1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 } 144 145 // Compute derived properties from the register classes. 146 computeRegisterProperties(STI.getRegisterInfo()); 147 148 setStackPointerRegisterToSaveRestore(RISCV::X2); 149 150 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 151 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 152 153 // TODO: add all necessary setOperationAction calls. 154 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 155 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 setOperationAction(ISD::BR_CC, XLenVT, Expand); 158 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 159 160 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 161 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 162 163 setOperationAction(ISD::VASTART, MVT::Other, Custom); 164 setOperationAction(ISD::VAARG, MVT::Other, Expand); 165 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 166 setOperationAction(ISD::VAEND, MVT::Other, Expand); 167 168 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 169 if (!Subtarget.hasStdExtZbb()) { 170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 172 } 173 174 if (Subtarget.is64Bit()) { 175 setOperationAction(ISD::ADD, MVT::i32, Custom); 176 setOperationAction(ISD::SUB, MVT::i32, Custom); 177 setOperationAction(ISD::SHL, MVT::i32, Custom); 178 setOperationAction(ISD::SRA, MVT::i32, Custom); 179 setOperationAction(ISD::SRL, MVT::i32, Custom); 180 } 181 182 if (!Subtarget.hasStdExtM()) { 183 setOperationAction(ISD::MUL, XLenVT, Expand); 184 setOperationAction(ISD::MULHS, XLenVT, Expand); 185 setOperationAction(ISD::MULHU, XLenVT, Expand); 186 setOperationAction(ISD::SDIV, XLenVT, Expand); 187 setOperationAction(ISD::UDIV, XLenVT, Expand); 188 setOperationAction(ISD::SREM, XLenVT, Expand); 189 setOperationAction(ISD::UREM, XLenVT, Expand); 190 } 191 192 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 193 setOperationAction(ISD::MUL, MVT::i32, Custom); 194 195 setOperationAction(ISD::SDIV, MVT::i8, Custom); 196 setOperationAction(ISD::UDIV, MVT::i8, Custom); 197 setOperationAction(ISD::UREM, MVT::i8, Custom); 198 setOperationAction(ISD::SDIV, MVT::i16, Custom); 199 setOperationAction(ISD::UDIV, MVT::i16, Custom); 200 setOperationAction(ISD::UREM, MVT::i16, Custom); 201 setOperationAction(ISD::SDIV, MVT::i32, Custom); 202 setOperationAction(ISD::UDIV, MVT::i32, Custom); 203 setOperationAction(ISD::UREM, MVT::i32, Custom); 204 } 205 206 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 207 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 208 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 209 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 210 211 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 212 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 213 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 214 215 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 216 if (Subtarget.is64Bit()) { 217 setOperationAction(ISD::ROTL, MVT::i32, Custom); 218 setOperationAction(ISD::ROTR, MVT::i32, Custom); 219 } 220 } else { 221 setOperationAction(ISD::ROTL, XLenVT, Expand); 222 setOperationAction(ISD::ROTR, XLenVT, Expand); 223 } 224 225 if (Subtarget.hasStdExtZbp()) { 226 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 227 // more combining. 228 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 229 setOperationAction(ISD::BSWAP, XLenVT, Custom); 230 231 if (Subtarget.is64Bit()) { 232 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 233 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 234 } 235 } else { 236 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 237 // pattern match it directly in isel. 238 setOperationAction(ISD::BSWAP, XLenVT, 239 Subtarget.hasStdExtZbb() ? Legal : Expand); 240 } 241 242 if (Subtarget.hasStdExtZbb()) { 243 setOperationAction(ISD::SMIN, XLenVT, Legal); 244 setOperationAction(ISD::SMAX, XLenVT, Legal); 245 setOperationAction(ISD::UMIN, XLenVT, Legal); 246 setOperationAction(ISD::UMAX, XLenVT, Legal); 247 } else { 248 setOperationAction(ISD::CTTZ, XLenVT, Expand); 249 setOperationAction(ISD::CTLZ, XLenVT, Expand); 250 setOperationAction(ISD::CTPOP, XLenVT, Expand); 251 } 252 253 if (Subtarget.hasStdExtZbt()) { 254 setOperationAction(ISD::FSHL, XLenVT, Legal); 255 setOperationAction(ISD::FSHR, XLenVT, Legal); 256 setOperationAction(ISD::SELECT, XLenVT, Legal); 257 258 if (Subtarget.is64Bit()) { 259 setOperationAction(ISD::FSHL, MVT::i32, Custom); 260 setOperationAction(ISD::FSHR, MVT::i32, Custom); 261 } 262 } else { 263 setOperationAction(ISD::SELECT, XLenVT, Custom); 264 } 265 266 ISD::CondCode FPCCToExpand[] = { 267 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 268 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 269 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 270 271 ISD::NodeType FPOpToExpand[] = { 272 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 273 ISD::FP_TO_FP16}; 274 275 if (Subtarget.hasStdExtZfh()) 276 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 277 278 if (Subtarget.hasStdExtZfh()) { 279 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 280 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 281 for (auto CC : FPCCToExpand) 282 setCondCodeAction(CC, MVT::f16, Expand); 283 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 284 setOperationAction(ISD::SELECT, MVT::f16, Custom); 285 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 286 for (auto Op : FPOpToExpand) 287 setOperationAction(Op, MVT::f16, Expand); 288 } 289 290 if (Subtarget.hasStdExtF()) { 291 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 292 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 293 for (auto CC : FPCCToExpand) 294 setCondCodeAction(CC, MVT::f32, Expand); 295 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 296 setOperationAction(ISD::SELECT, MVT::f32, Custom); 297 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 298 for (auto Op : FPOpToExpand) 299 setOperationAction(Op, MVT::f32, Expand); 300 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 301 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 302 } 303 304 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 305 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 306 307 if (Subtarget.hasStdExtD()) { 308 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 309 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 310 for (auto CC : FPCCToExpand) 311 setCondCodeAction(CC, MVT::f64, Expand); 312 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 313 setOperationAction(ISD::SELECT, MVT::f64, Custom); 314 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 315 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 316 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 317 for (auto Op : FPOpToExpand) 318 setOperationAction(Op, MVT::f64, Expand); 319 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 320 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 321 } 322 323 if (Subtarget.is64Bit()) { 324 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 325 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 326 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 327 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 328 } 329 330 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 331 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 332 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 333 setOperationAction(ISD::JumpTable, XLenVT, Custom); 334 335 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 336 337 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 338 // Unfortunately this can't be determined just from the ISA naming string. 339 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 340 Subtarget.is64Bit() ? Legal : Custom); 341 342 setOperationAction(ISD::TRAP, MVT::Other, Legal); 343 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 344 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 345 346 if (Subtarget.hasStdExtA()) { 347 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 348 setMinCmpXchgSizeInBits(32); 349 } else { 350 setMaxAtomicSizeInBitsSupported(0); 351 } 352 353 setBooleanContents(ZeroOrOneBooleanContent); 354 355 if (Subtarget.hasStdExtV()) { 356 setBooleanVectorContents(ZeroOrOneBooleanContent); 357 358 setOperationAction(ISD::VSCALE, XLenVT, Custom); 359 360 // RVV intrinsics may have illegal operands. 361 // We also need to custom legalize vmv.x.s. 362 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 363 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 364 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 365 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 366 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 367 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 368 369 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 373 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 374 } else { 375 // We must custom-lower certain vXi64 operations on RV32 due to the vector 376 // element type being illegal. 377 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 378 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 379 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 380 } 381 382 for (MVT VT : BoolVecVTs) { 383 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 384 385 // Mask VTs are custom-expanded into a series of standard nodes 386 setOperationAction(ISD::TRUNCATE, VT, Custom); 387 } 388 389 for (MVT VT : IntVecVTs) { 390 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 391 392 setOperationAction(ISD::SMIN, VT, Legal); 393 setOperationAction(ISD::SMAX, VT, Legal); 394 setOperationAction(ISD::UMIN, VT, Legal); 395 setOperationAction(ISD::UMAX, VT, Legal); 396 397 setOperationAction(ISD::ROTL, VT, Expand); 398 setOperationAction(ISD::ROTR, VT, Expand); 399 400 // Custom-lower extensions and truncations from/to mask types. 401 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 402 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 403 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 404 405 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 406 // nodes which truncate by one power of two at a time. 407 setOperationAction(ISD::TRUNCATE, VT, Custom); 408 409 // Custom-lower insert/extract operations to simplify patterns. 410 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 411 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 412 } 413 414 // Expand various CCs to best match the RVV ISA, which natively supports UNE 415 // but no other unordered comparisons, and supports all ordered comparisons 416 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 417 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 418 // and we pattern-match those back to the "original", swapping operands once 419 // more. This way we catch both operations and both "vf" and "fv" forms with 420 // fewer patterns. 421 ISD::CondCode VFPCCToExpand[] = { 422 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 423 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 424 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 425 }; 426 427 // Sets common operation actions on RVV floating-point vector types. 428 const auto SetCommonVFPActions = [&](MVT VT) { 429 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 430 // Custom-lower insert/extract operations to simplify patterns. 431 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 432 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 433 for (auto CC : VFPCCToExpand) 434 setCondCodeAction(CC, VT, Expand); 435 }; 436 437 if (Subtarget.hasStdExtZfh()) 438 for (MVT VT : F16VecVTs) 439 SetCommonVFPActions(VT); 440 441 if (Subtarget.hasStdExtF()) 442 for (MVT VT : F32VecVTs) 443 SetCommonVFPActions(VT); 444 445 if (Subtarget.hasStdExtD()) 446 for (MVT VT : F64VecVTs) 447 SetCommonVFPActions(VT); 448 } 449 450 // Function alignments. 451 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 452 setMinFunctionAlignment(FunctionAlignment); 453 setPrefFunctionAlignment(FunctionAlignment); 454 455 setMinimumJumpTableEntries(5); 456 457 // Jumps are expensive, compared to logic 458 setJumpIsExpensive(); 459 460 // We can use any register for comparisons 461 setHasMultipleConditionRegisters(); 462 463 setTargetDAGCombine(ISD::SETCC); 464 if (Subtarget.hasStdExtZbp()) { 465 setTargetDAGCombine(ISD::OR); 466 } 467 } 468 469 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 470 LLVMContext &Context, 471 EVT VT) const { 472 if (!VT.isVector()) 473 return getPointerTy(DL); 474 if (Subtarget.hasStdExtV() && VT.isScalableVector()) 475 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 476 return VT.changeVectorElementTypeToInteger(); 477 } 478 479 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 480 const CallInst &I, 481 MachineFunction &MF, 482 unsigned Intrinsic) const { 483 switch (Intrinsic) { 484 default: 485 return false; 486 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 487 case Intrinsic::riscv_masked_atomicrmw_add_i32: 488 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 489 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 490 case Intrinsic::riscv_masked_atomicrmw_max_i32: 491 case Intrinsic::riscv_masked_atomicrmw_min_i32: 492 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 493 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 494 case Intrinsic::riscv_masked_cmpxchg_i32: 495 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 496 Info.opc = ISD::INTRINSIC_W_CHAIN; 497 Info.memVT = MVT::getVT(PtrTy->getElementType()); 498 Info.ptrVal = I.getArgOperand(0); 499 Info.offset = 0; 500 Info.align = Align(4); 501 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 502 MachineMemOperand::MOVolatile; 503 return true; 504 } 505 } 506 507 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 508 const AddrMode &AM, Type *Ty, 509 unsigned AS, 510 Instruction *I) const { 511 // No global is ever allowed as a base. 512 if (AM.BaseGV) 513 return false; 514 515 // Require a 12-bit signed offset. 516 if (!isInt<12>(AM.BaseOffs)) 517 return false; 518 519 switch (AM.Scale) { 520 case 0: // "r+i" or just "i", depending on HasBaseReg. 521 break; 522 case 1: 523 if (!AM.HasBaseReg) // allow "r+i". 524 break; 525 return false; // disallow "r+r" or "r+r+i". 526 default: 527 return false; 528 } 529 530 return true; 531 } 532 533 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 534 return isInt<12>(Imm); 535 } 536 537 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 538 return isInt<12>(Imm); 539 } 540 541 // On RV32, 64-bit integers are split into their high and low parts and held 542 // in two different registers, so the trunc is free since the low register can 543 // just be used. 544 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 545 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 546 return false; 547 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 548 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 549 return (SrcBits == 64 && DestBits == 32); 550 } 551 552 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 553 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 554 !SrcVT.isInteger() || !DstVT.isInteger()) 555 return false; 556 unsigned SrcBits = SrcVT.getSizeInBits(); 557 unsigned DestBits = DstVT.getSizeInBits(); 558 return (SrcBits == 64 && DestBits == 32); 559 } 560 561 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 562 // Zexts are free if they can be combined with a load. 563 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 564 EVT MemVT = LD->getMemoryVT(); 565 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 566 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 567 (LD->getExtensionType() == ISD::NON_EXTLOAD || 568 LD->getExtensionType() == ISD::ZEXTLOAD)) 569 return true; 570 } 571 572 return TargetLowering::isZExtFree(Val, VT2); 573 } 574 575 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 576 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 577 } 578 579 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 580 return Subtarget.hasStdExtZbb(); 581 } 582 583 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 584 return Subtarget.hasStdExtZbb(); 585 } 586 587 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 588 bool ForCodeSize) const { 589 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 590 return false; 591 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 592 return false; 593 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 594 return false; 595 if (Imm.isNegZero()) 596 return false; 597 return Imm.isZero(); 598 } 599 600 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 601 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 602 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 603 (VT == MVT::f64 && Subtarget.hasStdExtD()); 604 } 605 606 // Changes the condition code and swaps operands if necessary, so the SetCC 607 // operation matches one of the comparisons supported directly in the RISC-V 608 // ISA. 609 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 610 switch (CC) { 611 default: 612 break; 613 case ISD::SETGT: 614 case ISD::SETLE: 615 case ISD::SETUGT: 616 case ISD::SETULE: 617 CC = ISD::getSetCCSwappedOperands(CC); 618 std::swap(LHS, RHS); 619 break; 620 } 621 } 622 623 // Return the RISC-V branch opcode that matches the given DAG integer 624 // condition code. The CondCode must be one of those supported by the RISC-V 625 // ISA (see normaliseSetCC). 626 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 627 switch (CC) { 628 default: 629 llvm_unreachable("Unsupported CondCode"); 630 case ISD::SETEQ: 631 return RISCV::BEQ; 632 case ISD::SETNE: 633 return RISCV::BNE; 634 case ISD::SETLT: 635 return RISCV::BLT; 636 case ISD::SETGE: 637 return RISCV::BGE; 638 case ISD::SETULT: 639 return RISCV::BLTU; 640 case ISD::SETUGE: 641 return RISCV::BGEU; 642 } 643 } 644 645 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 646 SelectionDAG &DAG) const { 647 switch (Op.getOpcode()) { 648 default: 649 report_fatal_error("unimplemented operand"); 650 case ISD::GlobalAddress: 651 return lowerGlobalAddress(Op, DAG); 652 case ISD::BlockAddress: 653 return lowerBlockAddress(Op, DAG); 654 case ISD::ConstantPool: 655 return lowerConstantPool(Op, DAG); 656 case ISD::JumpTable: 657 return lowerJumpTable(Op, DAG); 658 case ISD::GlobalTLSAddress: 659 return lowerGlobalTLSAddress(Op, DAG); 660 case ISD::SELECT: 661 return lowerSELECT(Op, DAG); 662 case ISD::VASTART: 663 return lowerVASTART(Op, DAG); 664 case ISD::FRAMEADDR: 665 return lowerFRAMEADDR(Op, DAG); 666 case ISD::RETURNADDR: 667 return lowerRETURNADDR(Op, DAG); 668 case ISD::SHL_PARTS: 669 return lowerShiftLeftParts(Op, DAG); 670 case ISD::SRA_PARTS: 671 return lowerShiftRightParts(Op, DAG, true); 672 case ISD::SRL_PARTS: 673 return lowerShiftRightParts(Op, DAG, false); 674 case ISD::BITCAST: { 675 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 676 Subtarget.hasStdExtZfh()) && 677 "Unexpected custom legalisation"); 678 SDLoc DL(Op); 679 SDValue Op0 = Op.getOperand(0); 680 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 681 if (Op0.getValueType() != MVT::i16) 682 return SDValue(); 683 SDValue NewOp0 = 684 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 685 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 686 return FPConv; 687 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 688 Subtarget.hasStdExtF()) { 689 if (Op0.getValueType() != MVT::i32) 690 return SDValue(); 691 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 692 SDValue FPConv = 693 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 694 return FPConv; 695 } 696 return SDValue(); 697 } 698 case ISD::INTRINSIC_WO_CHAIN: 699 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 700 case ISD::INTRINSIC_W_CHAIN: 701 return LowerINTRINSIC_W_CHAIN(Op, DAG); 702 case ISD::BSWAP: 703 case ISD::BITREVERSE: { 704 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 705 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 706 MVT VT = Op.getSimpleValueType(); 707 SDLoc DL(Op); 708 // Start with the maximum immediate value which is the bitwidth - 1. 709 unsigned Imm = VT.getSizeInBits() - 1; 710 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 711 if (Op.getOpcode() == ISD::BSWAP) 712 Imm &= ~0x7U; 713 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 714 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 715 } 716 case ISD::TRUNCATE: { 717 SDLoc DL(Op); 718 EVT VT = Op.getValueType(); 719 // Only custom-lower vector truncates 720 if (!VT.isVector()) 721 return Op; 722 723 // Truncates to mask types are handled differently 724 if (VT.getVectorElementType() == MVT::i1) 725 return lowerVectorMaskTrunc(Op, DAG); 726 727 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 728 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 729 // truncate by one power of two at a time. 730 EVT DstEltVT = VT.getVectorElementType(); 731 732 SDValue Src = Op.getOperand(0); 733 EVT SrcVT = Src.getValueType(); 734 EVT SrcEltVT = SrcVT.getVectorElementType(); 735 736 assert(DstEltVT.bitsLT(SrcEltVT) && 737 isPowerOf2_64(DstEltVT.getSizeInBits()) && 738 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 739 "Unexpected vector truncate lowering"); 740 741 SDValue Result = Src; 742 LLVMContext &Context = *DAG.getContext(); 743 const ElementCount Count = SrcVT.getVectorElementCount(); 744 do { 745 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 746 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 747 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 748 } while (SrcEltVT != DstEltVT); 749 750 return Result; 751 } 752 case ISD::ANY_EXTEND: 753 case ISD::ZERO_EXTEND: 754 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 755 case ISD::SIGN_EXTEND: 756 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 757 case ISD::SPLAT_VECTOR: 758 return lowerSPLATVECTOR(Op, DAG); 759 case ISD::INSERT_VECTOR_ELT: 760 return lowerINSERT_VECTOR_ELT(Op, DAG); 761 case ISD::EXTRACT_VECTOR_ELT: 762 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 763 case ISD::VSCALE: { 764 MVT VT = Op.getSimpleValueType(); 765 SDLoc DL(Op); 766 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 767 // We define our scalable vector types for lmul=1 to use a 64 bit known 768 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 769 // vscale as VLENB / 8. 770 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 771 DAG.getConstant(3, DL, VT)); 772 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 773 } 774 } 775 } 776 777 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 778 SelectionDAG &DAG, unsigned Flags) { 779 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 780 } 781 782 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 783 SelectionDAG &DAG, unsigned Flags) { 784 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 785 Flags); 786 } 787 788 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 789 SelectionDAG &DAG, unsigned Flags) { 790 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 791 N->getOffset(), Flags); 792 } 793 794 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 795 SelectionDAG &DAG, unsigned Flags) { 796 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 797 } 798 799 template <class NodeTy> 800 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 801 bool IsLocal) const { 802 SDLoc DL(N); 803 EVT Ty = getPointerTy(DAG.getDataLayout()); 804 805 if (isPositionIndependent()) { 806 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 807 if (IsLocal) 808 // Use PC-relative addressing to access the symbol. This generates the 809 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 810 // %pcrel_lo(auipc)). 811 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 812 813 // Use PC-relative addressing to access the GOT for this symbol, then load 814 // the address from the GOT. This generates the pattern (PseudoLA sym), 815 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 816 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 817 } 818 819 switch (getTargetMachine().getCodeModel()) { 820 default: 821 report_fatal_error("Unsupported code model for lowering"); 822 case CodeModel::Small: { 823 // Generate a sequence for accessing addresses within the first 2 GiB of 824 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 825 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 826 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 827 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 828 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 829 } 830 case CodeModel::Medium: { 831 // Generate a sequence for accessing addresses within any 2GiB range within 832 // the address space. This generates the pattern (PseudoLLA sym), which 833 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 834 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 835 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 836 } 837 } 838 } 839 840 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 841 SelectionDAG &DAG) const { 842 SDLoc DL(Op); 843 EVT Ty = Op.getValueType(); 844 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 845 int64_t Offset = N->getOffset(); 846 MVT XLenVT = Subtarget.getXLenVT(); 847 848 const GlobalValue *GV = N->getGlobal(); 849 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 850 SDValue Addr = getAddr(N, DAG, IsLocal); 851 852 // In order to maximise the opportunity for common subexpression elimination, 853 // emit a separate ADD node for the global address offset instead of folding 854 // it in the global address node. Later peephole optimisations may choose to 855 // fold it back in when profitable. 856 if (Offset != 0) 857 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 858 DAG.getConstant(Offset, DL, XLenVT)); 859 return Addr; 860 } 861 862 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 863 SelectionDAG &DAG) const { 864 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 865 866 return getAddr(N, DAG); 867 } 868 869 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 870 SelectionDAG &DAG) const { 871 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 872 873 return getAddr(N, DAG); 874 } 875 876 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 877 SelectionDAG &DAG) const { 878 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 879 880 return getAddr(N, DAG); 881 } 882 883 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 884 SelectionDAG &DAG, 885 bool UseGOT) const { 886 SDLoc DL(N); 887 EVT Ty = getPointerTy(DAG.getDataLayout()); 888 const GlobalValue *GV = N->getGlobal(); 889 MVT XLenVT = Subtarget.getXLenVT(); 890 891 if (UseGOT) { 892 // Use PC-relative addressing to access the GOT for this TLS symbol, then 893 // load the address from the GOT and add the thread pointer. This generates 894 // the pattern (PseudoLA_TLS_IE sym), which expands to 895 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 896 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 897 SDValue Load = 898 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 899 900 // Add the thread pointer. 901 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 902 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 903 } 904 905 // Generate a sequence for accessing the address relative to the thread 906 // pointer, with the appropriate adjustment for the thread pointer offset. 907 // This generates the pattern 908 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 909 SDValue AddrHi = 910 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 911 SDValue AddrAdd = 912 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 913 SDValue AddrLo = 914 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 915 916 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 917 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 918 SDValue MNAdd = SDValue( 919 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 920 0); 921 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 922 } 923 924 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 925 SelectionDAG &DAG) const { 926 SDLoc DL(N); 927 EVT Ty = getPointerTy(DAG.getDataLayout()); 928 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 929 const GlobalValue *GV = N->getGlobal(); 930 931 // Use a PC-relative addressing mode to access the global dynamic GOT address. 932 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 933 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 934 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 935 SDValue Load = 936 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 937 938 // Prepare argument list to generate call. 939 ArgListTy Args; 940 ArgListEntry Entry; 941 Entry.Node = Load; 942 Entry.Ty = CallTy; 943 Args.push_back(Entry); 944 945 // Setup call to __tls_get_addr. 946 TargetLowering::CallLoweringInfo CLI(DAG); 947 CLI.setDebugLoc(DL) 948 .setChain(DAG.getEntryNode()) 949 .setLibCallee(CallingConv::C, CallTy, 950 DAG.getExternalSymbol("__tls_get_addr", Ty), 951 std::move(Args)); 952 953 return LowerCallTo(CLI).first; 954 } 955 956 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 957 SelectionDAG &DAG) const { 958 SDLoc DL(Op); 959 EVT Ty = Op.getValueType(); 960 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 961 int64_t Offset = N->getOffset(); 962 MVT XLenVT = Subtarget.getXLenVT(); 963 964 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 965 966 if (DAG.getMachineFunction().getFunction().getCallingConv() == 967 CallingConv::GHC) 968 report_fatal_error("In GHC calling convention TLS is not supported"); 969 970 SDValue Addr; 971 switch (Model) { 972 case TLSModel::LocalExec: 973 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 974 break; 975 case TLSModel::InitialExec: 976 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 977 break; 978 case TLSModel::LocalDynamic: 979 case TLSModel::GeneralDynamic: 980 Addr = getDynamicTLSAddr(N, DAG); 981 break; 982 } 983 984 // In order to maximise the opportunity for common subexpression elimination, 985 // emit a separate ADD node for the global address offset instead of folding 986 // it in the global address node. Later peephole optimisations may choose to 987 // fold it back in when profitable. 988 if (Offset != 0) 989 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 990 DAG.getConstant(Offset, DL, XLenVT)); 991 return Addr; 992 } 993 994 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 995 SDValue CondV = Op.getOperand(0); 996 SDValue TrueV = Op.getOperand(1); 997 SDValue FalseV = Op.getOperand(2); 998 SDLoc DL(Op); 999 MVT XLenVT = Subtarget.getXLenVT(); 1000 1001 // If the result type is XLenVT and CondV is the output of a SETCC node 1002 // which also operated on XLenVT inputs, then merge the SETCC node into the 1003 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1004 // compare+branch instructions. i.e.: 1005 // (select (setcc lhs, rhs, cc), truev, falsev) 1006 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1007 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1008 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1009 SDValue LHS = CondV.getOperand(0); 1010 SDValue RHS = CondV.getOperand(1); 1011 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1012 ISD::CondCode CCVal = CC->get(); 1013 1014 normaliseSetCC(LHS, RHS, CCVal); 1015 1016 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1017 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1018 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1019 } 1020 1021 // Otherwise: 1022 // (select condv, truev, falsev) 1023 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1024 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1025 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1026 1027 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1028 1029 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1030 } 1031 1032 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1033 MachineFunction &MF = DAG.getMachineFunction(); 1034 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1035 1036 SDLoc DL(Op); 1037 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1038 getPointerTy(MF.getDataLayout())); 1039 1040 // vastart just stores the address of the VarArgsFrameIndex slot into the 1041 // memory location argument. 1042 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1043 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1044 MachinePointerInfo(SV)); 1045 } 1046 1047 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1048 SelectionDAG &DAG) const { 1049 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1050 MachineFunction &MF = DAG.getMachineFunction(); 1051 MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 MFI.setFrameAddressIsTaken(true); 1053 Register FrameReg = RI.getFrameRegister(MF); 1054 int XLenInBytes = Subtarget.getXLen() / 8; 1055 1056 EVT VT = Op.getValueType(); 1057 SDLoc DL(Op); 1058 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1059 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1060 while (Depth--) { 1061 int Offset = -(XLenInBytes * 2); 1062 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1063 DAG.getIntPtrConstant(Offset, DL)); 1064 FrameAddr = 1065 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1066 } 1067 return FrameAddr; 1068 } 1069 1070 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1071 SelectionDAG &DAG) const { 1072 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1073 MachineFunction &MF = DAG.getMachineFunction(); 1074 MachineFrameInfo &MFI = MF.getFrameInfo(); 1075 MFI.setReturnAddressIsTaken(true); 1076 MVT XLenVT = Subtarget.getXLenVT(); 1077 int XLenInBytes = Subtarget.getXLen() / 8; 1078 1079 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1080 return SDValue(); 1081 1082 EVT VT = Op.getValueType(); 1083 SDLoc DL(Op); 1084 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1085 if (Depth) { 1086 int Off = -XLenInBytes; 1087 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1088 SDValue Offset = DAG.getConstant(Off, DL, VT); 1089 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1090 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1091 MachinePointerInfo()); 1092 } 1093 1094 // Return the value of the return address register, marking it an implicit 1095 // live-in. 1096 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1097 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1098 } 1099 1100 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1101 SelectionDAG &DAG) const { 1102 SDLoc DL(Op); 1103 SDValue Lo = Op.getOperand(0); 1104 SDValue Hi = Op.getOperand(1); 1105 SDValue Shamt = Op.getOperand(2); 1106 EVT VT = Lo.getValueType(); 1107 1108 // if Shamt-XLEN < 0: // Shamt < XLEN 1109 // Lo = Lo << Shamt 1110 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1111 // else: 1112 // Lo = 0 1113 // Hi = Lo << (Shamt-XLEN) 1114 1115 SDValue Zero = DAG.getConstant(0, DL, VT); 1116 SDValue One = DAG.getConstant(1, DL, VT); 1117 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1118 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1119 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1120 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1121 1122 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1123 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1124 SDValue ShiftRightLo = 1125 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1126 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1127 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1128 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1129 1130 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1131 1132 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1133 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1134 1135 SDValue Parts[2] = {Lo, Hi}; 1136 return DAG.getMergeValues(Parts, DL); 1137 } 1138 1139 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1140 bool IsSRA) const { 1141 SDLoc DL(Op); 1142 SDValue Lo = Op.getOperand(0); 1143 SDValue Hi = Op.getOperand(1); 1144 SDValue Shamt = Op.getOperand(2); 1145 EVT VT = Lo.getValueType(); 1146 1147 // SRA expansion: 1148 // if Shamt-XLEN < 0: // Shamt < XLEN 1149 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1150 // Hi = Hi >>s Shamt 1151 // else: 1152 // Lo = Hi >>s (Shamt-XLEN); 1153 // Hi = Hi >>s (XLEN-1) 1154 // 1155 // SRL expansion: 1156 // if Shamt-XLEN < 0: // Shamt < XLEN 1157 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1158 // Hi = Hi >>u Shamt 1159 // else: 1160 // Lo = Hi >>u (Shamt-XLEN); 1161 // Hi = 0; 1162 1163 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1164 1165 SDValue Zero = DAG.getConstant(0, DL, VT); 1166 SDValue One = DAG.getConstant(1, DL, VT); 1167 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1168 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1169 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1170 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1171 1172 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1173 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1174 SDValue ShiftLeftHi = 1175 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1176 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1177 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1178 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1179 SDValue HiFalse = 1180 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1181 1182 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1183 1184 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1185 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1186 1187 SDValue Parts[2] = {Lo, Hi}; 1188 return DAG.getMergeValues(Parts, DL); 1189 } 1190 1191 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1192 // illegal (currently only vXi64 RV32). 1193 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1194 // them to SPLAT_VECTOR_I64 1195 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1196 SelectionDAG &DAG) const { 1197 SDLoc DL(Op); 1198 EVT VecVT = Op.getValueType(); 1199 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1200 "Unexpected SPLAT_VECTOR lowering"); 1201 SDValue SplatVal = Op.getOperand(0); 1202 1203 // If we can prove that the value is a sign-extended 32-bit value, lower this 1204 // as a custom node in order to try and match RVV vector/scalar instructions. 1205 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1206 if (isInt<32>(CVal->getSExtValue())) 1207 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1208 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1209 } 1210 1211 if (SplatVal.getOpcode() == ISD::SIGN_EXTEND && 1212 SplatVal.getOperand(0).getValueType() == MVT::i32) { 1213 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1214 SplatVal.getOperand(0)); 1215 } 1216 1217 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1218 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1219 // vmv.v.x vX, hi 1220 // vsll.vx vX, vX, /*32*/ 1221 // vmv.v.x vY, lo 1222 // vsll.vx vY, vY, /*32*/ 1223 // vsrl.vx vY, vY, /*32*/ 1224 // vor.vv vX, vX, vY 1225 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1226 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1227 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1228 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1229 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1230 1231 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1232 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1233 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1234 1235 if (isNullConstant(Hi)) 1236 return Lo; 1237 1238 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1239 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1240 1241 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1242 } 1243 1244 // Custom-lower extensions from mask vectors by using a vselect either with 1 1245 // for zero/any-extension or -1 for sign-extension: 1246 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1247 // Note that any-extension is lowered identically to zero-extension. 1248 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1249 int64_t ExtTrueVal) const { 1250 SDLoc DL(Op); 1251 EVT VecVT = Op.getValueType(); 1252 SDValue Src = Op.getOperand(0); 1253 // Only custom-lower extensions from mask types 1254 if (!Src.getValueType().isVector() || 1255 Src.getValueType().getVectorElementType() != MVT::i1) 1256 return Op; 1257 1258 // Be careful not to introduce illegal scalar types at this stage, and be 1259 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1260 // illegal and must be expanded. Since we know that the constants are 1261 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1262 bool IsRV32E64 = 1263 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1264 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1265 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT()); 1266 1267 if (!IsRV32E64) { 1268 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1269 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1270 } else { 1271 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1272 SplatTrueVal = 1273 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1274 } 1275 1276 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1277 } 1278 1279 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1280 // setcc operation: 1281 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1282 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1283 SelectionDAG &DAG) const { 1284 SDLoc DL(Op); 1285 EVT MaskVT = Op.getValueType(); 1286 // Only expect to custom-lower truncations to mask types 1287 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1288 "Unexpected type for vector mask lowering"); 1289 SDValue Src = Op.getOperand(0); 1290 EVT VecVT = Src.getValueType(); 1291 1292 // Be careful not to introduce illegal scalar types at this stage, and be 1293 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1294 // illegal and must be expanded. Since we know that the constants are 1295 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1296 bool IsRV32E64 = 1297 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1298 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1299 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1300 1301 if (!IsRV32E64) { 1302 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1303 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1304 } else { 1305 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1306 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1307 } 1308 1309 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1310 1311 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1312 } 1313 1314 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 1315 SelectionDAG &DAG) const { 1316 SDLoc DL(Op); 1317 EVT VecVT = Op.getValueType(); 1318 SDValue Vec = Op.getOperand(0); 1319 SDValue Val = Op.getOperand(1); 1320 SDValue Idx = Op.getOperand(2); 1321 1322 // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is 1323 // first slid down into position, the value is inserted into the first 1324 // position, and the vector is slid back up. We do this to simplify patterns. 1325 // (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx), 1326 if (Subtarget.is64Bit() || VecVT.getVectorElementType() != MVT::i64) { 1327 if (isNullConstant(Idx)) 1328 return Op; 1329 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1330 DAG.getUNDEF(VecVT), Vec, Idx); 1331 SDValue InsertElt0 = 1332 DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecVT, Slidedown, Val, 1333 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1334 1335 return DAG.getNode(RISCVISD::VSLIDEUP, DL, VecVT, Vec, InsertElt0, Idx); 1336 } 1337 1338 // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type 1339 // is illegal (currently only vXi64 RV32). 1340 // Since there is no easy way of getting a single element into a vector when 1341 // XLEN<SEW, we lower the operation to the following sequence: 1342 // splat vVal, rVal 1343 // vid.v vVid 1344 // vmseq.vx mMask, vVid, rIdx 1345 // vmerge.vvm vDest, vSrc, vVal, mMask 1346 // This essentially merges the original vector with the inserted element by 1347 // using a mask whose only set bit is that corresponding to the insert 1348 // index. 1349 SDValue SplattedVal = DAG.getSplatVector(VecVT, DL, Val); 1350 SDValue SplattedIdx = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Idx); 1351 1352 SDValue VID = DAG.getNode(RISCVISD::VID, DL, VecVT); 1353 auto SetCCVT = 1354 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VecVT); 1355 SDValue Mask = DAG.getSetCC(DL, SetCCVT, VID, SplattedIdx, ISD::SETEQ); 1356 1357 return DAG.getNode(ISD::VSELECT, DL, VecVT, Mask, SplattedVal, Vec); 1358 } 1359 1360 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 1361 // extract the first element: (extractelt (slidedown vec, idx), 0). This is 1362 // done to maintain partity with the legalization of RV32 vXi64 legalization. 1363 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 1364 SelectionDAG &DAG) const { 1365 SDLoc DL(Op); 1366 SDValue Idx = Op.getOperand(1); 1367 if (isNullConstant(Idx)) 1368 return Op; 1369 1370 SDValue Vec = Op.getOperand(0); 1371 EVT EltVT = Op.getValueType(); 1372 EVT VecVT = Vec.getValueType(); 1373 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1374 DAG.getUNDEF(VecVT), Vec, Idx); 1375 1376 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Slidedown, 1377 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1378 } 1379 1380 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1381 SelectionDAG &DAG) const { 1382 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1383 SDLoc DL(Op); 1384 1385 if (Subtarget.hasStdExtV()) { 1386 // Some RVV intrinsics may claim that they want an integer operand to be 1387 // extended. 1388 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1389 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1390 if (II->ExtendedOperand) { 1391 assert(II->ExtendedOperand < Op.getNumOperands()); 1392 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1393 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1394 EVT OpVT = ScalarOp.getValueType(); 1395 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1396 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1397 // If the operand is a constant, sign extend to increase our chances 1398 // of being able to use a .vi instruction. ANY_EXTEND would become a 1399 // a zero extend and the simm5 check in isel would fail. 1400 // FIXME: Should we ignore the upper bits in isel instead? 1401 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1402 : ISD::ANY_EXTEND; 1403 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1404 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1405 Operands); 1406 } 1407 } 1408 } 1409 } 1410 1411 switch (IntNo) { 1412 default: 1413 return SDValue(); // Don't custom lower most intrinsics. 1414 case Intrinsic::thread_pointer: { 1415 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1416 return DAG.getRegister(RISCV::X4, PtrVT); 1417 } 1418 case Intrinsic::riscv_vmv_x_s: 1419 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1420 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1421 Op.getOperand(1)); 1422 } 1423 } 1424 1425 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1426 SelectionDAG &DAG) const { 1427 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1428 SDLoc DL(Op); 1429 1430 if (Subtarget.hasStdExtV()) { 1431 // Some RVV intrinsics may claim that they want an integer operand to be 1432 // extended. 1433 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1434 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1435 if (II->ExtendedOperand) { 1436 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1437 unsigned ExtendOp = II->ExtendedOperand + 1; 1438 assert(ExtendOp < Op.getNumOperands()); 1439 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1440 SDValue &ScalarOp = Operands[ExtendOp]; 1441 EVT OpVT = ScalarOp.getValueType(); 1442 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1443 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1444 // If the operand is a constant, sign extend to increase our chances 1445 // of being able to use a .vi instruction. ANY_EXTEND would become a 1446 // a zero extend and the simm5 check in isel would fail. 1447 // FIXME: Should we ignore the upper bits in isel instead? 1448 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1449 : ISD::ANY_EXTEND; 1450 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1451 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1452 Operands); 1453 } 1454 } 1455 } 1456 } 1457 1458 switch (IntNo) { 1459 default: 1460 return SDValue(); // Don't custom lower most intrinsics. 1461 case Intrinsic::riscv_vleff: { 1462 SDLoc DL(Op); 1463 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1464 SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0), 1465 Op.getOperand(2), Op.getOperand(3)); 1466 SDValue ReadVL = 1467 SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1), 1468 Load.getValue(2)), 1469 0); 1470 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1471 } 1472 case Intrinsic::riscv_vleff_mask: { 1473 SDLoc DL(Op); 1474 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1475 SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0), 1476 Op.getOperand(2), Op.getOperand(3), 1477 Op.getOperand(4), Op.getOperand(5)); 1478 SDValue ReadVL = 1479 SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1), 1480 Load.getValue(2)), 1481 0); 1482 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1483 } 1484 } 1485 } 1486 1487 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1488 // form of the given Opcode. 1489 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1490 switch (Opcode) { 1491 default: 1492 llvm_unreachable("Unexpected opcode"); 1493 case ISD::SHL: 1494 return RISCVISD::SLLW; 1495 case ISD::SRA: 1496 return RISCVISD::SRAW; 1497 case ISD::SRL: 1498 return RISCVISD::SRLW; 1499 case ISD::SDIV: 1500 return RISCVISD::DIVW; 1501 case ISD::UDIV: 1502 return RISCVISD::DIVUW; 1503 case ISD::UREM: 1504 return RISCVISD::REMUW; 1505 case ISD::ROTL: 1506 return RISCVISD::ROLW; 1507 case ISD::ROTR: 1508 return RISCVISD::RORW; 1509 case RISCVISD::GREVI: 1510 return RISCVISD::GREVIW; 1511 case RISCVISD::GORCI: 1512 return RISCVISD::GORCIW; 1513 } 1514 } 1515 1516 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1517 // Because i32 isn't a legal type for RV64, these operations would otherwise 1518 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1519 // later one because the fact the operation was originally of type i32 is 1520 // lost. 1521 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 1522 unsigned ExtOpc = ISD::ANY_EXTEND) { 1523 SDLoc DL(N); 1524 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1525 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 1526 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 1527 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1528 // ReplaceNodeResults requires we maintain the same type for the return value. 1529 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 1530 } 1531 1532 // Converts the given 32-bit operation to a i64 operation with signed extension 1533 // semantic to reduce the signed extension instructions. 1534 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1535 SDLoc DL(N); 1536 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1537 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1538 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1539 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1540 DAG.getValueType(MVT::i32)); 1541 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1542 } 1543 1544 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1545 SmallVectorImpl<SDValue> &Results, 1546 SelectionDAG &DAG) const { 1547 SDLoc DL(N); 1548 switch (N->getOpcode()) { 1549 default: 1550 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1551 case ISD::STRICT_FP_TO_SINT: 1552 case ISD::STRICT_FP_TO_UINT: 1553 case ISD::FP_TO_SINT: 1554 case ISD::FP_TO_UINT: { 1555 bool IsStrict = N->isStrictFPOpcode(); 1556 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1557 "Unexpected custom legalisation"); 1558 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1559 // If the FP type needs to be softened, emit a library call using the 'si' 1560 // version. If we left it to default legalization we'd end up with 'di'. If 1561 // the FP type doesn't need to be softened just let generic type 1562 // legalization promote the result type. 1563 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1564 TargetLowering::TypeSoftenFloat) 1565 return; 1566 RTLIB::Libcall LC; 1567 if (N->getOpcode() == ISD::FP_TO_SINT || 1568 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1569 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1570 else 1571 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1572 MakeLibCallOptions CallOptions; 1573 EVT OpVT = Op0.getValueType(); 1574 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1575 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1576 SDValue Result; 1577 std::tie(Result, Chain) = 1578 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1579 Results.push_back(Result); 1580 if (IsStrict) 1581 Results.push_back(Chain); 1582 break; 1583 } 1584 case ISD::READCYCLECOUNTER: { 1585 assert(!Subtarget.is64Bit() && 1586 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1587 1588 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1589 SDValue RCW = 1590 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1591 1592 Results.push_back( 1593 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1594 Results.push_back(RCW.getValue(2)); 1595 break; 1596 } 1597 case ISD::ADD: 1598 case ISD::SUB: 1599 case ISD::MUL: 1600 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1601 "Unexpected custom legalisation"); 1602 if (N->getOperand(1).getOpcode() == ISD::Constant) 1603 return; 1604 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1605 break; 1606 case ISD::SHL: 1607 case ISD::SRA: 1608 case ISD::SRL: 1609 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1610 "Unexpected custom legalisation"); 1611 if (N->getOperand(1).getOpcode() == ISD::Constant) 1612 return; 1613 Results.push_back(customLegalizeToWOp(N, DAG)); 1614 break; 1615 case ISD::ROTL: 1616 case ISD::ROTR: 1617 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1618 "Unexpected custom legalisation"); 1619 Results.push_back(customLegalizeToWOp(N, DAG)); 1620 break; 1621 case ISD::SDIV: 1622 case ISD::UDIV: 1623 case ISD::UREM: { 1624 MVT VT = N->getSimpleValueType(0); 1625 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 1626 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 1627 "Unexpected custom legalisation"); 1628 if (N->getOperand(0).getOpcode() == ISD::Constant || 1629 N->getOperand(1).getOpcode() == ISD::Constant) 1630 return; 1631 1632 // If the input is i32, use ANY_EXTEND since the W instructions don't read 1633 // the upper 32 bits. For other types we need to sign or zero extend 1634 // based on the opcode. 1635 unsigned ExtOpc = ISD::ANY_EXTEND; 1636 if (VT != MVT::i32) 1637 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 1638 : ISD::ZERO_EXTEND; 1639 1640 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 1641 break; 1642 } 1643 case ISD::BITCAST: { 1644 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1645 Subtarget.hasStdExtF()) || 1646 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1647 "Unexpected custom legalisation"); 1648 SDValue Op0 = N->getOperand(0); 1649 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1650 if (Op0.getValueType() != MVT::f16) 1651 return; 1652 SDValue FPConv = 1653 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1654 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1655 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1656 Subtarget.hasStdExtF()) { 1657 if (Op0.getValueType() != MVT::f32) 1658 return; 1659 SDValue FPConv = 1660 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1661 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1662 } 1663 break; 1664 } 1665 case RISCVISD::GREVI: 1666 case RISCVISD::GORCI: { 1667 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1668 "Unexpected custom legalisation"); 1669 // This is similar to customLegalizeToWOp, except that we pass the second 1670 // operand (a TargetConstant) straight through: it is already of type 1671 // XLenVT. 1672 SDLoc DL(N); 1673 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1674 SDValue NewOp0 = 1675 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1676 SDValue NewRes = 1677 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1678 // ReplaceNodeResults requires we maintain the same type for the return 1679 // value. 1680 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1681 break; 1682 } 1683 case ISD::BSWAP: 1684 case ISD::BITREVERSE: { 1685 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1686 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1687 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1688 N->getOperand(0)); 1689 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1690 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1691 DAG.getTargetConstant(Imm, DL, 1692 Subtarget.getXLenVT())); 1693 // ReplaceNodeResults requires we maintain the same type for the return 1694 // value. 1695 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1696 break; 1697 } 1698 case ISD::FSHL: 1699 case ISD::FSHR: { 1700 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1701 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1702 SDValue NewOp0 = 1703 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1704 SDValue NewOp1 = 1705 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1706 SDValue NewOp2 = 1707 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1708 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1709 // Mask the shift amount to 5 bits. 1710 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1711 DAG.getConstant(0x1f, DL, MVT::i64)); 1712 unsigned Opc = 1713 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1714 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1715 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1716 break; 1717 } 1718 case ISD::EXTRACT_VECTOR_ELT: { 1719 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 1720 // type is illegal (currently only vXi64 RV32). 1721 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 1722 // transferred to the destination register. We issue two of these from the 1723 // upper- and lower- halves of the SEW-bit vector element, slid down to the 1724 // first element. 1725 SDLoc DL(N); 1726 SDValue Vec = N->getOperand(0); 1727 SDValue Idx = N->getOperand(1); 1728 EVT VecVT = Vec.getValueType(); 1729 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 1730 VecVT.getVectorElementType() == MVT::i64 && 1731 "Unexpected EXTRACT_VECTOR_ELT legalization"); 1732 1733 SDValue Slidedown = Vec; 1734 // Unless the index is known to be 0, we must slide the vector down to get 1735 // the desired element into index 0. 1736 if (!isNullConstant(Idx)) 1737 Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1738 DAG.getUNDEF(VecVT), Vec, Idx); 1739 1740 MVT XLenVT = Subtarget.getXLenVT(); 1741 // Extract the lower XLEN bits of the correct vector element. 1742 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Slidedown, Idx); 1743 1744 // To extract the upper XLEN bits of the vector element, shift the first 1745 // element right by 32 bits and re-extract the lower XLEN bits. 1746 SDValue ThirtyTwoV = 1747 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1748 DAG.getConstant(32, DL, Subtarget.getXLenVT())); 1749 SDValue LShr32 = DAG.getNode(ISD::SRL, DL, VecVT, Slidedown, ThirtyTwoV); 1750 1751 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32, Idx); 1752 1753 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 1754 break; 1755 } 1756 case ISD::INTRINSIC_WO_CHAIN: { 1757 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1758 switch (IntNo) { 1759 default: 1760 llvm_unreachable( 1761 "Don't know how to custom type legalize this intrinsic!"); 1762 case Intrinsic::riscv_vmv_x_s: { 1763 EVT VT = N->getValueType(0); 1764 assert((VT == MVT::i8 || VT == MVT::i16 || 1765 (Subtarget.is64Bit() && VT == MVT::i32)) && 1766 "Unexpected custom legalisation!"); 1767 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1768 Subtarget.getXLenVT(), N->getOperand(1)); 1769 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1770 break; 1771 } 1772 } 1773 break; 1774 } 1775 } 1776 } 1777 1778 // A structure to hold one of the bit-manipulation patterns below. Together, a 1779 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1780 // (or (and (shl x, 1), 0xAAAAAAAA), 1781 // (and (srl x, 1), 0x55555555)) 1782 struct RISCVBitmanipPat { 1783 SDValue Op; 1784 unsigned ShAmt; 1785 bool IsSHL; 1786 1787 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1788 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1789 } 1790 }; 1791 1792 // Matches any of the following bit-manipulation patterns: 1793 // (and (shl x, 1), (0x55555555 << 1)) 1794 // (and (srl x, 1), 0x55555555) 1795 // (shl (and x, 0x55555555), 1) 1796 // (srl (and x, (0x55555555 << 1)), 1) 1797 // where the shift amount and mask may vary thus: 1798 // [1] = 0x55555555 / 0xAAAAAAAA 1799 // [2] = 0x33333333 / 0xCCCCCCCC 1800 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1801 // [8] = 0x00FF00FF / 0xFF00FF00 1802 // [16] = 0x0000FFFF / 0xFFFFFFFF 1803 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1804 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1805 Optional<uint64_t> Mask; 1806 // Optionally consume a mask around the shift operation. 1807 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1808 Mask = Op.getConstantOperandVal(1); 1809 Op = Op.getOperand(0); 1810 } 1811 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1812 return None; 1813 bool IsSHL = Op.getOpcode() == ISD::SHL; 1814 1815 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1816 return None; 1817 auto ShAmt = Op.getConstantOperandVal(1); 1818 1819 if (!isPowerOf2_64(ShAmt)) 1820 return None; 1821 1822 // These are the unshifted masks which we use to match bit-manipulation 1823 // patterns. They may be shifted left in certain circumstances. 1824 static const uint64_t BitmanipMasks[] = { 1825 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1826 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1827 }; 1828 1829 unsigned MaskIdx = Log2_64(ShAmt); 1830 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1831 return None; 1832 1833 auto Src = Op.getOperand(0); 1834 1835 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1836 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1837 1838 // The expected mask is shifted left when the AND is found around SHL 1839 // patterns. 1840 // ((x >> 1) & 0x55555555) 1841 // ((x << 1) & 0xAAAAAAAA) 1842 bool SHLExpMask = IsSHL; 1843 1844 if (!Mask) { 1845 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1846 // the mask is all ones: consume that now. 1847 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1848 Mask = Src.getConstantOperandVal(1); 1849 Src = Src.getOperand(0); 1850 // The expected mask is now in fact shifted left for SRL, so reverse the 1851 // decision. 1852 // ((x & 0xAAAAAAAA) >> 1) 1853 // ((x & 0x55555555) << 1) 1854 SHLExpMask = !SHLExpMask; 1855 } else { 1856 // Use a default shifted mask of all-ones if there's no AND, truncated 1857 // down to the expected width. This simplifies the logic later on. 1858 Mask = maskTrailingOnes<uint64_t>(Width); 1859 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1860 } 1861 } 1862 1863 if (SHLExpMask) 1864 ExpMask <<= ShAmt; 1865 1866 if (Mask != ExpMask) 1867 return None; 1868 1869 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1870 } 1871 1872 // Match the following pattern as a GREVI(W) operation 1873 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1874 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1875 const RISCVSubtarget &Subtarget) { 1876 EVT VT = Op.getValueType(); 1877 1878 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1879 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1880 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1881 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1882 SDLoc DL(Op); 1883 return DAG.getNode( 1884 RISCVISD::GREVI, DL, VT, LHS->Op, 1885 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1886 } 1887 } 1888 return SDValue(); 1889 } 1890 1891 // Matches any the following pattern as a GORCI(W) operation 1892 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 1893 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 1894 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 1895 // Note that with the variant of 3., 1896 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 1897 // the inner pattern will first be matched as GREVI and then the outer 1898 // pattern will be matched to GORC via the first rule above. 1899 // 4. (or (rotl/rotr x, bitwidth/2), x) 1900 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 1901 const RISCVSubtarget &Subtarget) { 1902 EVT VT = Op.getValueType(); 1903 1904 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1905 SDLoc DL(Op); 1906 SDValue Op0 = Op.getOperand(0); 1907 SDValue Op1 = Op.getOperand(1); 1908 1909 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 1910 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 1911 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 1912 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 1913 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 1914 if ((Reverse.getOpcode() == ISD::ROTL || 1915 Reverse.getOpcode() == ISD::ROTR) && 1916 Reverse.getOperand(0) == X && 1917 isa<ConstantSDNode>(Reverse.getOperand(1))) { 1918 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 1919 if (RotAmt == (VT.getSizeInBits() / 2)) 1920 return DAG.getNode( 1921 RISCVISD::GORCI, DL, VT, X, 1922 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 1923 } 1924 return SDValue(); 1925 }; 1926 1927 // Check for either commutable permutation of (or (GREVI x, shamt), x) 1928 if (SDValue V = MatchOROfReverse(Op0, Op1)) 1929 return V; 1930 if (SDValue V = MatchOROfReverse(Op1, Op0)) 1931 return V; 1932 1933 // OR is commutable so canonicalize its OR operand to the left 1934 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 1935 std::swap(Op0, Op1); 1936 if (Op0.getOpcode() != ISD::OR) 1937 return SDValue(); 1938 SDValue OrOp0 = Op0.getOperand(0); 1939 SDValue OrOp1 = Op0.getOperand(1); 1940 auto LHS = matchRISCVBitmanipPat(OrOp0); 1941 // OR is commutable so swap the operands and try again: x might have been 1942 // on the left 1943 if (!LHS) { 1944 std::swap(OrOp0, OrOp1); 1945 LHS = matchRISCVBitmanipPat(OrOp0); 1946 } 1947 auto RHS = matchRISCVBitmanipPat(Op1); 1948 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 1949 return DAG.getNode( 1950 RISCVISD::GORCI, DL, VT, LHS->Op, 1951 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1952 } 1953 } 1954 return SDValue(); 1955 } 1956 1957 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 1958 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 1959 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 1960 // not undo itself, but they are redundant. 1961 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 1962 unsigned ShAmt1 = N->getConstantOperandVal(1); 1963 SDValue Src = N->getOperand(0); 1964 1965 if (Src.getOpcode() != N->getOpcode()) 1966 return SDValue(); 1967 1968 unsigned ShAmt2 = Src.getConstantOperandVal(1); 1969 Src = Src.getOperand(0); 1970 1971 unsigned CombinedShAmt; 1972 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 1973 CombinedShAmt = ShAmt1 | ShAmt2; 1974 else 1975 CombinedShAmt = ShAmt1 ^ ShAmt2; 1976 1977 if (CombinedShAmt == 0) 1978 return Src; 1979 1980 SDLoc DL(N); 1981 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 1982 DAG.getTargetConstant(CombinedShAmt, DL, 1983 N->getOperand(1).getValueType())); 1984 } 1985 1986 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1987 DAGCombinerInfo &DCI) const { 1988 SelectionDAG &DAG = DCI.DAG; 1989 1990 switch (N->getOpcode()) { 1991 default: 1992 break; 1993 case RISCVISD::SplitF64: { 1994 SDValue Op0 = N->getOperand(0); 1995 // If the input to SplitF64 is just BuildPairF64 then the operation is 1996 // redundant. Instead, use BuildPairF64's operands directly. 1997 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1998 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1999 2000 SDLoc DL(N); 2001 2002 // It's cheaper to materialise two 32-bit integers than to load a double 2003 // from the constant pool and transfer it to integer registers through the 2004 // stack. 2005 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 2006 APInt V = C->getValueAPF().bitcastToAPInt(); 2007 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 2008 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 2009 return DCI.CombineTo(N, Lo, Hi); 2010 } 2011 2012 // This is a target-specific version of a DAGCombine performed in 2013 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2014 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2015 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2016 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2017 !Op0.getNode()->hasOneUse()) 2018 break; 2019 SDValue NewSplitF64 = 2020 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 2021 Op0.getOperand(0)); 2022 SDValue Lo = NewSplitF64.getValue(0); 2023 SDValue Hi = NewSplitF64.getValue(1); 2024 APInt SignBit = APInt::getSignMask(32); 2025 if (Op0.getOpcode() == ISD::FNEG) { 2026 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 2027 DAG.getConstant(SignBit, DL, MVT::i32)); 2028 return DCI.CombineTo(N, Lo, NewHi); 2029 } 2030 assert(Op0.getOpcode() == ISD::FABS); 2031 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 2032 DAG.getConstant(~SignBit, DL, MVT::i32)); 2033 return DCI.CombineTo(N, Lo, NewHi); 2034 } 2035 case RISCVISD::SLLW: 2036 case RISCVISD::SRAW: 2037 case RISCVISD::SRLW: 2038 case RISCVISD::ROLW: 2039 case RISCVISD::RORW: { 2040 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 2041 SDValue LHS = N->getOperand(0); 2042 SDValue RHS = N->getOperand(1); 2043 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 2044 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 2045 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 2046 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 2047 if (N->getOpcode() != ISD::DELETED_NODE) 2048 DCI.AddToWorklist(N); 2049 return SDValue(N, 0); 2050 } 2051 break; 2052 } 2053 case RISCVISD::FSLW: 2054 case RISCVISD::FSRW: { 2055 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 2056 // read. 2057 SDValue Op0 = N->getOperand(0); 2058 SDValue Op1 = N->getOperand(1); 2059 SDValue ShAmt = N->getOperand(2); 2060 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2061 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 2062 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 2063 SimplifyDemandedBits(Op1, OpMask, DCI) || 2064 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 2065 if (N->getOpcode() != ISD::DELETED_NODE) 2066 DCI.AddToWorklist(N); 2067 return SDValue(N, 0); 2068 } 2069 break; 2070 } 2071 case RISCVISD::GREVIW: 2072 case RISCVISD::GORCIW: { 2073 // Only the lower 32 bits of the first operand are read 2074 SDValue Op0 = N->getOperand(0); 2075 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2076 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 2077 if (N->getOpcode() != ISD::DELETED_NODE) 2078 DCI.AddToWorklist(N); 2079 return SDValue(N, 0); 2080 } 2081 2082 return combineGREVI_GORCI(N, DCI.DAG); 2083 } 2084 case RISCVISD::FMV_X_ANYEXTW_RV64: { 2085 SDLoc DL(N); 2086 SDValue Op0 = N->getOperand(0); 2087 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 2088 // conversion is unnecessary and can be replaced with an ANY_EXTEND 2089 // of the FMV_W_X_RV64 operand. 2090 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 2091 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 2092 "Unexpected value type!"); 2093 return Op0.getOperand(0); 2094 } 2095 2096 // This is a target-specific version of a DAGCombine performed in 2097 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2098 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2099 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2100 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2101 !Op0.getNode()->hasOneUse()) 2102 break; 2103 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 2104 Op0.getOperand(0)); 2105 APInt SignBit = APInt::getSignMask(32).sext(64); 2106 if (Op0.getOpcode() == ISD::FNEG) 2107 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 2108 DAG.getConstant(SignBit, DL, MVT::i64)); 2109 2110 assert(Op0.getOpcode() == ISD::FABS); 2111 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 2112 DAG.getConstant(~SignBit, DL, MVT::i64)); 2113 } 2114 case RISCVISD::GREVI: 2115 case RISCVISD::GORCI: 2116 return combineGREVI_GORCI(N, DCI.DAG); 2117 case ISD::OR: 2118 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 2119 return GREV; 2120 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 2121 return GORC; 2122 break; 2123 case RISCVISD::SELECT_CC: { 2124 // Transform 2125 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 2126 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 2127 // This can occur when legalizing some floating point comparisons. 2128 SDValue LHS = N->getOperand(0); 2129 SDValue RHS = N->getOperand(1); 2130 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 2131 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2132 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 2133 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 2134 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 2135 SDLoc DL(N); 2136 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 2137 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 2138 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 2139 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 2140 N->getOperand(4)}); 2141 } 2142 break; 2143 } 2144 case ISD::SETCC: { 2145 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 2146 // Comparing with 0 may allow us to fold into bnez/beqz. 2147 SDValue LHS = N->getOperand(0); 2148 SDValue RHS = N->getOperand(1); 2149 if (LHS.getValueType().isScalableVector()) 2150 break; 2151 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2152 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2153 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 2154 DAG.MaskedValueIsZero(LHS, Mask)) { 2155 SDLoc DL(N); 2156 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 2157 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2158 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 2159 } 2160 break; 2161 } 2162 } 2163 2164 return SDValue(); 2165 } 2166 2167 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 2168 const SDNode *N, CombineLevel Level) const { 2169 // The following folds are only desirable if `(OP _, c1 << c2)` can be 2170 // materialised in fewer instructions than `(OP _, c1)`: 2171 // 2172 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 2173 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 2174 SDValue N0 = N->getOperand(0); 2175 EVT Ty = N0.getValueType(); 2176 if (Ty.isScalarInteger() && 2177 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 2178 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2179 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2180 if (C1 && C2) { 2181 const APInt &C1Int = C1->getAPIntValue(); 2182 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 2183 2184 // We can materialise `c1 << c2` into an add immediate, so it's "free", 2185 // and the combine should happen, to potentially allow further combines 2186 // later. 2187 if (ShiftedC1Int.getMinSignedBits() <= 64 && 2188 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 2189 return true; 2190 2191 // We can materialise `c1` in an add immediate, so it's "free", and the 2192 // combine should be prevented. 2193 if (C1Int.getMinSignedBits() <= 64 && 2194 isLegalAddImmediate(C1Int.getSExtValue())) 2195 return false; 2196 2197 // Neither constant will fit into an immediate, so find materialisation 2198 // costs. 2199 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 2200 Subtarget.is64Bit()); 2201 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 2202 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 2203 2204 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 2205 // combine should be prevented. 2206 if (C1Cost < ShiftedC1Cost) 2207 return false; 2208 } 2209 } 2210 return true; 2211 } 2212 2213 bool RISCVTargetLowering::targetShrinkDemandedConstant( 2214 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2215 TargetLoweringOpt &TLO) const { 2216 // Delay this optimization as late as possible. 2217 if (!TLO.LegalOps) 2218 return false; 2219 2220 EVT VT = Op.getValueType(); 2221 if (VT.isVector()) 2222 return false; 2223 2224 // Only handle AND for now. 2225 if (Op.getOpcode() != ISD::AND) 2226 return false; 2227 2228 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2229 if (!C) 2230 return false; 2231 2232 const APInt &Mask = C->getAPIntValue(); 2233 2234 // Clear all non-demanded bits initially. 2235 APInt ShrunkMask = Mask & DemandedBits; 2236 2237 // If the shrunk mask fits in sign extended 12 bits, let the target 2238 // independent code apply it. 2239 if (ShrunkMask.isSignedIntN(12)) 2240 return false; 2241 2242 // Try to make a smaller immediate by setting undemanded bits. 2243 2244 // We need to be able to make a negative number through a combination of mask 2245 // and undemanded bits. 2246 APInt ExpandedMask = Mask | ~DemandedBits; 2247 if (!ExpandedMask.isNegative()) 2248 return false; 2249 2250 // What is the fewest number of bits we need to represent the negative number. 2251 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 2252 2253 // Try to make a 12 bit negative immediate. If that fails try to make a 32 2254 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 2255 APInt NewMask = ShrunkMask; 2256 if (MinSignedBits <= 12) 2257 NewMask.setBitsFrom(11); 2258 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 2259 NewMask.setBitsFrom(31); 2260 else 2261 return false; 2262 2263 // Sanity check that our new mask is a subset of the demanded mask. 2264 assert(NewMask.isSubsetOf(ExpandedMask)); 2265 2266 // If we aren't changing the mask, just return true to keep it and prevent 2267 // the caller from optimizing. 2268 if (NewMask == Mask) 2269 return true; 2270 2271 // Replace the constant with the new mask. 2272 SDLoc DL(Op); 2273 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 2274 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 2275 return TLO.CombineTo(Op, NewOp); 2276 } 2277 2278 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2279 KnownBits &Known, 2280 const APInt &DemandedElts, 2281 const SelectionDAG &DAG, 2282 unsigned Depth) const { 2283 unsigned BitWidth = Known.getBitWidth(); 2284 unsigned Opc = Op.getOpcode(); 2285 assert((Opc >= ISD::BUILTIN_OP_END || 2286 Opc == ISD::INTRINSIC_WO_CHAIN || 2287 Opc == ISD::INTRINSIC_W_CHAIN || 2288 Opc == ISD::INTRINSIC_VOID) && 2289 "Should use MaskedValueIsZero if you don't know whether Op" 2290 " is a target node!"); 2291 2292 Known.resetAll(); 2293 switch (Opc) { 2294 default: break; 2295 case RISCVISD::REMUW: { 2296 KnownBits Known2; 2297 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2298 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2299 // We only care about the lower 32 bits. 2300 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 2301 // Restore the original width by sign extending. 2302 Known = Known.sext(BitWidth); 2303 break; 2304 } 2305 case RISCVISD::DIVUW: { 2306 KnownBits Known2; 2307 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2308 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2309 // We only care about the lower 32 bits. 2310 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 2311 // Restore the original width by sign extending. 2312 Known = Known.sext(BitWidth); 2313 break; 2314 } 2315 case RISCVISD::READ_VLENB: 2316 // We assume VLENB is at least 8 bytes. 2317 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 2318 Known.Zero.setLowBits(3); 2319 break; 2320 } 2321 } 2322 2323 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 2324 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 2325 unsigned Depth) const { 2326 switch (Op.getOpcode()) { 2327 default: 2328 break; 2329 case RISCVISD::SLLW: 2330 case RISCVISD::SRAW: 2331 case RISCVISD::SRLW: 2332 case RISCVISD::DIVW: 2333 case RISCVISD::DIVUW: 2334 case RISCVISD::REMUW: 2335 case RISCVISD::ROLW: 2336 case RISCVISD::RORW: 2337 case RISCVISD::GREVIW: 2338 case RISCVISD::GORCIW: 2339 case RISCVISD::FSLW: 2340 case RISCVISD::FSRW: 2341 // TODO: As the result is sign-extended, this is conservatively correct. A 2342 // more precise answer could be calculated for SRAW depending on known 2343 // bits in the shift amount. 2344 return 33; 2345 case RISCVISD::VMV_X_S: 2346 // The number of sign bits of the scalar result is computed by obtaining the 2347 // element type of the input vector operand, subtracting its width from the 2348 // XLEN, and then adding one (sign bit within the element type). If the 2349 // element type is wider than XLen, the least-significant XLEN bits are 2350 // taken. 2351 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 2352 return 1; 2353 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 2354 } 2355 2356 return 1; 2357 } 2358 2359 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 2360 MachineBasicBlock *BB) { 2361 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 2362 2363 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 2364 // Should the count have wrapped while it was being read, we need to try 2365 // again. 2366 // ... 2367 // read: 2368 // rdcycleh x3 # load high word of cycle 2369 // rdcycle x2 # load low word of cycle 2370 // rdcycleh x4 # load high word of cycle 2371 // bne x3, x4, read # check if high word reads match, otherwise try again 2372 // ... 2373 2374 MachineFunction &MF = *BB->getParent(); 2375 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2376 MachineFunction::iterator It = ++BB->getIterator(); 2377 2378 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2379 MF.insert(It, LoopMBB); 2380 2381 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2382 MF.insert(It, DoneMBB); 2383 2384 // Transfer the remainder of BB and its successor edges to DoneMBB. 2385 DoneMBB->splice(DoneMBB->begin(), BB, 2386 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 2387 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 2388 2389 BB->addSuccessor(LoopMBB); 2390 2391 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2392 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2393 Register LoReg = MI.getOperand(0).getReg(); 2394 Register HiReg = MI.getOperand(1).getReg(); 2395 DebugLoc DL = MI.getDebugLoc(); 2396 2397 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2398 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 2399 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2400 .addReg(RISCV::X0); 2401 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 2402 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 2403 .addReg(RISCV::X0); 2404 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 2405 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2406 .addReg(RISCV::X0); 2407 2408 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 2409 .addReg(HiReg) 2410 .addReg(ReadAgainReg) 2411 .addMBB(LoopMBB); 2412 2413 LoopMBB->addSuccessor(LoopMBB); 2414 LoopMBB->addSuccessor(DoneMBB); 2415 2416 MI.eraseFromParent(); 2417 2418 return DoneMBB; 2419 } 2420 2421 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 2422 MachineBasicBlock *BB) { 2423 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 2424 2425 MachineFunction &MF = *BB->getParent(); 2426 DebugLoc DL = MI.getDebugLoc(); 2427 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2428 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2429 Register LoReg = MI.getOperand(0).getReg(); 2430 Register HiReg = MI.getOperand(1).getReg(); 2431 Register SrcReg = MI.getOperand(2).getReg(); 2432 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 2433 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2434 2435 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 2436 RI); 2437 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2438 MachineMemOperand *MMOLo = 2439 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 2440 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2441 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 2442 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 2443 .addFrameIndex(FI) 2444 .addImm(0) 2445 .addMemOperand(MMOLo); 2446 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 2447 .addFrameIndex(FI) 2448 .addImm(4) 2449 .addMemOperand(MMOHi); 2450 MI.eraseFromParent(); // The pseudo instruction is gone now. 2451 return BB; 2452 } 2453 2454 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 2455 MachineBasicBlock *BB) { 2456 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 2457 "Unexpected instruction"); 2458 2459 MachineFunction &MF = *BB->getParent(); 2460 DebugLoc DL = MI.getDebugLoc(); 2461 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2462 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2463 Register DstReg = MI.getOperand(0).getReg(); 2464 Register LoReg = MI.getOperand(1).getReg(); 2465 Register HiReg = MI.getOperand(2).getReg(); 2466 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 2467 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2468 2469 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2470 MachineMemOperand *MMOLo = 2471 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 2472 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2473 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 2474 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2475 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 2476 .addFrameIndex(FI) 2477 .addImm(0) 2478 .addMemOperand(MMOLo); 2479 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2480 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 2481 .addFrameIndex(FI) 2482 .addImm(4) 2483 .addMemOperand(MMOHi); 2484 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 2485 MI.eraseFromParent(); // The pseudo instruction is gone now. 2486 return BB; 2487 } 2488 2489 static bool isSelectPseudo(MachineInstr &MI) { 2490 switch (MI.getOpcode()) { 2491 default: 2492 return false; 2493 case RISCV::Select_GPR_Using_CC_GPR: 2494 case RISCV::Select_FPR16_Using_CC_GPR: 2495 case RISCV::Select_FPR32_Using_CC_GPR: 2496 case RISCV::Select_FPR64_Using_CC_GPR: 2497 return true; 2498 } 2499 } 2500 2501 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 2502 MachineBasicBlock *BB) { 2503 // To "insert" Select_* instructions, we actually have to insert the triangle 2504 // control-flow pattern. The incoming instructions know the destination vreg 2505 // to set, the condition code register to branch on, the true/false values to 2506 // select between, and the condcode to use to select the appropriate branch. 2507 // 2508 // We produce the following control flow: 2509 // HeadMBB 2510 // | \ 2511 // | IfFalseMBB 2512 // | / 2513 // TailMBB 2514 // 2515 // When we find a sequence of selects we attempt to optimize their emission 2516 // by sharing the control flow. Currently we only handle cases where we have 2517 // multiple selects with the exact same condition (same LHS, RHS and CC). 2518 // The selects may be interleaved with other instructions if the other 2519 // instructions meet some requirements we deem safe: 2520 // - They are debug instructions. Otherwise, 2521 // - They do not have side-effects, do not access memory and their inputs do 2522 // not depend on the results of the select pseudo-instructions. 2523 // The TrueV/FalseV operands of the selects cannot depend on the result of 2524 // previous selects in the sequence. 2525 // These conditions could be further relaxed. See the X86 target for a 2526 // related approach and more information. 2527 Register LHS = MI.getOperand(1).getReg(); 2528 Register RHS = MI.getOperand(2).getReg(); 2529 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2530 2531 SmallVector<MachineInstr *, 4> SelectDebugValues; 2532 SmallSet<Register, 4> SelectDests; 2533 SelectDests.insert(MI.getOperand(0).getReg()); 2534 2535 MachineInstr *LastSelectPseudo = &MI; 2536 2537 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2538 SequenceMBBI != E; ++SequenceMBBI) { 2539 if (SequenceMBBI->isDebugInstr()) 2540 continue; 2541 else if (isSelectPseudo(*SequenceMBBI)) { 2542 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2543 SequenceMBBI->getOperand(2).getReg() != RHS || 2544 SequenceMBBI->getOperand(3).getImm() != CC || 2545 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2546 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2547 break; 2548 LastSelectPseudo = &*SequenceMBBI; 2549 SequenceMBBI->collectDebugValues(SelectDebugValues); 2550 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2551 } else { 2552 if (SequenceMBBI->hasUnmodeledSideEffects() || 2553 SequenceMBBI->mayLoadOrStore()) 2554 break; 2555 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2556 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2557 })) 2558 break; 2559 } 2560 } 2561 2562 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2563 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2564 DebugLoc DL = MI.getDebugLoc(); 2565 MachineFunction::iterator I = ++BB->getIterator(); 2566 2567 MachineBasicBlock *HeadMBB = BB; 2568 MachineFunction *F = BB->getParent(); 2569 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2570 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2571 2572 F->insert(I, IfFalseMBB); 2573 F->insert(I, TailMBB); 2574 2575 // Transfer debug instructions associated with the selects to TailMBB. 2576 for (MachineInstr *DebugInstr : SelectDebugValues) { 2577 TailMBB->push_back(DebugInstr->removeFromParent()); 2578 } 2579 2580 // Move all instructions after the sequence to TailMBB. 2581 TailMBB->splice(TailMBB->end(), HeadMBB, 2582 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2583 // Update machine-CFG edges by transferring all successors of the current 2584 // block to the new block which will contain the Phi nodes for the selects. 2585 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2586 // Set the successors for HeadMBB. 2587 HeadMBB->addSuccessor(IfFalseMBB); 2588 HeadMBB->addSuccessor(TailMBB); 2589 2590 // Insert appropriate branch. 2591 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2592 2593 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2594 .addReg(LHS) 2595 .addReg(RHS) 2596 .addMBB(TailMBB); 2597 2598 // IfFalseMBB just falls through to TailMBB. 2599 IfFalseMBB->addSuccessor(TailMBB); 2600 2601 // Create PHIs for all of the select pseudo-instructions. 2602 auto SelectMBBI = MI.getIterator(); 2603 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2604 auto InsertionPoint = TailMBB->begin(); 2605 while (SelectMBBI != SelectEnd) { 2606 auto Next = std::next(SelectMBBI); 2607 if (isSelectPseudo(*SelectMBBI)) { 2608 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2609 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2610 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2611 .addReg(SelectMBBI->getOperand(4).getReg()) 2612 .addMBB(HeadMBB) 2613 .addReg(SelectMBBI->getOperand(5).getReg()) 2614 .addMBB(IfFalseMBB); 2615 SelectMBBI->eraseFromParent(); 2616 } 2617 SelectMBBI = Next; 2618 } 2619 2620 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2621 return TailMBB; 2622 } 2623 2624 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2625 int VLIndex, unsigned SEWIndex, 2626 RISCVVLMUL VLMul, bool WritesElement0) { 2627 MachineFunction &MF = *BB->getParent(); 2628 DebugLoc DL = MI.getDebugLoc(); 2629 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2630 2631 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2632 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2633 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2634 2635 MachineRegisterInfo &MRI = MF.getRegInfo(); 2636 2637 // VL and VTYPE are alive here. 2638 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2639 2640 if (VLIndex >= 0) { 2641 // Set VL (rs1 != X0). 2642 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2643 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2644 .addReg(MI.getOperand(VLIndex).getReg()); 2645 } else 2646 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2647 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2648 .addReg(RISCV::X0, RegState::Kill); 2649 2650 // Default to tail agnostic unless the destination is tied to a source. In 2651 // that case the user would have some control over the tail values. The tail 2652 // policy is also ignored on instructions that only update element 0 like 2653 // vmv.s.x or reductions so use agnostic there to match the common case. 2654 // FIXME: This is conservatively correct, but we might want to detect that 2655 // the input is undefined. 2656 bool TailAgnostic = true; 2657 unsigned UseOpIdx; 2658 if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) { 2659 TailAgnostic = false; 2660 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 2661 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 2662 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 2663 if (UseMI && UseMI->isImplicitDef()) 2664 TailAgnostic = true; 2665 } 2666 2667 // For simplicity we reuse the vtype representation here. 2668 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 2669 /*TailAgnostic*/ TailAgnostic, 2670 /*MaskAgnostic*/ false)); 2671 2672 // Remove (now) redundant operands from pseudo 2673 MI.getOperand(SEWIndex).setImm(-1); 2674 if (VLIndex >= 0) { 2675 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2676 MI.getOperand(VLIndex).setIsKill(false); 2677 } 2678 2679 return BB; 2680 } 2681 2682 MachineBasicBlock * 2683 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2684 MachineBasicBlock *BB) const { 2685 uint64_t TSFlags = MI.getDesc().TSFlags; 2686 2687 if (TSFlags & RISCVII::HasSEWOpMask) { 2688 unsigned NumOperands = MI.getNumExplicitOperands(); 2689 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 2690 unsigned SEWIndex = NumOperands - 1; 2691 bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask; 2692 2693 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 2694 RISCVII::VLMulShift); 2695 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0); 2696 } 2697 2698 switch (MI.getOpcode()) { 2699 default: 2700 llvm_unreachable("Unexpected instr type to insert"); 2701 case RISCV::ReadCycleWide: 2702 assert(!Subtarget.is64Bit() && 2703 "ReadCycleWrite is only to be used on riscv32"); 2704 return emitReadCycleWidePseudo(MI, BB); 2705 case RISCV::Select_GPR_Using_CC_GPR: 2706 case RISCV::Select_FPR16_Using_CC_GPR: 2707 case RISCV::Select_FPR32_Using_CC_GPR: 2708 case RISCV::Select_FPR64_Using_CC_GPR: 2709 return emitSelectPseudo(MI, BB); 2710 case RISCV::BuildPairF64Pseudo: 2711 return emitBuildPairF64Pseudo(MI, BB); 2712 case RISCV::SplitF64Pseudo: 2713 return emitSplitF64Pseudo(MI, BB); 2714 } 2715 } 2716 2717 // Calling Convention Implementation. 2718 // The expectations for frontend ABI lowering vary from target to target. 2719 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2720 // details, but this is a longer term goal. For now, we simply try to keep the 2721 // role of the frontend as simple and well-defined as possible. The rules can 2722 // be summarised as: 2723 // * Never split up large scalar arguments. We handle them here. 2724 // * If a hardfloat calling convention is being used, and the struct may be 2725 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2726 // available, then pass as two separate arguments. If either the GPRs or FPRs 2727 // are exhausted, then pass according to the rule below. 2728 // * If a struct could never be passed in registers or directly in a stack 2729 // slot (as it is larger than 2*XLEN and the floating point rules don't 2730 // apply), then pass it using a pointer with the byval attribute. 2731 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2732 // word-sized array or a 2*XLEN scalar (depending on alignment). 2733 // * The frontend can determine whether a struct is returned by reference or 2734 // not based on its size and fields. If it will be returned by reference, the 2735 // frontend must modify the prototype so a pointer with the sret annotation is 2736 // passed as the first argument. This is not necessary for large scalar 2737 // returns. 2738 // * Struct return values and varargs should be coerced to structs containing 2739 // register-size fields in the same situations they would be for fixed 2740 // arguments. 2741 2742 static const MCPhysReg ArgGPRs[] = { 2743 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2744 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2745 }; 2746 static const MCPhysReg ArgFPR16s[] = { 2747 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2748 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2749 }; 2750 static const MCPhysReg ArgFPR32s[] = { 2751 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2752 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2753 }; 2754 static const MCPhysReg ArgFPR64s[] = { 2755 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2756 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2757 }; 2758 // This is an interim calling convention and it may be changed in the future. 2759 static const MCPhysReg ArgVRs[] = { 2760 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 2761 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 2762 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 2763 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 2764 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 2765 RISCV::V20M2, RISCV::V22M2}; 2766 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 2767 RISCV::V20M4}; 2768 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 2769 2770 // Pass a 2*XLEN argument that has been split into two XLEN values through 2771 // registers or the stack as necessary. 2772 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2773 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2774 MVT ValVT2, MVT LocVT2, 2775 ISD::ArgFlagsTy ArgFlags2) { 2776 unsigned XLenInBytes = XLen / 8; 2777 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2778 // At least one half can be passed via register. 2779 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2780 VA1.getLocVT(), CCValAssign::Full)); 2781 } else { 2782 // Both halves must be passed on the stack, with proper alignment. 2783 Align StackAlign = 2784 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2785 State.addLoc( 2786 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2787 State.AllocateStack(XLenInBytes, StackAlign), 2788 VA1.getLocVT(), CCValAssign::Full)); 2789 State.addLoc(CCValAssign::getMem( 2790 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2791 LocVT2, CCValAssign::Full)); 2792 return false; 2793 } 2794 2795 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2796 // The second half can also be passed via register. 2797 State.addLoc( 2798 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2799 } else { 2800 // The second half is passed via the stack, without additional alignment. 2801 State.addLoc(CCValAssign::getMem( 2802 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2803 LocVT2, CCValAssign::Full)); 2804 } 2805 2806 return false; 2807 } 2808 2809 // Implements the RISC-V calling convention. Returns true upon failure. 2810 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2811 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2812 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2813 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2814 Optional<unsigned> FirstMaskArgument) { 2815 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2816 assert(XLen == 32 || XLen == 64); 2817 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2818 2819 // Any return value split in to more than two values can't be returned 2820 // directly. 2821 if (IsRet && ValNo > 1) 2822 return true; 2823 2824 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2825 // variadic argument, or if no F16/F32 argument registers are available. 2826 bool UseGPRForF16_F32 = true; 2827 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2828 // variadic argument, or if no F64 argument registers are available. 2829 bool UseGPRForF64 = true; 2830 2831 switch (ABI) { 2832 default: 2833 llvm_unreachable("Unexpected ABI"); 2834 case RISCVABI::ABI_ILP32: 2835 case RISCVABI::ABI_LP64: 2836 break; 2837 case RISCVABI::ABI_ILP32F: 2838 case RISCVABI::ABI_LP64F: 2839 UseGPRForF16_F32 = !IsFixed; 2840 break; 2841 case RISCVABI::ABI_ILP32D: 2842 case RISCVABI::ABI_LP64D: 2843 UseGPRForF16_F32 = !IsFixed; 2844 UseGPRForF64 = !IsFixed; 2845 break; 2846 } 2847 2848 // FPR16, FPR32, and FPR64 alias each other. 2849 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2850 UseGPRForF16_F32 = true; 2851 UseGPRForF64 = true; 2852 } 2853 2854 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2855 // similar local variables rather than directly checking against the target 2856 // ABI. 2857 2858 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2859 LocVT = XLenVT; 2860 LocInfo = CCValAssign::BCvt; 2861 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2862 LocVT = MVT::i64; 2863 LocInfo = CCValAssign::BCvt; 2864 } 2865 2866 // If this is a variadic argument, the RISC-V calling convention requires 2867 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2868 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2869 // be used regardless of whether the original argument was split during 2870 // legalisation or not. The argument will not be passed by registers if the 2871 // original type is larger than 2*XLEN, so the register alignment rule does 2872 // not apply. 2873 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2874 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2875 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2876 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2877 // Skip 'odd' register if necessary. 2878 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2879 State.AllocateReg(ArgGPRs); 2880 } 2881 2882 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2883 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2884 State.getPendingArgFlags(); 2885 2886 assert(PendingLocs.size() == PendingArgFlags.size() && 2887 "PendingLocs and PendingArgFlags out of sync"); 2888 2889 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2890 // registers are exhausted. 2891 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 2892 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 2893 "Can't lower f64 if it is split"); 2894 // Depending on available argument GPRS, f64 may be passed in a pair of 2895 // GPRs, split between a GPR and the stack, or passed completely on the 2896 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 2897 // cases. 2898 Register Reg = State.AllocateReg(ArgGPRs); 2899 LocVT = MVT::i32; 2900 if (!Reg) { 2901 unsigned StackOffset = State.AllocateStack(8, Align(8)); 2902 State.addLoc( 2903 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 2904 return false; 2905 } 2906 if (!State.AllocateReg(ArgGPRs)) 2907 State.AllocateStack(4, Align(4)); 2908 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2909 return false; 2910 } 2911 2912 // Split arguments might be passed indirectly, so keep track of the pending 2913 // values. 2914 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 2915 LocVT = XLenVT; 2916 LocInfo = CCValAssign::Indirect; 2917 PendingLocs.push_back( 2918 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 2919 PendingArgFlags.push_back(ArgFlags); 2920 if (!ArgFlags.isSplitEnd()) { 2921 return false; 2922 } 2923 } 2924 2925 // If the split argument only had two elements, it should be passed directly 2926 // in registers or on the stack. 2927 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 2928 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 2929 // Apply the normal calling convention rules to the first half of the 2930 // split argument. 2931 CCValAssign VA = PendingLocs[0]; 2932 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 2933 PendingLocs.clear(); 2934 PendingArgFlags.clear(); 2935 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 2936 ArgFlags); 2937 } 2938 2939 // Allocate to a register if possible, or else a stack slot. 2940 Register Reg; 2941 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 2942 Reg = State.AllocateReg(ArgFPR16s); 2943 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 2944 Reg = State.AllocateReg(ArgFPR32s); 2945 else if (ValVT == MVT::f64 && !UseGPRForF64) 2946 Reg = State.AllocateReg(ArgFPR64s); 2947 else if (ValVT.isScalableVector()) { 2948 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 2949 if (RC == &RISCV::VRRegClass) { 2950 // Assign the first mask argument to V0. 2951 // This is an interim calling convention and it may be changed in the 2952 // future. 2953 if (FirstMaskArgument.hasValue() && 2954 ValNo == FirstMaskArgument.getValue()) { 2955 Reg = State.AllocateReg(RISCV::V0); 2956 } else { 2957 Reg = State.AllocateReg(ArgVRs); 2958 } 2959 } else if (RC == &RISCV::VRM2RegClass) { 2960 Reg = State.AllocateReg(ArgVRM2s); 2961 } else if (RC == &RISCV::VRM4RegClass) { 2962 Reg = State.AllocateReg(ArgVRM4s); 2963 } else if (RC == &RISCV::VRM8RegClass) { 2964 Reg = State.AllocateReg(ArgVRM8s); 2965 } else { 2966 llvm_unreachable("Unhandled class register for ValueType"); 2967 } 2968 if (!Reg) { 2969 LocInfo = CCValAssign::Indirect; 2970 // Try using a GPR to pass the address 2971 Reg = State.AllocateReg(ArgGPRs); 2972 LocVT = XLenVT; 2973 } 2974 } else 2975 Reg = State.AllocateReg(ArgGPRs); 2976 unsigned StackOffset = 2977 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 2978 2979 // If we reach this point and PendingLocs is non-empty, we must be at the 2980 // end of a split argument that must be passed indirectly. 2981 if (!PendingLocs.empty()) { 2982 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 2983 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 2984 2985 for (auto &It : PendingLocs) { 2986 if (Reg) 2987 It.convertToReg(Reg); 2988 else 2989 It.convertToMem(StackOffset); 2990 State.addLoc(It); 2991 } 2992 PendingLocs.clear(); 2993 PendingArgFlags.clear(); 2994 return false; 2995 } 2996 2997 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 2998 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 2999 "Expected an XLenVT or scalable vector types at this stage"); 3000 3001 if (Reg) { 3002 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3003 return false; 3004 } 3005 3006 // When a floating-point value is passed on the stack, no bit-conversion is 3007 // needed. 3008 if (ValVT.isFloatingPoint()) { 3009 LocVT = ValVT; 3010 LocInfo = CCValAssign::Full; 3011 } 3012 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 3013 return false; 3014 } 3015 3016 template <typename ArgTy> 3017 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 3018 for (const auto &ArgIdx : enumerate(Args)) { 3019 MVT ArgVT = ArgIdx.value().VT; 3020 if (ArgVT.isScalableVector() && 3021 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 3022 return ArgIdx.index(); 3023 } 3024 return None; 3025 } 3026 3027 void RISCVTargetLowering::analyzeInputArgs( 3028 MachineFunction &MF, CCState &CCInfo, 3029 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 3030 unsigned NumArgs = Ins.size(); 3031 FunctionType *FType = MF.getFunction().getFunctionType(); 3032 3033 Optional<unsigned> FirstMaskArgument; 3034 if (Subtarget.hasStdExtV()) 3035 FirstMaskArgument = preAssignMask(Ins); 3036 3037 for (unsigned i = 0; i != NumArgs; ++i) { 3038 MVT ArgVT = Ins[i].VT; 3039 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 3040 3041 Type *ArgTy = nullptr; 3042 if (IsRet) 3043 ArgTy = FType->getReturnType(); 3044 else if (Ins[i].isOrigArg()) 3045 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 3046 3047 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3048 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3049 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 3050 FirstMaskArgument)) { 3051 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 3052 << EVT(ArgVT).getEVTString() << '\n'); 3053 llvm_unreachable(nullptr); 3054 } 3055 } 3056 } 3057 3058 void RISCVTargetLowering::analyzeOutputArgs( 3059 MachineFunction &MF, CCState &CCInfo, 3060 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 3061 CallLoweringInfo *CLI) const { 3062 unsigned NumArgs = Outs.size(); 3063 3064 Optional<unsigned> FirstMaskArgument; 3065 if (Subtarget.hasStdExtV()) 3066 FirstMaskArgument = preAssignMask(Outs); 3067 3068 for (unsigned i = 0; i != NumArgs; i++) { 3069 MVT ArgVT = Outs[i].VT; 3070 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3071 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 3072 3073 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3074 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3075 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 3076 FirstMaskArgument)) { 3077 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 3078 << EVT(ArgVT).getEVTString() << "\n"); 3079 llvm_unreachable(nullptr); 3080 } 3081 } 3082 } 3083 3084 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 3085 // values. 3086 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 3087 const CCValAssign &VA, const SDLoc &DL) { 3088 switch (VA.getLocInfo()) { 3089 default: 3090 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3091 case CCValAssign::Full: 3092 break; 3093 case CCValAssign::BCvt: 3094 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3095 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 3096 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3097 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 3098 else 3099 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3100 break; 3101 } 3102 return Val; 3103 } 3104 3105 // The caller is responsible for loading the full value if the argument is 3106 // passed with CCValAssign::Indirect. 3107 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 3108 const CCValAssign &VA, const SDLoc &DL, 3109 const RISCVTargetLowering &TLI) { 3110 MachineFunction &MF = DAG.getMachineFunction(); 3111 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3112 EVT LocVT = VA.getLocVT(); 3113 SDValue Val; 3114 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 3115 Register VReg = RegInfo.createVirtualRegister(RC); 3116 RegInfo.addLiveIn(VA.getLocReg(), VReg); 3117 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 3118 3119 if (VA.getLocInfo() == CCValAssign::Indirect) 3120 return Val; 3121 3122 return convertLocVTToValVT(DAG, Val, VA, DL); 3123 } 3124 3125 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 3126 const CCValAssign &VA, const SDLoc &DL) { 3127 EVT LocVT = VA.getLocVT(); 3128 3129 switch (VA.getLocInfo()) { 3130 default: 3131 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3132 case CCValAssign::Full: 3133 break; 3134 case CCValAssign::BCvt: 3135 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3136 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 3137 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3138 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 3139 else 3140 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 3141 break; 3142 } 3143 return Val; 3144 } 3145 3146 // The caller is responsible for loading the full value if the argument is 3147 // passed with CCValAssign::Indirect. 3148 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 3149 const CCValAssign &VA, const SDLoc &DL) { 3150 MachineFunction &MF = DAG.getMachineFunction(); 3151 MachineFrameInfo &MFI = MF.getFrameInfo(); 3152 EVT LocVT = VA.getLocVT(); 3153 EVT ValVT = VA.getValVT(); 3154 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 3155 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 3156 VA.getLocMemOffset(), /*Immutable=*/true); 3157 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3158 SDValue Val; 3159 3160 ISD::LoadExtType ExtType; 3161 switch (VA.getLocInfo()) { 3162 default: 3163 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3164 case CCValAssign::Full: 3165 case CCValAssign::Indirect: 3166 case CCValAssign::BCvt: 3167 ExtType = ISD::NON_EXTLOAD; 3168 break; 3169 } 3170 Val = DAG.getExtLoad( 3171 ExtType, DL, LocVT, Chain, FIN, 3172 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 3173 return Val; 3174 } 3175 3176 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 3177 const CCValAssign &VA, const SDLoc &DL) { 3178 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 3179 "Unexpected VA"); 3180 MachineFunction &MF = DAG.getMachineFunction(); 3181 MachineFrameInfo &MFI = MF.getFrameInfo(); 3182 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3183 3184 if (VA.isMemLoc()) { 3185 // f64 is passed on the stack. 3186 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 3187 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3188 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 3189 MachinePointerInfo::getFixedStack(MF, FI)); 3190 } 3191 3192 assert(VA.isRegLoc() && "Expected register VA assignment"); 3193 3194 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3195 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 3196 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 3197 SDValue Hi; 3198 if (VA.getLocReg() == RISCV::X17) { 3199 // Second half of f64 is passed on the stack. 3200 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 3201 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3202 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 3203 MachinePointerInfo::getFixedStack(MF, FI)); 3204 } else { 3205 // Second half of f64 is passed in another GPR. 3206 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3207 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 3208 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 3209 } 3210 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 3211 } 3212 3213 // FastCC has less than 1% performance improvement for some particular 3214 // benchmark. But theoretically, it may has benenfit for some cases. 3215 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 3216 CCValAssign::LocInfo LocInfo, 3217 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3218 3219 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3220 // X5 and X6 might be used for save-restore libcall. 3221 static const MCPhysReg GPRList[] = { 3222 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 3223 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 3224 RISCV::X29, RISCV::X30, RISCV::X31}; 3225 if (unsigned Reg = State.AllocateReg(GPRList)) { 3226 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3227 return false; 3228 } 3229 } 3230 3231 if (LocVT == MVT::f16) { 3232 static const MCPhysReg FPR16List[] = { 3233 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 3234 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 3235 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 3236 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 3237 if (unsigned Reg = State.AllocateReg(FPR16List)) { 3238 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3239 return false; 3240 } 3241 } 3242 3243 if (LocVT == MVT::f32) { 3244 static const MCPhysReg FPR32List[] = { 3245 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 3246 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 3247 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 3248 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 3249 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3250 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3251 return false; 3252 } 3253 } 3254 3255 if (LocVT == MVT::f64) { 3256 static const MCPhysReg FPR64List[] = { 3257 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 3258 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 3259 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 3260 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 3261 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3262 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3263 return false; 3264 } 3265 } 3266 3267 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 3268 unsigned Offset4 = State.AllocateStack(4, Align(4)); 3269 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 3270 return false; 3271 } 3272 3273 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 3274 unsigned Offset5 = State.AllocateStack(8, Align(8)); 3275 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 3276 return false; 3277 } 3278 3279 return true; // CC didn't match. 3280 } 3281 3282 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 3283 CCValAssign::LocInfo LocInfo, 3284 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3285 3286 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3287 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 3288 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 3289 static const MCPhysReg GPRList[] = { 3290 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 3291 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 3292 if (unsigned Reg = State.AllocateReg(GPRList)) { 3293 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3294 return false; 3295 } 3296 } 3297 3298 if (LocVT == MVT::f32) { 3299 // Pass in STG registers: F1, ..., F6 3300 // fs0 ... fs5 3301 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 3302 RISCV::F18_F, RISCV::F19_F, 3303 RISCV::F20_F, RISCV::F21_F}; 3304 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3305 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3306 return false; 3307 } 3308 } 3309 3310 if (LocVT == MVT::f64) { 3311 // Pass in STG registers: D1, ..., D6 3312 // fs6 ... fs11 3313 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 3314 RISCV::F24_D, RISCV::F25_D, 3315 RISCV::F26_D, RISCV::F27_D}; 3316 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3317 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3318 return false; 3319 } 3320 } 3321 3322 report_fatal_error("No registers left in GHC calling convention"); 3323 return true; 3324 } 3325 3326 // Transform physical registers into virtual registers. 3327 SDValue RISCVTargetLowering::LowerFormalArguments( 3328 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3329 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3330 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3331 3332 MachineFunction &MF = DAG.getMachineFunction(); 3333 3334 switch (CallConv) { 3335 default: 3336 report_fatal_error("Unsupported calling convention"); 3337 case CallingConv::C: 3338 case CallingConv::Fast: 3339 break; 3340 case CallingConv::GHC: 3341 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 3342 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 3343 report_fatal_error( 3344 "GHC calling convention requires the F and D instruction set extensions"); 3345 } 3346 3347 const Function &Func = MF.getFunction(); 3348 if (Func.hasFnAttribute("interrupt")) { 3349 if (!Func.arg_empty()) 3350 report_fatal_error( 3351 "Functions with the interrupt attribute cannot have arguments!"); 3352 3353 StringRef Kind = 3354 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3355 3356 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 3357 report_fatal_error( 3358 "Function interrupt attribute argument not supported!"); 3359 } 3360 3361 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3362 MVT XLenVT = Subtarget.getXLenVT(); 3363 unsigned XLenInBytes = Subtarget.getXLen() / 8; 3364 // Used with vargs to acumulate store chains. 3365 std::vector<SDValue> OutChains; 3366 3367 // Assign locations to all of the incoming arguments. 3368 SmallVector<CCValAssign, 16> ArgLocs; 3369 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3370 3371 if (CallConv == CallingConv::Fast) 3372 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 3373 else if (CallConv == CallingConv::GHC) 3374 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 3375 else 3376 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 3377 3378 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3379 CCValAssign &VA = ArgLocs[i]; 3380 SDValue ArgValue; 3381 // Passing f64 on RV32D with a soft float ABI must be handled as a special 3382 // case. 3383 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 3384 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 3385 else if (VA.isRegLoc()) 3386 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 3387 else 3388 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 3389 3390 if (VA.getLocInfo() == CCValAssign::Indirect) { 3391 // If the original argument was split and passed by reference (e.g. i128 3392 // on RV32), we need to load all parts of it here (using the same 3393 // address). 3394 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 3395 MachinePointerInfo())); 3396 unsigned ArgIndex = Ins[i].OrigArgIndex; 3397 assert(Ins[i].PartOffset == 0); 3398 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 3399 CCValAssign &PartVA = ArgLocs[i + 1]; 3400 unsigned PartOffset = Ins[i + 1].PartOffset; 3401 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 3402 DAG.getIntPtrConstant(PartOffset, DL)); 3403 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 3404 MachinePointerInfo())); 3405 ++i; 3406 } 3407 continue; 3408 } 3409 InVals.push_back(ArgValue); 3410 } 3411 3412 if (IsVarArg) { 3413 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 3414 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 3415 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 3416 MachineFrameInfo &MFI = MF.getFrameInfo(); 3417 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3418 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 3419 3420 // Offset of the first variable argument from stack pointer, and size of 3421 // the vararg save area. For now, the varargs save area is either zero or 3422 // large enough to hold a0-a7. 3423 int VaArgOffset, VarArgsSaveSize; 3424 3425 // If all registers are allocated, then all varargs must be passed on the 3426 // stack and we don't need to save any argregs. 3427 if (ArgRegs.size() == Idx) { 3428 VaArgOffset = CCInfo.getNextStackOffset(); 3429 VarArgsSaveSize = 0; 3430 } else { 3431 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 3432 VaArgOffset = -VarArgsSaveSize; 3433 } 3434 3435 // Record the frame index of the first variable argument 3436 // which is a value necessary to VASTART. 3437 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3438 RVFI->setVarArgsFrameIndex(FI); 3439 3440 // If saving an odd number of registers then create an extra stack slot to 3441 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 3442 // offsets to even-numbered registered remain 2*XLEN-aligned. 3443 if (Idx % 2) { 3444 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 3445 VarArgsSaveSize += XLenInBytes; 3446 } 3447 3448 // Copy the integer registers that may have been used for passing varargs 3449 // to the vararg save area. 3450 for (unsigned I = Idx; I < ArgRegs.size(); 3451 ++I, VaArgOffset += XLenInBytes) { 3452 const Register Reg = RegInfo.createVirtualRegister(RC); 3453 RegInfo.addLiveIn(ArgRegs[I], Reg); 3454 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 3455 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3456 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3457 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3458 MachinePointerInfo::getFixedStack(MF, FI)); 3459 cast<StoreSDNode>(Store.getNode()) 3460 ->getMemOperand() 3461 ->setValue((Value *)nullptr); 3462 OutChains.push_back(Store); 3463 } 3464 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 3465 } 3466 3467 // All stores are grouped in one node to allow the matching between 3468 // the size of Ins and InVals. This only happens for vararg functions. 3469 if (!OutChains.empty()) { 3470 OutChains.push_back(Chain); 3471 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3472 } 3473 3474 return Chain; 3475 } 3476 3477 /// isEligibleForTailCallOptimization - Check whether the call is eligible 3478 /// for tail call optimization. 3479 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 3480 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 3481 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 3482 const SmallVector<CCValAssign, 16> &ArgLocs) const { 3483 3484 auto &Callee = CLI.Callee; 3485 auto CalleeCC = CLI.CallConv; 3486 auto &Outs = CLI.Outs; 3487 auto &Caller = MF.getFunction(); 3488 auto CallerCC = Caller.getCallingConv(); 3489 3490 // Exception-handling functions need a special set of instructions to 3491 // indicate a return to the hardware. Tail-calling another function would 3492 // probably break this. 3493 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 3494 // should be expanded as new function attributes are introduced. 3495 if (Caller.hasFnAttribute("interrupt")) 3496 return false; 3497 3498 // Do not tail call opt if the stack is used to pass parameters. 3499 if (CCInfo.getNextStackOffset() != 0) 3500 return false; 3501 3502 // Do not tail call opt if any parameters need to be passed indirectly. 3503 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 3504 // passed indirectly. So the address of the value will be passed in a 3505 // register, or if not available, then the address is put on the stack. In 3506 // order to pass indirectly, space on the stack often needs to be allocated 3507 // in order to store the value. In this case the CCInfo.getNextStackOffset() 3508 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 3509 // are passed CCValAssign::Indirect. 3510 for (auto &VA : ArgLocs) 3511 if (VA.getLocInfo() == CCValAssign::Indirect) 3512 return false; 3513 3514 // Do not tail call opt if either caller or callee uses struct return 3515 // semantics. 3516 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3517 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3518 if (IsCallerStructRet || IsCalleeStructRet) 3519 return false; 3520 3521 // Externally-defined functions with weak linkage should not be 3522 // tail-called. The behaviour of branch instructions in this situation (as 3523 // used for tail calls) is implementation-defined, so we cannot rely on the 3524 // linker replacing the tail call with a return. 3525 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3526 const GlobalValue *GV = G->getGlobal(); 3527 if (GV->hasExternalWeakLinkage()) 3528 return false; 3529 } 3530 3531 // The callee has to preserve all registers the caller needs to preserve. 3532 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3533 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3534 if (CalleeCC != CallerCC) { 3535 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3536 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3537 return false; 3538 } 3539 3540 // Byval parameters hand the function a pointer directly into the stack area 3541 // we want to reuse during a tail call. Working around this *is* possible 3542 // but less efficient and uglier in LowerCall. 3543 for (auto &Arg : Outs) 3544 if (Arg.Flags.isByVal()) 3545 return false; 3546 3547 return true; 3548 } 3549 3550 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3551 // and output parameter nodes. 3552 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3553 SmallVectorImpl<SDValue> &InVals) const { 3554 SelectionDAG &DAG = CLI.DAG; 3555 SDLoc &DL = CLI.DL; 3556 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3557 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3558 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3559 SDValue Chain = CLI.Chain; 3560 SDValue Callee = CLI.Callee; 3561 bool &IsTailCall = CLI.IsTailCall; 3562 CallingConv::ID CallConv = CLI.CallConv; 3563 bool IsVarArg = CLI.IsVarArg; 3564 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3565 MVT XLenVT = Subtarget.getXLenVT(); 3566 3567 MachineFunction &MF = DAG.getMachineFunction(); 3568 3569 // Analyze the operands of the call, assigning locations to each operand. 3570 SmallVector<CCValAssign, 16> ArgLocs; 3571 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3572 3573 if (CallConv == CallingConv::Fast) 3574 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3575 else if (CallConv == CallingConv::GHC) 3576 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3577 else 3578 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3579 3580 // Check if it's really possible to do a tail call. 3581 if (IsTailCall) 3582 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3583 3584 if (IsTailCall) 3585 ++NumTailCalls; 3586 else if (CLI.CB && CLI.CB->isMustTailCall()) 3587 report_fatal_error("failed to perform tail call elimination on a call " 3588 "site marked musttail"); 3589 3590 // Get a count of how many bytes are to be pushed on the stack. 3591 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3592 3593 // Create local copies for byval args 3594 SmallVector<SDValue, 8> ByValArgs; 3595 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3596 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3597 if (!Flags.isByVal()) 3598 continue; 3599 3600 SDValue Arg = OutVals[i]; 3601 unsigned Size = Flags.getByValSize(); 3602 Align Alignment = Flags.getNonZeroByValAlign(); 3603 3604 int FI = 3605 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3606 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3607 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3608 3609 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3610 /*IsVolatile=*/false, 3611 /*AlwaysInline=*/false, IsTailCall, 3612 MachinePointerInfo(), MachinePointerInfo()); 3613 ByValArgs.push_back(FIPtr); 3614 } 3615 3616 if (!IsTailCall) 3617 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3618 3619 // Copy argument values to their designated locations. 3620 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3621 SmallVector<SDValue, 8> MemOpChains; 3622 SDValue StackPtr; 3623 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3624 CCValAssign &VA = ArgLocs[i]; 3625 SDValue ArgValue = OutVals[i]; 3626 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3627 3628 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3629 bool IsF64OnRV32DSoftABI = 3630 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3631 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3632 SDValue SplitF64 = DAG.getNode( 3633 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3634 SDValue Lo = SplitF64.getValue(0); 3635 SDValue Hi = SplitF64.getValue(1); 3636 3637 Register RegLo = VA.getLocReg(); 3638 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3639 3640 if (RegLo == RISCV::X17) { 3641 // Second half of f64 is passed on the stack. 3642 // Work out the address of the stack slot. 3643 if (!StackPtr.getNode()) 3644 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3645 // Emit the store. 3646 MemOpChains.push_back( 3647 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3648 } else { 3649 // Second half of f64 is passed in another GPR. 3650 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3651 Register RegHigh = RegLo + 1; 3652 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3653 } 3654 continue; 3655 } 3656 3657 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3658 // as any other MemLoc. 3659 3660 // Promote the value if needed. 3661 // For now, only handle fully promoted and indirect arguments. 3662 if (VA.getLocInfo() == CCValAssign::Indirect) { 3663 // Store the argument in a stack slot and pass its address. 3664 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3665 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3666 MemOpChains.push_back( 3667 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3668 MachinePointerInfo::getFixedStack(MF, FI))); 3669 // If the original argument was split (e.g. i128), we need 3670 // to store all parts of it here (and pass just one address). 3671 unsigned ArgIndex = Outs[i].OrigArgIndex; 3672 assert(Outs[i].PartOffset == 0); 3673 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3674 SDValue PartValue = OutVals[i + 1]; 3675 unsigned PartOffset = Outs[i + 1].PartOffset; 3676 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3677 DAG.getIntPtrConstant(PartOffset, DL)); 3678 MemOpChains.push_back( 3679 DAG.getStore(Chain, DL, PartValue, Address, 3680 MachinePointerInfo::getFixedStack(MF, FI))); 3681 ++i; 3682 } 3683 ArgValue = SpillSlot; 3684 } else { 3685 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3686 } 3687 3688 // Use local copy if it is a byval arg. 3689 if (Flags.isByVal()) 3690 ArgValue = ByValArgs[j++]; 3691 3692 if (VA.isRegLoc()) { 3693 // Queue up the argument copies and emit them at the end. 3694 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3695 } else { 3696 assert(VA.isMemLoc() && "Argument not register or memory"); 3697 assert(!IsTailCall && "Tail call not allowed if stack is used " 3698 "for passing parameters"); 3699 3700 // Work out the address of the stack slot. 3701 if (!StackPtr.getNode()) 3702 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3703 SDValue Address = 3704 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3705 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3706 3707 // Emit the store. 3708 MemOpChains.push_back( 3709 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3710 } 3711 } 3712 3713 // Join the stores, which are independent of one another. 3714 if (!MemOpChains.empty()) 3715 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3716 3717 SDValue Glue; 3718 3719 // Build a sequence of copy-to-reg nodes, chained and glued together. 3720 for (auto &Reg : RegsToPass) { 3721 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3722 Glue = Chain.getValue(1); 3723 } 3724 3725 // Validate that none of the argument registers have been marked as 3726 // reserved, if so report an error. Do the same for the return address if this 3727 // is not a tailcall. 3728 validateCCReservedRegs(RegsToPass, MF); 3729 if (!IsTailCall && 3730 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3731 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3732 MF.getFunction(), 3733 "Return address register required, but has been reserved."}); 3734 3735 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3736 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3737 // split it and then direct call can be matched by PseudoCALL. 3738 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3739 const GlobalValue *GV = S->getGlobal(); 3740 3741 unsigned OpFlags = RISCVII::MO_CALL; 3742 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3743 OpFlags = RISCVII::MO_PLT; 3744 3745 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3746 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3747 unsigned OpFlags = RISCVII::MO_CALL; 3748 3749 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3750 nullptr)) 3751 OpFlags = RISCVII::MO_PLT; 3752 3753 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3754 } 3755 3756 // The first call operand is the chain and the second is the target address. 3757 SmallVector<SDValue, 8> Ops; 3758 Ops.push_back(Chain); 3759 Ops.push_back(Callee); 3760 3761 // Add argument registers to the end of the list so that they are 3762 // known live into the call. 3763 for (auto &Reg : RegsToPass) 3764 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3765 3766 if (!IsTailCall) { 3767 // Add a register mask operand representing the call-preserved registers. 3768 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3769 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3770 assert(Mask && "Missing call preserved mask for calling convention"); 3771 Ops.push_back(DAG.getRegisterMask(Mask)); 3772 } 3773 3774 // Glue the call to the argument copies, if any. 3775 if (Glue.getNode()) 3776 Ops.push_back(Glue); 3777 3778 // Emit the call. 3779 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3780 3781 if (IsTailCall) { 3782 MF.getFrameInfo().setHasTailCall(); 3783 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3784 } 3785 3786 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3787 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3788 Glue = Chain.getValue(1); 3789 3790 // Mark the end of the call, which is glued to the call itself. 3791 Chain = DAG.getCALLSEQ_END(Chain, 3792 DAG.getConstant(NumBytes, DL, PtrVT, true), 3793 DAG.getConstant(0, DL, PtrVT, true), 3794 Glue, DL); 3795 Glue = Chain.getValue(1); 3796 3797 // Assign locations to each value returned by this call. 3798 SmallVector<CCValAssign, 16> RVLocs; 3799 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3800 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3801 3802 // Copy all of the result registers out of their specified physreg. 3803 for (auto &VA : RVLocs) { 3804 // Copy the value out 3805 SDValue RetValue = 3806 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3807 // Glue the RetValue to the end of the call sequence 3808 Chain = RetValue.getValue(1); 3809 Glue = RetValue.getValue(2); 3810 3811 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3812 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3813 SDValue RetValue2 = 3814 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3815 Chain = RetValue2.getValue(1); 3816 Glue = RetValue2.getValue(2); 3817 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3818 RetValue2); 3819 } 3820 3821 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3822 3823 InVals.push_back(RetValue); 3824 } 3825 3826 return Chain; 3827 } 3828 3829 bool RISCVTargetLowering::CanLowerReturn( 3830 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3831 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3832 SmallVector<CCValAssign, 16> RVLocs; 3833 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3834 3835 Optional<unsigned> FirstMaskArgument; 3836 if (Subtarget.hasStdExtV()) 3837 FirstMaskArgument = preAssignMask(Outs); 3838 3839 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3840 MVT VT = Outs[i].VT; 3841 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3842 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3843 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3844 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3845 *this, FirstMaskArgument)) 3846 return false; 3847 } 3848 return true; 3849 } 3850 3851 SDValue 3852 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3853 bool IsVarArg, 3854 const SmallVectorImpl<ISD::OutputArg> &Outs, 3855 const SmallVectorImpl<SDValue> &OutVals, 3856 const SDLoc &DL, SelectionDAG &DAG) const { 3857 const MachineFunction &MF = DAG.getMachineFunction(); 3858 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3859 3860 // Stores the assignment of the return value to a location. 3861 SmallVector<CCValAssign, 16> RVLocs; 3862 3863 // Info about the registers and stack slot. 3864 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3865 *DAG.getContext()); 3866 3867 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3868 nullptr); 3869 3870 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3871 report_fatal_error("GHC functions return void only"); 3872 3873 SDValue Glue; 3874 SmallVector<SDValue, 4> RetOps(1, Chain); 3875 3876 // Copy the result values into the output registers. 3877 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3878 SDValue Val = OutVals[i]; 3879 CCValAssign &VA = RVLocs[i]; 3880 assert(VA.isRegLoc() && "Can only return in registers!"); 3881 3882 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3883 // Handle returning f64 on RV32D with a soft float ABI. 3884 assert(VA.isRegLoc() && "Expected return via registers"); 3885 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3886 DAG.getVTList(MVT::i32, MVT::i32), Val); 3887 SDValue Lo = SplitF64.getValue(0); 3888 SDValue Hi = SplitF64.getValue(1); 3889 Register RegLo = VA.getLocReg(); 3890 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3891 Register RegHi = RegLo + 1; 3892 3893 if (STI.isRegisterReservedByUser(RegLo) || 3894 STI.isRegisterReservedByUser(RegHi)) 3895 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3896 MF.getFunction(), 3897 "Return value register required, but has been reserved."}); 3898 3899 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 3900 Glue = Chain.getValue(1); 3901 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 3902 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 3903 Glue = Chain.getValue(1); 3904 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 3905 } else { 3906 // Handle a 'normal' return. 3907 Val = convertValVTToLocVT(DAG, Val, VA, DL); 3908 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 3909 3910 if (STI.isRegisterReservedByUser(VA.getLocReg())) 3911 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3912 MF.getFunction(), 3913 "Return value register required, but has been reserved."}); 3914 3915 // Guarantee that all emitted copies are stuck together. 3916 Glue = Chain.getValue(1); 3917 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3918 } 3919 } 3920 3921 RetOps[0] = Chain; // Update chain. 3922 3923 // Add the glue node if we have it. 3924 if (Glue.getNode()) { 3925 RetOps.push_back(Glue); 3926 } 3927 3928 // Interrupt service routines use different return instructions. 3929 const Function &Func = DAG.getMachineFunction().getFunction(); 3930 if (Func.hasFnAttribute("interrupt")) { 3931 if (!Func.getReturnType()->isVoidTy()) 3932 report_fatal_error( 3933 "Functions with the interrupt attribute must have void return type!"); 3934 3935 MachineFunction &MF = DAG.getMachineFunction(); 3936 StringRef Kind = 3937 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3938 3939 unsigned RetOpc; 3940 if (Kind == "user") 3941 RetOpc = RISCVISD::URET_FLAG; 3942 else if (Kind == "supervisor") 3943 RetOpc = RISCVISD::SRET_FLAG; 3944 else 3945 RetOpc = RISCVISD::MRET_FLAG; 3946 3947 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 3948 } 3949 3950 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 3951 } 3952 3953 void RISCVTargetLowering::validateCCReservedRegs( 3954 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 3955 MachineFunction &MF) const { 3956 const Function &F = MF.getFunction(); 3957 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3958 3959 if (llvm::any_of(Regs, [&STI](auto Reg) { 3960 return STI.isRegisterReservedByUser(Reg.first); 3961 })) 3962 F.getContext().diagnose(DiagnosticInfoUnsupported{ 3963 F, "Argument register required, but has been reserved."}); 3964 } 3965 3966 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3967 return CI->isTailCall(); 3968 } 3969 3970 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 3971 #define NODE_NAME_CASE(NODE) \ 3972 case RISCVISD::NODE: \ 3973 return "RISCVISD::" #NODE; 3974 // clang-format off 3975 switch ((RISCVISD::NodeType)Opcode) { 3976 case RISCVISD::FIRST_NUMBER: 3977 break; 3978 NODE_NAME_CASE(RET_FLAG) 3979 NODE_NAME_CASE(URET_FLAG) 3980 NODE_NAME_CASE(SRET_FLAG) 3981 NODE_NAME_CASE(MRET_FLAG) 3982 NODE_NAME_CASE(CALL) 3983 NODE_NAME_CASE(SELECT_CC) 3984 NODE_NAME_CASE(BuildPairF64) 3985 NODE_NAME_CASE(SplitF64) 3986 NODE_NAME_CASE(TAIL) 3987 NODE_NAME_CASE(SLLW) 3988 NODE_NAME_CASE(SRAW) 3989 NODE_NAME_CASE(SRLW) 3990 NODE_NAME_CASE(DIVW) 3991 NODE_NAME_CASE(DIVUW) 3992 NODE_NAME_CASE(REMUW) 3993 NODE_NAME_CASE(ROLW) 3994 NODE_NAME_CASE(RORW) 3995 NODE_NAME_CASE(FSLW) 3996 NODE_NAME_CASE(FSRW) 3997 NODE_NAME_CASE(FMV_H_X) 3998 NODE_NAME_CASE(FMV_X_ANYEXTH) 3999 NODE_NAME_CASE(FMV_W_X_RV64) 4000 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 4001 NODE_NAME_CASE(READ_CYCLE_WIDE) 4002 NODE_NAME_CASE(GREVI) 4003 NODE_NAME_CASE(GREVIW) 4004 NODE_NAME_CASE(GORCI) 4005 NODE_NAME_CASE(GORCIW) 4006 NODE_NAME_CASE(VMV_X_S) 4007 NODE_NAME_CASE(SPLAT_VECTOR_I64) 4008 NODE_NAME_CASE(READ_VLENB) 4009 NODE_NAME_CASE(TRUNCATE_VECTOR) 4010 NODE_NAME_CASE(VLEFF) 4011 NODE_NAME_CASE(VLEFF_MASK) 4012 NODE_NAME_CASE(VSLIDEUP) 4013 NODE_NAME_CASE(VSLIDEDOWN) 4014 NODE_NAME_CASE(VID) 4015 } 4016 // clang-format on 4017 return nullptr; 4018 #undef NODE_NAME_CASE 4019 } 4020 4021 /// getConstraintType - Given a constraint letter, return the type of 4022 /// constraint it is for this target. 4023 RISCVTargetLowering::ConstraintType 4024 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 4025 if (Constraint.size() == 1) { 4026 switch (Constraint[0]) { 4027 default: 4028 break; 4029 case 'f': 4030 return C_RegisterClass; 4031 case 'I': 4032 case 'J': 4033 case 'K': 4034 return C_Immediate; 4035 case 'A': 4036 return C_Memory; 4037 } 4038 } 4039 return TargetLowering::getConstraintType(Constraint); 4040 } 4041 4042 std::pair<unsigned, const TargetRegisterClass *> 4043 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4044 StringRef Constraint, 4045 MVT VT) const { 4046 // First, see if this is a constraint that directly corresponds to a 4047 // RISCV register class. 4048 if (Constraint.size() == 1) { 4049 switch (Constraint[0]) { 4050 case 'r': 4051 return std::make_pair(0U, &RISCV::GPRRegClass); 4052 case 'f': 4053 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 4054 return std::make_pair(0U, &RISCV::FPR16RegClass); 4055 if (Subtarget.hasStdExtF() && VT == MVT::f32) 4056 return std::make_pair(0U, &RISCV::FPR32RegClass); 4057 if (Subtarget.hasStdExtD() && VT == MVT::f64) 4058 return std::make_pair(0U, &RISCV::FPR64RegClass); 4059 break; 4060 default: 4061 break; 4062 } 4063 } 4064 4065 // Clang will correctly decode the usage of register name aliases into their 4066 // official names. However, other frontends like `rustc` do not. This allows 4067 // users of these frontends to use the ABI names for registers in LLVM-style 4068 // register constraints. 4069 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 4070 .Case("{zero}", RISCV::X0) 4071 .Case("{ra}", RISCV::X1) 4072 .Case("{sp}", RISCV::X2) 4073 .Case("{gp}", RISCV::X3) 4074 .Case("{tp}", RISCV::X4) 4075 .Case("{t0}", RISCV::X5) 4076 .Case("{t1}", RISCV::X6) 4077 .Case("{t2}", RISCV::X7) 4078 .Cases("{s0}", "{fp}", RISCV::X8) 4079 .Case("{s1}", RISCV::X9) 4080 .Case("{a0}", RISCV::X10) 4081 .Case("{a1}", RISCV::X11) 4082 .Case("{a2}", RISCV::X12) 4083 .Case("{a3}", RISCV::X13) 4084 .Case("{a4}", RISCV::X14) 4085 .Case("{a5}", RISCV::X15) 4086 .Case("{a6}", RISCV::X16) 4087 .Case("{a7}", RISCV::X17) 4088 .Case("{s2}", RISCV::X18) 4089 .Case("{s3}", RISCV::X19) 4090 .Case("{s4}", RISCV::X20) 4091 .Case("{s5}", RISCV::X21) 4092 .Case("{s6}", RISCV::X22) 4093 .Case("{s7}", RISCV::X23) 4094 .Case("{s8}", RISCV::X24) 4095 .Case("{s9}", RISCV::X25) 4096 .Case("{s10}", RISCV::X26) 4097 .Case("{s11}", RISCV::X27) 4098 .Case("{t3}", RISCV::X28) 4099 .Case("{t4}", RISCV::X29) 4100 .Case("{t5}", RISCV::X30) 4101 .Case("{t6}", RISCV::X31) 4102 .Default(RISCV::NoRegister); 4103 if (XRegFromAlias != RISCV::NoRegister) 4104 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 4105 4106 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 4107 // TableGen record rather than the AsmName to choose registers for InlineAsm 4108 // constraints, plus we want to match those names to the widest floating point 4109 // register type available, manually select floating point registers here. 4110 // 4111 // The second case is the ABI name of the register, so that frontends can also 4112 // use the ABI names in register constraint lists. 4113 if (Subtarget.hasStdExtF()) { 4114 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 4115 .Cases("{f0}", "{ft0}", RISCV::F0_F) 4116 .Cases("{f1}", "{ft1}", RISCV::F1_F) 4117 .Cases("{f2}", "{ft2}", RISCV::F2_F) 4118 .Cases("{f3}", "{ft3}", RISCV::F3_F) 4119 .Cases("{f4}", "{ft4}", RISCV::F4_F) 4120 .Cases("{f5}", "{ft5}", RISCV::F5_F) 4121 .Cases("{f6}", "{ft6}", RISCV::F6_F) 4122 .Cases("{f7}", "{ft7}", RISCV::F7_F) 4123 .Cases("{f8}", "{fs0}", RISCV::F8_F) 4124 .Cases("{f9}", "{fs1}", RISCV::F9_F) 4125 .Cases("{f10}", "{fa0}", RISCV::F10_F) 4126 .Cases("{f11}", "{fa1}", RISCV::F11_F) 4127 .Cases("{f12}", "{fa2}", RISCV::F12_F) 4128 .Cases("{f13}", "{fa3}", RISCV::F13_F) 4129 .Cases("{f14}", "{fa4}", RISCV::F14_F) 4130 .Cases("{f15}", "{fa5}", RISCV::F15_F) 4131 .Cases("{f16}", "{fa6}", RISCV::F16_F) 4132 .Cases("{f17}", "{fa7}", RISCV::F17_F) 4133 .Cases("{f18}", "{fs2}", RISCV::F18_F) 4134 .Cases("{f19}", "{fs3}", RISCV::F19_F) 4135 .Cases("{f20}", "{fs4}", RISCV::F20_F) 4136 .Cases("{f21}", "{fs5}", RISCV::F21_F) 4137 .Cases("{f22}", "{fs6}", RISCV::F22_F) 4138 .Cases("{f23}", "{fs7}", RISCV::F23_F) 4139 .Cases("{f24}", "{fs8}", RISCV::F24_F) 4140 .Cases("{f25}", "{fs9}", RISCV::F25_F) 4141 .Cases("{f26}", "{fs10}", RISCV::F26_F) 4142 .Cases("{f27}", "{fs11}", RISCV::F27_F) 4143 .Cases("{f28}", "{ft8}", RISCV::F28_F) 4144 .Cases("{f29}", "{ft9}", RISCV::F29_F) 4145 .Cases("{f30}", "{ft10}", RISCV::F30_F) 4146 .Cases("{f31}", "{ft11}", RISCV::F31_F) 4147 .Default(RISCV::NoRegister); 4148 if (FReg != RISCV::NoRegister) { 4149 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 4150 if (Subtarget.hasStdExtD()) { 4151 unsigned RegNo = FReg - RISCV::F0_F; 4152 unsigned DReg = RISCV::F0_D + RegNo; 4153 return std::make_pair(DReg, &RISCV::FPR64RegClass); 4154 } 4155 return std::make_pair(FReg, &RISCV::FPR32RegClass); 4156 } 4157 } 4158 4159 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4160 } 4161 4162 unsigned 4163 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 4164 // Currently only support length 1 constraints. 4165 if (ConstraintCode.size() == 1) { 4166 switch (ConstraintCode[0]) { 4167 case 'A': 4168 return InlineAsm::Constraint_A; 4169 default: 4170 break; 4171 } 4172 } 4173 4174 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 4175 } 4176 4177 void RISCVTargetLowering::LowerAsmOperandForConstraint( 4178 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 4179 SelectionDAG &DAG) const { 4180 // Currently only support length 1 constraints. 4181 if (Constraint.length() == 1) { 4182 switch (Constraint[0]) { 4183 case 'I': 4184 // Validate & create a 12-bit signed immediate operand. 4185 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4186 uint64_t CVal = C->getSExtValue(); 4187 if (isInt<12>(CVal)) 4188 Ops.push_back( 4189 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4190 } 4191 return; 4192 case 'J': 4193 // Validate & create an integer zero operand. 4194 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 4195 if (C->getZExtValue() == 0) 4196 Ops.push_back( 4197 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 4198 return; 4199 case 'K': 4200 // Validate & create a 5-bit unsigned immediate operand. 4201 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4202 uint64_t CVal = C->getZExtValue(); 4203 if (isUInt<5>(CVal)) 4204 Ops.push_back( 4205 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4206 } 4207 return; 4208 default: 4209 break; 4210 } 4211 } 4212 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4213 } 4214 4215 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 4216 Instruction *Inst, 4217 AtomicOrdering Ord) const { 4218 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 4219 return Builder.CreateFence(Ord); 4220 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 4221 return Builder.CreateFence(AtomicOrdering::Release); 4222 return nullptr; 4223 } 4224 4225 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 4226 Instruction *Inst, 4227 AtomicOrdering Ord) const { 4228 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 4229 return Builder.CreateFence(AtomicOrdering::Acquire); 4230 return nullptr; 4231 } 4232 4233 TargetLowering::AtomicExpansionKind 4234 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 4235 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 4236 // point operations can't be used in an lr/sc sequence without breaking the 4237 // forward-progress guarantee. 4238 if (AI->isFloatingPointOperation()) 4239 return AtomicExpansionKind::CmpXChg; 4240 4241 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 4242 if (Size == 8 || Size == 16) 4243 return AtomicExpansionKind::MaskedIntrinsic; 4244 return AtomicExpansionKind::None; 4245 } 4246 4247 static Intrinsic::ID 4248 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 4249 if (XLen == 32) { 4250 switch (BinOp) { 4251 default: 4252 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4253 case AtomicRMWInst::Xchg: 4254 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 4255 case AtomicRMWInst::Add: 4256 return Intrinsic::riscv_masked_atomicrmw_add_i32; 4257 case AtomicRMWInst::Sub: 4258 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 4259 case AtomicRMWInst::Nand: 4260 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 4261 case AtomicRMWInst::Max: 4262 return Intrinsic::riscv_masked_atomicrmw_max_i32; 4263 case AtomicRMWInst::Min: 4264 return Intrinsic::riscv_masked_atomicrmw_min_i32; 4265 case AtomicRMWInst::UMax: 4266 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 4267 case AtomicRMWInst::UMin: 4268 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 4269 } 4270 } 4271 4272 if (XLen == 64) { 4273 switch (BinOp) { 4274 default: 4275 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4276 case AtomicRMWInst::Xchg: 4277 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 4278 case AtomicRMWInst::Add: 4279 return Intrinsic::riscv_masked_atomicrmw_add_i64; 4280 case AtomicRMWInst::Sub: 4281 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 4282 case AtomicRMWInst::Nand: 4283 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 4284 case AtomicRMWInst::Max: 4285 return Intrinsic::riscv_masked_atomicrmw_max_i64; 4286 case AtomicRMWInst::Min: 4287 return Intrinsic::riscv_masked_atomicrmw_min_i64; 4288 case AtomicRMWInst::UMax: 4289 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 4290 case AtomicRMWInst::UMin: 4291 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 4292 } 4293 } 4294 4295 llvm_unreachable("Unexpected XLen\n"); 4296 } 4297 4298 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 4299 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 4300 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 4301 unsigned XLen = Subtarget.getXLen(); 4302 Value *Ordering = 4303 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 4304 Type *Tys[] = {AlignedAddr->getType()}; 4305 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 4306 AI->getModule(), 4307 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 4308 4309 if (XLen == 64) { 4310 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 4311 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4312 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 4313 } 4314 4315 Value *Result; 4316 4317 // Must pass the shift amount needed to sign extend the loaded value prior 4318 // to performing a signed comparison for min/max. ShiftAmt is the number of 4319 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 4320 // is the number of bits to left+right shift the value in order to 4321 // sign-extend. 4322 if (AI->getOperation() == AtomicRMWInst::Min || 4323 AI->getOperation() == AtomicRMWInst::Max) { 4324 const DataLayout &DL = AI->getModule()->getDataLayout(); 4325 unsigned ValWidth = 4326 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 4327 Value *SextShamt = 4328 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 4329 Result = Builder.CreateCall(LrwOpScwLoop, 4330 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 4331 } else { 4332 Result = 4333 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 4334 } 4335 4336 if (XLen == 64) 4337 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4338 return Result; 4339 } 4340 4341 TargetLowering::AtomicExpansionKind 4342 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 4343 AtomicCmpXchgInst *CI) const { 4344 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 4345 if (Size == 8 || Size == 16) 4346 return AtomicExpansionKind::MaskedIntrinsic; 4347 return AtomicExpansionKind::None; 4348 } 4349 4350 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 4351 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 4352 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 4353 unsigned XLen = Subtarget.getXLen(); 4354 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 4355 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 4356 if (XLen == 64) { 4357 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 4358 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 4359 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4360 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 4361 } 4362 Type *Tys[] = {AlignedAddr->getType()}; 4363 Function *MaskedCmpXchg = 4364 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 4365 Value *Result = Builder.CreateCall( 4366 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 4367 if (XLen == 64) 4368 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4369 return Result; 4370 } 4371 4372 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4373 EVT VT) const { 4374 VT = VT.getScalarType(); 4375 4376 if (!VT.isSimple()) 4377 return false; 4378 4379 switch (VT.getSimpleVT().SimpleTy) { 4380 case MVT::f16: 4381 return Subtarget.hasStdExtZfh(); 4382 case MVT::f32: 4383 return Subtarget.hasStdExtF(); 4384 case MVT::f64: 4385 return Subtarget.hasStdExtD(); 4386 default: 4387 break; 4388 } 4389 4390 return false; 4391 } 4392 4393 Register RISCVTargetLowering::getExceptionPointerRegister( 4394 const Constant *PersonalityFn) const { 4395 return RISCV::X10; 4396 } 4397 4398 Register RISCVTargetLowering::getExceptionSelectorRegister( 4399 const Constant *PersonalityFn) const { 4400 return RISCV::X11; 4401 } 4402 4403 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 4404 // Return false to suppress the unnecessary extensions if the LibCall 4405 // arguments or return value is f32 type for LP64 ABI. 4406 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 4407 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 4408 return false; 4409 4410 return true; 4411 } 4412 4413 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 4414 if (Subtarget.is64Bit() && Type == MVT::i32) 4415 return true; 4416 4417 return IsSigned; 4418 } 4419 4420 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 4421 SDValue C) const { 4422 // Check integral scalar types. 4423 if (VT.isScalarInteger()) { 4424 // Omit the optimization if the sub target has the M extension and the data 4425 // size exceeds XLen. 4426 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 4427 return false; 4428 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 4429 // Break the MUL to a SLLI and an ADD/SUB. 4430 const APInt &Imm = ConstNode->getAPIntValue(); 4431 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 4432 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 4433 return true; 4434 // Omit the following optimization if the sub target has the M extension 4435 // and the data size >= XLen. 4436 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 4437 return false; 4438 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 4439 // a pair of LUI/ADDI. 4440 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 4441 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 4442 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 4443 (1 - ImmS).isPowerOf2()) 4444 return true; 4445 } 4446 } 4447 } 4448 4449 return false; 4450 } 4451 4452 #define GET_REGISTER_MATCHER 4453 #include "RISCVGenAsmMatcher.inc" 4454 4455 Register 4456 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4457 const MachineFunction &MF) const { 4458 Register Reg = MatchRegisterAltName(RegName); 4459 if (Reg == RISCV::NoRegister) 4460 Reg = MatchRegisterName(RegName); 4461 if (Reg == RISCV::NoRegister) 4462 report_fatal_error( 4463 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 4464 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 4465 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 4466 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 4467 StringRef(RegName) + "\".")); 4468 return Reg; 4469 } 4470 4471 namespace llvm { 4472 namespace RISCVVIntrinsicsTable { 4473 4474 #define GET_RISCVVIntrinsicsTable_IMPL 4475 #include "RISCVGenSearchableTables.inc" 4476 4477 } // namespace RISCVVIntrinsicsTable 4478 4479 namespace RISCVZvlssegTable { 4480 4481 #define GET_RISCVZvlssegTable_IMPL 4482 #include "RISCVGenSearchableTables.inc" 4483 4484 } // namespace RISCVZvlssegTable 4485 } // namespace llvm 4486