1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtF()) 86 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 87 if (Subtarget.hasStdExtD()) 88 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 89 90 // Compute derived properties from the register classes. 91 computeRegisterProperties(STI.getRegisterInfo()); 92 93 setStackPointerRegisterToSaveRestore(RISCV::X2); 94 95 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 96 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 97 98 // TODO: add all necessary setOperationAction calls. 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 100 101 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 102 setOperationAction(ISD::BR_CC, XLenVT, Expand); 103 setOperationAction(ISD::SELECT, XLenVT, Custom); 104 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 105 106 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 107 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 108 109 setOperationAction(ISD::VASTART, MVT::Other, Custom); 110 setOperationAction(ISD::VAARG, MVT::Other, Expand); 111 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 112 setOperationAction(ISD::VAEND, MVT::Other, Expand); 113 114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 115 if (!Subtarget.hasStdExtZbb()) { 116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 118 } 119 120 if (Subtarget.is64Bit()) { 121 setOperationAction(ISD::ADD, MVT::i32, Custom); 122 setOperationAction(ISD::SUB, MVT::i32, Custom); 123 setOperationAction(ISD::SHL, MVT::i32, Custom); 124 setOperationAction(ISD::SRA, MVT::i32, Custom); 125 setOperationAction(ISD::SRL, MVT::i32, Custom); 126 } 127 128 if (!Subtarget.hasStdExtM()) { 129 setOperationAction(ISD::MUL, XLenVT, Expand); 130 setOperationAction(ISD::MULHS, XLenVT, Expand); 131 setOperationAction(ISD::MULHU, XLenVT, Expand); 132 setOperationAction(ISD::SDIV, XLenVT, Expand); 133 setOperationAction(ISD::UDIV, XLenVT, Expand); 134 setOperationAction(ISD::SREM, XLenVT, Expand); 135 setOperationAction(ISD::UREM, XLenVT, Expand); 136 } 137 138 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 139 setOperationAction(ISD::MUL, MVT::i32, Custom); 140 setOperationAction(ISD::SDIV, MVT::i32, Custom); 141 setOperationAction(ISD::UDIV, MVT::i32, Custom); 142 setOperationAction(ISD::UREM, MVT::i32, Custom); 143 } 144 145 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 146 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 147 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 148 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 149 150 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 151 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 152 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 153 154 if (!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp())) { 155 setOperationAction(ISD::ROTL, XLenVT, Expand); 156 setOperationAction(ISD::ROTR, XLenVT, Expand); 157 } 158 159 if (!Subtarget.hasStdExtZbp()) 160 setOperationAction(ISD::BSWAP, XLenVT, Expand); 161 162 if (!Subtarget.hasStdExtZbb()) { 163 setOperationAction(ISD::CTTZ, XLenVT, Expand); 164 setOperationAction(ISD::CTLZ, XLenVT, Expand); 165 setOperationAction(ISD::CTPOP, XLenVT, Expand); 166 } 167 168 if (Subtarget.hasStdExtZbp()) 169 setOperationAction(ISD::BITREVERSE, XLenVT, Legal); 170 171 if (Subtarget.hasStdExtZbt()) { 172 setOperationAction(ISD::FSHL, XLenVT, Legal); 173 setOperationAction(ISD::FSHR, XLenVT, Legal); 174 } 175 176 ISD::CondCode FPCCToExtend[] = { 177 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 178 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 179 ISD::SETGE, ISD::SETNE}; 180 181 ISD::NodeType FPOpToExtend[] = { 182 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 183 ISD::FP_TO_FP16}; 184 185 if (Subtarget.hasStdExtF()) { 186 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 187 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 188 for (auto CC : FPCCToExtend) 189 setCondCodeAction(CC, MVT::f32, Expand); 190 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 191 setOperationAction(ISD::SELECT, MVT::f32, Custom); 192 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 193 for (auto Op : FPOpToExtend) 194 setOperationAction(Op, MVT::f32, Expand); 195 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 196 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 197 } 198 199 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 200 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 201 202 if (Subtarget.hasStdExtD()) { 203 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 204 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 205 for (auto CC : FPCCToExtend) 206 setCondCodeAction(CC, MVT::f64, Expand); 207 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 208 setOperationAction(ISD::SELECT, MVT::f64, Custom); 209 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 210 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 211 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 212 for (auto Op : FPOpToExtend) 213 setOperationAction(Op, MVT::f64, Expand); 214 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 215 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 216 } 217 218 if (Subtarget.is64Bit()) { 219 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 220 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 221 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 222 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 223 } 224 225 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 226 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 227 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 228 229 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 230 231 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 232 // Unfortunately this can't be determined just from the ISA naming string. 233 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 234 Subtarget.is64Bit() ? Legal : Custom); 235 236 setOperationAction(ISD::TRAP, MVT::Other, Legal); 237 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 238 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 239 240 if (Subtarget.hasStdExtA()) { 241 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 242 setMinCmpXchgSizeInBits(32); 243 } else { 244 setMaxAtomicSizeInBitsSupported(0); 245 } 246 247 setBooleanContents(ZeroOrOneBooleanContent); 248 249 // Function alignments. 250 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 251 setMinFunctionAlignment(FunctionAlignment); 252 setPrefFunctionAlignment(FunctionAlignment); 253 254 // Effectively disable jump table generation. 255 setMinimumJumpTableEntries(INT_MAX); 256 257 // Jumps are expensive, compared to logic 258 setJumpIsExpensive(); 259 260 // We can use any register for comparisons 261 setHasMultipleConditionRegisters(); 262 } 263 264 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 265 EVT VT) const { 266 if (!VT.isVector()) 267 return getPointerTy(DL); 268 return VT.changeVectorElementTypeToInteger(); 269 } 270 271 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 272 const CallInst &I, 273 MachineFunction &MF, 274 unsigned Intrinsic) const { 275 switch (Intrinsic) { 276 default: 277 return false; 278 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 279 case Intrinsic::riscv_masked_atomicrmw_add_i32: 280 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 281 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 282 case Intrinsic::riscv_masked_atomicrmw_max_i32: 283 case Intrinsic::riscv_masked_atomicrmw_min_i32: 284 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 285 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 286 case Intrinsic::riscv_masked_cmpxchg_i32: 287 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 288 Info.opc = ISD::INTRINSIC_W_CHAIN; 289 Info.memVT = MVT::getVT(PtrTy->getElementType()); 290 Info.ptrVal = I.getArgOperand(0); 291 Info.offset = 0; 292 Info.align = Align(4); 293 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 294 MachineMemOperand::MOVolatile; 295 return true; 296 } 297 } 298 299 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 300 const AddrMode &AM, Type *Ty, 301 unsigned AS, 302 Instruction *I) const { 303 // No global is ever allowed as a base. 304 if (AM.BaseGV) 305 return false; 306 307 // Require a 12-bit signed offset. 308 if (!isInt<12>(AM.BaseOffs)) 309 return false; 310 311 switch (AM.Scale) { 312 case 0: // "r+i" or just "i", depending on HasBaseReg. 313 break; 314 case 1: 315 if (!AM.HasBaseReg) // allow "r+i". 316 break; 317 return false; // disallow "r+r" or "r+r+i". 318 default: 319 return false; 320 } 321 322 return true; 323 } 324 325 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 326 return isInt<12>(Imm); 327 } 328 329 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 330 return isInt<12>(Imm); 331 } 332 333 // On RV32, 64-bit integers are split into their high and low parts and held 334 // in two different registers, so the trunc is free since the low register can 335 // just be used. 336 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 337 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 338 return false; 339 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 340 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 341 return (SrcBits == 64 && DestBits == 32); 342 } 343 344 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 345 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 346 !SrcVT.isInteger() || !DstVT.isInteger()) 347 return false; 348 unsigned SrcBits = SrcVT.getSizeInBits(); 349 unsigned DestBits = DstVT.getSizeInBits(); 350 return (SrcBits == 64 && DestBits == 32); 351 } 352 353 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 354 // Zexts are free if they can be combined with a load. 355 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 356 EVT MemVT = LD->getMemoryVT(); 357 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 358 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 359 (LD->getExtensionType() == ISD::NON_EXTLOAD || 360 LD->getExtensionType() == ISD::ZEXTLOAD)) 361 return true; 362 } 363 364 return TargetLowering::isZExtFree(Val, VT2); 365 } 366 367 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 368 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 369 } 370 371 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 372 return Subtarget.hasStdExtZbb(); 373 } 374 375 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 376 return Subtarget.hasStdExtZbb(); 377 } 378 379 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 380 bool ForCodeSize) const { 381 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 382 return false; 383 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 384 return false; 385 if (Imm.isNegZero()) 386 return false; 387 return Imm.isZero(); 388 } 389 390 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 391 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 392 (VT == MVT::f64 && Subtarget.hasStdExtD()); 393 } 394 395 // Changes the condition code and swaps operands if necessary, so the SetCC 396 // operation matches one of the comparisons supported directly in the RISC-V 397 // ISA. 398 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 399 switch (CC) { 400 default: 401 break; 402 case ISD::SETGT: 403 case ISD::SETLE: 404 case ISD::SETUGT: 405 case ISD::SETULE: 406 CC = ISD::getSetCCSwappedOperands(CC); 407 std::swap(LHS, RHS); 408 break; 409 } 410 } 411 412 // Return the RISC-V branch opcode that matches the given DAG integer 413 // condition code. The CondCode must be one of those supported by the RISC-V 414 // ISA (see normaliseSetCC). 415 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 416 switch (CC) { 417 default: 418 llvm_unreachable("Unsupported CondCode"); 419 case ISD::SETEQ: 420 return RISCV::BEQ; 421 case ISD::SETNE: 422 return RISCV::BNE; 423 case ISD::SETLT: 424 return RISCV::BLT; 425 case ISD::SETGE: 426 return RISCV::BGE; 427 case ISD::SETULT: 428 return RISCV::BLTU; 429 case ISD::SETUGE: 430 return RISCV::BGEU; 431 } 432 } 433 434 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 435 SelectionDAG &DAG) const { 436 switch (Op.getOpcode()) { 437 default: 438 report_fatal_error("unimplemented operand"); 439 case ISD::GlobalAddress: 440 return lowerGlobalAddress(Op, DAG); 441 case ISD::BlockAddress: 442 return lowerBlockAddress(Op, DAG); 443 case ISD::ConstantPool: 444 return lowerConstantPool(Op, DAG); 445 case ISD::GlobalTLSAddress: 446 return lowerGlobalTLSAddress(Op, DAG); 447 case ISD::SELECT: 448 return lowerSELECT(Op, DAG); 449 case ISD::VASTART: 450 return lowerVASTART(Op, DAG); 451 case ISD::FRAMEADDR: 452 return lowerFRAMEADDR(Op, DAG); 453 case ISD::RETURNADDR: 454 return lowerRETURNADDR(Op, DAG); 455 case ISD::SHL_PARTS: 456 return lowerShiftLeftParts(Op, DAG); 457 case ISD::SRA_PARTS: 458 return lowerShiftRightParts(Op, DAG, true); 459 case ISD::SRL_PARTS: 460 return lowerShiftRightParts(Op, DAG, false); 461 case ISD::BITCAST: { 462 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 463 "Unexpected custom legalisation"); 464 SDLoc DL(Op); 465 SDValue Op0 = Op.getOperand(0); 466 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 467 return SDValue(); 468 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 469 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 470 return FPConv; 471 } 472 case ISD::INTRINSIC_WO_CHAIN: 473 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 474 } 475 } 476 477 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 478 SelectionDAG &DAG, unsigned Flags) { 479 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 480 } 481 482 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 483 SelectionDAG &DAG, unsigned Flags) { 484 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 485 Flags); 486 } 487 488 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 489 SelectionDAG &DAG, unsigned Flags) { 490 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 491 N->getOffset(), Flags); 492 } 493 494 template <class NodeTy> 495 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 496 bool IsLocal) const { 497 SDLoc DL(N); 498 EVT Ty = getPointerTy(DAG.getDataLayout()); 499 500 if (isPositionIndependent()) { 501 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 502 if (IsLocal) 503 // Use PC-relative addressing to access the symbol. This generates the 504 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 505 // %pcrel_lo(auipc)). 506 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 507 508 // Use PC-relative addressing to access the GOT for this symbol, then load 509 // the address from the GOT. This generates the pattern (PseudoLA sym), 510 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 511 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 512 } 513 514 switch (getTargetMachine().getCodeModel()) { 515 default: 516 report_fatal_error("Unsupported code model for lowering"); 517 case CodeModel::Small: { 518 // Generate a sequence for accessing addresses within the first 2 GiB of 519 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 520 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 521 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 522 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 523 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 524 } 525 case CodeModel::Medium: { 526 // Generate a sequence for accessing addresses within any 2GiB range within 527 // the address space. This generates the pattern (PseudoLLA sym), which 528 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 529 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 530 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 531 } 532 } 533 } 534 535 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 536 SelectionDAG &DAG) const { 537 SDLoc DL(Op); 538 EVT Ty = Op.getValueType(); 539 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 540 int64_t Offset = N->getOffset(); 541 MVT XLenVT = Subtarget.getXLenVT(); 542 543 const GlobalValue *GV = N->getGlobal(); 544 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 545 SDValue Addr = getAddr(N, DAG, IsLocal); 546 547 // In order to maximise the opportunity for common subexpression elimination, 548 // emit a separate ADD node for the global address offset instead of folding 549 // it in the global address node. Later peephole optimisations may choose to 550 // fold it back in when profitable. 551 if (Offset != 0) 552 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 553 DAG.getConstant(Offset, DL, XLenVT)); 554 return Addr; 555 } 556 557 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 558 SelectionDAG &DAG) const { 559 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 560 561 return getAddr(N, DAG); 562 } 563 564 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 565 SelectionDAG &DAG) const { 566 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 567 568 return getAddr(N, DAG); 569 } 570 571 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 572 SelectionDAG &DAG, 573 bool UseGOT) const { 574 SDLoc DL(N); 575 EVT Ty = getPointerTy(DAG.getDataLayout()); 576 const GlobalValue *GV = N->getGlobal(); 577 MVT XLenVT = Subtarget.getXLenVT(); 578 579 if (UseGOT) { 580 // Use PC-relative addressing to access the GOT for this TLS symbol, then 581 // load the address from the GOT and add the thread pointer. This generates 582 // the pattern (PseudoLA_TLS_IE sym), which expands to 583 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 584 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 585 SDValue Load = 586 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 587 588 // Add the thread pointer. 589 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 590 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 591 } 592 593 // Generate a sequence for accessing the address relative to the thread 594 // pointer, with the appropriate adjustment for the thread pointer offset. 595 // This generates the pattern 596 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 597 SDValue AddrHi = 598 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 599 SDValue AddrAdd = 600 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 601 SDValue AddrLo = 602 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 603 604 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 605 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 606 SDValue MNAdd = SDValue( 607 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 608 0); 609 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 610 } 611 612 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 613 SelectionDAG &DAG) const { 614 SDLoc DL(N); 615 EVT Ty = getPointerTy(DAG.getDataLayout()); 616 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 617 const GlobalValue *GV = N->getGlobal(); 618 619 // Use a PC-relative addressing mode to access the global dynamic GOT address. 620 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 621 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 622 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 623 SDValue Load = 624 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 625 626 // Prepare argument list to generate call. 627 ArgListTy Args; 628 ArgListEntry Entry; 629 Entry.Node = Load; 630 Entry.Ty = CallTy; 631 Args.push_back(Entry); 632 633 // Setup call to __tls_get_addr. 634 TargetLowering::CallLoweringInfo CLI(DAG); 635 CLI.setDebugLoc(DL) 636 .setChain(DAG.getEntryNode()) 637 .setLibCallee(CallingConv::C, CallTy, 638 DAG.getExternalSymbol("__tls_get_addr", Ty), 639 std::move(Args)); 640 641 return LowerCallTo(CLI).first; 642 } 643 644 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 645 SelectionDAG &DAG) const { 646 SDLoc DL(Op); 647 EVT Ty = Op.getValueType(); 648 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 649 int64_t Offset = N->getOffset(); 650 MVT XLenVT = Subtarget.getXLenVT(); 651 652 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 653 654 SDValue Addr; 655 switch (Model) { 656 case TLSModel::LocalExec: 657 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 658 break; 659 case TLSModel::InitialExec: 660 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 661 break; 662 case TLSModel::LocalDynamic: 663 case TLSModel::GeneralDynamic: 664 Addr = getDynamicTLSAddr(N, DAG); 665 break; 666 } 667 668 // In order to maximise the opportunity for common subexpression elimination, 669 // emit a separate ADD node for the global address offset instead of folding 670 // it in the global address node. Later peephole optimisations may choose to 671 // fold it back in when profitable. 672 if (Offset != 0) 673 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 674 DAG.getConstant(Offset, DL, XLenVT)); 675 return Addr; 676 } 677 678 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 679 SDValue CondV = Op.getOperand(0); 680 SDValue TrueV = Op.getOperand(1); 681 SDValue FalseV = Op.getOperand(2); 682 SDLoc DL(Op); 683 MVT XLenVT = Subtarget.getXLenVT(); 684 685 // If the result type is XLenVT and CondV is the output of a SETCC node 686 // which also operated on XLenVT inputs, then merge the SETCC node into the 687 // lowered RISCVISD::SELECT_CC to take advantage of the integer 688 // compare+branch instructions. i.e.: 689 // (select (setcc lhs, rhs, cc), truev, falsev) 690 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 691 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 692 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 693 SDValue LHS = CondV.getOperand(0); 694 SDValue RHS = CondV.getOperand(1); 695 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 696 ISD::CondCode CCVal = CC->get(); 697 698 normaliseSetCC(LHS, RHS, CCVal); 699 700 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 701 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 702 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 703 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 704 } 705 706 // Otherwise: 707 // (select condv, truev, falsev) 708 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 709 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 710 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 711 712 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 713 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 714 715 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 716 } 717 718 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 719 MachineFunction &MF = DAG.getMachineFunction(); 720 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 721 722 SDLoc DL(Op); 723 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 724 getPointerTy(MF.getDataLayout())); 725 726 // vastart just stores the address of the VarArgsFrameIndex slot into the 727 // memory location argument. 728 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 729 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 730 MachinePointerInfo(SV)); 731 } 732 733 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 734 SelectionDAG &DAG) const { 735 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 736 MachineFunction &MF = DAG.getMachineFunction(); 737 MachineFrameInfo &MFI = MF.getFrameInfo(); 738 MFI.setFrameAddressIsTaken(true); 739 Register FrameReg = RI.getFrameRegister(MF); 740 int XLenInBytes = Subtarget.getXLen() / 8; 741 742 EVT VT = Op.getValueType(); 743 SDLoc DL(Op); 744 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 745 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 746 while (Depth--) { 747 int Offset = -(XLenInBytes * 2); 748 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 749 DAG.getIntPtrConstant(Offset, DL)); 750 FrameAddr = 751 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 752 } 753 return FrameAddr; 754 } 755 756 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 757 SelectionDAG &DAG) const { 758 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 759 MachineFunction &MF = DAG.getMachineFunction(); 760 MachineFrameInfo &MFI = MF.getFrameInfo(); 761 MFI.setReturnAddressIsTaken(true); 762 MVT XLenVT = Subtarget.getXLenVT(); 763 int XLenInBytes = Subtarget.getXLen() / 8; 764 765 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 766 return SDValue(); 767 768 EVT VT = Op.getValueType(); 769 SDLoc DL(Op); 770 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 771 if (Depth) { 772 int Off = -XLenInBytes; 773 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 774 SDValue Offset = DAG.getConstant(Off, DL, VT); 775 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 776 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 777 MachinePointerInfo()); 778 } 779 780 // Return the value of the return address register, marking it an implicit 781 // live-in. 782 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 783 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 784 } 785 786 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 787 SelectionDAG &DAG) const { 788 SDLoc DL(Op); 789 SDValue Lo = Op.getOperand(0); 790 SDValue Hi = Op.getOperand(1); 791 SDValue Shamt = Op.getOperand(2); 792 EVT VT = Lo.getValueType(); 793 794 // if Shamt-XLEN < 0: // Shamt < XLEN 795 // Lo = Lo << Shamt 796 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 797 // else: 798 // Lo = 0 799 // Hi = Lo << (Shamt-XLEN) 800 801 SDValue Zero = DAG.getConstant(0, DL, VT); 802 SDValue One = DAG.getConstant(1, DL, VT); 803 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 804 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 805 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 806 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 807 808 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 809 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 810 SDValue ShiftRightLo = 811 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 812 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 813 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 814 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 815 816 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 817 818 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 819 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 820 821 SDValue Parts[2] = {Lo, Hi}; 822 return DAG.getMergeValues(Parts, DL); 823 } 824 825 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 826 bool IsSRA) const { 827 SDLoc DL(Op); 828 SDValue Lo = Op.getOperand(0); 829 SDValue Hi = Op.getOperand(1); 830 SDValue Shamt = Op.getOperand(2); 831 EVT VT = Lo.getValueType(); 832 833 // SRA expansion: 834 // if Shamt-XLEN < 0: // Shamt < XLEN 835 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 836 // Hi = Hi >>s Shamt 837 // else: 838 // Lo = Hi >>s (Shamt-XLEN); 839 // Hi = Hi >>s (XLEN-1) 840 // 841 // SRL expansion: 842 // if Shamt-XLEN < 0: // Shamt < XLEN 843 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 844 // Hi = Hi >>u Shamt 845 // else: 846 // Lo = Hi >>u (Shamt-XLEN); 847 // Hi = 0; 848 849 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 850 851 SDValue Zero = DAG.getConstant(0, DL, VT); 852 SDValue One = DAG.getConstant(1, DL, VT); 853 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 854 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 855 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 856 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 857 858 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 859 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 860 SDValue ShiftLeftHi = 861 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 862 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 863 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 864 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 865 SDValue HiFalse = 866 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 867 868 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 869 870 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 871 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 872 873 SDValue Parts[2] = {Lo, Hi}; 874 return DAG.getMergeValues(Parts, DL); 875 } 876 877 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 878 SelectionDAG &DAG) const { 879 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 880 SDLoc DL(Op); 881 switch (IntNo) { 882 default: 883 return SDValue(); // Don't custom lower most intrinsics. 884 case Intrinsic::thread_pointer: { 885 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 886 return DAG.getRegister(RISCV::X4, PtrVT); 887 } 888 } 889 } 890 891 // Returns the opcode of the target-specific SDNode that implements the 32-bit 892 // form of the given Opcode. 893 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 894 switch (Opcode) { 895 default: 896 llvm_unreachable("Unexpected opcode"); 897 case ISD::SHL: 898 return RISCVISD::SLLW; 899 case ISD::SRA: 900 return RISCVISD::SRAW; 901 case ISD::SRL: 902 return RISCVISD::SRLW; 903 case ISD::SDIV: 904 return RISCVISD::DIVW; 905 case ISD::UDIV: 906 return RISCVISD::DIVUW; 907 case ISD::UREM: 908 return RISCVISD::REMUW; 909 } 910 } 911 912 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 913 // Because i32 isn't a legal type for RV64, these operations would otherwise 914 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 915 // later one because the fact the operation was originally of type i32 is 916 // lost. 917 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 918 SDLoc DL(N); 919 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 920 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 921 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 922 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 923 // ReplaceNodeResults requires we maintain the same type for the return value. 924 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 925 } 926 927 // Converts the given 32-bit operation to a i64 operation with signed extension 928 // semantic to reduce the signed extension instructions. 929 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 930 SDLoc DL(N); 931 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 932 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 933 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 934 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 935 DAG.getValueType(MVT::i32)); 936 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 937 } 938 939 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 940 SmallVectorImpl<SDValue> &Results, 941 SelectionDAG &DAG) const { 942 SDLoc DL(N); 943 switch (N->getOpcode()) { 944 default: 945 llvm_unreachable("Don't know how to custom type legalize this operation!"); 946 case ISD::STRICT_FP_TO_SINT: 947 case ISD::STRICT_FP_TO_UINT: 948 case ISD::FP_TO_SINT: 949 case ISD::FP_TO_UINT: { 950 bool IsStrict = N->isStrictFPOpcode(); 951 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 952 "Unexpected custom legalisation"); 953 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 954 // If the FP type needs to be softened, emit a library call using the 'si' 955 // version. If we left it to default legalization we'd end up with 'di'. If 956 // the FP type doesn't need to be softened just let generic type 957 // legalization promote the result type. 958 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 959 TargetLowering::TypeSoftenFloat) 960 return; 961 RTLIB::Libcall LC; 962 if (N->getOpcode() == ISD::FP_TO_SINT || 963 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 964 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 965 else 966 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 967 MakeLibCallOptions CallOptions; 968 EVT OpVT = Op0.getValueType(); 969 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 970 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 971 SDValue Result; 972 std::tie(Result, Chain) = 973 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 974 Results.push_back(Result); 975 if (IsStrict) 976 Results.push_back(Chain); 977 break; 978 } 979 case ISD::READCYCLECOUNTER: { 980 assert(!Subtarget.is64Bit() && 981 "READCYCLECOUNTER only has custom type legalization on riscv32"); 982 983 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 984 SDValue RCW = 985 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 986 987 Results.push_back( 988 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 989 Results.push_back(RCW.getValue(2)); 990 break; 991 } 992 case ISD::ADD: 993 case ISD::SUB: 994 case ISD::MUL: 995 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 996 "Unexpected custom legalisation"); 997 if (N->getOperand(1).getOpcode() == ISD::Constant) 998 return; 999 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1000 break; 1001 case ISD::SHL: 1002 case ISD::SRA: 1003 case ISD::SRL: 1004 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1005 "Unexpected custom legalisation"); 1006 if (N->getOperand(1).getOpcode() == ISD::Constant) 1007 return; 1008 Results.push_back(customLegalizeToWOp(N, DAG)); 1009 break; 1010 case ISD::SDIV: 1011 case ISD::UDIV: 1012 case ISD::UREM: 1013 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1014 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 1015 if (N->getOperand(0).getOpcode() == ISD::Constant || 1016 N->getOperand(1).getOpcode() == ISD::Constant) 1017 return; 1018 Results.push_back(customLegalizeToWOp(N, DAG)); 1019 break; 1020 case ISD::BITCAST: { 1021 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1022 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 1023 SDValue Op0 = N->getOperand(0); 1024 if (Op0.getValueType() != MVT::f32) 1025 return; 1026 SDValue FPConv = 1027 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1028 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1029 break; 1030 } 1031 } 1032 } 1033 1034 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1035 DAGCombinerInfo &DCI) const { 1036 SelectionDAG &DAG = DCI.DAG; 1037 1038 switch (N->getOpcode()) { 1039 default: 1040 break; 1041 case RISCVISD::SplitF64: { 1042 SDValue Op0 = N->getOperand(0); 1043 // If the input to SplitF64 is just BuildPairF64 then the operation is 1044 // redundant. Instead, use BuildPairF64's operands directly. 1045 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1046 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1047 1048 SDLoc DL(N); 1049 1050 // It's cheaper to materialise two 32-bit integers than to load a double 1051 // from the constant pool and transfer it to integer registers through the 1052 // stack. 1053 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1054 APInt V = C->getValueAPF().bitcastToAPInt(); 1055 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1056 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1057 return DCI.CombineTo(N, Lo, Hi); 1058 } 1059 1060 // This is a target-specific version of a DAGCombine performed in 1061 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1062 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1063 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1064 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1065 !Op0.getNode()->hasOneUse()) 1066 break; 1067 SDValue NewSplitF64 = 1068 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1069 Op0.getOperand(0)); 1070 SDValue Lo = NewSplitF64.getValue(0); 1071 SDValue Hi = NewSplitF64.getValue(1); 1072 APInt SignBit = APInt::getSignMask(32); 1073 if (Op0.getOpcode() == ISD::FNEG) { 1074 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1075 DAG.getConstant(SignBit, DL, MVT::i32)); 1076 return DCI.CombineTo(N, Lo, NewHi); 1077 } 1078 assert(Op0.getOpcode() == ISD::FABS); 1079 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1080 DAG.getConstant(~SignBit, DL, MVT::i32)); 1081 return DCI.CombineTo(N, Lo, NewHi); 1082 } 1083 case RISCVISD::SLLW: 1084 case RISCVISD::SRAW: 1085 case RISCVISD::SRLW: { 1086 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1087 SDValue LHS = N->getOperand(0); 1088 SDValue RHS = N->getOperand(1); 1089 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1090 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1091 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 1092 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 1093 if (N->getOpcode() != ISD::DELETED_NODE) 1094 DCI.AddToWorklist(N); 1095 return SDValue(N, 0); 1096 } 1097 break; 1098 } 1099 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1100 SDLoc DL(N); 1101 SDValue Op0 = N->getOperand(0); 1102 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1103 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1104 // of the FMV_W_X_RV64 operand. 1105 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1106 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 1107 "Unexpected value type!"); 1108 return Op0.getOperand(0); 1109 } 1110 1111 // This is a target-specific version of a DAGCombine performed in 1112 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1113 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1114 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1115 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1116 !Op0.getNode()->hasOneUse()) 1117 break; 1118 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1119 Op0.getOperand(0)); 1120 APInt SignBit = APInt::getSignMask(32).sext(64); 1121 if (Op0.getOpcode() == ISD::FNEG) 1122 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1123 DAG.getConstant(SignBit, DL, MVT::i64)); 1124 1125 assert(Op0.getOpcode() == ISD::FABS); 1126 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1127 DAG.getConstant(~SignBit, DL, MVT::i64)); 1128 } 1129 } 1130 1131 return SDValue(); 1132 } 1133 1134 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1135 const SDNode *N, CombineLevel Level) const { 1136 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1137 // materialised in fewer instructions than `(OP _, c1)`: 1138 // 1139 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1140 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1141 SDValue N0 = N->getOperand(0); 1142 EVT Ty = N0.getValueType(); 1143 if (Ty.isScalarInteger() && 1144 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1145 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1146 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1147 if (C1 && C2) { 1148 APInt C1Int = C1->getAPIntValue(); 1149 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1150 1151 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1152 // and the combine should happen, to potentially allow further combines 1153 // later. 1154 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1155 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1156 return true; 1157 1158 // We can materialise `c1` in an add immediate, so it's "free", and the 1159 // combine should be prevented. 1160 if (C1Int.getMinSignedBits() <= 64 && 1161 isLegalAddImmediate(C1Int.getSExtValue())) 1162 return false; 1163 1164 // Neither constant will fit into an immediate, so find materialisation 1165 // costs. 1166 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1167 Subtarget.is64Bit()); 1168 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1169 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1170 1171 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1172 // combine should be prevented. 1173 if (C1Cost < ShiftedC1Cost) 1174 return false; 1175 } 1176 } 1177 return true; 1178 } 1179 1180 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1181 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1182 unsigned Depth) const { 1183 switch (Op.getOpcode()) { 1184 default: 1185 break; 1186 case RISCVISD::SLLW: 1187 case RISCVISD::SRAW: 1188 case RISCVISD::SRLW: 1189 case RISCVISD::DIVW: 1190 case RISCVISD::DIVUW: 1191 case RISCVISD::REMUW: 1192 // TODO: As the result is sign-extended, this is conservatively correct. A 1193 // more precise answer could be calculated for SRAW depending on known 1194 // bits in the shift amount. 1195 return 33; 1196 } 1197 1198 return 1; 1199 } 1200 1201 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1202 MachineBasicBlock *BB) { 1203 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1204 1205 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1206 // Should the count have wrapped while it was being read, we need to try 1207 // again. 1208 // ... 1209 // read: 1210 // rdcycleh x3 # load high word of cycle 1211 // rdcycle x2 # load low word of cycle 1212 // rdcycleh x4 # load high word of cycle 1213 // bne x3, x4, read # check if high word reads match, otherwise try again 1214 // ... 1215 1216 MachineFunction &MF = *BB->getParent(); 1217 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1218 MachineFunction::iterator It = ++BB->getIterator(); 1219 1220 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1221 MF.insert(It, LoopMBB); 1222 1223 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1224 MF.insert(It, DoneMBB); 1225 1226 // Transfer the remainder of BB and its successor edges to DoneMBB. 1227 DoneMBB->splice(DoneMBB->begin(), BB, 1228 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1229 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1230 1231 BB->addSuccessor(LoopMBB); 1232 1233 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1234 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1235 Register LoReg = MI.getOperand(0).getReg(); 1236 Register HiReg = MI.getOperand(1).getReg(); 1237 DebugLoc DL = MI.getDebugLoc(); 1238 1239 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1240 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1241 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1242 .addReg(RISCV::X0); 1243 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1244 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1245 .addReg(RISCV::X0); 1246 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1247 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1248 .addReg(RISCV::X0); 1249 1250 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1251 .addReg(HiReg) 1252 .addReg(ReadAgainReg) 1253 .addMBB(LoopMBB); 1254 1255 LoopMBB->addSuccessor(LoopMBB); 1256 LoopMBB->addSuccessor(DoneMBB); 1257 1258 MI.eraseFromParent(); 1259 1260 return DoneMBB; 1261 } 1262 1263 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1264 MachineBasicBlock *BB) { 1265 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1266 1267 MachineFunction &MF = *BB->getParent(); 1268 DebugLoc DL = MI.getDebugLoc(); 1269 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1270 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1271 Register LoReg = MI.getOperand(0).getReg(); 1272 Register HiReg = MI.getOperand(1).getReg(); 1273 Register SrcReg = MI.getOperand(2).getReg(); 1274 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1275 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1276 1277 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1278 RI); 1279 MachineMemOperand *MMO = 1280 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1281 MachineMemOperand::MOLoad, 8, Align(8)); 1282 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1283 .addFrameIndex(FI) 1284 .addImm(0) 1285 .addMemOperand(MMO); 1286 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1287 .addFrameIndex(FI) 1288 .addImm(4) 1289 .addMemOperand(MMO); 1290 MI.eraseFromParent(); // The pseudo instruction is gone now. 1291 return BB; 1292 } 1293 1294 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1295 MachineBasicBlock *BB) { 1296 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1297 "Unexpected instruction"); 1298 1299 MachineFunction &MF = *BB->getParent(); 1300 DebugLoc DL = MI.getDebugLoc(); 1301 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1302 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1303 Register DstReg = MI.getOperand(0).getReg(); 1304 Register LoReg = MI.getOperand(1).getReg(); 1305 Register HiReg = MI.getOperand(2).getReg(); 1306 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1307 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1308 1309 MachineMemOperand *MMO = 1310 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1311 MachineMemOperand::MOStore, 8, Align(8)); 1312 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1313 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1314 .addFrameIndex(FI) 1315 .addImm(0) 1316 .addMemOperand(MMO); 1317 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1318 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1319 .addFrameIndex(FI) 1320 .addImm(4) 1321 .addMemOperand(MMO); 1322 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1323 MI.eraseFromParent(); // The pseudo instruction is gone now. 1324 return BB; 1325 } 1326 1327 static bool isSelectPseudo(MachineInstr &MI) { 1328 switch (MI.getOpcode()) { 1329 default: 1330 return false; 1331 case RISCV::Select_GPR_Using_CC_GPR: 1332 case RISCV::Select_FPR32_Using_CC_GPR: 1333 case RISCV::Select_FPR64_Using_CC_GPR: 1334 return true; 1335 } 1336 } 1337 1338 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1339 MachineBasicBlock *BB) { 1340 // To "insert" Select_* instructions, we actually have to insert the triangle 1341 // control-flow pattern. The incoming instructions know the destination vreg 1342 // to set, the condition code register to branch on, the true/false values to 1343 // select between, and the condcode to use to select the appropriate branch. 1344 // 1345 // We produce the following control flow: 1346 // HeadMBB 1347 // | \ 1348 // | IfFalseMBB 1349 // | / 1350 // TailMBB 1351 // 1352 // When we find a sequence of selects we attempt to optimize their emission 1353 // by sharing the control flow. Currently we only handle cases where we have 1354 // multiple selects with the exact same condition (same LHS, RHS and CC). 1355 // The selects may be interleaved with other instructions if the other 1356 // instructions meet some requirements we deem safe: 1357 // - They are debug instructions. Otherwise, 1358 // - They do not have side-effects, do not access memory and their inputs do 1359 // not depend on the results of the select pseudo-instructions. 1360 // The TrueV/FalseV operands of the selects cannot depend on the result of 1361 // previous selects in the sequence. 1362 // These conditions could be further relaxed. See the X86 target for a 1363 // related approach and more information. 1364 Register LHS = MI.getOperand(1).getReg(); 1365 Register RHS = MI.getOperand(2).getReg(); 1366 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1367 1368 SmallVector<MachineInstr *, 4> SelectDebugValues; 1369 SmallSet<Register, 4> SelectDests; 1370 SelectDests.insert(MI.getOperand(0).getReg()); 1371 1372 MachineInstr *LastSelectPseudo = &MI; 1373 1374 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1375 SequenceMBBI != E; ++SequenceMBBI) { 1376 if (SequenceMBBI->isDebugInstr()) 1377 continue; 1378 else if (isSelectPseudo(*SequenceMBBI)) { 1379 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1380 SequenceMBBI->getOperand(2).getReg() != RHS || 1381 SequenceMBBI->getOperand(3).getImm() != CC || 1382 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1383 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1384 break; 1385 LastSelectPseudo = &*SequenceMBBI; 1386 SequenceMBBI->collectDebugValues(SelectDebugValues); 1387 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1388 } else { 1389 if (SequenceMBBI->hasUnmodeledSideEffects() || 1390 SequenceMBBI->mayLoadOrStore()) 1391 break; 1392 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1393 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1394 })) 1395 break; 1396 } 1397 } 1398 1399 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1400 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1401 DebugLoc DL = MI.getDebugLoc(); 1402 MachineFunction::iterator I = ++BB->getIterator(); 1403 1404 MachineBasicBlock *HeadMBB = BB; 1405 MachineFunction *F = BB->getParent(); 1406 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1407 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1408 1409 F->insert(I, IfFalseMBB); 1410 F->insert(I, TailMBB); 1411 1412 // Transfer debug instructions associated with the selects to TailMBB. 1413 for (MachineInstr *DebugInstr : SelectDebugValues) { 1414 TailMBB->push_back(DebugInstr->removeFromParent()); 1415 } 1416 1417 // Move all instructions after the sequence to TailMBB. 1418 TailMBB->splice(TailMBB->end(), HeadMBB, 1419 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1420 // Update machine-CFG edges by transferring all successors of the current 1421 // block to the new block which will contain the Phi nodes for the selects. 1422 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1423 // Set the successors for HeadMBB. 1424 HeadMBB->addSuccessor(IfFalseMBB); 1425 HeadMBB->addSuccessor(TailMBB); 1426 1427 // Insert appropriate branch. 1428 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1429 1430 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1431 .addReg(LHS) 1432 .addReg(RHS) 1433 .addMBB(TailMBB); 1434 1435 // IfFalseMBB just falls through to TailMBB. 1436 IfFalseMBB->addSuccessor(TailMBB); 1437 1438 // Create PHIs for all of the select pseudo-instructions. 1439 auto SelectMBBI = MI.getIterator(); 1440 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1441 auto InsertionPoint = TailMBB->begin(); 1442 while (SelectMBBI != SelectEnd) { 1443 auto Next = std::next(SelectMBBI); 1444 if (isSelectPseudo(*SelectMBBI)) { 1445 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1446 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1447 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1448 .addReg(SelectMBBI->getOperand(4).getReg()) 1449 .addMBB(HeadMBB) 1450 .addReg(SelectMBBI->getOperand(5).getReg()) 1451 .addMBB(IfFalseMBB); 1452 SelectMBBI->eraseFromParent(); 1453 } 1454 SelectMBBI = Next; 1455 } 1456 1457 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1458 return TailMBB; 1459 } 1460 1461 MachineBasicBlock * 1462 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1463 MachineBasicBlock *BB) const { 1464 switch (MI.getOpcode()) { 1465 default: 1466 llvm_unreachable("Unexpected instr type to insert"); 1467 case RISCV::ReadCycleWide: 1468 assert(!Subtarget.is64Bit() && 1469 "ReadCycleWrite is only to be used on riscv32"); 1470 return emitReadCycleWidePseudo(MI, BB); 1471 case RISCV::Select_GPR_Using_CC_GPR: 1472 case RISCV::Select_FPR32_Using_CC_GPR: 1473 case RISCV::Select_FPR64_Using_CC_GPR: 1474 return emitSelectPseudo(MI, BB); 1475 case RISCV::BuildPairF64Pseudo: 1476 return emitBuildPairF64Pseudo(MI, BB); 1477 case RISCV::SplitF64Pseudo: 1478 return emitSplitF64Pseudo(MI, BB); 1479 } 1480 } 1481 1482 // Calling Convention Implementation. 1483 // The expectations for frontend ABI lowering vary from target to target. 1484 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1485 // details, but this is a longer term goal. For now, we simply try to keep the 1486 // role of the frontend as simple and well-defined as possible. The rules can 1487 // be summarised as: 1488 // * Never split up large scalar arguments. We handle them here. 1489 // * If a hardfloat calling convention is being used, and the struct may be 1490 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1491 // available, then pass as two separate arguments. If either the GPRs or FPRs 1492 // are exhausted, then pass according to the rule below. 1493 // * If a struct could never be passed in registers or directly in a stack 1494 // slot (as it is larger than 2*XLEN and the floating point rules don't 1495 // apply), then pass it using a pointer with the byval attribute. 1496 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1497 // word-sized array or a 2*XLEN scalar (depending on alignment). 1498 // * The frontend can determine whether a struct is returned by reference or 1499 // not based on its size and fields. If it will be returned by reference, the 1500 // frontend must modify the prototype so a pointer with the sret annotation is 1501 // passed as the first argument. This is not necessary for large scalar 1502 // returns. 1503 // * Struct return values and varargs should be coerced to structs containing 1504 // register-size fields in the same situations they would be for fixed 1505 // arguments. 1506 1507 static const MCPhysReg ArgGPRs[] = { 1508 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1509 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1510 }; 1511 static const MCPhysReg ArgFPR32s[] = { 1512 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1513 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1514 }; 1515 static const MCPhysReg ArgFPR64s[] = { 1516 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1517 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1518 }; 1519 1520 // Pass a 2*XLEN argument that has been split into two XLEN values through 1521 // registers or the stack as necessary. 1522 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1523 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1524 MVT ValVT2, MVT LocVT2, 1525 ISD::ArgFlagsTy ArgFlags2) { 1526 unsigned XLenInBytes = XLen / 8; 1527 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1528 // At least one half can be passed via register. 1529 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1530 VA1.getLocVT(), CCValAssign::Full)); 1531 } else { 1532 // Both halves must be passed on the stack, with proper alignment. 1533 Align StackAlign = 1534 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 1535 State.addLoc( 1536 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1537 State.AllocateStack(XLenInBytes, StackAlign), 1538 VA1.getLocVT(), CCValAssign::Full)); 1539 State.addLoc(CCValAssign::getMem( 1540 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1541 LocVT2, CCValAssign::Full)); 1542 return false; 1543 } 1544 1545 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1546 // The second half can also be passed via register. 1547 State.addLoc( 1548 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1549 } else { 1550 // The second half is passed via the stack, without additional alignment. 1551 State.addLoc(CCValAssign::getMem( 1552 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1553 LocVT2, CCValAssign::Full)); 1554 } 1555 1556 return false; 1557 } 1558 1559 // Implements the RISC-V calling convention. Returns true upon failure. 1560 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1561 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1562 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1563 bool IsRet, Type *OrigTy) { 1564 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1565 assert(XLen == 32 || XLen == 64); 1566 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1567 1568 // Any return value split in to more than two values can't be returned 1569 // directly. 1570 if (IsRet && ValNo > 1) 1571 return true; 1572 1573 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1574 // variadic argument, or if no F32 argument registers are available. 1575 bool UseGPRForF32 = true; 1576 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1577 // variadic argument, or if no F64 argument registers are available. 1578 bool UseGPRForF64 = true; 1579 1580 switch (ABI) { 1581 default: 1582 llvm_unreachable("Unexpected ABI"); 1583 case RISCVABI::ABI_ILP32: 1584 case RISCVABI::ABI_LP64: 1585 break; 1586 case RISCVABI::ABI_ILP32F: 1587 case RISCVABI::ABI_LP64F: 1588 UseGPRForF32 = !IsFixed; 1589 break; 1590 case RISCVABI::ABI_ILP32D: 1591 case RISCVABI::ABI_LP64D: 1592 UseGPRForF32 = !IsFixed; 1593 UseGPRForF64 = !IsFixed; 1594 break; 1595 } 1596 1597 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1598 UseGPRForF32 = true; 1599 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1600 UseGPRForF64 = true; 1601 1602 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1603 // variables rather than directly checking against the target ABI. 1604 1605 if (UseGPRForF32 && ValVT == MVT::f32) { 1606 LocVT = XLenVT; 1607 LocInfo = CCValAssign::BCvt; 1608 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1609 LocVT = MVT::i64; 1610 LocInfo = CCValAssign::BCvt; 1611 } 1612 1613 // If this is a variadic argument, the RISC-V calling convention requires 1614 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1615 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1616 // be used regardless of whether the original argument was split during 1617 // legalisation or not. The argument will not be passed by registers if the 1618 // original type is larger than 2*XLEN, so the register alignment rule does 1619 // not apply. 1620 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1621 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 1622 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1623 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1624 // Skip 'odd' register if necessary. 1625 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1626 State.AllocateReg(ArgGPRs); 1627 } 1628 1629 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1630 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1631 State.getPendingArgFlags(); 1632 1633 assert(PendingLocs.size() == PendingArgFlags.size() && 1634 "PendingLocs and PendingArgFlags out of sync"); 1635 1636 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1637 // registers are exhausted. 1638 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1639 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1640 "Can't lower f64 if it is split"); 1641 // Depending on available argument GPRS, f64 may be passed in a pair of 1642 // GPRs, split between a GPR and the stack, or passed completely on the 1643 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1644 // cases. 1645 Register Reg = State.AllocateReg(ArgGPRs); 1646 LocVT = MVT::i32; 1647 if (!Reg) { 1648 unsigned StackOffset = State.AllocateStack(8, Align(8)); 1649 State.addLoc( 1650 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1651 return false; 1652 } 1653 if (!State.AllocateReg(ArgGPRs)) 1654 State.AllocateStack(4, Align(4)); 1655 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1656 return false; 1657 } 1658 1659 // Split arguments might be passed indirectly, so keep track of the pending 1660 // values. 1661 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1662 LocVT = XLenVT; 1663 LocInfo = CCValAssign::Indirect; 1664 PendingLocs.push_back( 1665 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1666 PendingArgFlags.push_back(ArgFlags); 1667 if (!ArgFlags.isSplitEnd()) { 1668 return false; 1669 } 1670 } 1671 1672 // If the split argument only had two elements, it should be passed directly 1673 // in registers or on the stack. 1674 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1675 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1676 // Apply the normal calling convention rules to the first half of the 1677 // split argument. 1678 CCValAssign VA = PendingLocs[0]; 1679 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1680 PendingLocs.clear(); 1681 PendingArgFlags.clear(); 1682 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1683 ArgFlags); 1684 } 1685 1686 // Allocate to a register if possible, or else a stack slot. 1687 Register Reg; 1688 if (ValVT == MVT::f32 && !UseGPRForF32) 1689 Reg = State.AllocateReg(ArgFPR32s); 1690 else if (ValVT == MVT::f64 && !UseGPRForF64) 1691 Reg = State.AllocateReg(ArgFPR64s); 1692 else 1693 Reg = State.AllocateReg(ArgGPRs); 1694 unsigned StackOffset = 1695 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 1696 1697 // If we reach this point and PendingLocs is non-empty, we must be at the 1698 // end of a split argument that must be passed indirectly. 1699 if (!PendingLocs.empty()) { 1700 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1701 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1702 1703 for (auto &It : PendingLocs) { 1704 if (Reg) 1705 It.convertToReg(Reg); 1706 else 1707 It.convertToMem(StackOffset); 1708 State.addLoc(It); 1709 } 1710 PendingLocs.clear(); 1711 PendingArgFlags.clear(); 1712 return false; 1713 } 1714 1715 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1716 "Expected an XLenVT at this stage"); 1717 1718 if (Reg) { 1719 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1720 return false; 1721 } 1722 1723 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1724 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1725 LocVT = ValVT; 1726 LocInfo = CCValAssign::Full; 1727 } 1728 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1729 return false; 1730 } 1731 1732 void RISCVTargetLowering::analyzeInputArgs( 1733 MachineFunction &MF, CCState &CCInfo, 1734 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1735 unsigned NumArgs = Ins.size(); 1736 FunctionType *FType = MF.getFunction().getFunctionType(); 1737 1738 for (unsigned i = 0; i != NumArgs; ++i) { 1739 MVT ArgVT = Ins[i].VT; 1740 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1741 1742 Type *ArgTy = nullptr; 1743 if (IsRet) 1744 ArgTy = FType->getReturnType(); 1745 else if (Ins[i].isOrigArg()) 1746 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1747 1748 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1749 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1750 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) { 1751 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1752 << EVT(ArgVT).getEVTString() << '\n'); 1753 llvm_unreachable(nullptr); 1754 } 1755 } 1756 } 1757 1758 void RISCVTargetLowering::analyzeOutputArgs( 1759 MachineFunction &MF, CCState &CCInfo, 1760 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1761 CallLoweringInfo *CLI) const { 1762 unsigned NumArgs = Outs.size(); 1763 1764 for (unsigned i = 0; i != NumArgs; i++) { 1765 MVT ArgVT = Outs[i].VT; 1766 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1767 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1768 1769 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1770 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1771 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1772 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1773 << EVT(ArgVT).getEVTString() << "\n"); 1774 llvm_unreachable(nullptr); 1775 } 1776 } 1777 } 1778 1779 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1780 // values. 1781 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1782 const CCValAssign &VA, const SDLoc &DL) { 1783 switch (VA.getLocInfo()) { 1784 default: 1785 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1786 case CCValAssign::Full: 1787 break; 1788 case CCValAssign::BCvt: 1789 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1790 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1791 break; 1792 } 1793 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1794 break; 1795 } 1796 return Val; 1797 } 1798 1799 // The caller is responsible for loading the full value if the argument is 1800 // passed with CCValAssign::Indirect. 1801 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1802 const CCValAssign &VA, const SDLoc &DL) { 1803 MachineFunction &MF = DAG.getMachineFunction(); 1804 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1805 EVT LocVT = VA.getLocVT(); 1806 SDValue Val; 1807 const TargetRegisterClass *RC; 1808 1809 switch (LocVT.getSimpleVT().SimpleTy) { 1810 default: 1811 llvm_unreachable("Unexpected register type"); 1812 case MVT::i32: 1813 case MVT::i64: 1814 RC = &RISCV::GPRRegClass; 1815 break; 1816 case MVT::f32: 1817 RC = &RISCV::FPR32RegClass; 1818 break; 1819 case MVT::f64: 1820 RC = &RISCV::FPR64RegClass; 1821 break; 1822 } 1823 1824 Register VReg = RegInfo.createVirtualRegister(RC); 1825 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1826 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1827 1828 if (VA.getLocInfo() == CCValAssign::Indirect) 1829 return Val; 1830 1831 return convertLocVTToValVT(DAG, Val, VA, DL); 1832 } 1833 1834 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1835 const CCValAssign &VA, const SDLoc &DL) { 1836 EVT LocVT = VA.getLocVT(); 1837 1838 switch (VA.getLocInfo()) { 1839 default: 1840 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1841 case CCValAssign::Full: 1842 break; 1843 case CCValAssign::BCvt: 1844 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1845 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1846 break; 1847 } 1848 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1849 break; 1850 } 1851 return Val; 1852 } 1853 1854 // The caller is responsible for loading the full value if the argument is 1855 // passed with CCValAssign::Indirect. 1856 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1857 const CCValAssign &VA, const SDLoc &DL) { 1858 MachineFunction &MF = DAG.getMachineFunction(); 1859 MachineFrameInfo &MFI = MF.getFrameInfo(); 1860 EVT LocVT = VA.getLocVT(); 1861 EVT ValVT = VA.getValVT(); 1862 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1863 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1864 VA.getLocMemOffset(), /*Immutable=*/true); 1865 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1866 SDValue Val; 1867 1868 ISD::LoadExtType ExtType; 1869 switch (VA.getLocInfo()) { 1870 default: 1871 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1872 case CCValAssign::Full: 1873 case CCValAssign::Indirect: 1874 case CCValAssign::BCvt: 1875 ExtType = ISD::NON_EXTLOAD; 1876 break; 1877 } 1878 Val = DAG.getExtLoad( 1879 ExtType, DL, LocVT, Chain, FIN, 1880 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1881 return Val; 1882 } 1883 1884 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1885 const CCValAssign &VA, const SDLoc &DL) { 1886 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1887 "Unexpected VA"); 1888 MachineFunction &MF = DAG.getMachineFunction(); 1889 MachineFrameInfo &MFI = MF.getFrameInfo(); 1890 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1891 1892 if (VA.isMemLoc()) { 1893 // f64 is passed on the stack. 1894 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1895 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1896 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1897 MachinePointerInfo::getFixedStack(MF, FI)); 1898 } 1899 1900 assert(VA.isRegLoc() && "Expected register VA assignment"); 1901 1902 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1903 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1904 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1905 SDValue Hi; 1906 if (VA.getLocReg() == RISCV::X17) { 1907 // Second half of f64 is passed on the stack. 1908 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1909 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1910 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1911 MachinePointerInfo::getFixedStack(MF, FI)); 1912 } else { 1913 // Second half of f64 is passed in another GPR. 1914 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1915 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1916 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1917 } 1918 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1919 } 1920 1921 // FastCC has less than 1% performance improvement for some particular 1922 // benchmark. But theoretically, it may has benenfit for some cases. 1923 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 1924 CCValAssign::LocInfo LocInfo, 1925 ISD::ArgFlagsTy ArgFlags, CCState &State) { 1926 1927 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 1928 // X5 and X6 might be used for save-restore libcall. 1929 static const MCPhysReg GPRList[] = { 1930 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 1931 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 1932 RISCV::X29, RISCV::X30, RISCV::X31}; 1933 if (unsigned Reg = State.AllocateReg(GPRList)) { 1934 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1935 return false; 1936 } 1937 } 1938 1939 if (LocVT == MVT::f32) { 1940 static const MCPhysReg FPR32List[] = { 1941 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 1942 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 1943 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 1944 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 1945 if (unsigned Reg = State.AllocateReg(FPR32List)) { 1946 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1947 return false; 1948 } 1949 } 1950 1951 if (LocVT == MVT::f64) { 1952 static const MCPhysReg FPR64List[] = { 1953 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 1954 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 1955 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 1956 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 1957 if (unsigned Reg = State.AllocateReg(FPR64List)) { 1958 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1959 return false; 1960 } 1961 } 1962 1963 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 1964 unsigned Offset4 = State.AllocateStack(4, Align(4)); 1965 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 1966 return false; 1967 } 1968 1969 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 1970 unsigned Offset5 = State.AllocateStack(8, Align(8)); 1971 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 1972 return false; 1973 } 1974 1975 return true; // CC didn't match. 1976 } 1977 1978 // Transform physical registers into virtual registers. 1979 SDValue RISCVTargetLowering::LowerFormalArguments( 1980 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1981 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1982 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1983 1984 switch (CallConv) { 1985 default: 1986 report_fatal_error("Unsupported calling convention"); 1987 case CallingConv::C: 1988 case CallingConv::Fast: 1989 break; 1990 } 1991 1992 MachineFunction &MF = DAG.getMachineFunction(); 1993 1994 const Function &Func = MF.getFunction(); 1995 if (Func.hasFnAttribute("interrupt")) { 1996 if (!Func.arg_empty()) 1997 report_fatal_error( 1998 "Functions with the interrupt attribute cannot have arguments!"); 1999 2000 StringRef Kind = 2001 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2002 2003 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 2004 report_fatal_error( 2005 "Function interrupt attribute argument not supported!"); 2006 } 2007 2008 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2009 MVT XLenVT = Subtarget.getXLenVT(); 2010 unsigned XLenInBytes = Subtarget.getXLen() / 8; 2011 // Used with vargs to acumulate store chains. 2012 std::vector<SDValue> OutChains; 2013 2014 // Assign locations to all of the incoming arguments. 2015 SmallVector<CCValAssign, 16> ArgLocs; 2016 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2017 2018 if (CallConv == CallingConv::Fast) 2019 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 2020 else 2021 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 2022 2023 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2024 CCValAssign &VA = ArgLocs[i]; 2025 SDValue ArgValue; 2026 // Passing f64 on RV32D with a soft float ABI must be handled as a special 2027 // case. 2028 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 2029 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 2030 else if (VA.isRegLoc()) 2031 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 2032 else 2033 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2034 2035 if (VA.getLocInfo() == CCValAssign::Indirect) { 2036 // If the original argument was split and passed by reference (e.g. i128 2037 // on RV32), we need to load all parts of it here (using the same 2038 // address). 2039 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2040 MachinePointerInfo())); 2041 unsigned ArgIndex = Ins[i].OrigArgIndex; 2042 assert(Ins[i].PartOffset == 0); 2043 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2044 CCValAssign &PartVA = ArgLocs[i + 1]; 2045 unsigned PartOffset = Ins[i + 1].PartOffset; 2046 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2047 DAG.getIntPtrConstant(PartOffset, DL)); 2048 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2049 MachinePointerInfo())); 2050 ++i; 2051 } 2052 continue; 2053 } 2054 InVals.push_back(ArgValue); 2055 } 2056 2057 if (IsVarArg) { 2058 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2059 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2060 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2061 MachineFrameInfo &MFI = MF.getFrameInfo(); 2062 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2063 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2064 2065 // Offset of the first variable argument from stack pointer, and size of 2066 // the vararg save area. For now, the varargs save area is either zero or 2067 // large enough to hold a0-a7. 2068 int VaArgOffset, VarArgsSaveSize; 2069 2070 // If all registers are allocated, then all varargs must be passed on the 2071 // stack and we don't need to save any argregs. 2072 if (ArgRegs.size() == Idx) { 2073 VaArgOffset = CCInfo.getNextStackOffset(); 2074 VarArgsSaveSize = 0; 2075 } else { 2076 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2077 VaArgOffset = -VarArgsSaveSize; 2078 } 2079 2080 // Record the frame index of the first variable argument 2081 // which is a value necessary to VASTART. 2082 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2083 RVFI->setVarArgsFrameIndex(FI); 2084 2085 // If saving an odd number of registers then create an extra stack slot to 2086 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2087 // offsets to even-numbered registered remain 2*XLEN-aligned. 2088 if (Idx % 2) { 2089 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2090 VarArgsSaveSize += XLenInBytes; 2091 } 2092 2093 // Copy the integer registers that may have been used for passing varargs 2094 // to the vararg save area. 2095 for (unsigned I = Idx; I < ArgRegs.size(); 2096 ++I, VaArgOffset += XLenInBytes) { 2097 const Register Reg = RegInfo.createVirtualRegister(RC); 2098 RegInfo.addLiveIn(ArgRegs[I], Reg); 2099 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2100 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2101 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2102 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2103 MachinePointerInfo::getFixedStack(MF, FI)); 2104 cast<StoreSDNode>(Store.getNode()) 2105 ->getMemOperand() 2106 ->setValue((Value *)nullptr); 2107 OutChains.push_back(Store); 2108 } 2109 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2110 } 2111 2112 // All stores are grouped in one node to allow the matching between 2113 // the size of Ins and InVals. This only happens for vararg functions. 2114 if (!OutChains.empty()) { 2115 OutChains.push_back(Chain); 2116 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2117 } 2118 2119 return Chain; 2120 } 2121 2122 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2123 /// for tail call optimization. 2124 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2125 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2126 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2127 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2128 2129 auto &Callee = CLI.Callee; 2130 auto CalleeCC = CLI.CallConv; 2131 auto &Outs = CLI.Outs; 2132 auto &Caller = MF.getFunction(); 2133 auto CallerCC = Caller.getCallingConv(); 2134 2135 // Exception-handling functions need a special set of instructions to 2136 // indicate a return to the hardware. Tail-calling another function would 2137 // probably break this. 2138 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2139 // should be expanded as new function attributes are introduced. 2140 if (Caller.hasFnAttribute("interrupt")) 2141 return false; 2142 2143 // Do not tail call opt if the stack is used to pass parameters. 2144 if (CCInfo.getNextStackOffset() != 0) 2145 return false; 2146 2147 // Do not tail call opt if any parameters need to be passed indirectly. 2148 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2149 // passed indirectly. So the address of the value will be passed in a 2150 // register, or if not available, then the address is put on the stack. In 2151 // order to pass indirectly, space on the stack often needs to be allocated 2152 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2153 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2154 // are passed CCValAssign::Indirect. 2155 for (auto &VA : ArgLocs) 2156 if (VA.getLocInfo() == CCValAssign::Indirect) 2157 return false; 2158 2159 // Do not tail call opt if either caller or callee uses struct return 2160 // semantics. 2161 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2162 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2163 if (IsCallerStructRet || IsCalleeStructRet) 2164 return false; 2165 2166 // Externally-defined functions with weak linkage should not be 2167 // tail-called. The behaviour of branch instructions in this situation (as 2168 // used for tail calls) is implementation-defined, so we cannot rely on the 2169 // linker replacing the tail call with a return. 2170 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2171 const GlobalValue *GV = G->getGlobal(); 2172 if (GV->hasExternalWeakLinkage()) 2173 return false; 2174 } 2175 2176 // The callee has to preserve all registers the caller needs to preserve. 2177 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2178 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2179 if (CalleeCC != CallerCC) { 2180 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2181 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2182 return false; 2183 } 2184 2185 // Byval parameters hand the function a pointer directly into the stack area 2186 // we want to reuse during a tail call. Working around this *is* possible 2187 // but less efficient and uglier in LowerCall. 2188 for (auto &Arg : Outs) 2189 if (Arg.Flags.isByVal()) 2190 return false; 2191 2192 return true; 2193 } 2194 2195 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2196 // and output parameter nodes. 2197 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2198 SmallVectorImpl<SDValue> &InVals) const { 2199 SelectionDAG &DAG = CLI.DAG; 2200 SDLoc &DL = CLI.DL; 2201 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2202 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2203 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2204 SDValue Chain = CLI.Chain; 2205 SDValue Callee = CLI.Callee; 2206 bool &IsTailCall = CLI.IsTailCall; 2207 CallingConv::ID CallConv = CLI.CallConv; 2208 bool IsVarArg = CLI.IsVarArg; 2209 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2210 MVT XLenVT = Subtarget.getXLenVT(); 2211 2212 MachineFunction &MF = DAG.getMachineFunction(); 2213 2214 // Analyze the operands of the call, assigning locations to each operand. 2215 SmallVector<CCValAssign, 16> ArgLocs; 2216 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2217 2218 if (CallConv == CallingConv::Fast) 2219 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2220 else 2221 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2222 2223 // Check if it's really possible to do a tail call. 2224 if (IsTailCall) 2225 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2226 2227 if (IsTailCall) 2228 ++NumTailCalls; 2229 else if (CLI.CB && CLI.CB->isMustTailCall()) 2230 report_fatal_error("failed to perform tail call elimination on a call " 2231 "site marked musttail"); 2232 2233 // Get a count of how many bytes are to be pushed on the stack. 2234 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2235 2236 // Create local copies for byval args 2237 SmallVector<SDValue, 8> ByValArgs; 2238 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2239 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2240 if (!Flags.isByVal()) 2241 continue; 2242 2243 SDValue Arg = OutVals[i]; 2244 unsigned Size = Flags.getByValSize(); 2245 Align Alignment = Flags.getNonZeroByValAlign(); 2246 2247 int FI = 2248 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2249 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2250 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2251 2252 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2253 /*IsVolatile=*/false, 2254 /*AlwaysInline=*/false, IsTailCall, 2255 MachinePointerInfo(), MachinePointerInfo()); 2256 ByValArgs.push_back(FIPtr); 2257 } 2258 2259 if (!IsTailCall) 2260 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2261 2262 // Copy argument values to their designated locations. 2263 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2264 SmallVector<SDValue, 8> MemOpChains; 2265 SDValue StackPtr; 2266 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2267 CCValAssign &VA = ArgLocs[i]; 2268 SDValue ArgValue = OutVals[i]; 2269 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2270 2271 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2272 bool IsF64OnRV32DSoftABI = 2273 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2274 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2275 SDValue SplitF64 = DAG.getNode( 2276 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2277 SDValue Lo = SplitF64.getValue(0); 2278 SDValue Hi = SplitF64.getValue(1); 2279 2280 Register RegLo = VA.getLocReg(); 2281 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2282 2283 if (RegLo == RISCV::X17) { 2284 // Second half of f64 is passed on the stack. 2285 // Work out the address of the stack slot. 2286 if (!StackPtr.getNode()) 2287 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2288 // Emit the store. 2289 MemOpChains.push_back( 2290 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2291 } else { 2292 // Second half of f64 is passed in another GPR. 2293 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2294 Register RegHigh = RegLo + 1; 2295 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2296 } 2297 continue; 2298 } 2299 2300 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2301 // as any other MemLoc. 2302 2303 // Promote the value if needed. 2304 // For now, only handle fully promoted and indirect arguments. 2305 if (VA.getLocInfo() == CCValAssign::Indirect) { 2306 // Store the argument in a stack slot and pass its address. 2307 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2308 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2309 MemOpChains.push_back( 2310 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2311 MachinePointerInfo::getFixedStack(MF, FI))); 2312 // If the original argument was split (e.g. i128), we need 2313 // to store all parts of it here (and pass just one address). 2314 unsigned ArgIndex = Outs[i].OrigArgIndex; 2315 assert(Outs[i].PartOffset == 0); 2316 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2317 SDValue PartValue = OutVals[i + 1]; 2318 unsigned PartOffset = Outs[i + 1].PartOffset; 2319 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2320 DAG.getIntPtrConstant(PartOffset, DL)); 2321 MemOpChains.push_back( 2322 DAG.getStore(Chain, DL, PartValue, Address, 2323 MachinePointerInfo::getFixedStack(MF, FI))); 2324 ++i; 2325 } 2326 ArgValue = SpillSlot; 2327 } else { 2328 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2329 } 2330 2331 // Use local copy if it is a byval arg. 2332 if (Flags.isByVal()) 2333 ArgValue = ByValArgs[j++]; 2334 2335 if (VA.isRegLoc()) { 2336 // Queue up the argument copies and emit them at the end. 2337 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2338 } else { 2339 assert(VA.isMemLoc() && "Argument not register or memory"); 2340 assert(!IsTailCall && "Tail call not allowed if stack is used " 2341 "for passing parameters"); 2342 2343 // Work out the address of the stack slot. 2344 if (!StackPtr.getNode()) 2345 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2346 SDValue Address = 2347 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2348 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2349 2350 // Emit the store. 2351 MemOpChains.push_back( 2352 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2353 } 2354 } 2355 2356 // Join the stores, which are independent of one another. 2357 if (!MemOpChains.empty()) 2358 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2359 2360 SDValue Glue; 2361 2362 // Build a sequence of copy-to-reg nodes, chained and glued together. 2363 for (auto &Reg : RegsToPass) { 2364 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2365 Glue = Chain.getValue(1); 2366 } 2367 2368 // Validate that none of the argument registers have been marked as 2369 // reserved, if so report an error. Do the same for the return address if this 2370 // is not a tailcall. 2371 validateCCReservedRegs(RegsToPass, MF); 2372 if (!IsTailCall && 2373 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2374 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2375 MF.getFunction(), 2376 "Return address register required, but has been reserved."}); 2377 2378 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2379 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2380 // split it and then direct call can be matched by PseudoCALL. 2381 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2382 const GlobalValue *GV = S->getGlobal(); 2383 2384 unsigned OpFlags = RISCVII::MO_CALL; 2385 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2386 OpFlags = RISCVII::MO_PLT; 2387 2388 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2389 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2390 unsigned OpFlags = RISCVII::MO_CALL; 2391 2392 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2393 nullptr)) 2394 OpFlags = RISCVII::MO_PLT; 2395 2396 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2397 } 2398 2399 // The first call operand is the chain and the second is the target address. 2400 SmallVector<SDValue, 8> Ops; 2401 Ops.push_back(Chain); 2402 Ops.push_back(Callee); 2403 2404 // Add argument registers to the end of the list so that they are 2405 // known live into the call. 2406 for (auto &Reg : RegsToPass) 2407 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2408 2409 if (!IsTailCall) { 2410 // Add a register mask operand representing the call-preserved registers. 2411 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2412 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2413 assert(Mask && "Missing call preserved mask for calling convention"); 2414 Ops.push_back(DAG.getRegisterMask(Mask)); 2415 } 2416 2417 // Glue the call to the argument copies, if any. 2418 if (Glue.getNode()) 2419 Ops.push_back(Glue); 2420 2421 // Emit the call. 2422 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2423 2424 if (IsTailCall) { 2425 MF.getFrameInfo().setHasTailCall(); 2426 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2427 } 2428 2429 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2430 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2431 Glue = Chain.getValue(1); 2432 2433 // Mark the end of the call, which is glued to the call itself. 2434 Chain = DAG.getCALLSEQ_END(Chain, 2435 DAG.getConstant(NumBytes, DL, PtrVT, true), 2436 DAG.getConstant(0, DL, PtrVT, true), 2437 Glue, DL); 2438 Glue = Chain.getValue(1); 2439 2440 // Assign locations to each value returned by this call. 2441 SmallVector<CCValAssign, 16> RVLocs; 2442 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2443 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2444 2445 // Copy all of the result registers out of their specified physreg. 2446 for (auto &VA : RVLocs) { 2447 // Copy the value out 2448 SDValue RetValue = 2449 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2450 // Glue the RetValue to the end of the call sequence 2451 Chain = RetValue.getValue(1); 2452 Glue = RetValue.getValue(2); 2453 2454 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2455 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2456 SDValue RetValue2 = 2457 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2458 Chain = RetValue2.getValue(1); 2459 Glue = RetValue2.getValue(2); 2460 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2461 RetValue2); 2462 } 2463 2464 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2465 2466 InVals.push_back(RetValue); 2467 } 2468 2469 return Chain; 2470 } 2471 2472 bool RISCVTargetLowering::CanLowerReturn( 2473 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2474 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2475 SmallVector<CCValAssign, 16> RVLocs; 2476 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2477 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2478 MVT VT = Outs[i].VT; 2479 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2480 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2481 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2482 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2483 return false; 2484 } 2485 return true; 2486 } 2487 2488 SDValue 2489 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2490 bool IsVarArg, 2491 const SmallVectorImpl<ISD::OutputArg> &Outs, 2492 const SmallVectorImpl<SDValue> &OutVals, 2493 const SDLoc &DL, SelectionDAG &DAG) const { 2494 const MachineFunction &MF = DAG.getMachineFunction(); 2495 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2496 2497 // Stores the assignment of the return value to a location. 2498 SmallVector<CCValAssign, 16> RVLocs; 2499 2500 // Info about the registers and stack slot. 2501 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2502 *DAG.getContext()); 2503 2504 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2505 nullptr); 2506 2507 SDValue Glue; 2508 SmallVector<SDValue, 4> RetOps(1, Chain); 2509 2510 // Copy the result values into the output registers. 2511 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2512 SDValue Val = OutVals[i]; 2513 CCValAssign &VA = RVLocs[i]; 2514 assert(VA.isRegLoc() && "Can only return in registers!"); 2515 2516 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2517 // Handle returning f64 on RV32D with a soft float ABI. 2518 assert(VA.isRegLoc() && "Expected return via registers"); 2519 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2520 DAG.getVTList(MVT::i32, MVT::i32), Val); 2521 SDValue Lo = SplitF64.getValue(0); 2522 SDValue Hi = SplitF64.getValue(1); 2523 Register RegLo = VA.getLocReg(); 2524 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2525 Register RegHi = RegLo + 1; 2526 2527 if (STI.isRegisterReservedByUser(RegLo) || 2528 STI.isRegisterReservedByUser(RegHi)) 2529 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2530 MF.getFunction(), 2531 "Return value register required, but has been reserved."}); 2532 2533 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2534 Glue = Chain.getValue(1); 2535 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2536 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2537 Glue = Chain.getValue(1); 2538 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2539 } else { 2540 // Handle a 'normal' return. 2541 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2542 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2543 2544 if (STI.isRegisterReservedByUser(VA.getLocReg())) 2545 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2546 MF.getFunction(), 2547 "Return value register required, but has been reserved."}); 2548 2549 // Guarantee that all emitted copies are stuck together. 2550 Glue = Chain.getValue(1); 2551 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2552 } 2553 } 2554 2555 RetOps[0] = Chain; // Update chain. 2556 2557 // Add the glue node if we have it. 2558 if (Glue.getNode()) { 2559 RetOps.push_back(Glue); 2560 } 2561 2562 // Interrupt service routines use different return instructions. 2563 const Function &Func = DAG.getMachineFunction().getFunction(); 2564 if (Func.hasFnAttribute("interrupt")) { 2565 if (!Func.getReturnType()->isVoidTy()) 2566 report_fatal_error( 2567 "Functions with the interrupt attribute must have void return type!"); 2568 2569 MachineFunction &MF = DAG.getMachineFunction(); 2570 StringRef Kind = 2571 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2572 2573 unsigned RetOpc; 2574 if (Kind == "user") 2575 RetOpc = RISCVISD::URET_FLAG; 2576 else if (Kind == "supervisor") 2577 RetOpc = RISCVISD::SRET_FLAG; 2578 else 2579 RetOpc = RISCVISD::MRET_FLAG; 2580 2581 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2582 } 2583 2584 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2585 } 2586 2587 void RISCVTargetLowering::validateCCReservedRegs( 2588 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 2589 MachineFunction &MF) const { 2590 const Function &F = MF.getFunction(); 2591 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2592 2593 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 2594 return STI.isRegisterReservedByUser(Reg.first); 2595 })) 2596 F.getContext().diagnose(DiagnosticInfoUnsupported{ 2597 F, "Argument register required, but has been reserved."}); 2598 } 2599 2600 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2601 return CI->isTailCall(); 2602 } 2603 2604 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2605 switch ((RISCVISD::NodeType)Opcode) { 2606 case RISCVISD::FIRST_NUMBER: 2607 break; 2608 case RISCVISD::RET_FLAG: 2609 return "RISCVISD::RET_FLAG"; 2610 case RISCVISD::URET_FLAG: 2611 return "RISCVISD::URET_FLAG"; 2612 case RISCVISD::SRET_FLAG: 2613 return "RISCVISD::SRET_FLAG"; 2614 case RISCVISD::MRET_FLAG: 2615 return "RISCVISD::MRET_FLAG"; 2616 case RISCVISD::CALL: 2617 return "RISCVISD::CALL"; 2618 case RISCVISD::SELECT_CC: 2619 return "RISCVISD::SELECT_CC"; 2620 case RISCVISD::BuildPairF64: 2621 return "RISCVISD::BuildPairF64"; 2622 case RISCVISD::SplitF64: 2623 return "RISCVISD::SplitF64"; 2624 case RISCVISD::TAIL: 2625 return "RISCVISD::TAIL"; 2626 case RISCVISD::SLLW: 2627 return "RISCVISD::SLLW"; 2628 case RISCVISD::SRAW: 2629 return "RISCVISD::SRAW"; 2630 case RISCVISD::SRLW: 2631 return "RISCVISD::SRLW"; 2632 case RISCVISD::DIVW: 2633 return "RISCVISD::DIVW"; 2634 case RISCVISD::DIVUW: 2635 return "RISCVISD::DIVUW"; 2636 case RISCVISD::REMUW: 2637 return "RISCVISD::REMUW"; 2638 case RISCVISD::FMV_W_X_RV64: 2639 return "RISCVISD::FMV_W_X_RV64"; 2640 case RISCVISD::FMV_X_ANYEXTW_RV64: 2641 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2642 case RISCVISD::READ_CYCLE_WIDE: 2643 return "RISCVISD::READ_CYCLE_WIDE"; 2644 } 2645 return nullptr; 2646 } 2647 2648 /// getConstraintType - Given a constraint letter, return the type of 2649 /// constraint it is for this target. 2650 RISCVTargetLowering::ConstraintType 2651 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2652 if (Constraint.size() == 1) { 2653 switch (Constraint[0]) { 2654 default: 2655 break; 2656 case 'f': 2657 return C_RegisterClass; 2658 case 'I': 2659 case 'J': 2660 case 'K': 2661 return C_Immediate; 2662 case 'A': 2663 return C_Memory; 2664 } 2665 } 2666 return TargetLowering::getConstraintType(Constraint); 2667 } 2668 2669 std::pair<unsigned, const TargetRegisterClass *> 2670 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2671 StringRef Constraint, 2672 MVT VT) const { 2673 // First, see if this is a constraint that directly corresponds to a 2674 // RISCV register class. 2675 if (Constraint.size() == 1) { 2676 switch (Constraint[0]) { 2677 case 'r': 2678 return std::make_pair(0U, &RISCV::GPRRegClass); 2679 case 'f': 2680 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2681 return std::make_pair(0U, &RISCV::FPR32RegClass); 2682 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2683 return std::make_pair(0U, &RISCV::FPR64RegClass); 2684 break; 2685 default: 2686 break; 2687 } 2688 } 2689 2690 // Clang will correctly decode the usage of register name aliases into their 2691 // official names. However, other frontends like `rustc` do not. This allows 2692 // users of these frontends to use the ABI names for registers in LLVM-style 2693 // register constraints. 2694 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 2695 .Case("{zero}", RISCV::X0) 2696 .Case("{ra}", RISCV::X1) 2697 .Case("{sp}", RISCV::X2) 2698 .Case("{gp}", RISCV::X3) 2699 .Case("{tp}", RISCV::X4) 2700 .Case("{t0}", RISCV::X5) 2701 .Case("{t1}", RISCV::X6) 2702 .Case("{t2}", RISCV::X7) 2703 .Cases("{s0}", "{fp}", RISCV::X8) 2704 .Case("{s1}", RISCV::X9) 2705 .Case("{a0}", RISCV::X10) 2706 .Case("{a1}", RISCV::X11) 2707 .Case("{a2}", RISCV::X12) 2708 .Case("{a3}", RISCV::X13) 2709 .Case("{a4}", RISCV::X14) 2710 .Case("{a5}", RISCV::X15) 2711 .Case("{a6}", RISCV::X16) 2712 .Case("{a7}", RISCV::X17) 2713 .Case("{s2}", RISCV::X18) 2714 .Case("{s3}", RISCV::X19) 2715 .Case("{s4}", RISCV::X20) 2716 .Case("{s5}", RISCV::X21) 2717 .Case("{s6}", RISCV::X22) 2718 .Case("{s7}", RISCV::X23) 2719 .Case("{s8}", RISCV::X24) 2720 .Case("{s9}", RISCV::X25) 2721 .Case("{s10}", RISCV::X26) 2722 .Case("{s11}", RISCV::X27) 2723 .Case("{t3}", RISCV::X28) 2724 .Case("{t4}", RISCV::X29) 2725 .Case("{t5}", RISCV::X30) 2726 .Case("{t6}", RISCV::X31) 2727 .Default(RISCV::NoRegister); 2728 if (XRegFromAlias != RISCV::NoRegister) 2729 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 2730 2731 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2732 // TableGen record rather than the AsmName to choose registers for InlineAsm 2733 // constraints, plus we want to match those names to the widest floating point 2734 // register type available, manually select floating point registers here. 2735 // 2736 // The second case is the ABI name of the register, so that frontends can also 2737 // use the ABI names in register constraint lists. 2738 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2739 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 2740 .Cases("{f0}", "{ft0}", RISCV::F0_F) 2741 .Cases("{f1}", "{ft1}", RISCV::F1_F) 2742 .Cases("{f2}", "{ft2}", RISCV::F2_F) 2743 .Cases("{f3}", "{ft3}", RISCV::F3_F) 2744 .Cases("{f4}", "{ft4}", RISCV::F4_F) 2745 .Cases("{f5}", "{ft5}", RISCV::F5_F) 2746 .Cases("{f6}", "{ft6}", RISCV::F6_F) 2747 .Cases("{f7}", "{ft7}", RISCV::F7_F) 2748 .Cases("{f8}", "{fs0}", RISCV::F8_F) 2749 .Cases("{f9}", "{fs1}", RISCV::F9_F) 2750 .Cases("{f10}", "{fa0}", RISCV::F10_F) 2751 .Cases("{f11}", "{fa1}", RISCV::F11_F) 2752 .Cases("{f12}", "{fa2}", RISCV::F12_F) 2753 .Cases("{f13}", "{fa3}", RISCV::F13_F) 2754 .Cases("{f14}", "{fa4}", RISCV::F14_F) 2755 .Cases("{f15}", "{fa5}", RISCV::F15_F) 2756 .Cases("{f16}", "{fa6}", RISCV::F16_F) 2757 .Cases("{f17}", "{fa7}", RISCV::F17_F) 2758 .Cases("{f18}", "{fs2}", RISCV::F18_F) 2759 .Cases("{f19}", "{fs3}", RISCV::F19_F) 2760 .Cases("{f20}", "{fs4}", RISCV::F20_F) 2761 .Cases("{f21}", "{fs5}", RISCV::F21_F) 2762 .Cases("{f22}", "{fs6}", RISCV::F22_F) 2763 .Cases("{f23}", "{fs7}", RISCV::F23_F) 2764 .Cases("{f24}", "{fs8}", RISCV::F24_F) 2765 .Cases("{f25}", "{fs9}", RISCV::F25_F) 2766 .Cases("{f26}", "{fs10}", RISCV::F26_F) 2767 .Cases("{f27}", "{fs11}", RISCV::F27_F) 2768 .Cases("{f28}", "{ft8}", RISCV::F28_F) 2769 .Cases("{f29}", "{ft9}", RISCV::F29_F) 2770 .Cases("{f30}", "{ft10}", RISCV::F30_F) 2771 .Cases("{f31}", "{ft11}", RISCV::F31_F) 2772 .Default(RISCV::NoRegister); 2773 if (FReg != RISCV::NoRegister) { 2774 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 2775 if (Subtarget.hasStdExtD()) { 2776 unsigned RegNo = FReg - RISCV::F0_F; 2777 unsigned DReg = RISCV::F0_D + RegNo; 2778 return std::make_pair(DReg, &RISCV::FPR64RegClass); 2779 } 2780 return std::make_pair(FReg, &RISCV::FPR32RegClass); 2781 } 2782 } 2783 2784 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2785 } 2786 2787 unsigned 2788 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2789 // Currently only support length 1 constraints. 2790 if (ConstraintCode.size() == 1) { 2791 switch (ConstraintCode[0]) { 2792 case 'A': 2793 return InlineAsm::Constraint_A; 2794 default: 2795 break; 2796 } 2797 } 2798 2799 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 2800 } 2801 2802 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2803 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2804 SelectionDAG &DAG) const { 2805 // Currently only support length 1 constraints. 2806 if (Constraint.length() == 1) { 2807 switch (Constraint[0]) { 2808 case 'I': 2809 // Validate & create a 12-bit signed immediate operand. 2810 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2811 uint64_t CVal = C->getSExtValue(); 2812 if (isInt<12>(CVal)) 2813 Ops.push_back( 2814 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2815 } 2816 return; 2817 case 'J': 2818 // Validate & create an integer zero operand. 2819 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2820 if (C->getZExtValue() == 0) 2821 Ops.push_back( 2822 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2823 return; 2824 case 'K': 2825 // Validate & create a 5-bit unsigned immediate operand. 2826 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2827 uint64_t CVal = C->getZExtValue(); 2828 if (isUInt<5>(CVal)) 2829 Ops.push_back( 2830 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2831 } 2832 return; 2833 default: 2834 break; 2835 } 2836 } 2837 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2838 } 2839 2840 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2841 Instruction *Inst, 2842 AtomicOrdering Ord) const { 2843 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2844 return Builder.CreateFence(Ord); 2845 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2846 return Builder.CreateFence(AtomicOrdering::Release); 2847 return nullptr; 2848 } 2849 2850 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2851 Instruction *Inst, 2852 AtomicOrdering Ord) const { 2853 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2854 return Builder.CreateFence(AtomicOrdering::Acquire); 2855 return nullptr; 2856 } 2857 2858 TargetLowering::AtomicExpansionKind 2859 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2860 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2861 // point operations can't be used in an lr/sc sequence without breaking the 2862 // forward-progress guarantee. 2863 if (AI->isFloatingPointOperation()) 2864 return AtomicExpansionKind::CmpXChg; 2865 2866 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2867 if (Size == 8 || Size == 16) 2868 return AtomicExpansionKind::MaskedIntrinsic; 2869 return AtomicExpansionKind::None; 2870 } 2871 2872 static Intrinsic::ID 2873 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2874 if (XLen == 32) { 2875 switch (BinOp) { 2876 default: 2877 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2878 case AtomicRMWInst::Xchg: 2879 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2880 case AtomicRMWInst::Add: 2881 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2882 case AtomicRMWInst::Sub: 2883 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2884 case AtomicRMWInst::Nand: 2885 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2886 case AtomicRMWInst::Max: 2887 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2888 case AtomicRMWInst::Min: 2889 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2890 case AtomicRMWInst::UMax: 2891 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2892 case AtomicRMWInst::UMin: 2893 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2894 } 2895 } 2896 2897 if (XLen == 64) { 2898 switch (BinOp) { 2899 default: 2900 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2901 case AtomicRMWInst::Xchg: 2902 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2903 case AtomicRMWInst::Add: 2904 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2905 case AtomicRMWInst::Sub: 2906 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2907 case AtomicRMWInst::Nand: 2908 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2909 case AtomicRMWInst::Max: 2910 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2911 case AtomicRMWInst::Min: 2912 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2913 case AtomicRMWInst::UMax: 2914 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2915 case AtomicRMWInst::UMin: 2916 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2917 } 2918 } 2919 2920 llvm_unreachable("Unexpected XLen\n"); 2921 } 2922 2923 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2924 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2925 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2926 unsigned XLen = Subtarget.getXLen(); 2927 Value *Ordering = 2928 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2929 Type *Tys[] = {AlignedAddr->getType()}; 2930 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2931 AI->getModule(), 2932 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2933 2934 if (XLen == 64) { 2935 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2936 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2937 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2938 } 2939 2940 Value *Result; 2941 2942 // Must pass the shift amount needed to sign extend the loaded value prior 2943 // to performing a signed comparison for min/max. ShiftAmt is the number of 2944 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2945 // is the number of bits to left+right shift the value in order to 2946 // sign-extend. 2947 if (AI->getOperation() == AtomicRMWInst::Min || 2948 AI->getOperation() == AtomicRMWInst::Max) { 2949 const DataLayout &DL = AI->getModule()->getDataLayout(); 2950 unsigned ValWidth = 2951 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2952 Value *SextShamt = 2953 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2954 Result = Builder.CreateCall(LrwOpScwLoop, 2955 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2956 } else { 2957 Result = 2958 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2959 } 2960 2961 if (XLen == 64) 2962 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2963 return Result; 2964 } 2965 2966 TargetLowering::AtomicExpansionKind 2967 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2968 AtomicCmpXchgInst *CI) const { 2969 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2970 if (Size == 8 || Size == 16) 2971 return AtomicExpansionKind::MaskedIntrinsic; 2972 return AtomicExpansionKind::None; 2973 } 2974 2975 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2976 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2977 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2978 unsigned XLen = Subtarget.getXLen(); 2979 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2980 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2981 if (XLen == 64) { 2982 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2983 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2984 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2985 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2986 } 2987 Type *Tys[] = {AlignedAddr->getType()}; 2988 Function *MaskedCmpXchg = 2989 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2990 Value *Result = Builder.CreateCall( 2991 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2992 if (XLen == 64) 2993 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2994 return Result; 2995 } 2996 2997 Register RISCVTargetLowering::getExceptionPointerRegister( 2998 const Constant *PersonalityFn) const { 2999 return RISCV::X10; 3000 } 3001 3002 Register RISCVTargetLowering::getExceptionSelectorRegister( 3003 const Constant *PersonalityFn) const { 3004 return RISCV::X11; 3005 } 3006 3007 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 3008 // Return false to suppress the unnecessary extensions if the LibCall 3009 // arguments or return value is f32 type for LP64 ABI. 3010 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 3011 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 3012 return false; 3013 3014 return true; 3015 } 3016 3017 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 3018 SDValue C) const { 3019 // Check integral scalar types. 3020 if (VT.isScalarInteger()) { 3021 // Do not perform the transformation on riscv32 with the M extension. 3022 if (!Subtarget.is64Bit() && Subtarget.hasStdExtM()) 3023 return false; 3024 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 3025 if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t)) 3026 return false; 3027 int64_t Imm = ConstNode->getSExtValue(); 3028 if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) || 3029 isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm)) 3030 return true; 3031 } 3032 } 3033 3034 return false; 3035 } 3036 3037 #define GET_REGISTER_MATCHER 3038 #include "RISCVGenAsmMatcher.inc" 3039 3040 Register 3041 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 3042 const MachineFunction &MF) const { 3043 Register Reg = MatchRegisterAltName(RegName); 3044 if (Reg == RISCV::NoRegister) 3045 Reg = MatchRegisterName(RegName); 3046 if (Reg == RISCV::NoRegister) 3047 report_fatal_error( 3048 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 3049 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 3050 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 3051 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 3052 StringRef(RegName) + "\".")); 3053 return Reg; 3054 } 3055