueType(); 2476 MVT SrcEltVT = SrcVT.getVectorElementType(); 2477 2478 assert(DstEltVT.bitsLT(SrcEltVT) && 2479 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2480 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2481 "Unexpected vector truncate lowering"); 2482 2483 MVT ContainerVT = SrcVT; 2484 if (SrcVT.isFixedLengthVector()) { 2485 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2486 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2487 } 2488 2489 SDValue Result = Src; 2490 SDValue Mask, VL; 2491 std::tie(Mask, VL) = 2492 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2493 LLVMContext &Context = *DAG.getContext(); 2494 const ElementCount Count = ContainerVT.getVectorElementCount(); 2495 do { 2496 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2497 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2498 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2499 Mask, VL); 2500 } while (SrcEltVT != DstEltVT); 2501 2502 if (SrcVT.isFixedLengthVector()) 2503 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2504 2505 return Result; 2506 } 2507 case ISD::ANY_EXTEND: 2508 case ISD::ZERO_EXTEND: 2509 if (Op.getOperand(0).getValueType().isVector() && 2510 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2511 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2512 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2513 case ISD::SIGN_EXTEND: 2514 if (Op.getOperand(0).getValueType().isVector() && 2515 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2516 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2517 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2518 case ISD::SPLAT_VECTOR_PARTS: 2519 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2520 case ISD::INSERT_VECTOR_ELT: 2521 return lowerINSERT_VECTOR_ELT(Op, DAG); 2522 case ISD::EXTRACT_VECTOR_ELT: 2523 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2524 case ISD::VSCALE: { 2525 MVT VT = Op.getSimpleValueType(); 2526 SDLoc DL(Op); 2527 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2528 // We define our scalable vector types for lmul=1 to use a 64 bit known 2529 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2530 // vscale as VLENB / 8. 2531 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2532 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2533 // We assume VLENB is a multiple of 8. We manually choose the best shift 2534 // here because SimplifyDemandedBits isn't always able to simplify it. 2535 uint64_t Val = Op.getConstantOperandVal(0); 2536 if (isPowerOf2_64(Val)) { 2537 uint64_t Log2 = Log2_64(Val); 2538 if (Log2 < 3) 2539 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2540 DAG.getConstant(3 - Log2, DL, VT)); 2541 if (Log2 > 3) 2542 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2543 DAG.getConstant(Log2 - 3, DL, VT)); 2544 return VLENB; 2545 } 2546 // If the multiplier is a multiple of 8, scale it down to avoid needing 2547 // to shift the VLENB value. 2548 if ((Val % 8) == 0) 2549 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2550 DAG.getConstant(Val / 8, DL, VT)); 2551 } 2552 2553 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2554 DAG.getConstant(3, DL, VT)); 2555 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2556 } 2557 case ISD::FP_EXTEND: { 2558 // RVV can only do fp_extend to types double the size as the source. We 2559 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2560 // via f32. 2561 SDLoc DL(Op); 2562 MVT VT = Op.getSimpleValueType(); 2563 SDValue Src = Op.getOperand(0); 2564 MVT SrcVT = Src.getSimpleValueType(); 2565 2566 // Prepare any fixed-length vector operands. 2567 MVT ContainerVT = VT; 2568 if (SrcVT.isFixedLengthVector()) { 2569 ContainerVT = getContainerForFixedLengthVector(VT); 2570 MVT SrcContainerVT = 2571 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2572 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2573 } 2574 2575 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2576 SrcVT.getVectorElementType() != MVT::f16) { 2577 // For scalable vectors, we only need to close the gap between 2578 // vXf16->vXf64. 2579 if (!VT.isFixedLengthVector()) 2580 return Op; 2581 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2582 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2583 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2584 } 2585 2586 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2587 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2588 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2589 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2590 2591 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2592 DL, DAG, Subtarget); 2593 if (VT.isFixedLengthVector()) 2594 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2595 return Extend; 2596 } 2597 case ISD::FP_ROUND: { 2598 // RVV can only do fp_round to types half the size as the source. We 2599 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2600 // conversion instruction. 2601 SDLoc DL(Op); 2602 MVT VT = Op.getSimpleValueType(); 2603 SDValue Src = Op.getOperand(0); 2604 MVT SrcVT = Src.getSimpleValueType(); 2605 2606 // Prepare any fixed-length vector operands. 2607 MVT ContainerVT = VT; 2608 if (VT.isFixedLengthVector()) { 2609 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2610 ContainerVT = 2611 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2612 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2613 } 2614 2615 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2616 SrcVT.getVectorElementType() != MVT::f64) { 2617 // For scalable vectors, we only need to close the gap between 2618 // vXf64<->vXf16. 2619 if (!VT.isFixedLengthVector()) 2620 return Op; 2621 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2622 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2623 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2624 } 2625 2626 SDValue Mask, VL; 2627 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2628 2629 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2630 SDValue IntermediateRound = 2631 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2632 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2633 DL, DAG, Subtarget); 2634 2635 if (VT.isFixedLengthVector()) 2636 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2637 return Round; 2638 } 2639 case ISD::FP_TO_SINT: 2640 case ISD::FP_TO_UINT: 2641 case ISD::SINT_TO_FP: 2642 case ISD::UINT_TO_FP: { 2643 // RVV can only do fp<->int conversions to types half/double the size as 2644 // the source. We custom-lower any conversions that do two hops into 2645 // sequences. 2646 MVT VT = Op.getSimpleValueType(); 2647 if (!VT.isVector()) 2648 return Op; 2649 SDLoc DL(Op); 2650 SDValue Src = Op.getOperand(0); 2651 MVT EltVT = VT.getVectorElementType(); 2652 MVT SrcVT = Src.getSimpleValueType(); 2653 MVT SrcEltVT = SrcVT.getVectorElementType(); 2654 unsigned EltSize = EltVT.getSizeInBits(); 2655 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2656 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2657 "Unexpected vector element types"); 2658 2659 bool IsInt2FP = SrcEltVT.isInteger(); 2660 // Widening conversions 2661 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2662 if (IsInt2FP) { 2663 // Do a regular integer sign/zero extension then convert to float. 2664 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2665 VT.getVectorElementCount()); 2666 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2667 ? ISD::ZERO_EXTEND 2668 : ISD::SIGN_EXTEND; 2669 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2670 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2671 } 2672 // FP2Int 2673 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2674 // Do one doubling fp_extend then complete the operation by converting 2675 // to int. 2676 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2677 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2678 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2679 } 2680 2681 // Narrowing conversions 2682 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2683 if (IsInt2FP) { 2684 // One narrowing int_to_fp, then an fp_round. 2685 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2686 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2687 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2688 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2689 } 2690 // FP2Int 2691 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2692 // representable by the integer, the result is poison. 2693 MVT IVecVT = 2694 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2695 VT.getVectorElementCount()); 2696 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2697 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2698 } 2699 2700 // Scalable vectors can exit here. Patterns will handle equally-sized 2701 // conversions halving/doubling ones. 2702 if (!VT.isFixedLengthVector()) 2703 return Op; 2704 2705 // For fixed-length vectors we lower to a custom "VL" node. 2706 unsigned RVVOpc = 0; 2707 switch (Op.getOpcode()) { 2708 default: 2709 llvm_unreachable("Impossible opcode"); 2710 case ISD::FP_TO_SINT: 2711 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2712 break; 2713 case ISD::FP_TO_UINT: 2714 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2715 break; 2716 case ISD::SINT_TO_FP: 2717 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2718 break; 2719 case ISD::UINT_TO_FP: 2720 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2721 break; 2722 } 2723 2724 MVT ContainerVT, SrcContainerVT; 2725 // Derive the reference container type from the larger vector type. 2726 if (SrcEltSize > EltSize) { 2727 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2728 ContainerVT = 2729 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2730 } else { 2731 ContainerVT = getContainerForFixedLengthVector(VT); 2732 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2733 } 2734 2735 SDValue Mask, VL; 2736 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2737 2738 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2739 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2740 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2741 } 2742 case ISD::FP_TO_SINT_SAT: 2743 case ISD::FP_TO_UINT_SAT: 2744 return lowerFP_TO_INT_SAT(Op, DAG); 2745 case ISD::VECREDUCE_ADD: 2746 case ISD::VECREDUCE_UMAX: 2747 case ISD::VECREDUCE_SMAX: 2748 case ISD::VECREDUCE_UMIN: 2749 case ISD::VECREDUCE_SMIN: 2750 return lowerVECREDUCE(Op, DAG); 2751 case ISD::VECREDUCE_AND: 2752 case ISD::VECREDUCE_OR: 2753 case ISD::VECREDUCE_XOR: 2754 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2755 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2756 return lowerVECREDUCE(Op, DAG); 2757 case ISD::VECREDUCE_FADD: 2758 case ISD::VECREDUCE_SEQ_FADD: 2759 case ISD::VECREDUCE_FMIN: 2760 case ISD::VECREDUCE_FMAX: 2761 return lowerFPVECREDUCE(Op, DAG); 2762 case ISD::VP_REDUCE_ADD: 2763 case ISD::VP_REDUCE_UMAX: 2764 case ISD::VP_REDUCE_SMAX: 2765 case ISD::VP_REDUCE_UMIN: 2766 case ISD::VP_REDUCE_SMIN: 2767 case ISD::VP_REDUCE_FADD: 2768 case ISD::VP_REDUCE_SEQ_FADD: 2769 case ISD::VP_REDUCE_FMIN: 2770 case ISD::VP_REDUCE_FMAX: 2771 return lowerVPREDUCE(Op, DAG); 2772 case ISD::VP_REDUCE_AND: 2773 case ISD::VP_REDUCE_OR: 2774 case ISD::VP_REDUCE_XOR: 2775 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2776 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2777 return lowerVPREDUCE(Op, DAG); 2778 case ISD::INSERT_SUBVECTOR: 2779 return lowerINSERT_SUBVECTOR(Op, DAG); 2780 case ISD::EXTRACT_SUBVECTOR: 2781 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2782 case ISD::STEP_VECTOR: 2783 return lowerSTEP_VECTOR(Op, DAG); 2784 case ISD::VECTOR_REVERSE: 2785 return lowerVECTOR_REVERSE(Op, DAG); 2786 case ISD::BUILD_VECTOR: 2787 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2788 case ISD::SPLAT_VECTOR: 2789 if (Op.getValueType().getVectorElementType() == MVT::i1) 2790 return lowerVectorMaskSplat(Op, DAG); 2791 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2792 case ISD::VECTOR_SHUFFLE: 2793 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2794 case ISD::CONCAT_VECTORS: { 2795 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2796 // better than going through the stack, as the default expansion does. 2797 SDLoc DL(Op); 2798 MVT VT = Op.getSimpleValueType(); 2799 unsigned NumOpElts = 2800 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2801 SDValue Vec = DAG.getUNDEF(VT); 2802 for (const auto &OpIdx : enumerate(Op->ops())) 2803 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2804 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2805 return Vec; 2806 } 2807 case ISD::LOAD: 2808 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2809 return V; 2810 if (Op.getValueType().isFixedLengthVector()) 2811 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2812 return Op; 2813 case ISD::STORE: 2814 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2815 return V; 2816 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2817 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2818 return Op; 2819 case ISD::MLOAD: 2820 case ISD::VP_LOAD: 2821 return lowerMaskedLoad(Op, DAG); 2822 case ISD::MSTORE: 2823 case ISD::VP_STORE: 2824 return lowerMaskedStore(Op, DAG); 2825 case ISD::SETCC: 2826 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2827 case ISD::ADD: 2828 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2829 case ISD::SUB: 2830 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2831 case ISD::MUL: 2832 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2833 case ISD::MULHS: 2834 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2835 case ISD::MULHU: 2836 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2837 case ISD::AND: 2838 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2839 RISCVISD::AND_VL); 2840 case ISD::OR: 2841 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2842 RISCVISD::OR_VL); 2843 case ISD::XOR: 2844 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2845 RISCVISD::XOR_VL); 2846 case ISD::SDIV: 2847 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2848 case ISD::SREM: 2849 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2850 case ISD::UDIV: 2851 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2852 case ISD::UREM: 2853 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2854 case ISD::SHL: 2855 case ISD::SRA: 2856 case ISD::SRL: 2857 if (Op.getSimpleValueType().isFixedLengthVector()) 2858 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2859 // This can be called for an i32 shift amount that needs to be promoted. 2860 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2861 "Unexpected custom legalisation"); 2862 return SDValue(); 2863 case ISD::SADDSAT: 2864 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2865 case ISD::UADDSAT: 2866 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2867 case ISD::SSUBSAT: 2868 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2869 case ISD::USUBSAT: 2870 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2871 case ISD::FADD: 2872 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2873 case ISD::FSUB: 2874 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2875 case ISD::FMUL: 2876 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2877 case ISD::FDIV: 2878 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2879 case ISD::FNEG: 2880 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2881 case ISD::FABS: 2882 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2883 case ISD::FSQRT: 2884 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2885 case ISD::FMA: 2886 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2887 case ISD::SMIN: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2889 case ISD::SMAX: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2891 case ISD::UMIN: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2893 case ISD::UMAX: 2894 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2895 case ISD::FMINNUM: 2896 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2897 case ISD::FMAXNUM: 2898 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2899 case ISD::ABS: 2900 return lowerABS(Op, DAG); 2901 case ISD::VSELECT: 2902 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2903 case ISD::FCOPYSIGN: 2904 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2905 case ISD::MGATHER: 2906 case ISD::VP_GATHER: 2907 return lowerMaskedGather(Op, DAG); 2908 case ISD::MSCATTER: 2909 case ISD::VP_SCATTER: 2910 return lowerMaskedScatter(Op, DAG); 2911 case ISD::FLT_ROUNDS_: 2912 return lowerGET_ROUNDING(Op, DAG); 2913 case ISD::SET_ROUNDING: 2914 return lowerSET_ROUNDING(Op, DAG); 2915 case ISD::VP_ADD: 2916 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2917 case ISD::VP_SUB: 2918 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2919 case ISD::VP_MUL: 2920 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2921 case ISD::VP_SDIV: 2922 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2923 case ISD::VP_UDIV: 2924 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2925 case ISD::VP_SREM: 2926 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2927 case ISD::VP_UREM: 2928 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2929 case ISD::VP_AND: 2930 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2931 case ISD::VP_OR: 2932 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2933 case ISD::VP_XOR: 2934 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2935 case ISD::VP_ASHR: 2936 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2937 case ISD::VP_LSHR: 2938 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2939 case ISD::VP_SHL: 2940 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2941 case ISD::VP_FADD: 2942 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2943 case ISD::VP_FSUB: 2944 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2945 case ISD::VP_FMUL: 2946 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2947 case ISD::VP_FDIV: 2948 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2949 } 2950 } 2951 2952 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2953 SelectionDAG &DAG, unsigned Flags) { 2954 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2955 } 2956 2957 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2958 SelectionDAG &DAG, unsigned Flags) { 2959 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2960 Flags); 2961 } 2962 2963 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2964 SelectionDAG &DAG, unsigned Flags) { 2965 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2966 N->getOffset(), Flags); 2967 } 2968 2969 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2970 SelectionDAG &DAG, unsigned Flags) { 2971 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2972 } 2973 2974 template <class NodeTy> 2975 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2976 bool IsLocal) const { 2977 SDLoc DL(N); 2978 EVT Ty = getPointerTy(DAG.getDataLayout()); 2979 2980 if (isPositionIndependent()) { 2981 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2982 if (IsLocal) 2983 // Use PC-relative addressing to access the symbol. This generates the 2984 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2985 // %pcrel_lo(auipc)). 2986 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2987 2988 // Use PC-relative addressing to access the GOT for this symbol, then load 2989 // the address from the GOT. This generates the pattern (PseudoLA sym), 2990 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2991 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2992 } 2993 2994 switch (getTargetMachine().getCodeModel()) { 2995 default: 2996 report_fatal_error("Unsupported code model for lowering"); 2997 case CodeModel::Small: { 2998 // Generate a sequence for accessing addresses within the first 2 GiB of 2999 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3000 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3001 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3002 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3003 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3004 } 3005 case CodeModel::Medium: { 3006 // Generate a sequence for accessing addresses within any 2GiB range within 3007 // the address space. This generates the pattern (PseudoLLA sym), which 3008 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3009 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3010 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3011 } 3012 } 3013 } 3014 3015 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3016 SelectionDAG &DAG) const { 3017 SDLoc DL(Op); 3018 EVT Ty = Op.getValueType(); 3019 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3020 int64_t Offset = N->getOffset(); 3021 MVT XLenVT = Subtarget.getXLenVT(); 3022 3023 const GlobalValue *GV = N->getGlobal(); 3024 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3025 SDValue Addr = getAddr(N, DAG, IsLocal); 3026 3027 // In order to maximise the opportunity for common subexpression elimination, 3028 // emit a separate ADD node for the global address offset instead of folding 3029 // it in the global address node. Later peephole optimisations may choose to 3030 // fold it back in when profitable. 3031 if (Offset != 0) 3032 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3033 DAG.getConstant(Offset, DL, XLenVT)); 3034 return Addr; 3035 } 3036 3037 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3038 SelectionDAG &DAG) const { 3039 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3040 3041 return getAddr(N, DAG); 3042 } 3043 3044 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3045 SelectionDAG &DAG) const { 3046 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3047 3048 return getAddr(N, DAG); 3049 } 3050 3051 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3052 SelectionDAG &DAG) const { 3053 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3054 3055 return getAddr(N, DAG); 3056 } 3057 3058 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3059 SelectionDAG &DAG, 3060 bool UseGOT) const { 3061 SDLoc DL(N); 3062 EVT Ty = getPointerTy(DAG.getDataLayout()); 3063 const GlobalValue *GV = N->getGlobal(); 3064 MVT XLenVT = Subtarget.getXLenVT(); 3065 3066 if (UseGOT) { 3067 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3068 // load the address from the GOT and add the thread pointer. This generates 3069 // the pattern (PseudoLA_TLS_IE sym), which expands to 3070 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3071 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3072 SDValue Load = 3073 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3074 3075 // Add the thread pointer. 3076 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3077 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3078 } 3079 3080 // Generate a sequence for accessing the address relative to the thread 3081 // pointer, with the appropriate adjustment for the thread pointer offset. 3082 // This generates the pattern 3083 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3084 SDValue AddrHi = 3085 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3086 SDValue AddrAdd = 3087 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3088 SDValue AddrLo = 3089 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3090 3091 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3092 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3093 SDValue MNAdd = SDValue( 3094 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3095 0); 3096 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3097 } 3098 3099 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3100 SelectionDAG &DAG) const { 3101 SDLoc DL(N); 3102 EVT Ty = getPointerTy(DAG.getDataLayout()); 3103 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3104 const GlobalValue *GV = N->getGlobal(); 3105 3106 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3107 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3108 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3109 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3110 SDValue Load = 3111 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3112 3113 // Prepare argument list to generate call. 3114 ArgListTy Args; 3115 ArgListEntry Entry; 3116 Entry.Node = Load; 3117 Entry.Ty = CallTy; 3118 Args.push_back(Entry); 3119 3120 // Setup call to __tls_get_addr. 3121 TargetLowering::CallLoweringInfo CLI(DAG); 3122 CLI.setDebugLoc(DL) 3123 .setChain(DAG.getEntryNode()) 3124 .setLibCallee(CallingConv::C, CallTy, 3125 DAG.getExternalSymbol("__tls_get_addr", Ty), 3126 std::move(Args)); 3127 3128 return LowerCallTo(CLI).first; 3129 } 3130 3131 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3132 SelectionDAG &DAG) const { 3133 SDLoc DL(Op); 3134 EVT Ty = Op.getValueType(); 3135 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3136 int64_t Offset = N->getOffset(); 3137 MVT XLenVT = Subtarget.getXLenVT(); 3138 3139 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3140 3141 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3142 CallingConv::GHC) 3143 report_fatal_error("In GHC calling convention TLS is not supported"); 3144 3145 SDValue Addr; 3146 switch (Model) { 3147 case TLSModel::LocalExec: 3148 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3149 break; 3150 case TLSModel::InitialExec: 3151 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3152 break; 3153 case TLSModel::LocalDynamic: 3154 case TLSModel::GeneralDynamic: 3155 Addr = getDynamicTLSAddr(N, DAG); 3156 break; 3157 } 3158 3159 // In order to maximise the opportunity for common subexpression elimination, 3160 // emit a separate ADD node for the global address offset instead of folding 3161 // it in the global address node. Later peephole optimisations may choose to 3162 // fold it back in when profitable. 3163 if (Offset != 0) 3164 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3165 DAG.getConstant(Offset, DL, XLenVT)); 3166 return Addr; 3167 } 3168 3169 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3170 SDValue CondV = Op.getOperand(0); 3171 SDValue TrueV = Op.getOperand(1); 3172 SDValue FalseV = Op.getOperand(2); 3173 SDLoc DL(Op); 3174 MVT VT = Op.getSimpleValueType(); 3175 MVT XLenVT = Subtarget.getXLenVT(); 3176 3177 // Lower vector SELECTs to VSELECTs by splatting the condition. 3178 if (VT.isVector()) { 3179 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3180 SDValue CondSplat = VT.isScalableVector() 3181 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3182 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3183 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3184 } 3185 3186 // If the result type is XLenVT and CondV is the output of a SETCC node 3187 // which also operated on XLenVT inputs, then merge the SETCC node into the 3188 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3189 // compare+branch instructions. i.e.: 3190 // (select (setcc lhs, rhs, cc), truev, falsev) 3191 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3192 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3193 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3194 SDValue LHS = CondV.getOperand(0); 3195 SDValue RHS = CondV.getOperand(1); 3196 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3197 ISD::CondCode CCVal = CC->get(); 3198 3199 // Special case for a select of 2 constants that have a diffence of 1. 3200 // Normally this is done by DAGCombine, but if the select is introduced by 3201 // type legalization or op legalization, we miss it. Restricting to SETLT 3202 // case for now because that is what signed saturating add/sub need. 3203 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3204 // but we would probably want to swap the true/false values if the condition 3205 // is SETGE/SETLE to avoid an XORI. 3206 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3207 CCVal == ISD::SETLT) { 3208 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3209 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3210 if (TrueVal - 1 == FalseVal) 3211 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3212 if (TrueVal + 1 == FalseVal) 3213 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3214 } 3215 3216 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3217 3218 SDValue TargetCC = DAG.getCondCode(CCVal); 3219 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3220 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3221 } 3222 3223 // Otherwise: 3224 // (select condv, truev, falsev) 3225 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3226 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3227 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3228 3229 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3230 3231 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3232 } 3233 3234 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3235 SDValue CondV = Op.getOperand(1); 3236 SDLoc DL(Op); 3237 MVT XLenVT = Subtarget.getXLenVT(); 3238 3239 if (CondV.getOpcode() == ISD::SETCC && 3240 CondV.getOperand(0).getValueType() == XLenVT) { 3241 SDValue LHS = CondV.getOperand(0); 3242 SDValue RHS = CondV.getOperand(1); 3243 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3244 3245 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3246 3247 SDValue TargetCC = DAG.getCondCode(CCVal); 3248 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3249 LHS, RHS, TargetCC, Op.getOperand(2)); 3250 } 3251 3252 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3253 CondV, DAG.getConstant(0, DL, XLenVT), 3254 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3255 } 3256 3257 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3258 MachineFunction &MF = DAG.getMachineFunction(); 3259 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3260 3261 SDLoc DL(Op); 3262 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3263 getPointerTy(MF.getDataLayout())); 3264 3265 // vastart just stores the address of the VarArgsFrameIndex slot into the 3266 // memory location argument. 3267 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3268 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3269 MachinePointerInfo(SV)); 3270 } 3271 3272 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3273 SelectionDAG &DAG) const { 3274 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3275 MachineFunction &MF = DAG.getMachineFunction(); 3276 MachineFrameInfo &MFI = MF.getFrameInfo(); 3277 MFI.setFrameAddressIsTaken(true); 3278 Register FrameReg = RI.getFrameRegister(MF); 3279 int XLenInBytes = Subtarget.getXLen() / 8; 3280 3281 EVT VT = Op.getValueType(); 3282 SDLoc DL(Op); 3283 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3284 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3285 while (Depth--) { 3286 int Offset = -(XLenInBytes * 2); 3287 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3288 DAG.getIntPtrConstant(Offset, DL)); 3289 FrameAddr = 3290 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3291 } 3292 return FrameAddr; 3293 } 3294 3295 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3296 SelectionDAG &DAG) const { 3297 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3298 MachineFunction &MF = DAG.getMachineFunction(); 3299 MachineFrameInfo &MFI = MF.getFrameInfo(); 3300 MFI.setReturnAddressIsTaken(true); 3301 MVT XLenVT = Subtarget.getXLenVT(); 3302 int XLenInBytes = Subtarget.getXLen() / 8; 3303 3304 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3305 return SDValue(); 3306 3307 EVT VT = Op.getValueType(); 3308 SDLoc DL(Op); 3309 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3310 if (Depth) { 3311 int Off = -XLenInBytes; 3312 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3313 SDValue Offset = DAG.getConstant(Off, DL, VT); 3314 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3315 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3316 MachinePointerInfo()); 3317 } 3318 3319 // Return the value of the return address register, marking it an implicit 3320 // live-in. 3321 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3322 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3323 } 3324 3325 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3326 SelectionDAG &DAG) const { 3327 SDLoc DL(Op); 3328 SDValue Lo = Op.getOperand(0); 3329 SDValue Hi = Op.getOperand(1); 3330 SDValue Shamt = Op.getOperand(2); 3331 EVT VT = Lo.getValueType(); 3332 3333 // if Shamt-XLEN < 0: // Shamt < XLEN 3334 // Lo = Lo << Shamt 3335 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3336 // else: 3337 // Lo = 0 3338 // Hi = Lo << (Shamt-XLEN) 3339 3340 SDValue Zero = DAG.getConstant(0, DL, VT); 3341 SDValue One = DAG.getConstant(1, DL, VT); 3342 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3343 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3344 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3345 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3346 3347 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3348 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3349 SDValue ShiftRightLo = 3350 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3351 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3352 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3353 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3354 3355 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3356 3357 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3358 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3359 3360 SDValue Parts[2] = {Lo, Hi}; 3361 return DAG.getMergeValues(Parts, DL); 3362 } 3363 3364 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3365 bool IsSRA) const { 3366 SDLoc DL(Op); 3367 SDValue Lo = Op.getOperand(0); 3368 SDValue Hi = Op.getOperand(1); 3369 SDValue Shamt = Op.getOperand(2); 3370 EVT VT = Lo.getValueType(); 3371 3372 // SRA expansion: 3373 // if Shamt-XLEN < 0: // Shamt < XLEN 3374 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3375 // Hi = Hi >>s Shamt 3376 // else: 3377 // Lo = Hi >>s (Shamt-XLEN); 3378 // Hi = Hi >>s (XLEN-1) 3379 // 3380 // SRL expansion: 3381 // if Shamt-XLEN < 0: // Shamt < XLEN 3382 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3383 // Hi = Hi >>u Shamt 3384 // else: 3385 // Lo = Hi >>u (Shamt-XLEN); 3386 // Hi = 0; 3387 3388 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3389 3390 SDValue Zero = DAG.getConstant(0, DL, VT); 3391 SDValue One = DAG.getConstant(1, DL, VT); 3392 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3393 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3394 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3395 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3396 3397 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3398 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3399 SDValue ShiftLeftHi = 3400 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3401 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3402 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3403 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3404 SDValue HiFalse = 3405 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3406 3407 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3408 3409 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3410 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3411 3412 SDValue Parts[2] = {Lo, Hi}; 3413 return DAG.getMergeValues(Parts, DL); 3414 } 3415 3416 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3417 // legal equivalently-sized i8 type, so we can use that as a go-between. 3418 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3419 SelectionDAG &DAG) const { 3420 SDLoc DL(Op); 3421 MVT VT = Op.getSimpleValueType(); 3422 SDValue SplatVal = Op.getOperand(0); 3423 // All-zeros or all-ones splats are handled specially. 3424 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3425 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3426 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3427 } 3428 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3429 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3430 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3431 } 3432 MVT XLenVT = Subtarget.getXLenVT(); 3433 assert(SplatVal.getValueType() == XLenVT && 3434 "Unexpected type for i1 splat value"); 3435 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3436 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3437 DAG.getConstant(1, DL, XLenVT)); 3438 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3439 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3440 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3441 } 3442 3443 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3444 // illegal (currently only vXi64 RV32). 3445 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3446 // them to SPLAT_VECTOR_I64 3447 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3448 SelectionDAG &DAG) const { 3449 SDLoc DL(Op); 3450 MVT VecVT = Op.getSimpleValueType(); 3451 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3452 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3453 3454 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3455 SDValue Lo = Op.getOperand(0); 3456 SDValue Hi = Op.getOperand(1); 3457 3458 if (VecVT.isFixedLengthVector()) { 3459 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3460 SDLoc DL(Op); 3461 SDValue Mask, VL; 3462 std::tie(Mask, VL) = 3463 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3464 3465 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3466 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3467 } 3468 3469 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3470 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3471 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3472 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3473 // node in order to try and match RVV vector/scalar instructions. 3474 if ((LoC >> 31) == HiC) 3475 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3476 } 3477 3478 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3479 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3480 isa<ConstantSDNode>(Hi.getOperand(1)) && 3481 Hi.getConstantOperandVal(1) == 31) 3482 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3483 3484 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3485 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3486 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3487 } 3488 3489 // Custom-lower extensions from mask vectors by using a vselect either with 1 3490 // for zero/any-extension or -1 for sign-extension: 3491 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3492 // Note that any-extension is lowered identically to zero-extension. 3493 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3494 int64_t ExtTrueVal) const { 3495 SDLoc DL(Op); 3496 MVT VecVT = Op.getSimpleValueType(); 3497 SDValue Src = Op.getOperand(0); 3498 // Only custom-lower extensions from mask types 3499 assert(Src.getValueType().isVector() && 3500 Src.getValueType().getVectorElementType() == MVT::i1); 3501 3502 MVT XLenVT = Subtarget.getXLenVT(); 3503 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3504 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3505 3506 if (VecVT.isScalableVector()) { 3507 // Be careful not to introduce illegal scalar types at this stage, and be 3508 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3509 // illegal and must be expanded. Since we know that the constants are 3510 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3511 bool IsRV32E64 = 3512 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3513 3514 if (!IsRV32E64) { 3515 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3516 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3517 } else { 3518 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3519 SplatTrueVal = 3520 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3521 } 3522 3523 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3524 } 3525 3526 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3527 MVT I1ContainerVT = 3528 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3529 3530 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3531 3532 SDValue Mask, VL; 3533 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3534 3535 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3536 SplatTrueVal = 3537 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3538 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3539 SplatTrueVal, SplatZero, VL); 3540 3541 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3542 } 3543 3544 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3545 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3546 MVT ExtVT = Op.getSimpleValueType(); 3547 // Only custom-lower extensions from fixed-length vector types. 3548 if (!ExtVT.isFixedLengthVector()) 3549 return Op; 3550 MVT VT = Op.getOperand(0).getSimpleValueType(); 3551 // Grab the canonical container type for the extended type. Infer the smaller 3552 // type from that to ensure the same number of vector elements, as we know 3553 // the LMUL will be sufficient to hold the smaller type. 3554 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3555 // Get the extended container type manually to ensure the same number of 3556 // vector elements between source and dest. 3557 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3558 ContainerExtVT.getVectorElementCount()); 3559 3560 SDValue Op1 = 3561 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3562 3563 SDLoc DL(Op); 3564 SDValue Mask, VL; 3565 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3566 3567 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3568 3569 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3570 } 3571 3572 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3573 // setcc operation: 3574 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3575 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3576 SelectionDAG &DAG) const { 3577 SDLoc DL(Op); 3578 EVT MaskVT = Op.getValueType(); 3579 // Only expect to custom-lower truncations to mask types 3580 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3581 "Unexpected type for vector mask lowering"); 3582 SDValue Src = Op.getOperand(0); 3583 MVT VecVT = Src.getSimpleValueType(); 3584 3585 // If this is a fixed vector, we need to convert it to a scalable vector. 3586 MVT ContainerVT = VecVT; 3587 if (VecVT.isFixedLengthVector()) { 3588 ContainerVT = getContainerForFixedLengthVector(VecVT); 3589 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3590 } 3591 3592 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3593 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3594 3595 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3596 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3597 3598 if (VecVT.isScalableVector()) { 3599 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3600 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3601 } 3602 3603 SDValue Mask, VL; 3604 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3605 3606 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3607 SDValue Trunc = 3608 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3609 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3610 DAG.getCondCode(ISD::SETNE), Mask, VL); 3611 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3612 } 3613 3614 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3615 // first position of a vector, and that vector is slid up to the insert index. 3616 // By limiting the active vector length to index+1 and merging with the 3617 // original vector (with an undisturbed tail policy for elements >= VL), we 3618 // achieve the desired result of leaving all elements untouched except the one 3619 // at VL-1, which is replaced with the desired value. 3620 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3621 SelectionDAG &DAG) const { 3622 SDLoc DL(Op); 3623 MVT VecVT = Op.getSimpleValueType(); 3624 SDValue Vec = Op.getOperand(0); 3625 SDValue Val = Op.getOperand(1); 3626 SDValue Idx = Op.getOperand(2); 3627 3628 if (VecVT.getVectorElementType() == MVT::i1) { 3629 // FIXME: For now we just promote to an i8 vector and insert into that, 3630 // but this is probably not optimal. 3631 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3632 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3633 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3634 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3635 } 3636 3637 MVT ContainerVT = VecVT; 3638 // If the operand is a fixed-length vector, convert to a scalable one. 3639 if (VecVT.isFixedLengthVector()) { 3640 ContainerVT = getContainerForFixedLengthVector(VecVT); 3641 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3642 } 3643 3644 MVT XLenVT = Subtarget.getXLenVT(); 3645 3646 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3647 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3648 // Even i64-element vectors on RV32 can be lowered without scalar 3649 // legalization if the most-significant 32 bits of the value are not affected 3650 // by the sign-extension of the lower 32 bits. 3651 // TODO: We could also catch sign extensions of a 32-bit value. 3652 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3653 const auto *CVal = cast<ConstantSDNode>(Val); 3654 if (isInt<32>(CVal->getSExtValue())) { 3655 IsLegalInsert = true; 3656 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3657 } 3658 } 3659 3660 SDValue Mask, VL; 3661 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3662 3663 SDValue ValInVec; 3664 3665 if (IsLegalInsert) { 3666 unsigned Opc = 3667 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3668 if (isNullConstant(Idx)) { 3669 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3670 if (!VecVT.isFixedLengthVector()) 3671 return Vec; 3672 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3673 } 3674 ValInVec = 3675 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3676 } else { 3677 // On RV32, i64-element vectors must be specially handled to place the 3678 // value at element 0, by using two vslide1up instructions in sequence on 3679 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3680 // this. 3681 SDValue One = DAG.getConstant(1, DL, XLenVT); 3682 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3683 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3684 MVT I32ContainerVT = 3685 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3686 SDValue I32Mask = 3687 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3688 // Limit the active VL to two. 3689 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3690 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3691 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3692 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3693 InsertI64VL); 3694 // First slide in the hi value, then the lo in underneath it. 3695 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3696 ValHi, I32Mask, InsertI64VL); 3697 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3698 ValLo, I32Mask, InsertI64VL); 3699 // Bitcast back to the right container type. 3700 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3701 } 3702 3703 // Now that the value is in a vector, slide it into position. 3704 SDValue InsertVL = 3705 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3706 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3707 ValInVec, Idx, Mask, InsertVL); 3708 if (!VecVT.isFixedLengthVector()) 3709 return Slideup; 3710 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3711 } 3712 3713 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3714 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3715 // types this is done using VMV_X_S to allow us to glean information about the 3716 // sign bits of the result. 3717 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3718 SelectionDAG &DAG) const { 3719 SDLoc DL(Op); 3720 SDValue Idx = Op.getOperand(1); 3721 SDValue Vec = Op.getOperand(0); 3722 EVT EltVT = Op.getValueType(); 3723 MVT VecVT = Vec.getSimpleValueType(); 3724 MVT XLenVT = Subtarget.getXLenVT(); 3725 3726 if (VecVT.getVectorElementType() == MVT::i1) { 3727 // FIXME: For now we just promote to an i8 vector and extract from that, 3728 // but this is probably not optimal. 3729 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3730 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3731 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3732 } 3733 3734 // If this is a fixed vector, we need to convert it to a scalable vector. 3735 MVT ContainerVT = VecVT; 3736 if (VecVT.isFixedLengthVector()) { 3737 ContainerVT = getContainerForFixedLengthVector(VecVT); 3738 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3739 } 3740 3741 // If the index is 0, the vector is already in the right position. 3742 if (!isNullConstant(Idx)) { 3743 // Use a VL of 1 to avoid processing more elements than we need. 3744 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3745 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3746 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3747 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3748 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3749 } 3750 3751 if (!EltVT.isInteger()) { 3752 // Floating-point extracts are handled in TableGen. 3753 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3754 DAG.getConstant(0, DL, XLenVT)); 3755 } 3756 3757 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3758 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3759 } 3760 3761 // Some RVV intrinsics may claim that they want an integer operand to be 3762 // promoted or expanded. 3763 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3764 const RISCVSubtarget &Subtarget) { 3765 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3766 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3767 "Unexpected opcode"); 3768 3769 if (!Subtarget.hasStdExtV()) 3770 return SDValue(); 3771 3772 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3773 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3774 SDLoc DL(Op); 3775 3776 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3777 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3778 if (!II || !II->SplatOperand) 3779 return SDValue(); 3780 3781 unsigned SplatOp = II->SplatOperand + HasChain; 3782 assert(SplatOp < Op.getNumOperands()); 3783 3784 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3785 SDValue &ScalarOp = Operands[SplatOp]; 3786 MVT OpVT = ScalarOp.getSimpleValueType(); 3787 MVT XLenVT = Subtarget.getXLenVT(); 3788 3789 // If this isn't a scalar, or its type is XLenVT we're done. 3790 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3791 return SDValue(); 3792 3793 // Simplest case is that the operand needs to be promoted to XLenVT. 3794 if (OpVT.bitsLT(XLenVT)) { 3795 // If the operand is a constant, sign extend to increase our chances 3796 // of being able to use a .vi instruction. ANY_EXTEND would become a 3797 // a zero extend and the simm5 check in isel would fail. 3798 // FIXME: Should we ignore the upper bits in isel instead? 3799 unsigned ExtOpc = 3800 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3801 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3802 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3803 } 3804 3805 // Use the previous operand to get the vXi64 VT. The result might be a mask 3806 // VT for compares. Using the previous operand assumes that the previous 3807 // operand will never have a smaller element size than a scalar operand and 3808 // that a widening operation never uses SEW=64. 3809 // NOTE: If this fails the below assert, we can probably just find the 3810 // element count from any operand or result and use it to construct the VT. 3811 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3812 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3813 3814 // The more complex case is when the scalar is larger than XLenVT. 3815 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3816 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3817 3818 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3819 // on the instruction to sign-extend since SEW>XLEN. 3820 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3821 if (isInt<32>(CVal->getSExtValue())) { 3822 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3823 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3824 } 3825 } 3826 3827 // We need to convert the scalar to a splat vector. 3828 // FIXME: Can we implicitly truncate the scalar if it is known to 3829 // be sign extended? 3830 // VL should be the last operand. 3831 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3832 assert(VL.getValueType() == XLenVT); 3833 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3834 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3835 } 3836 3837 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3838 SelectionDAG &DAG) const { 3839 unsigned IntNo = Op.getConstantOperandVal(0); 3840 SDLoc DL(Op); 3841 MVT XLenVT = Subtarget.getXLenVT(); 3842 3843 switch (IntNo) { 3844 default: 3845 break; // Don't custom lower most intrinsics. 3846 case Intrinsic::thread_pointer: { 3847 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3848 return DAG.getRegister(RISCV::X4, PtrVT); 3849 } 3850 case Intrinsic::riscv_orc_b: 3851 // Lower to the GORCI encoding for orc.b. 3852 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3853 DAG.getConstant(7, DL, XLenVT)); 3854 case Intrinsic::riscv_grev: 3855 case Intrinsic::riscv_gorc: { 3856 unsigned Opc = 3857 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3858 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3859 } 3860 case Intrinsic::riscv_shfl: 3861 case Intrinsic::riscv_unshfl: { 3862 unsigned Opc = 3863 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3864 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3865 } 3866 case Intrinsic::riscv_bcompress: 3867 case Intrinsic::riscv_bdecompress: { 3868 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3869 : RISCVISD::BDECOMPRESS; 3870 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3871 } 3872 case Intrinsic::riscv_vmv_x_s: 3873 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3874 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3875 Op.getOperand(1)); 3876 case Intrinsic::riscv_vmv_v_x: 3877 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3878 Op.getSimpleValueType(), DL, DAG, Subtarget); 3879 case Intrinsic::riscv_vfmv_v_f: 3880 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3881 Op.getOperand(1), Op.getOperand(2)); 3882 case Intrinsic::riscv_vmv_s_x: { 3883 SDValue Scalar = Op.getOperand(2); 3884 3885 if (Scalar.getValueType().bitsLE(XLenVT)) { 3886 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3887 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3888 Op.getOperand(1), Scalar, Op.getOperand(3)); 3889 } 3890 3891 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3892 3893 // This is an i64 value that lives in two scalar registers. We have to 3894 // insert this in a convoluted way. First we build vXi64 splat containing 3895 // the/ two values that we assemble using some bit math. Next we'll use 3896 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3897 // to merge element 0 from our splat into the source vector. 3898 // FIXME: This is probably not the best way to do this, but it is 3899 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3900 // point. 3901 // sw lo, (a0) 3902 // sw hi, 4(a0) 3903 // vlse vX, (a0) 3904 // 3905 // vid.v vVid 3906 // vmseq.vx mMask, vVid, 0 3907 // vmerge.vvm vDest, vSrc, vVal, mMask 3908 MVT VT = Op.getSimpleValueType(); 3909 SDValue Vec = Op.getOperand(1); 3910 SDValue VL = Op.getOperand(3); 3911 3912 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3913 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3914 DAG.getConstant(0, DL, MVT::i32), VL); 3915 3916 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3917 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3918 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3919 SDValue SelectCond = 3920 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3921 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3922 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3923 Vec, VL); 3924 } 3925 case Intrinsic::riscv_vslide1up: 3926 case Intrinsic::riscv_vslide1down: 3927 case Intrinsic::riscv_vslide1up_mask: 3928 case Intrinsic::riscv_vslide1down_mask: { 3929 // We need to special case these when the scalar is larger than XLen. 3930 unsigned NumOps = Op.getNumOperands(); 3931 bool IsMasked = NumOps == 7; 3932 unsigned OpOffset = IsMasked ? 1 : 0; 3933 SDValue Scalar = Op.getOperand(2 + OpOffset); 3934 if (Scalar.getValueType().bitsLE(XLenVT)) 3935 break; 3936 3937 // Splatting a sign extended constant is fine. 3938 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3939 if (isInt<32>(CVal->getSExtValue())) 3940 break; 3941 3942 MVT VT = Op.getSimpleValueType(); 3943 assert(VT.getVectorElementType() == MVT::i64 && 3944 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3945 3946 // Convert the vector source to the equivalent nxvXi32 vector. 3947 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3948 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3949 3950 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3951 DAG.getConstant(0, DL, XLenVT)); 3952 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3953 DAG.getConstant(1, DL, XLenVT)); 3954 3955 // Double the VL since we halved SEW. 3956 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3957 SDValue I32VL = 3958 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3959 3960 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3961 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3962 3963 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3964 // instructions. 3965 if (IntNo == Intrinsic::riscv_vslide1up || 3966 IntNo == Intrinsic::riscv_vslide1up_mask) { 3967 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3968 I32Mask, I32VL); 3969 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3970 I32Mask, I32VL); 3971 } else { 3972 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3973 I32Mask, I32VL); 3974 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3975 I32Mask, I32VL); 3976 } 3977 3978 // Convert back to nxvXi64. 3979 Vec = DAG.getBitcast(VT, Vec); 3980 3981 if (!IsMasked) 3982 return Vec; 3983 3984 // Apply mask after the operation. 3985 SDValue Mask = Op.getOperand(NumOps - 3); 3986 SDValue MaskedOff = Op.getOperand(1); 3987 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3988 } 3989 } 3990 3991 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3992 } 3993 3994 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3995 SelectionDAG &DAG) const { 3996 unsigned IntNo = Op.getConstantOperandVal(1); 3997 switch (IntNo) { 3998 default: 3999 break; 4000 case Intrinsic::riscv_masked_strided_load: { 4001 SDLoc DL(Op); 4002 MVT XLenVT = Subtarget.getXLenVT(); 4003 4004 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4005 // the selection of the masked intrinsics doesn't do this for us. 4006 SDValue Mask = Op.getOperand(5); 4007 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4008 4009 MVT VT = Op->getSimpleValueType(0); 4010 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4011 4012 SDValue PassThru = Op.getOperand(2); 4013 if (!IsUnmasked) { 4014 MVT MaskVT = 4015 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4016 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4017 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4018 } 4019 4020 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4021 4022 SDValue IntID = DAG.getTargetConstant( 4023 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4024 XLenVT); 4025 4026 auto *Load = cast<MemIntrinsicSDNode>(Op); 4027 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4028 if (!IsUnmasked) 4029 Ops.push_back(PassThru); 4030 Ops.push_back(Op.getOperand(3)); // Ptr 4031 Ops.push_back(Op.getOperand(4)); // Stride 4032 if (!IsUnmasked) 4033 Ops.push_back(Mask); 4034 Ops.push_back(VL); 4035 if (!IsUnmasked) { 4036 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4037 Ops.push_back(Policy); 4038 } 4039 4040 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4041 SDValue Result = 4042 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4043 Load->getMemoryVT(), Load->getMemOperand()); 4044 SDValue Chain = Result.getValue(1); 4045 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4046 return DAG.getMergeValues({Result, Chain}, DL); 4047 } 4048 } 4049 4050 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4051 } 4052 4053 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4054 SelectionDAG &DAG) const { 4055 unsigned IntNo = Op.getConstantOperandVal(1); 4056 switch (IntNo) { 4057 default: 4058 break; 4059 case Intrinsic::riscv_masked_strided_store: { 4060 SDLoc DL(Op); 4061 MVT XLenVT = Subtarget.getXLenVT(); 4062 4063 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4064 // the selection of the masked intrinsics doesn't do this for us. 4065 SDValue Mask = Op.getOperand(5); 4066 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4067 4068 SDValue Val = Op.getOperand(2); 4069 MVT VT = Val.getSimpleValueType(); 4070 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4071 4072 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4073 if (!IsUnmasked) { 4074 MVT MaskVT = 4075 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4076 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4077 } 4078 4079 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4080 4081 SDValue IntID = DAG.getTargetConstant( 4082 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4083 XLenVT); 4084 4085 auto *Store = cast<MemIntrinsicSDNode>(Op); 4086 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4087 Ops.push_back(Val); 4088 Ops.push_back(Op.getOperand(3)); // Ptr 4089 Ops.push_back(Op.getOperand(4)); // Stride 4090 if (!IsUnmasked) 4091 Ops.push_back(Mask); 4092 Ops.push_back(VL); 4093 4094 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4095 Ops, Store->getMemoryVT(), 4096 Store->getMemOperand()); 4097 } 4098 } 4099 4100 return SDValue(); 4101 } 4102 4103 static MVT getLMUL1VT(MVT VT) { 4104 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4105 "Unexpected vector MVT"); 4106 return MVT::getScalableVectorVT( 4107 VT.getVectorElementType(), 4108 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4109 } 4110 4111 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4112 switch (ISDOpcode) { 4113 default: 4114 llvm_unreachable("Unhandled reduction"); 4115 case ISD::VECREDUCE_ADD: 4116 return RISCVISD::VECREDUCE_ADD_VL; 4117 case ISD::VECREDUCE_UMAX: 4118 return RISCVISD::VECREDUCE_UMAX_VL; 4119 case ISD::VECREDUCE_SMAX: 4120 return RISCVISD::VECREDUCE_SMAX_VL; 4121 case ISD::VECREDUCE_UMIN: 4122 return RISCVISD::VECREDUCE_UMIN_VL; 4123 case ISD::VECREDUCE_SMIN: 4124 return RISCVISD::VECREDUCE_SMIN_VL; 4125 case ISD::VECREDUCE_AND: 4126 return RISCVISD::VECREDUCE_AND_VL; 4127 case ISD::VECREDUCE_OR: 4128 return RISCVISD::VECREDUCE_OR_VL; 4129 case ISD::VECREDUCE_XOR: 4130 return RISCVISD::VECREDUCE_XOR_VL; 4131 } 4132 } 4133 4134 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4135 SelectionDAG &DAG, 4136 bool IsVP) const { 4137 SDLoc DL(Op); 4138 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4139 MVT VecVT = Vec.getSimpleValueType(); 4140 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4141 Op.getOpcode() == ISD::VECREDUCE_OR || 4142 Op.getOpcode() == ISD::VECREDUCE_XOR || 4143 Op.getOpcode() == ISD::VP_REDUCE_AND || 4144 Op.getOpcode() == ISD::VP_REDUCE_OR || 4145 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4146 "Unexpected reduction lowering"); 4147 4148 MVT XLenVT = Subtarget.getXLenVT(); 4149 assert(Op.getValueType() == XLenVT && 4150 "Expected reduction output to be legalized to XLenVT"); 4151 4152 MVT ContainerVT = VecVT; 4153 if (VecVT.isFixedLengthVector()) { 4154 ContainerVT = getContainerForFixedLengthVector(VecVT); 4155 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4156 } 4157 4158 SDValue Mask, VL; 4159 if (IsVP) { 4160 Mask = Op.getOperand(2); 4161 VL = Op.getOperand(3); 4162 } else { 4163 std::tie(Mask, VL) = 4164 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4165 } 4166 4167 unsigned BaseOpc; 4168 ISD::CondCode CC; 4169 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4170 4171 switch (Op.getOpcode()) { 4172 default: 4173 llvm_unreachable("Unhandled reduction"); 4174 case ISD::VECREDUCE_AND: 4175 case ISD::VP_REDUCE_AND: { 4176 // vpopc ~x == 0 4177 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4178 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4179 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4180 CC = ISD::SETEQ; 4181 BaseOpc = ISD::AND; 4182 break; 4183 } 4184 case ISD::VECREDUCE_OR: 4185 case ISD::VP_REDUCE_OR: 4186 // vpopc x != 0 4187 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4188 CC = ISD::SETNE; 4189 BaseOpc = ISD::OR; 4190 break; 4191 case ISD::VECREDUCE_XOR: 4192 case ISD::VP_REDUCE_XOR: { 4193 // ((vpopc x) & 1) != 0 4194 SDValue One = DAG.getConstant(1, DL, XLenVT); 4195 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4196 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4197 CC = ISD::SETNE; 4198 BaseOpc = ISD::XOR; 4199 break; 4200 } 4201 } 4202 4203 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4204 4205 if (!IsVP) 4206 return SetCC; 4207 4208 // Now include the start value in the operation. 4209 // Note that we must return the start value when no elements are operated 4210 // upon. The vpopc instructions we've emitted in each case above will return 4211 // 0 for an inactive vector, and so we've already received the neutral value: 4212 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4213 // can simply include the start value. 4214 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4215 } 4216 4217 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4218 SelectionDAG &DAG) const { 4219 SDLoc DL(Op); 4220 SDValue Vec = Op.getOperand(0); 4221 EVT VecEVT = Vec.getValueType(); 4222 4223 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4224 4225 // Due to ordering in legalize types we may have a vector type that needs to 4226 // be split. Do that manually so we can get down to a legal type. 4227 while (getTypeAction(*DAG.getContext(), VecEVT) == 4228 TargetLowering::TypeSplitVector) { 4229 SDValue Lo, Hi; 4230 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4231 VecEVT = Lo.getValueType(); 4232 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4233 } 4234 4235 // TODO: The type may need to be widened rather than split. Or widened before 4236 // it can be split. 4237 if (!isTypeLegal(VecEVT)) 4238 return SDValue(); 4239 4240 MVT VecVT = VecEVT.getSimpleVT(); 4241 MVT VecEltVT = VecVT.getVectorElementType(); 4242 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4243 4244 MVT ContainerVT = VecVT; 4245 if (VecVT.isFixedLengthVector()) { 4246 ContainerVT = getContainerForFixedLengthVector(VecVT); 4247 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4248 } 4249 4250 MVT M1VT = getLMUL1VT(ContainerVT); 4251 4252 SDValue Mask, VL; 4253 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4254 4255 // FIXME: This is a VLMAX splat which might be too large and can prevent 4256 // vsetvli removal. 4257 SDValue NeutralElem = 4258 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4259 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4260 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4261 IdentitySplat, Mask, VL); 4262 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4263 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4264 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4265 } 4266 4267 // Given a reduction op, this function returns the matching reduction opcode, 4268 // the vector SDValue and the scalar SDValue required to lower this to a 4269 // RISCVISD node. 4270 static std::tuple<unsigned, SDValue, SDValue> 4271 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4272 SDLoc DL(Op); 4273 auto Flags = Op->getFlags(); 4274 unsigned Opcode = Op.getOpcode(); 4275 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4276 switch (Opcode) { 4277 default: 4278 llvm_unreachable("Unhandled reduction"); 4279 case ISD::VECREDUCE_FADD: 4280 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4281 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4282 case ISD::VECREDUCE_SEQ_FADD: 4283 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4284 Op.getOperand(0)); 4285 case ISD::VECREDUCE_FMIN: 4286 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4287 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4288 case ISD::VECREDUCE_FMAX: 4289 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4290 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4291 } 4292 } 4293 4294 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4295 SelectionDAG &DAG) const { 4296 SDLoc DL(Op); 4297 MVT VecEltVT = Op.getSimpleValueType(); 4298 4299 unsigned RVVOpcode; 4300 SDValue VectorVal, ScalarVal; 4301 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4302 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4303 MVT VecVT = VectorVal.getSimpleValueType(); 4304 4305 MVT ContainerVT = VecVT; 4306 if (VecVT.isFixedLengthVector()) { 4307 ContainerVT = getContainerForFixedLengthVector(VecVT); 4308 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4309 } 4310 4311 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4312 4313 SDValue Mask, VL; 4314 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4315 4316 // FIXME: This is a VLMAX splat which might be too large and can prevent 4317 // vsetvli removal. 4318 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4319 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4320 VectorVal, ScalarSplat, Mask, VL); 4321 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4322 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4323 } 4324 4325 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4326 switch (ISDOpcode) { 4327 default: 4328 llvm_unreachable("Unhandled reduction"); 4329 case ISD::VP_REDUCE_ADD: 4330 return RISCVISD::VECREDUCE_ADD_VL; 4331 case ISD::VP_REDUCE_UMAX: 4332 return RISCVISD::VECREDUCE_UMAX_VL; 4333 case ISD::VP_REDUCE_SMAX: 4334 return RISCVISD::VECREDUCE_SMAX_VL; 4335 case ISD::VP_REDUCE_UMIN: 4336 return RISCVISD::VECREDUCE_UMIN_VL; 4337 case ISD::VP_REDUCE_SMIN: 4338 return RISCVISD::VECREDUCE_SMIN_VL; 4339 case ISD::VP_REDUCE_AND: 4340 return RISCVISD::VECREDUCE_AND_VL; 4341 case ISD::VP_REDUCE_OR: 4342 return RISCVISD::VECREDUCE_OR_VL; 4343 case ISD::VP_REDUCE_XOR: 4344 return RISCVISD::VECREDUCE_XOR_VL; 4345 case ISD::VP_REDUCE_FADD: 4346 return RISCVISD::VECREDUCE_FADD_VL; 4347 case ISD::VP_REDUCE_SEQ_FADD: 4348 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4349 case ISD::VP_REDUCE_FMAX: 4350 return RISCVISD::VECREDUCE_FMAX_VL; 4351 case ISD::VP_REDUCE_FMIN: 4352 return RISCVISD::VECREDUCE_FMIN_VL; 4353 } 4354 } 4355 4356 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4357 SelectionDAG &DAG) const { 4358 SDLoc DL(Op); 4359 SDValue Vec = Op.getOperand(1); 4360 EVT VecEVT = Vec.getValueType(); 4361 4362 // TODO: The type may need to be widened rather than split. Or widened before 4363 // it can be split. 4364 if (!isTypeLegal(VecEVT)) 4365 return SDValue(); 4366 4367 MVT VecVT = VecEVT.getSimpleVT(); 4368 MVT VecEltVT = VecVT.getVectorElementType(); 4369 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4370 4371 MVT ContainerVT = VecVT; 4372 if (VecVT.isFixedLengthVector()) { 4373 ContainerVT = getContainerForFixedLengthVector(VecVT); 4374 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4375 } 4376 4377 SDValue VL = Op.getOperand(3); 4378 SDValue Mask = Op.getOperand(2); 4379 4380 MVT M1VT = getLMUL1VT(ContainerVT); 4381 MVT XLenVT = Subtarget.getXLenVT(); 4382 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4383 4384 // FIXME: This is a VLMAX splat which might be too large and can prevent 4385 // vsetvli removal. 4386 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4387 SDValue Reduction = 4388 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4389 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4390 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4391 if (!VecVT.isInteger()) 4392 return Elt0; 4393 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4394 } 4395 4396 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4397 SelectionDAG &DAG) const { 4398 SDValue Vec = Op.getOperand(0); 4399 SDValue SubVec = Op.getOperand(1); 4400 MVT VecVT = Vec.getSimpleValueType(); 4401 MVT SubVecVT = SubVec.getSimpleValueType(); 4402 4403 SDLoc DL(Op); 4404 MVT XLenVT = Subtarget.getXLenVT(); 4405 unsigned OrigIdx = Op.getConstantOperandVal(2); 4406 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4407 4408 // We don't have the ability to slide mask vectors up indexed by their i1 4409 // elements; the smallest we can do is i8. Often we are able to bitcast to 4410 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4411 // into a scalable one, we might not necessarily have enough scalable 4412 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4413 if (SubVecVT.getVectorElementType() == MVT::i1 && 4414 (OrigIdx != 0 || !Vec.isUndef())) { 4415 if (VecVT.getVectorMinNumElements() >= 8 && 4416 SubVecVT.getVectorMinNumElements() >= 8) { 4417 assert(OrigIdx % 8 == 0 && "Invalid index"); 4418 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4419 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4420 "Unexpected mask vector lowering"); 4421 OrigIdx /= 8; 4422 SubVecVT = 4423 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4424 SubVecVT.isScalableVector()); 4425 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4426 VecVT.isScalableVector()); 4427 Vec = DAG.getBitcast(VecVT, Vec); 4428 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4429 } else { 4430 // We can't slide this mask vector up indexed by its i1 elements. 4431 // This poses a problem when we wish to insert a scalable vector which 4432 // can't be re-expressed as a larger type. Just choose the slow path and 4433 // extend to a larger type, then truncate back down. 4434 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4435 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4436 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4437 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4438 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4439 Op.getOperand(2)); 4440 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4441 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4442 } 4443 } 4444 4445 // If the subvector vector is a fixed-length type, we cannot use subregister 4446 // manipulation to simplify the codegen; we don't know which register of a 4447 // LMUL group contains the specific subvector as we only know the minimum 4448 // register size. Therefore we must slide the vector group up the full 4449 // amount. 4450 if (SubVecVT.isFixedLengthVector()) { 4451 if (OrigIdx == 0 && Vec.isUndef()) 4452 return Op; 4453 MVT ContainerVT = VecVT; 4454 if (VecVT.isFixedLengthVector()) { 4455 ContainerVT = getContainerForFixedLengthVector(VecVT); 4456 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4457 } 4458 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4459 DAG.getUNDEF(ContainerVT), SubVec, 4460 DAG.getConstant(0, DL, XLenVT)); 4461 SDValue Mask = 4462 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4463 // Set the vector length to only the number of elements we care about. Note 4464 // that for slideup this includes the offset. 4465 SDValue VL = 4466 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4467 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4468 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4469 SubVec, SlideupAmt, Mask, VL); 4470 if (VecVT.isFixedLengthVector()) 4471 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4472 return DAG.getBitcast(Op.getValueType(), Slideup); 4473 } 4474 4475 unsigned SubRegIdx, RemIdx; 4476 std::tie(SubRegIdx, RemIdx) = 4477 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4478 VecVT, SubVecVT, OrigIdx, TRI); 4479 4480 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4481 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4482 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4483 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4484 4485 // 1. If the Idx has been completely eliminated and this subvector's size is 4486 // a vector register or a multiple thereof, or the surrounding elements are 4487 // undef, then this is a subvector insert which naturally aligns to a vector 4488 // register. These can easily be handled using subregister manipulation. 4489 // 2. If the subvector is smaller than a vector register, then the insertion 4490 // must preserve the undisturbed elements of the register. We do this by 4491 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4492 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4493 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4494 // LMUL=1 type back into the larger vector (resolving to another subregister 4495 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4496 // to avoid allocating a large register group to hold our subvector. 4497 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4498 return Op; 4499 4500 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4501 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4502 // (in our case undisturbed). This means we can set up a subvector insertion 4503 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4504 // size of the subvector. 4505 MVT InterSubVT = VecVT; 4506 SDValue AlignedExtract = Vec; 4507 unsigned AlignedIdx = OrigIdx - RemIdx; 4508 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4509 InterSubVT = getLMUL1VT(VecVT); 4510 // Extract a subvector equal to the nearest full vector register type. This 4511 // should resolve to a EXTRACT_SUBREG instruction. 4512 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4513 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4514 } 4515 4516 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4517 // For scalable vectors this must be further multiplied by vscale. 4518 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4519 4520 SDValue Mask, VL; 4521 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4522 4523 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4524 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4525 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4526 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4527 4528 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4529 DAG.getUNDEF(InterSubVT), SubVec, 4530 DAG.getConstant(0, DL, XLenVT)); 4531 4532 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4533 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4534 4535 // If required, insert this subvector back into the correct vector register. 4536 // This should resolve to an INSERT_SUBREG instruction. 4537 if (VecVT.bitsGT(InterSubVT)) 4538 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4539 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4540 4541 // We might have bitcast from a mask type: cast back to the original type if 4542 // required. 4543 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4544 } 4545 4546 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4547 SelectionDAG &DAG) const { 4548 SDValue Vec = Op.getOperand(0); 4549 MVT SubVecVT = Op.getSimpleValueType(); 4550 MVT VecVT = Vec.getSimpleValueType(); 4551 4552 SDLoc DL(Op); 4553 MVT XLenVT = Subtarget.getXLenVT(); 4554 unsigned OrigIdx = Op.getConstantOperandVal(1); 4555 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4556 4557 // We don't have the ability to slide mask vectors down indexed by their i1 4558 // elements; the smallest we can do is i8. Often we are able to bitcast to 4559 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4560 // from a scalable one, we might not necessarily have enough scalable 4561 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4562 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4563 if (VecVT.getVectorMinNumElements() >= 8 && 4564 SubVecVT.getVectorMinNumElements() >= 8) { 4565 assert(OrigIdx % 8 == 0 && "Invalid index"); 4566 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4567 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4568 "Unexpected mask vector lowering"); 4569 OrigIdx /= 8; 4570 SubVecVT = 4571 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4572 SubVecVT.isScalableVector()); 4573 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4574 VecVT.isScalableVector()); 4575 Vec = DAG.getBitcast(VecVT, Vec); 4576 } else { 4577 // We can't slide this mask vector down, indexed by its i1 elements. 4578 // This poses a problem when we wish to extract a scalable vector which 4579 // can't be re-expressed as a larger type. Just choose the slow path and 4580 // extend to a larger type, then truncate back down. 4581 // TODO: We could probably improve this when extracting certain fixed 4582 // from fixed, where we can extract as i8 and shift the correct element 4583 // right to reach the desired subvector? 4584 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4585 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4586 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4587 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4588 Op.getOperand(1)); 4589 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4590 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4591 } 4592 } 4593 4594 // If the subvector vector is a fixed-length type, we cannot use subregister 4595 // manipulation to simplify the codegen; we don't know which register of a 4596 // LMUL group contains the specific subvector as we only know the minimum 4597 // register size. Therefore we must slide the vector group down the full 4598 // amount. 4599 if (SubVecVT.isFixedLengthVector()) { 4600 // With an index of 0 this is a cast-like subvector, which can be performed 4601 // with subregister operations. 4602 if (OrigIdx == 0) 4603 return Op; 4604 MVT ContainerVT = VecVT; 4605 if (VecVT.isFixedLengthVector()) { 4606 ContainerVT = getContainerForFixedLengthVector(VecVT); 4607 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4608 } 4609 SDValue Mask = 4610 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4611 // Set the vector length to only the number of elements we care about. This 4612 // avoids sliding down elements we're going to discard straight away. 4613 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4614 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4615 SDValue Slidedown = 4616 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4617 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4618 // Now we can use a cast-like subvector extract to get the result. 4619 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4620 DAG.getConstant(0, DL, XLenVT)); 4621 return DAG.getBitcast(Op.getValueType(), Slidedown); 4622 } 4623 4624 unsigned SubRegIdx, RemIdx; 4625 std::tie(SubRegIdx, RemIdx) = 4626 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4627 VecVT, SubVecVT, OrigIdx, TRI); 4628 4629 // If the Idx has been completely eliminated then this is a subvector extract 4630 // which naturally aligns to a vector register. These can easily be handled 4631 // using subregister manipulation. 4632 if (RemIdx == 0) 4633 return Op; 4634 4635 // Else we must shift our vector register directly to extract the subvector. 4636 // Do this using VSLIDEDOWN. 4637 4638 // If the vector type is an LMUL-group type, extract a subvector equal to the 4639 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4640 // instruction. 4641 MVT InterSubVT = VecVT; 4642 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4643 InterSubVT = getLMUL1VT(VecVT); 4644 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4645 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4646 } 4647 4648 // Slide this vector register down by the desired number of elements in order 4649 // to place the desired subvector starting at element 0. 4650 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4651 // For scalable vectors this must be further multiplied by vscale. 4652 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4653 4654 SDValue Mask, VL; 4655 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4656 SDValue Slidedown = 4657 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4658 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4659 4660 // Now the vector is in the right position, extract our final subvector. This 4661 // should resolve to a COPY. 4662 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4663 DAG.getConstant(0, DL, XLenVT)); 4664 4665 // We might have bitcast from a mask type: cast back to the original type if 4666 // required. 4667 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4668 } 4669 4670 // Lower step_vector to the vid instruction. Any non-identity step value must 4671 // be accounted for my manual expansion. 4672 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4673 SelectionDAG &DAG) const { 4674 SDLoc DL(Op); 4675 MVT VT = Op.getSimpleValueType(); 4676 MVT XLenVT = Subtarget.getXLenVT(); 4677 SDValue Mask, VL; 4678 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4679 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4680 uint64_t StepValImm = Op.getConstantOperandVal(0); 4681 if (StepValImm != 1) { 4682 if (isPowerOf2_64(StepValImm)) { 4683 SDValue StepVal = 4684 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4685 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4686 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4687 } else { 4688 SDValue StepVal = lowerScalarSplat( 4689 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4690 DL, DAG, Subtarget); 4691 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4692 } 4693 } 4694 return StepVec; 4695 } 4696 4697 // Implement vector_reverse using vrgather.vv with indices determined by 4698 // subtracting the id of each element from (VLMAX-1). This will convert 4699 // the indices like so: 4700 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4701 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4702 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4703 SelectionDAG &DAG) const { 4704 SDLoc DL(Op); 4705 MVT VecVT = Op.getSimpleValueType(); 4706 unsigned EltSize = VecVT.getScalarSizeInBits(); 4707 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4708 4709 unsigned MaxVLMAX = 0; 4710 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4711 if (VectorBitsMax != 0) 4712 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4713 4714 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4715 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4716 4717 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4718 // to use vrgatherei16.vv. 4719 // TODO: It's also possible to use vrgatherei16.vv for other types to 4720 // decrease register width for the index calculation. 4721 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4722 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4723 // Reverse each half, then reassemble them in reverse order. 4724 // NOTE: It's also possible that after splitting that VLMAX no longer 4725 // requires vrgatherei16.vv. 4726 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4727 SDValue Lo, Hi; 4728 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4729 EVT LoVT, HiVT; 4730 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4731 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4732 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4733 // Reassemble the low and high pieces reversed. 4734 // FIXME: This is a CONCAT_VECTORS. 4735 SDValue Res = 4736 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4737 DAG.getIntPtrConstant(0, DL)); 4738 return DAG.getNode( 4739 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4740 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4741 } 4742 4743 // Just promote the int type to i16 which will double the LMUL. 4744 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4745 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4746 } 4747 4748 MVT XLenVT = Subtarget.getXLenVT(); 4749 SDValue Mask, VL; 4750 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4751 4752 // Calculate VLMAX-1 for the desired SEW. 4753 unsigned MinElts = VecVT.getVectorMinNumElements(); 4754 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4755 DAG.getConstant(MinElts, DL, XLenVT)); 4756 SDValue VLMinus1 = 4757 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4758 4759 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4760 bool IsRV32E64 = 4761 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4762 SDValue SplatVL; 4763 if (!IsRV32E64) 4764 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4765 else 4766 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4767 4768 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4769 SDValue Indices = 4770 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4771 4772 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4773 } 4774 4775 SDValue 4776 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4777 SelectionDAG &DAG) const { 4778 SDLoc DL(Op); 4779 auto *Load = cast<LoadSDNode>(Op); 4780 4781 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4782 Load->getMemoryVT(), 4783 *Load->getMemOperand()) && 4784 "Expecting a correctly-aligned load"); 4785 4786 MVT VT = Op.getSimpleValueType(); 4787 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4788 4789 SDValue VL = 4790 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4791 4792 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4793 SDValue NewLoad = DAG.getMemIntrinsicNode( 4794 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4795 Load->getMemoryVT(), Load->getMemOperand()); 4796 4797 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4798 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4799 } 4800 4801 SDValue 4802 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4803 SelectionDAG &DAG) const { 4804 SDLoc DL(Op); 4805 auto *Store = cast<StoreSDNode>(Op); 4806 4807 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4808 Store->getMemoryVT(), 4809 *Store->getMemOperand()) && 4810 "Expecting a correctly-aligned store"); 4811 4812 SDValue StoreVal = Store->getValue(); 4813 MVT VT = StoreVal.getSimpleValueType(); 4814 4815 // If the size less than a byte, we need to pad with zeros to make a byte. 4816 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4817 VT = MVT::v8i1; 4818 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4819 DAG.getConstant(0, DL, VT), StoreVal, 4820 DAG.getIntPtrConstant(0, DL)); 4821 } 4822 4823 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4824 4825 SDValue VL = 4826 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4827 4828 SDValue NewValue = 4829 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4830 return DAG.getMemIntrinsicNode( 4831 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4832 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4833 Store->getMemoryVT(), Store->getMemOperand()); 4834 } 4835 4836 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4837 SelectionDAG &DAG) const { 4838 SDLoc DL(Op); 4839 MVT VT = Op.getSimpleValueType(); 4840 4841 const auto *MemSD = cast<MemSDNode>(Op); 4842 EVT MemVT = MemSD->getMemoryVT(); 4843 MachineMemOperand *MMO = MemSD->getMemOperand(); 4844 SDValue Chain = MemSD->getChain(); 4845 SDValue BasePtr = MemSD->getBasePtr(); 4846 4847 SDValue Mask, PassThru, VL; 4848 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4849 Mask = VPLoad->getMask(); 4850 PassThru = DAG.getUNDEF(VT); 4851 VL = VPLoad->getVectorLength(); 4852 } else { 4853 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4854 Mask = MLoad->getMask(); 4855 PassThru = MLoad->getPassThru(); 4856 } 4857 4858 MVT XLenVT = Subtarget.getXLenVT(); 4859 4860 MVT ContainerVT = VT; 4861 if (VT.isFixedLengthVector()) { 4862 ContainerVT = getContainerForFixedLengthVector(VT); 4863 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4864 4865 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4866 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4867 } 4868 4869 if (!VL) 4870 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4871 4872 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4873 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4874 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4875 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy}; 4876 SDValue Result = 4877 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4878 Chain = Result.getValue(1); 4879 4880 if (VT.isFixedLengthVector()) 4881 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4882 4883 return DAG.getMergeValues({Result, Chain}, DL); 4884 } 4885 4886 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4887 SelectionDAG &DAG) const { 4888 SDLoc DL(Op); 4889 4890 const auto *MemSD = cast<MemSDNode>(Op); 4891 EVT MemVT = MemSD->getMemoryVT(); 4892 MachineMemOperand *MMO = MemSD->getMemOperand(); 4893 SDValue Chain = MemSD->getChain(); 4894 SDValue BasePtr = MemSD->getBasePtr(); 4895 SDValue Val, Mask, VL; 4896 4897 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4898 Val = VPStore->getValue(); 4899 Mask = VPStore->getMask(); 4900 VL = VPStore->getVectorLength(); 4901 } else { 4902 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4903 Val = MStore->getValue(); 4904 Mask = MStore->getMask(); 4905 } 4906 4907 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4908 4909 MVT VT = Val.getSimpleValueType(); 4910 MVT XLenVT = Subtarget.getXLenVT(); 4911 4912 MVT ContainerVT = VT; 4913 if (VT.isFixedLengthVector()) { 4914 ContainerVT = getContainerForFixedLengthVector(VT); 4915 4916 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4917 if (!IsUnmasked) { 4918 MVT MaskVT = 4919 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4920 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4921 } 4922 } 4923 4924 if (!VL) 4925 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4926 4927 unsigned IntID = 4928 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4929 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4930 Ops.push_back(Val); 4931 Ops.push_back(BasePtr); 4932 if (!IsUnmasked) 4933 Ops.push_back(Mask); 4934 Ops.push_back(VL); 4935 4936 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4937 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4938 } 4939 4940 SDValue 4941 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4942 SelectionDAG &DAG) const { 4943 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4944 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4945 4946 MVT VT = Op.getSimpleValueType(); 4947 4948 SDValue Op1 = 4949 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4950 SDValue Op2 = 4951 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4952 4953 SDLoc DL(Op); 4954 SDValue VL = 4955 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4956 4957 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4958 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4959 4960 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4961 Op.getOperand(2), Mask, VL); 4962 4963 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4964 } 4965 4966 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4967 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4968 MVT VT = Op.getSimpleValueType(); 4969 4970 if (VT.getVectorElementType() == MVT::i1) 4971 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4972 4973 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4974 } 4975 4976 SDValue 4977 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4978 SelectionDAG &DAG) const { 4979 unsigned Opc; 4980 switch (Op.getOpcode()) { 4981 default: llvm_unreachable("Unexpected opcode!"); 4982 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4983 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4984 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4985 } 4986 4987 return lowerToScalableOp(Op, DAG, Opc); 4988 } 4989 4990 // Lower vector ABS to smax(X, sub(0, X)). 4991 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4992 SDLoc DL(Op); 4993 MVT VT = Op.getSimpleValueType(); 4994 SDValue X = Op.getOperand(0); 4995 4996 assert(VT.isFixedLengthVector() && "Unexpected type"); 4997 4998 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4999 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5000 5001 SDValue Mask, VL; 5002 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5003 5004 SDValue SplatZero = 5005 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5006 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5007 SDValue NegX = 5008 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5009 SDValue Max = 5010 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5011 5012 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5013 } 5014 5015 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5016 SDValue Op, SelectionDAG &DAG) const { 5017 SDLoc DL(Op); 5018 MVT VT = Op.getSimpleValueType(); 5019 SDValue Mag = Op.getOperand(0); 5020 SDValue Sign = Op.getOperand(1); 5021 assert(Mag.getValueType() == Sign.getValueType() && 5022 "Can only handle COPYSIGN with matching types."); 5023 5024 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5025 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5026 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5027 5028 SDValue Mask, VL; 5029 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5030 5031 SDValue CopySign = 5032 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5033 5034 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5035 } 5036 5037 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5038 SDValue Op, SelectionDAG &DAG) const { 5039 MVT VT = Op.getSimpleValueType(); 5040 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5041 5042 MVT I1ContainerVT = 5043 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5044 5045 SDValue CC = 5046 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5047 SDValue Op1 = 5048 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5049 SDValue Op2 = 5050 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5051 5052 SDLoc DL(Op); 5053 SDValue Mask, VL; 5054 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5055 5056 SDValue Select = 5057 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5058 5059 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5060 } 5061 5062 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5063 unsigned NewOpc, 5064 bool HasMask) const { 5065 MVT VT = Op.getSimpleValueType(); 5066 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5067 5068 // Create list of operands by converting existing ones to scalable types. 5069 SmallVector<SDValue, 6> Ops; 5070 for (const SDValue &V : Op->op_values()) { 5071 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5072 5073 // Pass through non-vector operands. 5074 if (!V.getValueType().isVector()) { 5075 Ops.push_back(V); 5076 continue; 5077 } 5078 5079 // "cast" fixed length vector to a scalable vector. 5080 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5081 "Only fixed length vectors are supported!"); 5082 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5083 } 5084 5085 SDLoc DL(Op); 5086 SDValue Mask, VL; 5087 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5088 if (HasMask) 5089 Ops.push_back(Mask); 5090 Ops.push_back(VL); 5091 5092 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5093 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5094 } 5095 5096 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5097 // * Operands of each node are assumed to be in the same order. 5098 // * The EVL operand is promoted from i32 to i64 on RV64. 5099 // * Fixed-length vectors are converted to their scalable-vector container 5100 // types. 5101 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5102 unsigned RISCVISDOpc) const { 5103 SDLoc DL(Op); 5104 MVT VT = Op.getSimpleValueType(); 5105 SmallVector<SDValue, 4> Ops; 5106 5107 for (const auto &OpIdx : enumerate(Op->ops())) { 5108 SDValue V = OpIdx.value(); 5109 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5110 // Pass through operands which aren't fixed-length vectors. 5111 if (!V.getValueType().isFixedLengthVector()) { 5112 Ops.push_back(V); 5113 continue; 5114 } 5115 // "cast" fixed length vector to a scalable vector. 5116 MVT OpVT = V.getSimpleValueType(); 5117 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5118 assert(useRVVForFixedLengthVectorVT(OpVT) && 5119 "Only fixed length vectors are supported!"); 5120 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5121 } 5122 5123 if (!VT.isFixedLengthVector()) 5124 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5125 5126 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5127 5128 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5129 5130 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5131 } 5132 5133 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5134 // matched to a RVV indexed load. The RVV indexed load instructions only 5135 // support the "unsigned unscaled" addressing mode; indices are implicitly 5136 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5137 // signed or scaled indexing is extended to the XLEN value type and scaled 5138 // accordingly. 5139 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5140 SelectionDAG &DAG) const { 5141 SDLoc DL(Op); 5142 MVT VT = Op.getSimpleValueType(); 5143 5144 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5145 EVT MemVT = MemSD->getMemoryVT(); 5146 MachineMemOperand *MMO = MemSD->getMemOperand(); 5147 SDValue Chain = MemSD->getChain(); 5148 SDValue BasePtr = MemSD->getBasePtr(); 5149 5150 ISD::LoadExtType LoadExtType; 5151 SDValue Index, Mask, PassThru, VL; 5152 5153 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5154 Index = VPGN->getIndex(); 5155 Mask = VPGN->getMask(); 5156 PassThru = DAG.getUNDEF(VT); 5157 VL = VPGN->getVectorLength(); 5158 // VP doesn't support extending loads. 5159 LoadExtType = ISD::NON_EXTLOAD; 5160 } else { 5161 // Else it must be a MGATHER. 5162 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5163 Index = MGN->getIndex(); 5164 Mask = MGN->getMask(); 5165 PassThru = MGN->getPassThru(); 5166 LoadExtType = MGN->getExtensionType(); 5167 } 5168 5169 MVT IndexVT = Index.getSimpleValueType(); 5170 MVT XLenVT = Subtarget.getXLenVT(); 5171 5172 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5173 "Unexpected VTs!"); 5174 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5175 // Targets have to explicitly opt-in for extending vector loads. 5176 assert(LoadExtType == ISD::NON_EXTLOAD && 5177 "Unexpected extending MGATHER/VP_GATHER"); 5178 (void)LoadExtType; 5179 5180 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5181 // the selection of the masked intrinsics doesn't do this for us. 5182 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5183 5184 MVT ContainerVT = VT; 5185 if (VT.isFixedLengthVector()) { 5186 // We need to use the larger of the result and index type to determine the 5187 // scalable type to use so we don't increase LMUL for any operand/result. 5188 if (VT.bitsGE(IndexVT)) { 5189 ContainerVT = getContainerForFixedLengthVector(VT); 5190 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5191 ContainerVT.getVectorElementCount()); 5192 } else { 5193 IndexVT = getContainerForFixedLengthVector(IndexVT); 5194 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5195 IndexVT.getVectorElementCount()); 5196 } 5197 5198 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5199 5200 if (!IsUnmasked) { 5201 MVT MaskVT = 5202 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5203 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5204 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5205 } 5206 } 5207 5208 if (!VL) 5209 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5210 5211 unsigned IntID = 5212 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5213 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5214 if (!IsUnmasked) 5215 Ops.push_back(PassThru); 5216 Ops.push_back(BasePtr); 5217 Ops.push_back(Index); 5218 if (!IsUnmasked) 5219 Ops.push_back(Mask); 5220 Ops.push_back(VL); 5221 if (!IsUnmasked) 5222 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5223 5224 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5225 SDValue Result = 5226 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5227 Chain = Result.getValue(1); 5228 5229 if (VT.isFixedLengthVector()) 5230 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5231 5232 return DAG.getMergeValues({Result, Chain}, DL); 5233 } 5234 5235 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5236 // matched to a RVV indexed store. The RVV indexed store instructions only 5237 // support the "unsigned unscaled" addressing mode; indices are implicitly 5238 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5239 // signed or scaled indexing is extended to the XLEN value type and scaled 5240 // accordingly. 5241 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5242 SelectionDAG &DAG) const { 5243 SDLoc DL(Op); 5244 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5245 EVT MemVT = MemSD->getMemoryVT(); 5246 MachineMemOperand *MMO = MemSD->getMemOperand(); 5247 SDValue Chain = MemSD->getChain(); 5248 SDValue BasePtr = MemSD->getBasePtr(); 5249 5250 bool IsTruncatingStore = false; 5251 SDValue Index, Mask, Val, VL; 5252 5253 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5254 Index = VPSN->getIndex(); 5255 Mask = VPSN->getMask(); 5256 Val = VPSN->getValue(); 5257 VL = VPSN->getVectorLength(); 5258 // VP doesn't support truncating stores. 5259 IsTruncatingStore = false; 5260 } else { 5261 // Else it must be a MSCATTER. 5262 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5263 Index = MSN->getIndex(); 5264 Mask = MSN->getMask(); 5265 Val = MSN->getValue(); 5266 IsTruncatingStore = MSN->isTruncatingStore(); 5267 } 5268 5269 MVT VT = Val.getSimpleValueType(); 5270 MVT IndexVT = Index.getSimpleValueType(); 5271 MVT XLenVT = Subtarget.getXLenVT(); 5272 5273 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5274 "Unexpected VTs!"); 5275 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5276 // Targets have to explicitly opt-in for extending vector loads and 5277 // truncating vector stores. 5278 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5279 (void)IsTruncatingStore; 5280 5281 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5282 // the selection of the masked intrinsics doesn't do this for us. 5283 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5284 5285 MVT ContainerVT = VT; 5286 if (VT.isFixedLengthVector()) { 5287 // We need to use the larger of the value and index type to determine the 5288 // scalable type to use so we don't increase LMUL for any operand/result. 5289 if (VT.bitsGE(IndexVT)) { 5290 ContainerVT = getContainerForFixedLengthVector(VT); 5291 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5292 ContainerVT.getVectorElementCount()); 5293 } else { 5294 IndexVT = getContainerForFixedLengthVector(IndexVT); 5295 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5296 IndexVT.getVectorElementCount()); 5297 } 5298 5299 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5300 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5301 5302 if (!IsUnmasked) { 5303 MVT MaskVT = 5304 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5305 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5306 } 5307 } 5308 5309 if (!VL) 5310 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5311 5312 unsigned IntID = 5313 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5314 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5315 Ops.push_back(Val); 5316 Ops.push_back(BasePtr); 5317 Ops.push_back(Index); 5318 if (!IsUnmasked) 5319 Ops.push_back(Mask); 5320 Ops.push_back(VL); 5321 5322 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5323 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5324 } 5325 5326 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5327 SelectionDAG &DAG) const { 5328 const MVT XLenVT = Subtarget.getXLenVT(); 5329 SDLoc DL(Op); 5330 SDValue Chain = Op->getOperand(0); 5331 SDValue SysRegNo = DAG.getConstant( 5332 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5333 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5334 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5335 5336 // Encoding used for rounding mode in RISCV differs from that used in 5337 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5338 // table, which consists of a sequence of 4-bit fields, each representing 5339 // corresponding FLT_ROUNDS mode. 5340 static const int Table = 5341 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5342 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5343 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5344 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5345 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5346 5347 SDValue Shift = 5348 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5349 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5350 DAG.getConstant(Table, DL, XLenVT), Shift); 5351 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5352 DAG.getConstant(7, DL, XLenVT)); 5353 5354 return DAG.getMergeValues({Masked, Chain}, DL); 5355 } 5356 5357 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5358 SelectionDAG &DAG) const { 5359 const MVT XLenVT = Subtarget.getXLenVT(); 5360 SDLoc DL(Op); 5361 SDValue Chain = Op->getOperand(0); 5362 SDValue RMValue = Op->getOperand(1); 5363 SDValue SysRegNo = DAG.getConstant( 5364 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5365 5366 // Encoding used for rounding mode in RISCV differs from that used in 5367 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5368 // a table, which consists of a sequence of 4-bit fields, each representing 5369 // corresponding RISCV mode. 5370 static const unsigned Table = 5371 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5372 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5373 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5374 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5375 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5376 5377 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5378 DAG.getConstant(2, DL, XLenVT)); 5379 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5380 DAG.getConstant(Table, DL, XLenVT), Shift); 5381 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5382 DAG.getConstant(0x7, DL, XLenVT)); 5383 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5384 RMValue); 5385 } 5386 5387 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5388 // form of the given Opcode. 5389 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5390 switch (Opcode) { 5391 default: 5392 llvm_unreachable("Unexpected opcode"); 5393 case ISD::SHL: 5394 return RISCVISD::SLLW; 5395 case ISD::SRA: 5396 return RISCVISD::SRAW; 5397 case ISD::SRL: 5398 return RISCVISD::SRLW; 5399 case ISD::SDIV: 5400 return RISCVISD::DIVW; 5401 case ISD::UDIV: 5402 return RISCVISD::DIVUW; 5403 case ISD::UREM: 5404 return RISCVISD::REMUW; 5405 case ISD::ROTL: 5406 return RISCVISD::ROLW; 5407 case ISD::ROTR: 5408 return RISCVISD::RORW; 5409 case RISCVISD::GREV: 5410 return RISCVISD::GREVW; 5411 case RISCVISD::GORC: 5412 return RISCVISD::GORCW; 5413 } 5414 } 5415 5416 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5417 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5418 // otherwise be promoted to i64, making it difficult to select the 5419 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5420 // type i8/i16/i32 is lost. 5421 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5422 unsigned ExtOpc = ISD::ANY_EXTEND) { 5423 SDLoc DL(N); 5424 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5425 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5426 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5427 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5428 // ReplaceNodeResults requires we maintain the same type for the return value. 5429 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5430 } 5431 5432 // Converts the given 32-bit operation to a i64 operation with signed extension 5433 // semantic to reduce the signed extension instructions. 5434 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5435 SDLoc DL(N); 5436 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5437 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5438 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5439 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5440 DAG.getValueType(MVT::i32)); 5441 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5442 } 5443 5444 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5445 SmallVectorImpl<SDValue> &Results, 5446 SelectionDAG &DAG) const { 5447 SDLoc DL(N); 5448 switch (N->getOpcode()) { 5449 default: 5450 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5451 case ISD::STRICT_FP_TO_SINT: 5452 case ISD::STRICT_FP_TO_UINT: 5453 case ISD::FP_TO_SINT: 5454 case ISD::FP_TO_UINT: { 5455 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5456 "Unexpected custom legalisation"); 5457 bool IsStrict = N->isStrictFPOpcode(); 5458 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5459 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5460 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5461 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5462 TargetLowering::TypeSoftenFloat) { 5463 // FIXME: Support strict FP. 5464 if (IsStrict) 5465 return; 5466 if (!isTypeLegal(Op0.getValueType())) 5467 return; 5468 unsigned Opc = 5469 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5470 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5471 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5472 return; 5473 } 5474 // If the FP type needs to be softened, emit a library call using the 'si' 5475 // version. If we left it to default legalization we'd end up with 'di'. If 5476 // the FP type doesn't need to be softened just let generic type 5477 // legalization promote the result type. 5478 RTLIB::Libcall LC; 5479 if (IsSigned) 5480 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5481 else 5482 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5483 MakeLibCallOptions CallOptions; 5484 EVT OpVT = Op0.getValueType(); 5485 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5486 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5487 SDValue Result; 5488 std::tie(Result, Chain) = 5489 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5490 Results.push_back(Result); 5491 if (IsStrict) 5492 Results.push_back(Chain); 5493 break; 5494 } 5495 case ISD::READCYCLECOUNTER: { 5496 assert(!Subtarget.is64Bit() && 5497 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5498 5499 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5500 SDValue RCW = 5501 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5502 5503 Results.push_back( 5504 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5505 Results.push_back(RCW.getValue(2)); 5506 break; 5507 } 5508 case ISD::MUL: { 5509 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5510 unsigned XLen = Subtarget.getXLen(); 5511 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5512 if (Size > XLen) { 5513 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5514 SDValue LHS = N->getOperand(0); 5515 SDValue RHS = N->getOperand(1); 5516 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5517 5518 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5519 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5520 // We need exactly one side to be unsigned. 5521 if (LHSIsU == RHSIsU) 5522 return; 5523 5524 auto MakeMULPair = [&](SDValue S, SDValue U) { 5525 MVT XLenVT = Subtarget.getXLenVT(); 5526 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5527 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5528 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5529 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5530 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5531 }; 5532 5533 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5534 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5535 5536 // The other operand should be signed, but still prefer MULH when 5537 // possible. 5538 if (RHSIsU && LHSIsS && !RHSIsS) 5539 Results.push_back(MakeMULPair(LHS, RHS)); 5540 else if (LHSIsU && RHSIsS && !LHSIsS) 5541 Results.push_back(MakeMULPair(RHS, LHS)); 5542 5543 return; 5544 } 5545 LLVM_FALLTHROUGH; 5546 } 5547 case ISD::ADD: 5548 case ISD::SUB: 5549 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5550 "Unexpected custom legalisation"); 5551 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5552 break; 5553 case ISD::SHL: 5554 case ISD::SRA: 5555 case ISD::SRL: 5556 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5557 "Unexpected custom legalisation"); 5558 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5559 Results.push_back(customLegalizeToWOp(N, DAG)); 5560 break; 5561 } 5562 5563 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5564 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5565 // shift amount. 5566 if (N->getOpcode() == ISD::SHL) { 5567 SDLoc DL(N); 5568 SDValue NewOp0 = 5569 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5570 SDValue NewOp1 = 5571 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5572 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5573 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5574 DAG.getValueType(MVT::i32)); 5575 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5576 } 5577 5578 break; 5579 case ISD::ROTL: 5580 case ISD::ROTR: 5581 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5582 "Unexpected custom legalisation"); 5583 Results.push_back(customLegalizeToWOp(N, DAG)); 5584 break; 5585 case ISD::CTTZ: 5586 case ISD::CTTZ_ZERO_UNDEF: 5587 case ISD::CTLZ: 5588 case ISD::CTLZ_ZERO_UNDEF: { 5589 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5590 "Unexpected custom legalisation"); 5591 5592 SDValue NewOp0 = 5593 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5594 bool IsCTZ = 5595 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5596 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5597 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5598 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5599 return; 5600 } 5601 case ISD::SDIV: 5602 case ISD::UDIV: 5603 case ISD::UREM: { 5604 MVT VT = N->getSimpleValueType(0); 5605 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5606 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5607 "Unexpected custom legalisation"); 5608 // Don't promote division/remainder by constant since we should expand those 5609 // to multiply by magic constant. 5610 // FIXME: What if the expansion is disabled for minsize. 5611 if (N->getOperand(1).getOpcode() == ISD::Constant) 5612 return; 5613 5614 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5615 // the upper 32 bits. For other types we need to sign or zero extend 5616 // based on the opcode. 5617 unsigned ExtOpc = ISD::ANY_EXTEND; 5618 if (VT != MVT::i32) 5619 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5620 : ISD::ZERO_EXTEND; 5621 5622 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5623 break; 5624 } 5625 case ISD::UADDO: 5626 case ISD::USUBO: { 5627 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5628 "Unexpected custom legalisation"); 5629 bool IsAdd = N->getOpcode() == ISD::UADDO; 5630 // Create an ADDW or SUBW. 5631 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5632 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5633 SDValue Res = 5634 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5635 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5636 DAG.getValueType(MVT::i32)); 5637 5638 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5639 // Since the inputs are sign extended from i32, this is equivalent to 5640 // comparing the lower 32 bits. 5641 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5642 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5643 IsAdd ? ISD::SETULT : ISD::SETUGT); 5644 5645 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5646 Results.push_back(Overflow); 5647 return; 5648 } 5649 case ISD::UADDSAT: 5650 case ISD::USUBSAT: { 5651 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5652 "Unexpected custom legalisation"); 5653 if (Subtarget.hasStdExtZbb()) { 5654 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5655 // sign extend allows overflow of the lower 32 bits to be detected on 5656 // the promoted size. 5657 SDValue LHS = 5658 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5659 SDValue RHS = 5660 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5661 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5662 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5663 return; 5664 } 5665 5666 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5667 // promotion for UADDO/USUBO. 5668 Results.push_back(expandAddSubSat(N, DAG)); 5669 return; 5670 } 5671 case ISD::BITCAST: { 5672 EVT VT = N->getValueType(0); 5673 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5674 SDValue Op0 = N->getOperand(0); 5675 EVT Op0VT = Op0.getValueType(); 5676 MVT XLenVT = Subtarget.getXLenVT(); 5677 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5678 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5679 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5680 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5681 Subtarget.hasStdExtF()) { 5682 SDValue FPConv = 5683 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5684 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5685 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5686 isTypeLegal(Op0VT)) { 5687 // Custom-legalize bitcasts from fixed-length vector types to illegal 5688 // scalar types in order to improve codegen. Bitcast the vector to a 5689 // one-element vector type whose element type is the same as the result 5690 // type, and extract the first element. 5691 LLVMContext &Context = *DAG.getContext(); 5692 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5693 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5694 DAG.getConstant(0, DL, XLenVT))); 5695 } 5696 break; 5697 } 5698 case RISCVISD::GREV: 5699 case RISCVISD::GORC: { 5700 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5701 "Unexpected custom legalisation"); 5702 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5703 // This is similar to customLegalizeToWOp, except that we pass the second 5704 // operand (a TargetConstant) straight through: it is already of type 5705 // XLenVT. 5706 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5707 SDValue NewOp0 = 5708 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5709 SDValue NewOp1 = 5710 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5711 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5712 // ReplaceNodeResults requires we maintain the same type for the return 5713 // value. 5714 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5715 break; 5716 } 5717 case RISCVISD::SHFL: { 5718 // There is no SHFLIW instruction, but we can just promote the operation. 5719 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5720 "Unexpected custom legalisation"); 5721 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5722 SDValue NewOp0 = 5723 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5724 SDValue NewOp1 = 5725 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5726 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5727 // ReplaceNodeResults requires we maintain the same type for the return 5728 // value. 5729 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5730 break; 5731 } 5732 case ISD::BSWAP: 5733 case ISD::BITREVERSE: { 5734 MVT VT = N->getSimpleValueType(0); 5735 MVT XLenVT = Subtarget.getXLenVT(); 5736 assert((VT == MVT::i8 || VT == MVT::i16 || 5737 (VT == MVT::i32 && Subtarget.is64Bit())) && 5738 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5739 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5740 unsigned Imm = VT.getSizeInBits() - 1; 5741 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5742 if (N->getOpcode() == ISD::BSWAP) 5743 Imm &= ~0x7U; 5744 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5745 SDValue GREVI = 5746 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5747 // ReplaceNodeResults requires we maintain the same type for the return 5748 // value. 5749 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5750 break; 5751 } 5752 case ISD::FSHL: 5753 case ISD::FSHR: { 5754 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5755 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5756 SDValue NewOp0 = 5757 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5758 SDValue NewOp1 = 5759 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5760 SDValue NewOp2 = 5761 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5762 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5763 // Mask the shift amount to 5 bits. 5764 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5765 DAG.getConstant(0x1f, DL, MVT::i64)); 5766 unsigned Opc = 5767 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5768 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5769 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5770 break; 5771 } 5772 case ISD::EXTRACT_VECTOR_ELT: { 5773 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5774 // type is illegal (currently only vXi64 RV32). 5775 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5776 // transferred to the destination register. We issue two of these from the 5777 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5778 // first element. 5779 SDValue Vec = N->getOperand(0); 5780 SDValue Idx = N->getOperand(1); 5781 5782 // The vector type hasn't been legalized yet so we can't issue target 5783 // specific nodes if it needs legalization. 5784 // FIXME: We would manually legalize if it's important. 5785 if (!isTypeLegal(Vec.getValueType())) 5786 return; 5787 5788 MVT VecVT = Vec.getSimpleValueType(); 5789 5790 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5791 VecVT.getVectorElementType() == MVT::i64 && 5792 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5793 5794 // If this is a fixed vector, we need to convert it to a scalable vector. 5795 MVT ContainerVT = VecVT; 5796 if (VecVT.isFixedLengthVector()) { 5797 ContainerVT = getContainerForFixedLengthVector(VecVT); 5798 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5799 } 5800 5801 MVT XLenVT = Subtarget.getXLenVT(); 5802 5803 // Use a VL of 1 to avoid processing more elements than we need. 5804 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5805 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5806 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5807 5808 // Unless the index is known to be 0, we must slide the vector down to get 5809 // the desired element into index 0. 5810 if (!isNullConstant(Idx)) { 5811 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5812 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5813 } 5814 5815 // Extract the lower XLEN bits of the correct vector element. 5816 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5817 5818 // To extract the upper XLEN bits of the vector element, shift the first 5819 // element right by 32 bits and re-extract the lower XLEN bits. 5820 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5821 DAG.getConstant(32, DL, XLenVT), VL); 5822 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5823 ThirtyTwoV, Mask, VL); 5824 5825 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5826 5827 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5828 break; 5829 } 5830 case ISD::INTRINSIC_WO_CHAIN: { 5831 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5832 switch (IntNo) { 5833 default: 5834 llvm_unreachable( 5835 "Don't know how to custom type legalize this intrinsic!"); 5836 case Intrinsic::riscv_orc_b: { 5837 // Lower to the GORCI encoding for orc.b with the operand extended. 5838 SDValue NewOp = 5839 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5840 // If Zbp is enabled, use GORCIW which will sign extend the result. 5841 unsigned Opc = 5842 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5843 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5844 DAG.getConstant(7, DL, MVT::i64)); 5845 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5846 return; 5847 } 5848 case Intrinsic::riscv_grev: 5849 case Intrinsic::riscv_gorc: { 5850 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5851 "Unexpected custom legalisation"); 5852 SDValue NewOp1 = 5853 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5854 SDValue NewOp2 = 5855 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5856 unsigned Opc = 5857 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5858 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5859 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5860 break; 5861 } 5862 case Intrinsic::riscv_shfl: 5863 case Intrinsic::riscv_unshfl: { 5864 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5865 "Unexpected custom legalisation"); 5866 SDValue NewOp1 = 5867 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5868 SDValue NewOp2 = 5869 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5870 unsigned Opc = 5871 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5872 if (isa<ConstantSDNode>(N->getOperand(2))) { 5873 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5874 DAG.getConstant(0xf, DL, MVT::i64)); 5875 Opc = 5876 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5877 } 5878 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5879 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5880 break; 5881 } 5882 case Intrinsic::riscv_bcompress: 5883 case Intrinsic::riscv_bdecompress: { 5884 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5885 "Unexpected custom legalisation"); 5886 SDValue NewOp1 = 5887 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5888 SDValue NewOp2 = 5889 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5890 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5891 ? RISCVISD::BCOMPRESSW 5892 : RISCVISD::BDECOMPRESSW; 5893 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5894 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5895 break; 5896 } 5897 case Intrinsic::riscv_vmv_x_s: { 5898 EVT VT = N->getValueType(0); 5899 MVT XLenVT = Subtarget.getXLenVT(); 5900 if (VT.bitsLT(XLenVT)) { 5901 // Simple case just extract using vmv.x.s and truncate. 5902 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5903 Subtarget.getXLenVT(), N->getOperand(1)); 5904 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5905 return; 5906 } 5907 5908 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5909 "Unexpected custom legalization"); 5910 5911 // We need to do the move in two steps. 5912 SDValue Vec = N->getOperand(1); 5913 MVT VecVT = Vec.getSimpleValueType(); 5914 5915 // First extract the lower XLEN bits of the element. 5916 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5917 5918 // To extract the upper XLEN bits of the vector element, shift the first 5919 // element right by 32 bits and re-extract the lower XLEN bits. 5920 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5921 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5922 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5923 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5924 DAG.getConstant(32, DL, XLenVT), VL); 5925 SDValue LShr32 = 5926 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5927 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5928 5929 Results.push_back( 5930 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5931 break; 5932 } 5933 } 5934 break; 5935 } 5936 case ISD::VECREDUCE_ADD: 5937 case ISD::VECREDUCE_AND: 5938 case ISD::VECREDUCE_OR: 5939 case ISD::VECREDUCE_XOR: 5940 case ISD::VECREDUCE_SMAX: 5941 case ISD::VECREDUCE_UMAX: 5942 case ISD::VECREDUCE_SMIN: 5943 case ISD::VECREDUCE_UMIN: 5944 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5945 Results.push_back(V); 5946 break; 5947 case ISD::VP_REDUCE_ADD: 5948 case ISD::VP_REDUCE_AND: 5949 case ISD::VP_REDUCE_OR: 5950 case ISD::VP_REDUCE_XOR: 5951 case ISD::VP_REDUCE_SMAX: 5952 case ISD::VP_REDUCE_UMAX: 5953 case ISD::VP_REDUCE_SMIN: 5954 case ISD::VP_REDUCE_UMIN: 5955 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5956 Results.push_back(V); 5957 break; 5958 case ISD::FLT_ROUNDS_: { 5959 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5960 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5961 Results.push_back(Res.getValue(0)); 5962 Results.push_back(Res.getValue(1)); 5963 break; 5964 } 5965 } 5966 } 5967 5968 // A structure to hold one of the bit-manipulation patterns below. Together, a 5969 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5970 // (or (and (shl x, 1), 0xAAAAAAAA), 5971 // (and (srl x, 1), 0x55555555)) 5972 struct RISCVBitmanipPat { 5973 SDValue Op; 5974 unsigned ShAmt; 5975 bool IsSHL; 5976 5977 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5978 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5979 } 5980 }; 5981 5982 // Matches patterns of the form 5983 // (and (shl x, C2), (C1 << C2)) 5984 // (and (srl x, C2), C1) 5985 // (shl (and x, C1), C2) 5986 // (srl (and x, (C1 << C2)), C2) 5987 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5988 // The expected masks for each shift amount are specified in BitmanipMasks where 5989 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5990 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5991 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5992 // XLen is 64. 5993 static Optional<RISCVBitmanipPat> 5994 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5995 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5996 "Unexpected number of masks"); 5997 Optional<uint64_t> Mask; 5998 // Optionally consume a mask around the shift operation. 5999 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6000 Mask = Op.getConstantOperandVal(1); 6001 Op = Op.getOperand(0); 6002 } 6003 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6004 return None; 6005 bool IsSHL = Op.getOpcode() == ISD::SHL; 6006 6007 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6008 return None; 6009 uint64_t ShAmt = Op.getConstantOperandVal(1); 6010 6011 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6012 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6013 return None; 6014 // If we don't have enough masks for 64 bit, then we must be trying to 6015 // match SHFL so we're only allowed to shift 1/4 of the width. 6016 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6017 return None; 6018 6019 SDValue Src = Op.getOperand(0); 6020 6021 // The expected mask is shifted left when the AND is found around SHL 6022 // patterns. 6023 // ((x >> 1) & 0x55555555) 6024 // ((x << 1) & 0xAAAAAAAA) 6025 bool SHLExpMask = IsSHL; 6026 6027 if (!Mask) { 6028 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6029 // the mask is all ones: consume that now. 6030 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6031 Mask = Src.getConstantOperandVal(1); 6032 Src = Src.getOperand(0); 6033 // The expected mask is now in fact shifted left for SRL, so reverse the 6034 // decision. 6035 // ((x & 0xAAAAAAAA) >> 1) 6036 // ((x & 0x55555555) << 1) 6037 SHLExpMask = !SHLExpMask; 6038 } else { 6039 // Use a default shifted mask of all-ones if there's no AND, truncated 6040 // down to the expected width. This simplifies the logic later on. 6041 Mask = maskTrailingOnes<uint64_t>(Width); 6042 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6043 } 6044 } 6045 6046 unsigned MaskIdx = Log2_32(ShAmt); 6047 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6048 6049 if (SHLExpMask) 6050 ExpMask <<= ShAmt; 6051 6052 if (Mask != ExpMask) 6053 return None; 6054 6055 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6056 } 6057 6058 // Matches any of the following bit-manipulation patterns: 6059 // (and (shl x, 1), (0x55555555 << 1)) 6060 // (and (srl x, 1), 0x55555555) 6061 // (shl (and x, 0x55555555), 1) 6062 // (srl (and x, (0x55555555 << 1)), 1) 6063 // where the shift amount and mask may vary thus: 6064 // [1] = 0x55555555 / 0xAAAAAAAA 6065 // [2] = 0x33333333 / 0xCCCCCCCC 6066 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6067 // [8] = 0x00FF00FF / 0xFF00FF00 6068 // [16] = 0x0000FFFF / 0xFFFFFFFF 6069 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6070 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6071 // These are the unshifted masks which we use to match bit-manipulation 6072 // patterns. They may be shifted left in certain circumstances. 6073 static const uint64_t BitmanipMasks[] = { 6074 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6075 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6076 6077 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6078 } 6079 6080 // Match the following pattern as a GREVI(W) operation 6081 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6082 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6083 const RISCVSubtarget &Subtarget) { 6084 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6085 EVT VT = Op.getValueType(); 6086 6087 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6088 auto LHS = matchGREVIPat(Op.getOperand(0)); 6089 auto RHS = matchGREVIPat(Op.getOperand(1)); 6090 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6091 SDLoc DL(Op); 6092 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6093 DAG.getConstant(LHS->ShAmt, DL, VT)); 6094 } 6095 } 6096 return SDValue(); 6097 } 6098 6099 // Matches any the following pattern as a GORCI(W) operation 6100 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6101 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6102 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6103 // Note that with the variant of 3., 6104 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6105 // the inner pattern will first be matched as GREVI and then the outer 6106 // pattern will be matched to GORC via the first rule above. 6107 // 4. (or (rotl/rotr x, bitwidth/2), x) 6108 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6109 const RISCVSubtarget &Subtarget) { 6110 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6111 EVT VT = Op.getValueType(); 6112 6113 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6114 SDLoc DL(Op); 6115 SDValue Op0 = Op.getOperand(0); 6116 SDValue Op1 = Op.getOperand(1); 6117 6118 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6119 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6120 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6121 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6122 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6123 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6124 if ((Reverse.getOpcode() == ISD::ROTL || 6125 Reverse.getOpcode() == ISD::ROTR) && 6126 Reverse.getOperand(0) == X && 6127 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6128 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6129 if (RotAmt == (VT.getSizeInBits() / 2)) 6130 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6131 DAG.getConstant(RotAmt, DL, VT)); 6132 } 6133 return SDValue(); 6134 }; 6135 6136 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6137 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6138 return V; 6139 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6140 return V; 6141 6142 // OR is commutable so canonicalize its OR operand to the left 6143 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6144 std::swap(Op0, Op1); 6145 if (Op0.getOpcode() != ISD::OR) 6146 return SDValue(); 6147 SDValue OrOp0 = Op0.getOperand(0); 6148 SDValue OrOp1 = Op0.getOperand(1); 6149 auto LHS = matchGREVIPat(OrOp0); 6150 // OR is commutable so swap the operands and try again: x might have been 6151 // on the left 6152 if (!LHS) { 6153 std::swap(OrOp0, OrOp1); 6154 LHS = matchGREVIPat(OrOp0); 6155 } 6156 auto RHS = matchGREVIPat(Op1); 6157 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6158 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6159 DAG.getConstant(LHS->ShAmt, DL, VT)); 6160 } 6161 } 6162 return SDValue(); 6163 } 6164 6165 // Matches any of the following bit-manipulation patterns: 6166 // (and (shl x, 1), (0x22222222 << 1)) 6167 // (and (srl x, 1), 0x22222222) 6168 // (shl (and x, 0x22222222), 1) 6169 // (srl (and x, (0x22222222 << 1)), 1) 6170 // where the shift amount and mask may vary thus: 6171 // [1] = 0x22222222 / 0x44444444 6172 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6173 // [4] = 0x00F000F0 / 0x0F000F00 6174 // [8] = 0x0000FF00 / 0x00FF0000 6175 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6176 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6177 // These are the unshifted masks which we use to match bit-manipulation 6178 // patterns. They may be shifted left in certain circumstances. 6179 static const uint64_t BitmanipMasks[] = { 6180 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6181 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6182 6183 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6184 } 6185 6186 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6187 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6188 const RISCVSubtarget &Subtarget) { 6189 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6190 EVT VT = Op.getValueType(); 6191 6192 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6193 return SDValue(); 6194 6195 SDValue Op0 = Op.getOperand(0); 6196 SDValue Op1 = Op.getOperand(1); 6197 6198 // Or is commutable so canonicalize the second OR to the LHS. 6199 if (Op0.getOpcode() != ISD::OR) 6200 std::swap(Op0, Op1); 6201 if (Op0.getOpcode() != ISD::OR) 6202 return SDValue(); 6203 6204 // We found an inner OR, so our operands are the operands of the inner OR 6205 // and the other operand of the outer OR. 6206 SDValue A = Op0.getOperand(0); 6207 SDValue B = Op0.getOperand(1); 6208 SDValue C = Op1; 6209 6210 auto Match1 = matchSHFLPat(A); 6211 auto Match2 = matchSHFLPat(B); 6212 6213 // If neither matched, we failed. 6214 if (!Match1 && !Match2) 6215 return SDValue(); 6216 6217 // We had at least one match. if one failed, try the remaining C operand. 6218 if (!Match1) { 6219 std::swap(A, C); 6220 Match1 = matchSHFLPat(A); 6221 if (!Match1) 6222 return SDValue(); 6223 } else if (!Match2) { 6224 std::swap(B, C); 6225 Match2 = matchSHFLPat(B); 6226 if (!Match2) 6227 return SDValue(); 6228 } 6229 assert(Match1 && Match2); 6230 6231 // Make sure our matches pair up. 6232 if (!Match1->formsPairWith(*Match2)) 6233 return SDValue(); 6234 6235 // All the remains is to make sure C is an AND with the same input, that masks 6236 // out the bits that are being shuffled. 6237 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6238 C.getOperand(0) != Match1->Op) 6239 return SDValue(); 6240 6241 uint64_t Mask = C.getConstantOperandVal(1); 6242 6243 static const uint64_t BitmanipMasks[] = { 6244 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6245 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6246 }; 6247 6248 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6249 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6250 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6251 6252 if (Mask != ExpMask) 6253 return SDValue(); 6254 6255 SDLoc DL(Op); 6256 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6257 DAG.getConstant(Match1->ShAmt, DL, VT)); 6258 } 6259 6260 // Optimize (add (shl x, c0), (shl y, c1)) -> 6261 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6262 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6263 const RISCVSubtarget &Subtarget) { 6264 // Perform this optimization only in the zba extension. 6265 if (!Subtarget.hasStdExtZba()) 6266 return SDValue(); 6267 6268 // Skip for vector types and larger types. 6269 EVT VT = N->getValueType(0); 6270 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6271 return SDValue(); 6272 6273 // The two operand nodes must be SHL and have no other use. 6274 SDValue N0 = N->getOperand(0); 6275 SDValue N1 = N->getOperand(1); 6276 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6277 !N0->hasOneUse() || !N1->hasOneUse()) 6278 return SDValue(); 6279 6280 // Check c0 and c1. 6281 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6282 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6283 if (!N0C || !N1C) 6284 return SDValue(); 6285 int64_t C0 = N0C->getSExtValue(); 6286 int64_t C1 = N1C->getSExtValue(); 6287 if (C0 <= 0 || C1 <= 0) 6288 return SDValue(); 6289 6290 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6291 int64_t Bits = std::min(C0, C1); 6292 int64_t Diff = std::abs(C0 - C1); 6293 if (Diff != 1 && Diff != 2 && Diff != 3) 6294 return SDValue(); 6295 6296 // Build nodes. 6297 SDLoc DL(N); 6298 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6299 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6300 SDValue NA0 = 6301 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6302 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6303 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6304 } 6305 6306 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6307 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6308 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6309 // not undo itself, but they are redundant. 6310 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6311 SDValue Src = N->getOperand(0); 6312 6313 if (Src.getOpcode() != N->getOpcode()) 6314 return SDValue(); 6315 6316 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6317 !isa<ConstantSDNode>(Src.getOperand(1))) 6318 return SDValue(); 6319 6320 unsigned ShAmt1 = N->getConstantOperandVal(1); 6321 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6322 Src = Src.getOperand(0); 6323 6324 unsigned CombinedShAmt; 6325 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6326 CombinedShAmt = ShAmt1 | ShAmt2; 6327 else 6328 CombinedShAmt = ShAmt1 ^ ShAmt2; 6329 6330 if (CombinedShAmt == 0) 6331 return Src; 6332 6333 SDLoc DL(N); 6334 return DAG.getNode( 6335 N->getOpcode(), DL, N->getValueType(0), Src, 6336 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6337 } 6338 6339 // Combine a constant select operand into its use: 6340 // 6341 // (and (select cond, -1, c), x) 6342 // -> (select cond, x, (and x, c)) [AllOnes=1] 6343 // (or (select cond, 0, c), x) 6344 // -> (select cond, x, (or x, c)) [AllOnes=0] 6345 // (xor (select cond, 0, c), x) 6346 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6347 // (add (select cond, 0, c), x) 6348 // -> (select cond, x, (add x, c)) [AllOnes=0] 6349 // (sub x, (select cond, 0, c)) 6350 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6351 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6352 SelectionDAG &DAG, bool AllOnes) { 6353 EVT VT = N->getValueType(0); 6354 6355 // Skip vectors. 6356 if (VT.isVector()) 6357 return SDValue(); 6358 6359 if ((Slct.getOpcode() != ISD::SELECT && 6360 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6361 !Slct.hasOneUse()) 6362 return SDValue(); 6363 6364 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6365 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6366 }; 6367 6368 bool SwapSelectOps; 6369 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6370 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6371 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6372 SDValue NonConstantVal; 6373 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6374 SwapSelectOps = false; 6375 NonConstantVal = FalseVal; 6376 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6377 SwapSelectOps = true; 6378 NonConstantVal = TrueVal; 6379 } else 6380 return SDValue(); 6381 6382 // Slct is now know to be the desired identity constant when CC is true. 6383 TrueVal = OtherOp; 6384 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6385 // Unless SwapSelectOps says the condition should be false. 6386 if (SwapSelectOps) 6387 std::swap(TrueVal, FalseVal); 6388 6389 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6390 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6391 {Slct.getOperand(0), Slct.getOperand(1), 6392 Slct.getOperand(2), TrueVal, FalseVal}); 6393 6394 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6395 {Slct.getOperand(0), TrueVal, FalseVal}); 6396 } 6397 6398 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6399 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6400 bool AllOnes) { 6401 SDValue N0 = N->getOperand(0); 6402 SDValue N1 = N->getOperand(1); 6403 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6404 return Result; 6405 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6406 return Result; 6407 return SDValue(); 6408 } 6409 6410 // Transform (add (mul x, c0), c1) -> 6411 // (add (mul (add x, c1/c0), c0), c1%c0). 6412 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6413 // Or transform (add (mul x, c0), c1) -> 6414 // (mul (add x, c1/c0), c0). 6415 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6416 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6417 const RISCVSubtarget &Subtarget) { 6418 // Skip for vector types and larger types. 6419 EVT VT = N->getValueType(0); 6420 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6421 return SDValue(); 6422 // The first operand node must be a MUL and has no other use. 6423 SDValue N0 = N->getOperand(0); 6424 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6425 return SDValue(); 6426 // Check if c0 and c1 match above conditions. 6427 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6428 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6429 if (!N0C || !N1C) 6430 return SDValue(); 6431 int64_t C0 = N0C->getSExtValue(); 6432 int64_t C1 = N1C->getSExtValue(); 6433 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6434 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6435 return SDValue(); 6436 // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed. 6437 if (isInt<12>(C0 * (C1 / C0))) 6438 return SDValue(); 6439 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6440 SDLoc DL(N); 6441 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6442 DAG.getConstant(C1 / C0, DL, VT)); 6443 SDValue New1 = 6444 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6445 if ((C1 % C0) == 0) 6446 return New1; 6447 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6448 } 6449 6450 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6451 const RISCVSubtarget &Subtarget) { 6452 // Transform (add (mul x, c0), c1) -> 6453 // (add (mul (add x, c1/c0), c0), c1%c0). 6454 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6455 // Or transform (add (mul x, c0), c1) -> 6456 // (mul (add x, c1/c0), c0). 6457 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6458 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6459 return V; 6460 // Fold (add (shl x, c0), (shl y, c1)) -> 6461 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6462 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6463 return V; 6464 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6465 // (select lhs, rhs, cc, x, (add x, y)) 6466 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6467 } 6468 6469 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6470 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6471 // (select lhs, rhs, cc, x, (sub x, y)) 6472 SDValue N0 = N->getOperand(0); 6473 SDValue N1 = N->getOperand(1); 6474 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6475 } 6476 6477 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6478 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6479 // (select lhs, rhs, cc, x, (and x, y)) 6480 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6481 } 6482 6483 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6484 const RISCVSubtarget &Subtarget) { 6485 if (Subtarget.hasStdExtZbp()) { 6486 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6487 return GREV; 6488 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6489 return GORC; 6490 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6491 return SHFL; 6492 } 6493 6494 // fold (or (select cond, 0, y), x) -> 6495 // (select cond, x, (or x, y)) 6496 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6497 } 6498 6499 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6500 // fold (xor (select cond, 0, y), x) -> 6501 // (select cond, x, (xor x, y)) 6502 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6503 } 6504 6505 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6506 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6507 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6508 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6509 // ADDW/SUBW/MULW. 6510 static SDValue performANY_EXTENDCombine(SDNode *N, 6511 TargetLowering::DAGCombinerInfo &DCI, 6512 const RISCVSubtarget &Subtarget) { 6513 if (!Subtarget.is64Bit()) 6514 return SDValue(); 6515 6516 SelectionDAG &DAG = DCI.DAG; 6517 6518 SDValue Src = N->getOperand(0); 6519 EVT VT = N->getValueType(0); 6520 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6521 return SDValue(); 6522 6523 // The opcode must be one that can implicitly sign_extend. 6524 // FIXME: Additional opcodes. 6525 switch (Src.getOpcode()) { 6526 default: 6527 return SDValue(); 6528 case ISD::MUL: 6529 if (!Subtarget.hasStdExtM()) 6530 return SDValue(); 6531 LLVM_FALLTHROUGH; 6532 case ISD::ADD: 6533 case ISD::SUB: 6534 break; 6535 } 6536 6537 // Only handle cases where the result is used by a CopyToReg. That likely 6538 // means the value is a liveout of the basic block. This helps prevent 6539 // infinite combine loops like PR51206. 6540 if (none_of(N->uses(), 6541 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6542 return SDValue(); 6543 6544 SmallVector<SDNode *, 4> SetCCs; 6545 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6546 UE = Src.getNode()->use_end(); 6547 UI != UE; ++UI) { 6548 SDNode *User = *UI; 6549 if (User == N) 6550 continue; 6551 if (UI.getUse().getResNo() != Src.getResNo()) 6552 continue; 6553 // All i32 setccs are legalized by sign extending operands. 6554 if (User->getOpcode() == ISD::SETCC) { 6555 SetCCs.push_back(User); 6556 continue; 6557 } 6558 // We don't know if we can extend this user. 6559 break; 6560 } 6561 6562 // If we don't have any SetCCs, this isn't worthwhile. 6563 if (SetCCs.empty()) 6564 return SDValue(); 6565 6566 SDLoc DL(N); 6567 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6568 DCI.CombineTo(N, SExt); 6569 6570 // Promote all the setccs. 6571 for (SDNode *SetCC : SetCCs) { 6572 SmallVector<SDValue, 4> Ops; 6573 6574 for (unsigned j = 0; j != 2; ++j) { 6575 SDValue SOp = SetCC->getOperand(j); 6576 if (SOp == Src) 6577 Ops.push_back(SExt); 6578 else 6579 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6580 } 6581 6582 Ops.push_back(SetCC->getOperand(2)); 6583 DCI.CombineTo(SetCC, 6584 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6585 } 6586 return SDValue(N, 0); 6587 } 6588 6589 // Try to form VWMUL or VWMULU. 6590 // FIXME: Support VWMULSU. 6591 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6592 SelectionDAG &DAG) { 6593 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6594 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6595 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6596 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6597 return SDValue(); 6598 6599 SDValue Mask = N->getOperand(2); 6600 SDValue VL = N->getOperand(3); 6601 6602 // Make sure the mask and VL match. 6603 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6604 return SDValue(); 6605 6606 MVT VT = N->getSimpleValueType(0); 6607 6608 // Determine the narrow size for a widening multiply. 6609 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6610 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6611 VT.getVectorElementCount()); 6612 6613 SDLoc DL(N); 6614 6615 // See if the other operand is the same opcode. 6616 if (Op0.getOpcode() == Op1.getOpcode()) { 6617 if (!Op1.hasOneUse()) 6618 return SDValue(); 6619 6620 // Make sure the mask and VL match. 6621 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6622 return SDValue(); 6623 6624 Op1 = Op1.getOperand(0); 6625 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6626 // The operand is a splat of a scalar. 6627 6628 // The VL must be the same. 6629 if (Op1.getOperand(1) != VL) 6630 return SDValue(); 6631 6632 // Get the scalar value. 6633 Op1 = Op1.getOperand(0); 6634 6635 // See if have enough sign bits or zero bits in the scalar to use a 6636 // widening multiply by splatting to smaller element size. 6637 unsigned EltBits = VT.getScalarSizeInBits(); 6638 unsigned ScalarBits = Op1.getValueSizeInBits(); 6639 // Make sure we're getting all element bits from the scalar register. 6640 // FIXME: Support implicit sign extension of vmv.v.x? 6641 if (ScalarBits < EltBits) 6642 return SDValue(); 6643 6644 if (IsSignExt) { 6645 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6646 return SDValue(); 6647 } else { 6648 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6649 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6650 return SDValue(); 6651 } 6652 6653 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6654 } else 6655 return SDValue(); 6656 6657 Op0 = Op0.getOperand(0); 6658 6659 // Re-introduce narrower extends if needed. 6660 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6661 if (Op0.getValueType() != NarrowVT) 6662 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6663 if (Op1.getValueType() != NarrowVT) 6664 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6665 6666 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6667 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6668 } 6669 6670 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6671 DAGCombinerInfo &DCI) const { 6672 SelectionDAG &DAG = DCI.DAG; 6673 6674 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6675 // bits are demanded. N will be added to the Worklist if it was not deleted. 6676 // Caller should return SDValue(N, 0) if this returns true. 6677 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6678 SDValue Op = N->getOperand(OpNo); 6679 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6680 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6681 return false; 6682 6683 if (N->getOpcode() != ISD::DELETED_NODE) 6684 DCI.AddToWorklist(N); 6685 return true; 6686 }; 6687 6688 switch (N->getOpcode()) { 6689 default: 6690 break; 6691 case RISCVISD::SplitF64: { 6692 SDValue Op0 = N->getOperand(0); 6693 // If the input to SplitF64 is just BuildPairF64 then the operation is 6694 // redundant. Instead, use BuildPairF64's operands directly. 6695 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6696 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6697 6698 SDLoc DL(N); 6699 6700 // It's cheaper to materialise two 32-bit integers than to load a double 6701 // from the constant pool and transfer it to integer registers through the 6702 // stack. 6703 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6704 APInt V = C->getValueAPF().bitcastToAPInt(); 6705 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6706 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6707 return DCI.CombineTo(N, Lo, Hi); 6708 } 6709 6710 // This is a target-specific version of a DAGCombine performed in 6711 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6712 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6713 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6714 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6715 !Op0.getNode()->hasOneUse()) 6716 break; 6717 SDValue NewSplitF64 = 6718 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6719 Op0.getOperand(0)); 6720 SDValue Lo = NewSplitF64.getValue(0); 6721 SDValue Hi = NewSplitF64.getValue(1); 6722 APInt SignBit = APInt::getSignMask(32); 6723 if (Op0.getOpcode() == ISD::FNEG) { 6724 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6725 DAG.getConstant(SignBit, DL, MVT::i32)); 6726 return DCI.CombineTo(N, Lo, NewHi); 6727 } 6728 assert(Op0.getOpcode() == ISD::FABS); 6729 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6730 DAG.getConstant(~SignBit, DL, MVT::i32)); 6731 return DCI.CombineTo(N, Lo, NewHi); 6732 } 6733 case RISCVISD::SLLW: 6734 case RISCVISD::SRAW: 6735 case RISCVISD::SRLW: 6736 case RISCVISD::ROLW: 6737 case RISCVISD::RORW: { 6738 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6739 if (SimplifyDemandedLowBitsHelper(0, 32) || 6740 SimplifyDemandedLowBitsHelper(1, 5)) 6741 return SDValue(N, 0); 6742 break; 6743 } 6744 case RISCVISD::CLZW: 6745 case RISCVISD::CTZW: { 6746 // Only the lower 32 bits of the first operand are read 6747 if (SimplifyDemandedLowBitsHelper(0, 32)) 6748 return SDValue(N, 0); 6749 break; 6750 } 6751 case RISCVISD::FSL: 6752 case RISCVISD::FSR: { 6753 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6754 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6755 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6756 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6757 return SDValue(N, 0); 6758 break; 6759 } 6760 case RISCVISD::FSLW: 6761 case RISCVISD::FSRW: { 6762 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6763 // read. 6764 if (SimplifyDemandedLowBitsHelper(0, 32) || 6765 SimplifyDemandedLowBitsHelper(1, 32) || 6766 SimplifyDemandedLowBitsHelper(2, 6)) 6767 return SDValue(N, 0); 6768 break; 6769 } 6770 case RISCVISD::GREV: 6771 case RISCVISD::GORC: { 6772 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6773 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6774 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6775 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6776 return SDValue(N, 0); 6777 6778 return combineGREVI_GORCI(N, DCI.DAG); 6779 } 6780 case RISCVISD::GREVW: 6781 case RISCVISD::GORCW: { 6782 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6783 if (SimplifyDemandedLowBitsHelper(0, 32) || 6784 SimplifyDemandedLowBitsHelper(1, 5)) 6785 return SDValue(N, 0); 6786 6787 return combineGREVI_GORCI(N, DCI.DAG); 6788 } 6789 case RISCVISD::SHFL: 6790 case RISCVISD::UNSHFL: { 6791 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6792 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6793 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6794 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6795 return SDValue(N, 0); 6796 6797 break; 6798 } 6799 case RISCVISD::SHFLW: 6800 case RISCVISD::UNSHFLW: { 6801 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6802 SDValue LHS = N->getOperand(0); 6803 SDValue RHS = N->getOperand(1); 6804 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6805 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6806 if (SimplifyDemandedLowBitsHelper(0, 32) || 6807 SimplifyDemandedLowBitsHelper(1, 4)) 6808 return SDValue(N, 0); 6809 6810 break; 6811 } 6812 case RISCVISD::BCOMPRESSW: 6813 case RISCVISD::BDECOMPRESSW: { 6814 // Only the lower 32 bits of LHS and RHS are read. 6815 if (SimplifyDemandedLowBitsHelper(0, 32) || 6816 SimplifyDemandedLowBitsHelper(1, 32)) 6817 return SDValue(N, 0); 6818 6819 break; 6820 } 6821 case RISCVISD::FMV_X_ANYEXTH: 6822 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6823 SDLoc DL(N); 6824 SDValue Op0 = N->getOperand(0); 6825 MVT VT = N->getSimpleValueType(0); 6826 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6827 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6828 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6829 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6830 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6831 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6832 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6833 assert(Op0.getOperand(0).getValueType() == VT && 6834 "Unexpected value type!"); 6835 return Op0.getOperand(0); 6836 } 6837 6838 // This is a target-specific version of a DAGCombine performed in 6839 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6840 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6841 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6842 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6843 !Op0.getNode()->hasOneUse()) 6844 break; 6845 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6846 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6847 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6848 if (Op0.getOpcode() == ISD::FNEG) 6849 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6850 DAG.getConstant(SignBit, DL, VT)); 6851 6852 assert(Op0.getOpcode() == ISD::FABS); 6853 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6854 DAG.getConstant(~SignBit, DL, VT)); 6855 } 6856 case ISD::ADD: 6857 return performADDCombine(N, DAG, Subtarget); 6858 case ISD::SUB: 6859 return performSUBCombine(N, DAG); 6860 case ISD::AND: 6861 return performANDCombine(N, DAG); 6862 case ISD::OR: 6863 return performORCombine(N, DAG, Subtarget); 6864 case ISD::XOR: 6865 return performXORCombine(N, DAG); 6866 case ISD::ANY_EXTEND: 6867 return performANY_EXTENDCombine(N, DCI, Subtarget); 6868 case ISD::ZERO_EXTEND: 6869 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6870 // type legalization. This is safe because fp_to_uint produces poison if 6871 // it overflows. 6872 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6873 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6874 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6875 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6876 N->getOperand(0).getOperand(0)); 6877 return SDValue(); 6878 case RISCVISD::SELECT_CC: { 6879 // Transform 6880 SDValue LHS = N->getOperand(0); 6881 SDValue RHS = N->getOperand(1); 6882 SDValue TrueV = N->getOperand(3); 6883 SDValue FalseV = N->getOperand(4); 6884 6885 // If the True and False values are the same, we don't need a select_cc. 6886 if (TrueV == FalseV) 6887 return TrueV; 6888 6889 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6890 if (!ISD::isIntEqualitySetCC(CCVal)) 6891 break; 6892 6893 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6894 // (select_cc X, Y, lt, trueV, falseV) 6895 // Sometimes the setcc is introduced after select_cc has been formed. 6896 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6897 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6898 // If we're looking for eq 0 instead of ne 0, we need to invert the 6899 // condition. 6900 bool Invert = CCVal == ISD::SETEQ; 6901 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6902 if (Invert) 6903 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6904 6905 SDLoc DL(N); 6906 RHS = LHS.getOperand(1); 6907 LHS = LHS.getOperand(0); 6908 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6909 6910 SDValue TargetCC = DAG.getCondCode(CCVal); 6911 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6912 {LHS, RHS, TargetCC, TrueV, FalseV}); 6913 } 6914 6915 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6916 // (select_cc X, Y, eq/ne, trueV, falseV) 6917 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6918 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6919 {LHS.getOperand(0), LHS.getOperand(1), 6920 N->getOperand(2), TrueV, FalseV}); 6921 // (select_cc X, 1, setne, trueV, falseV) -> 6922 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6923 // This can occur when legalizing some floating point comparisons. 6924 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6925 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6926 SDLoc DL(N); 6927 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6928 SDValue TargetCC = DAG.getCondCode(CCVal); 6929 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6930 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6931 {LHS, RHS, TargetCC, TrueV, FalseV}); 6932 } 6933 6934 break; 6935 } 6936 case RISCVISD::BR_CC: { 6937 SDValue LHS = N->getOperand(1); 6938 SDValue RHS = N->getOperand(2); 6939 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6940 if (!ISD::isIntEqualitySetCC(CCVal)) 6941 break; 6942 6943 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6944 // (br_cc X, Y, lt, dest) 6945 // Sometimes the setcc is introduced after br_cc has been formed. 6946 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6947 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6948 // If we're looking for eq 0 instead of ne 0, we need to invert the 6949 // condition. 6950 bool Invert = CCVal == ISD::SETEQ; 6951 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6952 if (Invert) 6953 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6954 6955 SDLoc DL(N); 6956 RHS = LHS.getOperand(1); 6957 LHS = LHS.getOperand(0); 6958 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6959 6960 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6961 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6962 N->getOperand(4)); 6963 } 6964 6965 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6966 // (br_cc X, Y, eq/ne, trueV, falseV) 6967 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6968 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6969 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6970 N->getOperand(3), N->getOperand(4)); 6971 6972 // (br_cc X, 1, setne, br_cc) -> 6973 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6974 // This can occur when legalizing some floating point comparisons. 6975 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6976 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6977 SDLoc DL(N); 6978 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6979 SDValue TargetCC = DAG.getCondCode(CCVal); 6980 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6981 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6982 N->getOperand(0), LHS, RHS, TargetCC, 6983 N->getOperand(4)); 6984 } 6985 break; 6986 } 6987 case ISD::FCOPYSIGN: { 6988 EVT VT = N->getValueType(0); 6989 if (!VT.isVector()) 6990 break; 6991 // There is a form of VFSGNJ which injects the negated sign of its second 6992 // operand. Try and bubble any FNEG up after the extend/round to produce 6993 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6994 // TRUNC=1. 6995 SDValue In2 = N->getOperand(1); 6996 // Avoid cases where the extend/round has multiple uses, as duplicating 6997 // those is typically more expensive than removing a fneg. 6998 if (!In2.hasOneUse()) 6999 break; 7000 if (In2.getOpcode() != ISD::FP_EXTEND && 7001 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7002 break; 7003 In2 = In2.getOperand(0); 7004 if (In2.getOpcode() != ISD::FNEG) 7005 break; 7006 SDLoc DL(N); 7007 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7008 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7009 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7010 } 7011 case ISD::MGATHER: 7012 case ISD::MSCATTER: 7013 case ISD::VP_GATHER: 7014 case ISD::VP_SCATTER: { 7015 if (!DCI.isBeforeLegalize()) 7016 break; 7017 SDValue Index, ScaleOp; 7018 bool IsIndexScaled = false; 7019 bool IsIndexSigned = false; 7020 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7021 Index = VPGSN->getIndex(); 7022 ScaleOp = VPGSN->getScale(); 7023 IsIndexScaled = VPGSN->isIndexScaled(); 7024 IsIndexSigned = VPGSN->isIndexSigned(); 7025 } else { 7026 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7027 Index = MGSN->getIndex(); 7028 ScaleOp = MGSN->getScale(); 7029 IsIndexScaled = MGSN->isIndexScaled(); 7030 IsIndexSigned = MGSN->isIndexSigned(); 7031 } 7032 EVT IndexVT = Index.getValueType(); 7033 MVT XLenVT = Subtarget.getXLenVT(); 7034 // RISCV indexed loads only support the "unsigned unscaled" addressing 7035 // mode, so anything else must be manually legalized. 7036 bool NeedsIdxLegalization = 7037 IsIndexScaled || 7038 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7039 if (!NeedsIdxLegalization) 7040 break; 7041 7042 SDLoc DL(N); 7043 7044 // Any index legalization should first promote to XLenVT, so we don't lose 7045 // bits when scaling. This may create an illegal index type so we let 7046 // LLVM's legalization take care of the splitting. 7047 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7048 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7049 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7050 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7051 DL, IndexVT, Index); 7052 } 7053 7054 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7055 if (IsIndexScaled && Scale != 1) { 7056 // Manually scale the indices by the element size. 7057 // TODO: Sanitize the scale operand here? 7058 // TODO: For VP nodes, should we use VP_SHL here? 7059 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7060 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7061 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7062 } 7063 7064 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7065 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7066 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7067 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7068 VPGN->getScale(), VPGN->getMask(), 7069 VPGN->getVectorLength()}, 7070 VPGN->getMemOperand(), NewIndexTy); 7071 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7072 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7073 {VPSN->getChain(), VPSN->getValue(), 7074 VPSN->getBasePtr(), Index, VPSN->getScale(), 7075 VPSN->getMask(), VPSN->getVectorLength()}, 7076 VPSN->getMemOperand(), NewIndexTy); 7077 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7078 return DAG.getMaskedGather( 7079 N->getVTList(), MGN->getMemoryVT(), DL, 7080 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7081 MGN->getBasePtr(), Index, MGN->getScale()}, 7082 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7083 const auto *MSN = cast<MaskedScatterSDNode>(N); 7084 return DAG.getMaskedScatter( 7085 N->getVTList(), MSN->getMemoryVT(), DL, 7086 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7087 Index, MSN->getScale()}, 7088 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7089 } 7090 case RISCVISD::SRA_VL: 7091 case RISCVISD::SRL_VL: 7092 case RISCVISD::SHL_VL: { 7093 SDValue ShAmt = N->getOperand(1); 7094 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7095 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7096 SDLoc DL(N); 7097 SDValue VL = N->getOperand(3); 7098 EVT VT = N->getValueType(0); 7099 ShAmt = 7100 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7101 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7102 N->getOperand(2), N->getOperand(3)); 7103 } 7104 break; 7105 } 7106 case ISD::SRA: 7107 case ISD::SRL: 7108 case ISD::SHL: { 7109 SDValue ShAmt = N->getOperand(1); 7110 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7111 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7112 SDLoc DL(N); 7113 EVT VT = N->getValueType(0); 7114 ShAmt = 7115 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7116 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7117 } 7118 break; 7119 } 7120 case RISCVISD::MUL_VL: { 7121 SDValue Op0 = N->getOperand(0); 7122 SDValue Op1 = N->getOperand(1); 7123 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7124 return V; 7125 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7126 return V; 7127 return SDValue(); 7128 } 7129 case ISD::STORE: { 7130 auto *Store = cast<StoreSDNode>(N); 7131 SDValue Val = Store->getValue(); 7132 // Combine store of vmv.x.s to vse with VL of 1. 7133 // FIXME: Support FP. 7134 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7135 SDValue Src = Val.getOperand(0); 7136 EVT VecVT = Src.getValueType(); 7137 EVT MemVT = Store->getMemoryVT(); 7138 // The memory VT and the element type must match. 7139 if (VecVT.getVectorElementType() == MemVT) { 7140 SDLoc DL(N); 7141 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7142 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7143 DAG.getConstant(1, DL, MaskVT), 7144 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7145 Store->getPointerInfo(), 7146 Store->getOriginalAlign(), 7147 Store->getMemOperand()->getFlags()); 7148 } 7149 } 7150 7151 break; 7152 } 7153 } 7154 7155 return SDValue(); 7156 } 7157 7158 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7159 const SDNode *N, CombineLevel Level) const { 7160 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7161 // materialised in fewer instructions than `(OP _, c1)`: 7162 // 7163 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7164 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7165 SDValue N0 = N->getOperand(0); 7166 EVT Ty = N0.getValueType(); 7167 if (Ty.isScalarInteger() && 7168 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7169 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7170 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7171 if (C1 && C2) { 7172 const APInt &C1Int = C1->getAPIntValue(); 7173 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7174 7175 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7176 // and the combine should happen, to potentially allow further combines 7177 // later. 7178 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7179 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7180 return true; 7181 7182 // We can materialise `c1` in an add immediate, so it's "free", and the 7183 // combine should be prevented. 7184 if (C1Int.getMinSignedBits() <= 64 && 7185 isLegalAddImmediate(C1Int.getSExtValue())) 7186 return false; 7187 7188 // Neither constant will fit into an immediate, so find materialisation 7189 // costs. 7190 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7191 Subtarget.getFeatureBits(), 7192 /*CompressionCost*/true); 7193 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7194 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7195 /*CompressionCost*/true); 7196 7197 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7198 // combine should be prevented. 7199 if (C1Cost < ShiftedC1Cost) 7200 return false; 7201 } 7202 } 7203 return true; 7204 } 7205 7206 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7207 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7208 TargetLoweringOpt &TLO) const { 7209 // Delay this optimization as late as possible. 7210 if (!TLO.LegalOps) 7211 return false; 7212 7213 EVT VT = Op.getValueType(); 7214 if (VT.isVector()) 7215 return false; 7216 7217 // Only handle AND for now. 7218 if (Op.getOpcode() != ISD::AND) 7219 return false; 7220 7221 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7222 if (!C) 7223 return false; 7224 7225 const APInt &Mask = C->getAPIntValue(); 7226 7227 // Clear all non-demanded bits initially. 7228 APInt ShrunkMask = Mask & DemandedBits; 7229 7230 // Try to make a smaller immediate by setting undemanded bits. 7231 7232 APInt ExpandedMask = Mask | ~DemandedBits; 7233 7234 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7235 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7236 }; 7237 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7238 if (NewMask == Mask) 7239 return true; 7240 SDLoc DL(Op); 7241 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7242 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7243 return TLO.CombineTo(Op, NewOp); 7244 }; 7245 7246 // If the shrunk mask fits in sign extended 12 bits, let the target 7247 // independent code apply it. 7248 if (ShrunkMask.isSignedIntN(12)) 7249 return false; 7250 7251 // Preserve (and X, 0xffff) when zext.h is supported. 7252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7253 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7254 if (IsLegalMask(NewMask)) 7255 return UseMask(NewMask); 7256 } 7257 7258 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7259 if (VT == MVT::i64) { 7260 APInt NewMask = APInt(64, 0xffffffff); 7261 if (IsLegalMask(NewMask)) 7262 return UseMask(NewMask); 7263 } 7264 7265 // For the remaining optimizations, we need to be able to make a negative 7266 // number through a combination of mask and undemanded bits. 7267 if (!ExpandedMask.isNegative()) 7268 return false; 7269 7270 // What is the fewest number of bits we need to represent the negative number. 7271 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7272 7273 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7274 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7275 APInt NewMask = ShrunkMask; 7276 if (MinSignedBits <= 12) 7277 NewMask.setBitsFrom(11); 7278 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7279 NewMask.setBitsFrom(31); 7280 else 7281 return false; 7282 7283 // Sanity check that our new mask is a subset of the demanded mask. 7284 assert(IsLegalMask(NewMask)); 7285 return UseMask(NewMask); 7286 } 7287 7288 static void computeGREV(APInt &Src, unsigned ShAmt) { 7289 ShAmt &= Src.getBitWidth() - 1; 7290 uint64_t x = Src.getZExtValue(); 7291 if (ShAmt & 1) 7292 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7293 if (ShAmt & 2) 7294 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7295 if (ShAmt & 4) 7296 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7297 if (ShAmt & 8) 7298 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7299 if (ShAmt & 16) 7300 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7301 if (ShAmt & 32) 7302 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7303 Src = x; 7304 } 7305 7306 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7307 KnownBits &Known, 7308 const APInt &DemandedElts, 7309 const SelectionDAG &DAG, 7310 unsigned Depth) const { 7311 unsigned BitWidth = Known.getBitWidth(); 7312 unsigned Opc = Op.getOpcode(); 7313 assert((Opc >= ISD::BUILTIN_OP_END || 7314 Opc == ISD::INTRINSIC_WO_CHAIN || 7315 Opc == ISD::INTRINSIC_W_CHAIN || 7316 Opc == ISD::INTRINSIC_VOID) && 7317 "Should use MaskedValueIsZero if you don't know whether Op" 7318 " is a target node!"); 7319 7320 Known.resetAll(); 7321 switch (Opc) { 7322 default: break; 7323 case RISCVISD::SELECT_CC: { 7324 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7325 // If we don't know any bits, early out. 7326 if (Known.isUnknown()) 7327 break; 7328 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7329 7330 // Only known if known in both the LHS and RHS. 7331 Known = KnownBits::commonBits(Known, Known2); 7332 break; 7333 } 7334 case RISCVISD::REMUW: { 7335 KnownBits Known2; 7336 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7337 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7338 // We only care about the lower 32 bits. 7339 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7340 // Restore the original width by sign extending. 7341 Known = Known.sext(BitWidth); 7342 break; 7343 } 7344 case RISCVISD::DIVUW: { 7345 KnownBits Known2; 7346 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7347 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7348 // We only care about the lower 32 bits. 7349 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7350 // Restore the original width by sign extending. 7351 Known = Known.sext(BitWidth); 7352 break; 7353 } 7354 case RISCVISD::CTZW: { 7355 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7356 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7357 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7358 Known.Zero.setBitsFrom(LowBits); 7359 break; 7360 } 7361 case RISCVISD::CLZW: { 7362 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7363 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7364 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7365 Known.Zero.setBitsFrom(LowBits); 7366 break; 7367 } 7368 case RISCVISD::GREV: 7369 case RISCVISD::GREVW: { 7370 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7371 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7372 if (Opc == RISCVISD::GREVW) 7373 Known = Known.trunc(32); 7374 unsigned ShAmt = C->getZExtValue(); 7375 computeGREV(Known.Zero, ShAmt); 7376 computeGREV(Known.One, ShAmt); 7377 if (Opc == RISCVISD::GREVW) 7378 Known = Known.sext(BitWidth); 7379 } 7380 break; 7381 } 7382 case RISCVISD::READ_VLENB: 7383 // We assume VLENB is at least 16 bytes. 7384 Known.Zero.setLowBits(4); 7385 // We assume VLENB is no more than 65536 / 8 bytes. 7386 Known.Zero.setBitsFrom(14); 7387 break; 7388 case ISD::INTRINSIC_W_CHAIN: { 7389 unsigned IntNo = Op.getConstantOperandVal(1); 7390 switch (IntNo) { 7391 default: 7392 // We can't do anything for most intrinsics. 7393 break; 7394 case Intrinsic::riscv_vsetvli: 7395 case Intrinsic::riscv_vsetvlimax: 7396 // Assume that VL output is positive and would fit in an int32_t. 7397 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7398 if (BitWidth >= 32) 7399 Known.Zero.setBitsFrom(31); 7400 break; 7401 } 7402 break; 7403 } 7404 } 7405 } 7406 7407 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7408 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7409 unsigned Depth) const { 7410 switch (Op.getOpcode()) { 7411 default: 7412 break; 7413 case RISCVISD::SELECT_CC: { 7414 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7415 if (Tmp == 1) return 1; // Early out. 7416 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7417 return std::min(Tmp, Tmp2); 7418 } 7419 case RISCVISD::SLLW: 7420 case RISCVISD::SRAW: 7421 case RISCVISD::SRLW: 7422 case RISCVISD::DIVW: 7423 case RISCVISD::DIVUW: 7424 case RISCVISD::REMUW: 7425 case RISCVISD::ROLW: 7426 case RISCVISD::RORW: 7427 case RISCVISD::GREVW: 7428 case RISCVISD::GORCW: 7429 case RISCVISD::FSLW: 7430 case RISCVISD::FSRW: 7431 case RISCVISD::SHFLW: 7432 case RISCVISD::UNSHFLW: 7433 case RISCVISD::BCOMPRESSW: 7434 case RISCVISD::BDECOMPRESSW: 7435 case RISCVISD::FCVT_W_RTZ_RV64: 7436 case RISCVISD::FCVT_WU_RTZ_RV64: 7437 // TODO: As the result is sign-extended, this is conservatively correct. A 7438 // more precise answer could be calculated for SRAW depending on known 7439 // bits in the shift amount. 7440 return 33; 7441 case RISCVISD::SHFL: 7442 case RISCVISD::UNSHFL: { 7443 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7444 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7445 // will stay within the upper 32 bits. If there were more than 32 sign bits 7446 // before there will be at least 33 sign bits after. 7447 if (Op.getValueType() == MVT::i64 && 7448 isa<ConstantSDNode>(Op.getOperand(1)) && 7449 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7450 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7451 if (Tmp > 32) 7452 return 33; 7453 } 7454 break; 7455 } 7456 case RISCVISD::VMV_X_S: 7457 // The number of sign bits of the scalar result is computed by obtaining the 7458 // element type of the input vector operand, subtracting its width from the 7459 // XLEN, and then adding one (sign bit within the element type). If the 7460 // element type is wider than XLen, the least-significant XLEN bits are 7461 // taken. 7462 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7463 return 1; 7464 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7465 } 7466 7467 return 1; 7468 } 7469 7470 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7471 MachineBasicBlock *BB) { 7472 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7473 7474 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7475 // Should the count have wrapped while it was being read, we need to try 7476 // again. 7477 // ... 7478 // read: 7479 // rdcycleh x3 # load high word of cycle 7480 // rdcycle x2 # load low word of cycle 7481 // rdcycleh x4 # load high word of cycle 7482 // bne x3, x4, read # check if high word reads match, otherwise try again 7483 // ... 7484 7485 MachineFunction &MF = *BB->getParent(); 7486 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7487 MachineFunction::iterator It = ++BB->getIterator(); 7488 7489 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7490 MF.insert(It, LoopMBB); 7491 7492 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7493 MF.insert(It, DoneMBB); 7494 7495 // Transfer the remainder of BB and its successor edges to DoneMBB. 7496 DoneMBB->splice(DoneMBB->begin(), BB, 7497 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7498 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7499 7500 BB->addSuccessor(LoopMBB); 7501 7502 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7503 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7504 Register LoReg = MI.getOperand(0).getReg(); 7505 Register HiReg = MI.getOperand(1).getReg(); 7506 DebugLoc DL = MI.getDebugLoc(); 7507 7508 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7509 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7510 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7511 .addReg(RISCV::X0); 7512 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7513 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7514 .addReg(RISCV::X0); 7515 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7516 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7517 .addReg(RISCV::X0); 7518 7519 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7520 .addReg(HiReg) 7521 .addReg(ReadAgainReg) 7522 .addMBB(LoopMBB); 7523 7524 LoopMBB->addSuccessor(LoopMBB); 7525 LoopMBB->addSuccessor(DoneMBB); 7526 7527 MI.eraseFromParent(); 7528 7529 return DoneMBB; 7530 } 7531 7532 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7533 MachineBasicBlock *BB) { 7534 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7535 7536 MachineFunction &MF = *BB->getParent(); 7537 DebugLoc DL = MI.getDebugLoc(); 7538 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7539 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7540 Register LoReg = MI.getOperand(0).getReg(); 7541 Register HiReg = MI.getOperand(1).getReg(); 7542 Register SrcReg = MI.getOperand(2).getReg(); 7543 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7544 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7545 7546 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7547 RI); 7548 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7549 MachineMemOperand *MMOLo = 7550 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7551 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7552 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7553 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7554 .addFrameIndex(FI) 7555 .addImm(0) 7556 .addMemOperand(MMOLo); 7557 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7558 .addFrameIndex(FI) 7559 .addImm(4) 7560 .addMemOperand(MMOHi); 7561 MI.eraseFromParent(); // The pseudo instruction is gone now. 7562 return BB; 7563 } 7564 7565 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7566 MachineBasicBlock *BB) { 7567 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7568 "Unexpected instruction"); 7569 7570 MachineFunction &MF = *BB->getParent(); 7571 DebugLoc DL = MI.getDebugLoc(); 7572 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7573 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7574 Register DstReg = MI.getOperand(0).getReg(); 7575 Register LoReg = MI.getOperand(1).getReg(); 7576 Register HiReg = MI.getOperand(2).getReg(); 7577 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7578 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7579 7580 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7581 MachineMemOperand *MMOLo = 7582 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7583 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7584 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7585 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7586 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7587 .addFrameIndex(FI) 7588 .addImm(0) 7589 .addMemOperand(MMOLo); 7590 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7591 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7592 .addFrameIndex(FI) 7593 .addImm(4) 7594 .addMemOperand(MMOHi); 7595 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7596 MI.eraseFromParent(); // The pseudo instruction is gone now. 7597 return BB; 7598 } 7599 7600 static bool isSelectPseudo(MachineInstr &MI) { 7601 switch (MI.getOpcode()) { 7602 default: 7603 return false; 7604 case RISCV::Select_GPR_Using_CC_GPR: 7605 case RISCV::Select_FPR16_Using_CC_GPR: 7606 case RISCV::Select_FPR32_Using_CC_GPR: 7607 case RISCV::Select_FPR64_Using_CC_GPR: 7608 return true; 7609 } 7610 } 7611 7612 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7613 MachineBasicBlock *BB, 7614 const RISCVSubtarget &Subtarget) { 7615 // To "insert" Select_* instructions, we actually have to insert the triangle 7616 // control-flow pattern. The incoming instructions know the destination vreg 7617 // to set, the condition code register to branch on, the true/false values to 7618 // select between, and the condcode to use to select the appropriate branch. 7619 // 7620 // We produce the following control flow: 7621 // HeadMBB 7622 // | \ 7623 // | IfFalseMBB 7624 // | / 7625 // TailMBB 7626 // 7627 // When we find a sequence of selects we attempt to optimize their emission 7628 // by sharing the control flow. Currently we only handle cases where we have 7629 // multiple selects with the exact same condition (same LHS, RHS and CC). 7630 // The selects may be interleaved with other instructions if the other 7631 // instructions meet some requirements we deem safe: 7632 // - They are debug instructions. Otherwise, 7633 // - They do not have side-effects, do not access memory and their inputs do 7634 // not depend on the results of the select pseudo-instructions. 7635 // The TrueV/FalseV operands of the selects cannot depend on the result of 7636 // previous selects in the sequence. 7637 // These conditions could be further relaxed. See the X86 target for a 7638 // related approach and more information. 7639 Register LHS = MI.getOperand(1).getReg(); 7640 Register RHS = MI.getOperand(2).getReg(); 7641 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7642 7643 SmallVector<MachineInstr *, 4> SelectDebugValues; 7644 SmallSet<Register, 4> SelectDests; 7645 SelectDests.insert(MI.getOperand(0).getReg()); 7646 7647 MachineInstr *LastSelectPseudo = &MI; 7648 7649 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7650 SequenceMBBI != E; ++SequenceMBBI) { 7651 if (SequenceMBBI->isDebugInstr()) 7652 continue; 7653 else if (isSelectPseudo(*SequenceMBBI)) { 7654 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7655 SequenceMBBI->getOperand(2).getReg() != RHS || 7656 SequenceMBBI->getOperand(3).getImm() != CC || 7657 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7658 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7659 break; 7660 LastSelectPseudo = &*SequenceMBBI; 7661 SequenceMBBI->collectDebugValues(SelectDebugValues); 7662 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7663 } else { 7664 if (SequenceMBBI->hasUnmodeledSideEffects() || 7665 SequenceMBBI->mayLoadOrStore()) 7666 break; 7667 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7668 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7669 })) 7670 break; 7671 } 7672 } 7673 7674 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7675 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7676 DebugLoc DL = MI.getDebugLoc(); 7677 MachineFunction::iterator I = ++BB->getIterator(); 7678 7679 MachineBasicBlock *HeadMBB = BB; 7680 MachineFunction *F = BB->getParent(); 7681 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7682 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7683 7684 F->insert(I, IfFalseMBB); 7685 F->insert(I, TailMBB); 7686 7687 // Transfer debug instructions associated with the selects to TailMBB. 7688 for (MachineInstr *DebugInstr : SelectDebugValues) { 7689 TailMBB->push_back(DebugInstr->removeFromParent()); 7690 } 7691 7692 // Move all instructions after the sequence to TailMBB. 7693 TailMBB->splice(TailMBB->end(), HeadMBB, 7694 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7695 // Update machine-CFG edges by transferring all successors of the current 7696 // block to the new block which will contain the Phi nodes for the selects. 7697 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7698 // Set the successors for HeadMBB. 7699 HeadMBB->addSuccessor(IfFalseMBB); 7700 HeadMBB->addSuccessor(TailMBB); 7701 7702 // Insert appropriate branch. 7703 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7704 .addReg(LHS) 7705 .addReg(RHS) 7706 .addMBB(TailMBB); 7707 7708 // IfFalseMBB just falls through to TailMBB. 7709 IfFalseMBB->addSuccessor(TailMBB); 7710 7711 // Create PHIs for all of the select pseudo-instructions. 7712 auto SelectMBBI = MI.getIterator(); 7713 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7714 auto InsertionPoint = TailMBB->begin(); 7715 while (SelectMBBI != SelectEnd) { 7716 auto Next = std::next(SelectMBBI); 7717 if (isSelectPseudo(*SelectMBBI)) { 7718 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7719 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7720 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7721 .addReg(SelectMBBI->getOperand(4).getReg()) 7722 .addMBB(HeadMBB) 7723 .addReg(SelectMBBI->getOperand(5).getReg()) 7724 .addMBB(IfFalseMBB); 7725 SelectMBBI->eraseFromParent(); 7726 } 7727 SelectMBBI = Next; 7728 } 7729 7730 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7731 return TailMBB; 7732 } 7733 7734 MachineBasicBlock * 7735 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7736 MachineBasicBlock *BB) const { 7737 switch (MI.getOpcode()) { 7738 default: 7739 llvm_unreachable("Unexpected instr type to insert"); 7740 case RISCV::ReadCycleWide: 7741 assert(!Subtarget.is64Bit() && 7742 "ReadCycleWrite is only to be used on riscv32"); 7743 return emitReadCycleWidePseudo(MI, BB); 7744 case RISCV::Select_GPR_Using_CC_GPR: 7745 case RISCV::Select_FPR16_Using_CC_GPR: 7746 case RISCV::Select_FPR32_Using_CC_GPR: 7747 case RISCV::Select_FPR64_Using_CC_GPR: 7748 return emitSelectPseudo(MI, BB, Subtarget); 7749 case RISCV::BuildPairF64Pseudo: 7750 return emitBuildPairF64Pseudo(MI, BB); 7751 case RISCV::SplitF64Pseudo: 7752 return emitSplitF64Pseudo(MI, BB); 7753 } 7754 } 7755 7756 // Calling Convention Implementation. 7757 // The expectations for frontend ABI lowering vary from target to target. 7758 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7759 // details, but this is a longer term goal. For now, we simply try to keep the 7760 // role of the frontend as simple and well-defined as possible. The rules can 7761 // be summarised as: 7762 // * Never split up large scalar arguments. We handle them here. 7763 // * If a hardfloat calling convention is being used, and the struct may be 7764 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7765 // available, then pass as two separate arguments. If either the GPRs or FPRs 7766 // are exhausted, then pass according to the rule below. 7767 // * If a struct could never be passed in registers or directly in a stack 7768 // slot (as it is larger than 2*XLEN and the floating point rules don't 7769 // apply), then pass it using a pointer with the byval attribute. 7770 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7771 // word-sized array or a 2*XLEN scalar (depending on alignment). 7772 // * The frontend can determine whether a struct is returned by reference or 7773 // not based on its size and fields. If it will be returned by reference, the 7774 // frontend must modify the prototype so a pointer with the sret annotation is 7775 // passed as the first argument. This is not necessary for large scalar 7776 // returns. 7777 // * Struct return values and varargs should be coerced to structs containing 7778 // register-size fields in the same situations they would be for fixed 7779 // arguments. 7780 7781 static const MCPhysReg ArgGPRs[] = { 7782 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7783 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7784 }; 7785 static const MCPhysReg ArgFPR16s[] = { 7786 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7787 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7788 }; 7789 static const MCPhysReg ArgFPR32s[] = { 7790 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7791 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7792 }; 7793 static const MCPhysReg ArgFPR64s[] = { 7794 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7795 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7796 }; 7797 // This is an interim calling convention and it may be changed in the future. 7798 static const MCPhysReg ArgVRs[] = { 7799 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7800 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7801 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7802 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7803 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7804 RISCV::V20M2, RISCV::V22M2}; 7805 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7806 RISCV::V20M4}; 7807 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7808 7809 // Pass a 2*XLEN argument that has been split into two XLEN values through 7810 // registers or the stack as necessary. 7811 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7812 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7813 MVT ValVT2, MVT LocVT2, 7814 ISD::ArgFlagsTy ArgFlags2) { 7815 unsigned XLenInBytes = XLen / 8; 7816 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7817 // At least one half can be passed via register. 7818 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7819 VA1.getLocVT(), CCValAssign::Full)); 7820 } else { 7821 // Both halves must be passed on the stack, with proper alignment. 7822 Align StackAlign = 7823 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7824 State.addLoc( 7825 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7826 State.AllocateStack(XLenInBytes, StackAlign), 7827 VA1.getLocVT(), CCValAssign::Full)); 7828 State.addLoc(CCValAssign::getMem( 7829 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7830 LocVT2, CCValAssign::Full)); 7831 return false; 7832 } 7833 7834 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7835 // The second half can also be passed via register. 7836 State.addLoc( 7837 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7838 } else { 7839 // The second half is passed via the stack, without additional alignment. 7840 State.addLoc(CCValAssign::getMem( 7841 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7842 LocVT2, CCValAssign::Full)); 7843 } 7844 7845 return false; 7846 } 7847 7848 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7849 Optional<unsigned> FirstMaskArgument, 7850 CCState &State, const RISCVTargetLowering &TLI) { 7851 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7852 if (RC == &RISCV::VRRegClass) { 7853 // Assign the first mask argument to V0. 7854 // This is an interim calling convention and it may be changed in the 7855 // future. 7856 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7857 return State.AllocateReg(RISCV::V0); 7858 return State.AllocateReg(ArgVRs); 7859 } 7860 if (RC == &RISCV::VRM2RegClass) 7861 return State.AllocateReg(ArgVRM2s); 7862 if (RC == &RISCV::VRM4RegClass) 7863 return State.AllocateReg(ArgVRM4s); 7864 if (RC == &RISCV::VRM8RegClass) 7865 return State.AllocateReg(ArgVRM8s); 7866 llvm_unreachable("Unhandled register class for ValueType"); 7867 } 7868 7869 // Implements the RISC-V calling convention. Returns true upon failure. 7870 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7871 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7872 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7873 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7874 Optional<unsigned> FirstMaskArgument) { 7875 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7876 assert(XLen == 32 || XLen == 64); 7877 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7878 7879 // Any return value split in to more than two values can't be returned 7880 // directly. Vectors are returned via the available vector registers. 7881 if (!LocVT.isVector() && IsRet && ValNo > 1) 7882 return true; 7883 7884 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7885 // variadic argument, or if no F16/F32 argument registers are available. 7886 bool UseGPRForF16_F32 = true; 7887 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7888 // variadic argument, or if no F64 argument registers are available. 7889 bool UseGPRForF64 = true; 7890 7891 switch (ABI) { 7892 default: 7893 llvm_unreachable("Unexpected ABI"); 7894 case RISCVABI::ABI_ILP32: 7895 case RISCVABI::ABI_LP64: 7896 break; 7897 case RISCVABI::ABI_ILP32F: 7898 case RISCVABI::ABI_LP64F: 7899 UseGPRForF16_F32 = !IsFixed; 7900 break; 7901 case RISCVABI::ABI_ILP32D: 7902 case RISCVABI::ABI_LP64D: 7903 UseGPRForF16_F32 = !IsFixed; 7904 UseGPRForF64 = !IsFixed; 7905 break; 7906 } 7907 7908 // FPR16, FPR32, and FPR64 alias each other. 7909 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7910 UseGPRForF16_F32 = true; 7911 UseGPRForF64 = true; 7912 } 7913 7914 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7915 // similar local variables rather than directly checking against the target 7916 // ABI. 7917 7918 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7919 LocVT = XLenVT; 7920 LocInfo = CCValAssign::BCvt; 7921 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7922 LocVT = MVT::i64; 7923 LocInfo = CCValAssign::BCvt; 7924 } 7925 7926 // If this is a variadic argument, the RISC-V calling convention requires 7927 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7928 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7929 // be used regardless of whether the original argument was split during 7930 // legalisation or not. The argument will not be passed by registers if the 7931 // original type is larger than 2*XLEN, so the register alignment rule does 7932 // not apply. 7933 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7934 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7935 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7936 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7937 // Skip 'odd' register if necessary. 7938 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7939 State.AllocateReg(ArgGPRs); 7940 } 7941 7942 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7943 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7944 State.getPendingArgFlags(); 7945 7946 assert(PendingLocs.size() == PendingArgFlags.size() && 7947 "PendingLocs and PendingArgFlags out of sync"); 7948 7949 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7950 // registers are exhausted. 7951 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7952 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7953 "Can't lower f64 if it is split"); 7954 // Depending on available argument GPRS, f64 may be passed in a pair of 7955 // GPRs, split between a GPR and the stack, or passed completely on the 7956 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7957 // cases. 7958 Register Reg = State.AllocateReg(ArgGPRs); 7959 LocVT = MVT::i32; 7960 if (!Reg) { 7961 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7962 State.addLoc( 7963 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7964 return false; 7965 } 7966 if (!State.AllocateReg(ArgGPRs)) 7967 State.AllocateStack(4, Align(4)); 7968 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7969 return false; 7970 } 7971 7972 // Fixed-length vectors are located in the corresponding scalable-vector 7973 // container types. 7974 if (ValVT.isFixedLengthVector()) 7975 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7976 7977 // Split arguments might be passed indirectly, so keep track of the pending 7978 // values. Split vectors are passed via a mix of registers and indirectly, so 7979 // treat them as we would any other argument. 7980 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7981 LocVT = XLenVT; 7982 LocInfo = CCValAssign::Indirect; 7983 PendingLocs.push_back( 7984 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7985 PendingArgFlags.push_back(ArgFlags); 7986 if (!ArgFlags.isSplitEnd()) { 7987 return false; 7988 } 7989 } 7990 7991 // If the split argument only had two elements, it should be passed directly 7992 // in registers or on the stack. 7993 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7994 PendingLocs.size() <= 2) { 7995 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7996 // Apply the normal calling convention rules to the first half of the 7997 // split argument. 7998 CCValAssign VA = PendingLocs[0]; 7999 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8000 PendingLocs.clear(); 8001 PendingArgFlags.clear(); 8002 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8003 ArgFlags); 8004 } 8005 8006 // Allocate to a register if possible, or else a stack slot. 8007 Register Reg; 8008 unsigned StoreSizeBytes = XLen / 8; 8009 Align StackAlign = Align(XLen / 8); 8010 8011 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8012 Reg = State.AllocateReg(ArgFPR16s); 8013 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8014 Reg = State.AllocateReg(ArgFPR32s); 8015 else if (ValVT == MVT::f64 && !UseGPRForF64) 8016 Reg = State.AllocateReg(ArgFPR64s); 8017 else if (ValVT.isVector()) { 8018 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8019 if (!Reg) { 8020 // For return values, the vector must be passed fully via registers or 8021 // via the stack. 8022 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8023 // but we're using all of them. 8024 if (IsRet) 8025 return true; 8026 // Try using a GPR to pass the address 8027 if ((Reg = State.AllocateReg(ArgGPRs))) { 8028 LocVT = XLenVT; 8029 LocInfo = CCValAssign::Indirect; 8030 } else if (ValVT.isScalableVector()) { 8031 report_fatal_error("Unable to pass scalable vector types on the stack"); 8032 } else { 8033 // Pass fixed-length vectors on the stack. 8034 LocVT = ValVT; 8035 StoreSizeBytes = ValVT.getStoreSize(); 8036 // Align vectors to their element sizes, being careful for vXi1 8037 // vectors. 8038 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8039 } 8040 } 8041 } else { 8042 Reg = State.AllocateReg(ArgGPRs); 8043 } 8044 8045 unsigned StackOffset = 8046 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8047 8048 // If we reach this point and PendingLocs is non-empty, we must be at the 8049 // end of a split argument that must be passed indirectly. 8050 if (!PendingLocs.empty()) { 8051 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8052 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8053 8054 for (auto &It : PendingLocs) { 8055 if (Reg) 8056 It.convertToReg(Reg); 8057 else 8058 It.convertToMem(StackOffset); 8059 State.addLoc(It); 8060 } 8061 PendingLocs.clear(); 8062 PendingArgFlags.clear(); 8063 return false; 8064 } 8065 8066 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8067 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 8068 "Expected an XLenVT or vector types at this stage"); 8069 8070 if (Reg) { 8071 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8072 return false; 8073 } 8074 8075 // When a floating-point value is passed on the stack, no bit-conversion is 8076 // needed. 8077 if (ValVT.isFloatingPoint()) { 8078 LocVT = ValVT; 8079 LocInfo = CCValAssign::Full; 8080 } 8081 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8082 return false; 8083 } 8084 8085 template <typename ArgTy> 8086 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8087 for (const auto &ArgIdx : enumerate(Args)) { 8088 MVT ArgVT = ArgIdx.value().VT; 8089 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8090 return ArgIdx.index(); 8091 } 8092 return None; 8093 } 8094 8095 void RISCVTargetLowering::analyzeInputArgs( 8096 MachineFunction &MF, CCState &CCInfo, 8097 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8098 RISCVCCAssignFn Fn) const { 8099 unsigned NumArgs = Ins.size(); 8100 FunctionType *FType = MF.getFunction().getFunctionType(); 8101 8102 Optional<unsigned> FirstMaskArgument; 8103 if (Subtarget.hasStdExtV()) 8104 FirstMaskArgument = preAssignMask(Ins); 8105 8106 for (unsigned i = 0; i != NumArgs; ++i) { 8107 MVT ArgVT = Ins[i].VT; 8108 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8109 8110 Type *ArgTy = nullptr; 8111 if (IsRet) 8112 ArgTy = FType->getReturnType(); 8113 else if (Ins[i].isOrigArg()) 8114 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8115 8116 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8117 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8118 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8119 FirstMaskArgument)) { 8120 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8121 << EVT(ArgVT).getEVTString() << '\n'); 8122 llvm_unreachable(nullptr); 8123 } 8124 } 8125 } 8126 8127 void RISCVTargetLowering::analyzeOutputArgs( 8128 MachineFunction &MF, CCState &CCInfo, 8129 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8130 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8131 unsigned NumArgs = Outs.size(); 8132 8133 Optional<unsigned> FirstMaskArgument; 8134 if (Subtarget.hasStdExtV()) 8135 FirstMaskArgument = preAssignMask(Outs); 8136 8137 for (unsigned i = 0; i != NumArgs; i++) { 8138 MVT ArgVT = Outs[i].VT; 8139 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8140 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8141 8142 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8143 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8144 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8145 FirstMaskArgument)) { 8146 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8147 << EVT(ArgVT).getEVTString() << "\n"); 8148 llvm_unreachable(nullptr); 8149 } 8150 } 8151 } 8152 8153 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8154 // values. 8155 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8156 const CCValAssign &VA, const SDLoc &DL, 8157 const RISCVSubtarget &Subtarget) { 8158 switch (VA.getLocInfo()) { 8159 default: 8160 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8161 case CCValAssign::Full: 8162 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8163 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8164 break; 8165 case CCValAssign::BCvt: 8166 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8167 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8168 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8169 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8170 else 8171 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8172 break; 8173 } 8174 return Val; 8175 } 8176 8177 // The caller is responsible for loading the full value if the argument is 8178 // passed with CCValAssign::Indirect. 8179 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8180 const CCValAssign &VA, const SDLoc &DL, 8181 const RISCVTargetLowering &TLI) { 8182 MachineFunction &MF = DAG.getMachineFunction(); 8183 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8184 EVT LocVT = VA.getLocVT(); 8185 SDValue Val; 8186 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8187 Register VReg = RegInfo.createVirtualRegister(RC); 8188 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8189 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8190 8191 if (VA.getLocInfo() == CCValAssign::Indirect) 8192 return Val; 8193 8194 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8195 } 8196 8197 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8198 const CCValAssign &VA, const SDLoc &DL, 8199 const RISCVSubtarget &Subtarget) { 8200 EVT LocVT = VA.getLocVT(); 8201 8202 switch (VA.getLocInfo()) { 8203 default: 8204 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8205 case CCValAssign::Full: 8206 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8207 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8208 break; 8209 case CCValAssign::BCvt: 8210 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8211 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8212 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8213 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8214 else 8215 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8216 break; 8217 } 8218 return Val; 8219 } 8220 8221 // The caller is responsible for loading the full value if the argument is 8222 // passed with CCValAssign::Indirect. 8223 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8224 const CCValAssign &VA, const SDLoc &DL) { 8225 MachineFunction &MF = DAG.getMachineFunction(); 8226 MachineFrameInfo &MFI = MF.getFrameInfo(); 8227 EVT LocVT = VA.getLocVT(); 8228 EVT ValVT = VA.getValVT(); 8229 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8230 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8231 /*Immutable=*/true); 8232 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8233 SDValue Val; 8234 8235 ISD::LoadExtType ExtType; 8236 switch (VA.getLocInfo()) { 8237 default: 8238 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8239 case CCValAssign::Full: 8240 case CCValAssign::Indirect: 8241 case CCValAssign::BCvt: 8242 ExtType = ISD::NON_EXTLOAD; 8243 break; 8244 } 8245 Val = DAG.getExtLoad( 8246 ExtType, DL, LocVT, Chain, FIN, 8247 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8248 return Val; 8249 } 8250 8251 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8252 const CCValAssign &VA, const SDLoc &DL) { 8253 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8254 "Unexpected VA"); 8255 MachineFunction &MF = DAG.getMachineFunction(); 8256 MachineFrameInfo &MFI = MF.getFrameInfo(); 8257 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8258 8259 if (VA.isMemLoc()) { 8260 // f64 is passed on the stack. 8261 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8262 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8263 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8264 MachinePointerInfo::getFixedStack(MF, FI)); 8265 } 8266 8267 assert(VA.isRegLoc() && "Expected register VA assignment"); 8268 8269 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8270 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8271 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8272 SDValue Hi; 8273 if (VA.getLocReg() == RISCV::X17) { 8274 // Second half of f64 is passed on the stack. 8275 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8276 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8277 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8278 MachinePointerInfo::getFixedStack(MF, FI)); 8279 } else { 8280 // Second half of f64 is passed in another GPR. 8281 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8282 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8283 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8284 } 8285 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8286 } 8287 8288 // FastCC has less than 1% performance improvement for some particular 8289 // benchmark. But theoretically, it may has benenfit for some cases. 8290 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8291 unsigned ValNo, MVT ValVT, MVT LocVT, 8292 CCValAssign::LocInfo LocInfo, 8293 ISD::ArgFlagsTy ArgFlags, CCState &State, 8294 bool IsFixed, bool IsRet, Type *OrigTy, 8295 const RISCVTargetLowering &TLI, 8296 Optional<unsigned> FirstMaskArgument) { 8297 8298 // X5 and X6 might be used for save-restore libcall. 8299 static const MCPhysReg GPRList[] = { 8300 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8301 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8302 RISCV::X29, RISCV::X30, RISCV::X31}; 8303 8304 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8305 if (unsigned Reg = State.AllocateReg(GPRList)) { 8306 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8307 return false; 8308 } 8309 } 8310 8311 if (LocVT == MVT::f16) { 8312 static const MCPhysReg FPR16List[] = { 8313 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8314 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8315 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8316 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8317 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8318 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8319 return false; 8320 } 8321 } 8322 8323 if (LocVT == MVT::f32) { 8324 static const MCPhysReg FPR32List[] = { 8325 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8326 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8327 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8328 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8329 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8330 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8331 return false; 8332 } 8333 } 8334 8335 if (LocVT == MVT::f64) { 8336 static const MCPhysReg FPR64List[] = { 8337 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8338 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8339 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8340 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8341 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8342 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8343 return false; 8344 } 8345 } 8346 8347 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8348 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8349 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8350 return false; 8351 } 8352 8353 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8354 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8355 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8356 return false; 8357 } 8358 8359 if (LocVT.isVector()) { 8360 if (unsigned Reg = 8361 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8362 // Fixed-length vectors are located in the corresponding scalable-vector 8363 // container types. 8364 if (ValVT.isFixedLengthVector()) 8365 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8366 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8367 } else { 8368 // Try and pass the address via a "fast" GPR. 8369 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8370 LocInfo = CCValAssign::Indirect; 8371 LocVT = TLI.getSubtarget().getXLenVT(); 8372 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8373 } else if (ValVT.isFixedLengthVector()) { 8374 auto StackAlign = 8375 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8376 unsigned StackOffset = 8377 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8378 State.addLoc( 8379 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8380 } else { 8381 // Can't pass scalable vectors on the stack. 8382 return true; 8383 } 8384 } 8385 8386 return false; 8387 } 8388 8389 return true; // CC didn't match. 8390 } 8391 8392 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8393 CCValAssign::LocInfo LocInfo, 8394 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8395 8396 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8397 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8398 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8399 static const MCPhysReg GPRList[] = { 8400 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8401 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8402 if (unsigned Reg = State.AllocateReg(GPRList)) { 8403 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8404 return false; 8405 } 8406 } 8407 8408 if (LocVT == MVT::f32) { 8409 // Pass in STG registers: F1, ..., F6 8410 // fs0 ... fs5 8411 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8412 RISCV::F18_F, RISCV::F19_F, 8413 RISCV::F20_F, RISCV::F21_F}; 8414 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8415 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8416 return false; 8417 } 8418 } 8419 8420 if (LocVT == MVT::f64) { 8421 // Pass in STG registers: D1, ..., D6 8422 // fs6 ... fs11 8423 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8424 RISCV::F24_D, RISCV::F25_D, 8425 RISCV::F26_D, RISCV::F27_D}; 8426 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8427 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8428 return false; 8429 } 8430 } 8431 8432 report_fatal_error("No registers left in GHC calling convention"); 8433 return true; 8434 } 8435 8436 // Transform physical registers into virtual registers. 8437 SDValue RISCVTargetLowering::LowerFormalArguments( 8438 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8439 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8440 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8441 8442 MachineFunction &MF = DAG.getMachineFunction(); 8443 8444 switch (CallConv) { 8445 default: 8446 report_fatal_error("Unsupported calling convention"); 8447 case CallingConv::C: 8448 case CallingConv::Fast: 8449 break; 8450 case CallingConv::GHC: 8451 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8452 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8453 report_fatal_error( 8454 "GHC calling convention requires the F and D instruction set extensions"); 8455 } 8456 8457 const Function &Func = MF.getFunction(); 8458 if (Func.hasFnAttribute("interrupt")) { 8459 if (!Func.arg_empty()) 8460 report_fatal_error( 8461 "Functions with the interrupt attribute cannot have arguments!"); 8462 8463 StringRef Kind = 8464 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8465 8466 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8467 report_fatal_error( 8468 "Function interrupt attribute argument not supported!"); 8469 } 8470 8471 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8472 MVT XLenVT = Subtarget.getXLenVT(); 8473 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8474 // Used with vargs to acumulate store chains. 8475 std::vector<SDValue> OutChains; 8476 8477 // Assign locations to all of the incoming arguments. 8478 SmallVector<CCValAssign, 16> ArgLocs; 8479 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8480 8481 if (CallConv == CallingConv::GHC) 8482 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8483 else 8484 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8485 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8486 : CC_RISCV); 8487 8488 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8489 CCValAssign &VA = ArgLocs[i]; 8490 SDValue ArgValue; 8491 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8492 // case. 8493 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8494 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8495 else if (VA.isRegLoc()) 8496 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8497 else 8498 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8499 8500 if (VA.getLocInfo() == CCValAssign::Indirect) { 8501 // If the original argument was split and passed by reference (e.g. i128 8502 // on RV32), we need to load all parts of it here (using the same 8503 // address). Vectors may be partly split to registers and partly to the 8504 // stack, in which case the base address is partly offset and subsequent 8505 // stores are relative to that. 8506 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8507 MachinePointerInfo())); 8508 unsigned ArgIndex = Ins[i].OrigArgIndex; 8509 unsigned ArgPartOffset = Ins[i].PartOffset; 8510 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8511 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8512 CCValAssign &PartVA = ArgLocs[i + 1]; 8513 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8514 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8515 if (PartVA.getValVT().isScalableVector()) 8516 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8517 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8518 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8519 MachinePointerInfo())); 8520 ++i; 8521 } 8522 continue; 8523 } 8524 InVals.push_back(ArgValue); 8525 } 8526 8527 if (IsVarArg) { 8528 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8529 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8530 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8531 MachineFrameInfo &MFI = MF.getFrameInfo(); 8532 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8533 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8534 8535 // Offset of the first variable argument from stack pointer, and size of 8536 // the vararg save area. For now, the varargs save area is either zero or 8537 // large enough to hold a0-a7. 8538 int VaArgOffset, VarArgsSaveSize; 8539 8540 // If all registers are allocated, then all varargs must be passed on the 8541 // stack and we don't need to save any argregs. 8542 if (ArgRegs.size() == Idx) { 8543 VaArgOffset = CCInfo.getNextStackOffset(); 8544 VarArgsSaveSize = 0; 8545 } else { 8546 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8547 VaArgOffset = -VarArgsSaveSize; 8548 } 8549 8550 // Record the frame index of the first variable argument 8551 // which is a value necessary to VASTART. 8552 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8553 RVFI->setVarArgsFrameIndex(FI); 8554 8555 // If saving an odd number of registers then create an extra stack slot to 8556 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8557 // offsets to even-numbered registered remain 2*XLEN-aligned. 8558 if (Idx % 2) { 8559 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8560 VarArgsSaveSize += XLenInBytes; 8561 } 8562 8563 // Copy the integer registers that may have been used for passing varargs 8564 // to the vararg save area. 8565 for (unsigned I = Idx; I < ArgRegs.size(); 8566 ++I, VaArgOffset += XLenInBytes) { 8567 const Register Reg = RegInfo.createVirtualRegister(RC); 8568 RegInfo.addLiveIn(ArgRegs[I], Reg); 8569 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8570 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8571 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8572 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8573 MachinePointerInfo::getFixedStack(MF, FI)); 8574 cast<StoreSDNode>(Store.getNode()) 8575 ->getMemOperand() 8576 ->setValue((Value *)nullptr); 8577 OutChains.push_back(Store); 8578 } 8579 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8580 } 8581 8582 // All stores are grouped in one node to allow the matching between 8583 // the size of Ins and InVals. This only happens for vararg functions. 8584 if (!OutChains.empty()) { 8585 OutChains.push_back(Chain); 8586 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8587 } 8588 8589 return Chain; 8590 } 8591 8592 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8593 /// for tail call optimization. 8594 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8595 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8596 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8597 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8598 8599 auto &Callee = CLI.Callee; 8600 auto CalleeCC = CLI.CallConv; 8601 auto &Outs = CLI.Outs; 8602 auto &Caller = MF.getFunction(); 8603 auto CallerCC = Caller.getCallingConv(); 8604 8605 // Exception-handling functions need a special set of instructions to 8606 // indicate a return to the hardware. Tail-calling another function would 8607 // probably break this. 8608 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8609 // should be expanded as new function attributes are introduced. 8610 if (Caller.hasFnAttribute("interrupt")) 8611 return false; 8612 8613 // Do not tail call opt if the stack is used to pass parameters. 8614 if (CCInfo.getNextStackOffset() != 0) 8615 return false; 8616 8617 // Do not tail call opt if any parameters need to be passed indirectly. 8618 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8619 // passed indirectly. So the address of the value will be passed in a 8620 // register, or if not available, then the address is put on the stack. In 8621 // order to pass indirectly, space on the stack often needs to be allocated 8622 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8623 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8624 // are passed CCValAssign::Indirect. 8625 for (auto &VA : ArgLocs) 8626 if (VA.getLocInfo() == CCValAssign::Indirect) 8627 return false; 8628 8629 // Do not tail call opt if either caller or callee uses struct return 8630 // semantics. 8631 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8632 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8633 if (IsCallerStructRet || IsCalleeStructRet) 8634 return false; 8635 8636 // Externally-defined functions with weak linkage should not be 8637 // tail-called. The behaviour of branch instructions in this situation (as 8638 // used for tail calls) is implementation-defined, so we cannot rely on the 8639 // linker replacing the tail call with a return. 8640 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8641 const GlobalValue *GV = G->getGlobal(); 8642 if (GV->hasExternalWeakLinkage()) 8643 return false; 8644 } 8645 8646 // The callee has to preserve all registers the caller needs to preserve. 8647 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8648 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8649 if (CalleeCC != CallerCC) { 8650 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8651 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8652 return false; 8653 } 8654 8655 // Byval parameters hand the function a pointer directly into the stack area 8656 // we want to reuse during a tail call. Working around this *is* possible 8657 // but less efficient and uglier in LowerCall. 8658 for (auto &Arg : Outs) 8659 if (Arg.Flags.isByVal()) 8660 return false; 8661 8662 return true; 8663 } 8664 8665 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8666 return DAG.getDataLayout().getPrefTypeAlign( 8667 VT.getTypeForEVT(*DAG.getContext())); 8668 } 8669 8670 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8671 // and output parameter nodes. 8672 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8673 SmallVectorImpl<SDValue> &InVals) const { 8674 SelectionDAG &DAG = CLI.DAG; 8675 SDLoc &DL = CLI.DL; 8676 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8677 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8678 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8679 SDValue Chain = CLI.Chain; 8680 SDValue Callee = CLI.Callee; 8681 bool &IsTailCall = CLI.IsTailCall; 8682 CallingConv::ID CallConv = CLI.CallConv; 8683 bool IsVarArg = CLI.IsVarArg; 8684 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8685 MVT XLenVT = Subtarget.getXLenVT(); 8686 8687 MachineFunction &MF = DAG.getMachineFunction(); 8688 8689 // Analyze the operands of the call, assigning locations to each operand. 8690 SmallVector<CCValAssign, 16> ArgLocs; 8691 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8692 8693 if (CallConv == CallingConv::GHC) 8694 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8695 else 8696 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8697 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8698 : CC_RISCV); 8699 8700 // Check if it's really possible to do a tail call. 8701 if (IsTailCall) 8702 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8703 8704 if (IsTailCall) 8705 ++NumTailCalls; 8706 else if (CLI.CB && CLI.CB->isMustTailCall()) 8707 report_fatal_error("failed to perform tail call elimination on a call " 8708 "site marked musttail"); 8709 8710 // Get a count of how many bytes are to be pushed on the stack. 8711 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8712 8713 // Create local copies for byval args 8714 SmallVector<SDValue, 8> ByValArgs; 8715 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8716 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8717 if (!Flags.isByVal()) 8718 continue; 8719 8720 SDValue Arg = OutVals[i]; 8721 unsigned Size = Flags.getByValSize(); 8722 Align Alignment = Flags.getNonZeroByValAlign(); 8723 8724 int FI = 8725 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8726 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8727 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8728 8729 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8730 /*IsVolatile=*/false, 8731 /*AlwaysInline=*/false, IsTailCall, 8732 MachinePointerInfo(), MachinePointerInfo()); 8733 ByValArgs.push_back(FIPtr); 8734 } 8735 8736 if (!IsTailCall) 8737 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8738 8739 // Copy argument values to their designated locations. 8740 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8741 SmallVector<SDValue, 8> MemOpChains; 8742 SDValue StackPtr; 8743 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8744 CCValAssign &VA = ArgLocs[i]; 8745 SDValue ArgValue = OutVals[i]; 8746 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8747 8748 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8749 bool IsF64OnRV32DSoftABI = 8750 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8751 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8752 SDValue SplitF64 = DAG.getNode( 8753 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8754 SDValue Lo = SplitF64.getValue(0); 8755 SDValue Hi = SplitF64.getValue(1); 8756 8757 Register RegLo = VA.getLocReg(); 8758 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8759 8760 if (RegLo == RISCV::X17) { 8761 // Second half of f64 is passed on the stack. 8762 // Work out the address of the stack slot. 8763 if (!StackPtr.getNode()) 8764 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8765 // Emit the store. 8766 MemOpChains.push_back( 8767 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8768 } else { 8769 // Second half of f64 is passed in another GPR. 8770 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8771 Register RegHigh = RegLo + 1; 8772 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8773 } 8774 continue; 8775 } 8776 8777 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8778 // as any other MemLoc. 8779 8780 // Promote the value if needed. 8781 // For now, only handle fully promoted and indirect arguments. 8782 if (VA.getLocInfo() == CCValAssign::Indirect) { 8783 // Store the argument in a stack slot and pass its address. 8784 Align StackAlign = 8785 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8786 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8787 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8788 // If the original argument was split (e.g. i128), we need 8789 // to store the required parts of it here (and pass just one address). 8790 // Vectors may be partly split to registers and partly to the stack, in 8791 // which case the base address is partly offset and subsequent stores are 8792 // relative to that. 8793 unsigned ArgIndex = Outs[i].OrigArgIndex; 8794 unsigned ArgPartOffset = Outs[i].PartOffset; 8795 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8796 // Calculate the total size to store. We don't have access to what we're 8797 // actually storing other than performing the loop and collecting the 8798 // info. 8799 SmallVector<std::pair<SDValue, SDValue>> Parts; 8800 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8801 SDValue PartValue = OutVals[i + 1]; 8802 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8803 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8804 EVT PartVT = PartValue.getValueType(); 8805 if (PartVT.isScalableVector()) 8806 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8807 StoredSize += PartVT.getStoreSize(); 8808 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8809 Parts.push_back(std::make_pair(PartValue, Offset)); 8810 ++i; 8811 } 8812 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8813 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8814 MemOpChains.push_back( 8815 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8816 MachinePointerInfo::getFixedStack(MF, FI))); 8817 for (const auto &Part : Parts) { 8818 SDValue PartValue = Part.first; 8819 SDValue PartOffset = Part.second; 8820 SDValue Address = 8821 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8822 MemOpChains.push_back( 8823 DAG.getStore(Chain, DL, PartValue, Address, 8824 MachinePointerInfo::getFixedStack(MF, FI))); 8825 } 8826 ArgValue = SpillSlot; 8827 } else { 8828 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8829 } 8830 8831 // Use local copy if it is a byval arg. 8832 if (Flags.isByVal()) 8833 ArgValue = ByValArgs[j++]; 8834 8835 if (VA.isRegLoc()) { 8836 // Queue up the argument copies and emit them at the end. 8837 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8838 } else { 8839 assert(VA.isMemLoc() && "Argument not register or memory"); 8840 assert(!IsTailCall && "Tail call not allowed if stack is used " 8841 "for passing parameters"); 8842 8843 // Work out the address of the stack slot. 8844 if (!StackPtr.getNode()) 8845 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8846 SDValue Address = 8847 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8848 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8849 8850 // Emit the store. 8851 MemOpChains.push_back( 8852 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8853 } 8854 } 8855 8856 // Join the stores, which are independent of one another. 8857 if (!MemOpChains.empty()) 8858 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8859 8860 SDValue Glue; 8861 8862 // Build a sequence of copy-to-reg nodes, chained and glued together. 8863 for (auto &Reg : RegsToPass) { 8864 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8865 Glue = Chain.getValue(1); 8866 } 8867 8868 // Validate that none of the argument registers have been marked as 8869 // reserved, if so report an error. Do the same for the return address if this 8870 // is not a tailcall. 8871 validateCCReservedRegs(RegsToPass, MF); 8872 if (!IsTailCall && 8873 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8874 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8875 MF.getFunction(), 8876 "Return address register required, but has been reserved."}); 8877 8878 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8879 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8880 // split it and then direct call can be matched by PseudoCALL. 8881 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8882 const GlobalValue *GV = S->getGlobal(); 8883 8884 unsigned OpFlags = RISCVII::MO_CALL; 8885 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8886 OpFlags = RISCVII::MO_PLT; 8887 8888 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8889 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8890 unsigned OpFlags = RISCVII::MO_CALL; 8891 8892 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8893 nullptr)) 8894 OpFlags = RISCVII::MO_PLT; 8895 8896 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8897 } 8898 8899 // The first call operand is the chain and the second is the target address. 8900 SmallVector<SDValue, 8> Ops; 8901 Ops.push_back(Chain); 8902 Ops.push_back(Callee); 8903 8904 // Add argument registers to the end of the list so that they are 8905 // known live into the call. 8906 for (auto &Reg : RegsToPass) 8907 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8908 8909 if (!IsTailCall) { 8910 // Add a register mask operand representing the call-preserved registers. 8911 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8912 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8913 assert(Mask && "Missing call preserved mask for calling convention"); 8914 Ops.push_back(DAG.getRegisterMask(Mask)); 8915 } 8916 8917 // Glue the call to the argument copies, if any. 8918 if (Glue.getNode()) 8919 Ops.push_back(Glue); 8920 8921 // Emit the call. 8922 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8923 8924 if (IsTailCall) { 8925 MF.getFrameInfo().setHasTailCall(); 8926 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8927 } 8928 8929 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8930 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8931 Glue = Chain.getValue(1); 8932 8933 // Mark the end of the call, which is glued to the call itself. 8934 Chain = DAG.getCALLSEQ_END(Chain, 8935 DAG.getConstant(NumBytes, DL, PtrVT, true), 8936 DAG.getConstant(0, DL, PtrVT, true), 8937 Glue, DL); 8938 Glue = Chain.getValue(1); 8939 8940 // Assign locations to each value returned by this call. 8941 SmallVector<CCValAssign, 16> RVLocs; 8942 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8943 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8944 8945 // Copy all of the result registers out of their specified physreg. 8946 for (auto &VA : RVLocs) { 8947 // Copy the value out 8948 SDValue RetValue = 8949 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8950 // Glue the RetValue to the end of the call sequence 8951 Chain = RetValue.getValue(1); 8952 Glue = RetValue.getValue(2); 8953 8954 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8955 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8956 SDValue RetValue2 = 8957 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8958 Chain = RetValue2.getValue(1); 8959 Glue = RetValue2.getValue(2); 8960 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8961 RetValue2); 8962 } 8963 8964 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8965 8966 InVals.push_back(RetValue); 8967 } 8968 8969 return Chain; 8970 } 8971 8972 bool RISCVTargetLowering::CanLowerReturn( 8973 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8974 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8975 SmallVector<CCValAssign, 16> RVLocs; 8976 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8977 8978 Optional<unsigned> FirstMaskArgument; 8979 if (Subtarget.hasStdExtV()) 8980 FirstMaskArgument = preAssignMask(Outs); 8981 8982 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8983 MVT VT = Outs[i].VT; 8984 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8985 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8986 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8987 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8988 *this, FirstMaskArgument)) 8989 return false; 8990 } 8991 return true; 8992 } 8993 8994 SDValue 8995 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8996 bool IsVarArg, 8997 const SmallVectorImpl<ISD::OutputArg> &Outs, 8998 const SmallVectorImpl<SDValue> &OutVals, 8999 const SDLoc &DL, SelectionDAG &DAG) const { 9000 const MachineFunction &MF = DAG.getMachineFunction(); 9001 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9002 9003 // Stores the assignment of the return value to a location. 9004 SmallVector<CCValAssign, 16> RVLocs; 9005 9006 // Info about the registers and stack slot. 9007 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9008 *DAG.getContext()); 9009 9010 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9011 nullptr, CC_RISCV); 9012 9013 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9014 report_fatal_error("GHC functions return void only"); 9015 9016 SDValue Glue; 9017 SmallVector<SDValue, 4> RetOps(1, Chain); 9018 9019 // Copy the result values into the output registers. 9020 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9021 SDValue Val = OutVals[i]; 9022 CCValAssign &VA = RVLocs[i]; 9023 assert(VA.isRegLoc() && "Can only return in registers!"); 9024 9025 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9026 // Handle returning f64 on RV32D with a soft float ABI. 9027 assert(VA.isRegLoc() && "Expected return via registers"); 9028 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9029 DAG.getVTList(MVT::i32, MVT::i32), Val); 9030 SDValue Lo = SplitF64.getValue(0); 9031 SDValue Hi = SplitF64.getValue(1); 9032 Register RegLo = VA.getLocReg(); 9033 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9034 Register RegHi = RegLo + 1; 9035 9036 if (STI.isRegisterReservedByUser(RegLo) || 9037 STI.isRegisterReservedByUser(RegHi)) 9038 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9039 MF.getFunction(), 9040 "Return value register required, but has been reserved."}); 9041 9042 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9043 Glue = Chain.getValue(1); 9044 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9045 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9046 Glue = Chain.getValue(1); 9047 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9048 } else { 9049 // Handle a 'normal' return. 9050 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9051 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9052 9053 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9054 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9055 MF.getFunction(), 9056 "Return value register required, but has been reserved."}); 9057 9058 // Guarantee that all emitted copies are stuck together. 9059 Glue = Chain.getValue(1); 9060 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9061 } 9062 } 9063 9064 RetOps[0] = Chain; // Update chain. 9065 9066 // Add the glue node if we have it. 9067 if (Glue.getNode()) { 9068 RetOps.push_back(Glue); 9069 } 9070 9071 unsigned RetOpc = RISCVISD::RET_FLAG; 9072 // Interrupt service routines use different return instructions. 9073 const Function &Func = DAG.getMachineFunction().getFunction(); 9074 if (Func.hasFnAttribute("interrupt")) { 9075 if (!Func.getReturnType()->isVoidTy()) 9076 report_fatal_error( 9077 "Functions with the interrupt attribute must have void return type!"); 9078 9079 MachineFunction &MF = DAG.getMachineFunction(); 9080 StringRef Kind = 9081 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9082 9083 if (Kind == "user") 9084 RetOpc = RISCVISD::URET_FLAG; 9085 else if (Kind == "supervisor") 9086 RetOpc = RISCVISD::SRET_FLAG; 9087 else 9088 RetOpc = RISCVISD::MRET_FLAG; 9089 } 9090 9091 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9092 } 9093 9094 void RISCVTargetLowering::validateCCReservedRegs( 9095 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9096 MachineFunction &MF) const { 9097 const Function &F = MF.getFunction(); 9098 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9099 9100 if (llvm::any_of(Regs, [&STI](auto Reg) { 9101 return STI.isRegisterReservedByUser(Reg.first); 9102 })) 9103 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9104 F, "Argument register required, but has been reserved."}); 9105 } 9106 9107 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9108 return CI->isTailCall(); 9109 } 9110 9111 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9112 #define NODE_NAME_CASE(NODE) \ 9113 case RISCVISD::NODE: \ 9114 return "RISCVISD::" #NODE; 9115 // clang-format off 9116 switch ((RISCVISD::NodeType)Opcode) { 9117 case RISCVISD::FIRST_NUMBER: 9118 break; 9119 NODE_NAME_CASE(RET_FLAG) 9120 NODE_NAME_CASE(URET_FLAG) 9121 NODE_NAME_CASE(SRET_FLAG) 9122 NODE_NAME_CASE(MRET_FLAG) 9123 NODE_NAME_CASE(CALL) 9124 NODE_NAME_CASE(SELECT_CC) 9125 NODE_NAME_CASE(BR_CC) 9126 NODE_NAME_CASE(BuildPairF64) 9127 NODE_NAME_CASE(SplitF64) 9128 NODE_NAME_CASE(TAIL) 9129 NODE_NAME_CASE(MULHSU) 9130 NODE_NAME_CASE(SLLW) 9131 NODE_NAME_CASE(SRAW) 9132 NODE_NAME_CASE(SRLW) 9133 NODE_NAME_CASE(DIVW) 9134 NODE_NAME_CASE(DIVUW) 9135 NODE_NAME_CASE(REMUW) 9136 NODE_NAME_CASE(ROLW) 9137 NODE_NAME_CASE(RORW) 9138 NODE_NAME_CASE(CLZW) 9139 NODE_NAME_CASE(CTZW) 9140 NODE_NAME_CASE(FSLW) 9141 NODE_NAME_CASE(FSRW) 9142 NODE_NAME_CASE(FSL) 9143 NODE_NAME_CASE(FSR) 9144 NODE_NAME_CASE(FMV_H_X) 9145 NODE_NAME_CASE(FMV_X_ANYEXTH) 9146 NODE_NAME_CASE(FMV_W_X_RV64) 9147 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9148 NODE_NAME_CASE(FCVT_X_RTZ) 9149 NODE_NAME_CASE(FCVT_XU_RTZ) 9150 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9151 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9152 NODE_NAME_CASE(READ_CYCLE_WIDE) 9153 NODE_NAME_CASE(GREV) 9154 NODE_NAME_CASE(GREVW) 9155 NODE_NAME_CASE(GORC) 9156 NODE_NAME_CASE(GORCW) 9157 NODE_NAME_CASE(SHFL) 9158 NODE_NAME_CASE(SHFLW) 9159 NODE_NAME_CASE(UNSHFL) 9160 NODE_NAME_CASE(UNSHFLW) 9161 NODE_NAME_CASE(BCOMPRESS) 9162 NODE_NAME_CASE(BCOMPRESSW) 9163 NODE_NAME_CASE(BDECOMPRESS) 9164 NODE_NAME_CASE(BDECOMPRESSW) 9165 NODE_NAME_CASE(VMV_V_X_VL) 9166 NODE_NAME_CASE(VFMV_V_F_VL) 9167 NODE_NAME_CASE(VMV_X_S) 9168 NODE_NAME_CASE(VMV_S_X_VL) 9169 NODE_NAME_CASE(VFMV_S_F_VL) 9170 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9171 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9172 NODE_NAME_CASE(READ_VLENB) 9173 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9174 NODE_NAME_CASE(VSLIDEUP_VL) 9175 NODE_NAME_CASE(VSLIDE1UP_VL) 9176 NODE_NAME_CASE(VSLIDEDOWN_VL) 9177 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9178 NODE_NAME_CASE(VID_VL) 9179 NODE_NAME_CASE(VFNCVT_ROD_VL) 9180 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9181 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9182 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9183 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9184 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9185 NODE_NAME_CASE(VECREDUCE_AND_VL) 9186 NODE_NAME_CASE(VECREDUCE_OR_VL) 9187 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9188 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9189 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9190 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9191 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9192 NODE_NAME_CASE(ADD_VL) 9193 NODE_NAME_CASE(AND_VL) 9194 NODE_NAME_CASE(MUL_VL) 9195 NODE_NAME_CASE(OR_VL) 9196 NODE_NAME_CASE(SDIV_VL) 9197 NODE_NAME_CASE(SHL_VL) 9198 NODE_NAME_CASE(SREM_VL) 9199 NODE_NAME_CASE(SRA_VL) 9200 NODE_NAME_CASE(SRL_VL) 9201 NODE_NAME_CASE(SUB_VL) 9202 NODE_NAME_CASE(UDIV_VL) 9203 NODE_NAME_CASE(UREM_VL) 9204 NODE_NAME_CASE(XOR_VL) 9205 NODE_NAME_CASE(SADDSAT_VL) 9206 NODE_NAME_CASE(UADDSAT_VL) 9207 NODE_NAME_CASE(SSUBSAT_VL) 9208 NODE_NAME_CASE(USUBSAT_VL) 9209 NODE_NAME_CASE(FADD_VL) 9210 NODE_NAME_CASE(FSUB_VL) 9211 NODE_NAME_CASE(FMUL_VL) 9212 NODE_NAME_CASE(FDIV_VL) 9213 NODE_NAME_CASE(FNEG_VL) 9214 NODE_NAME_CASE(FABS_VL) 9215 NODE_NAME_CASE(FSQRT_VL) 9216 NODE_NAME_CASE(FMA_VL) 9217 NODE_NAME_CASE(FCOPYSIGN_VL) 9218 NODE_NAME_CASE(SMIN_VL) 9219 NODE_NAME_CASE(SMAX_VL) 9220 NODE_NAME_CASE(UMIN_VL) 9221 NODE_NAME_CASE(UMAX_VL) 9222 NODE_NAME_CASE(FMINNUM_VL) 9223 NODE_NAME_CASE(FMAXNUM_VL) 9224 NODE_NAME_CASE(MULHS_VL) 9225 NODE_NAME_CASE(MULHU_VL) 9226 NODE_NAME_CASE(FP_TO_SINT_VL) 9227 NODE_NAME_CASE(FP_TO_UINT_VL) 9228 NODE_NAME_CASE(SINT_TO_FP_VL) 9229 NODE_NAME_CASE(UINT_TO_FP_VL) 9230 NODE_NAME_CASE(FP_EXTEND_VL) 9231 NODE_NAME_CASE(FP_ROUND_VL) 9232 NODE_NAME_CASE(VWMUL_VL) 9233 NODE_NAME_CASE(VWMULU_VL) 9234 NODE_NAME_CASE(SETCC_VL) 9235 NODE_NAME_CASE(VSELECT_VL) 9236 NODE_NAME_CASE(VMAND_VL) 9237 NODE_NAME_CASE(VMOR_VL) 9238 NODE_NAME_CASE(VMXOR_VL) 9239 NODE_NAME_CASE(VMCLR_VL) 9240 NODE_NAME_CASE(VMSET_VL) 9241 NODE_NAME_CASE(VRGATHER_VX_VL) 9242 NODE_NAME_CASE(VRGATHER_VV_VL) 9243 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9244 NODE_NAME_CASE(VSEXT_VL) 9245 NODE_NAME_CASE(VZEXT_VL) 9246 NODE_NAME_CASE(VPOPC_VL) 9247 NODE_NAME_CASE(VLE_VL) 9248 NODE_NAME_CASE(VSE_VL) 9249 NODE_NAME_CASE(READ_CSR) 9250 NODE_NAME_CASE(WRITE_CSR) 9251 NODE_NAME_CASE(SWAP_CSR) 9252 } 9253 // clang-format on 9254 return nullptr; 9255 #undef NODE_NAME_CASE 9256 } 9257 9258 /// getConstraintType - Given a constraint letter, return the type of 9259 /// constraint it is for this target. 9260 RISCVTargetLowering::ConstraintType 9261 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9262 if (Constraint.size() == 1) { 9263 switch (Constraint[0]) { 9264 default: 9265 break; 9266 case 'f': 9267 return C_RegisterClass; 9268 case 'I': 9269 case 'J': 9270 case 'K': 9271 return C_Immediate; 9272 case 'A': 9273 return C_Memory; 9274 case 'S': // A symbolic address 9275 return C_Other; 9276 } 9277 } else { 9278 if (Constraint == "vr" || Constraint == "vm") 9279 return C_RegisterClass; 9280 } 9281 return TargetLowering::getConstraintType(Constraint); 9282 } 9283 9284 std::pair<unsigned, const TargetRegisterClass *> 9285 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9286 StringRef Constraint, 9287 MVT VT) const { 9288 // First, see if this is a constraint that directly corresponds to a 9289 // RISCV register class. 9290 if (Constraint.size() == 1) { 9291 switch (Constraint[0]) { 9292 case 'r': 9293 return std::make_pair(0U, &RISCV::GPRRegClass); 9294 case 'f': 9295 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9296 return std::make_pair(0U, &RISCV::FPR16RegClass); 9297 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9298 return std::make_pair(0U, &RISCV::FPR32RegClass); 9299 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9300 return std::make_pair(0U, &RISCV::FPR64RegClass); 9301 break; 9302 default: 9303 break; 9304 } 9305 } else { 9306 if (Constraint == "vr") { 9307 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9308 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9309 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9310 return std::make_pair(0U, RC); 9311 } 9312 } else if (Constraint == "vm") { 9313 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9314 return std::make_pair(0U, &RISCV::VMRegClass); 9315 } 9316 } 9317 9318 // Clang will correctly decode the usage of register name aliases into their 9319 // official names. However, other frontends like `rustc` do not. This allows 9320 // users of these frontends to use the ABI names for registers in LLVM-style 9321 // register constraints. 9322 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9323 .Case("{zero}", RISCV::X0) 9324 .Case("{ra}", RISCV::X1) 9325 .Case("{sp}", RISCV::X2) 9326 .Case("{gp}", RISCV::X3) 9327 .Case("{tp}", RISCV::X4) 9328 .Case("{t0}", RISCV::X5) 9329 .Case("{t1}", RISCV::X6) 9330 .Case("{t2}", RISCV::X7) 9331 .Cases("{s0}", "{fp}", RISCV::X8) 9332 .Case("{s1}", RISCV::X9) 9333 .Case("{a0}", RISCV::X10) 9334 .Case("{a1}", RISCV::X11) 9335 .Case("{a2}", RISCV::X12) 9336 .Case("{a3}", RISCV::X13) 9337 .Case("{a4}", RISCV::X14) 9338 .Case("{a5}", RISCV::X15) 9339 .Case("{a6}", RISCV::X16) 9340 .Case("{a7}", RISCV::X17) 9341 .Case("{s2}", RISCV::X18) 9342 .Case("{s3}", RISCV::X19) 9343 .Case("{s4}", RISCV::X20) 9344 .Case("{s5}", RISCV::X21) 9345 .Case("{s6}", RISCV::X22) 9346 .Case("{s7}", RISCV::X23) 9347 .Case("{s8}", RISCV::X24) 9348 .Case("{s9}", RISCV::X25) 9349 .Case("{s10}", RISCV::X26) 9350 .Case("{s11}", RISCV::X27) 9351 .Case("{t3}", RISCV::X28) 9352 .Case("{t4}", RISCV::X29) 9353 .Case("{t5}", RISCV::X30) 9354 .Case("{t6}", RISCV::X31) 9355 .Default(RISCV::NoRegister); 9356 if (XRegFromAlias != RISCV::NoRegister) 9357 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9358 9359 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9360 // TableGen record rather than the AsmName to choose registers for InlineAsm 9361 // constraints, plus we want to match those names to the widest floating point 9362 // register type available, manually select floating point registers here. 9363 // 9364 // The second case is the ABI name of the register, so that frontends can also 9365 // use the ABI names in register constraint lists. 9366 if (Subtarget.hasStdExtF()) { 9367 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9368 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9369 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9370 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9371 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9372 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9373 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9374 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9375 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9376 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9377 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9378 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9379 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9380 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9381 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9382 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9383 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9384 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9385 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9386 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9387 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9388 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9389 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9390 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9391 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9392 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9393 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9394 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9395 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9396 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9397 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9398 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9399 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9400 .Default(RISCV::NoRegister); 9401 if (FReg != RISCV::NoRegister) { 9402 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9403 if (Subtarget.hasStdExtD()) { 9404 unsigned RegNo = FReg - RISCV::F0_F; 9405 unsigned DReg = RISCV::F0_D + RegNo; 9406 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9407 } 9408 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9409 } 9410 } 9411 9412 if (Subtarget.hasStdExtV()) { 9413 Register VReg = StringSwitch<Register>(Constraint.lower()) 9414 .Case("{v0}", RISCV::V0) 9415 .Case("{v1}", RISCV::V1) 9416 .Case("{v2}", RISCV::V2) 9417 .Case("{v3}", RISCV::V3) 9418 .Case("{v4}", RISCV::V4) 9419 .Case("{v5}", RISCV::V5) 9420 .Case("{v6}", RISCV::V6) 9421 .Case("{v7}", RISCV::V7) 9422 .Case("{v8}", RISCV::V8) 9423 .Case("{v9}", RISCV::V9) 9424 .Case("{v10}", RISCV::V10) 9425 .Case("{v11}", RISCV::V11) 9426 .Case("{v12}", RISCV::V12) 9427 .Case("{v13}", RISCV::V13) 9428 .Case("{v14}", RISCV::V14) 9429 .Case("{v15}", RISCV::V15) 9430 .Case("{v16}", RISCV::V16) 9431 .Case("{v17}", RISCV::V17) 9432 .Case("{v18}", RISCV::V18) 9433 .Case("{v19}", RISCV::V19) 9434 .Case("{v20}", RISCV::V20) 9435 .Case("{v21}", RISCV::V21) 9436 .Case("{v22}", RISCV::V22) 9437 .Case("{v23}", RISCV::V23) 9438 .Case("{v24}", RISCV::V24) 9439 .Case("{v25}", RISCV::V25) 9440 .Case("{v26}", RISCV::V26) 9441 .Case("{v27}", RISCV::V27) 9442 .Case("{v28}", RISCV::V28) 9443 .Case("{v29}", RISCV::V29) 9444 .Case("{v30}", RISCV::V30) 9445 .Case("{v31}", RISCV::V31) 9446 .Default(RISCV::NoRegister); 9447 if (VReg != RISCV::NoRegister) { 9448 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9449 return std::make_pair(VReg, &RISCV::VMRegClass); 9450 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9451 return std::make_pair(VReg, &RISCV::VRRegClass); 9452 for (const auto *RC : 9453 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9454 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9455 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9456 return std::make_pair(VReg, RC); 9457 } 9458 } 9459 } 9460 } 9461 9462 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9463 } 9464 9465 unsigned 9466 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9467 // Currently only support length 1 constraints. 9468 if (ConstraintCode.size() == 1) { 9469 switch (ConstraintCode[0]) { 9470 case 'A': 9471 return InlineAsm::Constraint_A; 9472 default: 9473 break; 9474 } 9475 } 9476 9477 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9478 } 9479 9480 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9481 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9482 SelectionDAG &DAG) const { 9483 // Currently only support length 1 constraints. 9484 if (Constraint.length() == 1) { 9485 switch (Constraint[0]) { 9486 case 'I': 9487 // Validate & create a 12-bit signed immediate operand. 9488 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9489 uint64_t CVal = C->getSExtValue(); 9490 if (isInt<12>(CVal)) 9491 Ops.push_back( 9492 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9493 } 9494 return; 9495 case 'J': 9496 // Validate & create an integer zero operand. 9497 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9498 if (C->getZExtValue() == 0) 9499 Ops.push_back( 9500 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9501 return; 9502 case 'K': 9503 // Validate & create a 5-bit unsigned immediate operand. 9504 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9505 uint64_t CVal = C->getZExtValue(); 9506 if (isUInt<5>(CVal)) 9507 Ops.push_back( 9508 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9509 } 9510 return; 9511 case 'S': 9512 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9513 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9514 GA->getValueType(0))); 9515 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9516 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9517 BA->getValueType(0))); 9518 } 9519 return; 9520 default: 9521 break; 9522 } 9523 } 9524 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9525 } 9526 9527 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9528 Instruction *Inst, 9529 AtomicOrdering Ord) const { 9530 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9531 return Builder.CreateFence(Ord); 9532 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9533 return Builder.CreateFence(AtomicOrdering::Release); 9534 return nullptr; 9535 } 9536 9537 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9538 Instruction *Inst, 9539 AtomicOrdering Ord) const { 9540 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9541 return Builder.CreateFence(AtomicOrdering::Acquire); 9542 return nullptr; 9543 } 9544 9545 TargetLowering::AtomicExpansionKind 9546 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9547 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9548 // point operations can't be used in an lr/sc sequence without breaking the 9549 // forward-progress guarantee. 9550 if (AI->isFloatingPointOperation()) 9551 return AtomicExpansionKind::CmpXChg; 9552 9553 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9554 if (Size == 8 || Size == 16) 9555 return AtomicExpansionKind::MaskedIntrinsic; 9556 return AtomicExpansionKind::None; 9557 } 9558 9559 static Intrinsic::ID 9560 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9561 if (XLen == 32) { 9562 switch (BinOp) { 9563 default: 9564 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9565 case AtomicRMWInst::Xchg: 9566 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9567 case AtomicRMWInst::Add: 9568 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9569 case AtomicRMWInst::Sub: 9570 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9571 case AtomicRMWInst::Nand: 9572 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9573 case AtomicRMWInst::Max: 9574 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9575 case AtomicRMWInst::Min: 9576 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9577 case AtomicRMWInst::UMax: 9578 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9579 case AtomicRMWInst::UMin: 9580 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9581 } 9582 } 9583 9584 if (XLen == 64) { 9585 switch (BinOp) { 9586 default: 9587 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9588 case AtomicRMWInst::Xchg: 9589 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9590 case AtomicRMWInst::Add: 9591 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9592 case AtomicRMWInst::Sub: 9593 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9594 case AtomicRMWInst::Nand: 9595 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9596 case AtomicRMWInst::Max: 9597 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9598 case AtomicRMWInst::Min: 9599 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9600 case AtomicRMWInst::UMax: 9601 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9602 case AtomicRMWInst::UMin: 9603 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9604 } 9605 } 9606 9607 llvm_unreachable("Unexpected XLen\n"); 9608 } 9609 9610 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9611 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9612 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9613 unsigned XLen = Subtarget.getXLen(); 9614 Value *Ordering = 9615 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9616 Type *Tys[] = {AlignedAddr->getType()}; 9617 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9618 AI->getModule(), 9619 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9620 9621 if (XLen == 64) { 9622 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9623 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9624 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9625 } 9626 9627 Value *Result; 9628 9629 // Must pass the shift amount needed to sign extend the loaded value prior 9630 // to performing a signed comparison for min/max. ShiftAmt is the number of 9631 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9632 // is the number of bits to left+right shift the value in order to 9633 // sign-extend. 9634 if (AI->getOperation() == AtomicRMWInst::Min || 9635 AI->getOperation() == AtomicRMWInst::Max) { 9636 const DataLayout &DL = AI->getModule()->getDataLayout(); 9637 unsigned ValWidth = 9638 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9639 Value *SextShamt = 9640 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9641 Result = Builder.CreateCall(LrwOpScwLoop, 9642 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9643 } else { 9644 Result = 9645 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9646 } 9647 9648 if (XLen == 64) 9649 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9650 return Result; 9651 } 9652 9653 TargetLowering::AtomicExpansionKind 9654 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9655 AtomicCmpXchgInst *CI) const { 9656 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9657 if (Size == 8 || Size == 16) 9658 return AtomicExpansionKind::MaskedIntrinsic; 9659 return AtomicExpansionKind::None; 9660 } 9661 9662 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9663 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9664 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9665 unsigned XLen = Subtarget.getXLen(); 9666 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9667 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9668 if (XLen == 64) { 9669 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9670 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9671 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9672 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9673 } 9674 Type *Tys[] = {AlignedAddr->getType()}; 9675 Function *MaskedCmpXchg = 9676 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9677 Value *Result = Builder.CreateCall( 9678 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9679 if (XLen == 64) 9680 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9681 return Result; 9682 } 9683 9684 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9685 return false; 9686 } 9687 9688 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9689 EVT VT) const { 9690 VT = VT.getScalarType(); 9691 9692 if (!VT.isSimple()) 9693 return false; 9694 9695 switch (VT.getSimpleVT().SimpleTy) { 9696 case MVT::f16: 9697 return Subtarget.hasStdExtZfh(); 9698 case MVT::f32: 9699 return Subtarget.hasStdExtF(); 9700 case MVT::f64: 9701 return Subtarget.hasStdExtD(); 9702 default: 9703 break; 9704 } 9705 9706 return false; 9707 } 9708 9709 Register RISCVTargetLowering::getExceptionPointerRegister( 9710 const Constant *PersonalityFn) const { 9711 return RISCV::X10; 9712 } 9713 9714 Register RISCVTargetLowering::getExceptionSelectorRegister( 9715 const Constant *PersonalityFn) const { 9716 return RISCV::X11; 9717 } 9718 9719 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9720 // Return false to suppress the unnecessary extensions if the LibCall 9721 // arguments or return value is f32 type for LP64 ABI. 9722 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9723 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9724 return false; 9725 9726 return true; 9727 } 9728 9729 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9730 if (Subtarget.is64Bit() && Type == MVT::i32) 9731 return true; 9732 9733 return IsSigned; 9734 } 9735 9736 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9737 SDValue C) const { 9738 // Check integral scalar types. 9739 if (VT.isScalarInteger()) { 9740 // Omit the optimization if the sub target has the M extension and the data 9741 // size exceeds XLen. 9742 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9743 return false; 9744 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9745 // Break the MUL to a SLLI and an ADD/SUB. 9746 const APInt &Imm = ConstNode->getAPIntValue(); 9747 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9748 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9749 return true; 9750 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9751 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9752 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9753 (Imm - 8).isPowerOf2())) 9754 return true; 9755 // Omit the following optimization if the sub target has the M extension 9756 // and the data size >= XLen. 9757 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9758 return false; 9759 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9760 // a pair of LUI/ADDI. 9761 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9762 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9763 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9764 (1 - ImmS).isPowerOf2()) 9765 return true; 9766 } 9767 } 9768 } 9769 9770 return false; 9771 } 9772 9773 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9774 const SDValue &AddNode, const SDValue &ConstNode) const { 9775 // Let the DAGCombiner decide for vectors. 9776 EVT VT = AddNode.getValueType(); 9777 if (VT.isVector()) 9778 return true; 9779 9780 // Let the DAGCombiner decide for larger types. 9781 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9782 return true; 9783 9784 // It is worse if c1 is simm12 while c1*c2 is not. 9785 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9786 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9787 const APInt &C1 = C1Node->getAPIntValue(); 9788 const APInt &C2 = C2Node->getAPIntValue(); 9789 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9790 return false; 9791 9792 // Default to true and let the DAGCombiner decide. 9793 return true; 9794 } 9795 9796 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9797 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9798 bool *Fast) const { 9799 if (!VT.isVector()) 9800 return false; 9801 9802 EVT ElemVT = VT.getVectorElementType(); 9803 if (Alignment >= ElemVT.getStoreSize()) { 9804 if (Fast) 9805 *Fast = true; 9806 return true; 9807 } 9808 9809 return false; 9810 } 9811 9812 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9813 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9814 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9815 bool IsABIRegCopy = CC.hasValue(); 9816 EVT ValueVT = Val.getValueType(); 9817 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9818 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9819 // and cast to f32. 9820 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9821 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9822 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9823 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9824 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9825 Parts[0] = Val; 9826 return true; 9827 } 9828 9829 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9830 LLVMContext &Context = *DAG.getContext(); 9831 EVT ValueEltVT = ValueVT.getVectorElementType(); 9832 EVT PartEltVT = PartVT.getVectorElementType(); 9833 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9834 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9835 if (PartVTBitSize % ValueVTBitSize == 0) { 9836 // If the element types are different, bitcast to the same element type of 9837 // PartVT first. 9838 if (ValueEltVT != PartEltVT) { 9839 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9840 assert(Count != 0 && "The number of element should not be zero."); 9841 EVT SameEltTypeVT = 9842 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9843 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9844 } 9845 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9846 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9847 Parts[0] = Val; 9848 return true; 9849 } 9850 } 9851 return false; 9852 } 9853 9854 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9855 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9856 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9857 bool IsABIRegCopy = CC.hasValue(); 9858 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9859 SDValue Val = Parts[0]; 9860 9861 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9862 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9863 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9864 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9865 return Val; 9866 } 9867 9868 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9869 LLVMContext &Context = *DAG.getContext(); 9870 SDValue Val = Parts[0]; 9871 EVT ValueEltVT = ValueVT.getVectorElementType(); 9872 EVT PartEltVT = PartVT.getVectorElementType(); 9873 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9874 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9875 if (PartVTBitSize % ValueVTBitSize == 0) { 9876 EVT SameEltTypeVT = ValueVT; 9877 // If the element types are different, convert it to the same element type 9878 // of PartVT. 9879 if (ValueEltVT != PartEltVT) { 9880 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9881 assert(Count != 0 && "The number of element should not be zero."); 9882 SameEltTypeVT = 9883 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9884 } 9885 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9886 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9887 if (ValueEltVT != PartEltVT) 9888 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9889 return Val; 9890 } 9891 } 9892 return SDValue(); 9893 } 9894 9895 #define GET_REGISTER_MATCHER 9896 #include "RISCVGenAsmMatcher.inc" 9897 9898 Register 9899 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9900 const MachineFunction &MF) const { 9901 Register Reg = MatchRegisterAltName(RegName); 9902 if (Reg == RISCV::NoRegister) 9903 Reg = MatchRegisterName(RegName); 9904 if (Reg == RISCV::NoRegister) 9905 report_fatal_error( 9906 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9907 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9908 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9909 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9910 StringRef(RegName) + "\".")); 9911 return Reg; 9912 } 9913 9914 namespace llvm { 9915 namespace RISCVVIntrinsicsTable { 9916 9917 #define GET_RISCVVIntrinsicsTable_IMPL 9918 #include "RISCVGenSearchableTables.inc" 9919 9920 } // namespace RISCVVIntrinsicsTable 9921 9922 } // namespace llvm 9923