1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
174                    MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
188 
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190   if (!Subtarget.hasStdExtZbb())
191     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
192 
193   if (Subtarget.is64Bit()) {
194     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
195                        MVT::i32, Custom);
196 
197     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
198                        MVT::i32, Custom);
199   } else {
200     setLibcallName(
201         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
202         nullptr);
203     setLibcallName(RTLIB::MULO_I64, nullptr);
204   }
205 
206   if (!Subtarget.hasStdExtM()) {
207     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
208                         ISD::SREM, ISD::UREM},
209                        XLenVT, Expand);
210   } else {
211     if (Subtarget.is64Bit()) {
212       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
213 
214       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
215                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
216     } else {
217       setOperationAction(ISD::MUL, MVT::i64, Custom);
218     }
219   }
220 
221   setOperationAction(
222       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
223       Expand);
224 
225   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
226                      Custom);
227 
228   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
229       Subtarget.hasStdExtZbkb()) {
230     if (Subtarget.is64Bit())
231       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
232   } else {
233     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
234   }
235 
236   if (Subtarget.hasStdExtZbp()) {
237     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
238     // more combining.
239     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
240 
241     // BSWAP i8 doesn't exist.
242     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
243 
244     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
245 
246     if (Subtarget.is64Bit())
247       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
248   } else {
249     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
250     // pattern match it directly in isel.
251     setOperationAction(ISD::BSWAP, XLenVT,
252                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
253                            ? Legal
254                            : Expand);
255     // Zbkb can use rev8+brev8 to implement bitreverse.
256     setOperationAction(ISD::BITREVERSE, XLenVT,
257                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
258   }
259 
260   if (Subtarget.hasStdExtZbb()) {
261     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
262                        Legal);
263 
264     if (Subtarget.is64Bit())
265       setOperationAction(
266           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
267           MVT::i32, Custom);
268   } else {
269     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
270 
271     if (Subtarget.is64Bit())
272       setOperationAction(ISD::ABS, MVT::i32, Custom);
273   }
274 
275   if (Subtarget.hasStdExtZbt()) {
276     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
277     setOperationAction(ISD::SELECT, XLenVT, Legal);
278 
279     if (Subtarget.is64Bit())
280       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
281   } else {
282     setOperationAction(ISD::SELECT, XLenVT, Custom);
283   }
284 
285   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
286       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
287       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
288       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
289       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
290       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
291       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
292 
293   static const ISD::CondCode FPCCToExpand[] = {
294       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
295       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
296       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
297 
298   static const ISD::NodeType FPOpToExpand[] = {
299       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
300       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
301 
302   if (Subtarget.hasStdExtZfh())
303     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
304 
305   if (Subtarget.hasStdExtZfh()) {
306     for (auto NT : FPLegalNodeTypes)
307       setOperationAction(NT, MVT::f16, Legal);
308     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
309     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
310     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
311     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
312     setOperationAction(ISD::SELECT, MVT::f16, Custom);
313     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
314 
315     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
316                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
317                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
318                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
319                         ISD::FLOG2, ISD::FLOG10},
320                        MVT::f16, Promote);
321 
322     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
323     // complete support for all operations in LegalizeDAG.
324 
325     // We need to custom promote this.
326     if (Subtarget.is64Bit())
327       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
328   }
329 
330   if (Subtarget.hasStdExtF()) {
331     for (auto NT : FPLegalNodeTypes)
332       setOperationAction(NT, MVT::f32, Legal);
333     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
334     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
335     setOperationAction(ISD::SELECT, MVT::f32, Custom);
336     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
337     for (auto Op : FPOpToExpand)
338       setOperationAction(Op, MVT::f32, Expand);
339     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
340     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
341   }
342 
343   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
344     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
345 
346   if (Subtarget.hasStdExtD()) {
347     for (auto NT : FPLegalNodeTypes)
348       setOperationAction(NT, MVT::f64, Legal);
349     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
350     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
351     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
352     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
353     setOperationAction(ISD::SELECT, MVT::f64, Custom);
354     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
355     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
356     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
357     for (auto Op : FPOpToExpand)
358       setOperationAction(Op, MVT::f64, Expand);
359     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
360     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
361   }
362 
363   if (Subtarget.is64Bit())
364     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
365                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
366                        MVT::i32, Custom);
367 
368   if (Subtarget.hasStdExtF()) {
369     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
370                        Custom);
371 
372     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
373                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
374                        XLenVT, Legal);
375 
376     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
377     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
378   }
379 
380   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
381                       ISD::JumpTable},
382                      XLenVT, Custom);
383 
384   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
385 
386   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
387   // Unfortunately this can't be determined just from the ISA naming string.
388   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
389                      Subtarget.is64Bit() ? Legal : Custom);
390 
391   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
392   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
393   if (Subtarget.is64Bit())
394     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
395 
396   if (Subtarget.hasStdExtA()) {
397     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
398     setMinCmpXchgSizeInBits(32);
399   } else {
400     setMaxAtomicSizeInBitsSupported(0);
401   }
402 
403   setBooleanContents(ZeroOrOneBooleanContent);
404 
405   if (Subtarget.hasVInstructions()) {
406     setBooleanVectorContents(ZeroOrOneBooleanContent);
407 
408     setOperationAction(ISD::VSCALE, XLenVT, Custom);
409 
410     // RVV intrinsics may have illegal operands.
411     // We also need to custom legalize vmv.x.s.
412     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
413                        {MVT::i8, MVT::i16}, Custom);
414     if (Subtarget.is64Bit())
415       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
416     else
417       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
418                          MVT::i64, Custom);
419 
420     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
421                        MVT::Other, Custom);
422 
423     static const unsigned IntegerVPOps[] = {
424         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
425         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
426         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
427         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
428         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
429         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
430         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
431         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
432         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
433         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
434 
435     static const unsigned FloatingPointVPOps[] = {
436         ISD::VP_FADD,        ISD::VP_FSUB,
437         ISD::VP_FMUL,        ISD::VP_FDIV,
438         ISD::VP_FNEG,        ISD::VP_FMA,
439         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
440         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
441         ISD::VP_MERGE,       ISD::VP_SELECT,
442         ISD::VP_SITOFP,      ISD::VP_UITOFP,
443         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
444         ISD::VP_FP_EXTEND};
445 
446     if (!Subtarget.is64Bit()) {
447       // We must custom-lower certain vXi64 operations on RV32 due to the vector
448       // element type being illegal.
449       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
450                          MVT::i64, Custom);
451 
452       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
453                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
454                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
455                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
456                          MVT::i64, Custom);
457 
458       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
459                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
460                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
461                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
462                          MVT::i64, Custom);
463     }
464 
465     for (MVT VT : BoolVecVTs) {
466       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
467 
468       // Mask VTs are custom-expanded into a series of standard nodes
469       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
470                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
471                          VT, Custom);
472 
473       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
474                          Custom);
475 
476       setOperationAction(ISD::SELECT, VT, Custom);
477       setOperationAction(
478           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
479           Expand);
480 
481       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
482 
483       setOperationAction(
484           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
485           Custom);
486 
487       setOperationAction(
488           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
489           Custom);
490 
491       // RVV has native int->float & float->int conversions where the
492       // element type sizes are within one power-of-two of each other. Any
493       // wider distances between type sizes have to be lowered as sequences
494       // which progressively narrow the gap in stages.
495       setOperationAction(
496           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
497           VT, Custom);
498 
499       // Expand all extending loads to types larger than this, and truncating
500       // stores from types larger than this.
501       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
502         setTruncStoreAction(OtherVT, VT, Expand);
503         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
504                          VT, Expand);
505       }
506 
507       setOperationAction(
508           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
509           Custom);
510     }
511 
512     for (MVT VT : IntVecVTs) {
513       if (VT.getVectorElementType() == MVT::i64 &&
514           !Subtarget.hasVInstructionsI64())
515         continue;
516 
517       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
518       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
519 
520       // Vectors implement MULHS/MULHU.
521       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
522 
523       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
524       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
525         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
526 
527       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
528                          Legal);
529 
530       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
531 
532       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
533                          Expand);
534 
535       setOperationAction(ISD::BSWAP, VT, Expand);
536 
537       // Custom-lower extensions and truncations from/to mask types.
538       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
539                          VT, Custom);
540 
541       // RVV has native int->float & float->int conversions where the
542       // element type sizes are within one power-of-two of each other. Any
543       // wider distances between type sizes have to be lowered as sequences
544       // which progressively narrow the gap in stages.
545       setOperationAction(
546           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
547           VT, Custom);
548 
549       setOperationAction(
550           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
551 
552       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
553       // nodes which truncate by one power of two at a time.
554       setOperationAction(ISD::TRUNCATE, VT, Custom);
555 
556       // Custom-lower insert/extract operations to simplify patterns.
557       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
558                          Custom);
559 
560       // Custom-lower reduction operations to set up the corresponding custom
561       // nodes' operands.
562       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
563                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
564                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
565                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
566                          VT, Custom);
567 
568       setOperationAction(IntegerVPOps, VT, Custom);
569 
570       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
571 
572       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
573                          VT, Custom);
574 
575       setOperationAction(
576           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
577           Custom);
578 
579       setOperationAction(
580           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
581           VT, Custom);
582 
583       setOperationAction(ISD::SELECT, VT, Custom);
584       setOperationAction(ISD::SELECT_CC, VT, Expand);
585 
586       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
587 
588       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
589         setTruncStoreAction(VT, OtherVT, Expand);
590         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
591                          VT, Expand);
592       }
593 
594       // Splice
595       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
596 
597       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
598       // type that can represent the value exactly.
599       if (VT.getVectorElementType() != MVT::i64) {
600         MVT FloatEltVT =
601             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
602         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
603         if (isTypeLegal(FloatVT)) {
604           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
605                              Custom);
606         }
607       }
608     }
609 
610     // Expand various CCs to best match the RVV ISA, which natively supports UNE
611     // but no other unordered comparisons, and supports all ordered comparisons
612     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
613     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
614     // and we pattern-match those back to the "original", swapping operands once
615     // more. This way we catch both operations and both "vf" and "fv" forms with
616     // fewer patterns.
617     static const ISD::CondCode VFPCCToExpand[] = {
618         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
619         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
620         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
621     };
622 
623     // Sets common operation actions on RVV floating-point vector types.
624     const auto SetCommonVFPActions = [&](MVT VT) {
625       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
626       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
627       // sizes are within one power-of-two of each other. Therefore conversions
628       // between vXf16 and vXf64 must be lowered as sequences which convert via
629       // vXf32.
630       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
631       // Custom-lower insert/extract operations to simplify patterns.
632       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
633                          Custom);
634       // Expand various condition codes (explained above).
635       setCondCodeAction(VFPCCToExpand, VT, Expand);
636 
637       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
638 
639       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
640                          VT, Custom);
641 
642       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
643                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
644                          VT, Custom);
645 
646       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
647 
648       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
649 
650       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
651                          VT, Custom);
652 
653       setOperationAction(
654           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
655           Custom);
656 
657       setOperationAction(ISD::SELECT, VT, Custom);
658       setOperationAction(ISD::SELECT_CC, VT, Expand);
659 
660       setOperationAction(
661           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
662           VT, Custom);
663 
664       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
665 
666       setOperationAction(FloatingPointVPOps, VT, Custom);
667     };
668 
669     // Sets common extload/truncstore actions on RVV floating-point vector
670     // types.
671     const auto SetCommonVFPExtLoadTruncStoreActions =
672         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
673           for (auto SmallVT : SmallerVTs) {
674             setTruncStoreAction(VT, SmallVT, Expand);
675             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
676           }
677         };
678 
679     if (Subtarget.hasVInstructionsF16())
680       for (MVT VT : F16VecVTs)
681         SetCommonVFPActions(VT);
682 
683     for (MVT VT : F32VecVTs) {
684       if (Subtarget.hasVInstructionsF32())
685         SetCommonVFPActions(VT);
686       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
687     }
688 
689     for (MVT VT : F64VecVTs) {
690       if (Subtarget.hasVInstructionsF64())
691         SetCommonVFPActions(VT);
692       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
693       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
694     }
695 
696     if (Subtarget.useRVVForFixedLengthVectors()) {
697       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
698         if (!useRVVForFixedLengthVectorVT(VT))
699           continue;
700 
701         // By default everything must be expanded.
702         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
703           setOperationAction(Op, VT, Expand);
704         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
705           setTruncStoreAction(VT, OtherVT, Expand);
706           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
707                            OtherVT, VT, Expand);
708         }
709 
710         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
711         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
712                            Custom);
713 
714         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
715                            Custom);
716 
717         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
718                            VT, Custom);
719 
720         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
721 
722         setOperationAction(ISD::SETCC, VT, Custom);
723 
724         setOperationAction(ISD::SELECT, VT, Custom);
725 
726         setOperationAction(ISD::TRUNCATE, VT, Custom);
727 
728         setOperationAction(ISD::BITCAST, VT, Custom);
729 
730         setOperationAction(
731             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
732             Custom);
733 
734         setOperationAction(
735             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
736             Custom);
737 
738         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
739                             ISD::FP_TO_UINT},
740                            VT, Custom);
741 
742         // Operations below are different for between masks and other vectors.
743         if (VT.getVectorElementType() == MVT::i1) {
744           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
745                               ISD::OR, ISD::XOR},
746                              VT, Custom);
747 
748           setOperationAction(
749               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
750               VT, Custom);
751           continue;
752         }
753 
754         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
755         // it before type legalization for i64 vectors on RV32. It will then be
756         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
757         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
758         // improvements first.
759         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
760           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
761           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
762         }
763 
764         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
765         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
766 
767         setOperationAction(
768             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
769 
770         setOperationAction(
771             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
772             Custom);
773 
774         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
775                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
776                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
777                            VT, Custom);
778 
779         setOperationAction(
780             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
781 
782         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
783         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
784           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
785 
786         setOperationAction(
787             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
788             Custom);
789 
790         setOperationAction(ISD::VSELECT, VT, Custom);
791         setOperationAction(ISD::SELECT_CC, VT, Expand);
792 
793         setOperationAction(
794             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
795 
796         // Custom-lower reduction operations to set up the corresponding custom
797         // nodes' operands.
798         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
799                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
800                             ISD::VECREDUCE_UMIN},
801                            VT, Custom);
802 
803         setOperationAction(IntegerVPOps, VT, Custom);
804 
805         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
806         // type that can represent the value exactly.
807         if (VT.getVectorElementType() != MVT::i64) {
808           MVT FloatEltVT =
809               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
810           EVT FloatVT =
811               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
812           if (isTypeLegal(FloatVT))
813             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
814                                Custom);
815         }
816       }
817 
818       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
819         if (!useRVVForFixedLengthVectorVT(VT))
820           continue;
821 
822         // By default everything must be expanded.
823         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
824           setOperationAction(Op, VT, Expand);
825         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
826           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
827           setTruncStoreAction(VT, OtherVT, Expand);
828         }
829 
830         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
831         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
832                            Custom);
833 
834         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
835                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
836                             ISD::EXTRACT_VECTOR_ELT},
837                            VT, Custom);
838 
839         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
840                             ISD::MGATHER, ISD::MSCATTER},
841                            VT, Custom);
842 
843         setOperationAction(
844             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
845             Custom);
846 
847         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
848                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
849                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
850                            VT, Custom);
851 
852         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
853 
854         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
855                            VT, Custom);
856 
857         for (auto CC : VFPCCToExpand)
858           setCondCodeAction(CC, VT, Expand);
859 
860         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
861         setOperationAction(ISD::SELECT_CC, VT, Expand);
862 
863         setOperationAction(ISD::BITCAST, VT, Custom);
864 
865         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
866                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
867                            VT, Custom);
868 
869         setOperationAction(FloatingPointVPOps, VT, Custom);
870       }
871 
872       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
873       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
874                          Custom);
875       if (Subtarget.hasStdExtZfh())
876         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
877       if (Subtarget.hasStdExtF())
878         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
879       if (Subtarget.hasStdExtD())
880         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
881     }
882   }
883 
884   // Function alignments.
885   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
886   setMinFunctionAlignment(FunctionAlignment);
887   setPrefFunctionAlignment(FunctionAlignment);
888 
889   setMinimumJumpTableEntries(5);
890 
891   // Jumps are expensive, compared to logic
892   setJumpIsExpensive();
893 
894   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
895                        ISD::OR, ISD::XOR});
896 
897   if (Subtarget.hasStdExtF())
898     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
899 
900   if (Subtarget.hasStdExtZbp())
901     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
902 
903   if (Subtarget.hasStdExtZbb())
904     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
905 
906   if (Subtarget.hasStdExtZbkb())
907     setTargetDAGCombine(ISD::BITREVERSE);
908   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
909     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
910   if (Subtarget.hasStdExtF())
911     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
912                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
913   if (Subtarget.hasVInstructions())
914     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
915                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
916                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
917 
918   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
919   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
920 }
921 
922 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
923                                             LLVMContext &Context,
924                                             EVT VT) const {
925   if (!VT.isVector())
926     return getPointerTy(DL);
927   if (Subtarget.hasVInstructions() &&
928       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
929     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
930   return VT.changeVectorElementTypeToInteger();
931 }
932 
933 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
934   return Subtarget.getXLenVT();
935 }
936 
937 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
938                                              const CallInst &I,
939                                              MachineFunction &MF,
940                                              unsigned Intrinsic) const {
941   auto &DL = I.getModule()->getDataLayout();
942   switch (Intrinsic) {
943   default:
944     return false;
945   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
946   case Intrinsic::riscv_masked_atomicrmw_add_i32:
947   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
948   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
949   case Intrinsic::riscv_masked_atomicrmw_max_i32:
950   case Intrinsic::riscv_masked_atomicrmw_min_i32:
951   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
952   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
953   case Intrinsic::riscv_masked_cmpxchg_i32:
954     Info.opc = ISD::INTRINSIC_W_CHAIN;
955     Info.memVT = MVT::i32;
956     Info.ptrVal = I.getArgOperand(0);
957     Info.offset = 0;
958     Info.align = Align(4);
959     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
960                  MachineMemOperand::MOVolatile;
961     return true;
962   case Intrinsic::riscv_masked_strided_load:
963     Info.opc = ISD::INTRINSIC_W_CHAIN;
964     Info.ptrVal = I.getArgOperand(1);
965     Info.memVT = getValueType(DL, I.getType()->getScalarType());
966     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
967     Info.size = MemoryLocation::UnknownSize;
968     Info.flags |= MachineMemOperand::MOLoad;
969     return true;
970   case Intrinsic::riscv_masked_strided_store:
971     Info.opc = ISD::INTRINSIC_VOID;
972     Info.ptrVal = I.getArgOperand(1);
973     Info.memVT =
974         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
975     Info.align = Align(
976         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
977         8);
978     Info.size = MemoryLocation::UnknownSize;
979     Info.flags |= MachineMemOperand::MOStore;
980     return true;
981   case Intrinsic::riscv_seg2_load:
982   case Intrinsic::riscv_seg3_load:
983   case Intrinsic::riscv_seg4_load:
984   case Intrinsic::riscv_seg5_load:
985   case Intrinsic::riscv_seg6_load:
986   case Intrinsic::riscv_seg7_load:
987   case Intrinsic::riscv_seg8_load:
988     Info.opc = ISD::INTRINSIC_W_CHAIN;
989     Info.ptrVal = I.getArgOperand(0);
990     Info.memVT =
991         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
992     Info.align =
993         Align(DL.getTypeSizeInBits(
994                   I.getType()->getStructElementType(0)->getScalarType()) /
995               8);
996     Info.size = MemoryLocation::UnknownSize;
997     Info.flags |= MachineMemOperand::MOLoad;
998     return true;
999   }
1000 }
1001 
1002 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1003                                                 const AddrMode &AM, Type *Ty,
1004                                                 unsigned AS,
1005                                                 Instruction *I) const {
1006   // No global is ever allowed as a base.
1007   if (AM.BaseGV)
1008     return false;
1009 
1010   // RVV instructions only support register addressing.
1011   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1012     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1013 
1014   // Require a 12-bit signed offset.
1015   if (!isInt<12>(AM.BaseOffs))
1016     return false;
1017 
1018   switch (AM.Scale) {
1019   case 0: // "r+i" or just "i", depending on HasBaseReg.
1020     break;
1021   case 1:
1022     if (!AM.HasBaseReg) // allow "r+i".
1023       break;
1024     return false; // disallow "r+r" or "r+r+i".
1025   default:
1026     return false;
1027   }
1028 
1029   return true;
1030 }
1031 
1032 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1033   return isInt<12>(Imm);
1034 }
1035 
1036 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1037   return isInt<12>(Imm);
1038 }
1039 
1040 // On RV32, 64-bit integers are split into their high and low parts and held
1041 // in two different registers, so the trunc is free since the low register can
1042 // just be used.
1043 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1044   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1045     return false;
1046   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1047   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1048   return (SrcBits == 64 && DestBits == 32);
1049 }
1050 
1051 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1052   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1053       !SrcVT.isInteger() || !DstVT.isInteger())
1054     return false;
1055   unsigned SrcBits = SrcVT.getSizeInBits();
1056   unsigned DestBits = DstVT.getSizeInBits();
1057   return (SrcBits == 64 && DestBits == 32);
1058 }
1059 
1060 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1061   // Zexts are free if they can be combined with a load.
1062   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1063   // poorly with type legalization of compares preferring sext.
1064   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1065     EVT MemVT = LD->getMemoryVT();
1066     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1067         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1068          LD->getExtensionType() == ISD::ZEXTLOAD))
1069       return true;
1070   }
1071 
1072   return TargetLowering::isZExtFree(Val, VT2);
1073 }
1074 
1075 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1076   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1077 }
1078 
1079 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1080   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1081 }
1082 
1083 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1084   return Subtarget.hasStdExtZbb();
1085 }
1086 
1087 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1088   return Subtarget.hasStdExtZbb();
1089 }
1090 
1091 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1092   EVT VT = Y.getValueType();
1093 
1094   // FIXME: Support vectors once we have tests.
1095   if (VT.isVector())
1096     return false;
1097 
1098   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1099           Subtarget.hasStdExtZbkb()) &&
1100          !isa<ConstantSDNode>(Y);
1101 }
1102 
1103 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1104   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1105   auto *C = dyn_cast<ConstantSDNode>(Y);
1106   return C && C->getAPIntValue().ule(10);
1107 }
1108 
1109 bool RISCVTargetLowering::
1110     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1111         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1112         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1113         SelectionDAG &DAG) const {
1114   // One interesting pattern that we'd want to form is 'bit extract':
1115   //   ((1 >> Y) & 1) ==/!= 0
1116   // But we also need to be careful not to try to reverse that fold.
1117 
1118   // Is this '((1 >> Y) & 1)'?
1119   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1120     return false; // Keep the 'bit extract' pattern.
1121 
1122   // Will this be '((1 >> Y) & 1)' after the transform?
1123   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1124     return true; // Do form the 'bit extract' pattern.
1125 
1126   // If 'X' is a constant, and we transform, then we will immediately
1127   // try to undo the fold, thus causing endless combine loop.
1128   // So only do the transform if X is not a constant. This matches the default
1129   // implementation of this function.
1130   return !XC;
1131 }
1132 
1133 /// Check if sinking \p I's operands to I's basic block is profitable, because
1134 /// the operands can be folded into a target instruction, e.g.
1135 /// splats of scalars can fold into vector instructions.
1136 bool RISCVTargetLowering::shouldSinkOperands(
1137     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1138   using namespace llvm::PatternMatch;
1139 
1140   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1141     return false;
1142 
1143   auto IsSinker = [&](Instruction *I, int Operand) {
1144     switch (I->getOpcode()) {
1145     case Instruction::Add:
1146     case Instruction::Sub:
1147     case Instruction::Mul:
1148     case Instruction::And:
1149     case Instruction::Or:
1150     case Instruction::Xor:
1151     case Instruction::FAdd:
1152     case Instruction::FSub:
1153     case Instruction::FMul:
1154     case Instruction::FDiv:
1155     case Instruction::ICmp:
1156     case Instruction::FCmp:
1157       return true;
1158     case Instruction::Shl:
1159     case Instruction::LShr:
1160     case Instruction::AShr:
1161     case Instruction::UDiv:
1162     case Instruction::SDiv:
1163     case Instruction::URem:
1164     case Instruction::SRem:
1165       return Operand == 1;
1166     case Instruction::Call:
1167       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1168         switch (II->getIntrinsicID()) {
1169         case Intrinsic::fma:
1170         case Intrinsic::vp_fma:
1171           return Operand == 0 || Operand == 1;
1172         // FIXME: Our patterns can only match vx/vf instructions when the splat
1173         // it on the RHS, because TableGen doesn't recognize our VP operations
1174         // as commutative.
1175         case Intrinsic::vp_add:
1176         case Intrinsic::vp_mul:
1177         case Intrinsic::vp_and:
1178         case Intrinsic::vp_or:
1179         case Intrinsic::vp_xor:
1180         case Intrinsic::vp_fadd:
1181         case Intrinsic::vp_fmul:
1182         case Intrinsic::vp_shl:
1183         case Intrinsic::vp_lshr:
1184         case Intrinsic::vp_ashr:
1185         case Intrinsic::vp_udiv:
1186         case Intrinsic::vp_sdiv:
1187         case Intrinsic::vp_urem:
1188         case Intrinsic::vp_srem:
1189           return Operand == 1;
1190         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1191         // explicit patterns for both LHS and RHS (as 'vr' versions).
1192         case Intrinsic::vp_sub:
1193         case Intrinsic::vp_fsub:
1194         case Intrinsic::vp_fdiv:
1195           return Operand == 0 || Operand == 1;
1196         default:
1197           return false;
1198         }
1199       }
1200       return false;
1201     default:
1202       return false;
1203     }
1204   };
1205 
1206   for (auto OpIdx : enumerate(I->operands())) {
1207     if (!IsSinker(I, OpIdx.index()))
1208       continue;
1209 
1210     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1211     // Make sure we are not already sinking this operand
1212     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1213       continue;
1214 
1215     // We are looking for a splat that can be sunk.
1216     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1217                              m_Undef(), m_ZeroMask())))
1218       continue;
1219 
1220     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1221     // and vector registers
1222     for (Use &U : Op->uses()) {
1223       Instruction *Insn = cast<Instruction>(U.getUser());
1224       if (!IsSinker(Insn, U.getOperandNo()))
1225         return false;
1226     }
1227 
1228     Ops.push_back(&Op->getOperandUse(0));
1229     Ops.push_back(&OpIdx.value());
1230   }
1231   return true;
1232 }
1233 
1234 bool RISCVTargetLowering::isOffsetFoldingLegal(
1235     const GlobalAddressSDNode *GA) const {
1236   // In order to maximise the opportunity for common subexpression elimination,
1237   // keep a separate ADD node for the global address offset instead of folding
1238   // it in the global address node. Later peephole optimisations may choose to
1239   // fold it back in when profitable.
1240   return false;
1241 }
1242 
1243 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1244                                        bool ForCodeSize) const {
1245   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1246   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1247     return false;
1248   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1249     return false;
1250   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1251     return false;
1252   return Imm.isZero();
1253 }
1254 
1255 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1256   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1257          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1258          (VT == MVT::f64 && Subtarget.hasStdExtD());
1259 }
1260 
1261 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1262                                                       CallingConv::ID CC,
1263                                                       EVT VT) const {
1264   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1265   // We might still end up using a GPR but that will be decided based on ABI.
1266   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1267   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1268     return MVT::f32;
1269 
1270   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1271 }
1272 
1273 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1274                                                            CallingConv::ID CC,
1275                                                            EVT VT) const {
1276   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1277   // We might still end up using a GPR but that will be decided based on ABI.
1278   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1279   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1280     return 1;
1281 
1282   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1283 }
1284 
1285 // Changes the condition code and swaps operands if necessary, so the SetCC
1286 // operation matches one of the comparisons supported directly by branches
1287 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1288 // with 1/-1.
1289 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1290                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1291   // Convert X > -1 to X >= 0.
1292   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1293     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1294     CC = ISD::SETGE;
1295     return;
1296   }
1297   // Convert X < 1 to 0 >= X.
1298   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1299     RHS = LHS;
1300     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1301     CC = ISD::SETGE;
1302     return;
1303   }
1304 
1305   switch (CC) {
1306   default:
1307     break;
1308   case ISD::SETGT:
1309   case ISD::SETLE:
1310   case ISD::SETUGT:
1311   case ISD::SETULE:
1312     CC = ISD::getSetCCSwappedOperands(CC);
1313     std::swap(LHS, RHS);
1314     break;
1315   }
1316 }
1317 
1318 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1319   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1320   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1321   if (VT.getVectorElementType() == MVT::i1)
1322     KnownSize *= 8;
1323 
1324   switch (KnownSize) {
1325   default:
1326     llvm_unreachable("Invalid LMUL.");
1327   case 8:
1328     return RISCVII::VLMUL::LMUL_F8;
1329   case 16:
1330     return RISCVII::VLMUL::LMUL_F4;
1331   case 32:
1332     return RISCVII::VLMUL::LMUL_F2;
1333   case 64:
1334     return RISCVII::VLMUL::LMUL_1;
1335   case 128:
1336     return RISCVII::VLMUL::LMUL_2;
1337   case 256:
1338     return RISCVII::VLMUL::LMUL_4;
1339   case 512:
1340     return RISCVII::VLMUL::LMUL_8;
1341   }
1342 }
1343 
1344 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1345   switch (LMul) {
1346   default:
1347     llvm_unreachable("Invalid LMUL.");
1348   case RISCVII::VLMUL::LMUL_F8:
1349   case RISCVII::VLMUL::LMUL_F4:
1350   case RISCVII::VLMUL::LMUL_F2:
1351   case RISCVII::VLMUL::LMUL_1:
1352     return RISCV::VRRegClassID;
1353   case RISCVII::VLMUL::LMUL_2:
1354     return RISCV::VRM2RegClassID;
1355   case RISCVII::VLMUL::LMUL_4:
1356     return RISCV::VRM4RegClassID;
1357   case RISCVII::VLMUL::LMUL_8:
1358     return RISCV::VRM8RegClassID;
1359   }
1360 }
1361 
1362 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1363   RISCVII::VLMUL LMUL = getLMUL(VT);
1364   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1365       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1366       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1367       LMUL == RISCVII::VLMUL::LMUL_1) {
1368     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1369                   "Unexpected subreg numbering");
1370     return RISCV::sub_vrm1_0 + Index;
1371   }
1372   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1373     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1374                   "Unexpected subreg numbering");
1375     return RISCV::sub_vrm2_0 + Index;
1376   }
1377   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1378     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1379                   "Unexpected subreg numbering");
1380     return RISCV::sub_vrm4_0 + Index;
1381   }
1382   llvm_unreachable("Invalid vector type.");
1383 }
1384 
1385 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1386   if (VT.getVectorElementType() == MVT::i1)
1387     return RISCV::VRRegClassID;
1388   return getRegClassIDForLMUL(getLMUL(VT));
1389 }
1390 
1391 // Attempt to decompose a subvector insert/extract between VecVT and
1392 // SubVecVT via subregister indices. Returns the subregister index that
1393 // can perform the subvector insert/extract with the given element index, as
1394 // well as the index corresponding to any leftover subvectors that must be
1395 // further inserted/extracted within the register class for SubVecVT.
1396 std::pair<unsigned, unsigned>
1397 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1398     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1399     const RISCVRegisterInfo *TRI) {
1400   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1401                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1402                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1403                 "Register classes not ordered");
1404   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1405   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1406   // Try to compose a subregister index that takes us from the incoming
1407   // LMUL>1 register class down to the outgoing one. At each step we half
1408   // the LMUL:
1409   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1410   // Note that this is not guaranteed to find a subregister index, such as
1411   // when we are extracting from one VR type to another.
1412   unsigned SubRegIdx = RISCV::NoSubRegister;
1413   for (const unsigned RCID :
1414        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1415     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1416       VecVT = VecVT.getHalfNumVectorElementsVT();
1417       bool IsHi =
1418           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1419       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1420                                             getSubregIndexByMVT(VecVT, IsHi));
1421       if (IsHi)
1422         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1423     }
1424   return {SubRegIdx, InsertExtractIdx};
1425 }
1426 
1427 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1428 // stores for those types.
1429 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1430   return !Subtarget.useRVVForFixedLengthVectors() ||
1431          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1432 }
1433 
1434 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1435   if (ScalarTy->isPointerTy())
1436     return true;
1437 
1438   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1439       ScalarTy->isIntegerTy(32))
1440     return true;
1441 
1442   if (ScalarTy->isIntegerTy(64))
1443     return Subtarget.hasVInstructionsI64();
1444 
1445   if (ScalarTy->isHalfTy())
1446     return Subtarget.hasVInstructionsF16();
1447   if (ScalarTy->isFloatTy())
1448     return Subtarget.hasVInstructionsF32();
1449   if (ScalarTy->isDoubleTy())
1450     return Subtarget.hasVInstructionsF64();
1451 
1452   return false;
1453 }
1454 
1455 static SDValue getVLOperand(SDValue Op) {
1456   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1457           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1458          "Unexpected opcode");
1459   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1460   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1461   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1462       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1463   if (!II)
1464     return SDValue();
1465   return Op.getOperand(II->VLOperand + 1 + HasChain);
1466 }
1467 
1468 static bool useRVVForFixedLengthVectorVT(MVT VT,
1469                                          const RISCVSubtarget &Subtarget) {
1470   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1471   if (!Subtarget.useRVVForFixedLengthVectors())
1472     return false;
1473 
1474   // We only support a set of vector types with a consistent maximum fixed size
1475   // across all supported vector element types to avoid legalization issues.
1476   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1477   // fixed-length vector type we support is 1024 bytes.
1478   if (VT.getFixedSizeInBits() > 1024 * 8)
1479     return false;
1480 
1481   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1482 
1483   MVT EltVT = VT.getVectorElementType();
1484 
1485   // Don't use RVV for vectors we cannot scalarize if required.
1486   switch (EltVT.SimpleTy) {
1487   // i1 is supported but has different rules.
1488   default:
1489     return false;
1490   case MVT::i1:
1491     // Masks can only use a single register.
1492     if (VT.getVectorNumElements() > MinVLen)
1493       return false;
1494     MinVLen /= 8;
1495     break;
1496   case MVT::i8:
1497   case MVT::i16:
1498   case MVT::i32:
1499     break;
1500   case MVT::i64:
1501     if (!Subtarget.hasVInstructionsI64())
1502       return false;
1503     break;
1504   case MVT::f16:
1505     if (!Subtarget.hasVInstructionsF16())
1506       return false;
1507     break;
1508   case MVT::f32:
1509     if (!Subtarget.hasVInstructionsF32())
1510       return false;
1511     break;
1512   case MVT::f64:
1513     if (!Subtarget.hasVInstructionsF64())
1514       return false;
1515     break;
1516   }
1517 
1518   // Reject elements larger than ELEN.
1519   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1520     return false;
1521 
1522   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1523   // Don't use RVV for types that don't fit.
1524   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1525     return false;
1526 
1527   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1528   // the base fixed length RVV support in place.
1529   if (!VT.isPow2VectorType())
1530     return false;
1531 
1532   return true;
1533 }
1534 
1535 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1536   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1537 }
1538 
1539 // Return the largest legal scalable vector type that matches VT's element type.
1540 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1541                                             const RISCVSubtarget &Subtarget) {
1542   // This may be called before legal types are setup.
1543   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1544           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1545          "Expected legal fixed length vector!");
1546 
1547   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1548   unsigned MaxELen = Subtarget.getELEN();
1549 
1550   MVT EltVT = VT.getVectorElementType();
1551   switch (EltVT.SimpleTy) {
1552   default:
1553     llvm_unreachable("unexpected element type for RVV container");
1554   case MVT::i1:
1555   case MVT::i8:
1556   case MVT::i16:
1557   case MVT::i32:
1558   case MVT::i64:
1559   case MVT::f16:
1560   case MVT::f32:
1561   case MVT::f64: {
1562     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1563     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1564     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1565     unsigned NumElts =
1566         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1567     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1568     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1569     return MVT::getScalableVectorVT(EltVT, NumElts);
1570   }
1571   }
1572 }
1573 
1574 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1575                                             const RISCVSubtarget &Subtarget) {
1576   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1577                                           Subtarget);
1578 }
1579 
1580 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1581   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1582 }
1583 
1584 // Grow V to consume an entire RVV register.
1585 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1586                                        const RISCVSubtarget &Subtarget) {
1587   assert(VT.isScalableVector() &&
1588          "Expected to convert into a scalable vector!");
1589   assert(V.getValueType().isFixedLengthVector() &&
1590          "Expected a fixed length vector operand!");
1591   SDLoc DL(V);
1592   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1593   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1594 }
1595 
1596 // Shrink V so it's just big enough to maintain a VT's worth of data.
1597 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1598                                          const RISCVSubtarget &Subtarget) {
1599   assert(VT.isFixedLengthVector() &&
1600          "Expected to convert into a fixed length vector!");
1601   assert(V.getValueType().isScalableVector() &&
1602          "Expected a scalable vector operand!");
1603   SDLoc DL(V);
1604   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1605   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1606 }
1607 
1608 /// Return the type of the mask type suitable for masking the provided
1609 /// vector type.  This is simply an i1 element type vector of the same
1610 /// (possibly scalable) length.
1611 static MVT getMaskTypeFor(EVT VecVT) {
1612   assert(VecVT.isVector());
1613   ElementCount EC = VecVT.getVectorElementCount();
1614   return MVT::getVectorVT(MVT::i1, EC);
1615 }
1616 
1617 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1618 /// vector length VL.  .
1619 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1620                               SelectionDAG &DAG) {
1621   MVT MaskVT = getMaskTypeFor(VecVT);
1622   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1623 }
1624 
1625 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1626 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1627 // the vector type that it is contained in.
1628 static std::pair<SDValue, SDValue>
1629 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1630                 const RISCVSubtarget &Subtarget) {
1631   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1632   MVT XLenVT = Subtarget.getXLenVT();
1633   SDValue VL = VecVT.isFixedLengthVector()
1634                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1635                    : DAG.getRegister(RISCV::X0, XLenVT);
1636   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1637   return {Mask, VL};
1638 }
1639 
1640 // As above but assuming the given type is a scalable vector type.
1641 static std::pair<SDValue, SDValue>
1642 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1643                         const RISCVSubtarget &Subtarget) {
1644   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1645   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1646 }
1647 
1648 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1649 // of either is (currently) supported. This can get us into an infinite loop
1650 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1651 // as a ..., etc.
1652 // Until either (or both) of these can reliably lower any node, reporting that
1653 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1654 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1655 // which is not desirable.
1656 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1657     EVT VT, unsigned DefinedValues) const {
1658   return false;
1659 }
1660 
1661 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1662                                   const RISCVSubtarget &Subtarget) {
1663   // RISCV FP-to-int conversions saturate to the destination register size, but
1664   // don't produce 0 for nan. We can use a conversion instruction and fix the
1665   // nan case with a compare and a select.
1666   SDValue Src = Op.getOperand(0);
1667 
1668   EVT DstVT = Op.getValueType();
1669   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1670 
1671   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1672   unsigned Opc;
1673   if (SatVT == DstVT)
1674     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1675   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1676     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1677   else
1678     return SDValue();
1679   // FIXME: Support other SatVTs by clamping before or after the conversion.
1680 
1681   SDLoc DL(Op);
1682   SDValue FpToInt = DAG.getNode(
1683       Opc, DL, DstVT, Src,
1684       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1685 
1686   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1687   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1688 }
1689 
1690 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1691 // and back. Taking care to avoid converting values that are nan or already
1692 // correct.
1693 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1694 // have FRM dependencies modeled yet.
1695 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1696   MVT VT = Op.getSimpleValueType();
1697   assert(VT.isVector() && "Unexpected type");
1698 
1699   SDLoc DL(Op);
1700 
1701   // Freeze the source since we are increasing the number of uses.
1702   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1703 
1704   // Truncate to integer and convert back to FP.
1705   MVT IntVT = VT.changeVectorElementTypeToInteger();
1706   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1707   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1708 
1709   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1710 
1711   if (Op.getOpcode() == ISD::FCEIL) {
1712     // If the truncated value is the greater than or equal to the original
1713     // value, we've computed the ceil. Otherwise, we went the wrong way and
1714     // need to increase by 1.
1715     // FIXME: This should use a masked operation. Handle here or in isel?
1716     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1717                                  DAG.getConstantFP(1.0, DL, VT));
1718     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1719     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1720   } else if (Op.getOpcode() == ISD::FFLOOR) {
1721     // If the truncated value is the less than or equal to the original value,
1722     // we've computed the floor. Otherwise, we went the wrong way and need to
1723     // decrease by 1.
1724     // FIXME: This should use a masked operation. Handle here or in isel?
1725     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1726                                  DAG.getConstantFP(1.0, DL, VT));
1727     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1728     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1729   }
1730 
1731   // Restore the original sign so that -0.0 is preserved.
1732   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1733 
1734   // Determine the largest integer that can be represented exactly. This and
1735   // values larger than it don't have any fractional bits so don't need to
1736   // be converted.
1737   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1738   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1739   APFloat MaxVal = APFloat(FltSem);
1740   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1741                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1742   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1743 
1744   // If abs(Src) was larger than MaxVal or nan, keep it.
1745   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1746   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1747   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1748 }
1749 
1750 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1751 // This mode isn't supported in vector hardware on RISCV. But as long as we
1752 // aren't compiling with trapping math, we can emulate this with
1753 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1754 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1755 // dependencies modeled yet.
1756 // FIXME: Use masked operations to avoid final merge.
1757 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1758   MVT VT = Op.getSimpleValueType();
1759   assert(VT.isVector() && "Unexpected type");
1760 
1761   SDLoc DL(Op);
1762 
1763   // Freeze the source since we are increasing the number of uses.
1764   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1765 
1766   // We do the conversion on the absolute value and fix the sign at the end.
1767   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1768 
1769   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1770   bool Ignored;
1771   APFloat Point5Pred = APFloat(0.5f);
1772   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1773   Point5Pred.next(/*nextDown*/ true);
1774 
1775   // Add the adjustment.
1776   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1777                                DAG.getConstantFP(Point5Pred, DL, VT));
1778 
1779   // Truncate to integer and convert back to fp.
1780   MVT IntVT = VT.changeVectorElementTypeToInteger();
1781   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1782   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1783 
1784   // Restore the original sign.
1785   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1786 
1787   // Determine the largest integer that can be represented exactly. This and
1788   // values larger than it don't have any fractional bits so don't need to
1789   // be converted.
1790   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1791   APFloat MaxVal = APFloat(FltSem);
1792   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1793                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1794   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1795 
1796   // If abs(Src) was larger than MaxVal or nan, keep it.
1797   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1798   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1799   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1800 }
1801 
1802 struct VIDSequence {
1803   int64_t StepNumerator;
1804   unsigned StepDenominator;
1805   int64_t Addend;
1806 };
1807 
1808 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1809 // to the (non-zero) step S and start value X. This can be then lowered as the
1810 // RVV sequence (VID * S) + X, for example.
1811 // The step S is represented as an integer numerator divided by a positive
1812 // denominator. Note that the implementation currently only identifies
1813 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1814 // cannot detect 2/3, for example.
1815 // Note that this method will also match potentially unappealing index
1816 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1817 // determine whether this is worth generating code for.
1818 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1819   unsigned NumElts = Op.getNumOperands();
1820   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1821   if (!Op.getValueType().isInteger())
1822     return None;
1823 
1824   Optional<unsigned> SeqStepDenom;
1825   Optional<int64_t> SeqStepNum, SeqAddend;
1826   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1827   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1828   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1829     // Assume undef elements match the sequence; we just have to be careful
1830     // when interpolating across them.
1831     if (Op.getOperand(Idx).isUndef())
1832       continue;
1833     // The BUILD_VECTOR must be all constants.
1834     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1835       return None;
1836 
1837     uint64_t Val = Op.getConstantOperandVal(Idx) &
1838                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1839 
1840     if (PrevElt) {
1841       // Calculate the step since the last non-undef element, and ensure
1842       // it's consistent across the entire sequence.
1843       unsigned IdxDiff = Idx - PrevElt->second;
1844       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1845 
1846       // A zero-value value difference means that we're somewhere in the middle
1847       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1848       // step change before evaluating the sequence.
1849       if (ValDiff == 0)
1850         continue;
1851 
1852       int64_t Remainder = ValDiff % IdxDiff;
1853       // Normalize the step if it's greater than 1.
1854       if (Remainder != ValDiff) {
1855         // The difference must cleanly divide the element span.
1856         if (Remainder != 0)
1857           return None;
1858         ValDiff /= IdxDiff;
1859         IdxDiff = 1;
1860       }
1861 
1862       if (!SeqStepNum)
1863         SeqStepNum = ValDiff;
1864       else if (ValDiff != SeqStepNum)
1865         return None;
1866 
1867       if (!SeqStepDenom)
1868         SeqStepDenom = IdxDiff;
1869       else if (IdxDiff != *SeqStepDenom)
1870         return None;
1871     }
1872 
1873     // Record this non-undef element for later.
1874     if (!PrevElt || PrevElt->first != Val)
1875       PrevElt = std::make_pair(Val, Idx);
1876   }
1877 
1878   // We need to have logged a step for this to count as a legal index sequence.
1879   if (!SeqStepNum || !SeqStepDenom)
1880     return None;
1881 
1882   // Loop back through the sequence and validate elements we might have skipped
1883   // while waiting for a valid step. While doing this, log any sequence addend.
1884   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1885     if (Op.getOperand(Idx).isUndef())
1886       continue;
1887     uint64_t Val = Op.getConstantOperandVal(Idx) &
1888                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1889     uint64_t ExpectedVal =
1890         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1891     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1892     if (!SeqAddend)
1893       SeqAddend = Addend;
1894     else if (Addend != SeqAddend)
1895       return None;
1896   }
1897 
1898   assert(SeqAddend && "Must have an addend if we have a step");
1899 
1900   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1901 }
1902 
1903 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1904 // and lower it as a VRGATHER_VX_VL from the source vector.
1905 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1906                                   SelectionDAG &DAG,
1907                                   const RISCVSubtarget &Subtarget) {
1908   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1909     return SDValue();
1910   SDValue Vec = SplatVal.getOperand(0);
1911   // Only perform this optimization on vectors of the same size for simplicity.
1912   if (Vec.getValueType() != VT)
1913     return SDValue();
1914   SDValue Idx = SplatVal.getOperand(1);
1915   // The index must be a legal type.
1916   if (Idx.getValueType() != Subtarget.getXLenVT())
1917     return SDValue();
1918 
1919   MVT ContainerVT = VT;
1920   if (VT.isFixedLengthVector()) {
1921     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1922     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1923   }
1924 
1925   SDValue Mask, VL;
1926   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1927 
1928   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1929                                Idx, Mask, VL);
1930 
1931   if (!VT.isFixedLengthVector())
1932     return Gather;
1933 
1934   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1935 }
1936 
1937 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1938                                  const RISCVSubtarget &Subtarget) {
1939   MVT VT = Op.getSimpleValueType();
1940   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1941 
1942   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1943 
1944   SDLoc DL(Op);
1945   SDValue Mask, VL;
1946   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1947 
1948   MVT XLenVT = Subtarget.getXLenVT();
1949   unsigned NumElts = Op.getNumOperands();
1950 
1951   if (VT.getVectorElementType() == MVT::i1) {
1952     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1953       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1954       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1955     }
1956 
1957     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1958       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1959       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1960     }
1961 
1962     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1963     // scalar integer chunks whose bit-width depends on the number of mask
1964     // bits and XLEN.
1965     // First, determine the most appropriate scalar integer type to use. This
1966     // is at most XLenVT, but may be shrunk to a smaller vector element type
1967     // according to the size of the final vector - use i8 chunks rather than
1968     // XLenVT if we're producing a v8i1. This results in more consistent
1969     // codegen across RV32 and RV64.
1970     unsigned NumViaIntegerBits =
1971         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1972     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
1973     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1974       // If we have to use more than one INSERT_VECTOR_ELT then this
1975       // optimization is likely to increase code size; avoid peforming it in
1976       // such a case. We can use a load from a constant pool in this case.
1977       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1978         return SDValue();
1979       // Now we can create our integer vector type. Note that it may be larger
1980       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1981       MVT IntegerViaVecVT =
1982           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1983                            divideCeil(NumElts, NumViaIntegerBits));
1984 
1985       uint64_t Bits = 0;
1986       unsigned BitPos = 0, IntegerEltIdx = 0;
1987       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1988 
1989       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1990         // Once we accumulate enough bits to fill our scalar type, insert into
1991         // our vector and clear our accumulated data.
1992         if (I != 0 && I % NumViaIntegerBits == 0) {
1993           if (NumViaIntegerBits <= 32)
1994             Bits = SignExtend64<32>(Bits);
1995           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1996           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1997                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1998           Bits = 0;
1999           BitPos = 0;
2000           IntegerEltIdx++;
2001         }
2002         SDValue V = Op.getOperand(I);
2003         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2004         Bits |= ((uint64_t)BitValue << BitPos);
2005       }
2006 
2007       // Insert the (remaining) scalar value into position in our integer
2008       // vector type.
2009       if (NumViaIntegerBits <= 32)
2010         Bits = SignExtend64<32>(Bits);
2011       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2012       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2013                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2014 
2015       if (NumElts < NumViaIntegerBits) {
2016         // If we're producing a smaller vector than our minimum legal integer
2017         // type, bitcast to the equivalent (known-legal) mask type, and extract
2018         // our final mask.
2019         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2020         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2021         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2022                           DAG.getConstant(0, DL, XLenVT));
2023       } else {
2024         // Else we must have produced an integer type with the same size as the
2025         // mask type; bitcast for the final result.
2026         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2027         Vec = DAG.getBitcast(VT, Vec);
2028       }
2029 
2030       return Vec;
2031     }
2032 
2033     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2034     // vector type, we have a legal equivalently-sized i8 type, so we can use
2035     // that.
2036     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2037     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2038 
2039     SDValue WideVec;
2040     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2041       // For a splat, perform a scalar truncate before creating the wider
2042       // vector.
2043       assert(Splat.getValueType() == XLenVT &&
2044              "Unexpected type for i1 splat value");
2045       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2046                           DAG.getConstant(1, DL, XLenVT));
2047       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2048     } else {
2049       SmallVector<SDValue, 8> Ops(Op->op_values());
2050       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2051       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2052       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2053     }
2054 
2055     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2056   }
2057 
2058   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2059     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2060       return Gather;
2061     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2062                                         : RISCVISD::VMV_V_X_VL;
2063     Splat =
2064         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2065     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2066   }
2067 
2068   // Try and match index sequences, which we can lower to the vid instruction
2069   // with optional modifications. An all-undef vector is matched by
2070   // getSplatValue, above.
2071   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2072     int64_t StepNumerator = SimpleVID->StepNumerator;
2073     unsigned StepDenominator = SimpleVID->StepDenominator;
2074     int64_t Addend = SimpleVID->Addend;
2075 
2076     assert(StepNumerator != 0 && "Invalid step");
2077     bool Negate = false;
2078     int64_t SplatStepVal = StepNumerator;
2079     unsigned StepOpcode = ISD::MUL;
2080     if (StepNumerator != 1) {
2081       if (isPowerOf2_64(std::abs(StepNumerator))) {
2082         Negate = StepNumerator < 0;
2083         StepOpcode = ISD::SHL;
2084         SplatStepVal = Log2_64(std::abs(StepNumerator));
2085       }
2086     }
2087 
2088     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2089     // threshold since it's the immediate value many RVV instructions accept.
2090     // There is no vmul.vi instruction so ensure multiply constant can fit in
2091     // a single addi instruction.
2092     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2093          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2094         isPowerOf2_32(StepDenominator) &&
2095         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2096       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2097       // Convert right out of the scalable type so we can use standard ISD
2098       // nodes for the rest of the computation. If we used scalable types with
2099       // these, we'd lose the fixed-length vector info and generate worse
2100       // vsetvli code.
2101       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2102       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2103           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2104         SDValue SplatStep = DAG.getSplatBuildVector(
2105             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2106         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2107       }
2108       if (StepDenominator != 1) {
2109         SDValue SplatStep = DAG.getSplatBuildVector(
2110             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2111         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2112       }
2113       if (Addend != 0 || Negate) {
2114         SDValue SplatAddend = DAG.getSplatBuildVector(
2115             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2116         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2117       }
2118       return VID;
2119     }
2120   }
2121 
2122   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2123   // when re-interpreted as a vector with a larger element type. For example,
2124   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2125   // could be instead splat as
2126   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2127   // TODO: This optimization could also work on non-constant splats, but it
2128   // would require bit-manipulation instructions to construct the splat value.
2129   SmallVector<SDValue> Sequence;
2130   unsigned EltBitSize = VT.getScalarSizeInBits();
2131   const auto *BV = cast<BuildVectorSDNode>(Op);
2132   if (VT.isInteger() && EltBitSize < 64 &&
2133       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2134       BV->getRepeatedSequence(Sequence) &&
2135       (Sequence.size() * EltBitSize) <= 64) {
2136     unsigned SeqLen = Sequence.size();
2137     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2138     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2139     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2140             ViaIntVT == MVT::i64) &&
2141            "Unexpected sequence type");
2142 
2143     unsigned EltIdx = 0;
2144     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2145     uint64_t SplatValue = 0;
2146     // Construct the amalgamated value which can be splatted as this larger
2147     // vector type.
2148     for (const auto &SeqV : Sequence) {
2149       if (!SeqV.isUndef())
2150         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2151                        << (EltIdx * EltBitSize));
2152       EltIdx++;
2153     }
2154 
2155     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2156     // achieve better constant materializion.
2157     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2158       SplatValue = SignExtend64<32>(SplatValue);
2159 
2160     // Since we can't introduce illegal i64 types at this stage, we can only
2161     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2162     // way we can use RVV instructions to splat.
2163     assert((ViaIntVT.bitsLE(XLenVT) ||
2164             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2165            "Unexpected bitcast sequence");
2166     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2167       SDValue ViaVL =
2168           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2169       MVT ViaContainerVT =
2170           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2171       SDValue Splat =
2172           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2173                       DAG.getUNDEF(ViaContainerVT),
2174                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2175       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2176       return DAG.getBitcast(VT, Splat);
2177     }
2178   }
2179 
2180   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2181   // which constitute a large proportion of the elements. In such cases we can
2182   // splat a vector with the dominant element and make up the shortfall with
2183   // INSERT_VECTOR_ELTs.
2184   // Note that this includes vectors of 2 elements by association. The
2185   // upper-most element is the "dominant" one, allowing us to use a splat to
2186   // "insert" the upper element, and an insert of the lower element at position
2187   // 0, which improves codegen.
2188   SDValue DominantValue;
2189   unsigned MostCommonCount = 0;
2190   DenseMap<SDValue, unsigned> ValueCounts;
2191   unsigned NumUndefElts =
2192       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2193 
2194   // Track the number of scalar loads we know we'd be inserting, estimated as
2195   // any non-zero floating-point constant. Other kinds of element are either
2196   // already in registers or are materialized on demand. The threshold at which
2197   // a vector load is more desirable than several scalar materializion and
2198   // vector-insertion instructions is not known.
2199   unsigned NumScalarLoads = 0;
2200 
2201   for (SDValue V : Op->op_values()) {
2202     if (V.isUndef())
2203       continue;
2204 
2205     ValueCounts.insert(std::make_pair(V, 0));
2206     unsigned &Count = ValueCounts[V];
2207 
2208     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2209       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2210 
2211     // Is this value dominant? In case of a tie, prefer the highest element as
2212     // it's cheaper to insert near the beginning of a vector than it is at the
2213     // end.
2214     if (++Count >= MostCommonCount) {
2215       DominantValue = V;
2216       MostCommonCount = Count;
2217     }
2218   }
2219 
2220   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2221   unsigned NumDefElts = NumElts - NumUndefElts;
2222   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2223 
2224   // Don't perform this optimization when optimizing for size, since
2225   // materializing elements and inserting them tends to cause code bloat.
2226   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2227       ((MostCommonCount > DominantValueCountThreshold) ||
2228        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2229     // Start by splatting the most common element.
2230     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2231 
2232     DenseSet<SDValue> Processed{DominantValue};
2233     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2234     for (const auto &OpIdx : enumerate(Op->ops())) {
2235       const SDValue &V = OpIdx.value();
2236       if (V.isUndef() || !Processed.insert(V).second)
2237         continue;
2238       if (ValueCounts[V] == 1) {
2239         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2240                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2241       } else {
2242         // Blend in all instances of this value using a VSELECT, using a
2243         // mask where each bit signals whether that element is the one
2244         // we're after.
2245         SmallVector<SDValue> Ops;
2246         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2247           return DAG.getConstant(V == V1, DL, XLenVT);
2248         });
2249         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2250                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2251                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2252       }
2253     }
2254 
2255     return Vec;
2256   }
2257 
2258   return SDValue();
2259 }
2260 
2261 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2262                                    SDValue Lo, SDValue Hi, SDValue VL,
2263                                    SelectionDAG &DAG) {
2264   if (!Passthru)
2265     Passthru = DAG.getUNDEF(VT);
2266   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2267     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2268     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2269     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2270     // node in order to try and match RVV vector/scalar instructions.
2271     if ((LoC >> 31) == HiC)
2272       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2273 
2274     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2275     // vmv.v.x whose EEW = 32 to lower it.
2276     auto *Const = dyn_cast<ConstantSDNode>(VL);
2277     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2278       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2279       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2280       // access the subtarget here now.
2281       auto InterVec = DAG.getNode(
2282           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2283                                   DAG.getRegister(RISCV::X0, MVT::i32));
2284       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2285     }
2286   }
2287 
2288   // Fall back to a stack store and stride x0 vector load.
2289   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2290                      Hi, VL);
2291 }
2292 
2293 // Called by type legalization to handle splat of i64 on RV32.
2294 // FIXME: We can optimize this when the type has sign or zero bits in one
2295 // of the halves.
2296 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2297                                    SDValue Scalar, SDValue VL,
2298                                    SelectionDAG &DAG) {
2299   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2300   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2301                            DAG.getConstant(0, DL, MVT::i32));
2302   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2303                            DAG.getConstant(1, DL, MVT::i32));
2304   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2305 }
2306 
2307 // This function lowers a splat of a scalar operand Splat with the vector
2308 // length VL. It ensures the final sequence is type legal, which is useful when
2309 // lowering a splat after type legalization.
2310 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2311                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2312                                 const RISCVSubtarget &Subtarget) {
2313   bool HasPassthru = Passthru && !Passthru.isUndef();
2314   if (!HasPassthru && !Passthru)
2315     Passthru = DAG.getUNDEF(VT);
2316   if (VT.isFloatingPoint()) {
2317     // If VL is 1, we could use vfmv.s.f.
2318     if (isOneConstant(VL))
2319       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2320     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2321   }
2322 
2323   MVT XLenVT = Subtarget.getXLenVT();
2324 
2325   // Simplest case is that the operand needs to be promoted to XLenVT.
2326   if (Scalar.getValueType().bitsLE(XLenVT)) {
2327     // If the operand is a constant, sign extend to increase our chances
2328     // of being able to use a .vi instruction. ANY_EXTEND would become a
2329     // a zero extend and the simm5 check in isel would fail.
2330     // FIXME: Should we ignore the upper bits in isel instead?
2331     unsigned ExtOpc =
2332         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2333     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2334     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2335     // If VL is 1 and the scalar value won't benefit from immediate, we could
2336     // use vmv.s.x.
2337     if (isOneConstant(VL) &&
2338         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2339       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2340     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2341   }
2342 
2343   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2344          "Unexpected scalar for splat lowering!");
2345 
2346   if (isOneConstant(VL) && isNullConstant(Scalar))
2347     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2348                        DAG.getConstant(0, DL, XLenVT), VL);
2349 
2350   // Otherwise use the more complicated splatting algorithm.
2351   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2352 }
2353 
2354 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2355                                 const RISCVSubtarget &Subtarget) {
2356   // We need to be able to widen elements to the next larger integer type.
2357   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2358     return false;
2359 
2360   int Size = Mask.size();
2361   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2362 
2363   int Srcs[] = {-1, -1};
2364   for (int i = 0; i != Size; ++i) {
2365     // Ignore undef elements.
2366     if (Mask[i] < 0)
2367       continue;
2368 
2369     // Is this an even or odd element.
2370     int Pol = i % 2;
2371 
2372     // Ensure we consistently use the same source for this element polarity.
2373     int Src = Mask[i] / Size;
2374     if (Srcs[Pol] < 0)
2375       Srcs[Pol] = Src;
2376     if (Srcs[Pol] != Src)
2377       return false;
2378 
2379     // Make sure the element within the source is appropriate for this element
2380     // in the destination.
2381     int Elt = Mask[i] % Size;
2382     if (Elt != i / 2)
2383       return false;
2384   }
2385 
2386   // We need to find a source for each polarity and they can't be the same.
2387   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2388     return false;
2389 
2390   // Swap the sources if the second source was in the even polarity.
2391   SwapSources = Srcs[0] > Srcs[1];
2392 
2393   return true;
2394 }
2395 
2396 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2397 /// and then extract the original number of elements from the rotated result.
2398 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2399 /// returned rotation amount is for a rotate right, where elements move from
2400 /// higher elements to lower elements. \p LoSrc indicates the first source
2401 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2402 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2403 /// 0 or 1 if a rotation is found.
2404 ///
2405 /// NOTE: We talk about rotate to the right which matches how bit shift and
2406 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2407 /// and the table below write vectors with the lowest elements on the left.
2408 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2409   int Size = Mask.size();
2410 
2411   // We need to detect various ways of spelling a rotation:
2412   //   [11, 12, 13, 14, 15,  0,  1,  2]
2413   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2414   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2415   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2416   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2417   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2418   int Rotation = 0;
2419   LoSrc = -1;
2420   HiSrc = -1;
2421   for (int i = 0; i != Size; ++i) {
2422     int M = Mask[i];
2423     if (M < 0)
2424       continue;
2425 
2426     // Determine where a rotate vector would have started.
2427     int StartIdx = i - (M % Size);
2428     // The identity rotation isn't interesting, stop.
2429     if (StartIdx == 0)
2430       return -1;
2431 
2432     // If we found the tail of a vector the rotation must be the missing
2433     // front. If we found the head of a vector, it must be how much of the
2434     // head.
2435     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2436 
2437     if (Rotation == 0)
2438       Rotation = CandidateRotation;
2439     else if (Rotation != CandidateRotation)
2440       // The rotations don't match, so we can't match this mask.
2441       return -1;
2442 
2443     // Compute which value this mask is pointing at.
2444     int MaskSrc = M < Size ? 0 : 1;
2445 
2446     // Compute which of the two target values this index should be assigned to.
2447     // This reflects whether the high elements are remaining or the low elemnts
2448     // are remaining.
2449     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2450 
2451     // Either set up this value if we've not encountered it before, or check
2452     // that it remains consistent.
2453     if (TargetSrc < 0)
2454       TargetSrc = MaskSrc;
2455     else if (TargetSrc != MaskSrc)
2456       // This may be a rotation, but it pulls from the inputs in some
2457       // unsupported interleaving.
2458       return -1;
2459   }
2460 
2461   // Check that we successfully analyzed the mask, and normalize the results.
2462   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2463   assert((LoSrc >= 0 || HiSrc >= 0) &&
2464          "Failed to find a rotated input vector!");
2465 
2466   return Rotation;
2467 }
2468 
2469 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2470                                    const RISCVSubtarget &Subtarget) {
2471   SDValue V1 = Op.getOperand(0);
2472   SDValue V2 = Op.getOperand(1);
2473   SDLoc DL(Op);
2474   MVT XLenVT = Subtarget.getXLenVT();
2475   MVT VT = Op.getSimpleValueType();
2476   unsigned NumElts = VT.getVectorNumElements();
2477   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2478 
2479   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2480 
2481   SDValue TrueMask, VL;
2482   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2483 
2484   if (SVN->isSplat()) {
2485     const int Lane = SVN->getSplatIndex();
2486     if (Lane >= 0) {
2487       MVT SVT = VT.getVectorElementType();
2488 
2489       // Turn splatted vector load into a strided load with an X0 stride.
2490       SDValue V = V1;
2491       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2492       // with undef.
2493       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2494       int Offset = Lane;
2495       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2496         int OpElements =
2497             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2498         V = V.getOperand(Offset / OpElements);
2499         Offset %= OpElements;
2500       }
2501 
2502       // We need to ensure the load isn't atomic or volatile.
2503       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2504         auto *Ld = cast<LoadSDNode>(V);
2505         Offset *= SVT.getStoreSize();
2506         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2507                                                    TypeSize::Fixed(Offset), DL);
2508 
2509         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2510         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2511           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2512           SDValue IntID =
2513               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2514           SDValue Ops[] = {Ld->getChain(),
2515                            IntID,
2516                            DAG.getUNDEF(ContainerVT),
2517                            NewAddr,
2518                            DAG.getRegister(RISCV::X0, XLenVT),
2519                            VL};
2520           SDValue NewLoad = DAG.getMemIntrinsicNode(
2521               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2522               DAG.getMachineFunction().getMachineMemOperand(
2523                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2524           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2525           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2526         }
2527 
2528         // Otherwise use a scalar load and splat. This will give the best
2529         // opportunity to fold a splat into the operation. ISel can turn it into
2530         // the x0 strided load if we aren't able to fold away the select.
2531         if (SVT.isFloatingPoint())
2532           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2533                           Ld->getPointerInfo().getWithOffset(Offset),
2534                           Ld->getOriginalAlign(),
2535                           Ld->getMemOperand()->getFlags());
2536         else
2537           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2538                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2539                              Ld->getOriginalAlign(),
2540                              Ld->getMemOperand()->getFlags());
2541         DAG.makeEquivalentMemoryOrdering(Ld, V);
2542 
2543         unsigned Opc =
2544             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2545         SDValue Splat =
2546             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2547         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2548       }
2549 
2550       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2551       assert(Lane < (int)NumElts && "Unexpected lane!");
2552       SDValue Gather =
2553           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2554                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2555       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2556     }
2557   }
2558 
2559   ArrayRef<int> Mask = SVN->getMask();
2560 
2561   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2562   // be undef which can be handled with a single SLIDEDOWN/UP.
2563   int LoSrc, HiSrc;
2564   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2565   if (Rotation > 0) {
2566     SDValue LoV, HiV;
2567     if (LoSrc >= 0) {
2568       LoV = LoSrc == 0 ? V1 : V2;
2569       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2570     }
2571     if (HiSrc >= 0) {
2572       HiV = HiSrc == 0 ? V1 : V2;
2573       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2574     }
2575 
2576     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2577     // to slide LoV up by (NumElts - Rotation).
2578     unsigned InvRotate = NumElts - Rotation;
2579 
2580     SDValue Res = DAG.getUNDEF(ContainerVT);
2581     if (HiV) {
2582       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2583       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2584       // causes multiple vsetvlis in some test cases such as lowering
2585       // reduce.mul
2586       SDValue DownVL = VL;
2587       if (LoV)
2588         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2589       Res =
2590           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2591                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2592     }
2593     if (LoV)
2594       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2595                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2596 
2597     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2598   }
2599 
2600   // Detect an interleave shuffle and lower to
2601   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2602   bool SwapSources;
2603   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2604     // Swap sources if needed.
2605     if (SwapSources)
2606       std::swap(V1, V2);
2607 
2608     // Extract the lower half of the vectors.
2609     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2610     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2611                      DAG.getConstant(0, DL, XLenVT));
2612     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2613                      DAG.getConstant(0, DL, XLenVT));
2614 
2615     // Double the element width and halve the number of elements in an int type.
2616     unsigned EltBits = VT.getScalarSizeInBits();
2617     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2618     MVT WideIntVT =
2619         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2620     // Convert this to a scalable vector. We need to base this on the
2621     // destination size to ensure there's always a type with a smaller LMUL.
2622     MVT WideIntContainerVT =
2623         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2624 
2625     // Convert sources to scalable vectors with the same element count as the
2626     // larger type.
2627     MVT HalfContainerVT = MVT::getVectorVT(
2628         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2629     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2630     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2631 
2632     // Cast sources to integer.
2633     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2634     MVT IntHalfVT =
2635         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2636     V1 = DAG.getBitcast(IntHalfVT, V1);
2637     V2 = DAG.getBitcast(IntHalfVT, V2);
2638 
2639     // Freeze V2 since we use it twice and we need to be sure that the add and
2640     // multiply see the same value.
2641     V2 = DAG.getFreeze(V2);
2642 
2643     // Recreate TrueMask using the widened type's element count.
2644     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2645 
2646     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2647     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2648                               V2, TrueMask, VL);
2649     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2650     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2651                                      DAG.getUNDEF(IntHalfVT),
2652                                      DAG.getAllOnesConstant(DL, XLenVT));
2653     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2654                                    V2, Multiplier, TrueMask, VL);
2655     // Add the new copies to our previous addition giving us 2^eltbits copies of
2656     // V2. This is equivalent to shifting V2 left by eltbits. This should
2657     // combine with the vwmulu.vv above to form vwmaccu.vv.
2658     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2659                       TrueMask, VL);
2660     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2661     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2662     // vector VT.
2663     ContainerVT =
2664         MVT::getVectorVT(VT.getVectorElementType(),
2665                          WideIntContainerVT.getVectorElementCount() * 2);
2666     Add = DAG.getBitcast(ContainerVT, Add);
2667     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2668   }
2669 
2670   // Detect shuffles which can be re-expressed as vector selects; these are
2671   // shuffles in which each element in the destination is taken from an element
2672   // at the corresponding index in either source vectors.
2673   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2674     int MaskIndex = MaskIdx.value();
2675     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2676   });
2677 
2678   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2679 
2680   SmallVector<SDValue> MaskVals;
2681   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2682   // merged with a second vrgather.
2683   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2684 
2685   // By default we preserve the original operand order, and use a mask to
2686   // select LHS as true and RHS as false. However, since RVV vector selects may
2687   // feature splats but only on the LHS, we may choose to invert our mask and
2688   // instead select between RHS and LHS.
2689   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2690   bool InvertMask = IsSelect == SwapOps;
2691 
2692   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2693   // half.
2694   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2695 
2696   // Now construct the mask that will be used by the vselect or blended
2697   // vrgather operation. For vrgathers, construct the appropriate indices into
2698   // each vector.
2699   for (int MaskIndex : Mask) {
2700     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2701     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2702     if (!IsSelect) {
2703       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2704       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2705                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2706                                      : DAG.getUNDEF(XLenVT));
2707       GatherIndicesRHS.push_back(
2708           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2709                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2710       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2711         ++LHSIndexCounts[MaskIndex];
2712       if (!IsLHSOrUndefIndex)
2713         ++RHSIndexCounts[MaskIndex - NumElts];
2714     }
2715   }
2716 
2717   if (SwapOps) {
2718     std::swap(V1, V2);
2719     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2720   }
2721 
2722   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2723   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2724   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2725 
2726   if (IsSelect)
2727     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2728 
2729   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2730     // On such a large vector we're unable to use i8 as the index type.
2731     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2732     // may involve vector splitting if we're already at LMUL=8, or our
2733     // user-supplied maximum fixed-length LMUL.
2734     return SDValue();
2735   }
2736 
2737   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2738   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2739   MVT IndexVT = VT.changeTypeToInteger();
2740   // Since we can't introduce illegal index types at this stage, use i16 and
2741   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2742   // than XLenVT.
2743   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2744     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2745     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2746   }
2747 
2748   MVT IndexContainerVT =
2749       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2750 
2751   SDValue Gather;
2752   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2753   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2754   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2755     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2756                               Subtarget);
2757   } else {
2758     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2759     // If only one index is used, we can use a "splat" vrgather.
2760     // TODO: We can splat the most-common index and fix-up any stragglers, if
2761     // that's beneficial.
2762     if (LHSIndexCounts.size() == 1) {
2763       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2764       Gather =
2765           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2766                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2767     } else {
2768       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2769       LHSIndices =
2770           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2771 
2772       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2773                            TrueMask, VL);
2774     }
2775   }
2776 
2777   // If a second vector operand is used by this shuffle, blend it in with an
2778   // additional vrgather.
2779   if (!V2.isUndef()) {
2780     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2781     // If only one index is used, we can use a "splat" vrgather.
2782     // TODO: We can splat the most-common index and fix-up any stragglers, if
2783     // that's beneficial.
2784     if (RHSIndexCounts.size() == 1) {
2785       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2786       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2787                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2788     } else {
2789       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2790       RHSIndices =
2791           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2792       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2793                        VL);
2794     }
2795 
2796     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2797     SelectMask =
2798         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2799 
2800     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2801                          Gather, VL);
2802   }
2803 
2804   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2805 }
2806 
2807 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2808   // Support splats for any type. These should type legalize well.
2809   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2810     return true;
2811 
2812   // Only support legal VTs for other shuffles for now.
2813   if (!isTypeLegal(VT))
2814     return false;
2815 
2816   MVT SVT = VT.getSimpleVT();
2817 
2818   bool SwapSources;
2819   int LoSrc, HiSrc;
2820   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2821          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2822 }
2823 
2824 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2825 // the exponent.
2826 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2827   MVT VT = Op.getSimpleValueType();
2828   unsigned EltSize = VT.getScalarSizeInBits();
2829   SDValue Src = Op.getOperand(0);
2830   SDLoc DL(Op);
2831 
2832   // We need a FP type that can represent the value.
2833   // TODO: Use f16 for i8 when possible?
2834   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2835   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2836 
2837   // Legal types should have been checked in the RISCVTargetLowering
2838   // constructor.
2839   // TODO: Splitting may make sense in some cases.
2840   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2841          "Expected legal float type!");
2842 
2843   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2844   // The trailing zero count is equal to log2 of this single bit value.
2845   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2846     SDValue Neg =
2847         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2848     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2849   }
2850 
2851   // We have a legal FP type, convert to it.
2852   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2853   // Bitcast to integer and shift the exponent to the LSB.
2854   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2855   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2856   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2857   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2858                               DAG.getConstant(ShiftAmt, DL, IntVT));
2859   // Truncate back to original type to allow vnsrl.
2860   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2861   // The exponent contains log2 of the value in biased form.
2862   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2863 
2864   // For trailing zeros, we just need to subtract the bias.
2865   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2866     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2867                        DAG.getConstant(ExponentBias, DL, VT));
2868 
2869   // For leading zeros, we need to remove the bias and convert from log2 to
2870   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2871   unsigned Adjust = ExponentBias + (EltSize - 1);
2872   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2873 }
2874 
2875 // While RVV has alignment restrictions, we should always be able to load as a
2876 // legal equivalently-sized byte-typed vector instead. This method is
2877 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2878 // the load is already correctly-aligned, it returns SDValue().
2879 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2880                                                     SelectionDAG &DAG) const {
2881   auto *Load = cast<LoadSDNode>(Op);
2882   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2883 
2884   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2885                                      Load->getMemoryVT(),
2886                                      *Load->getMemOperand()))
2887     return SDValue();
2888 
2889   SDLoc DL(Op);
2890   MVT VT = Op.getSimpleValueType();
2891   unsigned EltSizeBits = VT.getScalarSizeInBits();
2892   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2893          "Unexpected unaligned RVV load type");
2894   MVT NewVT =
2895       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2896   assert(NewVT.isValid() &&
2897          "Expecting equally-sized RVV vector types to be legal");
2898   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2899                           Load->getPointerInfo(), Load->getOriginalAlign(),
2900                           Load->getMemOperand()->getFlags());
2901   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2902 }
2903 
2904 // While RVV has alignment restrictions, we should always be able to store as a
2905 // legal equivalently-sized byte-typed vector instead. This method is
2906 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2907 // returns SDValue() if the store is already correctly aligned.
2908 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2909                                                      SelectionDAG &DAG) const {
2910   auto *Store = cast<StoreSDNode>(Op);
2911   assert(Store && Store->getValue().getValueType().isVector() &&
2912          "Expected vector store");
2913 
2914   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2915                                      Store->getMemoryVT(),
2916                                      *Store->getMemOperand()))
2917     return SDValue();
2918 
2919   SDLoc DL(Op);
2920   SDValue StoredVal = Store->getValue();
2921   MVT VT = StoredVal.getSimpleValueType();
2922   unsigned EltSizeBits = VT.getScalarSizeInBits();
2923   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2924          "Unexpected unaligned RVV store type");
2925   MVT NewVT =
2926       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2927   assert(NewVT.isValid() &&
2928          "Expecting equally-sized RVV vector types to be legal");
2929   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2930   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2931                       Store->getPointerInfo(), Store->getOriginalAlign(),
2932                       Store->getMemOperand()->getFlags());
2933 }
2934 
2935 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2936                                             SelectionDAG &DAG) const {
2937   switch (Op.getOpcode()) {
2938   default:
2939     report_fatal_error("unimplemented operand");
2940   case ISD::GlobalAddress:
2941     return lowerGlobalAddress(Op, DAG);
2942   case ISD::BlockAddress:
2943     return lowerBlockAddress(Op, DAG);
2944   case ISD::ConstantPool:
2945     return lowerConstantPool(Op, DAG);
2946   case ISD::JumpTable:
2947     return lowerJumpTable(Op, DAG);
2948   case ISD::GlobalTLSAddress:
2949     return lowerGlobalTLSAddress(Op, DAG);
2950   case ISD::SELECT:
2951     return lowerSELECT(Op, DAG);
2952   case ISD::BRCOND:
2953     return lowerBRCOND(Op, DAG);
2954   case ISD::VASTART:
2955     return lowerVASTART(Op, DAG);
2956   case ISD::FRAMEADDR:
2957     return lowerFRAMEADDR(Op, DAG);
2958   case ISD::RETURNADDR:
2959     return lowerRETURNADDR(Op, DAG);
2960   case ISD::SHL_PARTS:
2961     return lowerShiftLeftParts(Op, DAG);
2962   case ISD::SRA_PARTS:
2963     return lowerShiftRightParts(Op, DAG, true);
2964   case ISD::SRL_PARTS:
2965     return lowerShiftRightParts(Op, DAG, false);
2966   case ISD::BITCAST: {
2967     SDLoc DL(Op);
2968     EVT VT = Op.getValueType();
2969     SDValue Op0 = Op.getOperand(0);
2970     EVT Op0VT = Op0.getValueType();
2971     MVT XLenVT = Subtarget.getXLenVT();
2972     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2973       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2974       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2975       return FPConv;
2976     }
2977     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2978         Subtarget.hasStdExtF()) {
2979       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2980       SDValue FPConv =
2981           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2982       return FPConv;
2983     }
2984 
2985     // Consider other scalar<->scalar casts as legal if the types are legal.
2986     // Otherwise expand them.
2987     if (!VT.isVector() && !Op0VT.isVector()) {
2988       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
2989         return Op;
2990       return SDValue();
2991     }
2992 
2993     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
2994            "Unexpected types");
2995 
2996     if (VT.isFixedLengthVector()) {
2997       // We can handle fixed length vector bitcasts with a simple replacement
2998       // in isel.
2999       if (Op0VT.isFixedLengthVector())
3000         return Op;
3001       // When bitcasting from scalar to fixed-length vector, insert the scalar
3002       // into a one-element vector of the result type, and perform a vector
3003       // bitcast.
3004       if (!Op0VT.isVector()) {
3005         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3006         if (!isTypeLegal(BVT))
3007           return SDValue();
3008         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3009                                               DAG.getUNDEF(BVT), Op0,
3010                                               DAG.getConstant(0, DL, XLenVT)));
3011       }
3012       return SDValue();
3013     }
3014     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3015     // thus: bitcast the vector to a one-element vector type whose element type
3016     // is the same as the result type, and extract the first element.
3017     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3018       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3019       if (!isTypeLegal(BVT))
3020         return SDValue();
3021       SDValue BVec = DAG.getBitcast(BVT, Op0);
3022       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3023                          DAG.getConstant(0, DL, XLenVT));
3024     }
3025     return SDValue();
3026   }
3027   case ISD::INTRINSIC_WO_CHAIN:
3028     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3029   case ISD::INTRINSIC_W_CHAIN:
3030     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3031   case ISD::INTRINSIC_VOID:
3032     return LowerINTRINSIC_VOID(Op, DAG);
3033   case ISD::BSWAP:
3034   case ISD::BITREVERSE: {
3035     MVT VT = Op.getSimpleValueType();
3036     SDLoc DL(Op);
3037     if (Subtarget.hasStdExtZbp()) {
3038       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3039       // Start with the maximum immediate value which is the bitwidth - 1.
3040       unsigned Imm = VT.getSizeInBits() - 1;
3041       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3042       if (Op.getOpcode() == ISD::BSWAP)
3043         Imm &= ~0x7U;
3044       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3045                          DAG.getConstant(Imm, DL, VT));
3046     }
3047     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3048     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3049     // Expand bitreverse to a bswap(rev8) followed by brev8.
3050     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3051     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3052     // as brev8 by an isel pattern.
3053     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3054                        DAG.getConstant(7, DL, VT));
3055   }
3056   case ISD::FSHL:
3057   case ISD::FSHR: {
3058     MVT VT = Op.getSimpleValueType();
3059     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3060     SDLoc DL(Op);
3061     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3062     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3063     // accidentally setting the extra bit.
3064     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3065     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3066                                 DAG.getConstant(ShAmtWidth, DL, VT));
3067     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3068     // instruction use different orders. fshl will return its first operand for
3069     // shift of zero, fshr will return its second operand. fsl and fsr both
3070     // return rs1 so the ISD nodes need to have different operand orders.
3071     // Shift amount is in rs2.
3072     SDValue Op0 = Op.getOperand(0);
3073     SDValue Op1 = Op.getOperand(1);
3074     unsigned Opc = RISCVISD::FSL;
3075     if (Op.getOpcode() == ISD::FSHR) {
3076       std::swap(Op0, Op1);
3077       Opc = RISCVISD::FSR;
3078     }
3079     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3080   }
3081   case ISD::TRUNCATE:
3082     // Only custom-lower vector truncates
3083     if (!Op.getSimpleValueType().isVector())
3084       return Op;
3085     return lowerVectorTruncLike(Op, DAG);
3086   case ISD::ANY_EXTEND:
3087   case ISD::ZERO_EXTEND:
3088     if (Op.getOperand(0).getValueType().isVector() &&
3089         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3090       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3091     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3092   case ISD::SIGN_EXTEND:
3093     if (Op.getOperand(0).getValueType().isVector() &&
3094         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3095       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3096     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3097   case ISD::SPLAT_VECTOR_PARTS:
3098     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3099   case ISD::INSERT_VECTOR_ELT:
3100     return lowerINSERT_VECTOR_ELT(Op, DAG);
3101   case ISD::EXTRACT_VECTOR_ELT:
3102     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3103   case ISD::VSCALE: {
3104     MVT VT = Op.getSimpleValueType();
3105     SDLoc DL(Op);
3106     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3107     // We define our scalable vector types for lmul=1 to use a 64 bit known
3108     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3109     // vscale as VLENB / 8.
3110     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3111     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3112       report_fatal_error("Support for VLEN==32 is incomplete.");
3113     // We assume VLENB is a multiple of 8. We manually choose the best shift
3114     // here because SimplifyDemandedBits isn't always able to simplify it.
3115     uint64_t Val = Op.getConstantOperandVal(0);
3116     if (isPowerOf2_64(Val)) {
3117       uint64_t Log2 = Log2_64(Val);
3118       if (Log2 < 3)
3119         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3120                            DAG.getConstant(3 - Log2, DL, VT));
3121       if (Log2 > 3)
3122         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3123                            DAG.getConstant(Log2 - 3, DL, VT));
3124       return VLENB;
3125     }
3126     // If the multiplier is a multiple of 8, scale it down to avoid needing
3127     // to shift the VLENB value.
3128     if ((Val % 8) == 0)
3129       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3130                          DAG.getConstant(Val / 8, DL, VT));
3131 
3132     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3133                                  DAG.getConstant(3, DL, VT));
3134     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3135   }
3136   case ISD::FPOWI: {
3137     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3138     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3139     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3140         Op.getOperand(1).getValueType() == MVT::i32) {
3141       SDLoc DL(Op);
3142       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3143       SDValue Powi =
3144           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3145       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3146                          DAG.getIntPtrConstant(0, DL));
3147     }
3148     return SDValue();
3149   }
3150   case ISD::FP_EXTEND:
3151   case ISD::FP_ROUND:
3152     if (!Op.getValueType().isVector())
3153       return Op;
3154     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3155   case ISD::FP_TO_SINT:
3156   case ISD::FP_TO_UINT:
3157   case ISD::SINT_TO_FP:
3158   case ISD::UINT_TO_FP: {
3159     // RVV can only do fp<->int conversions to types half/double the size as
3160     // the source. We custom-lower any conversions that do two hops into
3161     // sequences.
3162     MVT VT = Op.getSimpleValueType();
3163     if (!VT.isVector())
3164       return Op;
3165     SDLoc DL(Op);
3166     SDValue Src = Op.getOperand(0);
3167     MVT EltVT = VT.getVectorElementType();
3168     MVT SrcVT = Src.getSimpleValueType();
3169     MVT SrcEltVT = SrcVT.getVectorElementType();
3170     unsigned EltSize = EltVT.getSizeInBits();
3171     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3172     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3173            "Unexpected vector element types");
3174 
3175     bool IsInt2FP = SrcEltVT.isInteger();
3176     // Widening conversions
3177     if (EltSize > (2 * SrcEltSize)) {
3178       if (IsInt2FP) {
3179         // Do a regular integer sign/zero extension then convert to float.
3180         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3181                                       VT.getVectorElementCount());
3182         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3183                                  ? ISD::ZERO_EXTEND
3184                                  : ISD::SIGN_EXTEND;
3185         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3186         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3187       }
3188       // FP2Int
3189       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3190       // Do one doubling fp_extend then complete the operation by converting
3191       // to int.
3192       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3193       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3194       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3195     }
3196 
3197     // Narrowing conversions
3198     if (SrcEltSize > (2 * EltSize)) {
3199       if (IsInt2FP) {
3200         // One narrowing int_to_fp, then an fp_round.
3201         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3202         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3203         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3204         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3205       }
3206       // FP2Int
3207       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3208       // representable by the integer, the result is poison.
3209       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3210                                     VT.getVectorElementCount());
3211       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3212       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3213     }
3214 
3215     // Scalable vectors can exit here. Patterns will handle equally-sized
3216     // conversions halving/doubling ones.
3217     if (!VT.isFixedLengthVector())
3218       return Op;
3219 
3220     // For fixed-length vectors we lower to a custom "VL" node.
3221     unsigned RVVOpc = 0;
3222     switch (Op.getOpcode()) {
3223     default:
3224       llvm_unreachable("Impossible opcode");
3225     case ISD::FP_TO_SINT:
3226       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3227       break;
3228     case ISD::FP_TO_UINT:
3229       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3230       break;
3231     case ISD::SINT_TO_FP:
3232       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3233       break;
3234     case ISD::UINT_TO_FP:
3235       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3236       break;
3237     }
3238 
3239     MVT ContainerVT, SrcContainerVT;
3240     // Derive the reference container type from the larger vector type.
3241     if (SrcEltSize > EltSize) {
3242       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3243       ContainerVT =
3244           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3245     } else {
3246       ContainerVT = getContainerForFixedLengthVector(VT);
3247       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3248     }
3249 
3250     SDValue Mask, VL;
3251     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3252 
3253     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3254     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3255     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3256   }
3257   case ISD::FP_TO_SINT_SAT:
3258   case ISD::FP_TO_UINT_SAT:
3259     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3260   case ISD::FTRUNC:
3261   case ISD::FCEIL:
3262   case ISD::FFLOOR:
3263     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3264   case ISD::FROUND:
3265     return lowerFROUND(Op, DAG);
3266   case ISD::VECREDUCE_ADD:
3267   case ISD::VECREDUCE_UMAX:
3268   case ISD::VECREDUCE_SMAX:
3269   case ISD::VECREDUCE_UMIN:
3270   case ISD::VECREDUCE_SMIN:
3271     return lowerVECREDUCE(Op, DAG);
3272   case ISD::VECREDUCE_AND:
3273   case ISD::VECREDUCE_OR:
3274   case ISD::VECREDUCE_XOR:
3275     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3276       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3277     return lowerVECREDUCE(Op, DAG);
3278   case ISD::VECREDUCE_FADD:
3279   case ISD::VECREDUCE_SEQ_FADD:
3280   case ISD::VECREDUCE_FMIN:
3281   case ISD::VECREDUCE_FMAX:
3282     return lowerFPVECREDUCE(Op, DAG);
3283   case ISD::VP_REDUCE_ADD:
3284   case ISD::VP_REDUCE_UMAX:
3285   case ISD::VP_REDUCE_SMAX:
3286   case ISD::VP_REDUCE_UMIN:
3287   case ISD::VP_REDUCE_SMIN:
3288   case ISD::VP_REDUCE_FADD:
3289   case ISD::VP_REDUCE_SEQ_FADD:
3290   case ISD::VP_REDUCE_FMIN:
3291   case ISD::VP_REDUCE_FMAX:
3292     return lowerVPREDUCE(Op, DAG);
3293   case ISD::VP_REDUCE_AND:
3294   case ISD::VP_REDUCE_OR:
3295   case ISD::VP_REDUCE_XOR:
3296     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3297       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3298     return lowerVPREDUCE(Op, DAG);
3299   case ISD::INSERT_SUBVECTOR:
3300     return lowerINSERT_SUBVECTOR(Op, DAG);
3301   case ISD::EXTRACT_SUBVECTOR:
3302     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3303   case ISD::STEP_VECTOR:
3304     return lowerSTEP_VECTOR(Op, DAG);
3305   case ISD::VECTOR_REVERSE:
3306     return lowerVECTOR_REVERSE(Op, DAG);
3307   case ISD::VECTOR_SPLICE:
3308     return lowerVECTOR_SPLICE(Op, DAG);
3309   case ISD::BUILD_VECTOR:
3310     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3311   case ISD::SPLAT_VECTOR:
3312     if (Op.getValueType().getVectorElementType() == MVT::i1)
3313       return lowerVectorMaskSplat(Op, DAG);
3314     return SDValue();
3315   case ISD::VECTOR_SHUFFLE:
3316     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3317   case ISD::CONCAT_VECTORS: {
3318     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3319     // better than going through the stack, as the default expansion does.
3320     SDLoc DL(Op);
3321     MVT VT = Op.getSimpleValueType();
3322     unsigned NumOpElts =
3323         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3324     SDValue Vec = DAG.getUNDEF(VT);
3325     for (const auto &OpIdx : enumerate(Op->ops())) {
3326       SDValue SubVec = OpIdx.value();
3327       // Don't insert undef subvectors.
3328       if (SubVec.isUndef())
3329         continue;
3330       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3331                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3332     }
3333     return Vec;
3334   }
3335   case ISD::LOAD:
3336     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3337       return V;
3338     if (Op.getValueType().isFixedLengthVector())
3339       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3340     return Op;
3341   case ISD::STORE:
3342     if (auto V = expandUnalignedRVVStore(Op, DAG))
3343       return V;
3344     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3345       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3346     return Op;
3347   case ISD::MLOAD:
3348   case ISD::VP_LOAD:
3349     return lowerMaskedLoad(Op, DAG);
3350   case ISD::MSTORE:
3351   case ISD::VP_STORE:
3352     return lowerMaskedStore(Op, DAG);
3353   case ISD::SETCC:
3354     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3355   case ISD::ADD:
3356     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3357   case ISD::SUB:
3358     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3359   case ISD::MUL:
3360     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3361   case ISD::MULHS:
3362     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3363   case ISD::MULHU:
3364     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3365   case ISD::AND:
3366     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3367                                               RISCVISD::AND_VL);
3368   case ISD::OR:
3369     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3370                                               RISCVISD::OR_VL);
3371   case ISD::XOR:
3372     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3373                                               RISCVISD::XOR_VL);
3374   case ISD::SDIV:
3375     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3376   case ISD::SREM:
3377     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3378   case ISD::UDIV:
3379     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3380   case ISD::UREM:
3381     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3382   case ISD::SHL:
3383   case ISD::SRA:
3384   case ISD::SRL:
3385     if (Op.getSimpleValueType().isFixedLengthVector())
3386       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3387     // This can be called for an i32 shift amount that needs to be promoted.
3388     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3389            "Unexpected custom legalisation");
3390     return SDValue();
3391   case ISD::SADDSAT:
3392     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3393   case ISD::UADDSAT:
3394     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3395   case ISD::SSUBSAT:
3396     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3397   case ISD::USUBSAT:
3398     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3399   case ISD::FADD:
3400     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3401   case ISD::FSUB:
3402     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3403   case ISD::FMUL:
3404     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3405   case ISD::FDIV:
3406     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3407   case ISD::FNEG:
3408     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3409   case ISD::FABS:
3410     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3411   case ISD::FSQRT:
3412     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3413   case ISD::FMA:
3414     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3415   case ISD::SMIN:
3416     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3417   case ISD::SMAX:
3418     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3419   case ISD::UMIN:
3420     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3421   case ISD::UMAX:
3422     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3423   case ISD::FMINNUM:
3424     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3425   case ISD::FMAXNUM:
3426     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3427   case ISD::ABS:
3428     return lowerABS(Op, DAG);
3429   case ISD::CTLZ_ZERO_UNDEF:
3430   case ISD::CTTZ_ZERO_UNDEF:
3431     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3432   case ISD::VSELECT:
3433     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3434   case ISD::FCOPYSIGN:
3435     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3436   case ISD::MGATHER:
3437   case ISD::VP_GATHER:
3438     return lowerMaskedGather(Op, DAG);
3439   case ISD::MSCATTER:
3440   case ISD::VP_SCATTER:
3441     return lowerMaskedScatter(Op, DAG);
3442   case ISD::FLT_ROUNDS_:
3443     return lowerGET_ROUNDING(Op, DAG);
3444   case ISD::SET_ROUNDING:
3445     return lowerSET_ROUNDING(Op, DAG);
3446   case ISD::VP_SELECT:
3447     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3448   case ISD::VP_MERGE:
3449     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3450   case ISD::VP_ADD:
3451     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3452   case ISD::VP_SUB:
3453     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3454   case ISD::VP_MUL:
3455     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3456   case ISD::VP_SDIV:
3457     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3458   case ISD::VP_UDIV:
3459     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3460   case ISD::VP_SREM:
3461     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3462   case ISD::VP_UREM:
3463     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3464   case ISD::VP_AND:
3465     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3466   case ISD::VP_OR:
3467     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3468   case ISD::VP_XOR:
3469     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3470   case ISD::VP_ASHR:
3471     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3472   case ISD::VP_LSHR:
3473     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3474   case ISD::VP_SHL:
3475     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3476   case ISD::VP_FADD:
3477     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3478   case ISD::VP_FSUB:
3479     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3480   case ISD::VP_FMUL:
3481     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3482   case ISD::VP_FDIV:
3483     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3484   case ISD::VP_FNEG:
3485     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3486   case ISD::VP_FMA:
3487     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3488   case ISD::VP_SIGN_EXTEND:
3489   case ISD::VP_ZERO_EXTEND:
3490     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3491       return lowerVPExtMaskOp(Op, DAG);
3492     return lowerVPOp(Op, DAG,
3493                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3494                          ? RISCVISD::VSEXT_VL
3495                          : RISCVISD::VZEXT_VL);
3496   case ISD::VP_TRUNCATE:
3497     return lowerVectorTruncLike(Op, DAG);
3498   case ISD::VP_FP_EXTEND:
3499   case ISD::VP_FP_ROUND:
3500     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3501   case ISD::VP_FPTOSI:
3502     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3503   case ISD::VP_FPTOUI:
3504     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3505   case ISD::VP_SITOFP:
3506     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3507   case ISD::VP_UITOFP:
3508     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3509   case ISD::VP_SETCC:
3510     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3511       return lowerVPSetCCMaskOp(Op, DAG);
3512     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3513   }
3514 }
3515 
3516 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3517                              SelectionDAG &DAG, unsigned Flags) {
3518   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3519 }
3520 
3521 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3522                              SelectionDAG &DAG, unsigned Flags) {
3523   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3524                                    Flags);
3525 }
3526 
3527 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3528                              SelectionDAG &DAG, unsigned Flags) {
3529   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3530                                    N->getOffset(), Flags);
3531 }
3532 
3533 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3534                              SelectionDAG &DAG, unsigned Flags) {
3535   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3536 }
3537 
3538 template <class NodeTy>
3539 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3540                                      bool IsLocal) const {
3541   SDLoc DL(N);
3542   EVT Ty = getPointerTy(DAG.getDataLayout());
3543 
3544   if (isPositionIndependent()) {
3545     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3546     if (IsLocal)
3547       // Use PC-relative addressing to access the symbol. This generates the
3548       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3549       // %pcrel_lo(auipc)).
3550       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3551 
3552     // Use PC-relative addressing to access the GOT for this symbol, then load
3553     // the address from the GOT. This generates the pattern (PseudoLA sym),
3554     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3555     SDValue Load =
3556         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3557     MachineFunction &MF = DAG.getMachineFunction();
3558     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3559         MachinePointerInfo::getGOT(MF),
3560         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3561             MachineMemOperand::MOInvariant,
3562         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3563     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3564     return Load;
3565   }
3566 
3567   switch (getTargetMachine().getCodeModel()) {
3568   default:
3569     report_fatal_error("Unsupported code model for lowering");
3570   case CodeModel::Small: {
3571     // Generate a sequence for accessing addresses within the first 2 GiB of
3572     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3573     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3574     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3575     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3576     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3577   }
3578   case CodeModel::Medium: {
3579     // Generate a sequence for accessing addresses within any 2GiB range within
3580     // the address space. This generates the pattern (PseudoLLA sym), which
3581     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3582     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3583     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3584   }
3585   }
3586 }
3587 
3588 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3589     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3590 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3591     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3592 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3593     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3594 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3595     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3596 
3597 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3598                                                 SelectionDAG &DAG) const {
3599   SDLoc DL(Op);
3600   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3601   assert(N->getOffset() == 0 && "unexpected offset in global node");
3602 
3603   const GlobalValue *GV = N->getGlobal();
3604   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3605   return getAddr(N, DAG, IsLocal);
3606 }
3607 
3608 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3609                                                SelectionDAG &DAG) const {
3610   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3611 
3612   return getAddr(N, DAG);
3613 }
3614 
3615 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3616                                                SelectionDAG &DAG) const {
3617   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3618 
3619   return getAddr(N, DAG);
3620 }
3621 
3622 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3623                                             SelectionDAG &DAG) const {
3624   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3625 
3626   return getAddr(N, DAG);
3627 }
3628 
3629 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3630                                               SelectionDAG &DAG,
3631                                               bool UseGOT) const {
3632   SDLoc DL(N);
3633   EVT Ty = getPointerTy(DAG.getDataLayout());
3634   const GlobalValue *GV = N->getGlobal();
3635   MVT XLenVT = Subtarget.getXLenVT();
3636 
3637   if (UseGOT) {
3638     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3639     // load the address from the GOT and add the thread pointer. This generates
3640     // the pattern (PseudoLA_TLS_IE sym), which expands to
3641     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3642     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3643     SDValue Load =
3644         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3645     MachineFunction &MF = DAG.getMachineFunction();
3646     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3647         MachinePointerInfo::getGOT(MF),
3648         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3649             MachineMemOperand::MOInvariant,
3650         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3651     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3652 
3653     // Add the thread pointer.
3654     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3655     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3656   }
3657 
3658   // Generate a sequence for accessing the address relative to the thread
3659   // pointer, with the appropriate adjustment for the thread pointer offset.
3660   // This generates the pattern
3661   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3662   SDValue AddrHi =
3663       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3664   SDValue AddrAdd =
3665       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3666   SDValue AddrLo =
3667       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3668 
3669   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3670   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3671   SDValue MNAdd = SDValue(
3672       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3673       0);
3674   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3675 }
3676 
3677 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3678                                                SelectionDAG &DAG) const {
3679   SDLoc DL(N);
3680   EVT Ty = getPointerTy(DAG.getDataLayout());
3681   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3682   const GlobalValue *GV = N->getGlobal();
3683 
3684   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3685   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3686   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3687   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3688   SDValue Load =
3689       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3690 
3691   // Prepare argument list to generate call.
3692   ArgListTy Args;
3693   ArgListEntry Entry;
3694   Entry.Node = Load;
3695   Entry.Ty = CallTy;
3696   Args.push_back(Entry);
3697 
3698   // Setup call to __tls_get_addr.
3699   TargetLowering::CallLoweringInfo CLI(DAG);
3700   CLI.setDebugLoc(DL)
3701       .setChain(DAG.getEntryNode())
3702       .setLibCallee(CallingConv::C, CallTy,
3703                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3704                     std::move(Args));
3705 
3706   return LowerCallTo(CLI).first;
3707 }
3708 
3709 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3710                                                    SelectionDAG &DAG) const {
3711   SDLoc DL(Op);
3712   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3713   assert(N->getOffset() == 0 && "unexpected offset in global node");
3714 
3715   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3716 
3717   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3718       CallingConv::GHC)
3719     report_fatal_error("In GHC calling convention TLS is not supported");
3720 
3721   SDValue Addr;
3722   switch (Model) {
3723   case TLSModel::LocalExec:
3724     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3725     break;
3726   case TLSModel::InitialExec:
3727     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3728     break;
3729   case TLSModel::LocalDynamic:
3730   case TLSModel::GeneralDynamic:
3731     Addr = getDynamicTLSAddr(N, DAG);
3732     break;
3733   }
3734 
3735   return Addr;
3736 }
3737 
3738 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3739   SDValue CondV = Op.getOperand(0);
3740   SDValue TrueV = Op.getOperand(1);
3741   SDValue FalseV = Op.getOperand(2);
3742   SDLoc DL(Op);
3743   MVT VT = Op.getSimpleValueType();
3744   MVT XLenVT = Subtarget.getXLenVT();
3745 
3746   // Lower vector SELECTs to VSELECTs by splatting the condition.
3747   if (VT.isVector()) {
3748     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3749     SDValue CondSplat = VT.isScalableVector()
3750                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3751                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3752     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3753   }
3754 
3755   // If the result type is XLenVT and CondV is the output of a SETCC node
3756   // which also operated on XLenVT inputs, then merge the SETCC node into the
3757   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3758   // compare+branch instructions. i.e.:
3759   // (select (setcc lhs, rhs, cc), truev, falsev)
3760   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3761   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3762       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3763     SDValue LHS = CondV.getOperand(0);
3764     SDValue RHS = CondV.getOperand(1);
3765     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3766     ISD::CondCode CCVal = CC->get();
3767 
3768     // Special case for a select of 2 constants that have a diffence of 1.
3769     // Normally this is done by DAGCombine, but if the select is introduced by
3770     // type legalization or op legalization, we miss it. Restricting to SETLT
3771     // case for now because that is what signed saturating add/sub need.
3772     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3773     // but we would probably want to swap the true/false values if the condition
3774     // is SETGE/SETLE to avoid an XORI.
3775     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3776         CCVal == ISD::SETLT) {
3777       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3778       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3779       if (TrueVal - 1 == FalseVal)
3780         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3781       if (TrueVal + 1 == FalseVal)
3782         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3783     }
3784 
3785     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3786 
3787     SDValue TargetCC = DAG.getCondCode(CCVal);
3788     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3789     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3790   }
3791 
3792   // Otherwise:
3793   // (select condv, truev, falsev)
3794   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3795   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3796   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3797 
3798   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3799 
3800   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3801 }
3802 
3803 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3804   SDValue CondV = Op.getOperand(1);
3805   SDLoc DL(Op);
3806   MVT XLenVT = Subtarget.getXLenVT();
3807 
3808   if (CondV.getOpcode() == ISD::SETCC &&
3809       CondV.getOperand(0).getValueType() == XLenVT) {
3810     SDValue LHS = CondV.getOperand(0);
3811     SDValue RHS = CondV.getOperand(1);
3812     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3813 
3814     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3815 
3816     SDValue TargetCC = DAG.getCondCode(CCVal);
3817     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3818                        LHS, RHS, TargetCC, Op.getOperand(2));
3819   }
3820 
3821   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3822                      CondV, DAG.getConstant(0, DL, XLenVT),
3823                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3824 }
3825 
3826 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3827   MachineFunction &MF = DAG.getMachineFunction();
3828   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3829 
3830   SDLoc DL(Op);
3831   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3832                                  getPointerTy(MF.getDataLayout()));
3833 
3834   // vastart just stores the address of the VarArgsFrameIndex slot into the
3835   // memory location argument.
3836   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3837   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3838                       MachinePointerInfo(SV));
3839 }
3840 
3841 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3842                                             SelectionDAG &DAG) const {
3843   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3844   MachineFunction &MF = DAG.getMachineFunction();
3845   MachineFrameInfo &MFI = MF.getFrameInfo();
3846   MFI.setFrameAddressIsTaken(true);
3847   Register FrameReg = RI.getFrameRegister(MF);
3848   int XLenInBytes = Subtarget.getXLen() / 8;
3849 
3850   EVT VT = Op.getValueType();
3851   SDLoc DL(Op);
3852   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3853   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3854   while (Depth--) {
3855     int Offset = -(XLenInBytes * 2);
3856     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3857                               DAG.getIntPtrConstant(Offset, DL));
3858     FrameAddr =
3859         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3860   }
3861   return FrameAddr;
3862 }
3863 
3864 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3865                                              SelectionDAG &DAG) const {
3866   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3867   MachineFunction &MF = DAG.getMachineFunction();
3868   MachineFrameInfo &MFI = MF.getFrameInfo();
3869   MFI.setReturnAddressIsTaken(true);
3870   MVT XLenVT = Subtarget.getXLenVT();
3871   int XLenInBytes = Subtarget.getXLen() / 8;
3872 
3873   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3874     return SDValue();
3875 
3876   EVT VT = Op.getValueType();
3877   SDLoc DL(Op);
3878   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3879   if (Depth) {
3880     int Off = -XLenInBytes;
3881     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3882     SDValue Offset = DAG.getConstant(Off, DL, VT);
3883     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3884                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3885                        MachinePointerInfo());
3886   }
3887 
3888   // Return the value of the return address register, marking it an implicit
3889   // live-in.
3890   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3891   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3892 }
3893 
3894 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3895                                                  SelectionDAG &DAG) const {
3896   SDLoc DL(Op);
3897   SDValue Lo = Op.getOperand(0);
3898   SDValue Hi = Op.getOperand(1);
3899   SDValue Shamt = Op.getOperand(2);
3900   EVT VT = Lo.getValueType();
3901 
3902   // if Shamt-XLEN < 0: // Shamt < XLEN
3903   //   Lo = Lo << Shamt
3904   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3905   // else:
3906   //   Lo = 0
3907   //   Hi = Lo << (Shamt-XLEN)
3908 
3909   SDValue Zero = DAG.getConstant(0, DL, VT);
3910   SDValue One = DAG.getConstant(1, DL, VT);
3911   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3912   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3913   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3914   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3915 
3916   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3917   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3918   SDValue ShiftRightLo =
3919       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3920   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3921   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3922   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3923 
3924   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3925 
3926   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3927   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3928 
3929   SDValue Parts[2] = {Lo, Hi};
3930   return DAG.getMergeValues(Parts, DL);
3931 }
3932 
3933 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3934                                                   bool IsSRA) const {
3935   SDLoc DL(Op);
3936   SDValue Lo = Op.getOperand(0);
3937   SDValue Hi = Op.getOperand(1);
3938   SDValue Shamt = Op.getOperand(2);
3939   EVT VT = Lo.getValueType();
3940 
3941   // SRA expansion:
3942   //   if Shamt-XLEN < 0: // Shamt < XLEN
3943   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3944   //     Hi = Hi >>s Shamt
3945   //   else:
3946   //     Lo = Hi >>s (Shamt-XLEN);
3947   //     Hi = Hi >>s (XLEN-1)
3948   //
3949   // SRL expansion:
3950   //   if Shamt-XLEN < 0: // Shamt < XLEN
3951   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3952   //     Hi = Hi >>u Shamt
3953   //   else:
3954   //     Lo = Hi >>u (Shamt-XLEN);
3955   //     Hi = 0;
3956 
3957   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3958 
3959   SDValue Zero = DAG.getConstant(0, DL, VT);
3960   SDValue One = DAG.getConstant(1, DL, VT);
3961   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3962   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3963   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3964   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3965 
3966   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3967   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3968   SDValue ShiftLeftHi =
3969       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3970   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3971   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3972   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3973   SDValue HiFalse =
3974       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3975 
3976   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3977 
3978   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3979   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3980 
3981   SDValue Parts[2] = {Lo, Hi};
3982   return DAG.getMergeValues(Parts, DL);
3983 }
3984 
3985 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3986 // legal equivalently-sized i8 type, so we can use that as a go-between.
3987 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3988                                                   SelectionDAG &DAG) const {
3989   SDLoc DL(Op);
3990   MVT VT = Op.getSimpleValueType();
3991   SDValue SplatVal = Op.getOperand(0);
3992   // All-zeros or all-ones splats are handled specially.
3993   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3994     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3995     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3996   }
3997   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3998     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3999     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4000   }
4001   MVT XLenVT = Subtarget.getXLenVT();
4002   assert(SplatVal.getValueType() == XLenVT &&
4003          "Unexpected type for i1 splat value");
4004   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4005   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4006                          DAG.getConstant(1, DL, XLenVT));
4007   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4008   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4009   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4010 }
4011 
4012 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4013 // illegal (currently only vXi64 RV32).
4014 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4015 // them to VMV_V_X_VL.
4016 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4017                                                      SelectionDAG &DAG) const {
4018   SDLoc DL(Op);
4019   MVT VecVT = Op.getSimpleValueType();
4020   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4021          "Unexpected SPLAT_VECTOR_PARTS lowering");
4022 
4023   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4024   SDValue Lo = Op.getOperand(0);
4025   SDValue Hi = Op.getOperand(1);
4026 
4027   if (VecVT.isFixedLengthVector()) {
4028     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4029     SDLoc DL(Op);
4030     SDValue Mask, VL;
4031     std::tie(Mask, VL) =
4032         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4033 
4034     SDValue Res =
4035         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4036     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4037   }
4038 
4039   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4040     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4041     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4042     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4043     // node in order to try and match RVV vector/scalar instructions.
4044     if ((LoC >> 31) == HiC)
4045       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4046                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4047   }
4048 
4049   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4050   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4051       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4052       Hi.getConstantOperandVal(1) == 31)
4053     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4054                        DAG.getRegister(RISCV::X0, MVT::i32));
4055 
4056   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4057   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4058                      DAG.getUNDEF(VecVT), Lo, Hi,
4059                      DAG.getRegister(RISCV::X0, MVT::i32));
4060 }
4061 
4062 // Custom-lower extensions from mask vectors by using a vselect either with 1
4063 // for zero/any-extension or -1 for sign-extension:
4064 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4065 // Note that any-extension is lowered identically to zero-extension.
4066 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4067                                                 int64_t ExtTrueVal) const {
4068   SDLoc DL(Op);
4069   MVT VecVT = Op.getSimpleValueType();
4070   SDValue Src = Op.getOperand(0);
4071   // Only custom-lower extensions from mask types
4072   assert(Src.getValueType().isVector() &&
4073          Src.getValueType().getVectorElementType() == MVT::i1);
4074 
4075   if (VecVT.isScalableVector()) {
4076     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4077     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4078     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4079   }
4080 
4081   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4082   MVT I1ContainerVT =
4083       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4084 
4085   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4086 
4087   SDValue Mask, VL;
4088   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4089 
4090   MVT XLenVT = Subtarget.getXLenVT();
4091   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4092   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4093 
4094   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4095                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4096   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4097                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4098   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4099                                SplatTrueVal, SplatZero, VL);
4100 
4101   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4102 }
4103 
4104 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4105     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4106   MVT ExtVT = Op.getSimpleValueType();
4107   // Only custom-lower extensions from fixed-length vector types.
4108   if (!ExtVT.isFixedLengthVector())
4109     return Op;
4110   MVT VT = Op.getOperand(0).getSimpleValueType();
4111   // Grab the canonical container type for the extended type. Infer the smaller
4112   // type from that to ensure the same number of vector elements, as we know
4113   // the LMUL will be sufficient to hold the smaller type.
4114   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4115   // Get the extended container type manually to ensure the same number of
4116   // vector elements between source and dest.
4117   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4118                                      ContainerExtVT.getVectorElementCount());
4119 
4120   SDValue Op1 =
4121       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4122 
4123   SDLoc DL(Op);
4124   SDValue Mask, VL;
4125   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4126 
4127   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4128 
4129   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4130 }
4131 
4132 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4133 // setcc operation:
4134 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4135 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4136                                                       SelectionDAG &DAG) const {
4137   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4138   SDLoc DL(Op);
4139   EVT MaskVT = Op.getValueType();
4140   // Only expect to custom-lower truncations to mask types
4141   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4142          "Unexpected type for vector mask lowering");
4143   SDValue Src = Op.getOperand(0);
4144   MVT VecVT = Src.getSimpleValueType();
4145   SDValue Mask, VL;
4146   if (IsVPTrunc) {
4147     Mask = Op.getOperand(1);
4148     VL = Op.getOperand(2);
4149   }
4150   // If this is a fixed vector, we need to convert it to a scalable vector.
4151   MVT ContainerVT = VecVT;
4152 
4153   if (VecVT.isFixedLengthVector()) {
4154     ContainerVT = getContainerForFixedLengthVector(VecVT);
4155     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4156     if (IsVPTrunc) {
4157       MVT MaskContainerVT =
4158           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4159       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4160     }
4161   }
4162 
4163   if (!IsVPTrunc) {
4164     std::tie(Mask, VL) =
4165         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4166   }
4167 
4168   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4169   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4170 
4171   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4172                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4173   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4174                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4175 
4176   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4177   SDValue Trunc =
4178       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4179   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4180                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4181   if (MaskVT.isFixedLengthVector())
4182     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4183   return Trunc;
4184 }
4185 
4186 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4187                                                   SelectionDAG &DAG) const {
4188   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4189   SDLoc DL(Op);
4190 
4191   MVT VT = Op.getSimpleValueType();
4192   // Only custom-lower vector truncates
4193   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4194 
4195   // Truncates to mask types are handled differently
4196   if (VT.getVectorElementType() == MVT::i1)
4197     return lowerVectorMaskTruncLike(Op, DAG);
4198 
4199   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4200   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4201   // truncate by one power of two at a time.
4202   MVT DstEltVT = VT.getVectorElementType();
4203 
4204   SDValue Src = Op.getOperand(0);
4205   MVT SrcVT = Src.getSimpleValueType();
4206   MVT SrcEltVT = SrcVT.getVectorElementType();
4207 
4208   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4209          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4210          "Unexpected vector truncate lowering");
4211 
4212   MVT ContainerVT = SrcVT;
4213   SDValue Mask, VL;
4214   if (IsVPTrunc) {
4215     Mask = Op.getOperand(1);
4216     VL = Op.getOperand(2);
4217   }
4218   if (SrcVT.isFixedLengthVector()) {
4219     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4220     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4221     if (IsVPTrunc) {
4222       MVT MaskVT = getMaskTypeFor(ContainerVT);
4223       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4224     }
4225   }
4226 
4227   SDValue Result = Src;
4228   if (!IsVPTrunc) {
4229     std::tie(Mask, VL) =
4230         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4231   }
4232 
4233   LLVMContext &Context = *DAG.getContext();
4234   const ElementCount Count = ContainerVT.getVectorElementCount();
4235   do {
4236     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4237     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4238     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4239                          Mask, VL);
4240   } while (SrcEltVT != DstEltVT);
4241 
4242   if (SrcVT.isFixedLengthVector())
4243     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4244 
4245   return Result;
4246 }
4247 
4248 SDValue
4249 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4250                                                     SelectionDAG &DAG) const {
4251   bool IsVP =
4252       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4253   bool IsExtend =
4254       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4255   // RVV can only do truncate fp to types half the size as the source. We
4256   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4257   // conversion instruction.
4258   SDLoc DL(Op);
4259   MVT VT = Op.getSimpleValueType();
4260 
4261   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4262 
4263   SDValue Src = Op.getOperand(0);
4264   MVT SrcVT = Src.getSimpleValueType();
4265 
4266   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4267                                      SrcVT.getVectorElementType() != MVT::f16);
4268   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4269                                      SrcVT.getVectorElementType() != MVT::f64);
4270 
4271   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4272 
4273   // Prepare any fixed-length vector operands.
4274   MVT ContainerVT = VT;
4275   SDValue Mask, VL;
4276   if (IsVP) {
4277     Mask = Op.getOperand(1);
4278     VL = Op.getOperand(2);
4279   }
4280   if (VT.isFixedLengthVector()) {
4281     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4282     ContainerVT =
4283         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4284     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4285     if (IsVP) {
4286       MVT MaskVT = getMaskTypeFor(ContainerVT);
4287       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4288     }
4289   }
4290 
4291   if (!IsVP)
4292     std::tie(Mask, VL) =
4293         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4294 
4295   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4296 
4297   if (IsDirectConv) {
4298     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4299     if (VT.isFixedLengthVector())
4300       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4301     return Src;
4302   }
4303 
4304   unsigned InterConvOpc =
4305       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4306 
4307   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4308   SDValue IntermediateConv =
4309       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4310   SDValue Result =
4311       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4312   if (VT.isFixedLengthVector())
4313     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4314   return Result;
4315 }
4316 
4317 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4318 // first position of a vector, and that vector is slid up to the insert index.
4319 // By limiting the active vector length to index+1 and merging with the
4320 // original vector (with an undisturbed tail policy for elements >= VL), we
4321 // achieve the desired result of leaving all elements untouched except the one
4322 // at VL-1, which is replaced with the desired value.
4323 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4324                                                     SelectionDAG &DAG) const {
4325   SDLoc DL(Op);
4326   MVT VecVT = Op.getSimpleValueType();
4327   SDValue Vec = Op.getOperand(0);
4328   SDValue Val = Op.getOperand(1);
4329   SDValue Idx = Op.getOperand(2);
4330 
4331   if (VecVT.getVectorElementType() == MVT::i1) {
4332     // FIXME: For now we just promote to an i8 vector and insert into that,
4333     // but this is probably not optimal.
4334     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4335     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4336     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4337     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4338   }
4339 
4340   MVT ContainerVT = VecVT;
4341   // If the operand is a fixed-length vector, convert to a scalable one.
4342   if (VecVT.isFixedLengthVector()) {
4343     ContainerVT = getContainerForFixedLengthVector(VecVT);
4344     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4345   }
4346 
4347   MVT XLenVT = Subtarget.getXLenVT();
4348 
4349   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4350   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4351   // Even i64-element vectors on RV32 can be lowered without scalar
4352   // legalization if the most-significant 32 bits of the value are not affected
4353   // by the sign-extension of the lower 32 bits.
4354   // TODO: We could also catch sign extensions of a 32-bit value.
4355   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4356     const auto *CVal = cast<ConstantSDNode>(Val);
4357     if (isInt<32>(CVal->getSExtValue())) {
4358       IsLegalInsert = true;
4359       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4360     }
4361   }
4362 
4363   SDValue Mask, VL;
4364   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4365 
4366   SDValue ValInVec;
4367 
4368   if (IsLegalInsert) {
4369     unsigned Opc =
4370         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4371     if (isNullConstant(Idx)) {
4372       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4373       if (!VecVT.isFixedLengthVector())
4374         return Vec;
4375       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4376     }
4377     ValInVec =
4378         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4379   } else {
4380     // On RV32, i64-element vectors must be specially handled to place the
4381     // value at element 0, by using two vslide1up instructions in sequence on
4382     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4383     // this.
4384     SDValue One = DAG.getConstant(1, DL, XLenVT);
4385     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4386     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4387     MVT I32ContainerVT =
4388         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4389     SDValue I32Mask =
4390         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4391     // Limit the active VL to two.
4392     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4393     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4394     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4395     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4396                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4397     // First slide in the hi value, then the lo in underneath it.
4398     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4399                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4400                            I32Mask, InsertI64VL);
4401     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4402                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4403                            I32Mask, InsertI64VL);
4404     // Bitcast back to the right container type.
4405     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4406   }
4407 
4408   // Now that the value is in a vector, slide it into position.
4409   SDValue InsertVL =
4410       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4411   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4412                                 ValInVec, Idx, Mask, InsertVL);
4413   if (!VecVT.isFixedLengthVector())
4414     return Slideup;
4415   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4416 }
4417 
4418 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4419 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4420 // types this is done using VMV_X_S to allow us to glean information about the
4421 // sign bits of the result.
4422 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4423                                                      SelectionDAG &DAG) const {
4424   SDLoc DL(Op);
4425   SDValue Idx = Op.getOperand(1);
4426   SDValue Vec = Op.getOperand(0);
4427   EVT EltVT = Op.getValueType();
4428   MVT VecVT = Vec.getSimpleValueType();
4429   MVT XLenVT = Subtarget.getXLenVT();
4430 
4431   if (VecVT.getVectorElementType() == MVT::i1) {
4432     if (VecVT.isFixedLengthVector()) {
4433       unsigned NumElts = VecVT.getVectorNumElements();
4434       if (NumElts >= 8) {
4435         MVT WideEltVT;
4436         unsigned WidenVecLen;
4437         SDValue ExtractElementIdx;
4438         SDValue ExtractBitIdx;
4439         unsigned MaxEEW = Subtarget.getELEN();
4440         MVT LargestEltVT = MVT::getIntegerVT(
4441             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4442         if (NumElts <= LargestEltVT.getSizeInBits()) {
4443           assert(isPowerOf2_32(NumElts) &&
4444                  "the number of elements should be power of 2");
4445           WideEltVT = MVT::getIntegerVT(NumElts);
4446           WidenVecLen = 1;
4447           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4448           ExtractBitIdx = Idx;
4449         } else {
4450           WideEltVT = LargestEltVT;
4451           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4452           // extract element index = index / element width
4453           ExtractElementIdx = DAG.getNode(
4454               ISD::SRL, DL, XLenVT, Idx,
4455               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4456           // mask bit index = index % element width
4457           ExtractBitIdx = DAG.getNode(
4458               ISD::AND, DL, XLenVT, Idx,
4459               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4460         }
4461         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4462         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4463         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4464                                          Vec, ExtractElementIdx);
4465         // Extract the bit from GPR.
4466         SDValue ShiftRight =
4467             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4468         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4469                            DAG.getConstant(1, DL, XLenVT));
4470       }
4471     }
4472     // Otherwise, promote to an i8 vector and extract from that.
4473     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4474     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4475     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4476   }
4477 
4478   // If this is a fixed vector, we need to convert it to a scalable vector.
4479   MVT ContainerVT = VecVT;
4480   if (VecVT.isFixedLengthVector()) {
4481     ContainerVT = getContainerForFixedLengthVector(VecVT);
4482     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4483   }
4484 
4485   // If the index is 0, the vector is already in the right position.
4486   if (!isNullConstant(Idx)) {
4487     // Use a VL of 1 to avoid processing more elements than we need.
4488     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4489     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4490     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4491                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4492   }
4493 
4494   if (!EltVT.isInteger()) {
4495     // Floating-point extracts are handled in TableGen.
4496     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4497                        DAG.getConstant(0, DL, XLenVT));
4498   }
4499 
4500   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4501   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4502 }
4503 
4504 // Some RVV intrinsics may claim that they want an integer operand to be
4505 // promoted or expanded.
4506 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4507                                            const RISCVSubtarget &Subtarget) {
4508   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4509           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4510          "Unexpected opcode");
4511 
4512   if (!Subtarget.hasVInstructions())
4513     return SDValue();
4514 
4515   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4516   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4517   SDLoc DL(Op);
4518 
4519   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4520       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4521   if (!II || !II->hasScalarOperand())
4522     return SDValue();
4523 
4524   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4525   assert(SplatOp < Op.getNumOperands());
4526 
4527   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4528   SDValue &ScalarOp = Operands[SplatOp];
4529   MVT OpVT = ScalarOp.getSimpleValueType();
4530   MVT XLenVT = Subtarget.getXLenVT();
4531 
4532   // If this isn't a scalar, or its type is XLenVT we're done.
4533   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4534     return SDValue();
4535 
4536   // Simplest case is that the operand needs to be promoted to XLenVT.
4537   if (OpVT.bitsLT(XLenVT)) {
4538     // If the operand is a constant, sign extend to increase our chances
4539     // of being able to use a .vi instruction. ANY_EXTEND would become a
4540     // a zero extend and the simm5 check in isel would fail.
4541     // FIXME: Should we ignore the upper bits in isel instead?
4542     unsigned ExtOpc =
4543         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4544     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4545     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4546   }
4547 
4548   // Use the previous operand to get the vXi64 VT. The result might be a mask
4549   // VT for compares. Using the previous operand assumes that the previous
4550   // operand will never have a smaller element size than a scalar operand and
4551   // that a widening operation never uses SEW=64.
4552   // NOTE: If this fails the below assert, we can probably just find the
4553   // element count from any operand or result and use it to construct the VT.
4554   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4555   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4556 
4557   // The more complex case is when the scalar is larger than XLenVT.
4558   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4559          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4560 
4561   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4562   // instruction to sign-extend since SEW>XLEN.
4563   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4564     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4565     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4566   }
4567 
4568   switch (IntNo) {
4569   case Intrinsic::riscv_vslide1up:
4570   case Intrinsic::riscv_vslide1down:
4571   case Intrinsic::riscv_vslide1up_mask:
4572   case Intrinsic::riscv_vslide1down_mask: {
4573     // We need to special case these when the scalar is larger than XLen.
4574     unsigned NumOps = Op.getNumOperands();
4575     bool IsMasked = NumOps == 7;
4576 
4577     // Convert the vector source to the equivalent nxvXi32 vector.
4578     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4579     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4580 
4581     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4582                                    DAG.getConstant(0, DL, XLenVT));
4583     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4584                                    DAG.getConstant(1, DL, XLenVT));
4585 
4586     // Double the VL since we halved SEW.
4587     SDValue AVL = getVLOperand(Op);
4588     SDValue I32VL;
4589 
4590     // Optimize for constant AVL
4591     if (isa<ConstantSDNode>(AVL)) {
4592       unsigned EltSize = VT.getScalarSizeInBits();
4593       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4594 
4595       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4596       unsigned MaxVLMAX =
4597           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4598 
4599       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4600       unsigned MinVLMAX =
4601           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4602 
4603       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4604       if (AVLInt <= MinVLMAX) {
4605         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4606       } else if (AVLInt >= 2 * MaxVLMAX) {
4607         // Just set vl to VLMAX in this situation
4608         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4609         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4610         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4611         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4612         SDValue SETVLMAX = DAG.getTargetConstant(
4613             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4614         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4615                             LMUL);
4616       } else {
4617         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4618         // is related to the hardware implementation.
4619         // So let the following code handle
4620       }
4621     }
4622     if (!I32VL) {
4623       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4624       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4625       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4626       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4627       SDValue SETVL =
4628           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4629       // Using vsetvli instruction to get actually used length which related to
4630       // the hardware implementation
4631       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4632                                SEW, LMUL);
4633       I32VL =
4634           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4635     }
4636 
4637     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4638 
4639     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4640     // instructions.
4641     SDValue Passthru;
4642     if (IsMasked)
4643       Passthru = DAG.getUNDEF(I32VT);
4644     else
4645       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4646 
4647     if (IntNo == Intrinsic::riscv_vslide1up ||
4648         IntNo == Intrinsic::riscv_vslide1up_mask) {
4649       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4650                         ScalarHi, I32Mask, I32VL);
4651       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4652                         ScalarLo, I32Mask, I32VL);
4653     } else {
4654       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4655                         ScalarLo, I32Mask, I32VL);
4656       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4657                         ScalarHi, I32Mask, I32VL);
4658     }
4659 
4660     // Convert back to nxvXi64.
4661     Vec = DAG.getBitcast(VT, Vec);
4662 
4663     if (!IsMasked)
4664       return Vec;
4665     // Apply mask after the operation.
4666     SDValue Mask = Operands[NumOps - 3];
4667     SDValue MaskedOff = Operands[1];
4668     // Assume Policy operand is the last operand.
4669     uint64_t Policy =
4670         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4671     // We don't need to select maskedoff if it's undef.
4672     if (MaskedOff.isUndef())
4673       return Vec;
4674     // TAMU
4675     if (Policy == RISCVII::TAIL_AGNOSTIC)
4676       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4677                          AVL);
4678     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4679     // It's fine because vmerge does not care mask policy.
4680     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4681                        AVL);
4682   }
4683   }
4684 
4685   // We need to convert the scalar to a splat vector.
4686   SDValue VL = getVLOperand(Op);
4687   assert(VL.getValueType() == XLenVT);
4688   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4689   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4690 }
4691 
4692 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4693                                                      SelectionDAG &DAG) const {
4694   unsigned IntNo = Op.getConstantOperandVal(0);
4695   SDLoc DL(Op);
4696   MVT XLenVT = Subtarget.getXLenVT();
4697 
4698   switch (IntNo) {
4699   default:
4700     break; // Don't custom lower most intrinsics.
4701   case Intrinsic::thread_pointer: {
4702     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4703     return DAG.getRegister(RISCV::X4, PtrVT);
4704   }
4705   case Intrinsic::riscv_orc_b:
4706   case Intrinsic::riscv_brev8: {
4707     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4708     unsigned Opc =
4709         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4710     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4711                        DAG.getConstant(7, DL, XLenVT));
4712   }
4713   case Intrinsic::riscv_grev:
4714   case Intrinsic::riscv_gorc: {
4715     unsigned Opc =
4716         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4717     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4718   }
4719   case Intrinsic::riscv_zip:
4720   case Intrinsic::riscv_unzip: {
4721     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4722     // For i32 the immediate is 15. For i64 the immediate is 31.
4723     unsigned Opc =
4724         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4725     unsigned BitWidth = Op.getValueSizeInBits();
4726     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4727     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4728                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4729   }
4730   case Intrinsic::riscv_shfl:
4731   case Intrinsic::riscv_unshfl: {
4732     unsigned Opc =
4733         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4734     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4735   }
4736   case Intrinsic::riscv_bcompress:
4737   case Intrinsic::riscv_bdecompress: {
4738     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4739                                                        : RISCVISD::BDECOMPRESS;
4740     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4741   }
4742   case Intrinsic::riscv_bfp:
4743     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4744                        Op.getOperand(2));
4745   case Intrinsic::riscv_fsl:
4746     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4747                        Op.getOperand(2), Op.getOperand(3));
4748   case Intrinsic::riscv_fsr:
4749     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4750                        Op.getOperand(2), Op.getOperand(3));
4751   case Intrinsic::riscv_vmv_x_s:
4752     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4753     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4754                        Op.getOperand(1));
4755   case Intrinsic::riscv_vmv_v_x:
4756     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4757                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4758                             Subtarget);
4759   case Intrinsic::riscv_vfmv_v_f:
4760     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4761                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4762   case Intrinsic::riscv_vmv_s_x: {
4763     SDValue Scalar = Op.getOperand(2);
4764 
4765     if (Scalar.getValueType().bitsLE(XLenVT)) {
4766       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4767       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4768                          Op.getOperand(1), Scalar, Op.getOperand(3));
4769     }
4770 
4771     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4772 
4773     // This is an i64 value that lives in two scalar registers. We have to
4774     // insert this in a convoluted way. First we build vXi64 splat containing
4775     // the two values that we assemble using some bit math. Next we'll use
4776     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4777     // to merge element 0 from our splat into the source vector.
4778     // FIXME: This is probably not the best way to do this, but it is
4779     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4780     // point.
4781     //   sw lo, (a0)
4782     //   sw hi, 4(a0)
4783     //   vlse vX, (a0)
4784     //
4785     //   vid.v      vVid
4786     //   vmseq.vx   mMask, vVid, 0
4787     //   vmerge.vvm vDest, vSrc, vVal, mMask
4788     MVT VT = Op.getSimpleValueType();
4789     SDValue Vec = Op.getOperand(1);
4790     SDValue VL = getVLOperand(Op);
4791 
4792     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4793     if (Op.getOperand(1).isUndef())
4794       return SplattedVal;
4795     SDValue SplattedIdx =
4796         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4797                     DAG.getConstant(0, DL, MVT::i32), VL);
4798 
4799     MVT MaskVT = getMaskTypeFor(VT);
4800     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4801     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4802     SDValue SelectCond =
4803         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4804                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4805     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4806                        Vec, VL);
4807   }
4808   }
4809 
4810   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4811 }
4812 
4813 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4814                                                     SelectionDAG &DAG) const {
4815   unsigned IntNo = Op.getConstantOperandVal(1);
4816   switch (IntNo) {
4817   default:
4818     break;
4819   case Intrinsic::riscv_masked_strided_load: {
4820     SDLoc DL(Op);
4821     MVT XLenVT = Subtarget.getXLenVT();
4822 
4823     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4824     // the selection of the masked intrinsics doesn't do this for us.
4825     SDValue Mask = Op.getOperand(5);
4826     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4827 
4828     MVT VT = Op->getSimpleValueType(0);
4829     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4830 
4831     SDValue PassThru = Op.getOperand(2);
4832     if (!IsUnmasked) {
4833       MVT MaskVT = getMaskTypeFor(ContainerVT);
4834       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4835       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4836     }
4837 
4838     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4839 
4840     SDValue IntID = DAG.getTargetConstant(
4841         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4842         XLenVT);
4843 
4844     auto *Load = cast<MemIntrinsicSDNode>(Op);
4845     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4846     if (IsUnmasked)
4847       Ops.push_back(DAG.getUNDEF(ContainerVT));
4848     else
4849       Ops.push_back(PassThru);
4850     Ops.push_back(Op.getOperand(3)); // Ptr
4851     Ops.push_back(Op.getOperand(4)); // Stride
4852     if (!IsUnmasked)
4853       Ops.push_back(Mask);
4854     Ops.push_back(VL);
4855     if (!IsUnmasked) {
4856       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4857       Ops.push_back(Policy);
4858     }
4859 
4860     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4861     SDValue Result =
4862         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4863                                 Load->getMemoryVT(), Load->getMemOperand());
4864     SDValue Chain = Result.getValue(1);
4865     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4866     return DAG.getMergeValues({Result, Chain}, DL);
4867   }
4868   case Intrinsic::riscv_seg2_load:
4869   case Intrinsic::riscv_seg3_load:
4870   case Intrinsic::riscv_seg4_load:
4871   case Intrinsic::riscv_seg5_load:
4872   case Intrinsic::riscv_seg6_load:
4873   case Intrinsic::riscv_seg7_load:
4874   case Intrinsic::riscv_seg8_load: {
4875     SDLoc DL(Op);
4876     static const Intrinsic::ID VlsegInts[7] = {
4877         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4878         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4879         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4880         Intrinsic::riscv_vlseg8};
4881     unsigned NF = Op->getNumValues() - 1;
4882     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4883     MVT XLenVT = Subtarget.getXLenVT();
4884     MVT VT = Op->getSimpleValueType(0);
4885     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4886 
4887     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4888     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4889     auto *Load = cast<MemIntrinsicSDNode>(Op);
4890     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4891     ContainerVTs.push_back(MVT::Other);
4892     SDVTList VTs = DAG.getVTList(ContainerVTs);
4893     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4894     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4895     Ops.push_back(Op.getOperand(2));
4896     Ops.push_back(VL);
4897     SDValue Result =
4898         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4899                                 Load->getMemoryVT(), Load->getMemOperand());
4900     SmallVector<SDValue, 9> Results;
4901     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4902       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4903                                                   DAG, Subtarget));
4904     Results.push_back(Result.getValue(NF));
4905     return DAG.getMergeValues(Results, DL);
4906   }
4907   }
4908 
4909   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4910 }
4911 
4912 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4913                                                  SelectionDAG &DAG) const {
4914   unsigned IntNo = Op.getConstantOperandVal(1);
4915   switch (IntNo) {
4916   default:
4917     break;
4918   case Intrinsic::riscv_masked_strided_store: {
4919     SDLoc DL(Op);
4920     MVT XLenVT = Subtarget.getXLenVT();
4921 
4922     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4923     // the selection of the masked intrinsics doesn't do this for us.
4924     SDValue Mask = Op.getOperand(5);
4925     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4926 
4927     SDValue Val = Op.getOperand(2);
4928     MVT VT = Val.getSimpleValueType();
4929     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4930 
4931     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4932     if (!IsUnmasked) {
4933       MVT MaskVT = getMaskTypeFor(ContainerVT);
4934       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4935     }
4936 
4937     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4938 
4939     SDValue IntID = DAG.getTargetConstant(
4940         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4941         XLenVT);
4942 
4943     auto *Store = cast<MemIntrinsicSDNode>(Op);
4944     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4945     Ops.push_back(Val);
4946     Ops.push_back(Op.getOperand(3)); // Ptr
4947     Ops.push_back(Op.getOperand(4)); // Stride
4948     if (!IsUnmasked)
4949       Ops.push_back(Mask);
4950     Ops.push_back(VL);
4951 
4952     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4953                                    Ops, Store->getMemoryVT(),
4954                                    Store->getMemOperand());
4955   }
4956   }
4957 
4958   return SDValue();
4959 }
4960 
4961 static MVT getLMUL1VT(MVT VT) {
4962   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4963          "Unexpected vector MVT");
4964   return MVT::getScalableVectorVT(
4965       VT.getVectorElementType(),
4966       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4967 }
4968 
4969 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4970   switch (ISDOpcode) {
4971   default:
4972     llvm_unreachable("Unhandled reduction");
4973   case ISD::VECREDUCE_ADD:
4974     return RISCVISD::VECREDUCE_ADD_VL;
4975   case ISD::VECREDUCE_UMAX:
4976     return RISCVISD::VECREDUCE_UMAX_VL;
4977   case ISD::VECREDUCE_SMAX:
4978     return RISCVISD::VECREDUCE_SMAX_VL;
4979   case ISD::VECREDUCE_UMIN:
4980     return RISCVISD::VECREDUCE_UMIN_VL;
4981   case ISD::VECREDUCE_SMIN:
4982     return RISCVISD::VECREDUCE_SMIN_VL;
4983   case ISD::VECREDUCE_AND:
4984     return RISCVISD::VECREDUCE_AND_VL;
4985   case ISD::VECREDUCE_OR:
4986     return RISCVISD::VECREDUCE_OR_VL;
4987   case ISD::VECREDUCE_XOR:
4988     return RISCVISD::VECREDUCE_XOR_VL;
4989   }
4990 }
4991 
4992 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4993                                                          SelectionDAG &DAG,
4994                                                          bool IsVP) const {
4995   SDLoc DL(Op);
4996   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4997   MVT VecVT = Vec.getSimpleValueType();
4998   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4999           Op.getOpcode() == ISD::VECREDUCE_OR ||
5000           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5001           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5002           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5003           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5004          "Unexpected reduction lowering");
5005 
5006   MVT XLenVT = Subtarget.getXLenVT();
5007   assert(Op.getValueType() == XLenVT &&
5008          "Expected reduction output to be legalized to XLenVT");
5009 
5010   MVT ContainerVT = VecVT;
5011   if (VecVT.isFixedLengthVector()) {
5012     ContainerVT = getContainerForFixedLengthVector(VecVT);
5013     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5014   }
5015 
5016   SDValue Mask, VL;
5017   if (IsVP) {
5018     Mask = Op.getOperand(2);
5019     VL = Op.getOperand(3);
5020   } else {
5021     std::tie(Mask, VL) =
5022         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5023   }
5024 
5025   unsigned BaseOpc;
5026   ISD::CondCode CC;
5027   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5028 
5029   switch (Op.getOpcode()) {
5030   default:
5031     llvm_unreachable("Unhandled reduction");
5032   case ISD::VECREDUCE_AND:
5033   case ISD::VP_REDUCE_AND: {
5034     // vcpop ~x == 0
5035     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5036     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5037     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5038     CC = ISD::SETEQ;
5039     BaseOpc = ISD::AND;
5040     break;
5041   }
5042   case ISD::VECREDUCE_OR:
5043   case ISD::VP_REDUCE_OR:
5044     // vcpop x != 0
5045     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5046     CC = ISD::SETNE;
5047     BaseOpc = ISD::OR;
5048     break;
5049   case ISD::VECREDUCE_XOR:
5050   case ISD::VP_REDUCE_XOR: {
5051     // ((vcpop x) & 1) != 0
5052     SDValue One = DAG.getConstant(1, DL, XLenVT);
5053     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5054     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5055     CC = ISD::SETNE;
5056     BaseOpc = ISD::XOR;
5057     break;
5058   }
5059   }
5060 
5061   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5062 
5063   if (!IsVP)
5064     return SetCC;
5065 
5066   // Now include the start value in the operation.
5067   // Note that we must return the start value when no elements are operated
5068   // upon. The vcpop instructions we've emitted in each case above will return
5069   // 0 for an inactive vector, and so we've already received the neutral value:
5070   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5071   // can simply include the start value.
5072   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5073 }
5074 
5075 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5076                                             SelectionDAG &DAG) const {
5077   SDLoc DL(Op);
5078   SDValue Vec = Op.getOperand(0);
5079   EVT VecEVT = Vec.getValueType();
5080 
5081   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5082 
5083   // Due to ordering in legalize types we may have a vector type that needs to
5084   // be split. Do that manually so we can get down to a legal type.
5085   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5086          TargetLowering::TypeSplitVector) {
5087     SDValue Lo, Hi;
5088     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5089     VecEVT = Lo.getValueType();
5090     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5091   }
5092 
5093   // TODO: The type may need to be widened rather than split. Or widened before
5094   // it can be split.
5095   if (!isTypeLegal(VecEVT))
5096     return SDValue();
5097 
5098   MVT VecVT = VecEVT.getSimpleVT();
5099   MVT VecEltVT = VecVT.getVectorElementType();
5100   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5101 
5102   MVT ContainerVT = VecVT;
5103   if (VecVT.isFixedLengthVector()) {
5104     ContainerVT = getContainerForFixedLengthVector(VecVT);
5105     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5106   }
5107 
5108   MVT M1VT = getLMUL1VT(ContainerVT);
5109   MVT XLenVT = Subtarget.getXLenVT();
5110 
5111   SDValue Mask, VL;
5112   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5113 
5114   SDValue NeutralElem =
5115       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5116   SDValue IdentitySplat =
5117       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5118                        M1VT, DL, DAG, Subtarget);
5119   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5120                                   IdentitySplat, Mask, VL);
5121   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5122                              DAG.getConstant(0, DL, XLenVT));
5123   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5124 }
5125 
5126 // Given a reduction op, this function returns the matching reduction opcode,
5127 // the vector SDValue and the scalar SDValue required to lower this to a
5128 // RISCVISD node.
5129 static std::tuple<unsigned, SDValue, SDValue>
5130 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5131   SDLoc DL(Op);
5132   auto Flags = Op->getFlags();
5133   unsigned Opcode = Op.getOpcode();
5134   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5135   switch (Opcode) {
5136   default:
5137     llvm_unreachable("Unhandled reduction");
5138   case ISD::VECREDUCE_FADD: {
5139     // Use positive zero if we can. It is cheaper to materialize.
5140     SDValue Zero =
5141         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5142     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5143   }
5144   case ISD::VECREDUCE_SEQ_FADD:
5145     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5146                            Op.getOperand(0));
5147   case ISD::VECREDUCE_FMIN:
5148     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5149                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5150   case ISD::VECREDUCE_FMAX:
5151     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5152                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5153   }
5154 }
5155 
5156 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5157                                               SelectionDAG &DAG) const {
5158   SDLoc DL(Op);
5159   MVT VecEltVT = Op.getSimpleValueType();
5160 
5161   unsigned RVVOpcode;
5162   SDValue VectorVal, ScalarVal;
5163   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5164       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5165   MVT VecVT = VectorVal.getSimpleValueType();
5166 
5167   MVT ContainerVT = VecVT;
5168   if (VecVT.isFixedLengthVector()) {
5169     ContainerVT = getContainerForFixedLengthVector(VecVT);
5170     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5171   }
5172 
5173   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5174   MVT XLenVT = Subtarget.getXLenVT();
5175 
5176   SDValue Mask, VL;
5177   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5178 
5179   SDValue ScalarSplat =
5180       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5181                        M1VT, DL, DAG, Subtarget);
5182   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5183                                   VectorVal, ScalarSplat, Mask, VL);
5184   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5185                      DAG.getConstant(0, DL, XLenVT));
5186 }
5187 
5188 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5189   switch (ISDOpcode) {
5190   default:
5191     llvm_unreachable("Unhandled reduction");
5192   case ISD::VP_REDUCE_ADD:
5193     return RISCVISD::VECREDUCE_ADD_VL;
5194   case ISD::VP_REDUCE_UMAX:
5195     return RISCVISD::VECREDUCE_UMAX_VL;
5196   case ISD::VP_REDUCE_SMAX:
5197     return RISCVISD::VECREDUCE_SMAX_VL;
5198   case ISD::VP_REDUCE_UMIN:
5199     return RISCVISD::VECREDUCE_UMIN_VL;
5200   case ISD::VP_REDUCE_SMIN:
5201     return RISCVISD::VECREDUCE_SMIN_VL;
5202   case ISD::VP_REDUCE_AND:
5203     return RISCVISD::VECREDUCE_AND_VL;
5204   case ISD::VP_REDUCE_OR:
5205     return RISCVISD::VECREDUCE_OR_VL;
5206   case ISD::VP_REDUCE_XOR:
5207     return RISCVISD::VECREDUCE_XOR_VL;
5208   case ISD::VP_REDUCE_FADD:
5209     return RISCVISD::VECREDUCE_FADD_VL;
5210   case ISD::VP_REDUCE_SEQ_FADD:
5211     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5212   case ISD::VP_REDUCE_FMAX:
5213     return RISCVISD::VECREDUCE_FMAX_VL;
5214   case ISD::VP_REDUCE_FMIN:
5215     return RISCVISD::VECREDUCE_FMIN_VL;
5216   }
5217 }
5218 
5219 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5220                                            SelectionDAG &DAG) const {
5221   SDLoc DL(Op);
5222   SDValue Vec = Op.getOperand(1);
5223   EVT VecEVT = Vec.getValueType();
5224 
5225   // TODO: The type may need to be widened rather than split. Or widened before
5226   // it can be split.
5227   if (!isTypeLegal(VecEVT))
5228     return SDValue();
5229 
5230   MVT VecVT = VecEVT.getSimpleVT();
5231   MVT VecEltVT = VecVT.getVectorElementType();
5232   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5233 
5234   MVT ContainerVT = VecVT;
5235   if (VecVT.isFixedLengthVector()) {
5236     ContainerVT = getContainerForFixedLengthVector(VecVT);
5237     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5238   }
5239 
5240   SDValue VL = Op.getOperand(3);
5241   SDValue Mask = Op.getOperand(2);
5242 
5243   MVT M1VT = getLMUL1VT(ContainerVT);
5244   MVT XLenVT = Subtarget.getXLenVT();
5245   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5246 
5247   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5248                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5249                                         DL, DAG, Subtarget);
5250   SDValue Reduction =
5251       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5252   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5253                              DAG.getConstant(0, DL, XLenVT));
5254   if (!VecVT.isInteger())
5255     return Elt0;
5256   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5257 }
5258 
5259 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5260                                                    SelectionDAG &DAG) const {
5261   SDValue Vec = Op.getOperand(0);
5262   SDValue SubVec = Op.getOperand(1);
5263   MVT VecVT = Vec.getSimpleValueType();
5264   MVT SubVecVT = SubVec.getSimpleValueType();
5265 
5266   SDLoc DL(Op);
5267   MVT XLenVT = Subtarget.getXLenVT();
5268   unsigned OrigIdx = Op.getConstantOperandVal(2);
5269   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5270 
5271   // We don't have the ability to slide mask vectors up indexed by their i1
5272   // elements; the smallest we can do is i8. Often we are able to bitcast to
5273   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5274   // into a scalable one, we might not necessarily have enough scalable
5275   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5276   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5277       (OrigIdx != 0 || !Vec.isUndef())) {
5278     if (VecVT.getVectorMinNumElements() >= 8 &&
5279         SubVecVT.getVectorMinNumElements() >= 8) {
5280       assert(OrigIdx % 8 == 0 && "Invalid index");
5281       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5282              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5283              "Unexpected mask vector lowering");
5284       OrigIdx /= 8;
5285       SubVecVT =
5286           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5287                            SubVecVT.isScalableVector());
5288       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5289                                VecVT.isScalableVector());
5290       Vec = DAG.getBitcast(VecVT, Vec);
5291       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5292     } else {
5293       // We can't slide this mask vector up indexed by its i1 elements.
5294       // This poses a problem when we wish to insert a scalable vector which
5295       // can't be re-expressed as a larger type. Just choose the slow path and
5296       // extend to a larger type, then truncate back down.
5297       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5298       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5299       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5300       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5301       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5302                         Op.getOperand(2));
5303       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5304       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5305     }
5306   }
5307 
5308   // If the subvector vector is a fixed-length type, we cannot use subregister
5309   // manipulation to simplify the codegen; we don't know which register of a
5310   // LMUL group contains the specific subvector as we only know the minimum
5311   // register size. Therefore we must slide the vector group up the full
5312   // amount.
5313   if (SubVecVT.isFixedLengthVector()) {
5314     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5315       return Op;
5316     MVT ContainerVT = VecVT;
5317     if (VecVT.isFixedLengthVector()) {
5318       ContainerVT = getContainerForFixedLengthVector(VecVT);
5319       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5320     }
5321     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5322                          DAG.getUNDEF(ContainerVT), SubVec,
5323                          DAG.getConstant(0, DL, XLenVT));
5324     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5325       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5326       return DAG.getBitcast(Op.getValueType(), SubVec);
5327     }
5328     SDValue Mask =
5329         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5330     // Set the vector length to only the number of elements we care about. Note
5331     // that for slideup this includes the offset.
5332     SDValue VL =
5333         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5334     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5335     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5336                                   SubVec, SlideupAmt, Mask, VL);
5337     if (VecVT.isFixedLengthVector())
5338       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5339     return DAG.getBitcast(Op.getValueType(), Slideup);
5340   }
5341 
5342   unsigned SubRegIdx, RemIdx;
5343   std::tie(SubRegIdx, RemIdx) =
5344       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5345           VecVT, SubVecVT, OrigIdx, TRI);
5346 
5347   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5348   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5349                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5350                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5351 
5352   // 1. If the Idx has been completely eliminated and this subvector's size is
5353   // a vector register or a multiple thereof, or the surrounding elements are
5354   // undef, then this is a subvector insert which naturally aligns to a vector
5355   // register. These can easily be handled using subregister manipulation.
5356   // 2. If the subvector is smaller than a vector register, then the insertion
5357   // must preserve the undisturbed elements of the register. We do this by
5358   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5359   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5360   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5361   // LMUL=1 type back into the larger vector (resolving to another subregister
5362   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5363   // to avoid allocating a large register group to hold our subvector.
5364   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5365     return Op;
5366 
5367   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5368   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5369   // (in our case undisturbed). This means we can set up a subvector insertion
5370   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5371   // size of the subvector.
5372   MVT InterSubVT = VecVT;
5373   SDValue AlignedExtract = Vec;
5374   unsigned AlignedIdx = OrigIdx - RemIdx;
5375   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5376     InterSubVT = getLMUL1VT(VecVT);
5377     // Extract a subvector equal to the nearest full vector register type. This
5378     // should resolve to a EXTRACT_SUBREG instruction.
5379     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5380                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5381   }
5382 
5383   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5384   // For scalable vectors this must be further multiplied by vscale.
5385   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5386 
5387   SDValue Mask, VL;
5388   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5389 
5390   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5391   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5392   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5393   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5394 
5395   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5396                        DAG.getUNDEF(InterSubVT), SubVec,
5397                        DAG.getConstant(0, DL, XLenVT));
5398 
5399   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5400                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5401 
5402   // If required, insert this subvector back into the correct vector register.
5403   // This should resolve to an INSERT_SUBREG instruction.
5404   if (VecVT.bitsGT(InterSubVT))
5405     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5406                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5407 
5408   // We might have bitcast from a mask type: cast back to the original type if
5409   // required.
5410   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5411 }
5412 
5413 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5414                                                     SelectionDAG &DAG) const {
5415   SDValue Vec = Op.getOperand(0);
5416   MVT SubVecVT = Op.getSimpleValueType();
5417   MVT VecVT = Vec.getSimpleValueType();
5418 
5419   SDLoc DL(Op);
5420   MVT XLenVT = Subtarget.getXLenVT();
5421   unsigned OrigIdx = Op.getConstantOperandVal(1);
5422   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5423 
5424   // We don't have the ability to slide mask vectors down indexed by their i1
5425   // elements; the smallest we can do is i8. Often we are able to bitcast to
5426   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5427   // from a scalable one, we might not necessarily have enough scalable
5428   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5429   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5430     if (VecVT.getVectorMinNumElements() >= 8 &&
5431         SubVecVT.getVectorMinNumElements() >= 8) {
5432       assert(OrigIdx % 8 == 0 && "Invalid index");
5433       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5434              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5435              "Unexpected mask vector lowering");
5436       OrigIdx /= 8;
5437       SubVecVT =
5438           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5439                            SubVecVT.isScalableVector());
5440       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5441                                VecVT.isScalableVector());
5442       Vec = DAG.getBitcast(VecVT, Vec);
5443     } else {
5444       // We can't slide this mask vector down, indexed by its i1 elements.
5445       // This poses a problem when we wish to extract a scalable vector which
5446       // can't be re-expressed as a larger type. Just choose the slow path and
5447       // extend to a larger type, then truncate back down.
5448       // TODO: We could probably improve this when extracting certain fixed
5449       // from fixed, where we can extract as i8 and shift the correct element
5450       // right to reach the desired subvector?
5451       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5452       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5453       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5454       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5455                         Op.getOperand(1));
5456       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5457       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5458     }
5459   }
5460 
5461   // If the subvector vector is a fixed-length type, we cannot use subregister
5462   // manipulation to simplify the codegen; we don't know which register of a
5463   // LMUL group contains the specific subvector as we only know the minimum
5464   // register size. Therefore we must slide the vector group down the full
5465   // amount.
5466   if (SubVecVT.isFixedLengthVector()) {
5467     // With an index of 0 this is a cast-like subvector, which can be performed
5468     // with subregister operations.
5469     if (OrigIdx == 0)
5470       return Op;
5471     MVT ContainerVT = VecVT;
5472     if (VecVT.isFixedLengthVector()) {
5473       ContainerVT = getContainerForFixedLengthVector(VecVT);
5474       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5475     }
5476     SDValue Mask =
5477         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5478     // Set the vector length to only the number of elements we care about. This
5479     // avoids sliding down elements we're going to discard straight away.
5480     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5481     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5482     SDValue Slidedown =
5483         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5484                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5485     // Now we can use a cast-like subvector extract to get the result.
5486     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5487                             DAG.getConstant(0, DL, XLenVT));
5488     return DAG.getBitcast(Op.getValueType(), Slidedown);
5489   }
5490 
5491   unsigned SubRegIdx, RemIdx;
5492   std::tie(SubRegIdx, RemIdx) =
5493       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5494           VecVT, SubVecVT, OrigIdx, TRI);
5495 
5496   // If the Idx has been completely eliminated then this is a subvector extract
5497   // which naturally aligns to a vector register. These can easily be handled
5498   // using subregister manipulation.
5499   if (RemIdx == 0)
5500     return Op;
5501 
5502   // Else we must shift our vector register directly to extract the subvector.
5503   // Do this using VSLIDEDOWN.
5504 
5505   // If the vector type is an LMUL-group type, extract a subvector equal to the
5506   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5507   // instruction.
5508   MVT InterSubVT = VecVT;
5509   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5510     InterSubVT = getLMUL1VT(VecVT);
5511     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5512                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5513   }
5514 
5515   // Slide this vector register down by the desired number of elements in order
5516   // to place the desired subvector starting at element 0.
5517   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5518   // For scalable vectors this must be further multiplied by vscale.
5519   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5520 
5521   SDValue Mask, VL;
5522   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5523   SDValue Slidedown =
5524       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5525                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5526 
5527   // Now the vector is in the right position, extract our final subvector. This
5528   // should resolve to a COPY.
5529   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5530                           DAG.getConstant(0, DL, XLenVT));
5531 
5532   // We might have bitcast from a mask type: cast back to the original type if
5533   // required.
5534   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5535 }
5536 
5537 // Lower step_vector to the vid instruction. Any non-identity step value must
5538 // be accounted for my manual expansion.
5539 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5540                                               SelectionDAG &DAG) const {
5541   SDLoc DL(Op);
5542   MVT VT = Op.getSimpleValueType();
5543   MVT XLenVT = Subtarget.getXLenVT();
5544   SDValue Mask, VL;
5545   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5546   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5547   uint64_t StepValImm = Op.getConstantOperandVal(0);
5548   if (StepValImm != 1) {
5549     if (isPowerOf2_64(StepValImm)) {
5550       SDValue StepVal =
5551           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5552                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5553       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5554     } else {
5555       SDValue StepVal = lowerScalarSplat(
5556           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5557           VL, VT, DL, DAG, Subtarget);
5558       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5559     }
5560   }
5561   return StepVec;
5562 }
5563 
5564 // Implement vector_reverse using vrgather.vv with indices determined by
5565 // subtracting the id of each element from (VLMAX-1). This will convert
5566 // the indices like so:
5567 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5568 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5569 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5570                                                  SelectionDAG &DAG) const {
5571   SDLoc DL(Op);
5572   MVT VecVT = Op.getSimpleValueType();
5573   unsigned EltSize = VecVT.getScalarSizeInBits();
5574   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5575 
5576   unsigned MaxVLMAX = 0;
5577   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5578   if (VectorBitsMax != 0)
5579     MaxVLMAX =
5580         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5581 
5582   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5583   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5584 
5585   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5586   // to use vrgatherei16.vv.
5587   // TODO: It's also possible to use vrgatherei16.vv for other types to
5588   // decrease register width for the index calculation.
5589   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5590     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5591     // Reverse each half, then reassemble them in reverse order.
5592     // NOTE: It's also possible that after splitting that VLMAX no longer
5593     // requires vrgatherei16.vv.
5594     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5595       SDValue Lo, Hi;
5596       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5597       EVT LoVT, HiVT;
5598       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5599       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5600       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5601       // Reassemble the low and high pieces reversed.
5602       // FIXME: This is a CONCAT_VECTORS.
5603       SDValue Res =
5604           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5605                       DAG.getIntPtrConstant(0, DL));
5606       return DAG.getNode(
5607           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5608           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5609     }
5610 
5611     // Just promote the int type to i16 which will double the LMUL.
5612     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5613     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5614   }
5615 
5616   MVT XLenVT = Subtarget.getXLenVT();
5617   SDValue Mask, VL;
5618   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5619 
5620   // Calculate VLMAX-1 for the desired SEW.
5621   unsigned MinElts = VecVT.getVectorMinNumElements();
5622   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5623                               DAG.getConstant(MinElts, DL, XLenVT));
5624   SDValue VLMinus1 =
5625       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5626 
5627   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5628   bool IsRV32E64 =
5629       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5630   SDValue SplatVL;
5631   if (!IsRV32E64)
5632     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5633   else
5634     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5635                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5636 
5637   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5638   SDValue Indices =
5639       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5640 
5641   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5642 }
5643 
5644 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5645                                                 SelectionDAG &DAG) const {
5646   SDLoc DL(Op);
5647   SDValue V1 = Op.getOperand(0);
5648   SDValue V2 = Op.getOperand(1);
5649   MVT XLenVT = Subtarget.getXLenVT();
5650   MVT VecVT = Op.getSimpleValueType();
5651 
5652   unsigned MinElts = VecVT.getVectorMinNumElements();
5653   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5654                               DAG.getConstant(MinElts, DL, XLenVT));
5655 
5656   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5657   SDValue DownOffset, UpOffset;
5658   if (ImmValue >= 0) {
5659     // The operand is a TargetConstant, we need to rebuild it as a regular
5660     // constant.
5661     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5662     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5663   } else {
5664     // The operand is a TargetConstant, we need to rebuild it as a regular
5665     // constant rather than negating the original operand.
5666     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5667     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5668   }
5669 
5670   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5671 
5672   SDValue SlideDown =
5673       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5674                   DownOffset, TrueMask, UpOffset);
5675   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5676                      TrueMask,
5677                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5678 }
5679 
5680 SDValue
5681 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5682                                                      SelectionDAG &DAG) const {
5683   SDLoc DL(Op);
5684   auto *Load = cast<LoadSDNode>(Op);
5685 
5686   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5687                                         Load->getMemoryVT(),
5688                                         *Load->getMemOperand()) &&
5689          "Expecting a correctly-aligned load");
5690 
5691   MVT VT = Op.getSimpleValueType();
5692   MVT XLenVT = Subtarget.getXLenVT();
5693   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5694 
5695   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5696 
5697   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5698   SDValue IntID = DAG.getTargetConstant(
5699       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5700   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5701   if (!IsMaskOp)
5702     Ops.push_back(DAG.getUNDEF(ContainerVT));
5703   Ops.push_back(Load->getBasePtr());
5704   Ops.push_back(VL);
5705   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5706   SDValue NewLoad =
5707       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5708                               Load->getMemoryVT(), Load->getMemOperand());
5709 
5710   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5711   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5712 }
5713 
5714 SDValue
5715 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5716                                                       SelectionDAG &DAG) const {
5717   SDLoc DL(Op);
5718   auto *Store = cast<StoreSDNode>(Op);
5719 
5720   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5721                                         Store->getMemoryVT(),
5722                                         *Store->getMemOperand()) &&
5723          "Expecting a correctly-aligned store");
5724 
5725   SDValue StoreVal = Store->getValue();
5726   MVT VT = StoreVal.getSimpleValueType();
5727   MVT XLenVT = Subtarget.getXLenVT();
5728 
5729   // If the size less than a byte, we need to pad with zeros to make a byte.
5730   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5731     VT = MVT::v8i1;
5732     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5733                            DAG.getConstant(0, DL, VT), StoreVal,
5734                            DAG.getIntPtrConstant(0, DL));
5735   }
5736 
5737   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5738 
5739   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5740 
5741   SDValue NewValue =
5742       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5743 
5744   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5745   SDValue IntID = DAG.getTargetConstant(
5746       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5747   return DAG.getMemIntrinsicNode(
5748       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5749       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5750       Store->getMemoryVT(), Store->getMemOperand());
5751 }
5752 
5753 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5754                                              SelectionDAG &DAG) const {
5755   SDLoc DL(Op);
5756   MVT VT = Op.getSimpleValueType();
5757 
5758   const auto *MemSD = cast<MemSDNode>(Op);
5759   EVT MemVT = MemSD->getMemoryVT();
5760   MachineMemOperand *MMO = MemSD->getMemOperand();
5761   SDValue Chain = MemSD->getChain();
5762   SDValue BasePtr = MemSD->getBasePtr();
5763 
5764   SDValue Mask, PassThru, VL;
5765   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5766     Mask = VPLoad->getMask();
5767     PassThru = DAG.getUNDEF(VT);
5768     VL = VPLoad->getVectorLength();
5769   } else {
5770     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5771     Mask = MLoad->getMask();
5772     PassThru = MLoad->getPassThru();
5773   }
5774 
5775   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5776 
5777   MVT XLenVT = Subtarget.getXLenVT();
5778 
5779   MVT ContainerVT = VT;
5780   if (VT.isFixedLengthVector()) {
5781     ContainerVT = getContainerForFixedLengthVector(VT);
5782     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5783     if (!IsUnmasked) {
5784       MVT MaskVT = getMaskTypeFor(ContainerVT);
5785       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5786     }
5787   }
5788 
5789   if (!VL)
5790     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5791 
5792   unsigned IntID =
5793       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5794   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5795   if (IsUnmasked)
5796     Ops.push_back(DAG.getUNDEF(ContainerVT));
5797   else
5798     Ops.push_back(PassThru);
5799   Ops.push_back(BasePtr);
5800   if (!IsUnmasked)
5801     Ops.push_back(Mask);
5802   Ops.push_back(VL);
5803   if (!IsUnmasked)
5804     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5805 
5806   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5807 
5808   SDValue Result =
5809       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5810   Chain = Result.getValue(1);
5811 
5812   if (VT.isFixedLengthVector())
5813     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5814 
5815   return DAG.getMergeValues({Result, Chain}, DL);
5816 }
5817 
5818 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5819                                               SelectionDAG &DAG) const {
5820   SDLoc DL(Op);
5821 
5822   const auto *MemSD = cast<MemSDNode>(Op);
5823   EVT MemVT = MemSD->getMemoryVT();
5824   MachineMemOperand *MMO = MemSD->getMemOperand();
5825   SDValue Chain = MemSD->getChain();
5826   SDValue BasePtr = MemSD->getBasePtr();
5827   SDValue Val, Mask, VL;
5828 
5829   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5830     Val = VPStore->getValue();
5831     Mask = VPStore->getMask();
5832     VL = VPStore->getVectorLength();
5833   } else {
5834     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5835     Val = MStore->getValue();
5836     Mask = MStore->getMask();
5837   }
5838 
5839   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5840 
5841   MVT VT = Val.getSimpleValueType();
5842   MVT XLenVT = Subtarget.getXLenVT();
5843 
5844   MVT ContainerVT = VT;
5845   if (VT.isFixedLengthVector()) {
5846     ContainerVT = getContainerForFixedLengthVector(VT);
5847 
5848     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5849     if (!IsUnmasked) {
5850       MVT MaskVT = getMaskTypeFor(ContainerVT);
5851       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5852     }
5853   }
5854 
5855   if (!VL)
5856     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5857 
5858   unsigned IntID =
5859       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5860   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5861   Ops.push_back(Val);
5862   Ops.push_back(BasePtr);
5863   if (!IsUnmasked)
5864     Ops.push_back(Mask);
5865   Ops.push_back(VL);
5866 
5867   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5868                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5869 }
5870 
5871 SDValue
5872 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5873                                                       SelectionDAG &DAG) const {
5874   MVT InVT = Op.getOperand(0).getSimpleValueType();
5875   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5876 
5877   MVT VT = Op.getSimpleValueType();
5878 
5879   SDValue Op1 =
5880       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5881   SDValue Op2 =
5882       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5883 
5884   SDLoc DL(Op);
5885   SDValue VL =
5886       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5887 
5888   MVT MaskVT = getMaskTypeFor(ContainerVT);
5889   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5890 
5891   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5892                             Op.getOperand(2), Mask, VL);
5893 
5894   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5895 }
5896 
5897 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5898     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5899   MVT VT = Op.getSimpleValueType();
5900 
5901   if (VT.getVectorElementType() == MVT::i1)
5902     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5903 
5904   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5905 }
5906 
5907 SDValue
5908 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5909                                                       SelectionDAG &DAG) const {
5910   unsigned Opc;
5911   switch (Op.getOpcode()) {
5912   default: llvm_unreachable("Unexpected opcode!");
5913   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5914   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5915   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5916   }
5917 
5918   return lowerToScalableOp(Op, DAG, Opc);
5919 }
5920 
5921 // Lower vector ABS to smax(X, sub(0, X)).
5922 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5923   SDLoc DL(Op);
5924   MVT VT = Op.getSimpleValueType();
5925   SDValue X = Op.getOperand(0);
5926 
5927   assert(VT.isFixedLengthVector() && "Unexpected type");
5928 
5929   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5930   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5931 
5932   SDValue Mask, VL;
5933   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5934 
5935   SDValue SplatZero = DAG.getNode(
5936       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5937       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5938   SDValue NegX =
5939       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5940   SDValue Max =
5941       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5942 
5943   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5944 }
5945 
5946 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5947     SDValue Op, SelectionDAG &DAG) const {
5948   SDLoc DL(Op);
5949   MVT VT = Op.getSimpleValueType();
5950   SDValue Mag = Op.getOperand(0);
5951   SDValue Sign = Op.getOperand(1);
5952   assert(Mag.getValueType() == Sign.getValueType() &&
5953          "Can only handle COPYSIGN with matching types.");
5954 
5955   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5956   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5957   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5958 
5959   SDValue Mask, VL;
5960   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5961 
5962   SDValue CopySign =
5963       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5964 
5965   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5966 }
5967 
5968 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5969     SDValue Op, SelectionDAG &DAG) const {
5970   MVT VT = Op.getSimpleValueType();
5971   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5972 
5973   MVT I1ContainerVT =
5974       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5975 
5976   SDValue CC =
5977       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5978   SDValue Op1 =
5979       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5980   SDValue Op2 =
5981       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5982 
5983   SDLoc DL(Op);
5984   SDValue Mask, VL;
5985   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5986 
5987   SDValue Select =
5988       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5989 
5990   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5991 }
5992 
5993 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5994                                                unsigned NewOpc,
5995                                                bool HasMask) const {
5996   MVT VT = Op.getSimpleValueType();
5997   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5998 
5999   // Create list of operands by converting existing ones to scalable types.
6000   SmallVector<SDValue, 6> Ops;
6001   for (const SDValue &V : Op->op_values()) {
6002     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6003 
6004     // Pass through non-vector operands.
6005     if (!V.getValueType().isVector()) {
6006       Ops.push_back(V);
6007       continue;
6008     }
6009 
6010     // "cast" fixed length vector to a scalable vector.
6011     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6012            "Only fixed length vectors are supported!");
6013     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6014   }
6015 
6016   SDLoc DL(Op);
6017   SDValue Mask, VL;
6018   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6019   if (HasMask)
6020     Ops.push_back(Mask);
6021   Ops.push_back(VL);
6022 
6023   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6024   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6025 }
6026 
6027 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6028 // * Operands of each node are assumed to be in the same order.
6029 // * The EVL operand is promoted from i32 to i64 on RV64.
6030 // * Fixed-length vectors are converted to their scalable-vector container
6031 //   types.
6032 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6033                                        unsigned RISCVISDOpc) const {
6034   SDLoc DL(Op);
6035   MVT VT = Op.getSimpleValueType();
6036   SmallVector<SDValue, 4> Ops;
6037 
6038   for (const auto &OpIdx : enumerate(Op->ops())) {
6039     SDValue V = OpIdx.value();
6040     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6041     // Pass through operands which aren't fixed-length vectors.
6042     if (!V.getValueType().isFixedLengthVector()) {
6043       Ops.push_back(V);
6044       continue;
6045     }
6046     // "cast" fixed length vector to a scalable vector.
6047     MVT OpVT = V.getSimpleValueType();
6048     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6049     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6050            "Only fixed length vectors are supported!");
6051     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6052   }
6053 
6054   if (!VT.isFixedLengthVector())
6055     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6056 
6057   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6058 
6059   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6060 
6061   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6062 }
6063 
6064 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6065                                               SelectionDAG &DAG) const {
6066   SDLoc DL(Op);
6067   MVT VT = Op.getSimpleValueType();
6068 
6069   SDValue Src = Op.getOperand(0);
6070   // NOTE: Mask is dropped.
6071   SDValue VL = Op.getOperand(2);
6072 
6073   MVT ContainerVT = VT;
6074   if (VT.isFixedLengthVector()) {
6075     ContainerVT = getContainerForFixedLengthVector(VT);
6076     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6077     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6078   }
6079 
6080   MVT XLenVT = Subtarget.getXLenVT();
6081   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6082   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6083                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6084 
6085   SDValue SplatValue = DAG.getConstant(
6086       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6087   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6088                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6089 
6090   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6091                                Splat, ZeroSplat, VL);
6092   if (!VT.isFixedLengthVector())
6093     return Result;
6094   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6095 }
6096 
6097 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6098                                                 SelectionDAG &DAG) const {
6099   SDLoc DL(Op);
6100   MVT VT = Op.getSimpleValueType();
6101 
6102   SDValue Op1 = Op.getOperand(0);
6103   SDValue Op2 = Op.getOperand(1);
6104   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6105   // NOTE: Mask is dropped.
6106   SDValue VL = Op.getOperand(4);
6107 
6108   MVT ContainerVT = VT;
6109   if (VT.isFixedLengthVector()) {
6110     ContainerVT = getContainerForFixedLengthVector(VT);
6111     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6112     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6113   }
6114 
6115   SDValue Result;
6116   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6117 
6118   switch (Condition) {
6119   default:
6120     break;
6121   // X != Y  --> (X^Y)
6122   case ISD::SETNE:
6123     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6124     break;
6125   // X == Y  --> ~(X^Y)
6126   case ISD::SETEQ: {
6127     SDValue Temp =
6128         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6129     Result =
6130         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6131     break;
6132   }
6133   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6134   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6135   case ISD::SETGT:
6136   case ISD::SETULT: {
6137     SDValue Temp =
6138         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6139     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6140     break;
6141   }
6142   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6143   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6144   case ISD::SETLT:
6145   case ISD::SETUGT: {
6146     SDValue Temp =
6147         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6148     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6149     break;
6150   }
6151   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6152   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6153   case ISD::SETGE:
6154   case ISD::SETULE: {
6155     SDValue Temp =
6156         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6157     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6158     break;
6159   }
6160   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6161   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6162   case ISD::SETLE:
6163   case ISD::SETUGE: {
6164     SDValue Temp =
6165         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6166     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6167     break;
6168   }
6169   }
6170 
6171   if (!VT.isFixedLengthVector())
6172     return Result;
6173   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6174 }
6175 
6176 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6177 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6178                                                 unsigned RISCVISDOpc) const {
6179   SDLoc DL(Op);
6180 
6181   SDValue Src = Op.getOperand(0);
6182   SDValue Mask = Op.getOperand(1);
6183   SDValue VL = Op.getOperand(2);
6184 
6185   MVT DstVT = Op.getSimpleValueType();
6186   MVT SrcVT = Src.getSimpleValueType();
6187   if (DstVT.isFixedLengthVector()) {
6188     DstVT = getContainerForFixedLengthVector(DstVT);
6189     SrcVT = getContainerForFixedLengthVector(SrcVT);
6190     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6191     MVT MaskVT = getMaskTypeFor(DstVT);
6192     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6193   }
6194 
6195   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6196                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6197                                 ? RISCVISD::VSEXT_VL
6198                                 : RISCVISD::VZEXT_VL;
6199 
6200   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6201   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6202 
6203   SDValue Result;
6204   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6205     if (SrcVT.isInteger()) {
6206       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6207 
6208       // Do we need to do any pre-widening before converting?
6209       if (SrcEltSize == 1) {
6210         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6211         MVT XLenVT = Subtarget.getXLenVT();
6212         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6213         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6214                                         DAG.getUNDEF(IntVT), Zero, VL);
6215         SDValue One = DAG.getConstant(
6216             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6217         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6218                                        DAG.getUNDEF(IntVT), One, VL);
6219         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6220                           ZeroSplat, VL);
6221       } else if (DstEltSize > (2 * SrcEltSize)) {
6222         // Widen before converting.
6223         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6224                                      DstVT.getVectorElementCount());
6225         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6226       }
6227 
6228       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6229     } else {
6230       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6231              "Wrong input/output vector types");
6232 
6233       // Convert f16 to f32 then convert f32 to i64.
6234       if (DstEltSize > (2 * SrcEltSize)) {
6235         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6236         MVT InterimFVT =
6237             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6238         Src =
6239             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6240       }
6241 
6242       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6243     }
6244   } else { // Narrowing + Conversion
6245     if (SrcVT.isInteger()) {
6246       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6247       // First do a narrowing convert to an FP type half the size, then round
6248       // the FP type to a small FP type if needed.
6249 
6250       MVT InterimFVT = DstVT;
6251       if (SrcEltSize > (2 * DstEltSize)) {
6252         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6253         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6254         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6255       }
6256 
6257       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6258 
6259       if (InterimFVT != DstVT) {
6260         Src = Result;
6261         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6262       }
6263     } else {
6264       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6265              "Wrong input/output vector types");
6266       // First do a narrowing conversion to an integer half the size, then
6267       // truncate if needed.
6268 
6269       if (DstEltSize == 1) {
6270         // First convert to the same size integer, then convert to mask using
6271         // setcc.
6272         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6273         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6274                                           DstVT.getVectorElementCount());
6275         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6276 
6277         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6278         // otherwise the conversion was undefined.
6279         MVT XLenVT = Subtarget.getXLenVT();
6280         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6281         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6282                                 DAG.getUNDEF(InterimIVT), SplatZero);
6283         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6284                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6285       } else {
6286         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6287                                           DstVT.getVectorElementCount());
6288 
6289         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6290 
6291         while (InterimIVT != DstVT) {
6292           SrcEltSize /= 2;
6293           Src = Result;
6294           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6295                                         DstVT.getVectorElementCount());
6296           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6297                                Src, Mask, VL);
6298         }
6299       }
6300     }
6301   }
6302 
6303   MVT VT = Op.getSimpleValueType();
6304   if (!VT.isFixedLengthVector())
6305     return Result;
6306   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6307 }
6308 
6309 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6310                                             unsigned MaskOpc,
6311                                             unsigned VecOpc) const {
6312   MVT VT = Op.getSimpleValueType();
6313   if (VT.getVectorElementType() != MVT::i1)
6314     return lowerVPOp(Op, DAG, VecOpc);
6315 
6316   // It is safe to drop mask parameter as masked-off elements are undef.
6317   SDValue Op1 = Op->getOperand(0);
6318   SDValue Op2 = Op->getOperand(1);
6319   SDValue VL = Op->getOperand(3);
6320 
6321   MVT ContainerVT = VT;
6322   const bool IsFixed = VT.isFixedLengthVector();
6323   if (IsFixed) {
6324     ContainerVT = getContainerForFixedLengthVector(VT);
6325     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6326     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6327   }
6328 
6329   SDLoc DL(Op);
6330   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6331   if (!IsFixed)
6332     return Val;
6333   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6334 }
6335 
6336 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6337 // matched to a RVV indexed load. The RVV indexed load instructions only
6338 // support the "unsigned unscaled" addressing mode; indices are implicitly
6339 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6340 // signed or scaled indexing is extended to the XLEN value type and scaled
6341 // accordingly.
6342 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6343                                                SelectionDAG &DAG) const {
6344   SDLoc DL(Op);
6345   MVT VT = Op.getSimpleValueType();
6346 
6347   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6348   EVT MemVT = MemSD->getMemoryVT();
6349   MachineMemOperand *MMO = MemSD->getMemOperand();
6350   SDValue Chain = MemSD->getChain();
6351   SDValue BasePtr = MemSD->getBasePtr();
6352 
6353   ISD::LoadExtType LoadExtType;
6354   SDValue Index, Mask, PassThru, VL;
6355 
6356   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6357     Index = VPGN->getIndex();
6358     Mask = VPGN->getMask();
6359     PassThru = DAG.getUNDEF(VT);
6360     VL = VPGN->getVectorLength();
6361     // VP doesn't support extending loads.
6362     LoadExtType = ISD::NON_EXTLOAD;
6363   } else {
6364     // Else it must be a MGATHER.
6365     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6366     Index = MGN->getIndex();
6367     Mask = MGN->getMask();
6368     PassThru = MGN->getPassThru();
6369     LoadExtType = MGN->getExtensionType();
6370   }
6371 
6372   MVT IndexVT = Index.getSimpleValueType();
6373   MVT XLenVT = Subtarget.getXLenVT();
6374 
6375   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6376          "Unexpected VTs!");
6377   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6378   // Targets have to explicitly opt-in for extending vector loads.
6379   assert(LoadExtType == ISD::NON_EXTLOAD &&
6380          "Unexpected extending MGATHER/VP_GATHER");
6381   (void)LoadExtType;
6382 
6383   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6384   // the selection of the masked intrinsics doesn't do this for us.
6385   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6386 
6387   MVT ContainerVT = VT;
6388   if (VT.isFixedLengthVector()) {
6389     ContainerVT = getContainerForFixedLengthVector(VT);
6390     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6391                                ContainerVT.getVectorElementCount());
6392 
6393     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6394 
6395     if (!IsUnmasked) {
6396       MVT MaskVT = getMaskTypeFor(ContainerVT);
6397       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6398       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6399     }
6400   }
6401 
6402   if (!VL)
6403     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6404 
6405   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6406     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6407     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6408                                    VL);
6409     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6410                         TrueMask, VL);
6411   }
6412 
6413   unsigned IntID =
6414       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6415   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6416   if (IsUnmasked)
6417     Ops.push_back(DAG.getUNDEF(ContainerVT));
6418   else
6419     Ops.push_back(PassThru);
6420   Ops.push_back(BasePtr);
6421   Ops.push_back(Index);
6422   if (!IsUnmasked)
6423     Ops.push_back(Mask);
6424   Ops.push_back(VL);
6425   if (!IsUnmasked)
6426     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6427 
6428   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6429   SDValue Result =
6430       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6431   Chain = Result.getValue(1);
6432 
6433   if (VT.isFixedLengthVector())
6434     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6435 
6436   return DAG.getMergeValues({Result, Chain}, DL);
6437 }
6438 
6439 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6440 // matched to a RVV indexed store. The RVV indexed store instructions only
6441 // support the "unsigned unscaled" addressing mode; indices are implicitly
6442 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6443 // signed or scaled indexing is extended to the XLEN value type and scaled
6444 // accordingly.
6445 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6446                                                 SelectionDAG &DAG) const {
6447   SDLoc DL(Op);
6448   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6449   EVT MemVT = MemSD->getMemoryVT();
6450   MachineMemOperand *MMO = MemSD->getMemOperand();
6451   SDValue Chain = MemSD->getChain();
6452   SDValue BasePtr = MemSD->getBasePtr();
6453 
6454   bool IsTruncatingStore = false;
6455   SDValue Index, Mask, Val, VL;
6456 
6457   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6458     Index = VPSN->getIndex();
6459     Mask = VPSN->getMask();
6460     Val = VPSN->getValue();
6461     VL = VPSN->getVectorLength();
6462     // VP doesn't support truncating stores.
6463     IsTruncatingStore = false;
6464   } else {
6465     // Else it must be a MSCATTER.
6466     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6467     Index = MSN->getIndex();
6468     Mask = MSN->getMask();
6469     Val = MSN->getValue();
6470     IsTruncatingStore = MSN->isTruncatingStore();
6471   }
6472 
6473   MVT VT = Val.getSimpleValueType();
6474   MVT IndexVT = Index.getSimpleValueType();
6475   MVT XLenVT = Subtarget.getXLenVT();
6476 
6477   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6478          "Unexpected VTs!");
6479   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6480   // Targets have to explicitly opt-in for extending vector loads and
6481   // truncating vector stores.
6482   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6483   (void)IsTruncatingStore;
6484 
6485   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6486   // the selection of the masked intrinsics doesn't do this for us.
6487   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6488 
6489   MVT ContainerVT = VT;
6490   if (VT.isFixedLengthVector()) {
6491     ContainerVT = getContainerForFixedLengthVector(VT);
6492     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6493                                ContainerVT.getVectorElementCount());
6494 
6495     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6496     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6497 
6498     if (!IsUnmasked) {
6499       MVT MaskVT = getMaskTypeFor(ContainerVT);
6500       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6501     }
6502   }
6503 
6504   if (!VL)
6505     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6506 
6507   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6508     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6509     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6510                                    VL);
6511     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6512                         TrueMask, VL);
6513   }
6514 
6515   unsigned IntID =
6516       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6517   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6518   Ops.push_back(Val);
6519   Ops.push_back(BasePtr);
6520   Ops.push_back(Index);
6521   if (!IsUnmasked)
6522     Ops.push_back(Mask);
6523   Ops.push_back(VL);
6524 
6525   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6526                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6527 }
6528 
6529 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6530                                                SelectionDAG &DAG) const {
6531   const MVT XLenVT = Subtarget.getXLenVT();
6532   SDLoc DL(Op);
6533   SDValue Chain = Op->getOperand(0);
6534   SDValue SysRegNo = DAG.getTargetConstant(
6535       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6536   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6537   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6538 
6539   // Encoding used for rounding mode in RISCV differs from that used in
6540   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6541   // table, which consists of a sequence of 4-bit fields, each representing
6542   // corresponding FLT_ROUNDS mode.
6543   static const int Table =
6544       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6545       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6546       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6547       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6548       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6549 
6550   SDValue Shift =
6551       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6552   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6553                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6554   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6555                                DAG.getConstant(7, DL, XLenVT));
6556 
6557   return DAG.getMergeValues({Masked, Chain}, DL);
6558 }
6559 
6560 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6561                                                SelectionDAG &DAG) const {
6562   const MVT XLenVT = Subtarget.getXLenVT();
6563   SDLoc DL(Op);
6564   SDValue Chain = Op->getOperand(0);
6565   SDValue RMValue = Op->getOperand(1);
6566   SDValue SysRegNo = DAG.getTargetConstant(
6567       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6568 
6569   // Encoding used for rounding mode in RISCV differs from that used in
6570   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6571   // a table, which consists of a sequence of 4-bit fields, each representing
6572   // corresponding RISCV mode.
6573   static const unsigned Table =
6574       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6575       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6576       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6577       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6578       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6579 
6580   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6581                               DAG.getConstant(2, DL, XLenVT));
6582   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6583                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6584   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6585                         DAG.getConstant(0x7, DL, XLenVT));
6586   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6587                      RMValue);
6588 }
6589 
6590 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6591   switch (IntNo) {
6592   default:
6593     llvm_unreachable("Unexpected Intrinsic");
6594   case Intrinsic::riscv_bcompress:
6595     return RISCVISD::BCOMPRESSW;
6596   case Intrinsic::riscv_bdecompress:
6597     return RISCVISD::BDECOMPRESSW;
6598   case Intrinsic::riscv_bfp:
6599     return RISCVISD::BFPW;
6600   case Intrinsic::riscv_fsl:
6601     return RISCVISD::FSLW;
6602   case Intrinsic::riscv_fsr:
6603     return RISCVISD::FSRW;
6604   }
6605 }
6606 
6607 // Converts the given intrinsic to a i64 operation with any extension.
6608 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6609                                          unsigned IntNo) {
6610   SDLoc DL(N);
6611   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6612   // Deal with the Instruction Operands
6613   SmallVector<SDValue, 3> NewOps;
6614   for (SDValue Op : drop_begin(N->ops()))
6615     // Promote the operand to i64 type
6616     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6617   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6618   // ReplaceNodeResults requires we maintain the same type for the return value.
6619   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6620 }
6621 
6622 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6623 // form of the given Opcode.
6624 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6625   switch (Opcode) {
6626   default:
6627     llvm_unreachable("Unexpected opcode");
6628   case ISD::SHL:
6629     return RISCVISD::SLLW;
6630   case ISD::SRA:
6631     return RISCVISD::SRAW;
6632   case ISD::SRL:
6633     return RISCVISD::SRLW;
6634   case ISD::SDIV:
6635     return RISCVISD::DIVW;
6636   case ISD::UDIV:
6637     return RISCVISD::DIVUW;
6638   case ISD::UREM:
6639     return RISCVISD::REMUW;
6640   case ISD::ROTL:
6641     return RISCVISD::ROLW;
6642   case ISD::ROTR:
6643     return RISCVISD::RORW;
6644   }
6645 }
6646 
6647 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6648 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6649 // otherwise be promoted to i64, making it difficult to select the
6650 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6651 // type i8/i16/i32 is lost.
6652 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6653                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6654   SDLoc DL(N);
6655   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6656   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6657   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6658   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6659   // ReplaceNodeResults requires we maintain the same type for the return value.
6660   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6661 }
6662 
6663 // Converts the given 32-bit operation to a i64 operation with signed extension
6664 // semantic to reduce the signed extension instructions.
6665 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6666   SDLoc DL(N);
6667   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6668   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6669   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6670   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6671                                DAG.getValueType(MVT::i32));
6672   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6673 }
6674 
6675 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6676                                              SmallVectorImpl<SDValue> &Results,
6677                                              SelectionDAG &DAG) const {
6678   SDLoc DL(N);
6679   switch (N->getOpcode()) {
6680   default:
6681     llvm_unreachable("Don't know how to custom type legalize this operation!");
6682   case ISD::STRICT_FP_TO_SINT:
6683   case ISD::STRICT_FP_TO_UINT:
6684   case ISD::FP_TO_SINT:
6685   case ISD::FP_TO_UINT: {
6686     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6687            "Unexpected custom legalisation");
6688     bool IsStrict = N->isStrictFPOpcode();
6689     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6690                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6691     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6692     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6693         TargetLowering::TypeSoftenFloat) {
6694       if (!isTypeLegal(Op0.getValueType()))
6695         return;
6696       if (IsStrict) {
6697         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6698                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6699         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6700         SDValue Res = DAG.getNode(
6701             Opc, DL, VTs, N->getOperand(0), Op0,
6702             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6703         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6704         Results.push_back(Res.getValue(1));
6705         return;
6706       }
6707       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6708       SDValue Res =
6709           DAG.getNode(Opc, DL, MVT::i64, Op0,
6710                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6711       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6712       return;
6713     }
6714     // If the FP type needs to be softened, emit a library call using the 'si'
6715     // version. If we left it to default legalization we'd end up with 'di'. If
6716     // the FP type doesn't need to be softened just let generic type
6717     // legalization promote the result type.
6718     RTLIB::Libcall LC;
6719     if (IsSigned)
6720       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6721     else
6722       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6723     MakeLibCallOptions CallOptions;
6724     EVT OpVT = Op0.getValueType();
6725     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6726     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6727     SDValue Result;
6728     std::tie(Result, Chain) =
6729         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6730     Results.push_back(Result);
6731     if (IsStrict)
6732       Results.push_back(Chain);
6733     break;
6734   }
6735   case ISD::READCYCLECOUNTER: {
6736     assert(!Subtarget.is64Bit() &&
6737            "READCYCLECOUNTER only has custom type legalization on riscv32");
6738 
6739     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6740     SDValue RCW =
6741         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6742 
6743     Results.push_back(
6744         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6745     Results.push_back(RCW.getValue(2));
6746     break;
6747   }
6748   case ISD::MUL: {
6749     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6750     unsigned XLen = Subtarget.getXLen();
6751     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6752     if (Size > XLen) {
6753       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6754       SDValue LHS = N->getOperand(0);
6755       SDValue RHS = N->getOperand(1);
6756       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6757 
6758       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6759       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6760       // We need exactly one side to be unsigned.
6761       if (LHSIsU == RHSIsU)
6762         return;
6763 
6764       auto MakeMULPair = [&](SDValue S, SDValue U) {
6765         MVT XLenVT = Subtarget.getXLenVT();
6766         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6767         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6768         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6769         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6770         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6771       };
6772 
6773       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6774       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6775 
6776       // The other operand should be signed, but still prefer MULH when
6777       // possible.
6778       if (RHSIsU && LHSIsS && !RHSIsS)
6779         Results.push_back(MakeMULPair(LHS, RHS));
6780       else if (LHSIsU && RHSIsS && !LHSIsS)
6781         Results.push_back(MakeMULPair(RHS, LHS));
6782 
6783       return;
6784     }
6785     LLVM_FALLTHROUGH;
6786   }
6787   case ISD::ADD:
6788   case ISD::SUB:
6789     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6790            "Unexpected custom legalisation");
6791     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6792     break;
6793   case ISD::SHL:
6794   case ISD::SRA:
6795   case ISD::SRL:
6796     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6797            "Unexpected custom legalisation");
6798     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6799       // If we can use a BSET instruction, allow default promotion to apply.
6800       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6801           isOneConstant(N->getOperand(0)))
6802         break;
6803       Results.push_back(customLegalizeToWOp(N, DAG));
6804       break;
6805     }
6806 
6807     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6808     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6809     // shift amount.
6810     if (N->getOpcode() == ISD::SHL) {
6811       SDLoc DL(N);
6812       SDValue NewOp0 =
6813           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6814       SDValue NewOp1 =
6815           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6816       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6817       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6818                                    DAG.getValueType(MVT::i32));
6819       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6820     }
6821 
6822     break;
6823   case ISD::ROTL:
6824   case ISD::ROTR:
6825     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6826            "Unexpected custom legalisation");
6827     Results.push_back(customLegalizeToWOp(N, DAG));
6828     break;
6829   case ISD::CTTZ:
6830   case ISD::CTTZ_ZERO_UNDEF:
6831   case ISD::CTLZ:
6832   case ISD::CTLZ_ZERO_UNDEF: {
6833     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6834            "Unexpected custom legalisation");
6835 
6836     SDValue NewOp0 =
6837         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6838     bool IsCTZ =
6839         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6840     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6841     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6842     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6843     return;
6844   }
6845   case ISD::SDIV:
6846   case ISD::UDIV:
6847   case ISD::UREM: {
6848     MVT VT = N->getSimpleValueType(0);
6849     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6850            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6851            "Unexpected custom legalisation");
6852     // Don't promote division/remainder by constant since we should expand those
6853     // to multiply by magic constant.
6854     // FIXME: What if the expansion is disabled for minsize.
6855     if (N->getOperand(1).getOpcode() == ISD::Constant)
6856       return;
6857 
6858     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6859     // the upper 32 bits. For other types we need to sign or zero extend
6860     // based on the opcode.
6861     unsigned ExtOpc = ISD::ANY_EXTEND;
6862     if (VT != MVT::i32)
6863       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6864                                            : ISD::ZERO_EXTEND;
6865 
6866     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6867     break;
6868   }
6869   case ISD::UADDO:
6870   case ISD::USUBO: {
6871     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6872            "Unexpected custom legalisation");
6873     bool IsAdd = N->getOpcode() == ISD::UADDO;
6874     // Create an ADDW or SUBW.
6875     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6876     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6877     SDValue Res =
6878         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6879     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6880                       DAG.getValueType(MVT::i32));
6881 
6882     SDValue Overflow;
6883     if (IsAdd && isOneConstant(RHS)) {
6884       // Special case uaddo X, 1 overflowed if the addition result is 0.
6885       // The general case (X + C) < C is not necessarily beneficial. Although we
6886       // reduce the live range of X, we may introduce the materialization of
6887       // constant C, especially when the setcc result is used by branch. We have
6888       // no compare with constant and branch instructions.
6889       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6890                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6891     } else {
6892       // Sign extend the LHS and perform an unsigned compare with the ADDW
6893       // result. Since the inputs are sign extended from i32, this is equivalent
6894       // to comparing the lower 32 bits.
6895       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6896       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6897                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6898     }
6899 
6900     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6901     Results.push_back(Overflow);
6902     return;
6903   }
6904   case ISD::UADDSAT:
6905   case ISD::USUBSAT: {
6906     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6907            "Unexpected custom legalisation");
6908     if (Subtarget.hasStdExtZbb()) {
6909       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6910       // sign extend allows overflow of the lower 32 bits to be detected on
6911       // the promoted size.
6912       SDValue LHS =
6913           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6914       SDValue RHS =
6915           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6916       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6917       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6918       return;
6919     }
6920 
6921     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6922     // promotion for UADDO/USUBO.
6923     Results.push_back(expandAddSubSat(N, DAG));
6924     return;
6925   }
6926   case ISD::ABS: {
6927     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6928            "Unexpected custom legalisation");
6929           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6930 
6931     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6932 
6933     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6934 
6935     // Freeze the source so we can increase it's use count.
6936     Src = DAG.getFreeze(Src);
6937 
6938     // Copy sign bit to all bits using the sraiw pattern.
6939     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6940                                    DAG.getValueType(MVT::i32));
6941     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6942                            DAG.getConstant(31, DL, MVT::i64));
6943 
6944     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6945     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6946 
6947     // NOTE: The result is only required to be anyextended, but sext is
6948     // consistent with type legalization of sub.
6949     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6950                          DAG.getValueType(MVT::i32));
6951     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6952     return;
6953   }
6954   case ISD::BITCAST: {
6955     EVT VT = N->getValueType(0);
6956     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6957     SDValue Op0 = N->getOperand(0);
6958     EVT Op0VT = Op0.getValueType();
6959     MVT XLenVT = Subtarget.getXLenVT();
6960     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6961       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6962       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6963     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6964                Subtarget.hasStdExtF()) {
6965       SDValue FPConv =
6966           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6967       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6968     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6969                isTypeLegal(Op0VT)) {
6970       // Custom-legalize bitcasts from fixed-length vector types to illegal
6971       // scalar types in order to improve codegen. Bitcast the vector to a
6972       // one-element vector type whose element type is the same as the result
6973       // type, and extract the first element.
6974       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6975       if (isTypeLegal(BVT)) {
6976         SDValue BVec = DAG.getBitcast(BVT, Op0);
6977         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6978                                       DAG.getConstant(0, DL, XLenVT)));
6979       }
6980     }
6981     break;
6982   }
6983   case RISCVISD::GREV:
6984   case RISCVISD::GORC:
6985   case RISCVISD::SHFL: {
6986     MVT VT = N->getSimpleValueType(0);
6987     MVT XLenVT = Subtarget.getXLenVT();
6988     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6989            "Unexpected custom legalisation");
6990     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6991     assert((Subtarget.hasStdExtZbp() ||
6992             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6993              N->getConstantOperandVal(1) == 7)) &&
6994            "Unexpected extension");
6995     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6996     SDValue NewOp1 =
6997         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6998     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6999     // ReplaceNodeResults requires we maintain the same type for the return
7000     // value.
7001     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7002     break;
7003   }
7004   case ISD::BSWAP:
7005   case ISD::BITREVERSE: {
7006     MVT VT = N->getSimpleValueType(0);
7007     MVT XLenVT = Subtarget.getXLenVT();
7008     assert((VT == MVT::i8 || VT == MVT::i16 ||
7009             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7010            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7011     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7012     unsigned Imm = VT.getSizeInBits() - 1;
7013     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7014     if (N->getOpcode() == ISD::BSWAP)
7015       Imm &= ~0x7U;
7016     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7017                                 DAG.getConstant(Imm, DL, XLenVT));
7018     // ReplaceNodeResults requires we maintain the same type for the return
7019     // value.
7020     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7021     break;
7022   }
7023   case ISD::FSHL:
7024   case ISD::FSHR: {
7025     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7026            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7027     SDValue NewOp0 =
7028         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7029     SDValue NewOp1 =
7030         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7031     SDValue NewShAmt =
7032         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7033     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7034     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7035     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7036                            DAG.getConstant(0x1f, DL, MVT::i64));
7037     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7038     // instruction use different orders. fshl will return its first operand for
7039     // shift of zero, fshr will return its second operand. fsl and fsr both
7040     // return rs1 so the ISD nodes need to have different operand orders.
7041     // Shift amount is in rs2.
7042     unsigned Opc = RISCVISD::FSLW;
7043     if (N->getOpcode() == ISD::FSHR) {
7044       std::swap(NewOp0, NewOp1);
7045       Opc = RISCVISD::FSRW;
7046     }
7047     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7048     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7049     break;
7050   }
7051   case ISD::EXTRACT_VECTOR_ELT: {
7052     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7053     // type is illegal (currently only vXi64 RV32).
7054     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7055     // transferred to the destination register. We issue two of these from the
7056     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7057     // first element.
7058     SDValue Vec = N->getOperand(0);
7059     SDValue Idx = N->getOperand(1);
7060 
7061     // The vector type hasn't been legalized yet so we can't issue target
7062     // specific nodes if it needs legalization.
7063     // FIXME: We would manually legalize if it's important.
7064     if (!isTypeLegal(Vec.getValueType()))
7065       return;
7066 
7067     MVT VecVT = Vec.getSimpleValueType();
7068 
7069     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7070            VecVT.getVectorElementType() == MVT::i64 &&
7071            "Unexpected EXTRACT_VECTOR_ELT legalization");
7072 
7073     // If this is a fixed vector, we need to convert it to a scalable vector.
7074     MVT ContainerVT = VecVT;
7075     if (VecVT.isFixedLengthVector()) {
7076       ContainerVT = getContainerForFixedLengthVector(VecVT);
7077       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7078     }
7079 
7080     MVT XLenVT = Subtarget.getXLenVT();
7081 
7082     // Use a VL of 1 to avoid processing more elements than we need.
7083     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7084     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7085 
7086     // Unless the index is known to be 0, we must slide the vector down to get
7087     // the desired element into index 0.
7088     if (!isNullConstant(Idx)) {
7089       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7090                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7091     }
7092 
7093     // Extract the lower XLEN bits of the correct vector element.
7094     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7095 
7096     // To extract the upper XLEN bits of the vector element, shift the first
7097     // element right by 32 bits and re-extract the lower XLEN bits.
7098     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7099                                      DAG.getUNDEF(ContainerVT),
7100                                      DAG.getConstant(32, DL, XLenVT), VL);
7101     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7102                                  ThirtyTwoV, Mask, VL);
7103 
7104     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7105 
7106     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7107     break;
7108   }
7109   case ISD::INTRINSIC_WO_CHAIN: {
7110     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7111     switch (IntNo) {
7112     default:
7113       llvm_unreachable(
7114           "Don't know how to custom type legalize this intrinsic!");
7115     case Intrinsic::riscv_grev:
7116     case Intrinsic::riscv_gorc: {
7117       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7118              "Unexpected custom legalisation");
7119       SDValue NewOp1 =
7120           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7121       SDValue NewOp2 =
7122           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7123       unsigned Opc =
7124           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7125       // If the control is a constant, promote the node by clearing any extra
7126       // bits bits in the control. isel will form greviw/gorciw if the result is
7127       // sign extended.
7128       if (isa<ConstantSDNode>(NewOp2)) {
7129         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7130                              DAG.getConstant(0x1f, DL, MVT::i64));
7131         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7132       }
7133       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7134       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7135       break;
7136     }
7137     case Intrinsic::riscv_bcompress:
7138     case Intrinsic::riscv_bdecompress:
7139     case Intrinsic::riscv_bfp:
7140     case Intrinsic::riscv_fsl:
7141     case Intrinsic::riscv_fsr: {
7142       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7143              "Unexpected custom legalisation");
7144       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7145       break;
7146     }
7147     case Intrinsic::riscv_orc_b: {
7148       // Lower to the GORCI encoding for orc.b with the operand extended.
7149       SDValue NewOp =
7150           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7151       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7152                                 DAG.getConstant(7, DL, MVT::i64));
7153       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7154       return;
7155     }
7156     case Intrinsic::riscv_shfl:
7157     case Intrinsic::riscv_unshfl: {
7158       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7159              "Unexpected custom legalisation");
7160       SDValue NewOp1 =
7161           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7162       SDValue NewOp2 =
7163           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7164       unsigned Opc =
7165           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7166       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7167       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7168       // will be shuffled the same way as the lower 32 bit half, but the two
7169       // halves won't cross.
7170       if (isa<ConstantSDNode>(NewOp2)) {
7171         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7172                              DAG.getConstant(0xf, DL, MVT::i64));
7173         Opc =
7174             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7175       }
7176       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7177       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7178       break;
7179     }
7180     case Intrinsic::riscv_vmv_x_s: {
7181       EVT VT = N->getValueType(0);
7182       MVT XLenVT = Subtarget.getXLenVT();
7183       if (VT.bitsLT(XLenVT)) {
7184         // Simple case just extract using vmv.x.s and truncate.
7185         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7186                                       Subtarget.getXLenVT(), N->getOperand(1));
7187         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7188         return;
7189       }
7190 
7191       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7192              "Unexpected custom legalization");
7193 
7194       // We need to do the move in two steps.
7195       SDValue Vec = N->getOperand(1);
7196       MVT VecVT = Vec.getSimpleValueType();
7197 
7198       // First extract the lower XLEN bits of the element.
7199       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7200 
7201       // To extract the upper XLEN bits of the vector element, shift the first
7202       // element right by 32 bits and re-extract the lower XLEN bits.
7203       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7204       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7205 
7206       SDValue ThirtyTwoV =
7207           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7208                       DAG.getConstant(32, DL, XLenVT), VL);
7209       SDValue LShr32 =
7210           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7211       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7212 
7213       Results.push_back(
7214           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7215       break;
7216     }
7217     }
7218     break;
7219   }
7220   case ISD::VECREDUCE_ADD:
7221   case ISD::VECREDUCE_AND:
7222   case ISD::VECREDUCE_OR:
7223   case ISD::VECREDUCE_XOR:
7224   case ISD::VECREDUCE_SMAX:
7225   case ISD::VECREDUCE_UMAX:
7226   case ISD::VECREDUCE_SMIN:
7227   case ISD::VECREDUCE_UMIN:
7228     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7229       Results.push_back(V);
7230     break;
7231   case ISD::VP_REDUCE_ADD:
7232   case ISD::VP_REDUCE_AND:
7233   case ISD::VP_REDUCE_OR:
7234   case ISD::VP_REDUCE_XOR:
7235   case ISD::VP_REDUCE_SMAX:
7236   case ISD::VP_REDUCE_UMAX:
7237   case ISD::VP_REDUCE_SMIN:
7238   case ISD::VP_REDUCE_UMIN:
7239     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7240       Results.push_back(V);
7241     break;
7242   case ISD::FLT_ROUNDS_: {
7243     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7244     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7245     Results.push_back(Res.getValue(0));
7246     Results.push_back(Res.getValue(1));
7247     break;
7248   }
7249   }
7250 }
7251 
7252 // A structure to hold one of the bit-manipulation patterns below. Together, a
7253 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7254 //   (or (and (shl x, 1), 0xAAAAAAAA),
7255 //       (and (srl x, 1), 0x55555555))
7256 struct RISCVBitmanipPat {
7257   SDValue Op;
7258   unsigned ShAmt;
7259   bool IsSHL;
7260 
7261   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7262     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7263   }
7264 };
7265 
7266 // Matches patterns of the form
7267 //   (and (shl x, C2), (C1 << C2))
7268 //   (and (srl x, C2), C1)
7269 //   (shl (and x, C1), C2)
7270 //   (srl (and x, (C1 << C2)), C2)
7271 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7272 // The expected masks for each shift amount are specified in BitmanipMasks where
7273 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7274 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7275 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7276 // XLen is 64.
7277 static Optional<RISCVBitmanipPat>
7278 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7279   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7280          "Unexpected number of masks");
7281   Optional<uint64_t> Mask;
7282   // Optionally consume a mask around the shift operation.
7283   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7284     Mask = Op.getConstantOperandVal(1);
7285     Op = Op.getOperand(0);
7286   }
7287   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7288     return None;
7289   bool IsSHL = Op.getOpcode() == ISD::SHL;
7290 
7291   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7292     return None;
7293   uint64_t ShAmt = Op.getConstantOperandVal(1);
7294 
7295   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7296   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7297     return None;
7298   // If we don't have enough masks for 64 bit, then we must be trying to
7299   // match SHFL so we're only allowed to shift 1/4 of the width.
7300   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7301     return None;
7302 
7303   SDValue Src = Op.getOperand(0);
7304 
7305   // The expected mask is shifted left when the AND is found around SHL
7306   // patterns.
7307   //   ((x >> 1) & 0x55555555)
7308   //   ((x << 1) & 0xAAAAAAAA)
7309   bool SHLExpMask = IsSHL;
7310 
7311   if (!Mask) {
7312     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7313     // the mask is all ones: consume that now.
7314     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7315       Mask = Src.getConstantOperandVal(1);
7316       Src = Src.getOperand(0);
7317       // The expected mask is now in fact shifted left for SRL, so reverse the
7318       // decision.
7319       //   ((x & 0xAAAAAAAA) >> 1)
7320       //   ((x & 0x55555555) << 1)
7321       SHLExpMask = !SHLExpMask;
7322     } else {
7323       // Use a default shifted mask of all-ones if there's no AND, truncated
7324       // down to the expected width. This simplifies the logic later on.
7325       Mask = maskTrailingOnes<uint64_t>(Width);
7326       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7327     }
7328   }
7329 
7330   unsigned MaskIdx = Log2_32(ShAmt);
7331   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7332 
7333   if (SHLExpMask)
7334     ExpMask <<= ShAmt;
7335 
7336   if (Mask != ExpMask)
7337     return None;
7338 
7339   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7340 }
7341 
7342 // Matches any of the following bit-manipulation patterns:
7343 //   (and (shl x, 1), (0x55555555 << 1))
7344 //   (and (srl x, 1), 0x55555555)
7345 //   (shl (and x, 0x55555555), 1)
7346 //   (srl (and x, (0x55555555 << 1)), 1)
7347 // where the shift amount and mask may vary thus:
7348 //   [1]  = 0x55555555 / 0xAAAAAAAA
7349 //   [2]  = 0x33333333 / 0xCCCCCCCC
7350 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7351 //   [8]  = 0x00FF00FF / 0xFF00FF00
7352 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7353 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7354 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7355   // These are the unshifted masks which we use to match bit-manipulation
7356   // patterns. They may be shifted left in certain circumstances.
7357   static const uint64_t BitmanipMasks[] = {
7358       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7359       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7360 
7361   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7362 }
7363 
7364 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7365 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7366   auto BinOpToRVVReduce = [](unsigned Opc) {
7367     switch (Opc) {
7368     default:
7369       llvm_unreachable("Unhandled binary to transfrom reduction");
7370     case ISD::ADD:
7371       return RISCVISD::VECREDUCE_ADD_VL;
7372     case ISD::UMAX:
7373       return RISCVISD::VECREDUCE_UMAX_VL;
7374     case ISD::SMAX:
7375       return RISCVISD::VECREDUCE_SMAX_VL;
7376     case ISD::UMIN:
7377       return RISCVISD::VECREDUCE_UMIN_VL;
7378     case ISD::SMIN:
7379       return RISCVISD::VECREDUCE_SMIN_VL;
7380     case ISD::AND:
7381       return RISCVISD::VECREDUCE_AND_VL;
7382     case ISD::OR:
7383       return RISCVISD::VECREDUCE_OR_VL;
7384     case ISD::XOR:
7385       return RISCVISD::VECREDUCE_XOR_VL;
7386     case ISD::FADD:
7387       return RISCVISD::VECREDUCE_FADD_VL;
7388     case ISD::FMAXNUM:
7389       return RISCVISD::VECREDUCE_FMAX_VL;
7390     case ISD::FMINNUM:
7391       return RISCVISD::VECREDUCE_FMIN_VL;
7392     }
7393   };
7394 
7395   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7396     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7397            isNullConstant(V.getOperand(1)) &&
7398            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7399   };
7400 
7401   unsigned Opc = N->getOpcode();
7402   unsigned ReduceIdx;
7403   if (IsReduction(N->getOperand(0), Opc))
7404     ReduceIdx = 0;
7405   else if (IsReduction(N->getOperand(1), Opc))
7406     ReduceIdx = 1;
7407   else
7408     return SDValue();
7409 
7410   // Skip if FADD disallows reassociation but the combiner needs.
7411   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7412     return SDValue();
7413 
7414   SDValue Extract = N->getOperand(ReduceIdx);
7415   SDValue Reduce = Extract.getOperand(0);
7416   if (!Reduce.hasOneUse())
7417     return SDValue();
7418 
7419   SDValue ScalarV = Reduce.getOperand(2);
7420 
7421   // Make sure that ScalarV is a splat with VL=1.
7422   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7423       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7424       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7425     return SDValue();
7426 
7427   if (!isOneConstant(ScalarV.getOperand(2)))
7428     return SDValue();
7429 
7430   // TODO: Deal with value other than neutral element.
7431   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7432     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7433         isNullFPConstant(V))
7434       return true;
7435     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7436                                  N->getFlags()) == V;
7437   };
7438 
7439   // Check the scalar of ScalarV is neutral element
7440   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7441     return SDValue();
7442 
7443   if (!ScalarV.hasOneUse())
7444     return SDValue();
7445 
7446   EVT SplatVT = ScalarV.getValueType();
7447   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7448   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7449   if (SplatVT.isInteger()) {
7450     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7451     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7452       SplatOpc = RISCVISD::VMV_S_X_VL;
7453     else
7454       SplatOpc = RISCVISD::VMV_V_X_VL;
7455   }
7456 
7457   SDValue NewScalarV =
7458       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7459                   ScalarV.getOperand(2));
7460   SDValue NewReduce =
7461       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7462                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7463                   Reduce.getOperand(3), Reduce.getOperand(4));
7464   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7465                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7466 }
7467 
7468 // Match the following pattern as a GREVI(W) operation
7469 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7470 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7471                                const RISCVSubtarget &Subtarget) {
7472   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7473   EVT VT = Op.getValueType();
7474 
7475   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7476     auto LHS = matchGREVIPat(Op.getOperand(0));
7477     auto RHS = matchGREVIPat(Op.getOperand(1));
7478     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7479       SDLoc DL(Op);
7480       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7481                          DAG.getConstant(LHS->ShAmt, DL, VT));
7482     }
7483   }
7484   return SDValue();
7485 }
7486 
7487 // Matches any the following pattern as a GORCI(W) operation
7488 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7489 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7490 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7491 // Note that with the variant of 3.,
7492 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7493 // the inner pattern will first be matched as GREVI and then the outer
7494 // pattern will be matched to GORC via the first rule above.
7495 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7496 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7497                                const RISCVSubtarget &Subtarget) {
7498   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7499   EVT VT = Op.getValueType();
7500 
7501   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7502     SDLoc DL(Op);
7503     SDValue Op0 = Op.getOperand(0);
7504     SDValue Op1 = Op.getOperand(1);
7505 
7506     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7507       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7508           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7509           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7510         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7511       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7512       if ((Reverse.getOpcode() == ISD::ROTL ||
7513            Reverse.getOpcode() == ISD::ROTR) &&
7514           Reverse.getOperand(0) == X &&
7515           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7516         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7517         if (RotAmt == (VT.getSizeInBits() / 2))
7518           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7519                              DAG.getConstant(RotAmt, DL, VT));
7520       }
7521       return SDValue();
7522     };
7523 
7524     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7525     if (SDValue V = MatchOROfReverse(Op0, Op1))
7526       return V;
7527     if (SDValue V = MatchOROfReverse(Op1, Op0))
7528       return V;
7529 
7530     // OR is commutable so canonicalize its OR operand to the left
7531     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7532       std::swap(Op0, Op1);
7533     if (Op0.getOpcode() != ISD::OR)
7534       return SDValue();
7535     SDValue OrOp0 = Op0.getOperand(0);
7536     SDValue OrOp1 = Op0.getOperand(1);
7537     auto LHS = matchGREVIPat(OrOp0);
7538     // OR is commutable so swap the operands and try again: x might have been
7539     // on the left
7540     if (!LHS) {
7541       std::swap(OrOp0, OrOp1);
7542       LHS = matchGREVIPat(OrOp0);
7543     }
7544     auto RHS = matchGREVIPat(Op1);
7545     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7546       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7547                          DAG.getConstant(LHS->ShAmt, DL, VT));
7548     }
7549   }
7550   return SDValue();
7551 }
7552 
7553 // Matches any of the following bit-manipulation patterns:
7554 //   (and (shl x, 1), (0x22222222 << 1))
7555 //   (and (srl x, 1), 0x22222222)
7556 //   (shl (and x, 0x22222222), 1)
7557 //   (srl (and x, (0x22222222 << 1)), 1)
7558 // where the shift amount and mask may vary thus:
7559 //   [1]  = 0x22222222 / 0x44444444
7560 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7561 //   [4]  = 0x00F000F0 / 0x0F000F00
7562 //   [8]  = 0x0000FF00 / 0x00FF0000
7563 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7564 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7565   // These are the unshifted masks which we use to match bit-manipulation
7566   // patterns. They may be shifted left in certain circumstances.
7567   static const uint64_t BitmanipMasks[] = {
7568       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7569       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7570 
7571   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7572 }
7573 
7574 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7575 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7576                                const RISCVSubtarget &Subtarget) {
7577   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7578   EVT VT = Op.getValueType();
7579 
7580   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7581     return SDValue();
7582 
7583   SDValue Op0 = Op.getOperand(0);
7584   SDValue Op1 = Op.getOperand(1);
7585 
7586   // Or is commutable so canonicalize the second OR to the LHS.
7587   if (Op0.getOpcode() != ISD::OR)
7588     std::swap(Op0, Op1);
7589   if (Op0.getOpcode() != ISD::OR)
7590     return SDValue();
7591 
7592   // We found an inner OR, so our operands are the operands of the inner OR
7593   // and the other operand of the outer OR.
7594   SDValue A = Op0.getOperand(0);
7595   SDValue B = Op0.getOperand(1);
7596   SDValue C = Op1;
7597 
7598   auto Match1 = matchSHFLPat(A);
7599   auto Match2 = matchSHFLPat(B);
7600 
7601   // If neither matched, we failed.
7602   if (!Match1 && !Match2)
7603     return SDValue();
7604 
7605   // We had at least one match. if one failed, try the remaining C operand.
7606   if (!Match1) {
7607     std::swap(A, C);
7608     Match1 = matchSHFLPat(A);
7609     if (!Match1)
7610       return SDValue();
7611   } else if (!Match2) {
7612     std::swap(B, C);
7613     Match2 = matchSHFLPat(B);
7614     if (!Match2)
7615       return SDValue();
7616   }
7617   assert(Match1 && Match2);
7618 
7619   // Make sure our matches pair up.
7620   if (!Match1->formsPairWith(*Match2))
7621     return SDValue();
7622 
7623   // All the remains is to make sure C is an AND with the same input, that masks
7624   // out the bits that are being shuffled.
7625   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7626       C.getOperand(0) != Match1->Op)
7627     return SDValue();
7628 
7629   uint64_t Mask = C.getConstantOperandVal(1);
7630 
7631   static const uint64_t BitmanipMasks[] = {
7632       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7633       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7634   };
7635 
7636   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7637   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7638   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7639 
7640   if (Mask != ExpMask)
7641     return SDValue();
7642 
7643   SDLoc DL(Op);
7644   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7645                      DAG.getConstant(Match1->ShAmt, DL, VT));
7646 }
7647 
7648 // Optimize (add (shl x, c0), (shl y, c1)) ->
7649 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7650 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7651                                   const RISCVSubtarget &Subtarget) {
7652   // Perform this optimization only in the zba extension.
7653   if (!Subtarget.hasStdExtZba())
7654     return SDValue();
7655 
7656   // Skip for vector types and larger types.
7657   EVT VT = N->getValueType(0);
7658   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7659     return SDValue();
7660 
7661   // The two operand nodes must be SHL and have no other use.
7662   SDValue N0 = N->getOperand(0);
7663   SDValue N1 = N->getOperand(1);
7664   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7665       !N0->hasOneUse() || !N1->hasOneUse())
7666     return SDValue();
7667 
7668   // Check c0 and c1.
7669   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7670   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7671   if (!N0C || !N1C)
7672     return SDValue();
7673   int64_t C0 = N0C->getSExtValue();
7674   int64_t C1 = N1C->getSExtValue();
7675   if (C0 <= 0 || C1 <= 0)
7676     return SDValue();
7677 
7678   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7679   int64_t Bits = std::min(C0, C1);
7680   int64_t Diff = std::abs(C0 - C1);
7681   if (Diff != 1 && Diff != 2 && Diff != 3)
7682     return SDValue();
7683 
7684   // Build nodes.
7685   SDLoc DL(N);
7686   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7687   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7688   SDValue NA0 =
7689       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7690   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7691   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7692 }
7693 
7694 // Combine
7695 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7696 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7697 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7698 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7699 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7700 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7701 // The grev patterns represents BSWAP.
7702 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7703 // off the grev.
7704 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7705                                           const RISCVSubtarget &Subtarget) {
7706   bool IsWInstruction =
7707       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7708   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7709           IsWInstruction) &&
7710          "Unexpected opcode!");
7711   SDValue Src = N->getOperand(0);
7712   EVT VT = N->getValueType(0);
7713   SDLoc DL(N);
7714 
7715   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7716     return SDValue();
7717 
7718   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7719       !isa<ConstantSDNode>(Src.getOperand(1)))
7720     return SDValue();
7721 
7722   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7723   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7724 
7725   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7726   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7727   unsigned ShAmt1 = N->getConstantOperandVal(1);
7728   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7729   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7730     return SDValue();
7731 
7732   Src = Src.getOperand(0);
7733 
7734   // Toggle bit the MSB of the shift.
7735   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7736   if (CombinedShAmt == 0)
7737     return Src;
7738 
7739   SDValue Res = DAG.getNode(
7740       RISCVISD::GREV, DL, VT, Src,
7741       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7742   if (!IsWInstruction)
7743     return Res;
7744 
7745   // Sign extend the result to match the behavior of the rotate. This will be
7746   // selected to GREVIW in isel.
7747   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7748                      DAG.getValueType(MVT::i32));
7749 }
7750 
7751 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7752 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7753 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7754 // not undo itself, but they are redundant.
7755 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7756   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7757   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7758   SDValue Src = N->getOperand(0);
7759 
7760   if (Src.getOpcode() != N->getOpcode())
7761     return SDValue();
7762 
7763   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7764       !isa<ConstantSDNode>(Src.getOperand(1)))
7765     return SDValue();
7766 
7767   unsigned ShAmt1 = N->getConstantOperandVal(1);
7768   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7769   Src = Src.getOperand(0);
7770 
7771   unsigned CombinedShAmt;
7772   if (IsGORC)
7773     CombinedShAmt = ShAmt1 | ShAmt2;
7774   else
7775     CombinedShAmt = ShAmt1 ^ ShAmt2;
7776 
7777   if (CombinedShAmt == 0)
7778     return Src;
7779 
7780   SDLoc DL(N);
7781   return DAG.getNode(
7782       N->getOpcode(), DL, N->getValueType(0), Src,
7783       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7784 }
7785 
7786 // Combine a constant select operand into its use:
7787 //
7788 // (and (select cond, -1, c), x)
7789 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7790 // (or  (select cond, 0, c), x)
7791 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7792 // (xor (select cond, 0, c), x)
7793 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7794 // (add (select cond, 0, c), x)
7795 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7796 // (sub x, (select cond, 0, c))
7797 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7798 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7799                                    SelectionDAG &DAG, bool AllOnes) {
7800   EVT VT = N->getValueType(0);
7801 
7802   // Skip vectors.
7803   if (VT.isVector())
7804     return SDValue();
7805 
7806   if ((Slct.getOpcode() != ISD::SELECT &&
7807        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7808       !Slct.hasOneUse())
7809     return SDValue();
7810 
7811   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7812     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7813   };
7814 
7815   bool SwapSelectOps;
7816   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7817   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7818   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7819   SDValue NonConstantVal;
7820   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7821     SwapSelectOps = false;
7822     NonConstantVal = FalseVal;
7823   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7824     SwapSelectOps = true;
7825     NonConstantVal = TrueVal;
7826   } else
7827     return SDValue();
7828 
7829   // Slct is now know to be the desired identity constant when CC is true.
7830   TrueVal = OtherOp;
7831   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7832   // Unless SwapSelectOps says the condition should be false.
7833   if (SwapSelectOps)
7834     std::swap(TrueVal, FalseVal);
7835 
7836   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7837     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7838                        {Slct.getOperand(0), Slct.getOperand(1),
7839                         Slct.getOperand(2), TrueVal, FalseVal});
7840 
7841   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7842                      {Slct.getOperand(0), TrueVal, FalseVal});
7843 }
7844 
7845 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7846 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7847                                               bool AllOnes) {
7848   SDValue N0 = N->getOperand(0);
7849   SDValue N1 = N->getOperand(1);
7850   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7851     return Result;
7852   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7853     return Result;
7854   return SDValue();
7855 }
7856 
7857 // Transform (add (mul x, c0), c1) ->
7858 //           (add (mul (add x, c1/c0), c0), c1%c0).
7859 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7860 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7861 // to an infinite loop in DAGCombine if transformed.
7862 // Or transform (add (mul x, c0), c1) ->
7863 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7864 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7865 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7866 // lead to an infinite loop in DAGCombine if transformed.
7867 // Or transform (add (mul x, c0), c1) ->
7868 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7869 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7870 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7871 // lead to an infinite loop in DAGCombine if transformed.
7872 // Or transform (add (mul x, c0), c1) ->
7873 //              (mul (add x, c1/c0), c0).
7874 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7875 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7876                                      const RISCVSubtarget &Subtarget) {
7877   // Skip for vector types and larger types.
7878   EVT VT = N->getValueType(0);
7879   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7880     return SDValue();
7881   // The first operand node must be a MUL and has no other use.
7882   SDValue N0 = N->getOperand(0);
7883   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7884     return SDValue();
7885   // Check if c0 and c1 match above conditions.
7886   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7887   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7888   if (!N0C || !N1C)
7889     return SDValue();
7890   // If N0C has multiple uses it's possible one of the cases in
7891   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7892   // in an infinite loop.
7893   if (!N0C->hasOneUse())
7894     return SDValue();
7895   int64_t C0 = N0C->getSExtValue();
7896   int64_t C1 = N1C->getSExtValue();
7897   int64_t CA, CB;
7898   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7899     return SDValue();
7900   // Search for proper CA (non-zero) and CB that both are simm12.
7901   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7902       !isInt<12>(C0 * (C1 / C0))) {
7903     CA = C1 / C0;
7904     CB = C1 % C0;
7905   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7906              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7907     CA = C1 / C0 + 1;
7908     CB = C1 % C0 - C0;
7909   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7910              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7911     CA = C1 / C0 - 1;
7912     CB = C1 % C0 + C0;
7913   } else
7914     return SDValue();
7915   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7916   SDLoc DL(N);
7917   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7918                              DAG.getConstant(CA, DL, VT));
7919   SDValue New1 =
7920       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7921   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7922 }
7923 
7924 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7925                                  const RISCVSubtarget &Subtarget) {
7926   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7927     return V;
7928   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7929     return V;
7930   if (SDValue V = combineBinOpToReduce(N, DAG))
7931     return V;
7932   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7933   //      (select lhs, rhs, cc, x, (add x, y))
7934   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7935 }
7936 
7937 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7938   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7939   //      (select lhs, rhs, cc, x, (sub x, y))
7940   SDValue N0 = N->getOperand(0);
7941   SDValue N1 = N->getOperand(1);
7942   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7943 }
7944 
7945 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
7946                                  const RISCVSubtarget &Subtarget) {
7947   SDValue N0 = N->getOperand(0);
7948   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
7949   // extending X. This is safe since we only need the LSB after the shift and
7950   // shift amounts larger than 31 would produce poison. If we wait until
7951   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
7952   // to use a BEXT instruction.
7953   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
7954       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
7955       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
7956       N0.hasOneUse()) {
7957     SDLoc DL(N);
7958     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
7959     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
7960     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
7961     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
7962                               DAG.getConstant(1, DL, MVT::i64));
7963     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
7964   }
7965 
7966   if (SDValue V = combineBinOpToReduce(N, DAG))
7967     return V;
7968 
7969   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7970   //      (select lhs, rhs, cc, x, (and x, y))
7971   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7972 }
7973 
7974 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7975                                 const RISCVSubtarget &Subtarget) {
7976   if (Subtarget.hasStdExtZbp()) {
7977     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7978       return GREV;
7979     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7980       return GORC;
7981     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7982       return SHFL;
7983   }
7984 
7985   if (SDValue V = combineBinOpToReduce(N, DAG))
7986     return V;
7987   // fold (or (select cond, 0, y), x) ->
7988   //      (select cond, x, (or x, y))
7989   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7990 }
7991 
7992 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7993   SDValue N0 = N->getOperand(0);
7994   SDValue N1 = N->getOperand(1);
7995 
7996   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
7997   // NOTE: Assumes ROL being legal means ROLW is legal.
7998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7999   if (N0.getOpcode() == RISCVISD::SLLW &&
8000       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8001       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8002     SDLoc DL(N);
8003     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8004                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8005   }
8006 
8007   if (SDValue V = combineBinOpToReduce(N, DAG))
8008     return V;
8009   // fold (xor (select cond, 0, y), x) ->
8010   //      (select cond, x, (xor x, y))
8011   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8012 }
8013 
8014 static SDValue
8015 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8016                                 const RISCVSubtarget &Subtarget) {
8017   SDValue Src = N->getOperand(0);
8018   EVT VT = N->getValueType(0);
8019 
8020   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8021   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8022       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8023     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8024                        Src.getOperand(0));
8025 
8026   // Fold (i64 (sext_inreg (abs X), i32)) ->
8027   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8028   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8029   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8030   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8031   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8032   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8033   // may get combined into an earlier operation so we need to use
8034   // ComputeNumSignBits.
8035   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8036   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8037   // we can't assume that X has 33 sign bits. We must check.
8038   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8039       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8040       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8041       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8042     SDLoc DL(N);
8043     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8044     SDValue Neg =
8045         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8046     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8047                       DAG.getValueType(MVT::i32));
8048     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8049   }
8050 
8051   return SDValue();
8052 }
8053 
8054 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8055 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8056 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8057                                              bool Commute = false) {
8058   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8059           N->getOpcode() == RISCVISD::SUB_VL) &&
8060          "Unexpected opcode");
8061   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8062   SDValue Op0 = N->getOperand(0);
8063   SDValue Op1 = N->getOperand(1);
8064   if (Commute)
8065     std::swap(Op0, Op1);
8066 
8067   MVT VT = N->getSimpleValueType(0);
8068 
8069   // Determine the narrow size for a widening add/sub.
8070   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8071   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8072                                   VT.getVectorElementCount());
8073 
8074   SDValue Mask = N->getOperand(2);
8075   SDValue VL = N->getOperand(3);
8076 
8077   SDLoc DL(N);
8078 
8079   // If the RHS is a sext or zext, we can form a widening op.
8080   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8081        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8082       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8083     unsigned ExtOpc = Op1.getOpcode();
8084     Op1 = Op1.getOperand(0);
8085     // Re-introduce narrower extends if needed.
8086     if (Op1.getValueType() != NarrowVT)
8087       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8088 
8089     unsigned WOpc;
8090     if (ExtOpc == RISCVISD::VSEXT_VL)
8091       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8092     else
8093       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8094 
8095     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8096   }
8097 
8098   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8099   // sext/zext?
8100 
8101   return SDValue();
8102 }
8103 
8104 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8105 // vwsub(u).vv/vx.
8106 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8107   SDValue Op0 = N->getOperand(0);
8108   SDValue Op1 = N->getOperand(1);
8109   SDValue Mask = N->getOperand(2);
8110   SDValue VL = N->getOperand(3);
8111 
8112   MVT VT = N->getSimpleValueType(0);
8113   MVT NarrowVT = Op1.getSimpleValueType();
8114   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8115 
8116   unsigned VOpc;
8117   switch (N->getOpcode()) {
8118   default: llvm_unreachable("Unexpected opcode");
8119   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8120   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8121   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8122   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8123   }
8124 
8125   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8126                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8127 
8128   SDLoc DL(N);
8129 
8130   // If the LHS is a sext or zext, we can narrow this op to the same size as
8131   // the RHS.
8132   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8133        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8134       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8135     unsigned ExtOpc = Op0.getOpcode();
8136     Op0 = Op0.getOperand(0);
8137     // Re-introduce narrower extends if needed.
8138     if (Op0.getValueType() != NarrowVT)
8139       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8140     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8141   }
8142 
8143   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8144                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8145 
8146   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8147   // to commute and use a vwadd(u).vx instead.
8148   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8149       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8150     Op0 = Op0.getOperand(1);
8151 
8152     // See if have enough sign bits or zero bits in the scalar to use a
8153     // widening add/sub by splatting to smaller element size.
8154     unsigned EltBits = VT.getScalarSizeInBits();
8155     unsigned ScalarBits = Op0.getValueSizeInBits();
8156     // Make sure we're getting all element bits from the scalar register.
8157     // FIXME: Support implicit sign extension of vmv.v.x?
8158     if (ScalarBits < EltBits)
8159       return SDValue();
8160 
8161     if (IsSigned) {
8162       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8163         return SDValue();
8164     } else {
8165       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8166       if (!DAG.MaskedValueIsZero(Op0, Mask))
8167         return SDValue();
8168     }
8169 
8170     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8171                       DAG.getUNDEF(NarrowVT), Op0, VL);
8172     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8173   }
8174 
8175   return SDValue();
8176 }
8177 
8178 // Try to form VWMUL, VWMULU or VWMULSU.
8179 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8180 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8181                                        bool Commute) {
8182   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8183   SDValue Op0 = N->getOperand(0);
8184   SDValue Op1 = N->getOperand(1);
8185   if (Commute)
8186     std::swap(Op0, Op1);
8187 
8188   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8189   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8190   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8191   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8192     return SDValue();
8193 
8194   SDValue Mask = N->getOperand(2);
8195   SDValue VL = N->getOperand(3);
8196 
8197   // Make sure the mask and VL match.
8198   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8199     return SDValue();
8200 
8201   MVT VT = N->getSimpleValueType(0);
8202 
8203   // Determine the narrow size for a widening multiply.
8204   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8205   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8206                                   VT.getVectorElementCount());
8207 
8208   SDLoc DL(N);
8209 
8210   // See if the other operand is the same opcode.
8211   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8212     if (!Op1.hasOneUse())
8213       return SDValue();
8214 
8215     // Make sure the mask and VL match.
8216     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8217       return SDValue();
8218 
8219     Op1 = Op1.getOperand(0);
8220   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8221     // The operand is a splat of a scalar.
8222 
8223     // The pasthru must be undef for tail agnostic
8224     if (!Op1.getOperand(0).isUndef())
8225       return SDValue();
8226     // The VL must be the same.
8227     if (Op1.getOperand(2) != VL)
8228       return SDValue();
8229 
8230     // Get the scalar value.
8231     Op1 = Op1.getOperand(1);
8232 
8233     // See if have enough sign bits or zero bits in the scalar to use a
8234     // widening multiply by splatting to smaller element size.
8235     unsigned EltBits = VT.getScalarSizeInBits();
8236     unsigned ScalarBits = Op1.getValueSizeInBits();
8237     // Make sure we're getting all element bits from the scalar register.
8238     // FIXME: Support implicit sign extension of vmv.v.x?
8239     if (ScalarBits < EltBits)
8240       return SDValue();
8241 
8242     // If the LHS is a sign extend, try to use vwmul.
8243     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8244       // Can use vwmul.
8245     } else {
8246       // Otherwise try to use vwmulu or vwmulsu.
8247       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8248       if (DAG.MaskedValueIsZero(Op1, Mask))
8249         IsVWMULSU = IsSignExt;
8250       else
8251         return SDValue();
8252     }
8253 
8254     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8255                       DAG.getUNDEF(NarrowVT), Op1, VL);
8256   } else
8257     return SDValue();
8258 
8259   Op0 = Op0.getOperand(0);
8260 
8261   // Re-introduce narrower extends if needed.
8262   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8263   if (Op0.getValueType() != NarrowVT)
8264     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8265   // vwmulsu requires second operand to be zero extended.
8266   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8267   if (Op1.getValueType() != NarrowVT)
8268     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8269 
8270   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8271   if (!IsVWMULSU)
8272     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8273   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8274 }
8275 
8276 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8277   switch (Op.getOpcode()) {
8278   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8279   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8280   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8281   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8282   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8283   }
8284 
8285   return RISCVFPRndMode::Invalid;
8286 }
8287 
8288 // Fold
8289 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8290 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8291 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8292 //   (fp_to_int (fceil X))      -> fcvt X, rup
8293 //   (fp_to_int (fround X))     -> fcvt X, rmm
8294 static SDValue performFP_TO_INTCombine(SDNode *N,
8295                                        TargetLowering::DAGCombinerInfo &DCI,
8296                                        const RISCVSubtarget &Subtarget) {
8297   SelectionDAG &DAG = DCI.DAG;
8298   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8299   MVT XLenVT = Subtarget.getXLenVT();
8300 
8301   // Only handle XLen or i32 types. Other types narrower than XLen will
8302   // eventually be legalized to XLenVT.
8303   EVT VT = N->getValueType(0);
8304   if (VT != MVT::i32 && VT != XLenVT)
8305     return SDValue();
8306 
8307   SDValue Src = N->getOperand(0);
8308 
8309   // Ensure the FP type is also legal.
8310   if (!TLI.isTypeLegal(Src.getValueType()))
8311     return SDValue();
8312 
8313   // Don't do this for f16 with Zfhmin and not Zfh.
8314   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8315     return SDValue();
8316 
8317   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8318   if (FRM == RISCVFPRndMode::Invalid)
8319     return SDValue();
8320 
8321   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8322 
8323   unsigned Opc;
8324   if (VT == XLenVT)
8325     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8326   else
8327     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8328 
8329   SDLoc DL(N);
8330   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8331                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8332   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8333 }
8334 
8335 // Fold
8336 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8337 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8338 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8339 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8340 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8341 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8342                                        TargetLowering::DAGCombinerInfo &DCI,
8343                                        const RISCVSubtarget &Subtarget) {
8344   SelectionDAG &DAG = DCI.DAG;
8345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8346   MVT XLenVT = Subtarget.getXLenVT();
8347 
8348   // Only handle XLen types. Other types narrower than XLen will eventually be
8349   // legalized to XLenVT.
8350   EVT DstVT = N->getValueType(0);
8351   if (DstVT != XLenVT)
8352     return SDValue();
8353 
8354   SDValue Src = N->getOperand(0);
8355 
8356   // Ensure the FP type is also legal.
8357   if (!TLI.isTypeLegal(Src.getValueType()))
8358     return SDValue();
8359 
8360   // Don't do this for f16 with Zfhmin and not Zfh.
8361   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8362     return SDValue();
8363 
8364   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8365 
8366   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8367   if (FRM == RISCVFPRndMode::Invalid)
8368     return SDValue();
8369 
8370   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8371 
8372   unsigned Opc;
8373   if (SatVT == DstVT)
8374     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8375   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8376     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8377   else
8378     return SDValue();
8379   // FIXME: Support other SatVTs by clamping before or after the conversion.
8380 
8381   Src = Src.getOperand(0);
8382 
8383   SDLoc DL(N);
8384   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8385                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8386 
8387   // RISCV FP-to-int conversions saturate to the destination register size, but
8388   // don't produce 0 for nan.
8389   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8390   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8391 }
8392 
8393 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8394 // smaller than XLenVT.
8395 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8396                                         const RISCVSubtarget &Subtarget) {
8397   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8398 
8399   SDValue Src = N->getOperand(0);
8400   if (Src.getOpcode() != ISD::BSWAP)
8401     return SDValue();
8402 
8403   EVT VT = N->getValueType(0);
8404   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8405       !isPowerOf2_32(VT.getSizeInBits()))
8406     return SDValue();
8407 
8408   SDLoc DL(N);
8409   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8410                      DAG.getConstant(7, DL, VT));
8411 }
8412 
8413 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8414                                                DAGCombinerInfo &DCI) const {
8415   SelectionDAG &DAG = DCI.DAG;
8416 
8417   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8418   // bits are demanded. N will be added to the Worklist if it was not deleted.
8419   // Caller should return SDValue(N, 0) if this returns true.
8420   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8421     SDValue Op = N->getOperand(OpNo);
8422     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8423     if (!SimplifyDemandedBits(Op, Mask, DCI))
8424       return false;
8425 
8426     if (N->getOpcode() != ISD::DELETED_NODE)
8427       DCI.AddToWorklist(N);
8428     return true;
8429   };
8430 
8431   switch (N->getOpcode()) {
8432   default:
8433     break;
8434   case RISCVISD::SplitF64: {
8435     SDValue Op0 = N->getOperand(0);
8436     // If the input to SplitF64 is just BuildPairF64 then the operation is
8437     // redundant. Instead, use BuildPairF64's operands directly.
8438     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8439       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8440 
8441     if (Op0->isUndef()) {
8442       SDValue Lo = DAG.getUNDEF(MVT::i32);
8443       SDValue Hi = DAG.getUNDEF(MVT::i32);
8444       return DCI.CombineTo(N, Lo, Hi);
8445     }
8446 
8447     SDLoc DL(N);
8448 
8449     // It's cheaper to materialise two 32-bit integers than to load a double
8450     // from the constant pool and transfer it to integer registers through the
8451     // stack.
8452     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8453       APInt V = C->getValueAPF().bitcastToAPInt();
8454       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8455       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8456       return DCI.CombineTo(N, Lo, Hi);
8457     }
8458 
8459     // This is a target-specific version of a DAGCombine performed in
8460     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8461     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8462     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8463     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8464         !Op0.getNode()->hasOneUse())
8465       break;
8466     SDValue NewSplitF64 =
8467         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8468                     Op0.getOperand(0));
8469     SDValue Lo = NewSplitF64.getValue(0);
8470     SDValue Hi = NewSplitF64.getValue(1);
8471     APInt SignBit = APInt::getSignMask(32);
8472     if (Op0.getOpcode() == ISD::FNEG) {
8473       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8474                                   DAG.getConstant(SignBit, DL, MVT::i32));
8475       return DCI.CombineTo(N, Lo, NewHi);
8476     }
8477     assert(Op0.getOpcode() == ISD::FABS);
8478     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8479                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8480     return DCI.CombineTo(N, Lo, NewHi);
8481   }
8482   case RISCVISD::SLLW:
8483   case RISCVISD::SRAW:
8484   case RISCVISD::SRLW: {
8485     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8486     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8487         SimplifyDemandedLowBitsHelper(1, 5))
8488       return SDValue(N, 0);
8489 
8490     break;
8491   }
8492   case ISD::ROTR:
8493   case ISD::ROTL:
8494   case RISCVISD::RORW:
8495   case RISCVISD::ROLW: {
8496     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8497       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8498       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8499           SimplifyDemandedLowBitsHelper(1, 5))
8500         return SDValue(N, 0);
8501     }
8502 
8503     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8504   }
8505   case RISCVISD::CLZW:
8506   case RISCVISD::CTZW: {
8507     // Only the lower 32 bits of the first operand are read
8508     if (SimplifyDemandedLowBitsHelper(0, 32))
8509       return SDValue(N, 0);
8510     break;
8511   }
8512   case RISCVISD::GREV:
8513   case RISCVISD::GORC: {
8514     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8515     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8516     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8517     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8518       return SDValue(N, 0);
8519 
8520     return combineGREVI_GORCI(N, DAG);
8521   }
8522   case RISCVISD::GREVW:
8523   case RISCVISD::GORCW: {
8524     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8525     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8526         SimplifyDemandedLowBitsHelper(1, 5))
8527       return SDValue(N, 0);
8528 
8529     break;
8530   }
8531   case RISCVISD::SHFL:
8532   case RISCVISD::UNSHFL: {
8533     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8534     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8535     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8536     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8537       return SDValue(N, 0);
8538 
8539     break;
8540   }
8541   case RISCVISD::SHFLW:
8542   case RISCVISD::UNSHFLW: {
8543     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8544     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8545         SimplifyDemandedLowBitsHelper(1, 4))
8546       return SDValue(N, 0);
8547 
8548     break;
8549   }
8550   case RISCVISD::BCOMPRESSW:
8551   case RISCVISD::BDECOMPRESSW: {
8552     // Only the lower 32 bits of LHS and RHS are read.
8553     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8554         SimplifyDemandedLowBitsHelper(1, 32))
8555       return SDValue(N, 0);
8556 
8557     break;
8558   }
8559   case RISCVISD::FSR:
8560   case RISCVISD::FSL:
8561   case RISCVISD::FSRW:
8562   case RISCVISD::FSLW: {
8563     bool IsWInstruction =
8564         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8565     unsigned BitWidth =
8566         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8567     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8568     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8569     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8570       return SDValue(N, 0);
8571 
8572     break;
8573   }
8574   case RISCVISD::FMV_X_ANYEXTH:
8575   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8576     SDLoc DL(N);
8577     SDValue Op0 = N->getOperand(0);
8578     MVT VT = N->getSimpleValueType(0);
8579     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8580     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8581     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8582     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8583          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8584         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8585          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8586       assert(Op0.getOperand(0).getValueType() == VT &&
8587              "Unexpected value type!");
8588       return Op0.getOperand(0);
8589     }
8590 
8591     // This is a target-specific version of a DAGCombine performed in
8592     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8593     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8594     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8595     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8596         !Op0.getNode()->hasOneUse())
8597       break;
8598     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8599     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8600     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8601     if (Op0.getOpcode() == ISD::FNEG)
8602       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8603                          DAG.getConstant(SignBit, DL, VT));
8604 
8605     assert(Op0.getOpcode() == ISD::FABS);
8606     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8607                        DAG.getConstant(~SignBit, DL, VT));
8608   }
8609   case ISD::ADD:
8610     return performADDCombine(N, DAG, Subtarget);
8611   case ISD::SUB:
8612     return performSUBCombine(N, DAG);
8613   case ISD::AND:
8614     return performANDCombine(N, DAG, Subtarget);
8615   case ISD::OR:
8616     return performORCombine(N, DAG, Subtarget);
8617   case ISD::XOR:
8618     return performXORCombine(N, DAG);
8619   case ISD::FADD:
8620   case ISD::UMAX:
8621   case ISD::UMIN:
8622   case ISD::SMAX:
8623   case ISD::SMIN:
8624   case ISD::FMAXNUM:
8625   case ISD::FMINNUM:
8626     return combineBinOpToReduce(N, DAG);
8627   case ISD::SIGN_EXTEND_INREG:
8628     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8629   case ISD::ZERO_EXTEND:
8630     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8631     // type legalization. This is safe because fp_to_uint produces poison if
8632     // it overflows.
8633     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8634       SDValue Src = N->getOperand(0);
8635       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8636           isTypeLegal(Src.getOperand(0).getValueType()))
8637         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8638                            Src.getOperand(0));
8639       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8640           isTypeLegal(Src.getOperand(1).getValueType())) {
8641         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8642         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8643                                   Src.getOperand(0), Src.getOperand(1));
8644         DCI.CombineTo(N, Res);
8645         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8646         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8647         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8648       }
8649     }
8650     return SDValue();
8651   case RISCVISD::SELECT_CC: {
8652     // Transform
8653     SDValue LHS = N->getOperand(0);
8654     SDValue RHS = N->getOperand(1);
8655     SDValue TrueV = N->getOperand(3);
8656     SDValue FalseV = N->getOperand(4);
8657 
8658     // If the True and False values are the same, we don't need a select_cc.
8659     if (TrueV == FalseV)
8660       return TrueV;
8661 
8662     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8663     if (!ISD::isIntEqualitySetCC(CCVal))
8664       break;
8665 
8666     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8667     //      (select_cc X, Y, lt, trueV, falseV)
8668     // Sometimes the setcc is introduced after select_cc has been formed.
8669     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8670         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8671       // If we're looking for eq 0 instead of ne 0, we need to invert the
8672       // condition.
8673       bool Invert = CCVal == ISD::SETEQ;
8674       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8675       if (Invert)
8676         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8677 
8678       SDLoc DL(N);
8679       RHS = LHS.getOperand(1);
8680       LHS = LHS.getOperand(0);
8681       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8682 
8683       SDValue TargetCC = DAG.getCondCode(CCVal);
8684       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8685                          {LHS, RHS, TargetCC, TrueV, FalseV});
8686     }
8687 
8688     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8689     //      (select_cc X, Y, eq/ne, trueV, falseV)
8690     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8691       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8692                          {LHS.getOperand(0), LHS.getOperand(1),
8693                           N->getOperand(2), TrueV, FalseV});
8694     // (select_cc X, 1, setne, trueV, falseV) ->
8695     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8696     // This can occur when legalizing some floating point comparisons.
8697     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8698     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8699       SDLoc DL(N);
8700       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8701       SDValue TargetCC = DAG.getCondCode(CCVal);
8702       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8703       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8704                          {LHS, RHS, TargetCC, TrueV, FalseV});
8705     }
8706 
8707     break;
8708   }
8709   case RISCVISD::BR_CC: {
8710     SDValue LHS = N->getOperand(1);
8711     SDValue RHS = N->getOperand(2);
8712     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8713     if (!ISD::isIntEqualitySetCC(CCVal))
8714       break;
8715 
8716     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8717     //      (br_cc X, Y, lt, dest)
8718     // Sometimes the setcc is introduced after br_cc has been formed.
8719     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8720         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8721       // If we're looking for eq 0 instead of ne 0, we need to invert the
8722       // condition.
8723       bool Invert = CCVal == ISD::SETEQ;
8724       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8725       if (Invert)
8726         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8727 
8728       SDLoc DL(N);
8729       RHS = LHS.getOperand(1);
8730       LHS = LHS.getOperand(0);
8731       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8732 
8733       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8734                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8735                          N->getOperand(4));
8736     }
8737 
8738     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8739     //      (br_cc X, Y, eq/ne, trueV, falseV)
8740     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8741       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8742                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8743                          N->getOperand(3), N->getOperand(4));
8744 
8745     // (br_cc X, 1, setne, br_cc) ->
8746     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8747     // This can occur when legalizing some floating point comparisons.
8748     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8749     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8750       SDLoc DL(N);
8751       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8752       SDValue TargetCC = DAG.getCondCode(CCVal);
8753       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8754       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8755                          N->getOperand(0), LHS, RHS, TargetCC,
8756                          N->getOperand(4));
8757     }
8758     break;
8759   }
8760   case ISD::BITREVERSE:
8761     return performBITREVERSECombine(N, DAG, Subtarget);
8762   case ISD::FP_TO_SINT:
8763   case ISD::FP_TO_UINT:
8764     return performFP_TO_INTCombine(N, DCI, Subtarget);
8765   case ISD::FP_TO_SINT_SAT:
8766   case ISD::FP_TO_UINT_SAT:
8767     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8768   case ISD::FCOPYSIGN: {
8769     EVT VT = N->getValueType(0);
8770     if (!VT.isVector())
8771       break;
8772     // There is a form of VFSGNJ which injects the negated sign of its second
8773     // operand. Try and bubble any FNEG up after the extend/round to produce
8774     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8775     // TRUNC=1.
8776     SDValue In2 = N->getOperand(1);
8777     // Avoid cases where the extend/round has multiple uses, as duplicating
8778     // those is typically more expensive than removing a fneg.
8779     if (!In2.hasOneUse())
8780       break;
8781     if (In2.getOpcode() != ISD::FP_EXTEND &&
8782         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8783       break;
8784     In2 = In2.getOperand(0);
8785     if (In2.getOpcode() != ISD::FNEG)
8786       break;
8787     SDLoc DL(N);
8788     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8789     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8790                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8791   }
8792   case ISD::MGATHER:
8793   case ISD::MSCATTER:
8794   case ISD::VP_GATHER:
8795   case ISD::VP_SCATTER: {
8796     if (!DCI.isBeforeLegalize())
8797       break;
8798     SDValue Index, ScaleOp;
8799     bool IsIndexScaled = false;
8800     bool IsIndexSigned = false;
8801     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8802       Index = VPGSN->getIndex();
8803       ScaleOp = VPGSN->getScale();
8804       IsIndexScaled = VPGSN->isIndexScaled();
8805       IsIndexSigned = VPGSN->isIndexSigned();
8806     } else {
8807       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8808       Index = MGSN->getIndex();
8809       ScaleOp = MGSN->getScale();
8810       IsIndexScaled = MGSN->isIndexScaled();
8811       IsIndexSigned = MGSN->isIndexSigned();
8812     }
8813     EVT IndexVT = Index.getValueType();
8814     MVT XLenVT = Subtarget.getXLenVT();
8815     // RISCV indexed loads only support the "unsigned unscaled" addressing
8816     // mode, so anything else must be manually legalized.
8817     bool NeedsIdxLegalization =
8818         IsIndexScaled ||
8819         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8820     if (!NeedsIdxLegalization)
8821       break;
8822 
8823     SDLoc DL(N);
8824 
8825     // Any index legalization should first promote to XLenVT, so we don't lose
8826     // bits when scaling. This may create an illegal index type so we let
8827     // LLVM's legalization take care of the splitting.
8828     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8829     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8830       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8831       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8832                           DL, IndexVT, Index);
8833     }
8834 
8835     if (IsIndexScaled) {
8836       // Manually scale the indices.
8837       // TODO: Sanitize the scale operand here?
8838       // TODO: For VP nodes, should we use VP_SHL here?
8839       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8840       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8841       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8842       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8843       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
8844     }
8845 
8846     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
8847     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8848       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8849                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8850                               ScaleOp, VPGN->getMask(),
8851                               VPGN->getVectorLength()},
8852                              VPGN->getMemOperand(), NewIndexTy);
8853     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8854       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8855                               {VPSN->getChain(), VPSN->getValue(),
8856                                VPSN->getBasePtr(), Index, ScaleOp,
8857                                VPSN->getMask(), VPSN->getVectorLength()},
8858                               VPSN->getMemOperand(), NewIndexTy);
8859     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8860       return DAG.getMaskedGather(
8861           N->getVTList(), MGN->getMemoryVT(), DL,
8862           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8863            MGN->getBasePtr(), Index, ScaleOp},
8864           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8865     const auto *MSN = cast<MaskedScatterSDNode>(N);
8866     return DAG.getMaskedScatter(
8867         N->getVTList(), MSN->getMemoryVT(), DL,
8868         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8869          Index, ScaleOp},
8870         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8871   }
8872   case RISCVISD::SRA_VL:
8873   case RISCVISD::SRL_VL:
8874   case RISCVISD::SHL_VL: {
8875     SDValue ShAmt = N->getOperand(1);
8876     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8877       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8878       SDLoc DL(N);
8879       SDValue VL = N->getOperand(3);
8880       EVT VT = N->getValueType(0);
8881       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8882                           ShAmt.getOperand(1), VL);
8883       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8884                          N->getOperand(2), N->getOperand(3));
8885     }
8886     break;
8887   }
8888   case ISD::SRA:
8889   case ISD::SRL:
8890   case ISD::SHL: {
8891     SDValue ShAmt = N->getOperand(1);
8892     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8893       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8894       SDLoc DL(N);
8895       EVT VT = N->getValueType(0);
8896       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8897                           ShAmt.getOperand(1),
8898                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8899       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8900     }
8901     break;
8902   }
8903   case RISCVISD::ADD_VL:
8904     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8905       return V;
8906     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8907   case RISCVISD::SUB_VL:
8908     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8909   case RISCVISD::VWADD_W_VL:
8910   case RISCVISD::VWADDU_W_VL:
8911   case RISCVISD::VWSUB_W_VL:
8912   case RISCVISD::VWSUBU_W_VL:
8913     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8914   case RISCVISD::MUL_VL:
8915     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8916       return V;
8917     // Mul is commutative.
8918     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8919   case ISD::STORE: {
8920     auto *Store = cast<StoreSDNode>(N);
8921     SDValue Val = Store->getValue();
8922     // Combine store of vmv.x.s to vse with VL of 1.
8923     // FIXME: Support FP.
8924     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8925       SDValue Src = Val.getOperand(0);
8926       EVT VecVT = Src.getValueType();
8927       EVT MemVT = Store->getMemoryVT();
8928       // The memory VT and the element type must match.
8929       if (VecVT.getVectorElementType() == MemVT) {
8930         SDLoc DL(N);
8931         MVT MaskVT = getMaskTypeFor(VecVT);
8932         return DAG.getStoreVP(
8933             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8934             DAG.getConstant(1, DL, MaskVT),
8935             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8936             Store->getMemOperand(), Store->getAddressingMode(),
8937             Store->isTruncatingStore(), /*IsCompress*/ false);
8938       }
8939     }
8940 
8941     break;
8942   }
8943   case ISD::SPLAT_VECTOR: {
8944     EVT VT = N->getValueType(0);
8945     // Only perform this combine on legal MVT types.
8946     if (!isTypeLegal(VT))
8947       break;
8948     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8949                                          DAG, Subtarget))
8950       return Gather;
8951     break;
8952   }
8953   case RISCVISD::VMV_V_X_VL: {
8954     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8955     // scalar input.
8956     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8957     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8958     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8959       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8960         return SDValue(N, 0);
8961 
8962     break;
8963   }
8964   case ISD::INTRINSIC_WO_CHAIN: {
8965     unsigned IntNo = N->getConstantOperandVal(0);
8966     switch (IntNo) {
8967       // By default we do not combine any intrinsic.
8968     default:
8969       return SDValue();
8970     case Intrinsic::riscv_vcpop:
8971     case Intrinsic::riscv_vcpop_mask:
8972     case Intrinsic::riscv_vfirst:
8973     case Intrinsic::riscv_vfirst_mask: {
8974       SDValue VL = N->getOperand(2);
8975       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8976           IntNo == Intrinsic::riscv_vfirst_mask)
8977         VL = N->getOperand(3);
8978       if (!isNullConstant(VL))
8979         return SDValue();
8980       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8981       SDLoc DL(N);
8982       EVT VT = N->getValueType(0);
8983       if (IntNo == Intrinsic::riscv_vfirst ||
8984           IntNo == Intrinsic::riscv_vfirst_mask)
8985         return DAG.getConstant(-1, DL, VT);
8986       return DAG.getConstant(0, DL, VT);
8987     }
8988     }
8989   }
8990   }
8991 
8992   return SDValue();
8993 }
8994 
8995 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8996     const SDNode *N, CombineLevel Level) const {
8997   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8998   // materialised in fewer instructions than `(OP _, c1)`:
8999   //
9000   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9001   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9002   SDValue N0 = N->getOperand(0);
9003   EVT Ty = N0.getValueType();
9004   if (Ty.isScalarInteger() &&
9005       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9006     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9007     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9008     if (C1 && C2) {
9009       const APInt &C1Int = C1->getAPIntValue();
9010       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9011 
9012       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9013       // and the combine should happen, to potentially allow further combines
9014       // later.
9015       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9016           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9017         return true;
9018 
9019       // We can materialise `c1` in an add immediate, so it's "free", and the
9020       // combine should be prevented.
9021       if (C1Int.getMinSignedBits() <= 64 &&
9022           isLegalAddImmediate(C1Int.getSExtValue()))
9023         return false;
9024 
9025       // Neither constant will fit into an immediate, so find materialisation
9026       // costs.
9027       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9028                                               Subtarget.getFeatureBits(),
9029                                               /*CompressionCost*/true);
9030       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9031           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9032           /*CompressionCost*/true);
9033 
9034       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9035       // combine should be prevented.
9036       if (C1Cost < ShiftedC1Cost)
9037         return false;
9038     }
9039   }
9040   return true;
9041 }
9042 
9043 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9044     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9045     TargetLoweringOpt &TLO) const {
9046   // Delay this optimization as late as possible.
9047   if (!TLO.LegalOps)
9048     return false;
9049 
9050   EVT VT = Op.getValueType();
9051   if (VT.isVector())
9052     return false;
9053 
9054   // Only handle AND for now.
9055   if (Op.getOpcode() != ISD::AND)
9056     return false;
9057 
9058   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9059   if (!C)
9060     return false;
9061 
9062   const APInt &Mask = C->getAPIntValue();
9063 
9064   // Clear all non-demanded bits initially.
9065   APInt ShrunkMask = Mask & DemandedBits;
9066 
9067   // Try to make a smaller immediate by setting undemanded bits.
9068 
9069   APInt ExpandedMask = Mask | ~DemandedBits;
9070 
9071   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9072     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9073   };
9074   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9075     if (NewMask == Mask)
9076       return true;
9077     SDLoc DL(Op);
9078     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9079     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9080     return TLO.CombineTo(Op, NewOp);
9081   };
9082 
9083   // If the shrunk mask fits in sign extended 12 bits, let the target
9084   // independent code apply it.
9085   if (ShrunkMask.isSignedIntN(12))
9086     return false;
9087 
9088   // Preserve (and X, 0xffff) when zext.h is supported.
9089   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9090     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9091     if (IsLegalMask(NewMask))
9092       return UseMask(NewMask);
9093   }
9094 
9095   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9096   if (VT == MVT::i64) {
9097     APInt NewMask = APInt(64, 0xffffffff);
9098     if (IsLegalMask(NewMask))
9099       return UseMask(NewMask);
9100   }
9101 
9102   // For the remaining optimizations, we need to be able to make a negative
9103   // number through a combination of mask and undemanded bits.
9104   if (!ExpandedMask.isNegative())
9105     return false;
9106 
9107   // What is the fewest number of bits we need to represent the negative number.
9108   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9109 
9110   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9111   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9112   APInt NewMask = ShrunkMask;
9113   if (MinSignedBits <= 12)
9114     NewMask.setBitsFrom(11);
9115   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9116     NewMask.setBitsFrom(31);
9117   else
9118     return false;
9119 
9120   // Check that our new mask is a subset of the demanded mask.
9121   assert(IsLegalMask(NewMask));
9122   return UseMask(NewMask);
9123 }
9124 
9125 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9126   static const uint64_t GREVMasks[] = {
9127       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9128       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9129 
9130   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9131     unsigned Shift = 1 << Stage;
9132     if (ShAmt & Shift) {
9133       uint64_t Mask = GREVMasks[Stage];
9134       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9135       if (IsGORC)
9136         Res |= x;
9137       x = Res;
9138     }
9139   }
9140 
9141   return x;
9142 }
9143 
9144 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9145                                                         KnownBits &Known,
9146                                                         const APInt &DemandedElts,
9147                                                         const SelectionDAG &DAG,
9148                                                         unsigned Depth) const {
9149   unsigned BitWidth = Known.getBitWidth();
9150   unsigned Opc = Op.getOpcode();
9151   assert((Opc >= ISD::BUILTIN_OP_END ||
9152           Opc == ISD::INTRINSIC_WO_CHAIN ||
9153           Opc == ISD::INTRINSIC_W_CHAIN ||
9154           Opc == ISD::INTRINSIC_VOID) &&
9155          "Should use MaskedValueIsZero if you don't know whether Op"
9156          " is a target node!");
9157 
9158   Known.resetAll();
9159   switch (Opc) {
9160   default: break;
9161   case RISCVISD::SELECT_CC: {
9162     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9163     // If we don't know any bits, early out.
9164     if (Known.isUnknown())
9165       break;
9166     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9167 
9168     // Only known if known in both the LHS and RHS.
9169     Known = KnownBits::commonBits(Known, Known2);
9170     break;
9171   }
9172   case RISCVISD::REMUW: {
9173     KnownBits Known2;
9174     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9175     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9176     // We only care about the lower 32 bits.
9177     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9178     // Restore the original width by sign extending.
9179     Known = Known.sext(BitWidth);
9180     break;
9181   }
9182   case RISCVISD::DIVUW: {
9183     KnownBits Known2;
9184     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9185     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9186     // We only care about the lower 32 bits.
9187     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9188     // Restore the original width by sign extending.
9189     Known = Known.sext(BitWidth);
9190     break;
9191   }
9192   case RISCVISD::CTZW: {
9193     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9194     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9195     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9196     Known.Zero.setBitsFrom(LowBits);
9197     break;
9198   }
9199   case RISCVISD::CLZW: {
9200     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9201     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9202     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9203     Known.Zero.setBitsFrom(LowBits);
9204     break;
9205   }
9206   case RISCVISD::GREV:
9207   case RISCVISD::GORC: {
9208     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9209       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9210       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9211       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9212       // To compute zeros, we need to invert the value and invert it back after.
9213       Known.Zero =
9214           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9215       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9216     }
9217     break;
9218   }
9219   case RISCVISD::READ_VLENB: {
9220     // If we know the minimum VLen from Zvl extensions, we can use that to
9221     // determine the trailing zeros of VLENB.
9222     // FIXME: Limit to 128 bit vectors until we have more testing.
9223     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9224     if (MinVLenB > 0)
9225       Known.Zero.setLowBits(Log2_32(MinVLenB));
9226     // We assume VLENB is no more than 65536 / 8 bytes.
9227     Known.Zero.setBitsFrom(14);
9228     break;
9229   }
9230   case ISD::INTRINSIC_W_CHAIN:
9231   case ISD::INTRINSIC_WO_CHAIN: {
9232     unsigned IntNo =
9233         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9234     switch (IntNo) {
9235     default:
9236       // We can't do anything for most intrinsics.
9237       break;
9238     case Intrinsic::riscv_vsetvli:
9239     case Intrinsic::riscv_vsetvlimax:
9240     case Intrinsic::riscv_vsetvli_opt:
9241     case Intrinsic::riscv_vsetvlimax_opt:
9242       // Assume that VL output is positive and would fit in an int32_t.
9243       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9244       if (BitWidth >= 32)
9245         Known.Zero.setBitsFrom(31);
9246       break;
9247     }
9248     break;
9249   }
9250   }
9251 }
9252 
9253 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9254     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9255     unsigned Depth) const {
9256   switch (Op.getOpcode()) {
9257   default:
9258     break;
9259   case RISCVISD::SELECT_CC: {
9260     unsigned Tmp =
9261         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9262     if (Tmp == 1) return 1;  // Early out.
9263     unsigned Tmp2 =
9264         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9265     return std::min(Tmp, Tmp2);
9266   }
9267   case RISCVISD::SLLW:
9268   case RISCVISD::SRAW:
9269   case RISCVISD::SRLW:
9270   case RISCVISD::DIVW:
9271   case RISCVISD::DIVUW:
9272   case RISCVISD::REMUW:
9273   case RISCVISD::ROLW:
9274   case RISCVISD::RORW:
9275   case RISCVISD::GREVW:
9276   case RISCVISD::GORCW:
9277   case RISCVISD::FSLW:
9278   case RISCVISD::FSRW:
9279   case RISCVISD::SHFLW:
9280   case RISCVISD::UNSHFLW:
9281   case RISCVISD::BCOMPRESSW:
9282   case RISCVISD::BDECOMPRESSW:
9283   case RISCVISD::BFPW:
9284   case RISCVISD::FCVT_W_RV64:
9285   case RISCVISD::FCVT_WU_RV64:
9286   case RISCVISD::STRICT_FCVT_W_RV64:
9287   case RISCVISD::STRICT_FCVT_WU_RV64:
9288     // TODO: As the result is sign-extended, this is conservatively correct. A
9289     // more precise answer could be calculated for SRAW depending on known
9290     // bits in the shift amount.
9291     return 33;
9292   case RISCVISD::SHFL:
9293   case RISCVISD::UNSHFL: {
9294     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9295     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9296     // will stay within the upper 32 bits. If there were more than 32 sign bits
9297     // before there will be at least 33 sign bits after.
9298     if (Op.getValueType() == MVT::i64 &&
9299         isa<ConstantSDNode>(Op.getOperand(1)) &&
9300         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9301       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9302       if (Tmp > 32)
9303         return 33;
9304     }
9305     break;
9306   }
9307   case RISCVISD::VMV_X_S: {
9308     // The number of sign bits of the scalar result is computed by obtaining the
9309     // element type of the input vector operand, subtracting its width from the
9310     // XLEN, and then adding one (sign bit within the element type). If the
9311     // element type is wider than XLen, the least-significant XLEN bits are
9312     // taken.
9313     unsigned XLen = Subtarget.getXLen();
9314     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9315     if (EltBits <= XLen)
9316       return XLen - EltBits + 1;
9317     break;
9318   }
9319   }
9320 
9321   return 1;
9322 }
9323 
9324 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9325                                                   MachineBasicBlock *BB) {
9326   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9327 
9328   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9329   // Should the count have wrapped while it was being read, we need to try
9330   // again.
9331   // ...
9332   // read:
9333   // rdcycleh x3 # load high word of cycle
9334   // rdcycle  x2 # load low word of cycle
9335   // rdcycleh x4 # load high word of cycle
9336   // bne x3, x4, read # check if high word reads match, otherwise try again
9337   // ...
9338 
9339   MachineFunction &MF = *BB->getParent();
9340   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9341   MachineFunction::iterator It = ++BB->getIterator();
9342 
9343   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9344   MF.insert(It, LoopMBB);
9345 
9346   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9347   MF.insert(It, DoneMBB);
9348 
9349   // Transfer the remainder of BB and its successor edges to DoneMBB.
9350   DoneMBB->splice(DoneMBB->begin(), BB,
9351                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9352   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9353 
9354   BB->addSuccessor(LoopMBB);
9355 
9356   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9357   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9358   Register LoReg = MI.getOperand(0).getReg();
9359   Register HiReg = MI.getOperand(1).getReg();
9360   DebugLoc DL = MI.getDebugLoc();
9361 
9362   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9363   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9364       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9365       .addReg(RISCV::X0);
9366   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9367       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9368       .addReg(RISCV::X0);
9369   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9370       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9371       .addReg(RISCV::X0);
9372 
9373   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9374       .addReg(HiReg)
9375       .addReg(ReadAgainReg)
9376       .addMBB(LoopMBB);
9377 
9378   LoopMBB->addSuccessor(LoopMBB);
9379   LoopMBB->addSuccessor(DoneMBB);
9380 
9381   MI.eraseFromParent();
9382 
9383   return DoneMBB;
9384 }
9385 
9386 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9387                                              MachineBasicBlock *BB) {
9388   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9389 
9390   MachineFunction &MF = *BB->getParent();
9391   DebugLoc DL = MI.getDebugLoc();
9392   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9393   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9394   Register LoReg = MI.getOperand(0).getReg();
9395   Register HiReg = MI.getOperand(1).getReg();
9396   Register SrcReg = MI.getOperand(2).getReg();
9397   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9398   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9399 
9400   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9401                           RI);
9402   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9403   MachineMemOperand *MMOLo =
9404       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9405   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9406       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9407   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9408       .addFrameIndex(FI)
9409       .addImm(0)
9410       .addMemOperand(MMOLo);
9411   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9412       .addFrameIndex(FI)
9413       .addImm(4)
9414       .addMemOperand(MMOHi);
9415   MI.eraseFromParent(); // The pseudo instruction is gone now.
9416   return BB;
9417 }
9418 
9419 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9420                                                  MachineBasicBlock *BB) {
9421   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9422          "Unexpected instruction");
9423 
9424   MachineFunction &MF = *BB->getParent();
9425   DebugLoc DL = MI.getDebugLoc();
9426   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9427   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9428   Register DstReg = MI.getOperand(0).getReg();
9429   Register LoReg = MI.getOperand(1).getReg();
9430   Register HiReg = MI.getOperand(2).getReg();
9431   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9432   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9433 
9434   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9435   MachineMemOperand *MMOLo =
9436       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9437   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9438       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9439   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9440       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9441       .addFrameIndex(FI)
9442       .addImm(0)
9443       .addMemOperand(MMOLo);
9444   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9445       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9446       .addFrameIndex(FI)
9447       .addImm(4)
9448       .addMemOperand(MMOHi);
9449   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9450   MI.eraseFromParent(); // The pseudo instruction is gone now.
9451   return BB;
9452 }
9453 
9454 static bool isSelectPseudo(MachineInstr &MI) {
9455   switch (MI.getOpcode()) {
9456   default:
9457     return false;
9458   case RISCV::Select_GPR_Using_CC_GPR:
9459   case RISCV::Select_FPR16_Using_CC_GPR:
9460   case RISCV::Select_FPR32_Using_CC_GPR:
9461   case RISCV::Select_FPR64_Using_CC_GPR:
9462     return true;
9463   }
9464 }
9465 
9466 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9467                                         unsigned RelOpcode, unsigned EqOpcode,
9468                                         const RISCVSubtarget &Subtarget) {
9469   DebugLoc DL = MI.getDebugLoc();
9470   Register DstReg = MI.getOperand(0).getReg();
9471   Register Src1Reg = MI.getOperand(1).getReg();
9472   Register Src2Reg = MI.getOperand(2).getReg();
9473   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9474   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9475   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9476 
9477   // Save the current FFLAGS.
9478   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9479 
9480   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9481                  .addReg(Src1Reg)
9482                  .addReg(Src2Reg);
9483   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9484     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9485 
9486   // Restore the FFLAGS.
9487   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9488       .addReg(SavedFFlags, RegState::Kill);
9489 
9490   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9491   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9492                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9493                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9494   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9495     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9496 
9497   // Erase the pseudoinstruction.
9498   MI.eraseFromParent();
9499   return BB;
9500 }
9501 
9502 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9503                                            MachineBasicBlock *BB,
9504                                            const RISCVSubtarget &Subtarget) {
9505   // To "insert" Select_* instructions, we actually have to insert the triangle
9506   // control-flow pattern.  The incoming instructions know the destination vreg
9507   // to set, the condition code register to branch on, the true/false values to
9508   // select between, and the condcode to use to select the appropriate branch.
9509   //
9510   // We produce the following control flow:
9511   //     HeadMBB
9512   //     |  \
9513   //     |  IfFalseMBB
9514   //     | /
9515   //    TailMBB
9516   //
9517   // When we find a sequence of selects we attempt to optimize their emission
9518   // by sharing the control flow. Currently we only handle cases where we have
9519   // multiple selects with the exact same condition (same LHS, RHS and CC).
9520   // The selects may be interleaved with other instructions if the other
9521   // instructions meet some requirements we deem safe:
9522   // - They are debug instructions. Otherwise,
9523   // - They do not have side-effects, do not access memory and their inputs do
9524   //   not depend on the results of the select pseudo-instructions.
9525   // The TrueV/FalseV operands of the selects cannot depend on the result of
9526   // previous selects in the sequence.
9527   // These conditions could be further relaxed. See the X86 target for a
9528   // related approach and more information.
9529   Register LHS = MI.getOperand(1).getReg();
9530   Register RHS = MI.getOperand(2).getReg();
9531   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9532 
9533   SmallVector<MachineInstr *, 4> SelectDebugValues;
9534   SmallSet<Register, 4> SelectDests;
9535   SelectDests.insert(MI.getOperand(0).getReg());
9536 
9537   MachineInstr *LastSelectPseudo = &MI;
9538 
9539   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9540        SequenceMBBI != E; ++SequenceMBBI) {
9541     if (SequenceMBBI->isDebugInstr())
9542       continue;
9543     if (isSelectPseudo(*SequenceMBBI)) {
9544       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9545           SequenceMBBI->getOperand(2).getReg() != RHS ||
9546           SequenceMBBI->getOperand(3).getImm() != CC ||
9547           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9548           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9549         break;
9550       LastSelectPseudo = &*SequenceMBBI;
9551       SequenceMBBI->collectDebugValues(SelectDebugValues);
9552       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9553     } else {
9554       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9555           SequenceMBBI->mayLoadOrStore())
9556         break;
9557       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9558             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9559           }))
9560         break;
9561     }
9562   }
9563 
9564   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9565   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9566   DebugLoc DL = MI.getDebugLoc();
9567   MachineFunction::iterator I = ++BB->getIterator();
9568 
9569   MachineBasicBlock *HeadMBB = BB;
9570   MachineFunction *F = BB->getParent();
9571   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9572   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9573 
9574   F->insert(I, IfFalseMBB);
9575   F->insert(I, TailMBB);
9576 
9577   // Transfer debug instructions associated with the selects to TailMBB.
9578   for (MachineInstr *DebugInstr : SelectDebugValues) {
9579     TailMBB->push_back(DebugInstr->removeFromParent());
9580   }
9581 
9582   // Move all instructions after the sequence to TailMBB.
9583   TailMBB->splice(TailMBB->end(), HeadMBB,
9584                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9585   // Update machine-CFG edges by transferring all successors of the current
9586   // block to the new block which will contain the Phi nodes for the selects.
9587   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9588   // Set the successors for HeadMBB.
9589   HeadMBB->addSuccessor(IfFalseMBB);
9590   HeadMBB->addSuccessor(TailMBB);
9591 
9592   // Insert appropriate branch.
9593   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9594     .addReg(LHS)
9595     .addReg(RHS)
9596     .addMBB(TailMBB);
9597 
9598   // IfFalseMBB just falls through to TailMBB.
9599   IfFalseMBB->addSuccessor(TailMBB);
9600 
9601   // Create PHIs for all of the select pseudo-instructions.
9602   auto SelectMBBI = MI.getIterator();
9603   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9604   auto InsertionPoint = TailMBB->begin();
9605   while (SelectMBBI != SelectEnd) {
9606     auto Next = std::next(SelectMBBI);
9607     if (isSelectPseudo(*SelectMBBI)) {
9608       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9609       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9610               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9611           .addReg(SelectMBBI->getOperand(4).getReg())
9612           .addMBB(HeadMBB)
9613           .addReg(SelectMBBI->getOperand(5).getReg())
9614           .addMBB(IfFalseMBB);
9615       SelectMBBI->eraseFromParent();
9616     }
9617     SelectMBBI = Next;
9618   }
9619 
9620   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9621   return TailMBB;
9622 }
9623 
9624 MachineBasicBlock *
9625 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9626                                                  MachineBasicBlock *BB) const {
9627   switch (MI.getOpcode()) {
9628   default:
9629     llvm_unreachable("Unexpected instr type to insert");
9630   case RISCV::ReadCycleWide:
9631     assert(!Subtarget.is64Bit() &&
9632            "ReadCycleWrite is only to be used on riscv32");
9633     return emitReadCycleWidePseudo(MI, BB);
9634   case RISCV::Select_GPR_Using_CC_GPR:
9635   case RISCV::Select_FPR16_Using_CC_GPR:
9636   case RISCV::Select_FPR32_Using_CC_GPR:
9637   case RISCV::Select_FPR64_Using_CC_GPR:
9638     return emitSelectPseudo(MI, BB, Subtarget);
9639   case RISCV::BuildPairF64Pseudo:
9640     return emitBuildPairF64Pseudo(MI, BB);
9641   case RISCV::SplitF64Pseudo:
9642     return emitSplitF64Pseudo(MI, BB);
9643   case RISCV::PseudoQuietFLE_H:
9644     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9645   case RISCV::PseudoQuietFLT_H:
9646     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9647   case RISCV::PseudoQuietFLE_S:
9648     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9649   case RISCV::PseudoQuietFLT_S:
9650     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9651   case RISCV::PseudoQuietFLE_D:
9652     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9653   case RISCV::PseudoQuietFLT_D:
9654     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9655   }
9656 }
9657 
9658 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9659                                                         SDNode *Node) const {
9660   // Add FRM dependency to any instructions with dynamic rounding mode.
9661   unsigned Opc = MI.getOpcode();
9662   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9663   if (Idx < 0)
9664     return;
9665   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9666     return;
9667   // If the instruction already reads FRM, don't add another read.
9668   if (MI.readsRegister(RISCV::FRM))
9669     return;
9670   MI.addOperand(
9671       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9672 }
9673 
9674 // Calling Convention Implementation.
9675 // The expectations for frontend ABI lowering vary from target to target.
9676 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9677 // details, but this is a longer term goal. For now, we simply try to keep the
9678 // role of the frontend as simple and well-defined as possible. The rules can
9679 // be summarised as:
9680 // * Never split up large scalar arguments. We handle them here.
9681 // * If a hardfloat calling convention is being used, and the struct may be
9682 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9683 // available, then pass as two separate arguments. If either the GPRs or FPRs
9684 // are exhausted, then pass according to the rule below.
9685 // * If a struct could never be passed in registers or directly in a stack
9686 // slot (as it is larger than 2*XLEN and the floating point rules don't
9687 // apply), then pass it using a pointer with the byval attribute.
9688 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9689 // word-sized array or a 2*XLEN scalar (depending on alignment).
9690 // * The frontend can determine whether a struct is returned by reference or
9691 // not based on its size and fields. If it will be returned by reference, the
9692 // frontend must modify the prototype so a pointer with the sret annotation is
9693 // passed as the first argument. This is not necessary for large scalar
9694 // returns.
9695 // * Struct return values and varargs should be coerced to structs containing
9696 // register-size fields in the same situations they would be for fixed
9697 // arguments.
9698 
9699 static const MCPhysReg ArgGPRs[] = {
9700   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9701   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9702 };
9703 static const MCPhysReg ArgFPR16s[] = {
9704   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9705   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9706 };
9707 static const MCPhysReg ArgFPR32s[] = {
9708   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9709   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9710 };
9711 static const MCPhysReg ArgFPR64s[] = {
9712   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9713   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9714 };
9715 // This is an interim calling convention and it may be changed in the future.
9716 static const MCPhysReg ArgVRs[] = {
9717     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9718     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9719     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9720 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9721                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9722                                      RISCV::V20M2, RISCV::V22M2};
9723 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9724                                      RISCV::V20M4};
9725 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9726 
9727 // Pass a 2*XLEN argument that has been split into two XLEN values through
9728 // registers or the stack as necessary.
9729 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9730                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9731                                 MVT ValVT2, MVT LocVT2,
9732                                 ISD::ArgFlagsTy ArgFlags2) {
9733   unsigned XLenInBytes = XLen / 8;
9734   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9735     // At least one half can be passed via register.
9736     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9737                                      VA1.getLocVT(), CCValAssign::Full));
9738   } else {
9739     // Both halves must be passed on the stack, with proper alignment.
9740     Align StackAlign =
9741         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9742     State.addLoc(
9743         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9744                             State.AllocateStack(XLenInBytes, StackAlign),
9745                             VA1.getLocVT(), CCValAssign::Full));
9746     State.addLoc(CCValAssign::getMem(
9747         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9748         LocVT2, CCValAssign::Full));
9749     return false;
9750   }
9751 
9752   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9753     // The second half can also be passed via register.
9754     State.addLoc(
9755         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9756   } else {
9757     // The second half is passed via the stack, without additional alignment.
9758     State.addLoc(CCValAssign::getMem(
9759         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9760         LocVT2, CCValAssign::Full));
9761   }
9762 
9763   return false;
9764 }
9765 
9766 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9767                                Optional<unsigned> FirstMaskArgument,
9768                                CCState &State, const RISCVTargetLowering &TLI) {
9769   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9770   if (RC == &RISCV::VRRegClass) {
9771     // Assign the first mask argument to V0.
9772     // This is an interim calling convention and it may be changed in the
9773     // future.
9774     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9775       return State.AllocateReg(RISCV::V0);
9776     return State.AllocateReg(ArgVRs);
9777   }
9778   if (RC == &RISCV::VRM2RegClass)
9779     return State.AllocateReg(ArgVRM2s);
9780   if (RC == &RISCV::VRM4RegClass)
9781     return State.AllocateReg(ArgVRM4s);
9782   if (RC == &RISCV::VRM8RegClass)
9783     return State.AllocateReg(ArgVRM8s);
9784   llvm_unreachable("Unhandled register class for ValueType");
9785 }
9786 
9787 // Implements the RISC-V calling convention. Returns true upon failure.
9788 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9789                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9790                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9791                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9792                      Optional<unsigned> FirstMaskArgument) {
9793   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9794   assert(XLen == 32 || XLen == 64);
9795   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9796 
9797   // Any return value split in to more than two values can't be returned
9798   // directly. Vectors are returned via the available vector registers.
9799   if (!LocVT.isVector() && IsRet && ValNo > 1)
9800     return true;
9801 
9802   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9803   // variadic argument, or if no F16/F32 argument registers are available.
9804   bool UseGPRForF16_F32 = true;
9805   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9806   // variadic argument, or if no F64 argument registers are available.
9807   bool UseGPRForF64 = true;
9808 
9809   switch (ABI) {
9810   default:
9811     llvm_unreachable("Unexpected ABI");
9812   case RISCVABI::ABI_ILP32:
9813   case RISCVABI::ABI_LP64:
9814     break;
9815   case RISCVABI::ABI_ILP32F:
9816   case RISCVABI::ABI_LP64F:
9817     UseGPRForF16_F32 = !IsFixed;
9818     break;
9819   case RISCVABI::ABI_ILP32D:
9820   case RISCVABI::ABI_LP64D:
9821     UseGPRForF16_F32 = !IsFixed;
9822     UseGPRForF64 = !IsFixed;
9823     break;
9824   }
9825 
9826   // FPR16, FPR32, and FPR64 alias each other.
9827   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9828     UseGPRForF16_F32 = true;
9829     UseGPRForF64 = true;
9830   }
9831 
9832   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9833   // similar local variables rather than directly checking against the target
9834   // ABI.
9835 
9836   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9837     LocVT = XLenVT;
9838     LocInfo = CCValAssign::BCvt;
9839   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9840     LocVT = MVT::i64;
9841     LocInfo = CCValAssign::BCvt;
9842   }
9843 
9844   // If this is a variadic argument, the RISC-V calling convention requires
9845   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9846   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9847   // be used regardless of whether the original argument was split during
9848   // legalisation or not. The argument will not be passed by registers if the
9849   // original type is larger than 2*XLEN, so the register alignment rule does
9850   // not apply.
9851   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9852   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9853       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9854     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9855     // Skip 'odd' register if necessary.
9856     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9857       State.AllocateReg(ArgGPRs);
9858   }
9859 
9860   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9861   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9862       State.getPendingArgFlags();
9863 
9864   assert(PendingLocs.size() == PendingArgFlags.size() &&
9865          "PendingLocs and PendingArgFlags out of sync");
9866 
9867   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9868   // registers are exhausted.
9869   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9870     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9871            "Can't lower f64 if it is split");
9872     // Depending on available argument GPRS, f64 may be passed in a pair of
9873     // GPRs, split between a GPR and the stack, or passed completely on the
9874     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9875     // cases.
9876     Register Reg = State.AllocateReg(ArgGPRs);
9877     LocVT = MVT::i32;
9878     if (!Reg) {
9879       unsigned StackOffset = State.AllocateStack(8, Align(8));
9880       State.addLoc(
9881           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9882       return false;
9883     }
9884     if (!State.AllocateReg(ArgGPRs))
9885       State.AllocateStack(4, Align(4));
9886     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9887     return false;
9888   }
9889 
9890   // Fixed-length vectors are located in the corresponding scalable-vector
9891   // container types.
9892   if (ValVT.isFixedLengthVector())
9893     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9894 
9895   // Split arguments might be passed indirectly, so keep track of the pending
9896   // values. Split vectors are passed via a mix of registers and indirectly, so
9897   // treat them as we would any other argument.
9898   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9899     LocVT = XLenVT;
9900     LocInfo = CCValAssign::Indirect;
9901     PendingLocs.push_back(
9902         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9903     PendingArgFlags.push_back(ArgFlags);
9904     if (!ArgFlags.isSplitEnd()) {
9905       return false;
9906     }
9907   }
9908 
9909   // If the split argument only had two elements, it should be passed directly
9910   // in registers or on the stack.
9911   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9912       PendingLocs.size() <= 2) {
9913     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9914     // Apply the normal calling convention rules to the first half of the
9915     // split argument.
9916     CCValAssign VA = PendingLocs[0];
9917     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9918     PendingLocs.clear();
9919     PendingArgFlags.clear();
9920     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9921                                ArgFlags);
9922   }
9923 
9924   // Allocate to a register if possible, or else a stack slot.
9925   Register Reg;
9926   unsigned StoreSizeBytes = XLen / 8;
9927   Align StackAlign = Align(XLen / 8);
9928 
9929   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9930     Reg = State.AllocateReg(ArgFPR16s);
9931   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9932     Reg = State.AllocateReg(ArgFPR32s);
9933   else if (ValVT == MVT::f64 && !UseGPRForF64)
9934     Reg = State.AllocateReg(ArgFPR64s);
9935   else if (ValVT.isVector()) {
9936     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9937     if (!Reg) {
9938       // For return values, the vector must be passed fully via registers or
9939       // via the stack.
9940       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9941       // but we're using all of them.
9942       if (IsRet)
9943         return true;
9944       // Try using a GPR to pass the address
9945       if ((Reg = State.AllocateReg(ArgGPRs))) {
9946         LocVT = XLenVT;
9947         LocInfo = CCValAssign::Indirect;
9948       } else if (ValVT.isScalableVector()) {
9949         LocVT = XLenVT;
9950         LocInfo = CCValAssign::Indirect;
9951       } else {
9952         // Pass fixed-length vectors on the stack.
9953         LocVT = ValVT;
9954         StoreSizeBytes = ValVT.getStoreSize();
9955         // Align vectors to their element sizes, being careful for vXi1
9956         // vectors.
9957         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9958       }
9959     }
9960   } else {
9961     Reg = State.AllocateReg(ArgGPRs);
9962   }
9963 
9964   unsigned StackOffset =
9965       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9966 
9967   // If we reach this point and PendingLocs is non-empty, we must be at the
9968   // end of a split argument that must be passed indirectly.
9969   if (!PendingLocs.empty()) {
9970     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9971     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9972 
9973     for (auto &It : PendingLocs) {
9974       if (Reg)
9975         It.convertToReg(Reg);
9976       else
9977         It.convertToMem(StackOffset);
9978       State.addLoc(It);
9979     }
9980     PendingLocs.clear();
9981     PendingArgFlags.clear();
9982     return false;
9983   }
9984 
9985   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9986           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9987          "Expected an XLenVT or vector types at this stage");
9988 
9989   if (Reg) {
9990     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9991     return false;
9992   }
9993 
9994   // When a floating-point value is passed on the stack, no bit-conversion is
9995   // needed.
9996   if (ValVT.isFloatingPoint()) {
9997     LocVT = ValVT;
9998     LocInfo = CCValAssign::Full;
9999   }
10000   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10001   return false;
10002 }
10003 
10004 template <typename ArgTy>
10005 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10006   for (const auto &ArgIdx : enumerate(Args)) {
10007     MVT ArgVT = ArgIdx.value().VT;
10008     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10009       return ArgIdx.index();
10010   }
10011   return None;
10012 }
10013 
10014 void RISCVTargetLowering::analyzeInputArgs(
10015     MachineFunction &MF, CCState &CCInfo,
10016     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10017     RISCVCCAssignFn Fn) const {
10018   unsigned NumArgs = Ins.size();
10019   FunctionType *FType = MF.getFunction().getFunctionType();
10020 
10021   Optional<unsigned> FirstMaskArgument;
10022   if (Subtarget.hasVInstructions())
10023     FirstMaskArgument = preAssignMask(Ins);
10024 
10025   for (unsigned i = 0; i != NumArgs; ++i) {
10026     MVT ArgVT = Ins[i].VT;
10027     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10028 
10029     Type *ArgTy = nullptr;
10030     if (IsRet)
10031       ArgTy = FType->getReturnType();
10032     else if (Ins[i].isOrigArg())
10033       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10034 
10035     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10036     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10037            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10038            FirstMaskArgument)) {
10039       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10040                         << EVT(ArgVT).getEVTString() << '\n');
10041       llvm_unreachable(nullptr);
10042     }
10043   }
10044 }
10045 
10046 void RISCVTargetLowering::analyzeOutputArgs(
10047     MachineFunction &MF, CCState &CCInfo,
10048     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10049     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10050   unsigned NumArgs = Outs.size();
10051 
10052   Optional<unsigned> FirstMaskArgument;
10053   if (Subtarget.hasVInstructions())
10054     FirstMaskArgument = preAssignMask(Outs);
10055 
10056   for (unsigned i = 0; i != NumArgs; i++) {
10057     MVT ArgVT = Outs[i].VT;
10058     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10059     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10060 
10061     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10062     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10063            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10064            FirstMaskArgument)) {
10065       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10066                         << EVT(ArgVT).getEVTString() << "\n");
10067       llvm_unreachable(nullptr);
10068     }
10069   }
10070 }
10071 
10072 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10073 // values.
10074 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10075                                    const CCValAssign &VA, const SDLoc &DL,
10076                                    const RISCVSubtarget &Subtarget) {
10077   switch (VA.getLocInfo()) {
10078   default:
10079     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10080   case CCValAssign::Full:
10081     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10082       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10083     break;
10084   case CCValAssign::BCvt:
10085     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10086       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10087     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10088       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10089     else
10090       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10091     break;
10092   }
10093   return Val;
10094 }
10095 
10096 // The caller is responsible for loading the full value if the argument is
10097 // passed with CCValAssign::Indirect.
10098 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10099                                 const CCValAssign &VA, const SDLoc &DL,
10100                                 const RISCVTargetLowering &TLI) {
10101   MachineFunction &MF = DAG.getMachineFunction();
10102   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10103   EVT LocVT = VA.getLocVT();
10104   SDValue Val;
10105   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10106   Register VReg = RegInfo.createVirtualRegister(RC);
10107   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10108   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10109 
10110   if (VA.getLocInfo() == CCValAssign::Indirect)
10111     return Val;
10112 
10113   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10114 }
10115 
10116 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10117                                    const CCValAssign &VA, const SDLoc &DL,
10118                                    const RISCVSubtarget &Subtarget) {
10119   EVT LocVT = VA.getLocVT();
10120 
10121   switch (VA.getLocInfo()) {
10122   default:
10123     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10124   case CCValAssign::Full:
10125     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10126       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10127     break;
10128   case CCValAssign::BCvt:
10129     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10130       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10131     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10132       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10133     else
10134       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10135     break;
10136   }
10137   return Val;
10138 }
10139 
10140 // The caller is responsible for loading the full value if the argument is
10141 // passed with CCValAssign::Indirect.
10142 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10143                                 const CCValAssign &VA, const SDLoc &DL) {
10144   MachineFunction &MF = DAG.getMachineFunction();
10145   MachineFrameInfo &MFI = MF.getFrameInfo();
10146   EVT LocVT = VA.getLocVT();
10147   EVT ValVT = VA.getValVT();
10148   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10149   if (ValVT.isScalableVector()) {
10150     // When the value is a scalable vector, we save the pointer which points to
10151     // the scalable vector value in the stack. The ValVT will be the pointer
10152     // type, instead of the scalable vector type.
10153     ValVT = LocVT;
10154   }
10155   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10156                                  /*IsImmutable=*/true);
10157   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10158   SDValue Val;
10159 
10160   ISD::LoadExtType ExtType;
10161   switch (VA.getLocInfo()) {
10162   default:
10163     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10164   case CCValAssign::Full:
10165   case CCValAssign::Indirect:
10166   case CCValAssign::BCvt:
10167     ExtType = ISD::NON_EXTLOAD;
10168     break;
10169   }
10170   Val = DAG.getExtLoad(
10171       ExtType, DL, LocVT, Chain, FIN,
10172       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10173   return Val;
10174 }
10175 
10176 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10177                                        const CCValAssign &VA, const SDLoc &DL) {
10178   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10179          "Unexpected VA");
10180   MachineFunction &MF = DAG.getMachineFunction();
10181   MachineFrameInfo &MFI = MF.getFrameInfo();
10182   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10183 
10184   if (VA.isMemLoc()) {
10185     // f64 is passed on the stack.
10186     int FI =
10187         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10188     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10189     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10190                        MachinePointerInfo::getFixedStack(MF, FI));
10191   }
10192 
10193   assert(VA.isRegLoc() && "Expected register VA assignment");
10194 
10195   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10196   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10197   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10198   SDValue Hi;
10199   if (VA.getLocReg() == RISCV::X17) {
10200     // Second half of f64 is passed on the stack.
10201     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10202     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10203     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10204                      MachinePointerInfo::getFixedStack(MF, FI));
10205   } else {
10206     // Second half of f64 is passed in another GPR.
10207     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10208     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10209     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10210   }
10211   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10212 }
10213 
10214 // FastCC has less than 1% performance improvement for some particular
10215 // benchmark. But theoretically, it may has benenfit for some cases.
10216 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10217                             unsigned ValNo, MVT ValVT, MVT LocVT,
10218                             CCValAssign::LocInfo LocInfo,
10219                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10220                             bool IsFixed, bool IsRet, Type *OrigTy,
10221                             const RISCVTargetLowering &TLI,
10222                             Optional<unsigned> FirstMaskArgument) {
10223 
10224   // X5 and X6 might be used for save-restore libcall.
10225   static const MCPhysReg GPRList[] = {
10226       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10227       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10228       RISCV::X29, RISCV::X30, RISCV::X31};
10229 
10230   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10231     if (unsigned Reg = State.AllocateReg(GPRList)) {
10232       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10233       return false;
10234     }
10235   }
10236 
10237   if (LocVT == MVT::f16) {
10238     static const MCPhysReg FPR16List[] = {
10239         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10240         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10241         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10242         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10243     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10244       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10245       return false;
10246     }
10247   }
10248 
10249   if (LocVT == MVT::f32) {
10250     static const MCPhysReg FPR32List[] = {
10251         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10252         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10253         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10254         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10255     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10256       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10257       return false;
10258     }
10259   }
10260 
10261   if (LocVT == MVT::f64) {
10262     static const MCPhysReg FPR64List[] = {
10263         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10264         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10265         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10266         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10267     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10268       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10269       return false;
10270     }
10271   }
10272 
10273   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10274     unsigned Offset4 = State.AllocateStack(4, Align(4));
10275     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10276     return false;
10277   }
10278 
10279   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10280     unsigned Offset5 = State.AllocateStack(8, Align(8));
10281     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10282     return false;
10283   }
10284 
10285   if (LocVT.isVector()) {
10286     if (unsigned Reg =
10287             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10288       // Fixed-length vectors are located in the corresponding scalable-vector
10289       // container types.
10290       if (ValVT.isFixedLengthVector())
10291         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10292       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10293     } else {
10294       // Try and pass the address via a "fast" GPR.
10295       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10296         LocInfo = CCValAssign::Indirect;
10297         LocVT = TLI.getSubtarget().getXLenVT();
10298         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10299       } else if (ValVT.isFixedLengthVector()) {
10300         auto StackAlign =
10301             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10302         unsigned StackOffset =
10303             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10304         State.addLoc(
10305             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10306       } else {
10307         // Can't pass scalable vectors on the stack.
10308         return true;
10309       }
10310     }
10311 
10312     return false;
10313   }
10314 
10315   return true; // CC didn't match.
10316 }
10317 
10318 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10319                          CCValAssign::LocInfo LocInfo,
10320                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10321 
10322   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10323     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10324     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10325     static const MCPhysReg GPRList[] = {
10326         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10327         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10328     if (unsigned Reg = State.AllocateReg(GPRList)) {
10329       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10330       return false;
10331     }
10332   }
10333 
10334   if (LocVT == MVT::f32) {
10335     // Pass in STG registers: F1, ..., F6
10336     //                        fs0 ... fs5
10337     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10338                                           RISCV::F18_F, RISCV::F19_F,
10339                                           RISCV::F20_F, RISCV::F21_F};
10340     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10341       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10342       return false;
10343     }
10344   }
10345 
10346   if (LocVT == MVT::f64) {
10347     // Pass in STG registers: D1, ..., D6
10348     //                        fs6 ... fs11
10349     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10350                                           RISCV::F24_D, RISCV::F25_D,
10351                                           RISCV::F26_D, RISCV::F27_D};
10352     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10353       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10354       return false;
10355     }
10356   }
10357 
10358   report_fatal_error("No registers left in GHC calling convention");
10359   return true;
10360 }
10361 
10362 // Transform physical registers into virtual registers.
10363 SDValue RISCVTargetLowering::LowerFormalArguments(
10364     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10365     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10366     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10367 
10368   MachineFunction &MF = DAG.getMachineFunction();
10369 
10370   switch (CallConv) {
10371   default:
10372     report_fatal_error("Unsupported calling convention");
10373   case CallingConv::C:
10374   case CallingConv::Fast:
10375     break;
10376   case CallingConv::GHC:
10377     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10378         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10379       report_fatal_error(
10380         "GHC calling convention requires the F and D instruction set extensions");
10381   }
10382 
10383   const Function &Func = MF.getFunction();
10384   if (Func.hasFnAttribute("interrupt")) {
10385     if (!Func.arg_empty())
10386       report_fatal_error(
10387         "Functions with the interrupt attribute cannot have arguments!");
10388 
10389     StringRef Kind =
10390       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10391 
10392     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10393       report_fatal_error(
10394         "Function interrupt attribute argument not supported!");
10395   }
10396 
10397   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10398   MVT XLenVT = Subtarget.getXLenVT();
10399   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10400   // Used with vargs to acumulate store chains.
10401   std::vector<SDValue> OutChains;
10402 
10403   // Assign locations to all of the incoming arguments.
10404   SmallVector<CCValAssign, 16> ArgLocs;
10405   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10406 
10407   if (CallConv == CallingConv::GHC)
10408     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10409   else
10410     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10411                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10412                                                    : CC_RISCV);
10413 
10414   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10415     CCValAssign &VA = ArgLocs[i];
10416     SDValue ArgValue;
10417     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10418     // case.
10419     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10420       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10421     else if (VA.isRegLoc())
10422       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10423     else
10424       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10425 
10426     if (VA.getLocInfo() == CCValAssign::Indirect) {
10427       // If the original argument was split and passed by reference (e.g. i128
10428       // on RV32), we need to load all parts of it here (using the same
10429       // address). Vectors may be partly split to registers and partly to the
10430       // stack, in which case the base address is partly offset and subsequent
10431       // stores are relative to that.
10432       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10433                                    MachinePointerInfo()));
10434       unsigned ArgIndex = Ins[i].OrigArgIndex;
10435       unsigned ArgPartOffset = Ins[i].PartOffset;
10436       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10437       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10438         CCValAssign &PartVA = ArgLocs[i + 1];
10439         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10440         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10441         if (PartVA.getValVT().isScalableVector())
10442           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10443         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10444         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10445                                      MachinePointerInfo()));
10446         ++i;
10447       }
10448       continue;
10449     }
10450     InVals.push_back(ArgValue);
10451   }
10452 
10453   if (IsVarArg) {
10454     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10455     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10456     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10457     MachineFrameInfo &MFI = MF.getFrameInfo();
10458     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10459     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10460 
10461     // Offset of the first variable argument from stack pointer, and size of
10462     // the vararg save area. For now, the varargs save area is either zero or
10463     // large enough to hold a0-a7.
10464     int VaArgOffset, VarArgsSaveSize;
10465 
10466     // If all registers are allocated, then all varargs must be passed on the
10467     // stack and we don't need to save any argregs.
10468     if (ArgRegs.size() == Idx) {
10469       VaArgOffset = CCInfo.getNextStackOffset();
10470       VarArgsSaveSize = 0;
10471     } else {
10472       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10473       VaArgOffset = -VarArgsSaveSize;
10474     }
10475 
10476     // Record the frame index of the first variable argument
10477     // which is a value necessary to VASTART.
10478     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10479     RVFI->setVarArgsFrameIndex(FI);
10480 
10481     // If saving an odd number of registers then create an extra stack slot to
10482     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10483     // offsets to even-numbered registered remain 2*XLEN-aligned.
10484     if (Idx % 2) {
10485       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10486       VarArgsSaveSize += XLenInBytes;
10487     }
10488 
10489     // Copy the integer registers that may have been used for passing varargs
10490     // to the vararg save area.
10491     for (unsigned I = Idx; I < ArgRegs.size();
10492          ++I, VaArgOffset += XLenInBytes) {
10493       const Register Reg = RegInfo.createVirtualRegister(RC);
10494       RegInfo.addLiveIn(ArgRegs[I], Reg);
10495       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10496       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10497       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10498       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10499                                    MachinePointerInfo::getFixedStack(MF, FI));
10500       cast<StoreSDNode>(Store.getNode())
10501           ->getMemOperand()
10502           ->setValue((Value *)nullptr);
10503       OutChains.push_back(Store);
10504     }
10505     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10506   }
10507 
10508   // All stores are grouped in one node to allow the matching between
10509   // the size of Ins and InVals. This only happens for vararg functions.
10510   if (!OutChains.empty()) {
10511     OutChains.push_back(Chain);
10512     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10513   }
10514 
10515   return Chain;
10516 }
10517 
10518 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10519 /// for tail call optimization.
10520 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10521 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10522     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10523     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10524 
10525   auto &Callee = CLI.Callee;
10526   auto CalleeCC = CLI.CallConv;
10527   auto &Outs = CLI.Outs;
10528   auto &Caller = MF.getFunction();
10529   auto CallerCC = Caller.getCallingConv();
10530 
10531   // Exception-handling functions need a special set of instructions to
10532   // indicate a return to the hardware. Tail-calling another function would
10533   // probably break this.
10534   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10535   // should be expanded as new function attributes are introduced.
10536   if (Caller.hasFnAttribute("interrupt"))
10537     return false;
10538 
10539   // Do not tail call opt if the stack is used to pass parameters.
10540   if (CCInfo.getNextStackOffset() != 0)
10541     return false;
10542 
10543   // Do not tail call opt if any parameters need to be passed indirectly.
10544   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10545   // passed indirectly. So the address of the value will be passed in a
10546   // register, or if not available, then the address is put on the stack. In
10547   // order to pass indirectly, space on the stack often needs to be allocated
10548   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10549   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10550   // are passed CCValAssign::Indirect.
10551   for (auto &VA : ArgLocs)
10552     if (VA.getLocInfo() == CCValAssign::Indirect)
10553       return false;
10554 
10555   // Do not tail call opt if either caller or callee uses struct return
10556   // semantics.
10557   auto IsCallerStructRet = Caller.hasStructRetAttr();
10558   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10559   if (IsCallerStructRet || IsCalleeStructRet)
10560     return false;
10561 
10562   // Externally-defined functions with weak linkage should not be
10563   // tail-called. The behaviour of branch instructions in this situation (as
10564   // used for tail calls) is implementation-defined, so we cannot rely on the
10565   // linker replacing the tail call with a return.
10566   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10567     const GlobalValue *GV = G->getGlobal();
10568     if (GV->hasExternalWeakLinkage())
10569       return false;
10570   }
10571 
10572   // The callee has to preserve all registers the caller needs to preserve.
10573   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10574   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10575   if (CalleeCC != CallerCC) {
10576     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10577     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10578       return false;
10579   }
10580 
10581   // Byval parameters hand the function a pointer directly into the stack area
10582   // we want to reuse during a tail call. Working around this *is* possible
10583   // but less efficient and uglier in LowerCall.
10584   for (auto &Arg : Outs)
10585     if (Arg.Flags.isByVal())
10586       return false;
10587 
10588   return true;
10589 }
10590 
10591 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10592   return DAG.getDataLayout().getPrefTypeAlign(
10593       VT.getTypeForEVT(*DAG.getContext()));
10594 }
10595 
10596 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10597 // and output parameter nodes.
10598 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10599                                        SmallVectorImpl<SDValue> &InVals) const {
10600   SelectionDAG &DAG = CLI.DAG;
10601   SDLoc &DL = CLI.DL;
10602   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10603   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10604   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10605   SDValue Chain = CLI.Chain;
10606   SDValue Callee = CLI.Callee;
10607   bool &IsTailCall = CLI.IsTailCall;
10608   CallingConv::ID CallConv = CLI.CallConv;
10609   bool IsVarArg = CLI.IsVarArg;
10610   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10611   MVT XLenVT = Subtarget.getXLenVT();
10612 
10613   MachineFunction &MF = DAG.getMachineFunction();
10614 
10615   // Analyze the operands of the call, assigning locations to each operand.
10616   SmallVector<CCValAssign, 16> ArgLocs;
10617   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10618 
10619   if (CallConv == CallingConv::GHC)
10620     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10621   else
10622     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10623                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10624                                                     : CC_RISCV);
10625 
10626   // Check if it's really possible to do a tail call.
10627   if (IsTailCall)
10628     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10629 
10630   if (IsTailCall)
10631     ++NumTailCalls;
10632   else if (CLI.CB && CLI.CB->isMustTailCall())
10633     report_fatal_error("failed to perform tail call elimination on a call "
10634                        "site marked musttail");
10635 
10636   // Get a count of how many bytes are to be pushed on the stack.
10637   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10638 
10639   // Create local copies for byval args
10640   SmallVector<SDValue, 8> ByValArgs;
10641   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10642     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10643     if (!Flags.isByVal())
10644       continue;
10645 
10646     SDValue Arg = OutVals[i];
10647     unsigned Size = Flags.getByValSize();
10648     Align Alignment = Flags.getNonZeroByValAlign();
10649 
10650     int FI =
10651         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10652     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10653     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10654 
10655     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10656                           /*IsVolatile=*/false,
10657                           /*AlwaysInline=*/false, IsTailCall,
10658                           MachinePointerInfo(), MachinePointerInfo());
10659     ByValArgs.push_back(FIPtr);
10660   }
10661 
10662   if (!IsTailCall)
10663     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10664 
10665   // Copy argument values to their designated locations.
10666   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10667   SmallVector<SDValue, 8> MemOpChains;
10668   SDValue StackPtr;
10669   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10670     CCValAssign &VA = ArgLocs[i];
10671     SDValue ArgValue = OutVals[i];
10672     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10673 
10674     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10675     bool IsF64OnRV32DSoftABI =
10676         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10677     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10678       SDValue SplitF64 = DAG.getNode(
10679           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10680       SDValue Lo = SplitF64.getValue(0);
10681       SDValue Hi = SplitF64.getValue(1);
10682 
10683       Register RegLo = VA.getLocReg();
10684       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10685 
10686       if (RegLo == RISCV::X17) {
10687         // Second half of f64 is passed on the stack.
10688         // Work out the address of the stack slot.
10689         if (!StackPtr.getNode())
10690           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10691         // Emit the store.
10692         MemOpChains.push_back(
10693             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10694       } else {
10695         // Second half of f64 is passed in another GPR.
10696         assert(RegLo < RISCV::X31 && "Invalid register pair");
10697         Register RegHigh = RegLo + 1;
10698         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10699       }
10700       continue;
10701     }
10702 
10703     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10704     // as any other MemLoc.
10705 
10706     // Promote the value if needed.
10707     // For now, only handle fully promoted and indirect arguments.
10708     if (VA.getLocInfo() == CCValAssign::Indirect) {
10709       // Store the argument in a stack slot and pass its address.
10710       Align StackAlign =
10711           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10712                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10713       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10714       // If the original argument was split (e.g. i128), we need
10715       // to store the required parts of it here (and pass just one address).
10716       // Vectors may be partly split to registers and partly to the stack, in
10717       // which case the base address is partly offset and subsequent stores are
10718       // relative to that.
10719       unsigned ArgIndex = Outs[i].OrigArgIndex;
10720       unsigned ArgPartOffset = Outs[i].PartOffset;
10721       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10722       // Calculate the total size to store. We don't have access to what we're
10723       // actually storing other than performing the loop and collecting the
10724       // info.
10725       SmallVector<std::pair<SDValue, SDValue>> Parts;
10726       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10727         SDValue PartValue = OutVals[i + 1];
10728         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10729         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10730         EVT PartVT = PartValue.getValueType();
10731         if (PartVT.isScalableVector())
10732           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10733         StoredSize += PartVT.getStoreSize();
10734         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10735         Parts.push_back(std::make_pair(PartValue, Offset));
10736         ++i;
10737       }
10738       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10739       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10740       MemOpChains.push_back(
10741           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10742                        MachinePointerInfo::getFixedStack(MF, FI)));
10743       for (const auto &Part : Parts) {
10744         SDValue PartValue = Part.first;
10745         SDValue PartOffset = Part.second;
10746         SDValue Address =
10747             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10748         MemOpChains.push_back(
10749             DAG.getStore(Chain, DL, PartValue, Address,
10750                          MachinePointerInfo::getFixedStack(MF, FI)));
10751       }
10752       ArgValue = SpillSlot;
10753     } else {
10754       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10755     }
10756 
10757     // Use local copy if it is a byval arg.
10758     if (Flags.isByVal())
10759       ArgValue = ByValArgs[j++];
10760 
10761     if (VA.isRegLoc()) {
10762       // Queue up the argument copies and emit them at the end.
10763       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10764     } else {
10765       assert(VA.isMemLoc() && "Argument not register or memory");
10766       assert(!IsTailCall && "Tail call not allowed if stack is used "
10767                             "for passing parameters");
10768 
10769       // Work out the address of the stack slot.
10770       if (!StackPtr.getNode())
10771         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10772       SDValue Address =
10773           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10774                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10775 
10776       // Emit the store.
10777       MemOpChains.push_back(
10778           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10779     }
10780   }
10781 
10782   // Join the stores, which are independent of one another.
10783   if (!MemOpChains.empty())
10784     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10785 
10786   SDValue Glue;
10787 
10788   // Build a sequence of copy-to-reg nodes, chained and glued together.
10789   for (auto &Reg : RegsToPass) {
10790     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10791     Glue = Chain.getValue(1);
10792   }
10793 
10794   // Validate that none of the argument registers have been marked as
10795   // reserved, if so report an error. Do the same for the return address if this
10796   // is not a tailcall.
10797   validateCCReservedRegs(RegsToPass, MF);
10798   if (!IsTailCall &&
10799       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10800     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10801         MF.getFunction(),
10802         "Return address register required, but has been reserved."});
10803 
10804   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10805   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10806   // split it and then direct call can be matched by PseudoCALL.
10807   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10808     const GlobalValue *GV = S->getGlobal();
10809 
10810     unsigned OpFlags = RISCVII::MO_CALL;
10811     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10812       OpFlags = RISCVII::MO_PLT;
10813 
10814     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10815   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10816     unsigned OpFlags = RISCVII::MO_CALL;
10817 
10818     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10819                                                  nullptr))
10820       OpFlags = RISCVII::MO_PLT;
10821 
10822     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10823   }
10824 
10825   // The first call operand is the chain and the second is the target address.
10826   SmallVector<SDValue, 8> Ops;
10827   Ops.push_back(Chain);
10828   Ops.push_back(Callee);
10829 
10830   // Add argument registers to the end of the list so that they are
10831   // known live into the call.
10832   for (auto &Reg : RegsToPass)
10833     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10834 
10835   if (!IsTailCall) {
10836     // Add a register mask operand representing the call-preserved registers.
10837     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10838     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10839     assert(Mask && "Missing call preserved mask for calling convention");
10840     Ops.push_back(DAG.getRegisterMask(Mask));
10841   }
10842 
10843   // Glue the call to the argument copies, if any.
10844   if (Glue.getNode())
10845     Ops.push_back(Glue);
10846 
10847   // Emit the call.
10848   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10849 
10850   if (IsTailCall) {
10851     MF.getFrameInfo().setHasTailCall();
10852     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10853   }
10854 
10855   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10856   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10857   Glue = Chain.getValue(1);
10858 
10859   // Mark the end of the call, which is glued to the call itself.
10860   Chain = DAG.getCALLSEQ_END(Chain,
10861                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10862                              DAG.getConstant(0, DL, PtrVT, true),
10863                              Glue, DL);
10864   Glue = Chain.getValue(1);
10865 
10866   // Assign locations to each value returned by this call.
10867   SmallVector<CCValAssign, 16> RVLocs;
10868   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10869   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10870 
10871   // Copy all of the result registers out of their specified physreg.
10872   for (auto &VA : RVLocs) {
10873     // Copy the value out
10874     SDValue RetValue =
10875         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10876     // Glue the RetValue to the end of the call sequence
10877     Chain = RetValue.getValue(1);
10878     Glue = RetValue.getValue(2);
10879 
10880     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10881       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10882       SDValue RetValue2 =
10883           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10884       Chain = RetValue2.getValue(1);
10885       Glue = RetValue2.getValue(2);
10886       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10887                              RetValue2);
10888     }
10889 
10890     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10891 
10892     InVals.push_back(RetValue);
10893   }
10894 
10895   return Chain;
10896 }
10897 
10898 bool RISCVTargetLowering::CanLowerReturn(
10899     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10900     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10901   SmallVector<CCValAssign, 16> RVLocs;
10902   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10903 
10904   Optional<unsigned> FirstMaskArgument;
10905   if (Subtarget.hasVInstructions())
10906     FirstMaskArgument = preAssignMask(Outs);
10907 
10908   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10909     MVT VT = Outs[i].VT;
10910     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10911     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10912     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10913                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10914                  *this, FirstMaskArgument))
10915       return false;
10916   }
10917   return true;
10918 }
10919 
10920 SDValue
10921 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10922                                  bool IsVarArg,
10923                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10924                                  const SmallVectorImpl<SDValue> &OutVals,
10925                                  const SDLoc &DL, SelectionDAG &DAG) const {
10926   const MachineFunction &MF = DAG.getMachineFunction();
10927   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10928 
10929   // Stores the assignment of the return value to a location.
10930   SmallVector<CCValAssign, 16> RVLocs;
10931 
10932   // Info about the registers and stack slot.
10933   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10934                  *DAG.getContext());
10935 
10936   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10937                     nullptr, CC_RISCV);
10938 
10939   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10940     report_fatal_error("GHC functions return void only");
10941 
10942   SDValue Glue;
10943   SmallVector<SDValue, 4> RetOps(1, Chain);
10944 
10945   // Copy the result values into the output registers.
10946   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10947     SDValue Val = OutVals[i];
10948     CCValAssign &VA = RVLocs[i];
10949     assert(VA.isRegLoc() && "Can only return in registers!");
10950 
10951     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10952       // Handle returning f64 on RV32D with a soft float ABI.
10953       assert(VA.isRegLoc() && "Expected return via registers");
10954       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10955                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10956       SDValue Lo = SplitF64.getValue(0);
10957       SDValue Hi = SplitF64.getValue(1);
10958       Register RegLo = VA.getLocReg();
10959       assert(RegLo < RISCV::X31 && "Invalid register pair");
10960       Register RegHi = RegLo + 1;
10961 
10962       if (STI.isRegisterReservedByUser(RegLo) ||
10963           STI.isRegisterReservedByUser(RegHi))
10964         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10965             MF.getFunction(),
10966             "Return value register required, but has been reserved."});
10967 
10968       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10969       Glue = Chain.getValue(1);
10970       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10971       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10972       Glue = Chain.getValue(1);
10973       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10974     } else {
10975       // Handle a 'normal' return.
10976       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10977       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10978 
10979       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10980         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10981             MF.getFunction(),
10982             "Return value register required, but has been reserved."});
10983 
10984       // Guarantee that all emitted copies are stuck together.
10985       Glue = Chain.getValue(1);
10986       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10987     }
10988   }
10989 
10990   RetOps[0] = Chain; // Update chain.
10991 
10992   // Add the glue node if we have it.
10993   if (Glue.getNode()) {
10994     RetOps.push_back(Glue);
10995   }
10996 
10997   unsigned RetOpc = RISCVISD::RET_FLAG;
10998   // Interrupt service routines use different return instructions.
10999   const Function &Func = DAG.getMachineFunction().getFunction();
11000   if (Func.hasFnAttribute("interrupt")) {
11001     if (!Func.getReturnType()->isVoidTy())
11002       report_fatal_error(
11003           "Functions with the interrupt attribute must have void return type!");
11004 
11005     MachineFunction &MF = DAG.getMachineFunction();
11006     StringRef Kind =
11007       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11008 
11009     if (Kind == "user")
11010       RetOpc = RISCVISD::URET_FLAG;
11011     else if (Kind == "supervisor")
11012       RetOpc = RISCVISD::SRET_FLAG;
11013     else
11014       RetOpc = RISCVISD::MRET_FLAG;
11015   }
11016 
11017   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11018 }
11019 
11020 void RISCVTargetLowering::validateCCReservedRegs(
11021     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11022     MachineFunction &MF) const {
11023   const Function &F = MF.getFunction();
11024   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11025 
11026   if (llvm::any_of(Regs, [&STI](auto Reg) {
11027         return STI.isRegisterReservedByUser(Reg.first);
11028       }))
11029     F.getContext().diagnose(DiagnosticInfoUnsupported{
11030         F, "Argument register required, but has been reserved."});
11031 }
11032 
11033 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11034   return CI->isTailCall();
11035 }
11036 
11037 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11038 #define NODE_NAME_CASE(NODE)                                                   \
11039   case RISCVISD::NODE:                                                         \
11040     return "RISCVISD::" #NODE;
11041   // clang-format off
11042   switch ((RISCVISD::NodeType)Opcode) {
11043   case RISCVISD::FIRST_NUMBER:
11044     break;
11045   NODE_NAME_CASE(RET_FLAG)
11046   NODE_NAME_CASE(URET_FLAG)
11047   NODE_NAME_CASE(SRET_FLAG)
11048   NODE_NAME_CASE(MRET_FLAG)
11049   NODE_NAME_CASE(CALL)
11050   NODE_NAME_CASE(SELECT_CC)
11051   NODE_NAME_CASE(BR_CC)
11052   NODE_NAME_CASE(BuildPairF64)
11053   NODE_NAME_CASE(SplitF64)
11054   NODE_NAME_CASE(TAIL)
11055   NODE_NAME_CASE(MULHSU)
11056   NODE_NAME_CASE(SLLW)
11057   NODE_NAME_CASE(SRAW)
11058   NODE_NAME_CASE(SRLW)
11059   NODE_NAME_CASE(DIVW)
11060   NODE_NAME_CASE(DIVUW)
11061   NODE_NAME_CASE(REMUW)
11062   NODE_NAME_CASE(ROLW)
11063   NODE_NAME_CASE(RORW)
11064   NODE_NAME_CASE(CLZW)
11065   NODE_NAME_CASE(CTZW)
11066   NODE_NAME_CASE(FSLW)
11067   NODE_NAME_CASE(FSRW)
11068   NODE_NAME_CASE(FSL)
11069   NODE_NAME_CASE(FSR)
11070   NODE_NAME_CASE(FMV_H_X)
11071   NODE_NAME_CASE(FMV_X_ANYEXTH)
11072   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11073   NODE_NAME_CASE(FMV_W_X_RV64)
11074   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11075   NODE_NAME_CASE(FCVT_X)
11076   NODE_NAME_CASE(FCVT_XU)
11077   NODE_NAME_CASE(FCVT_W_RV64)
11078   NODE_NAME_CASE(FCVT_WU_RV64)
11079   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11080   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11081   NODE_NAME_CASE(READ_CYCLE_WIDE)
11082   NODE_NAME_CASE(GREV)
11083   NODE_NAME_CASE(GREVW)
11084   NODE_NAME_CASE(GORC)
11085   NODE_NAME_CASE(GORCW)
11086   NODE_NAME_CASE(SHFL)
11087   NODE_NAME_CASE(SHFLW)
11088   NODE_NAME_CASE(UNSHFL)
11089   NODE_NAME_CASE(UNSHFLW)
11090   NODE_NAME_CASE(BFP)
11091   NODE_NAME_CASE(BFPW)
11092   NODE_NAME_CASE(BCOMPRESS)
11093   NODE_NAME_CASE(BCOMPRESSW)
11094   NODE_NAME_CASE(BDECOMPRESS)
11095   NODE_NAME_CASE(BDECOMPRESSW)
11096   NODE_NAME_CASE(VMV_V_X_VL)
11097   NODE_NAME_CASE(VFMV_V_F_VL)
11098   NODE_NAME_CASE(VMV_X_S)
11099   NODE_NAME_CASE(VMV_S_X_VL)
11100   NODE_NAME_CASE(VFMV_S_F_VL)
11101   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11102   NODE_NAME_CASE(READ_VLENB)
11103   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11104   NODE_NAME_CASE(VSLIDEUP_VL)
11105   NODE_NAME_CASE(VSLIDE1UP_VL)
11106   NODE_NAME_CASE(VSLIDEDOWN_VL)
11107   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11108   NODE_NAME_CASE(VID_VL)
11109   NODE_NAME_CASE(VFNCVT_ROD_VL)
11110   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11111   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11112   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11113   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11114   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11115   NODE_NAME_CASE(VECREDUCE_AND_VL)
11116   NODE_NAME_CASE(VECREDUCE_OR_VL)
11117   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11118   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11119   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11120   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11121   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11122   NODE_NAME_CASE(ADD_VL)
11123   NODE_NAME_CASE(AND_VL)
11124   NODE_NAME_CASE(MUL_VL)
11125   NODE_NAME_CASE(OR_VL)
11126   NODE_NAME_CASE(SDIV_VL)
11127   NODE_NAME_CASE(SHL_VL)
11128   NODE_NAME_CASE(SREM_VL)
11129   NODE_NAME_CASE(SRA_VL)
11130   NODE_NAME_CASE(SRL_VL)
11131   NODE_NAME_CASE(SUB_VL)
11132   NODE_NAME_CASE(UDIV_VL)
11133   NODE_NAME_CASE(UREM_VL)
11134   NODE_NAME_CASE(XOR_VL)
11135   NODE_NAME_CASE(SADDSAT_VL)
11136   NODE_NAME_CASE(UADDSAT_VL)
11137   NODE_NAME_CASE(SSUBSAT_VL)
11138   NODE_NAME_CASE(USUBSAT_VL)
11139   NODE_NAME_CASE(FADD_VL)
11140   NODE_NAME_CASE(FSUB_VL)
11141   NODE_NAME_CASE(FMUL_VL)
11142   NODE_NAME_CASE(FDIV_VL)
11143   NODE_NAME_CASE(FNEG_VL)
11144   NODE_NAME_CASE(FABS_VL)
11145   NODE_NAME_CASE(FSQRT_VL)
11146   NODE_NAME_CASE(FMA_VL)
11147   NODE_NAME_CASE(FCOPYSIGN_VL)
11148   NODE_NAME_CASE(SMIN_VL)
11149   NODE_NAME_CASE(SMAX_VL)
11150   NODE_NAME_CASE(UMIN_VL)
11151   NODE_NAME_CASE(UMAX_VL)
11152   NODE_NAME_CASE(FMINNUM_VL)
11153   NODE_NAME_CASE(FMAXNUM_VL)
11154   NODE_NAME_CASE(MULHS_VL)
11155   NODE_NAME_CASE(MULHU_VL)
11156   NODE_NAME_CASE(FP_TO_SINT_VL)
11157   NODE_NAME_CASE(FP_TO_UINT_VL)
11158   NODE_NAME_CASE(SINT_TO_FP_VL)
11159   NODE_NAME_CASE(UINT_TO_FP_VL)
11160   NODE_NAME_CASE(FP_EXTEND_VL)
11161   NODE_NAME_CASE(FP_ROUND_VL)
11162   NODE_NAME_CASE(VWMUL_VL)
11163   NODE_NAME_CASE(VWMULU_VL)
11164   NODE_NAME_CASE(VWMULSU_VL)
11165   NODE_NAME_CASE(VWADD_VL)
11166   NODE_NAME_CASE(VWADDU_VL)
11167   NODE_NAME_CASE(VWSUB_VL)
11168   NODE_NAME_CASE(VWSUBU_VL)
11169   NODE_NAME_CASE(VWADD_W_VL)
11170   NODE_NAME_CASE(VWADDU_W_VL)
11171   NODE_NAME_CASE(VWSUB_W_VL)
11172   NODE_NAME_CASE(VWSUBU_W_VL)
11173   NODE_NAME_CASE(SETCC_VL)
11174   NODE_NAME_CASE(VSELECT_VL)
11175   NODE_NAME_CASE(VP_MERGE_VL)
11176   NODE_NAME_CASE(VMAND_VL)
11177   NODE_NAME_CASE(VMOR_VL)
11178   NODE_NAME_CASE(VMXOR_VL)
11179   NODE_NAME_CASE(VMCLR_VL)
11180   NODE_NAME_CASE(VMSET_VL)
11181   NODE_NAME_CASE(VRGATHER_VX_VL)
11182   NODE_NAME_CASE(VRGATHER_VV_VL)
11183   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11184   NODE_NAME_CASE(VSEXT_VL)
11185   NODE_NAME_CASE(VZEXT_VL)
11186   NODE_NAME_CASE(VCPOP_VL)
11187   NODE_NAME_CASE(READ_CSR)
11188   NODE_NAME_CASE(WRITE_CSR)
11189   NODE_NAME_CASE(SWAP_CSR)
11190   }
11191   // clang-format on
11192   return nullptr;
11193 #undef NODE_NAME_CASE
11194 }
11195 
11196 /// getConstraintType - Given a constraint letter, return the type of
11197 /// constraint it is for this target.
11198 RISCVTargetLowering::ConstraintType
11199 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11200   if (Constraint.size() == 1) {
11201     switch (Constraint[0]) {
11202     default:
11203       break;
11204     case 'f':
11205       return C_RegisterClass;
11206     case 'I':
11207     case 'J':
11208     case 'K':
11209       return C_Immediate;
11210     case 'A':
11211       return C_Memory;
11212     case 'S': // A symbolic address
11213       return C_Other;
11214     }
11215   } else {
11216     if (Constraint == "vr" || Constraint == "vm")
11217       return C_RegisterClass;
11218   }
11219   return TargetLowering::getConstraintType(Constraint);
11220 }
11221 
11222 std::pair<unsigned, const TargetRegisterClass *>
11223 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11224                                                   StringRef Constraint,
11225                                                   MVT VT) const {
11226   // First, see if this is a constraint that directly corresponds to a
11227   // RISCV register class.
11228   if (Constraint.size() == 1) {
11229     switch (Constraint[0]) {
11230     case 'r':
11231       // TODO: Support fixed vectors up to XLen for P extension?
11232       if (VT.isVector())
11233         break;
11234       return std::make_pair(0U, &RISCV::GPRRegClass);
11235     case 'f':
11236       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11237         return std::make_pair(0U, &RISCV::FPR16RegClass);
11238       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11239         return std::make_pair(0U, &RISCV::FPR32RegClass);
11240       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11241         return std::make_pair(0U, &RISCV::FPR64RegClass);
11242       break;
11243     default:
11244       break;
11245     }
11246   } else if (Constraint == "vr") {
11247     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11248                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11249       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11250         return std::make_pair(0U, RC);
11251     }
11252   } else if (Constraint == "vm") {
11253     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11254       return std::make_pair(0U, &RISCV::VMV0RegClass);
11255   }
11256 
11257   // Clang will correctly decode the usage of register name aliases into their
11258   // official names. However, other frontends like `rustc` do not. This allows
11259   // users of these frontends to use the ABI names for registers in LLVM-style
11260   // register constraints.
11261   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11262                                .Case("{zero}", RISCV::X0)
11263                                .Case("{ra}", RISCV::X1)
11264                                .Case("{sp}", RISCV::X2)
11265                                .Case("{gp}", RISCV::X3)
11266                                .Case("{tp}", RISCV::X4)
11267                                .Case("{t0}", RISCV::X5)
11268                                .Case("{t1}", RISCV::X6)
11269                                .Case("{t2}", RISCV::X7)
11270                                .Cases("{s0}", "{fp}", RISCV::X8)
11271                                .Case("{s1}", RISCV::X9)
11272                                .Case("{a0}", RISCV::X10)
11273                                .Case("{a1}", RISCV::X11)
11274                                .Case("{a2}", RISCV::X12)
11275                                .Case("{a3}", RISCV::X13)
11276                                .Case("{a4}", RISCV::X14)
11277                                .Case("{a5}", RISCV::X15)
11278                                .Case("{a6}", RISCV::X16)
11279                                .Case("{a7}", RISCV::X17)
11280                                .Case("{s2}", RISCV::X18)
11281                                .Case("{s3}", RISCV::X19)
11282                                .Case("{s4}", RISCV::X20)
11283                                .Case("{s5}", RISCV::X21)
11284                                .Case("{s6}", RISCV::X22)
11285                                .Case("{s7}", RISCV::X23)
11286                                .Case("{s8}", RISCV::X24)
11287                                .Case("{s9}", RISCV::X25)
11288                                .Case("{s10}", RISCV::X26)
11289                                .Case("{s11}", RISCV::X27)
11290                                .Case("{t3}", RISCV::X28)
11291                                .Case("{t4}", RISCV::X29)
11292                                .Case("{t5}", RISCV::X30)
11293                                .Case("{t6}", RISCV::X31)
11294                                .Default(RISCV::NoRegister);
11295   if (XRegFromAlias != RISCV::NoRegister)
11296     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11297 
11298   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11299   // TableGen record rather than the AsmName to choose registers for InlineAsm
11300   // constraints, plus we want to match those names to the widest floating point
11301   // register type available, manually select floating point registers here.
11302   //
11303   // The second case is the ABI name of the register, so that frontends can also
11304   // use the ABI names in register constraint lists.
11305   if (Subtarget.hasStdExtF()) {
11306     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11307                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11308                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11309                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11310                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11311                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11312                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11313                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11314                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11315                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11316                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11317                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11318                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11319                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11320                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11321                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11322                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11323                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11324                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11325                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11326                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11327                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11328                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11329                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11330                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11331                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11332                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11333                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11334                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11335                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11336                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11337                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11338                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11339                         .Default(RISCV::NoRegister);
11340     if (FReg != RISCV::NoRegister) {
11341       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11342       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11343         unsigned RegNo = FReg - RISCV::F0_F;
11344         unsigned DReg = RISCV::F0_D + RegNo;
11345         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11346       }
11347       if (VT == MVT::f32 || VT == MVT::Other)
11348         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11349       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11350         unsigned RegNo = FReg - RISCV::F0_F;
11351         unsigned HReg = RISCV::F0_H + RegNo;
11352         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11353       }
11354     }
11355   }
11356 
11357   if (Subtarget.hasVInstructions()) {
11358     Register VReg = StringSwitch<Register>(Constraint.lower())
11359                         .Case("{v0}", RISCV::V0)
11360                         .Case("{v1}", RISCV::V1)
11361                         .Case("{v2}", RISCV::V2)
11362                         .Case("{v3}", RISCV::V3)
11363                         .Case("{v4}", RISCV::V4)
11364                         .Case("{v5}", RISCV::V5)
11365                         .Case("{v6}", RISCV::V6)
11366                         .Case("{v7}", RISCV::V7)
11367                         .Case("{v8}", RISCV::V8)
11368                         .Case("{v9}", RISCV::V9)
11369                         .Case("{v10}", RISCV::V10)
11370                         .Case("{v11}", RISCV::V11)
11371                         .Case("{v12}", RISCV::V12)
11372                         .Case("{v13}", RISCV::V13)
11373                         .Case("{v14}", RISCV::V14)
11374                         .Case("{v15}", RISCV::V15)
11375                         .Case("{v16}", RISCV::V16)
11376                         .Case("{v17}", RISCV::V17)
11377                         .Case("{v18}", RISCV::V18)
11378                         .Case("{v19}", RISCV::V19)
11379                         .Case("{v20}", RISCV::V20)
11380                         .Case("{v21}", RISCV::V21)
11381                         .Case("{v22}", RISCV::V22)
11382                         .Case("{v23}", RISCV::V23)
11383                         .Case("{v24}", RISCV::V24)
11384                         .Case("{v25}", RISCV::V25)
11385                         .Case("{v26}", RISCV::V26)
11386                         .Case("{v27}", RISCV::V27)
11387                         .Case("{v28}", RISCV::V28)
11388                         .Case("{v29}", RISCV::V29)
11389                         .Case("{v30}", RISCV::V30)
11390                         .Case("{v31}", RISCV::V31)
11391                         .Default(RISCV::NoRegister);
11392     if (VReg != RISCV::NoRegister) {
11393       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11394         return std::make_pair(VReg, &RISCV::VMRegClass);
11395       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11396         return std::make_pair(VReg, &RISCV::VRRegClass);
11397       for (const auto *RC :
11398            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11399         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11400           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11401           return std::make_pair(VReg, RC);
11402         }
11403       }
11404     }
11405   }
11406 
11407   std::pair<Register, const TargetRegisterClass *> Res =
11408       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11409 
11410   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11411   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11412   // Subtarget into account.
11413   if (Res.second == &RISCV::GPRF16RegClass ||
11414       Res.second == &RISCV::GPRF32RegClass ||
11415       Res.second == &RISCV::GPRF64RegClass)
11416     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11417 
11418   return Res;
11419 }
11420 
11421 unsigned
11422 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11423   // Currently only support length 1 constraints.
11424   if (ConstraintCode.size() == 1) {
11425     switch (ConstraintCode[0]) {
11426     case 'A':
11427       return InlineAsm::Constraint_A;
11428     default:
11429       break;
11430     }
11431   }
11432 
11433   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11434 }
11435 
11436 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11437     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11438     SelectionDAG &DAG) const {
11439   // Currently only support length 1 constraints.
11440   if (Constraint.length() == 1) {
11441     switch (Constraint[0]) {
11442     case 'I':
11443       // Validate & create a 12-bit signed immediate operand.
11444       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11445         uint64_t CVal = C->getSExtValue();
11446         if (isInt<12>(CVal))
11447           Ops.push_back(
11448               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11449       }
11450       return;
11451     case 'J':
11452       // Validate & create an integer zero operand.
11453       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11454         if (C->getZExtValue() == 0)
11455           Ops.push_back(
11456               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11457       return;
11458     case 'K':
11459       // Validate & create a 5-bit unsigned immediate operand.
11460       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11461         uint64_t CVal = C->getZExtValue();
11462         if (isUInt<5>(CVal))
11463           Ops.push_back(
11464               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11465       }
11466       return;
11467     case 'S':
11468       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11469         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11470                                                  GA->getValueType(0)));
11471       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11472         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11473                                                 BA->getValueType(0)));
11474       }
11475       return;
11476     default:
11477       break;
11478     }
11479   }
11480   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11481 }
11482 
11483 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11484                                                    Instruction *Inst,
11485                                                    AtomicOrdering Ord) const {
11486   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11487     return Builder.CreateFence(Ord);
11488   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11489     return Builder.CreateFence(AtomicOrdering::Release);
11490   return nullptr;
11491 }
11492 
11493 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11494                                                     Instruction *Inst,
11495                                                     AtomicOrdering Ord) const {
11496   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11497     return Builder.CreateFence(AtomicOrdering::Acquire);
11498   return nullptr;
11499 }
11500 
11501 TargetLowering::AtomicExpansionKind
11502 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11503   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11504   // point operations can't be used in an lr/sc sequence without breaking the
11505   // forward-progress guarantee.
11506   if (AI->isFloatingPointOperation())
11507     return AtomicExpansionKind::CmpXChg;
11508 
11509   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11510   if (Size == 8 || Size == 16)
11511     return AtomicExpansionKind::MaskedIntrinsic;
11512   return AtomicExpansionKind::None;
11513 }
11514 
11515 static Intrinsic::ID
11516 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11517   if (XLen == 32) {
11518     switch (BinOp) {
11519     default:
11520       llvm_unreachable("Unexpected AtomicRMW BinOp");
11521     case AtomicRMWInst::Xchg:
11522       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11523     case AtomicRMWInst::Add:
11524       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11525     case AtomicRMWInst::Sub:
11526       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11527     case AtomicRMWInst::Nand:
11528       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11529     case AtomicRMWInst::Max:
11530       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11531     case AtomicRMWInst::Min:
11532       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11533     case AtomicRMWInst::UMax:
11534       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11535     case AtomicRMWInst::UMin:
11536       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11537     }
11538   }
11539 
11540   if (XLen == 64) {
11541     switch (BinOp) {
11542     default:
11543       llvm_unreachable("Unexpected AtomicRMW BinOp");
11544     case AtomicRMWInst::Xchg:
11545       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11546     case AtomicRMWInst::Add:
11547       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11548     case AtomicRMWInst::Sub:
11549       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11550     case AtomicRMWInst::Nand:
11551       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11552     case AtomicRMWInst::Max:
11553       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11554     case AtomicRMWInst::Min:
11555       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11556     case AtomicRMWInst::UMax:
11557       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11558     case AtomicRMWInst::UMin:
11559       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11560     }
11561   }
11562 
11563   llvm_unreachable("Unexpected XLen\n");
11564 }
11565 
11566 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11567     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11568     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11569   unsigned XLen = Subtarget.getXLen();
11570   Value *Ordering =
11571       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11572   Type *Tys[] = {AlignedAddr->getType()};
11573   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11574       AI->getModule(),
11575       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11576 
11577   if (XLen == 64) {
11578     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11579     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11580     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11581   }
11582 
11583   Value *Result;
11584 
11585   // Must pass the shift amount needed to sign extend the loaded value prior
11586   // to performing a signed comparison for min/max. ShiftAmt is the number of
11587   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11588   // is the number of bits to left+right shift the value in order to
11589   // sign-extend.
11590   if (AI->getOperation() == AtomicRMWInst::Min ||
11591       AI->getOperation() == AtomicRMWInst::Max) {
11592     const DataLayout &DL = AI->getModule()->getDataLayout();
11593     unsigned ValWidth =
11594         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11595     Value *SextShamt =
11596         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11597     Result = Builder.CreateCall(LrwOpScwLoop,
11598                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11599   } else {
11600     Result =
11601         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11602   }
11603 
11604   if (XLen == 64)
11605     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11606   return Result;
11607 }
11608 
11609 TargetLowering::AtomicExpansionKind
11610 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11611     AtomicCmpXchgInst *CI) const {
11612   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11613   if (Size == 8 || Size == 16)
11614     return AtomicExpansionKind::MaskedIntrinsic;
11615   return AtomicExpansionKind::None;
11616 }
11617 
11618 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11619     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11620     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11621   unsigned XLen = Subtarget.getXLen();
11622   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11623   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11624   if (XLen == 64) {
11625     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11626     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11627     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11628     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11629   }
11630   Type *Tys[] = {AlignedAddr->getType()};
11631   Function *MaskedCmpXchg =
11632       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11633   Value *Result = Builder.CreateCall(
11634       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11635   if (XLen == 64)
11636     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11637   return Result;
11638 }
11639 
11640 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
11641                                                         EVT DataVT) const {
11642   return false;
11643 }
11644 
11645 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11646                                                EVT VT) const {
11647   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11648     return false;
11649 
11650   switch (FPVT.getSimpleVT().SimpleTy) {
11651   case MVT::f16:
11652     return Subtarget.hasStdExtZfh();
11653   case MVT::f32:
11654     return Subtarget.hasStdExtF();
11655   case MVT::f64:
11656     return Subtarget.hasStdExtD();
11657   default:
11658     return false;
11659   }
11660 }
11661 
11662 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11663   // If we are using the small code model, we can reduce size of jump table
11664   // entry to 4 bytes.
11665   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11666       getTargetMachine().getCodeModel() == CodeModel::Small) {
11667     return MachineJumpTableInfo::EK_Custom32;
11668   }
11669   return TargetLowering::getJumpTableEncoding();
11670 }
11671 
11672 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11673     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11674     unsigned uid, MCContext &Ctx) const {
11675   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11676          getTargetMachine().getCodeModel() == CodeModel::Small);
11677   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11678 }
11679 
11680 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11681                                                      EVT VT) const {
11682   VT = VT.getScalarType();
11683 
11684   if (!VT.isSimple())
11685     return false;
11686 
11687   switch (VT.getSimpleVT().SimpleTy) {
11688   case MVT::f16:
11689     return Subtarget.hasStdExtZfh();
11690   case MVT::f32:
11691     return Subtarget.hasStdExtF();
11692   case MVT::f64:
11693     return Subtarget.hasStdExtD();
11694   default:
11695     break;
11696   }
11697 
11698   return false;
11699 }
11700 
11701 Register RISCVTargetLowering::getExceptionPointerRegister(
11702     const Constant *PersonalityFn) const {
11703   return RISCV::X10;
11704 }
11705 
11706 Register RISCVTargetLowering::getExceptionSelectorRegister(
11707     const Constant *PersonalityFn) const {
11708   return RISCV::X11;
11709 }
11710 
11711 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11712   // Return false to suppress the unnecessary extensions if the LibCall
11713   // arguments or return value is f32 type for LP64 ABI.
11714   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11715   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11716     return false;
11717 
11718   return true;
11719 }
11720 
11721 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11722   if (Subtarget.is64Bit() && Type == MVT::i32)
11723     return true;
11724 
11725   return IsSigned;
11726 }
11727 
11728 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11729                                                  SDValue C) const {
11730   // Check integral scalar types.
11731   if (VT.isScalarInteger()) {
11732     // Omit the optimization if the sub target has the M extension and the data
11733     // size exceeds XLen.
11734     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11735       return false;
11736     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11737       // Break the MUL to a SLLI and an ADD/SUB.
11738       const APInt &Imm = ConstNode->getAPIntValue();
11739       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11740           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11741         return true;
11742       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11743       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11744           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11745            (Imm - 8).isPowerOf2()))
11746         return true;
11747       // Omit the following optimization if the sub target has the M extension
11748       // and the data size >= XLen.
11749       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11750         return false;
11751       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11752       // a pair of LUI/ADDI.
11753       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11754         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11755         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11756             (1 - ImmS).isPowerOf2())
11757         return true;
11758       }
11759     }
11760   }
11761 
11762   return false;
11763 }
11764 
11765 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11766                                                       SDValue ConstNode) const {
11767   // Let the DAGCombiner decide for vectors.
11768   EVT VT = AddNode.getValueType();
11769   if (VT.isVector())
11770     return true;
11771 
11772   // Let the DAGCombiner decide for larger types.
11773   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11774     return true;
11775 
11776   // It is worse if c1 is simm12 while c1*c2 is not.
11777   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11778   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11779   const APInt &C1 = C1Node->getAPIntValue();
11780   const APInt &C2 = C2Node->getAPIntValue();
11781   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11782     return false;
11783 
11784   // Default to true and let the DAGCombiner decide.
11785   return true;
11786 }
11787 
11788 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11789     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11790     bool *Fast) const {
11791   if (!VT.isVector()) {
11792     if (Fast)
11793       *Fast = false;
11794     return Subtarget.enableUnalignedScalarMem();
11795   }
11796 
11797   // All vector implementations must support element alignment
11798   EVT ElemVT = VT.getVectorElementType();
11799   if (Alignment >= ElemVT.getStoreSize()) {
11800     if (Fast)
11801       *Fast = true;
11802     return true;
11803   }
11804 
11805   return false;
11806 }
11807 
11808 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11809     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11810     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11811   bool IsABIRegCopy = CC.hasValue();
11812   EVT ValueVT = Val.getValueType();
11813   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11814     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11815     // and cast to f32.
11816     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11817     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11818     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11819                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11820     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11821     Parts[0] = Val;
11822     return true;
11823   }
11824 
11825   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11826     LLVMContext &Context = *DAG.getContext();
11827     EVT ValueEltVT = ValueVT.getVectorElementType();
11828     EVT PartEltVT = PartVT.getVectorElementType();
11829     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11830     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11831     if (PartVTBitSize % ValueVTBitSize == 0) {
11832       assert(PartVTBitSize >= ValueVTBitSize);
11833       // If the element types are different, bitcast to the same element type of
11834       // PartVT first.
11835       // Give an example here, we want copy a <vscale x 1 x i8> value to
11836       // <vscale x 4 x i16>.
11837       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11838       // subvector, then we can bitcast to <vscale x 4 x i16>.
11839       if (ValueEltVT != PartEltVT) {
11840         if (PartVTBitSize > ValueVTBitSize) {
11841           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11842           assert(Count != 0 && "The number of element should not be zero.");
11843           EVT SameEltTypeVT =
11844               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11845           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11846                             DAG.getUNDEF(SameEltTypeVT), Val,
11847                             DAG.getVectorIdxConstant(0, DL));
11848         }
11849         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11850       } else {
11851         Val =
11852             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11853                         Val, DAG.getVectorIdxConstant(0, DL));
11854       }
11855       Parts[0] = Val;
11856       return true;
11857     }
11858   }
11859   return false;
11860 }
11861 
11862 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11863     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11864     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11865   bool IsABIRegCopy = CC.hasValue();
11866   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11867     SDValue Val = Parts[0];
11868 
11869     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11870     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11871     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11872     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11873     return Val;
11874   }
11875 
11876   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11877     LLVMContext &Context = *DAG.getContext();
11878     SDValue Val = Parts[0];
11879     EVT ValueEltVT = ValueVT.getVectorElementType();
11880     EVT PartEltVT = PartVT.getVectorElementType();
11881     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11882     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11883     if (PartVTBitSize % ValueVTBitSize == 0) {
11884       assert(PartVTBitSize >= ValueVTBitSize);
11885       EVT SameEltTypeVT = ValueVT;
11886       // If the element types are different, convert it to the same element type
11887       // of PartVT.
11888       // Give an example here, we want copy a <vscale x 1 x i8> value from
11889       // <vscale x 4 x i16>.
11890       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11891       // then we can extract <vscale x 1 x i8>.
11892       if (ValueEltVT != PartEltVT) {
11893         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11894         assert(Count != 0 && "The number of element should not be zero.");
11895         SameEltTypeVT =
11896             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11897         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11898       }
11899       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11900                         DAG.getVectorIdxConstant(0, DL));
11901       return Val;
11902     }
11903   }
11904   return SDValue();
11905 }
11906 
11907 SDValue
11908 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11909                                    SelectionDAG &DAG,
11910                                    SmallVectorImpl<SDNode *> &Created) const {
11911   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11912   if (isIntDivCheap(N->getValueType(0), Attr))
11913     return SDValue(N, 0); // Lower SDIV as SDIV
11914 
11915   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11916          "Unexpected divisor!");
11917 
11918   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11919   if (!Subtarget.hasStdExtZbt())
11920     return SDValue();
11921 
11922   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11923   // Besides, more critical path instructions will be generated when dividing
11924   // by 2. So we keep using the original DAGs for these cases.
11925   unsigned Lg2 = Divisor.countTrailingZeros();
11926   if (Lg2 == 1 || Lg2 >= 12)
11927     return SDValue();
11928 
11929   // fold (sdiv X, pow2)
11930   EVT VT = N->getValueType(0);
11931   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11932     return SDValue();
11933 
11934   SDLoc DL(N);
11935   SDValue N0 = N->getOperand(0);
11936   SDValue Zero = DAG.getConstant(0, DL, VT);
11937   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11938 
11939   // Add (N0 < 0) ? Pow2 - 1 : 0;
11940   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11941   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11942   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11943 
11944   Created.push_back(Cmp.getNode());
11945   Created.push_back(Add.getNode());
11946   Created.push_back(Sel.getNode());
11947 
11948   // Divide by pow2.
11949   SDValue SRA =
11950       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11951 
11952   // If we're dividing by a positive value, we're done.  Otherwise, we must
11953   // negate the result.
11954   if (Divisor.isNonNegative())
11955     return SRA;
11956 
11957   Created.push_back(SRA.getNode());
11958   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11959 }
11960 
11961 #define GET_REGISTER_MATCHER
11962 #include "RISCVGenAsmMatcher.inc"
11963 
11964 Register
11965 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11966                                        const MachineFunction &MF) const {
11967   Register Reg = MatchRegisterAltName(RegName);
11968   if (Reg == RISCV::NoRegister)
11969     Reg = MatchRegisterName(RegName);
11970   if (Reg == RISCV::NoRegister)
11971     report_fatal_error(
11972         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11973   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11974   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11975     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11976                              StringRef(RegName) + "\"."));
11977   return Reg;
11978 }
11979 
11980 namespace llvm {
11981 namespace RISCVVIntrinsicsTable {
11982 
11983 #define GET_RISCVVIntrinsicsTable_IMPL
11984 #include "RISCVGenSearchableTables.inc"
11985 
11986 } // namespace RISCVVIntrinsicsTable
11987 
11988 } // namespace llvm
11989