1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 339 setOperationAction(ISD::FREM, MVT::f16, Promote); 340 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 341 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 342 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 343 setOperationAction(ISD::FRINT, MVT::f16, Promote); 344 setOperationAction(ISD::FROUND, MVT::f16, Promote); 345 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 346 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 347 setOperationAction(ISD::FPOW, MVT::f16, Promote); 348 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 349 setOperationAction(ISD::FCOS, MVT::f16, Promote); 350 setOperationAction(ISD::FSIN, MVT::f16, Promote); 351 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 352 setOperationAction(ISD::FEXP, MVT::f16, Promote); 353 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 354 setOperationAction(ISD::FLOG, MVT::f16, Promote); 355 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 356 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 357 358 // We need to custom promote this. 359 if (Subtarget.is64Bit()) 360 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 361 } 362 363 if (Subtarget.hasStdExtF()) { 364 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 365 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 366 setOperationAction(ISD::LRINT, MVT::f32, Legal); 367 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 368 setOperationAction(ISD::LROUND, MVT::f32, Legal); 369 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 370 for (auto CC : FPCCToExpand) 371 setCondCodeAction(CC, MVT::f32, Expand); 372 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 373 setOperationAction(ISD::SELECT, MVT::f32, Custom); 374 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 375 for (auto Op : FPOpToExpand) 376 setOperationAction(Op, MVT::f32, Expand); 377 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 378 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 379 } 380 381 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 382 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 383 384 if (Subtarget.hasStdExtD()) { 385 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 386 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 387 setOperationAction(ISD::LRINT, MVT::f64, Legal); 388 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 389 setOperationAction(ISD::LROUND, MVT::f64, Legal); 390 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 391 for (auto CC : FPCCToExpand) 392 setCondCodeAction(CC, MVT::f64, Expand); 393 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 394 setOperationAction(ISD::SELECT, MVT::f64, Custom); 395 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 396 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 397 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 398 for (auto Op : FPOpToExpand) 399 setOperationAction(Op, MVT::f64, Expand); 400 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 401 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 402 } 403 404 if (Subtarget.is64Bit()) { 405 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 406 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 407 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 408 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 409 } 410 411 if (Subtarget.hasStdExtF()) { 412 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 413 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 414 415 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 416 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 417 } 418 419 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 420 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 421 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 422 setOperationAction(ISD::JumpTable, XLenVT, Custom); 423 424 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 425 426 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 427 // Unfortunately this can't be determined just from the ISA naming string. 428 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 429 Subtarget.is64Bit() ? Legal : Custom); 430 431 setOperationAction(ISD::TRAP, MVT::Other, Legal); 432 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 434 if (Subtarget.is64Bit()) 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 436 437 if (Subtarget.hasStdExtA()) { 438 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 439 setMinCmpXchgSizeInBits(32); 440 } else { 441 setMaxAtomicSizeInBitsSupported(0); 442 } 443 444 setBooleanContents(ZeroOrOneBooleanContent); 445 446 if (Subtarget.hasVInstructions()) { 447 setBooleanVectorContents(ZeroOrOneBooleanContent); 448 449 setOperationAction(ISD::VSCALE, XLenVT, Custom); 450 451 // RVV intrinsics may have illegal operands. 452 // We also need to custom legalize vmv.x.s. 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 454 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 455 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 456 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 457 if (Subtarget.is64Bit()) { 458 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 459 } else { 460 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 461 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 462 } 463 464 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 465 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 466 467 static const unsigned IntegerVPOps[] = { 468 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 469 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 470 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 471 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 472 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 473 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 474 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 475 ISD::VP_SELECT}; 476 477 static const unsigned FloatingPointVPOps[] = { 478 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 479 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 480 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 481 482 if (!Subtarget.is64Bit()) { 483 // We must custom-lower certain vXi64 operations on RV32 due to the vector 484 // element type being illegal. 485 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 486 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 487 488 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 489 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 490 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 491 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 492 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 493 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 494 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 495 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 496 497 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 498 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 499 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 500 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 501 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 502 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 503 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 504 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 505 } 506 507 for (MVT VT : BoolVecVTs) { 508 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 509 510 // Mask VTs are custom-expanded into a series of standard nodes 511 setOperationAction(ISD::TRUNCATE, VT, Custom); 512 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 513 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 514 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 515 516 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 517 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 518 519 setOperationAction(ISD::SELECT, VT, Custom); 520 setOperationAction(ISD::SELECT_CC, VT, Expand); 521 setOperationAction(ISD::VSELECT, VT, Expand); 522 523 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 524 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 525 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 526 527 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 528 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 529 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 530 531 // RVV has native int->float & float->int conversions where the 532 // element type sizes are within one power-of-two of each other. Any 533 // wider distances between type sizes have to be lowered as sequences 534 // which progressively narrow the gap in stages. 535 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 536 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 537 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 538 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 539 540 // Expand all extending loads to types larger than this, and truncating 541 // stores from types larger than this. 542 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 543 setTruncStoreAction(OtherVT, VT, Expand); 544 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 545 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 546 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 547 } 548 } 549 550 for (MVT VT : IntVecVTs) { 551 if (VT.getVectorElementType() == MVT::i64 && 552 !Subtarget.hasVInstructionsI64()) 553 continue; 554 555 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 556 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 557 558 // Vectors implement MULHS/MULHU. 559 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 560 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 561 562 setOperationAction(ISD::SMIN, VT, Legal); 563 setOperationAction(ISD::SMAX, VT, Legal); 564 setOperationAction(ISD::UMIN, VT, Legal); 565 setOperationAction(ISD::UMAX, VT, Legal); 566 567 setOperationAction(ISD::ROTL, VT, Expand); 568 setOperationAction(ISD::ROTR, VT, Expand); 569 570 setOperationAction(ISD::CTTZ, VT, Expand); 571 setOperationAction(ISD::CTLZ, VT, Expand); 572 setOperationAction(ISD::CTPOP, VT, Expand); 573 574 setOperationAction(ISD::BSWAP, VT, Expand); 575 576 // Custom-lower extensions and truncations from/to mask types. 577 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 578 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 579 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 580 581 // RVV has native int->float & float->int conversions where the 582 // element type sizes are within one power-of-two of each other. Any 583 // wider distances between type sizes have to be lowered as sequences 584 // which progressively narrow the gap in stages. 585 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 586 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 587 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 588 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 589 590 setOperationAction(ISD::SADDSAT, VT, Legal); 591 setOperationAction(ISD::UADDSAT, VT, Legal); 592 setOperationAction(ISD::SSUBSAT, VT, Legal); 593 setOperationAction(ISD::USUBSAT, VT, Legal); 594 595 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 596 // nodes which truncate by one power of two at a time. 597 setOperationAction(ISD::TRUNCATE, VT, Custom); 598 599 // Custom-lower insert/extract operations to simplify patterns. 600 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 601 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 602 603 // Custom-lower reduction operations to set up the corresponding custom 604 // nodes' operands. 605 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 606 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 607 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 608 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 609 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 610 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 611 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 612 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 613 614 for (unsigned VPOpc : IntegerVPOps) 615 setOperationAction(VPOpc, VT, Custom); 616 617 setOperationAction(ISD::LOAD, VT, Custom); 618 setOperationAction(ISD::STORE, VT, Custom); 619 620 setOperationAction(ISD::MLOAD, VT, Custom); 621 setOperationAction(ISD::MSTORE, VT, Custom); 622 setOperationAction(ISD::MGATHER, VT, Custom); 623 setOperationAction(ISD::MSCATTER, VT, Custom); 624 625 setOperationAction(ISD::VP_LOAD, VT, Custom); 626 setOperationAction(ISD::VP_STORE, VT, Custom); 627 setOperationAction(ISD::VP_GATHER, VT, Custom); 628 setOperationAction(ISD::VP_SCATTER, VT, Custom); 629 630 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 631 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 632 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 633 634 setOperationAction(ISD::SELECT, VT, Custom); 635 setOperationAction(ISD::SELECT_CC, VT, Expand); 636 637 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 638 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 639 640 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 641 setTruncStoreAction(VT, OtherVT, Expand); 642 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 643 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 644 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 645 } 646 647 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 648 // type that can represent the value exactly. 649 if (VT.getVectorElementType() != MVT::i64) { 650 MVT FloatEltVT = 651 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 652 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 653 if (isTypeLegal(FloatVT)) { 654 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 655 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 656 } 657 } 658 } 659 660 // Expand various CCs to best match the RVV ISA, which natively supports UNE 661 // but no other unordered comparisons, and supports all ordered comparisons 662 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 663 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 664 // and we pattern-match those back to the "original", swapping operands once 665 // more. This way we catch both operations and both "vf" and "fv" forms with 666 // fewer patterns. 667 static const ISD::CondCode VFPCCToExpand[] = { 668 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 669 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 670 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 671 }; 672 673 // Sets common operation actions on RVV floating-point vector types. 674 const auto SetCommonVFPActions = [&](MVT VT) { 675 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 676 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 677 // sizes are within one power-of-two of each other. Therefore conversions 678 // between vXf16 and vXf64 must be lowered as sequences which convert via 679 // vXf32. 680 setOperationAction(ISD::FP_ROUND, VT, Custom); 681 setOperationAction(ISD::FP_EXTEND, VT, Custom); 682 // Custom-lower insert/extract operations to simplify patterns. 683 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 684 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 685 // Expand various condition codes (explained above). 686 for (auto CC : VFPCCToExpand) 687 setCondCodeAction(CC, VT, Expand); 688 689 setOperationAction(ISD::FMINNUM, VT, Legal); 690 setOperationAction(ISD::FMAXNUM, VT, Legal); 691 692 setOperationAction(ISD::FTRUNC, VT, Custom); 693 setOperationAction(ISD::FCEIL, VT, Custom); 694 setOperationAction(ISD::FFLOOR, VT, Custom); 695 696 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 697 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 698 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 699 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 700 701 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 702 703 setOperationAction(ISD::LOAD, VT, Custom); 704 setOperationAction(ISD::STORE, VT, Custom); 705 706 setOperationAction(ISD::MLOAD, VT, Custom); 707 setOperationAction(ISD::MSTORE, VT, Custom); 708 setOperationAction(ISD::MGATHER, VT, Custom); 709 setOperationAction(ISD::MSCATTER, VT, Custom); 710 711 setOperationAction(ISD::VP_LOAD, VT, Custom); 712 setOperationAction(ISD::VP_STORE, VT, Custom); 713 setOperationAction(ISD::VP_GATHER, VT, Custom); 714 setOperationAction(ISD::VP_SCATTER, VT, Custom); 715 716 setOperationAction(ISD::SELECT, VT, Custom); 717 setOperationAction(ISD::SELECT_CC, VT, Expand); 718 719 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 720 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 721 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 722 723 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 724 725 for (unsigned VPOpc : FloatingPointVPOps) 726 setOperationAction(VPOpc, VT, Custom); 727 }; 728 729 // Sets common extload/truncstore actions on RVV floating-point vector 730 // types. 731 const auto SetCommonVFPExtLoadTruncStoreActions = 732 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 733 for (auto SmallVT : SmallerVTs) { 734 setTruncStoreAction(VT, SmallVT, Expand); 735 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 736 } 737 }; 738 739 if (Subtarget.hasVInstructionsF16()) 740 for (MVT VT : F16VecVTs) 741 SetCommonVFPActions(VT); 742 743 for (MVT VT : F32VecVTs) { 744 if (Subtarget.hasVInstructionsF32()) 745 SetCommonVFPActions(VT); 746 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 747 } 748 749 for (MVT VT : F64VecVTs) { 750 if (Subtarget.hasVInstructionsF64()) 751 SetCommonVFPActions(VT); 752 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 753 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 754 } 755 756 if (Subtarget.useRVVForFixedLengthVectors()) { 757 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 758 if (!useRVVForFixedLengthVectorVT(VT)) 759 continue; 760 761 // By default everything must be expanded. 762 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 763 setOperationAction(Op, VT, Expand); 764 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 765 setTruncStoreAction(VT, OtherVT, Expand); 766 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 767 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 768 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 769 } 770 771 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 772 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 773 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 774 775 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 776 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 777 778 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 779 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 780 781 setOperationAction(ISD::LOAD, VT, Custom); 782 setOperationAction(ISD::STORE, VT, Custom); 783 784 setOperationAction(ISD::SETCC, VT, Custom); 785 786 setOperationAction(ISD::SELECT, VT, Custom); 787 788 setOperationAction(ISD::TRUNCATE, VT, Custom); 789 790 setOperationAction(ISD::BITCAST, VT, Custom); 791 792 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 793 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 794 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 795 796 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 797 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 798 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 799 800 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 801 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 802 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 803 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 804 805 // Operations below are different for between masks and other vectors. 806 if (VT.getVectorElementType() == MVT::i1) { 807 setOperationAction(ISD::AND, VT, Custom); 808 setOperationAction(ISD::OR, VT, Custom); 809 setOperationAction(ISD::XOR, VT, Custom); 810 continue; 811 } 812 813 // Use SPLAT_VECTOR to prevent type legalization from destroying the 814 // splats when type legalizing i64 scalar on RV32. 815 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 816 // improvements first. 817 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 818 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 819 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 820 } 821 822 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 823 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 824 825 setOperationAction(ISD::MLOAD, VT, Custom); 826 setOperationAction(ISD::MSTORE, VT, Custom); 827 setOperationAction(ISD::MGATHER, VT, Custom); 828 setOperationAction(ISD::MSCATTER, VT, Custom); 829 830 setOperationAction(ISD::VP_LOAD, VT, Custom); 831 setOperationAction(ISD::VP_STORE, VT, Custom); 832 setOperationAction(ISD::VP_GATHER, VT, Custom); 833 setOperationAction(ISD::VP_SCATTER, VT, Custom); 834 835 setOperationAction(ISD::ADD, VT, Custom); 836 setOperationAction(ISD::MUL, VT, Custom); 837 setOperationAction(ISD::SUB, VT, Custom); 838 setOperationAction(ISD::AND, VT, Custom); 839 setOperationAction(ISD::OR, VT, Custom); 840 setOperationAction(ISD::XOR, VT, Custom); 841 setOperationAction(ISD::SDIV, VT, Custom); 842 setOperationAction(ISD::SREM, VT, Custom); 843 setOperationAction(ISD::UDIV, VT, Custom); 844 setOperationAction(ISD::UREM, VT, Custom); 845 setOperationAction(ISD::SHL, VT, Custom); 846 setOperationAction(ISD::SRA, VT, Custom); 847 setOperationAction(ISD::SRL, VT, Custom); 848 849 setOperationAction(ISD::SMIN, VT, Custom); 850 setOperationAction(ISD::SMAX, VT, Custom); 851 setOperationAction(ISD::UMIN, VT, Custom); 852 setOperationAction(ISD::UMAX, VT, Custom); 853 setOperationAction(ISD::ABS, VT, Custom); 854 855 setOperationAction(ISD::MULHS, VT, Custom); 856 setOperationAction(ISD::MULHU, VT, Custom); 857 858 setOperationAction(ISD::SADDSAT, VT, Custom); 859 setOperationAction(ISD::UADDSAT, VT, Custom); 860 setOperationAction(ISD::SSUBSAT, VT, Custom); 861 setOperationAction(ISD::USUBSAT, VT, Custom); 862 863 setOperationAction(ISD::VSELECT, VT, Custom); 864 setOperationAction(ISD::SELECT_CC, VT, Expand); 865 866 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 867 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 868 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 869 870 // Custom-lower reduction operations to set up the corresponding custom 871 // nodes' operands. 872 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 873 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 874 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 875 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 876 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 877 878 for (unsigned VPOpc : IntegerVPOps) 879 setOperationAction(VPOpc, VT, Custom); 880 881 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 882 // type that can represent the value exactly. 883 if (VT.getVectorElementType() != MVT::i64) { 884 MVT FloatEltVT = 885 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 886 EVT FloatVT = 887 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 888 if (isTypeLegal(FloatVT)) { 889 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 890 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 891 } 892 } 893 } 894 895 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 896 if (!useRVVForFixedLengthVectorVT(VT)) 897 continue; 898 899 // By default everything must be expanded. 900 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 901 setOperationAction(Op, VT, Expand); 902 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 903 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 904 setTruncStoreAction(VT, OtherVT, Expand); 905 } 906 907 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 908 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 909 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 910 911 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 912 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 913 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 914 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 915 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 916 917 setOperationAction(ISD::LOAD, VT, Custom); 918 setOperationAction(ISD::STORE, VT, Custom); 919 setOperationAction(ISD::MLOAD, VT, Custom); 920 setOperationAction(ISD::MSTORE, VT, Custom); 921 setOperationAction(ISD::MGATHER, VT, Custom); 922 setOperationAction(ISD::MSCATTER, VT, Custom); 923 924 setOperationAction(ISD::VP_LOAD, VT, Custom); 925 setOperationAction(ISD::VP_STORE, VT, Custom); 926 setOperationAction(ISD::VP_GATHER, VT, Custom); 927 setOperationAction(ISD::VP_SCATTER, VT, Custom); 928 929 setOperationAction(ISD::FADD, VT, Custom); 930 setOperationAction(ISD::FSUB, VT, Custom); 931 setOperationAction(ISD::FMUL, VT, Custom); 932 setOperationAction(ISD::FDIV, VT, Custom); 933 setOperationAction(ISD::FNEG, VT, Custom); 934 setOperationAction(ISD::FABS, VT, Custom); 935 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 936 setOperationAction(ISD::FSQRT, VT, Custom); 937 setOperationAction(ISD::FMA, VT, Custom); 938 setOperationAction(ISD::FMINNUM, VT, Custom); 939 setOperationAction(ISD::FMAXNUM, VT, Custom); 940 941 setOperationAction(ISD::FP_ROUND, VT, Custom); 942 setOperationAction(ISD::FP_EXTEND, VT, Custom); 943 944 setOperationAction(ISD::FTRUNC, VT, Custom); 945 setOperationAction(ISD::FCEIL, VT, Custom); 946 setOperationAction(ISD::FFLOOR, VT, Custom); 947 948 for (auto CC : VFPCCToExpand) 949 setCondCodeAction(CC, VT, Expand); 950 951 setOperationAction(ISD::VSELECT, VT, Custom); 952 setOperationAction(ISD::SELECT, VT, Custom); 953 setOperationAction(ISD::SELECT_CC, VT, Expand); 954 955 setOperationAction(ISD::BITCAST, VT, Custom); 956 957 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 958 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 959 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 960 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 961 962 for (unsigned VPOpc : FloatingPointVPOps) 963 setOperationAction(VPOpc, VT, Custom); 964 } 965 966 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 967 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 968 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 969 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 970 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 971 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 972 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 973 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 974 } 975 } 976 977 // Function alignments. 978 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 979 setMinFunctionAlignment(FunctionAlignment); 980 setPrefFunctionAlignment(FunctionAlignment); 981 982 setMinimumJumpTableEntries(5); 983 984 // Jumps are expensive, compared to logic 985 setJumpIsExpensive(); 986 987 setTargetDAGCombine(ISD::ADD); 988 setTargetDAGCombine(ISD::SUB); 989 setTargetDAGCombine(ISD::AND); 990 setTargetDAGCombine(ISD::OR); 991 setTargetDAGCombine(ISD::XOR); 992 setTargetDAGCombine(ISD::ANY_EXTEND); 993 setTargetDAGCombine(ISD::ZERO_EXTEND); 994 if (Subtarget.hasVInstructions()) { 995 setTargetDAGCombine(ISD::FCOPYSIGN); 996 setTargetDAGCombine(ISD::MGATHER); 997 setTargetDAGCombine(ISD::MSCATTER); 998 setTargetDAGCombine(ISD::VP_GATHER); 999 setTargetDAGCombine(ISD::VP_SCATTER); 1000 setTargetDAGCombine(ISD::SRA); 1001 setTargetDAGCombine(ISD::SRL); 1002 setTargetDAGCombine(ISD::SHL); 1003 setTargetDAGCombine(ISD::STORE); 1004 } 1005 } 1006 1007 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1008 LLVMContext &Context, 1009 EVT VT) const { 1010 if (!VT.isVector()) 1011 return getPointerTy(DL); 1012 if (Subtarget.hasVInstructions() && 1013 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1014 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1015 return VT.changeVectorElementTypeToInteger(); 1016 } 1017 1018 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1019 return Subtarget.getXLenVT(); 1020 } 1021 1022 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1023 const CallInst &I, 1024 MachineFunction &MF, 1025 unsigned Intrinsic) const { 1026 auto &DL = I.getModule()->getDataLayout(); 1027 switch (Intrinsic) { 1028 default: 1029 return false; 1030 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1031 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1032 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1033 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1034 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1035 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1036 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1037 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1038 case Intrinsic::riscv_masked_cmpxchg_i32: { 1039 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1040 Info.opc = ISD::INTRINSIC_W_CHAIN; 1041 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1042 Info.ptrVal = I.getArgOperand(0); 1043 Info.offset = 0; 1044 Info.align = Align(4); 1045 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1046 MachineMemOperand::MOVolatile; 1047 return true; 1048 } 1049 case Intrinsic::riscv_masked_strided_load: 1050 Info.opc = ISD::INTRINSIC_W_CHAIN; 1051 Info.ptrVal = I.getArgOperand(1); 1052 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1053 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1054 Info.size = MemoryLocation::UnknownSize; 1055 Info.flags |= MachineMemOperand::MOLoad; 1056 return true; 1057 case Intrinsic::riscv_masked_strided_store: 1058 Info.opc = ISD::INTRINSIC_VOID; 1059 Info.ptrVal = I.getArgOperand(1); 1060 Info.memVT = 1061 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1062 Info.align = Align( 1063 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1064 8); 1065 Info.size = MemoryLocation::UnknownSize; 1066 Info.flags |= MachineMemOperand::MOStore; 1067 return true; 1068 } 1069 } 1070 1071 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1072 const AddrMode &AM, Type *Ty, 1073 unsigned AS, 1074 Instruction *I) const { 1075 // No global is ever allowed as a base. 1076 if (AM.BaseGV) 1077 return false; 1078 1079 // Require a 12-bit signed offset. 1080 if (!isInt<12>(AM.BaseOffs)) 1081 return false; 1082 1083 switch (AM.Scale) { 1084 case 0: // "r+i" or just "i", depending on HasBaseReg. 1085 break; 1086 case 1: 1087 if (!AM.HasBaseReg) // allow "r+i". 1088 break; 1089 return false; // disallow "r+r" or "r+r+i". 1090 default: 1091 return false; 1092 } 1093 1094 return true; 1095 } 1096 1097 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1098 return isInt<12>(Imm); 1099 } 1100 1101 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1102 return isInt<12>(Imm); 1103 } 1104 1105 // On RV32, 64-bit integers are split into their high and low parts and held 1106 // in two different registers, so the trunc is free since the low register can 1107 // just be used. 1108 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1109 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1110 return false; 1111 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1112 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1113 return (SrcBits == 64 && DestBits == 32); 1114 } 1115 1116 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1117 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1118 !SrcVT.isInteger() || !DstVT.isInteger()) 1119 return false; 1120 unsigned SrcBits = SrcVT.getSizeInBits(); 1121 unsigned DestBits = DstVT.getSizeInBits(); 1122 return (SrcBits == 64 && DestBits == 32); 1123 } 1124 1125 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1126 // Zexts are free if they can be combined with a load. 1127 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1128 EVT MemVT = LD->getMemoryVT(); 1129 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1130 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1131 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1132 LD->getExtensionType() == ISD::ZEXTLOAD)) 1133 return true; 1134 } 1135 1136 return TargetLowering::isZExtFree(Val, VT2); 1137 } 1138 1139 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1140 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1141 } 1142 1143 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1144 return Subtarget.hasStdExtZbb(); 1145 } 1146 1147 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1148 return Subtarget.hasStdExtZbb(); 1149 } 1150 1151 bool RISCVTargetLowering::hasAndNot(SDValue Y) const { 1152 EVT VT = Y.getValueType(); 1153 1154 // FIXME: Support vectors once we have tests. 1155 if (VT.isVector()) 1156 return false; 1157 1158 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1159 } 1160 1161 /// Check if sinking \p I's operands to I's basic block is profitable, because 1162 /// the operands can be folded into a target instruction, e.g. 1163 /// splats of scalars can fold into vector instructions. 1164 bool RISCVTargetLowering::shouldSinkOperands( 1165 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1166 using namespace llvm::PatternMatch; 1167 1168 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1169 return false; 1170 1171 auto IsSinker = [&](Instruction *I, int Operand) { 1172 switch (I->getOpcode()) { 1173 case Instruction::Add: 1174 case Instruction::Sub: 1175 case Instruction::Mul: 1176 case Instruction::And: 1177 case Instruction::Or: 1178 case Instruction::Xor: 1179 case Instruction::FAdd: 1180 case Instruction::FSub: 1181 case Instruction::FMul: 1182 case Instruction::FDiv: 1183 case Instruction::ICmp: 1184 case Instruction::FCmp: 1185 return true; 1186 case Instruction::Shl: 1187 case Instruction::LShr: 1188 case Instruction::AShr: 1189 case Instruction::UDiv: 1190 case Instruction::SDiv: 1191 case Instruction::URem: 1192 case Instruction::SRem: 1193 return Operand == 1; 1194 case Instruction::Call: 1195 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1196 switch (II->getIntrinsicID()) { 1197 case Intrinsic::fma: 1198 return Operand == 0 || Operand == 1; 1199 default: 1200 return false; 1201 } 1202 } 1203 return false; 1204 default: 1205 return false; 1206 } 1207 }; 1208 1209 for (auto OpIdx : enumerate(I->operands())) { 1210 if (!IsSinker(I, OpIdx.index())) 1211 continue; 1212 1213 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1214 // Make sure we are not already sinking this operand 1215 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1216 continue; 1217 1218 // We are looking for a splat that can be sunk. 1219 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1220 m_Undef(), m_ZeroMask()))) 1221 continue; 1222 1223 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1224 // and vector registers 1225 for (Use &U : Op->uses()) { 1226 Instruction *Insn = cast<Instruction>(U.getUser()); 1227 if (!IsSinker(Insn, U.getOperandNo())) 1228 return false; 1229 } 1230 1231 Ops.push_back(&Op->getOperandUse(0)); 1232 Ops.push_back(&OpIdx.value()); 1233 } 1234 return true; 1235 } 1236 1237 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1238 bool ForCodeSize) const { 1239 if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin()) 1240 return false; 1241 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1242 return false; 1243 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1244 return false; 1245 if (Imm.isNegZero()) 1246 return false; 1247 return Imm.isZero(); 1248 } 1249 1250 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1251 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1252 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1253 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1254 } 1255 1256 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1257 CallingConv::ID CC, 1258 EVT VT) const { 1259 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1260 // We might still end up using a GPR but that will be decided based on ABI. 1261 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1262 return MVT::f32; 1263 1264 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1265 } 1266 1267 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1268 CallingConv::ID CC, 1269 EVT VT) const { 1270 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1271 // We might still end up using a GPR but that will be decided based on ABI. 1272 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1273 return 1; 1274 1275 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1276 } 1277 1278 // Changes the condition code and swaps operands if necessary, so the SetCC 1279 // operation matches one of the comparisons supported directly by branches 1280 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1281 // with 1/-1. 1282 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1283 ISD::CondCode &CC, SelectionDAG &DAG) { 1284 // Convert X > -1 to X >= 0. 1285 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1286 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1287 CC = ISD::SETGE; 1288 return; 1289 } 1290 // Convert X < 1 to 0 >= X. 1291 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1292 RHS = LHS; 1293 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1294 CC = ISD::SETGE; 1295 return; 1296 } 1297 1298 switch (CC) { 1299 default: 1300 break; 1301 case ISD::SETGT: 1302 case ISD::SETLE: 1303 case ISD::SETUGT: 1304 case ISD::SETULE: 1305 CC = ISD::getSetCCSwappedOperands(CC); 1306 std::swap(LHS, RHS); 1307 break; 1308 } 1309 } 1310 1311 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1312 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1313 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1314 if (VT.getVectorElementType() == MVT::i1) 1315 KnownSize *= 8; 1316 1317 switch (KnownSize) { 1318 default: 1319 llvm_unreachable("Invalid LMUL."); 1320 case 8: 1321 return RISCVII::VLMUL::LMUL_F8; 1322 case 16: 1323 return RISCVII::VLMUL::LMUL_F4; 1324 case 32: 1325 return RISCVII::VLMUL::LMUL_F2; 1326 case 64: 1327 return RISCVII::VLMUL::LMUL_1; 1328 case 128: 1329 return RISCVII::VLMUL::LMUL_2; 1330 case 256: 1331 return RISCVII::VLMUL::LMUL_4; 1332 case 512: 1333 return RISCVII::VLMUL::LMUL_8; 1334 } 1335 } 1336 1337 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1338 switch (LMul) { 1339 default: 1340 llvm_unreachable("Invalid LMUL."); 1341 case RISCVII::VLMUL::LMUL_F8: 1342 case RISCVII::VLMUL::LMUL_F4: 1343 case RISCVII::VLMUL::LMUL_F2: 1344 case RISCVII::VLMUL::LMUL_1: 1345 return RISCV::VRRegClassID; 1346 case RISCVII::VLMUL::LMUL_2: 1347 return RISCV::VRM2RegClassID; 1348 case RISCVII::VLMUL::LMUL_4: 1349 return RISCV::VRM4RegClassID; 1350 case RISCVII::VLMUL::LMUL_8: 1351 return RISCV::VRM8RegClassID; 1352 } 1353 } 1354 1355 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1356 RISCVII::VLMUL LMUL = getLMUL(VT); 1357 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1358 LMUL == RISCVII::VLMUL::LMUL_F4 || 1359 LMUL == RISCVII::VLMUL::LMUL_F2 || 1360 LMUL == RISCVII::VLMUL::LMUL_1) { 1361 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1362 "Unexpected subreg numbering"); 1363 return RISCV::sub_vrm1_0 + Index; 1364 } 1365 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1366 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1367 "Unexpected subreg numbering"); 1368 return RISCV::sub_vrm2_0 + Index; 1369 } 1370 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1371 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1372 "Unexpected subreg numbering"); 1373 return RISCV::sub_vrm4_0 + Index; 1374 } 1375 llvm_unreachable("Invalid vector type."); 1376 } 1377 1378 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1379 if (VT.getVectorElementType() == MVT::i1) 1380 return RISCV::VRRegClassID; 1381 return getRegClassIDForLMUL(getLMUL(VT)); 1382 } 1383 1384 // Attempt to decompose a subvector insert/extract between VecVT and 1385 // SubVecVT via subregister indices. Returns the subregister index that 1386 // can perform the subvector insert/extract with the given element index, as 1387 // well as the index corresponding to any leftover subvectors that must be 1388 // further inserted/extracted within the register class for SubVecVT. 1389 std::pair<unsigned, unsigned> 1390 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1391 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1392 const RISCVRegisterInfo *TRI) { 1393 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1394 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1395 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1396 "Register classes not ordered"); 1397 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1398 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1399 // Try to compose a subregister index that takes us from the incoming 1400 // LMUL>1 register class down to the outgoing one. At each step we half 1401 // the LMUL: 1402 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1403 // Note that this is not guaranteed to find a subregister index, such as 1404 // when we are extracting from one VR type to another. 1405 unsigned SubRegIdx = RISCV::NoSubRegister; 1406 for (const unsigned RCID : 1407 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1408 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1409 VecVT = VecVT.getHalfNumVectorElementsVT(); 1410 bool IsHi = 1411 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1412 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1413 getSubregIndexByMVT(VecVT, IsHi)); 1414 if (IsHi) 1415 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1416 } 1417 return {SubRegIdx, InsertExtractIdx}; 1418 } 1419 1420 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1421 // stores for those types. 1422 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1423 return !Subtarget.useRVVForFixedLengthVectors() || 1424 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1425 } 1426 1427 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1428 if (ScalarTy->isPointerTy()) 1429 return true; 1430 1431 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1432 ScalarTy->isIntegerTy(32)) 1433 return true; 1434 1435 if (ScalarTy->isIntegerTy(64)) 1436 return Subtarget.hasVInstructionsI64(); 1437 1438 if (ScalarTy->isHalfTy()) 1439 return Subtarget.hasVInstructionsF16(); 1440 if (ScalarTy->isFloatTy()) 1441 return Subtarget.hasVInstructionsF32(); 1442 if (ScalarTy->isDoubleTy()) 1443 return Subtarget.hasVInstructionsF64(); 1444 1445 return false; 1446 } 1447 1448 static bool useRVVForFixedLengthVectorVT(MVT VT, 1449 const RISCVSubtarget &Subtarget) { 1450 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1451 if (!Subtarget.useRVVForFixedLengthVectors()) 1452 return false; 1453 1454 // We only support a set of vector types with a consistent maximum fixed size 1455 // across all supported vector element types to avoid legalization issues. 1456 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1457 // fixed-length vector type we support is 1024 bytes. 1458 if (VT.getFixedSizeInBits() > 1024 * 8) 1459 return false; 1460 1461 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1462 1463 MVT EltVT = VT.getVectorElementType(); 1464 1465 // Don't use RVV for vectors we cannot scalarize if required. 1466 switch (EltVT.SimpleTy) { 1467 // i1 is supported but has different rules. 1468 default: 1469 return false; 1470 case MVT::i1: 1471 // Masks can only use a single register. 1472 if (VT.getVectorNumElements() > MinVLen) 1473 return false; 1474 MinVLen /= 8; 1475 break; 1476 case MVT::i8: 1477 case MVT::i16: 1478 case MVT::i32: 1479 break; 1480 case MVT::i64: 1481 if (!Subtarget.hasVInstructionsI64()) 1482 return false; 1483 break; 1484 case MVT::f16: 1485 if (!Subtarget.hasVInstructionsF16()) 1486 return false; 1487 break; 1488 case MVT::f32: 1489 if (!Subtarget.hasVInstructionsF32()) 1490 return false; 1491 break; 1492 case MVT::f64: 1493 if (!Subtarget.hasVInstructionsF64()) 1494 return false; 1495 break; 1496 } 1497 1498 // Reject elements larger than ELEN. 1499 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1500 return false; 1501 1502 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1503 // Don't use RVV for types that don't fit. 1504 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1505 return false; 1506 1507 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1508 // the base fixed length RVV support in place. 1509 if (!VT.isPow2VectorType()) 1510 return false; 1511 1512 return true; 1513 } 1514 1515 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1516 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1517 } 1518 1519 // Return the largest legal scalable vector type that matches VT's element type. 1520 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1521 const RISCVSubtarget &Subtarget) { 1522 // This may be called before legal types are setup. 1523 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1524 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1525 "Expected legal fixed length vector!"); 1526 1527 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1528 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1529 1530 MVT EltVT = VT.getVectorElementType(); 1531 switch (EltVT.SimpleTy) { 1532 default: 1533 llvm_unreachable("unexpected element type for RVV container"); 1534 case MVT::i1: 1535 case MVT::i8: 1536 case MVT::i16: 1537 case MVT::i32: 1538 case MVT::i64: 1539 case MVT::f16: 1540 case MVT::f32: 1541 case MVT::f64: { 1542 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1543 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1544 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1545 unsigned NumElts = 1546 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1547 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1548 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1549 return MVT::getScalableVectorVT(EltVT, NumElts); 1550 } 1551 } 1552 } 1553 1554 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1555 const RISCVSubtarget &Subtarget) { 1556 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1557 Subtarget); 1558 } 1559 1560 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1561 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1562 } 1563 1564 // Grow V to consume an entire RVV register. 1565 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1566 const RISCVSubtarget &Subtarget) { 1567 assert(VT.isScalableVector() && 1568 "Expected to convert into a scalable vector!"); 1569 assert(V.getValueType().isFixedLengthVector() && 1570 "Expected a fixed length vector operand!"); 1571 SDLoc DL(V); 1572 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1573 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1574 } 1575 1576 // Shrink V so it's just big enough to maintain a VT's worth of data. 1577 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1578 const RISCVSubtarget &Subtarget) { 1579 assert(VT.isFixedLengthVector() && 1580 "Expected to convert into a fixed length vector!"); 1581 assert(V.getValueType().isScalableVector() && 1582 "Expected a scalable vector operand!"); 1583 SDLoc DL(V); 1584 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1585 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1586 } 1587 1588 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1589 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1590 // the vector type that it is contained in. 1591 static std::pair<SDValue, SDValue> 1592 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1593 const RISCVSubtarget &Subtarget) { 1594 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1595 MVT XLenVT = Subtarget.getXLenVT(); 1596 SDValue VL = VecVT.isFixedLengthVector() 1597 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1598 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1599 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1600 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1601 return {Mask, VL}; 1602 } 1603 1604 // As above but assuming the given type is a scalable vector type. 1605 static std::pair<SDValue, SDValue> 1606 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1607 const RISCVSubtarget &Subtarget) { 1608 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1609 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1610 } 1611 1612 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1613 // of either is (currently) supported. This can get us into an infinite loop 1614 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1615 // as a ..., etc. 1616 // Until either (or both) of these can reliably lower any node, reporting that 1617 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1618 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1619 // which is not desirable. 1620 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1621 EVT VT, unsigned DefinedValues) const { 1622 return false; 1623 } 1624 1625 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1626 // Only splats are currently supported. 1627 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1628 return true; 1629 1630 return false; 1631 } 1632 1633 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1634 // RISCV FP-to-int conversions saturate to the destination register size, but 1635 // don't produce 0 for nan. We can use a conversion instruction and fix the 1636 // nan case with a compare and a select. 1637 SDValue Src = Op.getOperand(0); 1638 1639 EVT DstVT = Op.getValueType(); 1640 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1641 1642 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1643 unsigned Opc; 1644 if (SatVT == DstVT) 1645 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1646 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1647 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1648 else 1649 return SDValue(); 1650 // FIXME: Support other SatVTs by clamping before or after the conversion. 1651 1652 SDLoc DL(Op); 1653 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1654 1655 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1656 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1657 } 1658 1659 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1660 // and back. Taking care to avoid converting values that are nan or already 1661 // correct. 1662 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1663 // have FRM dependencies modeled yet. 1664 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1665 MVT VT = Op.getSimpleValueType(); 1666 assert(VT.isVector() && "Unexpected type"); 1667 1668 SDLoc DL(Op); 1669 1670 // Freeze the source since we are increasing the number of uses. 1671 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1672 1673 // Truncate to integer and convert back to FP. 1674 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1675 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1676 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1677 1678 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1679 1680 if (Op.getOpcode() == ISD::FCEIL) { 1681 // If the truncated value is the greater than or equal to the original 1682 // value, we've computed the ceil. Otherwise, we went the wrong way and 1683 // need to increase by 1. 1684 // FIXME: This should use a masked operation. Handle here or in isel? 1685 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1686 DAG.getConstantFP(1.0, DL, VT)); 1687 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1688 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1689 } else if (Op.getOpcode() == ISD::FFLOOR) { 1690 // If the truncated value is the less than or equal to the original value, 1691 // we've computed the floor. Otherwise, we went the wrong way and need to 1692 // decrease by 1. 1693 // FIXME: This should use a masked operation. Handle here or in isel? 1694 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1695 DAG.getConstantFP(1.0, DL, VT)); 1696 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1697 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1698 } 1699 1700 // Restore the original sign so that -0.0 is preserved. 1701 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1702 1703 // Determine the largest integer that can be represented exactly. This and 1704 // values larger than it don't have any fractional bits so don't need to 1705 // be converted. 1706 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1707 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1708 APFloat MaxVal = APFloat(FltSem); 1709 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1710 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1711 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1712 1713 // If abs(Src) was larger than MaxVal or nan, keep it. 1714 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1715 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1716 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1717 } 1718 1719 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1720 const RISCVSubtarget &Subtarget) { 1721 MVT VT = Op.getSimpleValueType(); 1722 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1723 1724 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1725 1726 SDLoc DL(Op); 1727 SDValue Mask, VL; 1728 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1729 1730 unsigned Opc = 1731 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1732 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1733 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1734 } 1735 1736 struct VIDSequence { 1737 int64_t StepNumerator; 1738 unsigned StepDenominator; 1739 int64_t Addend; 1740 }; 1741 1742 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1743 // to the (non-zero) step S and start value X. This can be then lowered as the 1744 // RVV sequence (VID * S) + X, for example. 1745 // The step S is represented as an integer numerator divided by a positive 1746 // denominator. Note that the implementation currently only identifies 1747 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1748 // cannot detect 2/3, for example. 1749 // Note that this method will also match potentially unappealing index 1750 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1751 // determine whether this is worth generating code for. 1752 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1753 unsigned NumElts = Op.getNumOperands(); 1754 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1755 if (!Op.getValueType().isInteger()) 1756 return None; 1757 1758 Optional<unsigned> SeqStepDenom; 1759 Optional<int64_t> SeqStepNum, SeqAddend; 1760 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1761 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1762 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1763 // Assume undef elements match the sequence; we just have to be careful 1764 // when interpolating across them. 1765 if (Op.getOperand(Idx).isUndef()) 1766 continue; 1767 // The BUILD_VECTOR must be all constants. 1768 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1769 return None; 1770 1771 uint64_t Val = Op.getConstantOperandVal(Idx) & 1772 maskTrailingOnes<uint64_t>(EltSizeInBits); 1773 1774 if (PrevElt) { 1775 // Calculate the step since the last non-undef element, and ensure 1776 // it's consistent across the entire sequence. 1777 unsigned IdxDiff = Idx - PrevElt->second; 1778 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1779 1780 // A zero-value value difference means that we're somewhere in the middle 1781 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1782 // step change before evaluating the sequence. 1783 if (ValDiff != 0) { 1784 int64_t Remainder = ValDiff % IdxDiff; 1785 // Normalize the step if it's greater than 1. 1786 if (Remainder != ValDiff) { 1787 // The difference must cleanly divide the element span. 1788 if (Remainder != 0) 1789 return None; 1790 ValDiff /= IdxDiff; 1791 IdxDiff = 1; 1792 } 1793 1794 if (!SeqStepNum) 1795 SeqStepNum = ValDiff; 1796 else if (ValDiff != SeqStepNum) 1797 return None; 1798 1799 if (!SeqStepDenom) 1800 SeqStepDenom = IdxDiff; 1801 else if (IdxDiff != *SeqStepDenom) 1802 return None; 1803 } 1804 } 1805 1806 // Record and/or check any addend. 1807 if (SeqStepNum && SeqStepDenom) { 1808 uint64_t ExpectedVal = 1809 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1810 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1811 if (!SeqAddend) 1812 SeqAddend = Addend; 1813 else if (SeqAddend != Addend) 1814 return None; 1815 } 1816 1817 // Record this non-undef element for later. 1818 if (!PrevElt || PrevElt->first != Val) 1819 PrevElt = std::make_pair(Val, Idx); 1820 } 1821 // We need to have logged both a step and an addend for this to count as 1822 // a legal index sequence. 1823 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1824 return None; 1825 1826 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1827 } 1828 1829 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1830 const RISCVSubtarget &Subtarget) { 1831 MVT VT = Op.getSimpleValueType(); 1832 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1833 1834 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1835 1836 SDLoc DL(Op); 1837 SDValue Mask, VL; 1838 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1839 1840 MVT XLenVT = Subtarget.getXLenVT(); 1841 unsigned NumElts = Op.getNumOperands(); 1842 1843 if (VT.getVectorElementType() == MVT::i1) { 1844 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1845 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1846 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1847 } 1848 1849 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1850 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1851 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1852 } 1853 1854 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1855 // scalar integer chunks whose bit-width depends on the number of mask 1856 // bits and XLEN. 1857 // First, determine the most appropriate scalar integer type to use. This 1858 // is at most XLenVT, but may be shrunk to a smaller vector element type 1859 // according to the size of the final vector - use i8 chunks rather than 1860 // XLenVT if we're producing a v8i1. This results in more consistent 1861 // codegen across RV32 and RV64. 1862 unsigned NumViaIntegerBits = 1863 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1864 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1865 // If we have to use more than one INSERT_VECTOR_ELT then this 1866 // optimization is likely to increase code size; avoid peforming it in 1867 // such a case. We can use a load from a constant pool in this case. 1868 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1869 return SDValue(); 1870 // Now we can create our integer vector type. Note that it may be larger 1871 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1872 MVT IntegerViaVecVT = 1873 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1874 divideCeil(NumElts, NumViaIntegerBits)); 1875 1876 uint64_t Bits = 0; 1877 unsigned BitPos = 0, IntegerEltIdx = 0; 1878 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1879 1880 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1881 // Once we accumulate enough bits to fill our scalar type, insert into 1882 // our vector and clear our accumulated data. 1883 if (I != 0 && I % NumViaIntegerBits == 0) { 1884 if (NumViaIntegerBits <= 32) 1885 Bits = SignExtend64(Bits, 32); 1886 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1887 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1888 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1889 Bits = 0; 1890 BitPos = 0; 1891 IntegerEltIdx++; 1892 } 1893 SDValue V = Op.getOperand(I); 1894 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1895 Bits |= ((uint64_t)BitValue << BitPos); 1896 } 1897 1898 // Insert the (remaining) scalar value into position in our integer 1899 // vector type. 1900 if (NumViaIntegerBits <= 32) 1901 Bits = SignExtend64(Bits, 32); 1902 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1903 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1904 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1905 1906 if (NumElts < NumViaIntegerBits) { 1907 // If we're producing a smaller vector than our minimum legal integer 1908 // type, bitcast to the equivalent (known-legal) mask type, and extract 1909 // our final mask. 1910 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1911 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1912 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1913 DAG.getConstant(0, DL, XLenVT)); 1914 } else { 1915 // Else we must have produced an integer type with the same size as the 1916 // mask type; bitcast for the final result. 1917 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1918 Vec = DAG.getBitcast(VT, Vec); 1919 } 1920 1921 return Vec; 1922 } 1923 1924 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1925 // vector type, we have a legal equivalently-sized i8 type, so we can use 1926 // that. 1927 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1928 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1929 1930 SDValue WideVec; 1931 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1932 // For a splat, perform a scalar truncate before creating the wider 1933 // vector. 1934 assert(Splat.getValueType() == XLenVT && 1935 "Unexpected type for i1 splat value"); 1936 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1937 DAG.getConstant(1, DL, XLenVT)); 1938 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1939 } else { 1940 SmallVector<SDValue, 8> Ops(Op->op_values()); 1941 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1942 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1943 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1944 } 1945 1946 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1947 } 1948 1949 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1950 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1951 : RISCVISD::VMV_V_X_VL; 1952 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1953 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1954 } 1955 1956 // Try and match index sequences, which we can lower to the vid instruction 1957 // with optional modifications. An all-undef vector is matched by 1958 // getSplatValue, above. 1959 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1960 int64_t StepNumerator = SimpleVID->StepNumerator; 1961 unsigned StepDenominator = SimpleVID->StepDenominator; 1962 int64_t Addend = SimpleVID->Addend; 1963 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1964 // threshold since it's the immediate value many RVV instructions accept. 1965 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1966 isInt<5>(Addend)) { 1967 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1968 // Convert right out of the scalable type so we can use standard ISD 1969 // nodes for the rest of the computation. If we used scalable types with 1970 // these, we'd lose the fixed-length vector info and generate worse 1971 // vsetvli code. 1972 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1973 assert(StepNumerator != 0 && "Invalid step"); 1974 bool Negate = false; 1975 if (StepNumerator != 1) { 1976 int64_t SplatStepVal = StepNumerator; 1977 unsigned Opcode = ISD::MUL; 1978 if (isPowerOf2_64(std::abs(StepNumerator))) { 1979 Negate = StepNumerator < 0; 1980 Opcode = ISD::SHL; 1981 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1982 } 1983 SDValue SplatStep = DAG.getSplatVector( 1984 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1985 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1986 } 1987 if (StepDenominator != 1) { 1988 SDValue SplatStep = DAG.getSplatVector( 1989 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1990 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1991 } 1992 if (Addend != 0 || Negate) { 1993 SDValue SplatAddend = 1994 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1995 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1996 } 1997 return VID; 1998 } 1999 } 2000 2001 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2002 // when re-interpreted as a vector with a larger element type. For example, 2003 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2004 // could be instead splat as 2005 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2006 // TODO: This optimization could also work on non-constant splats, but it 2007 // would require bit-manipulation instructions to construct the splat value. 2008 SmallVector<SDValue> Sequence; 2009 unsigned EltBitSize = VT.getScalarSizeInBits(); 2010 const auto *BV = cast<BuildVectorSDNode>(Op); 2011 if (VT.isInteger() && EltBitSize < 64 && 2012 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2013 BV->getRepeatedSequence(Sequence) && 2014 (Sequence.size() * EltBitSize) <= 64) { 2015 unsigned SeqLen = Sequence.size(); 2016 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2017 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2018 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2019 ViaIntVT == MVT::i64) && 2020 "Unexpected sequence type"); 2021 2022 unsigned EltIdx = 0; 2023 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2024 uint64_t SplatValue = 0; 2025 // Construct the amalgamated value which can be splatted as this larger 2026 // vector type. 2027 for (const auto &SeqV : Sequence) { 2028 if (!SeqV.isUndef()) 2029 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2030 << (EltIdx * EltBitSize)); 2031 EltIdx++; 2032 } 2033 2034 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2035 // achieve better constant materializion. 2036 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2037 SplatValue = SignExtend64(SplatValue, 32); 2038 2039 // Since we can't introduce illegal i64 types at this stage, we can only 2040 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2041 // way we can use RVV instructions to splat. 2042 assert((ViaIntVT.bitsLE(XLenVT) || 2043 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2044 "Unexpected bitcast sequence"); 2045 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2046 SDValue ViaVL = 2047 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2048 MVT ViaContainerVT = 2049 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2050 SDValue Splat = 2051 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2052 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2053 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2054 return DAG.getBitcast(VT, Splat); 2055 } 2056 } 2057 2058 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2059 // which constitute a large proportion of the elements. In such cases we can 2060 // splat a vector with the dominant element and make up the shortfall with 2061 // INSERT_VECTOR_ELTs. 2062 // Note that this includes vectors of 2 elements by association. The 2063 // upper-most element is the "dominant" one, allowing us to use a splat to 2064 // "insert" the upper element, and an insert of the lower element at position 2065 // 0, which improves codegen. 2066 SDValue DominantValue; 2067 unsigned MostCommonCount = 0; 2068 DenseMap<SDValue, unsigned> ValueCounts; 2069 unsigned NumUndefElts = 2070 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2071 2072 // Track the number of scalar loads we know we'd be inserting, estimated as 2073 // any non-zero floating-point constant. Other kinds of element are either 2074 // already in registers or are materialized on demand. The threshold at which 2075 // a vector load is more desirable than several scalar materializion and 2076 // vector-insertion instructions is not known. 2077 unsigned NumScalarLoads = 0; 2078 2079 for (SDValue V : Op->op_values()) { 2080 if (V.isUndef()) 2081 continue; 2082 2083 ValueCounts.insert(std::make_pair(V, 0)); 2084 unsigned &Count = ValueCounts[V]; 2085 2086 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2087 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2088 2089 // Is this value dominant? In case of a tie, prefer the highest element as 2090 // it's cheaper to insert near the beginning of a vector than it is at the 2091 // end. 2092 if (++Count >= MostCommonCount) { 2093 DominantValue = V; 2094 MostCommonCount = Count; 2095 } 2096 } 2097 2098 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2099 unsigned NumDefElts = NumElts - NumUndefElts; 2100 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2101 2102 // Don't perform this optimization when optimizing for size, since 2103 // materializing elements and inserting them tends to cause code bloat. 2104 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2105 ((MostCommonCount > DominantValueCountThreshold) || 2106 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2107 // Start by splatting the most common element. 2108 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2109 2110 DenseSet<SDValue> Processed{DominantValue}; 2111 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2112 for (const auto &OpIdx : enumerate(Op->ops())) { 2113 const SDValue &V = OpIdx.value(); 2114 if (V.isUndef() || !Processed.insert(V).second) 2115 continue; 2116 if (ValueCounts[V] == 1) { 2117 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2118 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2119 } else { 2120 // Blend in all instances of this value using a VSELECT, using a 2121 // mask where each bit signals whether that element is the one 2122 // we're after. 2123 SmallVector<SDValue> Ops; 2124 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2125 return DAG.getConstant(V == V1, DL, XLenVT); 2126 }); 2127 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2128 DAG.getBuildVector(SelMaskTy, DL, Ops), 2129 DAG.getSplatBuildVector(VT, DL, V), Vec); 2130 } 2131 } 2132 2133 return Vec; 2134 } 2135 2136 return SDValue(); 2137 } 2138 2139 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2140 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2141 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2142 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2143 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2144 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2145 // node in order to try and match RVV vector/scalar instructions. 2146 if ((LoC >> 31) == HiC) 2147 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2148 } 2149 2150 // Fall back to a stack store and stride x0 vector load. 2151 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2152 } 2153 2154 // Called by type legalization to handle splat of i64 on RV32. 2155 // FIXME: We can optimize this when the type has sign or zero bits in one 2156 // of the halves. 2157 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2158 SDValue VL, SelectionDAG &DAG) { 2159 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2160 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2161 DAG.getConstant(0, DL, MVT::i32)); 2162 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2163 DAG.getConstant(1, DL, MVT::i32)); 2164 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2165 } 2166 2167 // This function lowers a splat of a scalar operand Splat with the vector 2168 // length VL. It ensures the final sequence is type legal, which is useful when 2169 // lowering a splat after type legalization. 2170 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2171 SelectionDAG &DAG, 2172 const RISCVSubtarget &Subtarget) { 2173 if (VT.isFloatingPoint()) 2174 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2175 2176 MVT XLenVT = Subtarget.getXLenVT(); 2177 2178 // Simplest case is that the operand needs to be promoted to XLenVT. 2179 if (Scalar.getValueType().bitsLE(XLenVT)) { 2180 // If the operand is a constant, sign extend to increase our chances 2181 // of being able to use a .vi instruction. ANY_EXTEND would become a 2182 // a zero extend and the simm5 check in isel would fail. 2183 // FIXME: Should we ignore the upper bits in isel instead? 2184 unsigned ExtOpc = 2185 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2186 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2187 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2188 } 2189 2190 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2191 "Unexpected scalar for splat lowering!"); 2192 2193 // Otherwise use the more complicated splatting algorithm. 2194 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2195 } 2196 2197 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2198 const RISCVSubtarget &Subtarget) { 2199 SDValue V1 = Op.getOperand(0); 2200 SDValue V2 = Op.getOperand(1); 2201 SDLoc DL(Op); 2202 MVT XLenVT = Subtarget.getXLenVT(); 2203 MVT VT = Op.getSimpleValueType(); 2204 unsigned NumElts = VT.getVectorNumElements(); 2205 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2206 2207 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2208 2209 SDValue TrueMask, VL; 2210 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2211 2212 if (SVN->isSplat()) { 2213 const int Lane = SVN->getSplatIndex(); 2214 if (Lane >= 0) { 2215 MVT SVT = VT.getVectorElementType(); 2216 2217 // Turn splatted vector load into a strided load with an X0 stride. 2218 SDValue V = V1; 2219 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2220 // with undef. 2221 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2222 int Offset = Lane; 2223 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2224 int OpElements = 2225 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2226 V = V.getOperand(Offset / OpElements); 2227 Offset %= OpElements; 2228 } 2229 2230 // We need to ensure the load isn't atomic or volatile. 2231 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2232 auto *Ld = cast<LoadSDNode>(V); 2233 Offset *= SVT.getStoreSize(); 2234 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2235 TypeSize::Fixed(Offset), DL); 2236 2237 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2238 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2239 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2240 SDValue IntID = 2241 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2242 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2243 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2244 SDValue NewLoad = DAG.getMemIntrinsicNode( 2245 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2246 DAG.getMachineFunction().getMachineMemOperand( 2247 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2248 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2249 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2250 } 2251 2252 // Otherwise use a scalar load and splat. This will give the best 2253 // opportunity to fold a splat into the operation. ISel can turn it into 2254 // the x0 strided load if we aren't able to fold away the select. 2255 if (SVT.isFloatingPoint()) 2256 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2257 Ld->getPointerInfo().getWithOffset(Offset), 2258 Ld->getOriginalAlign(), 2259 Ld->getMemOperand()->getFlags()); 2260 else 2261 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2262 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2263 Ld->getOriginalAlign(), 2264 Ld->getMemOperand()->getFlags()); 2265 DAG.makeEquivalentMemoryOrdering(Ld, V); 2266 2267 unsigned Opc = 2268 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2269 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2270 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2271 } 2272 2273 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2274 assert(Lane < (int)NumElts && "Unexpected lane!"); 2275 SDValue Gather = 2276 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2277 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2278 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2279 } 2280 } 2281 2282 // Detect shuffles which can be re-expressed as vector selects; these are 2283 // shuffles in which each element in the destination is taken from an element 2284 // at the corresponding index in either source vectors. 2285 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2286 int MaskIndex = MaskIdx.value(); 2287 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2288 }); 2289 2290 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2291 2292 SmallVector<SDValue> MaskVals; 2293 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2294 // merged with a second vrgather. 2295 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2296 2297 // By default we preserve the original operand order, and use a mask to 2298 // select LHS as true and RHS as false. However, since RVV vector selects may 2299 // feature splats but only on the LHS, we may choose to invert our mask and 2300 // instead select between RHS and LHS. 2301 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2302 bool InvertMask = IsSelect == SwapOps; 2303 2304 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2305 // half. 2306 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2307 2308 // Now construct the mask that will be used by the vselect or blended 2309 // vrgather operation. For vrgathers, construct the appropriate indices into 2310 // each vector. 2311 for (int MaskIndex : SVN->getMask()) { 2312 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2313 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2314 if (!IsSelect) { 2315 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2316 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2317 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2318 : DAG.getUNDEF(XLenVT)); 2319 GatherIndicesRHS.push_back( 2320 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2321 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2322 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2323 ++LHSIndexCounts[MaskIndex]; 2324 if (!IsLHSOrUndefIndex) 2325 ++RHSIndexCounts[MaskIndex - NumElts]; 2326 } 2327 } 2328 2329 if (SwapOps) { 2330 std::swap(V1, V2); 2331 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2332 } 2333 2334 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2335 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2336 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2337 2338 if (IsSelect) 2339 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2340 2341 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2342 // On such a large vector we're unable to use i8 as the index type. 2343 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2344 // may involve vector splitting if we're already at LMUL=8, or our 2345 // user-supplied maximum fixed-length LMUL. 2346 return SDValue(); 2347 } 2348 2349 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2350 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2351 MVT IndexVT = VT.changeTypeToInteger(); 2352 // Since we can't introduce illegal index types at this stage, use i16 and 2353 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2354 // than XLenVT. 2355 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2356 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2357 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2358 } 2359 2360 MVT IndexContainerVT = 2361 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2362 2363 SDValue Gather; 2364 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2365 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2366 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2367 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2368 } else { 2369 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2370 // If only one index is used, we can use a "splat" vrgather. 2371 // TODO: We can splat the most-common index and fix-up any stragglers, if 2372 // that's beneficial. 2373 if (LHSIndexCounts.size() == 1) { 2374 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2375 Gather = 2376 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2377 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2378 } else { 2379 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2380 LHSIndices = 2381 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2382 2383 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2384 TrueMask, VL); 2385 } 2386 } 2387 2388 // If a second vector operand is used by this shuffle, blend it in with an 2389 // additional vrgather. 2390 if (!V2.isUndef()) { 2391 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2392 // If only one index is used, we can use a "splat" vrgather. 2393 // TODO: We can splat the most-common index and fix-up any stragglers, if 2394 // that's beneficial. 2395 if (RHSIndexCounts.size() == 1) { 2396 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2397 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2398 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2399 } else { 2400 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2401 RHSIndices = 2402 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2403 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2404 VL); 2405 } 2406 2407 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2408 SelectMask = 2409 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2410 2411 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2412 Gather, VL); 2413 } 2414 2415 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2416 } 2417 2418 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2419 SDLoc DL, SelectionDAG &DAG, 2420 const RISCVSubtarget &Subtarget) { 2421 if (VT.isScalableVector()) 2422 return DAG.getFPExtendOrRound(Op, DL, VT); 2423 assert(VT.isFixedLengthVector() && 2424 "Unexpected value type for RVV FP extend/round lowering"); 2425 SDValue Mask, VL; 2426 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2427 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2428 ? RISCVISD::FP_EXTEND_VL 2429 : RISCVISD::FP_ROUND_VL; 2430 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2431 } 2432 2433 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2434 // the exponent. 2435 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2436 MVT VT = Op.getSimpleValueType(); 2437 unsigned EltSize = VT.getScalarSizeInBits(); 2438 SDValue Src = Op.getOperand(0); 2439 SDLoc DL(Op); 2440 2441 // We need a FP type that can represent the value. 2442 // TODO: Use f16 for i8 when possible? 2443 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2444 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2445 2446 // Legal types should have been checked in the RISCVTargetLowering 2447 // constructor. 2448 // TODO: Splitting may make sense in some cases. 2449 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2450 "Expected legal float type!"); 2451 2452 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2453 // The trailing zero count is equal to log2 of this single bit value. 2454 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2455 SDValue Neg = 2456 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2457 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2458 } 2459 2460 // We have a legal FP type, convert to it. 2461 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2462 // Bitcast to integer and shift the exponent to the LSB. 2463 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2464 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2465 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2466 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2467 DAG.getConstant(ShiftAmt, DL, IntVT)); 2468 // Truncate back to original type to allow vnsrl. 2469 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2470 // The exponent contains log2 of the value in biased form. 2471 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2472 2473 // For trailing zeros, we just need to subtract the bias. 2474 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2475 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2476 DAG.getConstant(ExponentBias, DL, VT)); 2477 2478 // For leading zeros, we need to remove the bias and convert from log2 to 2479 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2480 unsigned Adjust = ExponentBias + (EltSize - 1); 2481 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2482 } 2483 2484 // While RVV has alignment restrictions, we should always be able to load as a 2485 // legal equivalently-sized byte-typed vector instead. This method is 2486 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2487 // the load is already correctly-aligned, it returns SDValue(). 2488 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2489 SelectionDAG &DAG) const { 2490 auto *Load = cast<LoadSDNode>(Op); 2491 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2492 2493 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2494 Load->getMemoryVT(), 2495 *Load->getMemOperand())) 2496 return SDValue(); 2497 2498 SDLoc DL(Op); 2499 MVT VT = Op.getSimpleValueType(); 2500 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2501 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2502 "Unexpected unaligned RVV load type"); 2503 MVT NewVT = 2504 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2505 assert(NewVT.isValid() && 2506 "Expecting equally-sized RVV vector types to be legal"); 2507 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2508 Load->getPointerInfo(), Load->getOriginalAlign(), 2509 Load->getMemOperand()->getFlags()); 2510 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2511 } 2512 2513 // While RVV has alignment restrictions, we should always be able to store as a 2514 // legal equivalently-sized byte-typed vector instead. This method is 2515 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2516 // returns SDValue() if the store is already correctly aligned. 2517 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2518 SelectionDAG &DAG) const { 2519 auto *Store = cast<StoreSDNode>(Op); 2520 assert(Store && Store->getValue().getValueType().isVector() && 2521 "Expected vector store"); 2522 2523 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2524 Store->getMemoryVT(), 2525 *Store->getMemOperand())) 2526 return SDValue(); 2527 2528 SDLoc DL(Op); 2529 SDValue StoredVal = Store->getValue(); 2530 MVT VT = StoredVal.getSimpleValueType(); 2531 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2532 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2533 "Unexpected unaligned RVV store type"); 2534 MVT NewVT = 2535 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2536 assert(NewVT.isValid() && 2537 "Expecting equally-sized RVV vector types to be legal"); 2538 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2539 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2540 Store->getPointerInfo(), Store->getOriginalAlign(), 2541 Store->getMemOperand()->getFlags()); 2542 } 2543 2544 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2545 SelectionDAG &DAG) const { 2546 switch (Op.getOpcode()) { 2547 default: 2548 report_fatal_error("unimplemented operand"); 2549 case ISD::GlobalAddress: 2550 return lowerGlobalAddress(Op, DAG); 2551 case ISD::BlockAddress: 2552 return lowerBlockAddress(Op, DAG); 2553 case ISD::ConstantPool: 2554 return lowerConstantPool(Op, DAG); 2555 case ISD::JumpTable: 2556 return lowerJumpTable(Op, DAG); 2557 case ISD::GlobalTLSAddress: 2558 return lowerGlobalTLSAddress(Op, DAG); 2559 case ISD::SELECT: 2560 return lowerSELECT(Op, DAG); 2561 case ISD::BRCOND: 2562 return lowerBRCOND(Op, DAG); 2563 case ISD::VASTART: 2564 return lowerVASTART(Op, DAG); 2565 case ISD::FRAMEADDR: 2566 return lowerFRAMEADDR(Op, DAG); 2567 case ISD::RETURNADDR: 2568 return lowerRETURNADDR(Op, DAG); 2569 case ISD::SHL_PARTS: 2570 return lowerShiftLeftParts(Op, DAG); 2571 case ISD::SRA_PARTS: 2572 return lowerShiftRightParts(Op, DAG, true); 2573 case ISD::SRL_PARTS: 2574 return lowerShiftRightParts(Op, DAG, false); 2575 case ISD::BITCAST: { 2576 SDLoc DL(Op); 2577 EVT VT = Op.getValueType(); 2578 SDValue Op0 = Op.getOperand(0); 2579 EVT Op0VT = Op0.getValueType(); 2580 MVT XLenVT = Subtarget.getXLenVT(); 2581 if (VT.isFixedLengthVector()) { 2582 // We can handle fixed length vector bitcasts with a simple replacement 2583 // in isel. 2584 if (Op0VT.isFixedLengthVector()) 2585 return Op; 2586 // When bitcasting from scalar to fixed-length vector, insert the scalar 2587 // into a one-element vector of the result type, and perform a vector 2588 // bitcast. 2589 if (!Op0VT.isVector()) { 2590 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2591 if (!isTypeLegal(BVT)) 2592 return SDValue(); 2593 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2594 DAG.getUNDEF(BVT), Op0, 2595 DAG.getConstant(0, DL, XLenVT))); 2596 } 2597 return SDValue(); 2598 } 2599 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2600 // thus: bitcast the vector to a one-element vector type whose element type 2601 // is the same as the result type, and extract the first element. 2602 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2603 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2604 if (!isTypeLegal(BVT)) 2605 return SDValue(); 2606 SDValue BVec = DAG.getBitcast(BVT, Op0); 2607 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2608 DAG.getConstant(0, DL, XLenVT)); 2609 } 2610 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2611 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2612 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2613 return FPConv; 2614 } 2615 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2616 Subtarget.hasStdExtF()) { 2617 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2618 SDValue FPConv = 2619 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2620 return FPConv; 2621 } 2622 return SDValue(); 2623 } 2624 case ISD::INTRINSIC_WO_CHAIN: 2625 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2626 case ISD::INTRINSIC_W_CHAIN: 2627 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2628 case ISD::INTRINSIC_VOID: 2629 return LowerINTRINSIC_VOID(Op, DAG); 2630 case ISD::BSWAP: 2631 case ISD::BITREVERSE: { 2632 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2633 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2634 MVT VT = Op.getSimpleValueType(); 2635 SDLoc DL(Op); 2636 // Start with the maximum immediate value which is the bitwidth - 1. 2637 unsigned Imm = VT.getSizeInBits() - 1; 2638 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2639 if (Op.getOpcode() == ISD::BSWAP) 2640 Imm &= ~0x7U; 2641 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2642 DAG.getConstant(Imm, DL, VT)); 2643 } 2644 case ISD::FSHL: 2645 case ISD::FSHR: { 2646 MVT VT = Op.getSimpleValueType(); 2647 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2648 SDLoc DL(Op); 2649 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2650 return Op; 2651 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2652 // use log(XLen) bits. Mask the shift amount accordingly. 2653 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2654 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2655 DAG.getConstant(ShAmtWidth, DL, VT)); 2656 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2657 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2658 } 2659 case ISD::TRUNCATE: { 2660 SDLoc DL(Op); 2661 MVT VT = Op.getSimpleValueType(); 2662 // Only custom-lower vector truncates 2663 if (!VT.isVector()) 2664 return Op; 2665 2666 // Truncates to mask types are handled differently 2667 if (VT.getVectorElementType() == MVT::i1) 2668 return lowerVectorMaskTrunc(Op, DAG); 2669 2670 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2671 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2672 // truncate by one power of two at a time. 2673 MVT DstEltVT = VT.getVectorElementType(); 2674 2675 SDValue Src = Op.getOperand(0); 2676 MVT SrcVT = Src.getSimpleValueType(); 2677 MVT SrcEltVT = SrcVT.getVectorElementType(); 2678 2679 assert(DstEltVT.bitsLT(SrcEltVT) && 2680 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2681 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2682 "Unexpected vector truncate lowering"); 2683 2684 MVT ContainerVT = SrcVT; 2685 if (SrcVT.isFixedLengthVector()) { 2686 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2687 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2688 } 2689 2690 SDValue Result = Src; 2691 SDValue Mask, VL; 2692 std::tie(Mask, VL) = 2693 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2694 LLVMContext &Context = *DAG.getContext(); 2695 const ElementCount Count = ContainerVT.getVectorElementCount(); 2696 do { 2697 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2698 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2699 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2700 Mask, VL); 2701 } while (SrcEltVT != DstEltVT); 2702 2703 if (SrcVT.isFixedLengthVector()) 2704 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2705 2706 return Result; 2707 } 2708 case ISD::ANY_EXTEND: 2709 case ISD::ZERO_EXTEND: 2710 if (Op.getOperand(0).getValueType().isVector() && 2711 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2712 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2713 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2714 case ISD::SIGN_EXTEND: 2715 if (Op.getOperand(0).getValueType().isVector() && 2716 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2717 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2718 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2719 case ISD::SPLAT_VECTOR_PARTS: 2720 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2721 case ISD::INSERT_VECTOR_ELT: 2722 return lowerINSERT_VECTOR_ELT(Op, DAG); 2723 case ISD::EXTRACT_VECTOR_ELT: 2724 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2725 case ISD::VSCALE: { 2726 MVT VT = Op.getSimpleValueType(); 2727 SDLoc DL(Op); 2728 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2729 // We define our scalable vector types for lmul=1 to use a 64 bit known 2730 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2731 // vscale as VLENB / 8. 2732 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2733 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2734 // We assume VLENB is a multiple of 8. We manually choose the best shift 2735 // here because SimplifyDemandedBits isn't always able to simplify it. 2736 uint64_t Val = Op.getConstantOperandVal(0); 2737 if (isPowerOf2_64(Val)) { 2738 uint64_t Log2 = Log2_64(Val); 2739 if (Log2 < 3) 2740 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2741 DAG.getConstant(3 - Log2, DL, VT)); 2742 if (Log2 > 3) 2743 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2744 DAG.getConstant(Log2 - 3, DL, VT)); 2745 return VLENB; 2746 } 2747 // If the multiplier is a multiple of 8, scale it down to avoid needing 2748 // to shift the VLENB value. 2749 if ((Val % 8) == 0) 2750 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2751 DAG.getConstant(Val / 8, DL, VT)); 2752 } 2753 2754 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2755 DAG.getConstant(3, DL, VT)); 2756 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2757 } 2758 case ISD::FPOWI: { 2759 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2760 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2761 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2762 Op.getOperand(1).getValueType() == MVT::i32) { 2763 SDLoc DL(Op); 2764 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2765 SDValue Powi = 2766 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2767 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2768 DAG.getIntPtrConstant(0, DL)); 2769 } 2770 return SDValue(); 2771 } 2772 case ISD::FP_EXTEND: { 2773 // RVV can only do fp_extend to types double the size as the source. We 2774 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2775 // via f32. 2776 SDLoc DL(Op); 2777 MVT VT = Op.getSimpleValueType(); 2778 SDValue Src = Op.getOperand(0); 2779 MVT SrcVT = Src.getSimpleValueType(); 2780 2781 // Prepare any fixed-length vector operands. 2782 MVT ContainerVT = VT; 2783 if (SrcVT.isFixedLengthVector()) { 2784 ContainerVT = getContainerForFixedLengthVector(VT); 2785 MVT SrcContainerVT = 2786 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2787 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2788 } 2789 2790 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2791 SrcVT.getVectorElementType() != MVT::f16) { 2792 // For scalable vectors, we only need to close the gap between 2793 // vXf16->vXf64. 2794 if (!VT.isFixedLengthVector()) 2795 return Op; 2796 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2797 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2798 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2799 } 2800 2801 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2802 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2803 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2804 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2805 2806 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2807 DL, DAG, Subtarget); 2808 if (VT.isFixedLengthVector()) 2809 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2810 return Extend; 2811 } 2812 case ISD::FP_ROUND: { 2813 // RVV can only do fp_round to types half the size as the source. We 2814 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2815 // conversion instruction. 2816 SDLoc DL(Op); 2817 MVT VT = Op.getSimpleValueType(); 2818 SDValue Src = Op.getOperand(0); 2819 MVT SrcVT = Src.getSimpleValueType(); 2820 2821 // Prepare any fixed-length vector operands. 2822 MVT ContainerVT = VT; 2823 if (VT.isFixedLengthVector()) { 2824 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2825 ContainerVT = 2826 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2827 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2828 } 2829 2830 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2831 SrcVT.getVectorElementType() != MVT::f64) { 2832 // For scalable vectors, we only need to close the gap between 2833 // vXf64<->vXf16. 2834 if (!VT.isFixedLengthVector()) 2835 return Op; 2836 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2837 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2838 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2839 } 2840 2841 SDValue Mask, VL; 2842 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2843 2844 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2845 SDValue IntermediateRound = 2846 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2847 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2848 DL, DAG, Subtarget); 2849 2850 if (VT.isFixedLengthVector()) 2851 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2852 return Round; 2853 } 2854 case ISD::FP_TO_SINT: 2855 case ISD::FP_TO_UINT: 2856 case ISD::SINT_TO_FP: 2857 case ISD::UINT_TO_FP: { 2858 // RVV can only do fp<->int conversions to types half/double the size as 2859 // the source. We custom-lower any conversions that do two hops into 2860 // sequences. 2861 MVT VT = Op.getSimpleValueType(); 2862 if (!VT.isVector()) 2863 return Op; 2864 SDLoc DL(Op); 2865 SDValue Src = Op.getOperand(0); 2866 MVT EltVT = VT.getVectorElementType(); 2867 MVT SrcVT = Src.getSimpleValueType(); 2868 MVT SrcEltVT = SrcVT.getVectorElementType(); 2869 unsigned EltSize = EltVT.getSizeInBits(); 2870 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2871 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2872 "Unexpected vector element types"); 2873 2874 bool IsInt2FP = SrcEltVT.isInteger(); 2875 // Widening conversions 2876 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2877 if (IsInt2FP) { 2878 // Do a regular integer sign/zero extension then convert to float. 2879 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2880 VT.getVectorElementCount()); 2881 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2882 ? ISD::ZERO_EXTEND 2883 : ISD::SIGN_EXTEND; 2884 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2885 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2886 } 2887 // FP2Int 2888 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2889 // Do one doubling fp_extend then complete the operation by converting 2890 // to int. 2891 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2892 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2893 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2894 } 2895 2896 // Narrowing conversions 2897 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2898 if (IsInt2FP) { 2899 // One narrowing int_to_fp, then an fp_round. 2900 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2901 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2902 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2903 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2904 } 2905 // FP2Int 2906 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2907 // representable by the integer, the result is poison. 2908 MVT IVecVT = 2909 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2910 VT.getVectorElementCount()); 2911 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2912 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2913 } 2914 2915 // Scalable vectors can exit here. Patterns will handle equally-sized 2916 // conversions halving/doubling ones. 2917 if (!VT.isFixedLengthVector()) 2918 return Op; 2919 2920 // For fixed-length vectors we lower to a custom "VL" node. 2921 unsigned RVVOpc = 0; 2922 switch (Op.getOpcode()) { 2923 default: 2924 llvm_unreachable("Impossible opcode"); 2925 case ISD::FP_TO_SINT: 2926 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2927 break; 2928 case ISD::FP_TO_UINT: 2929 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2930 break; 2931 case ISD::SINT_TO_FP: 2932 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2933 break; 2934 case ISD::UINT_TO_FP: 2935 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2936 break; 2937 } 2938 2939 MVT ContainerVT, SrcContainerVT; 2940 // Derive the reference container type from the larger vector type. 2941 if (SrcEltSize > EltSize) { 2942 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2943 ContainerVT = 2944 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2945 } else { 2946 ContainerVT = getContainerForFixedLengthVector(VT); 2947 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2948 } 2949 2950 SDValue Mask, VL; 2951 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2952 2953 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2954 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2955 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2956 } 2957 case ISD::FP_TO_SINT_SAT: 2958 case ISD::FP_TO_UINT_SAT: 2959 return lowerFP_TO_INT_SAT(Op, DAG); 2960 case ISD::FTRUNC: 2961 case ISD::FCEIL: 2962 case ISD::FFLOOR: 2963 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 2964 case ISD::VECREDUCE_ADD: 2965 case ISD::VECREDUCE_UMAX: 2966 case ISD::VECREDUCE_SMAX: 2967 case ISD::VECREDUCE_UMIN: 2968 case ISD::VECREDUCE_SMIN: 2969 return lowerVECREDUCE(Op, DAG); 2970 case ISD::VECREDUCE_AND: 2971 case ISD::VECREDUCE_OR: 2972 case ISD::VECREDUCE_XOR: 2973 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2974 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2975 return lowerVECREDUCE(Op, DAG); 2976 case ISD::VECREDUCE_FADD: 2977 case ISD::VECREDUCE_SEQ_FADD: 2978 case ISD::VECREDUCE_FMIN: 2979 case ISD::VECREDUCE_FMAX: 2980 return lowerFPVECREDUCE(Op, DAG); 2981 case ISD::VP_REDUCE_ADD: 2982 case ISD::VP_REDUCE_UMAX: 2983 case ISD::VP_REDUCE_SMAX: 2984 case ISD::VP_REDUCE_UMIN: 2985 case ISD::VP_REDUCE_SMIN: 2986 case ISD::VP_REDUCE_FADD: 2987 case ISD::VP_REDUCE_SEQ_FADD: 2988 case ISD::VP_REDUCE_FMIN: 2989 case ISD::VP_REDUCE_FMAX: 2990 return lowerVPREDUCE(Op, DAG); 2991 case ISD::VP_REDUCE_AND: 2992 case ISD::VP_REDUCE_OR: 2993 case ISD::VP_REDUCE_XOR: 2994 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2995 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2996 return lowerVPREDUCE(Op, DAG); 2997 case ISD::INSERT_SUBVECTOR: 2998 return lowerINSERT_SUBVECTOR(Op, DAG); 2999 case ISD::EXTRACT_SUBVECTOR: 3000 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3001 case ISD::STEP_VECTOR: 3002 return lowerSTEP_VECTOR(Op, DAG); 3003 case ISD::VECTOR_REVERSE: 3004 return lowerVECTOR_REVERSE(Op, DAG); 3005 case ISD::BUILD_VECTOR: 3006 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3007 case ISD::SPLAT_VECTOR: 3008 if (Op.getValueType().getVectorElementType() == MVT::i1) 3009 return lowerVectorMaskSplat(Op, DAG); 3010 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3011 case ISD::VECTOR_SHUFFLE: 3012 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3013 case ISD::CONCAT_VECTORS: { 3014 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3015 // better than going through the stack, as the default expansion does. 3016 SDLoc DL(Op); 3017 MVT VT = Op.getSimpleValueType(); 3018 unsigned NumOpElts = 3019 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3020 SDValue Vec = DAG.getUNDEF(VT); 3021 for (const auto &OpIdx : enumerate(Op->ops())) 3022 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3023 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3024 return Vec; 3025 } 3026 case ISD::LOAD: 3027 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3028 return V; 3029 if (Op.getValueType().isFixedLengthVector()) 3030 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3031 return Op; 3032 case ISD::STORE: 3033 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3034 return V; 3035 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3036 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3037 return Op; 3038 case ISD::MLOAD: 3039 case ISD::VP_LOAD: 3040 return lowerMaskedLoad(Op, DAG); 3041 case ISD::MSTORE: 3042 case ISD::VP_STORE: 3043 return lowerMaskedStore(Op, DAG); 3044 case ISD::SETCC: 3045 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3046 case ISD::ADD: 3047 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3048 case ISD::SUB: 3049 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3050 case ISD::MUL: 3051 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3052 case ISD::MULHS: 3053 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3054 case ISD::MULHU: 3055 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3056 case ISD::AND: 3057 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3058 RISCVISD::AND_VL); 3059 case ISD::OR: 3060 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3061 RISCVISD::OR_VL); 3062 case ISD::XOR: 3063 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3064 RISCVISD::XOR_VL); 3065 case ISD::SDIV: 3066 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3067 case ISD::SREM: 3068 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3069 case ISD::UDIV: 3070 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3071 case ISD::UREM: 3072 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3073 case ISD::SHL: 3074 case ISD::SRA: 3075 case ISD::SRL: 3076 if (Op.getSimpleValueType().isFixedLengthVector()) 3077 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3078 // This can be called for an i32 shift amount that needs to be promoted. 3079 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3080 "Unexpected custom legalisation"); 3081 return SDValue(); 3082 case ISD::SADDSAT: 3083 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3084 case ISD::UADDSAT: 3085 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3086 case ISD::SSUBSAT: 3087 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3088 case ISD::USUBSAT: 3089 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3090 case ISD::FADD: 3091 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3092 case ISD::FSUB: 3093 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3094 case ISD::FMUL: 3095 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3096 case ISD::FDIV: 3097 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3098 case ISD::FNEG: 3099 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3100 case ISD::FABS: 3101 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3102 case ISD::FSQRT: 3103 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3104 case ISD::FMA: 3105 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3106 case ISD::SMIN: 3107 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3108 case ISD::SMAX: 3109 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3110 case ISD::UMIN: 3111 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3112 case ISD::UMAX: 3113 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3114 case ISD::FMINNUM: 3115 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3116 case ISD::FMAXNUM: 3117 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3118 case ISD::ABS: 3119 return lowerABS(Op, DAG); 3120 case ISD::CTLZ_ZERO_UNDEF: 3121 case ISD::CTTZ_ZERO_UNDEF: 3122 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3123 case ISD::VSELECT: 3124 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3125 case ISD::FCOPYSIGN: 3126 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3127 case ISD::MGATHER: 3128 case ISD::VP_GATHER: 3129 return lowerMaskedGather(Op, DAG); 3130 case ISD::MSCATTER: 3131 case ISD::VP_SCATTER: 3132 return lowerMaskedScatter(Op, DAG); 3133 case ISD::FLT_ROUNDS_: 3134 return lowerGET_ROUNDING(Op, DAG); 3135 case ISD::SET_ROUNDING: 3136 return lowerSET_ROUNDING(Op, DAG); 3137 case ISD::VP_SELECT: 3138 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3139 case ISD::VP_ADD: 3140 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3141 case ISD::VP_SUB: 3142 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3143 case ISD::VP_MUL: 3144 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3145 case ISD::VP_SDIV: 3146 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3147 case ISD::VP_UDIV: 3148 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3149 case ISD::VP_SREM: 3150 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3151 case ISD::VP_UREM: 3152 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3153 case ISD::VP_AND: 3154 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 3155 case ISD::VP_OR: 3156 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 3157 case ISD::VP_XOR: 3158 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 3159 case ISD::VP_ASHR: 3160 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3161 case ISD::VP_LSHR: 3162 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3163 case ISD::VP_SHL: 3164 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3165 case ISD::VP_FADD: 3166 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3167 case ISD::VP_FSUB: 3168 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3169 case ISD::VP_FMUL: 3170 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3171 case ISD::VP_FDIV: 3172 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3173 } 3174 } 3175 3176 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3177 SelectionDAG &DAG, unsigned Flags) { 3178 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3179 } 3180 3181 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3182 SelectionDAG &DAG, unsigned Flags) { 3183 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3184 Flags); 3185 } 3186 3187 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3188 SelectionDAG &DAG, unsigned Flags) { 3189 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3190 N->getOffset(), Flags); 3191 } 3192 3193 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3194 SelectionDAG &DAG, unsigned Flags) { 3195 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3196 } 3197 3198 template <class NodeTy> 3199 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3200 bool IsLocal) const { 3201 SDLoc DL(N); 3202 EVT Ty = getPointerTy(DAG.getDataLayout()); 3203 3204 if (isPositionIndependent()) { 3205 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3206 if (IsLocal) 3207 // Use PC-relative addressing to access the symbol. This generates the 3208 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3209 // %pcrel_lo(auipc)). 3210 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3211 3212 // Use PC-relative addressing to access the GOT for this symbol, then load 3213 // the address from the GOT. This generates the pattern (PseudoLA sym), 3214 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3215 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3216 } 3217 3218 switch (getTargetMachine().getCodeModel()) { 3219 default: 3220 report_fatal_error("Unsupported code model for lowering"); 3221 case CodeModel::Small: { 3222 // Generate a sequence for accessing addresses within the first 2 GiB of 3223 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3224 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3225 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3226 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3227 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3228 } 3229 case CodeModel::Medium: { 3230 // Generate a sequence for accessing addresses within any 2GiB range within 3231 // the address space. This generates the pattern (PseudoLLA sym), which 3232 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3233 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3234 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3235 } 3236 } 3237 } 3238 3239 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3240 SelectionDAG &DAG) const { 3241 SDLoc DL(Op); 3242 EVT Ty = Op.getValueType(); 3243 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3244 int64_t Offset = N->getOffset(); 3245 MVT XLenVT = Subtarget.getXLenVT(); 3246 3247 const GlobalValue *GV = N->getGlobal(); 3248 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3249 SDValue Addr = getAddr(N, DAG, IsLocal); 3250 3251 // In order to maximise the opportunity for common subexpression elimination, 3252 // emit a separate ADD node for the global address offset instead of folding 3253 // it in the global address node. Later peephole optimisations may choose to 3254 // fold it back in when profitable. 3255 if (Offset != 0) 3256 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3257 DAG.getConstant(Offset, DL, XLenVT)); 3258 return Addr; 3259 } 3260 3261 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3262 SelectionDAG &DAG) const { 3263 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3264 3265 return getAddr(N, DAG); 3266 } 3267 3268 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3269 SelectionDAG &DAG) const { 3270 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3271 3272 return getAddr(N, DAG); 3273 } 3274 3275 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3276 SelectionDAG &DAG) const { 3277 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3278 3279 return getAddr(N, DAG); 3280 } 3281 3282 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3283 SelectionDAG &DAG, 3284 bool UseGOT) const { 3285 SDLoc DL(N); 3286 EVT Ty = getPointerTy(DAG.getDataLayout()); 3287 const GlobalValue *GV = N->getGlobal(); 3288 MVT XLenVT = Subtarget.getXLenVT(); 3289 3290 if (UseGOT) { 3291 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3292 // load the address from the GOT and add the thread pointer. This generates 3293 // the pattern (PseudoLA_TLS_IE sym), which expands to 3294 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3295 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3296 SDValue Load = 3297 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3298 3299 // Add the thread pointer. 3300 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3301 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3302 } 3303 3304 // Generate a sequence for accessing the address relative to the thread 3305 // pointer, with the appropriate adjustment for the thread pointer offset. 3306 // This generates the pattern 3307 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3308 SDValue AddrHi = 3309 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3310 SDValue AddrAdd = 3311 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3312 SDValue AddrLo = 3313 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3314 3315 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3316 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3317 SDValue MNAdd = SDValue( 3318 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3319 0); 3320 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3321 } 3322 3323 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3324 SelectionDAG &DAG) const { 3325 SDLoc DL(N); 3326 EVT Ty = getPointerTy(DAG.getDataLayout()); 3327 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3328 const GlobalValue *GV = N->getGlobal(); 3329 3330 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3331 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3332 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3333 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3334 SDValue Load = 3335 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3336 3337 // Prepare argument list to generate call. 3338 ArgListTy Args; 3339 ArgListEntry Entry; 3340 Entry.Node = Load; 3341 Entry.Ty = CallTy; 3342 Args.push_back(Entry); 3343 3344 // Setup call to __tls_get_addr. 3345 TargetLowering::CallLoweringInfo CLI(DAG); 3346 CLI.setDebugLoc(DL) 3347 .setChain(DAG.getEntryNode()) 3348 .setLibCallee(CallingConv::C, CallTy, 3349 DAG.getExternalSymbol("__tls_get_addr", Ty), 3350 std::move(Args)); 3351 3352 return LowerCallTo(CLI).first; 3353 } 3354 3355 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3356 SelectionDAG &DAG) const { 3357 SDLoc DL(Op); 3358 EVT Ty = Op.getValueType(); 3359 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3360 int64_t Offset = N->getOffset(); 3361 MVT XLenVT = Subtarget.getXLenVT(); 3362 3363 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3364 3365 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3366 CallingConv::GHC) 3367 report_fatal_error("In GHC calling convention TLS is not supported"); 3368 3369 SDValue Addr; 3370 switch (Model) { 3371 case TLSModel::LocalExec: 3372 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3373 break; 3374 case TLSModel::InitialExec: 3375 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3376 break; 3377 case TLSModel::LocalDynamic: 3378 case TLSModel::GeneralDynamic: 3379 Addr = getDynamicTLSAddr(N, DAG); 3380 break; 3381 } 3382 3383 // In order to maximise the opportunity for common subexpression elimination, 3384 // emit a separate ADD node for the global address offset instead of folding 3385 // it in the global address node. Later peephole optimisations may choose to 3386 // fold it back in when profitable. 3387 if (Offset != 0) 3388 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3389 DAG.getConstant(Offset, DL, XLenVT)); 3390 return Addr; 3391 } 3392 3393 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3394 SDValue CondV = Op.getOperand(0); 3395 SDValue TrueV = Op.getOperand(1); 3396 SDValue FalseV = Op.getOperand(2); 3397 SDLoc DL(Op); 3398 MVT VT = Op.getSimpleValueType(); 3399 MVT XLenVT = Subtarget.getXLenVT(); 3400 3401 // Lower vector SELECTs to VSELECTs by splatting the condition. 3402 if (VT.isVector()) { 3403 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3404 SDValue CondSplat = VT.isScalableVector() 3405 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3406 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3407 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3408 } 3409 3410 // If the result type is XLenVT and CondV is the output of a SETCC node 3411 // which also operated on XLenVT inputs, then merge the SETCC node into the 3412 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3413 // compare+branch instructions. i.e.: 3414 // (select (setcc lhs, rhs, cc), truev, falsev) 3415 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3416 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3417 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3418 SDValue LHS = CondV.getOperand(0); 3419 SDValue RHS = CondV.getOperand(1); 3420 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3421 ISD::CondCode CCVal = CC->get(); 3422 3423 // Special case for a select of 2 constants that have a diffence of 1. 3424 // Normally this is done by DAGCombine, but if the select is introduced by 3425 // type legalization or op legalization, we miss it. Restricting to SETLT 3426 // case for now because that is what signed saturating add/sub need. 3427 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3428 // but we would probably want to swap the true/false values if the condition 3429 // is SETGE/SETLE to avoid an XORI. 3430 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3431 CCVal == ISD::SETLT) { 3432 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3433 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3434 if (TrueVal - 1 == FalseVal) 3435 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3436 if (TrueVal + 1 == FalseVal) 3437 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3438 } 3439 3440 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3441 3442 SDValue TargetCC = DAG.getCondCode(CCVal); 3443 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3444 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3445 } 3446 3447 // Otherwise: 3448 // (select condv, truev, falsev) 3449 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3450 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3451 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3452 3453 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3454 3455 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3456 } 3457 3458 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3459 SDValue CondV = Op.getOperand(1); 3460 SDLoc DL(Op); 3461 MVT XLenVT = Subtarget.getXLenVT(); 3462 3463 if (CondV.getOpcode() == ISD::SETCC && 3464 CondV.getOperand(0).getValueType() == XLenVT) { 3465 SDValue LHS = CondV.getOperand(0); 3466 SDValue RHS = CondV.getOperand(1); 3467 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3468 3469 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3470 3471 SDValue TargetCC = DAG.getCondCode(CCVal); 3472 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3473 LHS, RHS, TargetCC, Op.getOperand(2)); 3474 } 3475 3476 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3477 CondV, DAG.getConstant(0, DL, XLenVT), 3478 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3479 } 3480 3481 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3482 MachineFunction &MF = DAG.getMachineFunction(); 3483 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3484 3485 SDLoc DL(Op); 3486 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3487 getPointerTy(MF.getDataLayout())); 3488 3489 // vastart just stores the address of the VarArgsFrameIndex slot into the 3490 // memory location argument. 3491 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3492 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3493 MachinePointerInfo(SV)); 3494 } 3495 3496 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3497 SelectionDAG &DAG) const { 3498 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3499 MachineFunction &MF = DAG.getMachineFunction(); 3500 MachineFrameInfo &MFI = MF.getFrameInfo(); 3501 MFI.setFrameAddressIsTaken(true); 3502 Register FrameReg = RI.getFrameRegister(MF); 3503 int XLenInBytes = Subtarget.getXLen() / 8; 3504 3505 EVT VT = Op.getValueType(); 3506 SDLoc DL(Op); 3507 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3508 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3509 while (Depth--) { 3510 int Offset = -(XLenInBytes * 2); 3511 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3512 DAG.getIntPtrConstant(Offset, DL)); 3513 FrameAddr = 3514 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3515 } 3516 return FrameAddr; 3517 } 3518 3519 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3520 SelectionDAG &DAG) const { 3521 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3522 MachineFunction &MF = DAG.getMachineFunction(); 3523 MachineFrameInfo &MFI = MF.getFrameInfo(); 3524 MFI.setReturnAddressIsTaken(true); 3525 MVT XLenVT = Subtarget.getXLenVT(); 3526 int XLenInBytes = Subtarget.getXLen() / 8; 3527 3528 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3529 return SDValue(); 3530 3531 EVT VT = Op.getValueType(); 3532 SDLoc DL(Op); 3533 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3534 if (Depth) { 3535 int Off = -XLenInBytes; 3536 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3537 SDValue Offset = DAG.getConstant(Off, DL, VT); 3538 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3539 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3540 MachinePointerInfo()); 3541 } 3542 3543 // Return the value of the return address register, marking it an implicit 3544 // live-in. 3545 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3546 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3547 } 3548 3549 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3550 SelectionDAG &DAG) const { 3551 SDLoc DL(Op); 3552 SDValue Lo = Op.getOperand(0); 3553 SDValue Hi = Op.getOperand(1); 3554 SDValue Shamt = Op.getOperand(2); 3555 EVT VT = Lo.getValueType(); 3556 3557 // if Shamt-XLEN < 0: // Shamt < XLEN 3558 // Lo = Lo << Shamt 3559 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3560 // else: 3561 // Lo = 0 3562 // Hi = Lo << (Shamt-XLEN) 3563 3564 SDValue Zero = DAG.getConstant(0, DL, VT); 3565 SDValue One = DAG.getConstant(1, DL, VT); 3566 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3567 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3568 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3569 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3570 3571 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3572 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3573 SDValue ShiftRightLo = 3574 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3575 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3576 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3577 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3578 3579 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3580 3581 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3582 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3583 3584 SDValue Parts[2] = {Lo, Hi}; 3585 return DAG.getMergeValues(Parts, DL); 3586 } 3587 3588 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3589 bool IsSRA) const { 3590 SDLoc DL(Op); 3591 SDValue Lo = Op.getOperand(0); 3592 SDValue Hi = Op.getOperand(1); 3593 SDValue Shamt = Op.getOperand(2); 3594 EVT VT = Lo.getValueType(); 3595 3596 // SRA expansion: 3597 // if Shamt-XLEN < 0: // Shamt < XLEN 3598 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3599 // Hi = Hi >>s Shamt 3600 // else: 3601 // Lo = Hi >>s (Shamt-XLEN); 3602 // Hi = Hi >>s (XLEN-1) 3603 // 3604 // SRL expansion: 3605 // if Shamt-XLEN < 0: // Shamt < XLEN 3606 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3607 // Hi = Hi >>u Shamt 3608 // else: 3609 // Lo = Hi >>u (Shamt-XLEN); 3610 // Hi = 0; 3611 3612 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3613 3614 SDValue Zero = DAG.getConstant(0, DL, VT); 3615 SDValue One = DAG.getConstant(1, DL, VT); 3616 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3617 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3618 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3619 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3620 3621 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3622 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3623 SDValue ShiftLeftHi = 3624 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3625 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3626 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3627 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3628 SDValue HiFalse = 3629 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3630 3631 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3632 3633 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3634 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3635 3636 SDValue Parts[2] = {Lo, Hi}; 3637 return DAG.getMergeValues(Parts, DL); 3638 } 3639 3640 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3641 // legal equivalently-sized i8 type, so we can use that as a go-between. 3642 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3643 SelectionDAG &DAG) const { 3644 SDLoc DL(Op); 3645 MVT VT = Op.getSimpleValueType(); 3646 SDValue SplatVal = Op.getOperand(0); 3647 // All-zeros or all-ones splats are handled specially. 3648 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3649 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3650 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3651 } 3652 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3653 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3654 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3655 } 3656 MVT XLenVT = Subtarget.getXLenVT(); 3657 assert(SplatVal.getValueType() == XLenVT && 3658 "Unexpected type for i1 splat value"); 3659 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3660 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3661 DAG.getConstant(1, DL, XLenVT)); 3662 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3663 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3664 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3665 } 3666 3667 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3668 // illegal (currently only vXi64 RV32). 3669 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3670 // them to SPLAT_VECTOR_I64 3671 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3672 SelectionDAG &DAG) const { 3673 SDLoc DL(Op); 3674 MVT VecVT = Op.getSimpleValueType(); 3675 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3676 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3677 3678 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3679 SDValue Lo = Op.getOperand(0); 3680 SDValue Hi = Op.getOperand(1); 3681 3682 if (VecVT.isFixedLengthVector()) { 3683 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3684 SDLoc DL(Op); 3685 SDValue Mask, VL; 3686 std::tie(Mask, VL) = 3687 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3688 3689 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3690 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3691 } 3692 3693 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3694 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3695 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3696 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3697 // node in order to try and match RVV vector/scalar instructions. 3698 if ((LoC >> 31) == HiC) 3699 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3700 } 3701 3702 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3703 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3704 isa<ConstantSDNode>(Hi.getOperand(1)) && 3705 Hi.getConstantOperandVal(1) == 31) 3706 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3707 3708 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3709 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3710 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3711 } 3712 3713 // Custom-lower extensions from mask vectors by using a vselect either with 1 3714 // for zero/any-extension or -1 for sign-extension: 3715 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3716 // Note that any-extension is lowered identically to zero-extension. 3717 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3718 int64_t ExtTrueVal) const { 3719 SDLoc DL(Op); 3720 MVT VecVT = Op.getSimpleValueType(); 3721 SDValue Src = Op.getOperand(0); 3722 // Only custom-lower extensions from mask types 3723 assert(Src.getValueType().isVector() && 3724 Src.getValueType().getVectorElementType() == MVT::i1); 3725 3726 MVT XLenVT = Subtarget.getXLenVT(); 3727 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3728 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3729 3730 if (VecVT.isScalableVector()) { 3731 // Be careful not to introduce illegal scalar types at this stage, and be 3732 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3733 // illegal and must be expanded. Since we know that the constants are 3734 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3735 bool IsRV32E64 = 3736 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3737 3738 if (!IsRV32E64) { 3739 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3740 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3741 } else { 3742 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3743 SplatTrueVal = 3744 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3745 } 3746 3747 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3748 } 3749 3750 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3751 MVT I1ContainerVT = 3752 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3753 3754 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3755 3756 SDValue Mask, VL; 3757 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3758 3759 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3760 SplatTrueVal = 3761 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3762 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3763 SplatTrueVal, SplatZero, VL); 3764 3765 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3766 } 3767 3768 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3769 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3770 MVT ExtVT = Op.getSimpleValueType(); 3771 // Only custom-lower extensions from fixed-length vector types. 3772 if (!ExtVT.isFixedLengthVector()) 3773 return Op; 3774 MVT VT = Op.getOperand(0).getSimpleValueType(); 3775 // Grab the canonical container type for the extended type. Infer the smaller 3776 // type from that to ensure the same number of vector elements, as we know 3777 // the LMUL will be sufficient to hold the smaller type. 3778 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3779 // Get the extended container type manually to ensure the same number of 3780 // vector elements between source and dest. 3781 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3782 ContainerExtVT.getVectorElementCount()); 3783 3784 SDValue Op1 = 3785 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3786 3787 SDLoc DL(Op); 3788 SDValue Mask, VL; 3789 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3790 3791 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3792 3793 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3794 } 3795 3796 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3797 // setcc operation: 3798 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3799 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3800 SelectionDAG &DAG) const { 3801 SDLoc DL(Op); 3802 EVT MaskVT = Op.getValueType(); 3803 // Only expect to custom-lower truncations to mask types 3804 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3805 "Unexpected type for vector mask lowering"); 3806 SDValue Src = Op.getOperand(0); 3807 MVT VecVT = Src.getSimpleValueType(); 3808 3809 // If this is a fixed vector, we need to convert it to a scalable vector. 3810 MVT ContainerVT = VecVT; 3811 if (VecVT.isFixedLengthVector()) { 3812 ContainerVT = getContainerForFixedLengthVector(VecVT); 3813 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3814 } 3815 3816 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3817 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3818 3819 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3820 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3821 3822 if (VecVT.isScalableVector()) { 3823 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3824 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3825 } 3826 3827 SDValue Mask, VL; 3828 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3829 3830 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3831 SDValue Trunc = 3832 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3833 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3834 DAG.getCondCode(ISD::SETNE), Mask, VL); 3835 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3836 } 3837 3838 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3839 // first position of a vector, and that vector is slid up to the insert index. 3840 // By limiting the active vector length to index+1 and merging with the 3841 // original vector (with an undisturbed tail policy for elements >= VL), we 3842 // achieve the desired result of leaving all elements untouched except the one 3843 // at VL-1, which is replaced with the desired value. 3844 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3845 SelectionDAG &DAG) const { 3846 SDLoc DL(Op); 3847 MVT VecVT = Op.getSimpleValueType(); 3848 SDValue Vec = Op.getOperand(0); 3849 SDValue Val = Op.getOperand(1); 3850 SDValue Idx = Op.getOperand(2); 3851 3852 if (VecVT.getVectorElementType() == MVT::i1) { 3853 // FIXME: For now we just promote to an i8 vector and insert into that, 3854 // but this is probably not optimal. 3855 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3856 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3857 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3858 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3859 } 3860 3861 MVT ContainerVT = VecVT; 3862 // If the operand is a fixed-length vector, convert to a scalable one. 3863 if (VecVT.isFixedLengthVector()) { 3864 ContainerVT = getContainerForFixedLengthVector(VecVT); 3865 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3866 } 3867 3868 MVT XLenVT = Subtarget.getXLenVT(); 3869 3870 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3871 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3872 // Even i64-element vectors on RV32 can be lowered without scalar 3873 // legalization if the most-significant 32 bits of the value are not affected 3874 // by the sign-extension of the lower 32 bits. 3875 // TODO: We could also catch sign extensions of a 32-bit value. 3876 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3877 const auto *CVal = cast<ConstantSDNode>(Val); 3878 if (isInt<32>(CVal->getSExtValue())) { 3879 IsLegalInsert = true; 3880 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3881 } 3882 } 3883 3884 SDValue Mask, VL; 3885 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3886 3887 SDValue ValInVec; 3888 3889 if (IsLegalInsert) { 3890 unsigned Opc = 3891 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3892 if (isNullConstant(Idx)) { 3893 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3894 if (!VecVT.isFixedLengthVector()) 3895 return Vec; 3896 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3897 } 3898 ValInVec = 3899 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3900 } else { 3901 // On RV32, i64-element vectors must be specially handled to place the 3902 // value at element 0, by using two vslide1up instructions in sequence on 3903 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3904 // this. 3905 SDValue One = DAG.getConstant(1, DL, XLenVT); 3906 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3907 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3908 MVT I32ContainerVT = 3909 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3910 SDValue I32Mask = 3911 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3912 // Limit the active VL to two. 3913 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3914 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3915 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3916 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3917 InsertI64VL); 3918 // First slide in the hi value, then the lo in underneath it. 3919 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3920 ValHi, I32Mask, InsertI64VL); 3921 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3922 ValLo, I32Mask, InsertI64VL); 3923 // Bitcast back to the right container type. 3924 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3925 } 3926 3927 // Now that the value is in a vector, slide it into position. 3928 SDValue InsertVL = 3929 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3930 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3931 ValInVec, Idx, Mask, InsertVL); 3932 if (!VecVT.isFixedLengthVector()) 3933 return Slideup; 3934 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3935 } 3936 3937 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3938 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3939 // types this is done using VMV_X_S to allow us to glean information about the 3940 // sign bits of the result. 3941 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3942 SelectionDAG &DAG) const { 3943 SDLoc DL(Op); 3944 SDValue Idx = Op.getOperand(1); 3945 SDValue Vec = Op.getOperand(0); 3946 EVT EltVT = Op.getValueType(); 3947 MVT VecVT = Vec.getSimpleValueType(); 3948 MVT XLenVT = Subtarget.getXLenVT(); 3949 3950 if (VecVT.getVectorElementType() == MVT::i1) { 3951 // FIXME: For now we just promote to an i8 vector and extract from that, 3952 // but this is probably not optimal. 3953 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3954 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3955 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3956 } 3957 3958 // If this is a fixed vector, we need to convert it to a scalable vector. 3959 MVT ContainerVT = VecVT; 3960 if (VecVT.isFixedLengthVector()) { 3961 ContainerVT = getContainerForFixedLengthVector(VecVT); 3962 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3963 } 3964 3965 // If the index is 0, the vector is already in the right position. 3966 if (!isNullConstant(Idx)) { 3967 // Use a VL of 1 to avoid processing more elements than we need. 3968 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3969 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3970 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3971 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3972 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3973 } 3974 3975 if (!EltVT.isInteger()) { 3976 // Floating-point extracts are handled in TableGen. 3977 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3978 DAG.getConstant(0, DL, XLenVT)); 3979 } 3980 3981 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3982 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3983 } 3984 3985 // Some RVV intrinsics may claim that they want an integer operand to be 3986 // promoted or expanded. 3987 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3988 const RISCVSubtarget &Subtarget) { 3989 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3990 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3991 "Unexpected opcode"); 3992 3993 if (!Subtarget.hasVInstructions()) 3994 return SDValue(); 3995 3996 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3997 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3998 SDLoc DL(Op); 3999 4000 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4001 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4002 if (!II || !II->SplatOperand) 4003 return SDValue(); 4004 4005 unsigned SplatOp = II->SplatOperand + HasChain; 4006 assert(SplatOp < Op.getNumOperands()); 4007 4008 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4009 SDValue &ScalarOp = Operands[SplatOp]; 4010 MVT OpVT = ScalarOp.getSimpleValueType(); 4011 MVT XLenVT = Subtarget.getXLenVT(); 4012 4013 // If this isn't a scalar, or its type is XLenVT we're done. 4014 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4015 return SDValue(); 4016 4017 // Simplest case is that the operand needs to be promoted to XLenVT. 4018 if (OpVT.bitsLT(XLenVT)) { 4019 // If the operand is a constant, sign extend to increase our chances 4020 // of being able to use a .vi instruction. ANY_EXTEND would become a 4021 // a zero extend and the simm5 check in isel would fail. 4022 // FIXME: Should we ignore the upper bits in isel instead? 4023 unsigned ExtOpc = 4024 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4025 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4026 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4027 } 4028 4029 // Use the previous operand to get the vXi64 VT. The result might be a mask 4030 // VT for compares. Using the previous operand assumes that the previous 4031 // operand will never have a smaller element size than a scalar operand and 4032 // that a widening operation never uses SEW=64. 4033 // NOTE: If this fails the below assert, we can probably just find the 4034 // element count from any operand or result and use it to construct the VT. 4035 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4036 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4037 4038 // The more complex case is when the scalar is larger than XLenVT. 4039 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4040 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4041 4042 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4043 // on the instruction to sign-extend since SEW>XLEN. 4044 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4045 if (isInt<32>(CVal->getSExtValue())) { 4046 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4047 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4048 } 4049 } 4050 4051 // We need to convert the scalar to a splat vector. 4052 // FIXME: Can we implicitly truncate the scalar if it is known to 4053 // be sign extended? 4054 // VL should be the last operand. 4055 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4056 assert(VL.getValueType() == XLenVT); 4057 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4058 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4059 } 4060 4061 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4062 SelectionDAG &DAG) const { 4063 unsigned IntNo = Op.getConstantOperandVal(0); 4064 SDLoc DL(Op); 4065 MVT XLenVT = Subtarget.getXLenVT(); 4066 4067 switch (IntNo) { 4068 default: 4069 break; // Don't custom lower most intrinsics. 4070 case Intrinsic::thread_pointer: { 4071 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4072 return DAG.getRegister(RISCV::X4, PtrVT); 4073 } 4074 case Intrinsic::riscv_orc_b: 4075 // Lower to the GORCI encoding for orc.b. 4076 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4077 DAG.getConstant(7, DL, XLenVT)); 4078 case Intrinsic::riscv_grev: 4079 case Intrinsic::riscv_gorc: { 4080 unsigned Opc = 4081 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4082 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4083 } 4084 case Intrinsic::riscv_shfl: 4085 case Intrinsic::riscv_unshfl: { 4086 unsigned Opc = 4087 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4088 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4089 } 4090 case Intrinsic::riscv_bcompress: 4091 case Intrinsic::riscv_bdecompress: { 4092 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4093 : RISCVISD::BDECOMPRESS; 4094 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4095 } 4096 case Intrinsic::riscv_vmv_x_s: 4097 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4098 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4099 Op.getOperand(1)); 4100 case Intrinsic::riscv_vmv_v_x: 4101 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4102 Op.getSimpleValueType(), DL, DAG, Subtarget); 4103 case Intrinsic::riscv_vfmv_v_f: 4104 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4105 Op.getOperand(1), Op.getOperand(2)); 4106 case Intrinsic::riscv_vmv_s_x: { 4107 SDValue Scalar = Op.getOperand(2); 4108 4109 if (Scalar.getValueType().bitsLE(XLenVT)) { 4110 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4111 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4112 Op.getOperand(1), Scalar, Op.getOperand(3)); 4113 } 4114 4115 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4116 4117 // This is an i64 value that lives in two scalar registers. We have to 4118 // insert this in a convoluted way. First we build vXi64 splat containing 4119 // the/ two values that we assemble using some bit math. Next we'll use 4120 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4121 // to merge element 0 from our splat into the source vector. 4122 // FIXME: This is probably not the best way to do this, but it is 4123 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4124 // point. 4125 // sw lo, (a0) 4126 // sw hi, 4(a0) 4127 // vlse vX, (a0) 4128 // 4129 // vid.v vVid 4130 // vmseq.vx mMask, vVid, 0 4131 // vmerge.vvm vDest, vSrc, vVal, mMask 4132 MVT VT = Op.getSimpleValueType(); 4133 SDValue Vec = Op.getOperand(1); 4134 SDValue VL = Op.getOperand(3); 4135 4136 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4137 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4138 DAG.getConstant(0, DL, MVT::i32), VL); 4139 4140 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4141 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4142 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4143 SDValue SelectCond = 4144 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4145 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4146 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4147 Vec, VL); 4148 } 4149 case Intrinsic::riscv_vslide1up: 4150 case Intrinsic::riscv_vslide1down: 4151 case Intrinsic::riscv_vslide1up_mask: 4152 case Intrinsic::riscv_vslide1down_mask: { 4153 // We need to special case these when the scalar is larger than XLen. 4154 unsigned NumOps = Op.getNumOperands(); 4155 bool IsMasked = NumOps == 7; 4156 unsigned OpOffset = IsMasked ? 1 : 0; 4157 SDValue Scalar = Op.getOperand(2 + OpOffset); 4158 if (Scalar.getValueType().bitsLE(XLenVT)) 4159 break; 4160 4161 // Splatting a sign extended constant is fine. 4162 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4163 if (isInt<32>(CVal->getSExtValue())) 4164 break; 4165 4166 MVT VT = Op.getSimpleValueType(); 4167 assert(VT.getVectorElementType() == MVT::i64 && 4168 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4169 4170 // Convert the vector source to the equivalent nxvXi32 vector. 4171 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4172 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4173 4174 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4175 DAG.getConstant(0, DL, XLenVT)); 4176 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4177 DAG.getConstant(1, DL, XLenVT)); 4178 4179 // Double the VL since we halved SEW. 4180 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4181 SDValue I32VL = 4182 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4183 4184 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4185 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4186 4187 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4188 // instructions. 4189 if (IntNo == Intrinsic::riscv_vslide1up || 4190 IntNo == Intrinsic::riscv_vslide1up_mask) { 4191 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4192 I32Mask, I32VL); 4193 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4194 I32Mask, I32VL); 4195 } else { 4196 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4197 I32Mask, I32VL); 4198 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4199 I32Mask, I32VL); 4200 } 4201 4202 // Convert back to nxvXi64. 4203 Vec = DAG.getBitcast(VT, Vec); 4204 4205 if (!IsMasked) 4206 return Vec; 4207 4208 // Apply mask after the operation. 4209 SDValue Mask = Op.getOperand(NumOps - 3); 4210 SDValue MaskedOff = Op.getOperand(1); 4211 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4212 } 4213 } 4214 4215 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4216 } 4217 4218 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4219 SelectionDAG &DAG) const { 4220 unsigned IntNo = Op.getConstantOperandVal(1); 4221 switch (IntNo) { 4222 default: 4223 break; 4224 case Intrinsic::riscv_masked_strided_load: { 4225 SDLoc DL(Op); 4226 MVT XLenVT = Subtarget.getXLenVT(); 4227 4228 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4229 // the selection of the masked intrinsics doesn't do this for us. 4230 SDValue Mask = Op.getOperand(5); 4231 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4232 4233 MVT VT = Op->getSimpleValueType(0); 4234 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4235 4236 SDValue PassThru = Op.getOperand(2); 4237 if (!IsUnmasked) { 4238 MVT MaskVT = 4239 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4240 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4241 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4242 } 4243 4244 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4245 4246 SDValue IntID = DAG.getTargetConstant( 4247 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4248 XLenVT); 4249 4250 auto *Load = cast<MemIntrinsicSDNode>(Op); 4251 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4252 if (!IsUnmasked) 4253 Ops.push_back(PassThru); 4254 Ops.push_back(Op.getOperand(3)); // Ptr 4255 Ops.push_back(Op.getOperand(4)); // Stride 4256 if (!IsUnmasked) 4257 Ops.push_back(Mask); 4258 Ops.push_back(VL); 4259 if (!IsUnmasked) { 4260 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4261 Ops.push_back(Policy); 4262 } 4263 4264 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4265 SDValue Result = 4266 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4267 Load->getMemoryVT(), Load->getMemOperand()); 4268 SDValue Chain = Result.getValue(1); 4269 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4270 return DAG.getMergeValues({Result, Chain}, DL); 4271 } 4272 } 4273 4274 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4275 } 4276 4277 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4278 SelectionDAG &DAG) const { 4279 unsigned IntNo = Op.getConstantOperandVal(1); 4280 switch (IntNo) { 4281 default: 4282 break; 4283 case Intrinsic::riscv_masked_strided_store: { 4284 SDLoc DL(Op); 4285 MVT XLenVT = Subtarget.getXLenVT(); 4286 4287 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4288 // the selection of the masked intrinsics doesn't do this for us. 4289 SDValue Mask = Op.getOperand(5); 4290 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4291 4292 SDValue Val = Op.getOperand(2); 4293 MVT VT = Val.getSimpleValueType(); 4294 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4295 4296 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4297 if (!IsUnmasked) { 4298 MVT MaskVT = 4299 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4300 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4301 } 4302 4303 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4304 4305 SDValue IntID = DAG.getTargetConstant( 4306 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4307 XLenVT); 4308 4309 auto *Store = cast<MemIntrinsicSDNode>(Op); 4310 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4311 Ops.push_back(Val); 4312 Ops.push_back(Op.getOperand(3)); // Ptr 4313 Ops.push_back(Op.getOperand(4)); // Stride 4314 if (!IsUnmasked) 4315 Ops.push_back(Mask); 4316 Ops.push_back(VL); 4317 4318 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4319 Ops, Store->getMemoryVT(), 4320 Store->getMemOperand()); 4321 } 4322 } 4323 4324 return SDValue(); 4325 } 4326 4327 static MVT getLMUL1VT(MVT VT) { 4328 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4329 "Unexpected vector MVT"); 4330 return MVT::getScalableVectorVT( 4331 VT.getVectorElementType(), 4332 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4333 } 4334 4335 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4336 switch (ISDOpcode) { 4337 default: 4338 llvm_unreachable("Unhandled reduction"); 4339 case ISD::VECREDUCE_ADD: 4340 return RISCVISD::VECREDUCE_ADD_VL; 4341 case ISD::VECREDUCE_UMAX: 4342 return RISCVISD::VECREDUCE_UMAX_VL; 4343 case ISD::VECREDUCE_SMAX: 4344 return RISCVISD::VECREDUCE_SMAX_VL; 4345 case ISD::VECREDUCE_UMIN: 4346 return RISCVISD::VECREDUCE_UMIN_VL; 4347 case ISD::VECREDUCE_SMIN: 4348 return RISCVISD::VECREDUCE_SMIN_VL; 4349 case ISD::VECREDUCE_AND: 4350 return RISCVISD::VECREDUCE_AND_VL; 4351 case ISD::VECREDUCE_OR: 4352 return RISCVISD::VECREDUCE_OR_VL; 4353 case ISD::VECREDUCE_XOR: 4354 return RISCVISD::VECREDUCE_XOR_VL; 4355 } 4356 } 4357 4358 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4359 SelectionDAG &DAG, 4360 bool IsVP) const { 4361 SDLoc DL(Op); 4362 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4363 MVT VecVT = Vec.getSimpleValueType(); 4364 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4365 Op.getOpcode() == ISD::VECREDUCE_OR || 4366 Op.getOpcode() == ISD::VECREDUCE_XOR || 4367 Op.getOpcode() == ISD::VP_REDUCE_AND || 4368 Op.getOpcode() == ISD::VP_REDUCE_OR || 4369 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4370 "Unexpected reduction lowering"); 4371 4372 MVT XLenVT = Subtarget.getXLenVT(); 4373 assert(Op.getValueType() == XLenVT && 4374 "Expected reduction output to be legalized to XLenVT"); 4375 4376 MVT ContainerVT = VecVT; 4377 if (VecVT.isFixedLengthVector()) { 4378 ContainerVT = getContainerForFixedLengthVector(VecVT); 4379 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4380 } 4381 4382 SDValue Mask, VL; 4383 if (IsVP) { 4384 Mask = Op.getOperand(2); 4385 VL = Op.getOperand(3); 4386 } else { 4387 std::tie(Mask, VL) = 4388 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4389 } 4390 4391 unsigned BaseOpc; 4392 ISD::CondCode CC; 4393 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4394 4395 switch (Op.getOpcode()) { 4396 default: 4397 llvm_unreachable("Unhandled reduction"); 4398 case ISD::VECREDUCE_AND: 4399 case ISD::VP_REDUCE_AND: { 4400 // vcpop ~x == 0 4401 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4402 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4403 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4404 CC = ISD::SETEQ; 4405 BaseOpc = ISD::AND; 4406 break; 4407 } 4408 case ISD::VECREDUCE_OR: 4409 case ISD::VP_REDUCE_OR: 4410 // vcpop x != 0 4411 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4412 CC = ISD::SETNE; 4413 BaseOpc = ISD::OR; 4414 break; 4415 case ISD::VECREDUCE_XOR: 4416 case ISD::VP_REDUCE_XOR: { 4417 // ((vcpop x) & 1) != 0 4418 SDValue One = DAG.getConstant(1, DL, XLenVT); 4419 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4420 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4421 CC = ISD::SETNE; 4422 BaseOpc = ISD::XOR; 4423 break; 4424 } 4425 } 4426 4427 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4428 4429 if (!IsVP) 4430 return SetCC; 4431 4432 // Now include the start value in the operation. 4433 // Note that we must return the start value when no elements are operated 4434 // upon. The vcpop instructions we've emitted in each case above will return 4435 // 0 for an inactive vector, and so we've already received the neutral value: 4436 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4437 // can simply include the start value. 4438 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4439 } 4440 4441 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4442 SelectionDAG &DAG) const { 4443 SDLoc DL(Op); 4444 SDValue Vec = Op.getOperand(0); 4445 EVT VecEVT = Vec.getValueType(); 4446 4447 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4448 4449 // Due to ordering in legalize types we may have a vector type that needs to 4450 // be split. Do that manually so we can get down to a legal type. 4451 while (getTypeAction(*DAG.getContext(), VecEVT) == 4452 TargetLowering::TypeSplitVector) { 4453 SDValue Lo, Hi; 4454 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4455 VecEVT = Lo.getValueType(); 4456 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4457 } 4458 4459 // TODO: The type may need to be widened rather than split. Or widened before 4460 // it can be split. 4461 if (!isTypeLegal(VecEVT)) 4462 return SDValue(); 4463 4464 MVT VecVT = VecEVT.getSimpleVT(); 4465 MVT VecEltVT = VecVT.getVectorElementType(); 4466 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4467 4468 MVT ContainerVT = VecVT; 4469 if (VecVT.isFixedLengthVector()) { 4470 ContainerVT = getContainerForFixedLengthVector(VecVT); 4471 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4472 } 4473 4474 MVT M1VT = getLMUL1VT(ContainerVT); 4475 4476 SDValue Mask, VL; 4477 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4478 4479 // FIXME: This is a VLMAX splat which might be too large and can prevent 4480 // vsetvli removal. 4481 SDValue NeutralElem = 4482 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4483 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4484 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4485 IdentitySplat, Mask, VL); 4486 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4487 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4488 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4489 } 4490 4491 // Given a reduction op, this function returns the matching reduction opcode, 4492 // the vector SDValue and the scalar SDValue required to lower this to a 4493 // RISCVISD node. 4494 static std::tuple<unsigned, SDValue, SDValue> 4495 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4496 SDLoc DL(Op); 4497 auto Flags = Op->getFlags(); 4498 unsigned Opcode = Op.getOpcode(); 4499 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4500 switch (Opcode) { 4501 default: 4502 llvm_unreachable("Unhandled reduction"); 4503 case ISD::VECREDUCE_FADD: 4504 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4505 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4506 case ISD::VECREDUCE_SEQ_FADD: 4507 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4508 Op.getOperand(0)); 4509 case ISD::VECREDUCE_FMIN: 4510 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4511 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4512 case ISD::VECREDUCE_FMAX: 4513 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4514 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4515 } 4516 } 4517 4518 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4519 SelectionDAG &DAG) const { 4520 SDLoc DL(Op); 4521 MVT VecEltVT = Op.getSimpleValueType(); 4522 4523 unsigned RVVOpcode; 4524 SDValue VectorVal, ScalarVal; 4525 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4526 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4527 MVT VecVT = VectorVal.getSimpleValueType(); 4528 4529 MVT ContainerVT = VecVT; 4530 if (VecVT.isFixedLengthVector()) { 4531 ContainerVT = getContainerForFixedLengthVector(VecVT); 4532 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4533 } 4534 4535 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4536 4537 SDValue Mask, VL; 4538 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4539 4540 // FIXME: This is a VLMAX splat which might be too large and can prevent 4541 // vsetvli removal. 4542 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4543 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4544 VectorVal, ScalarSplat, Mask, VL); 4545 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4546 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4547 } 4548 4549 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4550 switch (ISDOpcode) { 4551 default: 4552 llvm_unreachable("Unhandled reduction"); 4553 case ISD::VP_REDUCE_ADD: 4554 return RISCVISD::VECREDUCE_ADD_VL; 4555 case ISD::VP_REDUCE_UMAX: 4556 return RISCVISD::VECREDUCE_UMAX_VL; 4557 case ISD::VP_REDUCE_SMAX: 4558 return RISCVISD::VECREDUCE_SMAX_VL; 4559 case ISD::VP_REDUCE_UMIN: 4560 return RISCVISD::VECREDUCE_UMIN_VL; 4561 case ISD::VP_REDUCE_SMIN: 4562 return RISCVISD::VECREDUCE_SMIN_VL; 4563 case ISD::VP_REDUCE_AND: 4564 return RISCVISD::VECREDUCE_AND_VL; 4565 case ISD::VP_REDUCE_OR: 4566 return RISCVISD::VECREDUCE_OR_VL; 4567 case ISD::VP_REDUCE_XOR: 4568 return RISCVISD::VECREDUCE_XOR_VL; 4569 case ISD::VP_REDUCE_FADD: 4570 return RISCVISD::VECREDUCE_FADD_VL; 4571 case ISD::VP_REDUCE_SEQ_FADD: 4572 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4573 case ISD::VP_REDUCE_FMAX: 4574 return RISCVISD::VECREDUCE_FMAX_VL; 4575 case ISD::VP_REDUCE_FMIN: 4576 return RISCVISD::VECREDUCE_FMIN_VL; 4577 } 4578 } 4579 4580 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4581 SelectionDAG &DAG) const { 4582 SDLoc DL(Op); 4583 SDValue Vec = Op.getOperand(1); 4584 EVT VecEVT = Vec.getValueType(); 4585 4586 // TODO: The type may need to be widened rather than split. Or widened before 4587 // it can be split. 4588 if (!isTypeLegal(VecEVT)) 4589 return SDValue(); 4590 4591 MVT VecVT = VecEVT.getSimpleVT(); 4592 MVT VecEltVT = VecVT.getVectorElementType(); 4593 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4594 4595 MVT ContainerVT = VecVT; 4596 if (VecVT.isFixedLengthVector()) { 4597 ContainerVT = getContainerForFixedLengthVector(VecVT); 4598 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4599 } 4600 4601 SDValue VL = Op.getOperand(3); 4602 SDValue Mask = Op.getOperand(2); 4603 4604 MVT M1VT = getLMUL1VT(ContainerVT); 4605 MVT XLenVT = Subtarget.getXLenVT(); 4606 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4607 4608 // FIXME: This is a VLMAX splat which might be too large and can prevent 4609 // vsetvli removal. 4610 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4611 SDValue Reduction = 4612 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4613 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4614 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4615 if (!VecVT.isInteger()) 4616 return Elt0; 4617 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4618 } 4619 4620 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4621 SelectionDAG &DAG) const { 4622 SDValue Vec = Op.getOperand(0); 4623 SDValue SubVec = Op.getOperand(1); 4624 MVT VecVT = Vec.getSimpleValueType(); 4625 MVT SubVecVT = SubVec.getSimpleValueType(); 4626 4627 SDLoc DL(Op); 4628 MVT XLenVT = Subtarget.getXLenVT(); 4629 unsigned OrigIdx = Op.getConstantOperandVal(2); 4630 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4631 4632 // We don't have the ability to slide mask vectors up indexed by their i1 4633 // elements; the smallest we can do is i8. Often we are able to bitcast to 4634 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4635 // into a scalable one, we might not necessarily have enough scalable 4636 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4637 if (SubVecVT.getVectorElementType() == MVT::i1 && 4638 (OrigIdx != 0 || !Vec.isUndef())) { 4639 if (VecVT.getVectorMinNumElements() >= 8 && 4640 SubVecVT.getVectorMinNumElements() >= 8) { 4641 assert(OrigIdx % 8 == 0 && "Invalid index"); 4642 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4643 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4644 "Unexpected mask vector lowering"); 4645 OrigIdx /= 8; 4646 SubVecVT = 4647 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4648 SubVecVT.isScalableVector()); 4649 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4650 VecVT.isScalableVector()); 4651 Vec = DAG.getBitcast(VecVT, Vec); 4652 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4653 } else { 4654 // We can't slide this mask vector up indexed by its i1 elements. 4655 // This poses a problem when we wish to insert a scalable vector which 4656 // can't be re-expressed as a larger type. Just choose the slow path and 4657 // extend to a larger type, then truncate back down. 4658 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4659 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4660 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4661 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4662 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4663 Op.getOperand(2)); 4664 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4665 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4666 } 4667 } 4668 4669 // If the subvector vector is a fixed-length type, we cannot use subregister 4670 // manipulation to simplify the codegen; we don't know which register of a 4671 // LMUL group contains the specific subvector as we only know the minimum 4672 // register size. Therefore we must slide the vector group up the full 4673 // amount. 4674 if (SubVecVT.isFixedLengthVector()) { 4675 if (OrigIdx == 0 && Vec.isUndef()) 4676 return Op; 4677 MVT ContainerVT = VecVT; 4678 if (VecVT.isFixedLengthVector()) { 4679 ContainerVT = getContainerForFixedLengthVector(VecVT); 4680 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4681 } 4682 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4683 DAG.getUNDEF(ContainerVT), SubVec, 4684 DAG.getConstant(0, DL, XLenVT)); 4685 SDValue Mask = 4686 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4687 // Set the vector length to only the number of elements we care about. Note 4688 // that for slideup this includes the offset. 4689 SDValue VL = 4690 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4691 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4692 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4693 SubVec, SlideupAmt, Mask, VL); 4694 if (VecVT.isFixedLengthVector()) 4695 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4696 return DAG.getBitcast(Op.getValueType(), Slideup); 4697 } 4698 4699 unsigned SubRegIdx, RemIdx; 4700 std::tie(SubRegIdx, RemIdx) = 4701 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4702 VecVT, SubVecVT, OrigIdx, TRI); 4703 4704 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4705 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4706 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4707 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4708 4709 // 1. If the Idx has been completely eliminated and this subvector's size is 4710 // a vector register or a multiple thereof, or the surrounding elements are 4711 // undef, then this is a subvector insert which naturally aligns to a vector 4712 // register. These can easily be handled using subregister manipulation. 4713 // 2. If the subvector is smaller than a vector register, then the insertion 4714 // must preserve the undisturbed elements of the register. We do this by 4715 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4716 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4717 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4718 // LMUL=1 type back into the larger vector (resolving to another subregister 4719 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4720 // to avoid allocating a large register group to hold our subvector. 4721 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4722 return Op; 4723 4724 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4725 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4726 // (in our case undisturbed). This means we can set up a subvector insertion 4727 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4728 // size of the subvector. 4729 MVT InterSubVT = VecVT; 4730 SDValue AlignedExtract = Vec; 4731 unsigned AlignedIdx = OrigIdx - RemIdx; 4732 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4733 InterSubVT = getLMUL1VT(VecVT); 4734 // Extract a subvector equal to the nearest full vector register type. This 4735 // should resolve to a EXTRACT_SUBREG instruction. 4736 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4737 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4738 } 4739 4740 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4741 // For scalable vectors this must be further multiplied by vscale. 4742 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4743 4744 SDValue Mask, VL; 4745 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4746 4747 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4748 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4749 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4750 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4751 4752 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4753 DAG.getUNDEF(InterSubVT), SubVec, 4754 DAG.getConstant(0, DL, XLenVT)); 4755 4756 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4757 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4758 4759 // If required, insert this subvector back into the correct vector register. 4760 // This should resolve to an INSERT_SUBREG instruction. 4761 if (VecVT.bitsGT(InterSubVT)) 4762 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4763 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4764 4765 // We might have bitcast from a mask type: cast back to the original type if 4766 // required. 4767 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4768 } 4769 4770 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4771 SelectionDAG &DAG) const { 4772 SDValue Vec = Op.getOperand(0); 4773 MVT SubVecVT = Op.getSimpleValueType(); 4774 MVT VecVT = Vec.getSimpleValueType(); 4775 4776 SDLoc DL(Op); 4777 MVT XLenVT = Subtarget.getXLenVT(); 4778 unsigned OrigIdx = Op.getConstantOperandVal(1); 4779 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4780 4781 // We don't have the ability to slide mask vectors down indexed by their i1 4782 // elements; the smallest we can do is i8. Often we are able to bitcast to 4783 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4784 // from a scalable one, we might not necessarily have enough scalable 4785 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4786 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4787 if (VecVT.getVectorMinNumElements() >= 8 && 4788 SubVecVT.getVectorMinNumElements() >= 8) { 4789 assert(OrigIdx % 8 == 0 && "Invalid index"); 4790 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4791 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4792 "Unexpected mask vector lowering"); 4793 OrigIdx /= 8; 4794 SubVecVT = 4795 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4796 SubVecVT.isScalableVector()); 4797 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4798 VecVT.isScalableVector()); 4799 Vec = DAG.getBitcast(VecVT, Vec); 4800 } else { 4801 // We can't slide this mask vector down, indexed by its i1 elements. 4802 // This poses a problem when we wish to extract a scalable vector which 4803 // can't be re-expressed as a larger type. Just choose the slow path and 4804 // extend to a larger type, then truncate back down. 4805 // TODO: We could probably improve this when extracting certain fixed 4806 // from fixed, where we can extract as i8 and shift the correct element 4807 // right to reach the desired subvector? 4808 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4809 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4810 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4811 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4812 Op.getOperand(1)); 4813 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4814 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4815 } 4816 } 4817 4818 // If the subvector vector is a fixed-length type, we cannot use subregister 4819 // manipulation to simplify the codegen; we don't know which register of a 4820 // LMUL group contains the specific subvector as we only know the minimum 4821 // register size. Therefore we must slide the vector group down the full 4822 // amount. 4823 if (SubVecVT.isFixedLengthVector()) { 4824 // With an index of 0 this is a cast-like subvector, which can be performed 4825 // with subregister operations. 4826 if (OrigIdx == 0) 4827 return Op; 4828 MVT ContainerVT = VecVT; 4829 if (VecVT.isFixedLengthVector()) { 4830 ContainerVT = getContainerForFixedLengthVector(VecVT); 4831 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4832 } 4833 SDValue Mask = 4834 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4835 // Set the vector length to only the number of elements we care about. This 4836 // avoids sliding down elements we're going to discard straight away. 4837 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4838 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4839 SDValue Slidedown = 4840 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4841 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4842 // Now we can use a cast-like subvector extract to get the result. 4843 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4844 DAG.getConstant(0, DL, XLenVT)); 4845 return DAG.getBitcast(Op.getValueType(), Slidedown); 4846 } 4847 4848 unsigned SubRegIdx, RemIdx; 4849 std::tie(SubRegIdx, RemIdx) = 4850 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4851 VecVT, SubVecVT, OrigIdx, TRI); 4852 4853 // If the Idx has been completely eliminated then this is a subvector extract 4854 // which naturally aligns to a vector register. These can easily be handled 4855 // using subregister manipulation. 4856 if (RemIdx == 0) 4857 return Op; 4858 4859 // Else we must shift our vector register directly to extract the subvector. 4860 // Do this using VSLIDEDOWN. 4861 4862 // If the vector type is an LMUL-group type, extract a subvector equal to the 4863 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4864 // instruction. 4865 MVT InterSubVT = VecVT; 4866 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4867 InterSubVT = getLMUL1VT(VecVT); 4868 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4869 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4870 } 4871 4872 // Slide this vector register down by the desired number of elements in order 4873 // to place the desired subvector starting at element 0. 4874 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4875 // For scalable vectors this must be further multiplied by vscale. 4876 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4877 4878 SDValue Mask, VL; 4879 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4880 SDValue Slidedown = 4881 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4882 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4883 4884 // Now the vector is in the right position, extract our final subvector. This 4885 // should resolve to a COPY. 4886 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4887 DAG.getConstant(0, DL, XLenVT)); 4888 4889 // We might have bitcast from a mask type: cast back to the original type if 4890 // required. 4891 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4892 } 4893 4894 // Lower step_vector to the vid instruction. Any non-identity step value must 4895 // be accounted for my manual expansion. 4896 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4897 SelectionDAG &DAG) const { 4898 SDLoc DL(Op); 4899 MVT VT = Op.getSimpleValueType(); 4900 MVT XLenVT = Subtarget.getXLenVT(); 4901 SDValue Mask, VL; 4902 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4903 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4904 uint64_t StepValImm = Op.getConstantOperandVal(0); 4905 if (StepValImm != 1) { 4906 if (isPowerOf2_64(StepValImm)) { 4907 SDValue StepVal = 4908 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4909 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4910 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4911 } else { 4912 SDValue StepVal = lowerScalarSplat( 4913 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4914 DL, DAG, Subtarget); 4915 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4916 } 4917 } 4918 return StepVec; 4919 } 4920 4921 // Implement vector_reverse using vrgather.vv with indices determined by 4922 // subtracting the id of each element from (VLMAX-1). This will convert 4923 // the indices like so: 4924 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4925 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4926 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4927 SelectionDAG &DAG) const { 4928 SDLoc DL(Op); 4929 MVT VecVT = Op.getSimpleValueType(); 4930 unsigned EltSize = VecVT.getScalarSizeInBits(); 4931 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4932 4933 unsigned MaxVLMAX = 0; 4934 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4935 if (VectorBitsMax != 0) 4936 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4937 4938 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4939 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4940 4941 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4942 // to use vrgatherei16.vv. 4943 // TODO: It's also possible to use vrgatherei16.vv for other types to 4944 // decrease register width for the index calculation. 4945 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4946 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4947 // Reverse each half, then reassemble them in reverse order. 4948 // NOTE: It's also possible that after splitting that VLMAX no longer 4949 // requires vrgatherei16.vv. 4950 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4951 SDValue Lo, Hi; 4952 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4953 EVT LoVT, HiVT; 4954 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4955 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4956 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4957 // Reassemble the low and high pieces reversed. 4958 // FIXME: This is a CONCAT_VECTORS. 4959 SDValue Res = 4960 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4961 DAG.getIntPtrConstant(0, DL)); 4962 return DAG.getNode( 4963 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4964 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4965 } 4966 4967 // Just promote the int type to i16 which will double the LMUL. 4968 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4969 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4970 } 4971 4972 MVT XLenVT = Subtarget.getXLenVT(); 4973 SDValue Mask, VL; 4974 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4975 4976 // Calculate VLMAX-1 for the desired SEW. 4977 unsigned MinElts = VecVT.getVectorMinNumElements(); 4978 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4979 DAG.getConstant(MinElts, DL, XLenVT)); 4980 SDValue VLMinus1 = 4981 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4982 4983 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4984 bool IsRV32E64 = 4985 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4986 SDValue SplatVL; 4987 if (!IsRV32E64) 4988 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4989 else 4990 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4991 4992 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4993 SDValue Indices = 4994 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4995 4996 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4997 } 4998 4999 SDValue 5000 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5001 SelectionDAG &DAG) const { 5002 SDLoc DL(Op); 5003 auto *Load = cast<LoadSDNode>(Op); 5004 5005 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5006 Load->getMemoryVT(), 5007 *Load->getMemOperand()) && 5008 "Expecting a correctly-aligned load"); 5009 5010 MVT VT = Op.getSimpleValueType(); 5011 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5012 5013 SDValue VL = 5014 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5015 5016 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5017 SDValue NewLoad = DAG.getMemIntrinsicNode( 5018 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5019 Load->getMemoryVT(), Load->getMemOperand()); 5020 5021 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5022 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5023 } 5024 5025 SDValue 5026 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5027 SelectionDAG &DAG) const { 5028 SDLoc DL(Op); 5029 auto *Store = cast<StoreSDNode>(Op); 5030 5031 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5032 Store->getMemoryVT(), 5033 *Store->getMemOperand()) && 5034 "Expecting a correctly-aligned store"); 5035 5036 SDValue StoreVal = Store->getValue(); 5037 MVT VT = StoreVal.getSimpleValueType(); 5038 5039 // If the size less than a byte, we need to pad with zeros to make a byte. 5040 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5041 VT = MVT::v8i1; 5042 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5043 DAG.getConstant(0, DL, VT), StoreVal, 5044 DAG.getIntPtrConstant(0, DL)); 5045 } 5046 5047 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5048 5049 SDValue VL = 5050 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5051 5052 SDValue NewValue = 5053 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5054 return DAG.getMemIntrinsicNode( 5055 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5056 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5057 Store->getMemoryVT(), Store->getMemOperand()); 5058 } 5059 5060 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5061 SelectionDAG &DAG) const { 5062 SDLoc DL(Op); 5063 MVT VT = Op.getSimpleValueType(); 5064 5065 const auto *MemSD = cast<MemSDNode>(Op); 5066 EVT MemVT = MemSD->getMemoryVT(); 5067 MachineMemOperand *MMO = MemSD->getMemOperand(); 5068 SDValue Chain = MemSD->getChain(); 5069 SDValue BasePtr = MemSD->getBasePtr(); 5070 5071 SDValue Mask, PassThru, VL; 5072 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5073 Mask = VPLoad->getMask(); 5074 PassThru = DAG.getUNDEF(VT); 5075 VL = VPLoad->getVectorLength(); 5076 } else { 5077 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5078 Mask = MLoad->getMask(); 5079 PassThru = MLoad->getPassThru(); 5080 } 5081 5082 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5083 5084 MVT XLenVT = Subtarget.getXLenVT(); 5085 5086 MVT ContainerVT = VT; 5087 if (VT.isFixedLengthVector()) { 5088 ContainerVT = getContainerForFixedLengthVector(VT); 5089 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5090 if (!IsUnmasked) { 5091 MVT MaskVT = 5092 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5093 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5094 } 5095 } 5096 5097 if (!VL) 5098 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5099 5100 unsigned IntID = 5101 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5102 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5103 if (!IsUnmasked) 5104 Ops.push_back(PassThru); 5105 Ops.push_back(BasePtr); 5106 if (!IsUnmasked) 5107 Ops.push_back(Mask); 5108 Ops.push_back(VL); 5109 if (!IsUnmasked) 5110 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5111 5112 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5113 5114 SDValue Result = 5115 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5116 Chain = Result.getValue(1); 5117 5118 if (VT.isFixedLengthVector()) 5119 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5120 5121 return DAG.getMergeValues({Result, Chain}, DL); 5122 } 5123 5124 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5125 SelectionDAG &DAG) const { 5126 SDLoc DL(Op); 5127 5128 const auto *MemSD = cast<MemSDNode>(Op); 5129 EVT MemVT = MemSD->getMemoryVT(); 5130 MachineMemOperand *MMO = MemSD->getMemOperand(); 5131 SDValue Chain = MemSD->getChain(); 5132 SDValue BasePtr = MemSD->getBasePtr(); 5133 SDValue Val, Mask, VL; 5134 5135 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5136 Val = VPStore->getValue(); 5137 Mask = VPStore->getMask(); 5138 VL = VPStore->getVectorLength(); 5139 } else { 5140 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5141 Val = MStore->getValue(); 5142 Mask = MStore->getMask(); 5143 } 5144 5145 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5146 5147 MVT VT = Val.getSimpleValueType(); 5148 MVT XLenVT = Subtarget.getXLenVT(); 5149 5150 MVT ContainerVT = VT; 5151 if (VT.isFixedLengthVector()) { 5152 ContainerVT = getContainerForFixedLengthVector(VT); 5153 5154 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5155 if (!IsUnmasked) { 5156 MVT MaskVT = 5157 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5158 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5159 } 5160 } 5161 5162 if (!VL) 5163 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5164 5165 unsigned IntID = 5166 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5167 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5168 Ops.push_back(Val); 5169 Ops.push_back(BasePtr); 5170 if (!IsUnmasked) 5171 Ops.push_back(Mask); 5172 Ops.push_back(VL); 5173 5174 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5175 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5176 } 5177 5178 SDValue 5179 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5180 SelectionDAG &DAG) const { 5181 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5182 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5183 5184 MVT VT = Op.getSimpleValueType(); 5185 5186 SDValue Op1 = 5187 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5188 SDValue Op2 = 5189 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5190 5191 SDLoc DL(Op); 5192 SDValue VL = 5193 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5194 5195 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5196 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5197 5198 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5199 Op.getOperand(2), Mask, VL); 5200 5201 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5202 } 5203 5204 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5205 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5206 MVT VT = Op.getSimpleValueType(); 5207 5208 if (VT.getVectorElementType() == MVT::i1) 5209 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5210 5211 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5212 } 5213 5214 SDValue 5215 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5216 SelectionDAG &DAG) const { 5217 unsigned Opc; 5218 switch (Op.getOpcode()) { 5219 default: llvm_unreachable("Unexpected opcode!"); 5220 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5221 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5222 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5223 } 5224 5225 return lowerToScalableOp(Op, DAG, Opc); 5226 } 5227 5228 // Lower vector ABS to smax(X, sub(0, X)). 5229 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5230 SDLoc DL(Op); 5231 MVT VT = Op.getSimpleValueType(); 5232 SDValue X = Op.getOperand(0); 5233 5234 assert(VT.isFixedLengthVector() && "Unexpected type"); 5235 5236 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5237 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5238 5239 SDValue Mask, VL; 5240 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5241 5242 SDValue SplatZero = 5243 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5244 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5245 SDValue NegX = 5246 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5247 SDValue Max = 5248 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5249 5250 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5251 } 5252 5253 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5254 SDValue Op, SelectionDAG &DAG) const { 5255 SDLoc DL(Op); 5256 MVT VT = Op.getSimpleValueType(); 5257 SDValue Mag = Op.getOperand(0); 5258 SDValue Sign = Op.getOperand(1); 5259 assert(Mag.getValueType() == Sign.getValueType() && 5260 "Can only handle COPYSIGN with matching types."); 5261 5262 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5263 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5264 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5265 5266 SDValue Mask, VL; 5267 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5268 5269 SDValue CopySign = 5270 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5271 5272 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5273 } 5274 5275 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5276 SDValue Op, SelectionDAG &DAG) const { 5277 MVT VT = Op.getSimpleValueType(); 5278 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5279 5280 MVT I1ContainerVT = 5281 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5282 5283 SDValue CC = 5284 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5285 SDValue Op1 = 5286 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5287 SDValue Op2 = 5288 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5289 5290 SDLoc DL(Op); 5291 SDValue Mask, VL; 5292 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5293 5294 SDValue Select = 5295 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5296 5297 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5298 } 5299 5300 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5301 unsigned NewOpc, 5302 bool HasMask) const { 5303 MVT VT = Op.getSimpleValueType(); 5304 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5305 5306 // Create list of operands by converting existing ones to scalable types. 5307 SmallVector<SDValue, 6> Ops; 5308 for (const SDValue &V : Op->op_values()) { 5309 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5310 5311 // Pass through non-vector operands. 5312 if (!V.getValueType().isVector()) { 5313 Ops.push_back(V); 5314 continue; 5315 } 5316 5317 // "cast" fixed length vector to a scalable vector. 5318 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5319 "Only fixed length vectors are supported!"); 5320 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5321 } 5322 5323 SDLoc DL(Op); 5324 SDValue Mask, VL; 5325 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5326 if (HasMask) 5327 Ops.push_back(Mask); 5328 Ops.push_back(VL); 5329 5330 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5331 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5332 } 5333 5334 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5335 // * Operands of each node are assumed to be in the same order. 5336 // * The EVL operand is promoted from i32 to i64 on RV64. 5337 // * Fixed-length vectors are converted to their scalable-vector container 5338 // types. 5339 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5340 unsigned RISCVISDOpc) const { 5341 SDLoc DL(Op); 5342 MVT VT = Op.getSimpleValueType(); 5343 SmallVector<SDValue, 4> Ops; 5344 5345 for (const auto &OpIdx : enumerate(Op->ops())) { 5346 SDValue V = OpIdx.value(); 5347 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5348 // Pass through operands which aren't fixed-length vectors. 5349 if (!V.getValueType().isFixedLengthVector()) { 5350 Ops.push_back(V); 5351 continue; 5352 } 5353 // "cast" fixed length vector to a scalable vector. 5354 MVT OpVT = V.getSimpleValueType(); 5355 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5356 assert(useRVVForFixedLengthVectorVT(OpVT) && 5357 "Only fixed length vectors are supported!"); 5358 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5359 } 5360 5361 if (!VT.isFixedLengthVector()) 5362 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5363 5364 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5365 5366 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5367 5368 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5369 } 5370 5371 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5372 // matched to a RVV indexed load. The RVV indexed load instructions only 5373 // support the "unsigned unscaled" addressing mode; indices are implicitly 5374 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5375 // signed or scaled indexing is extended to the XLEN value type and scaled 5376 // accordingly. 5377 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5378 SelectionDAG &DAG) const { 5379 SDLoc DL(Op); 5380 MVT VT = Op.getSimpleValueType(); 5381 5382 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5383 EVT MemVT = MemSD->getMemoryVT(); 5384 MachineMemOperand *MMO = MemSD->getMemOperand(); 5385 SDValue Chain = MemSD->getChain(); 5386 SDValue BasePtr = MemSD->getBasePtr(); 5387 5388 ISD::LoadExtType LoadExtType; 5389 SDValue Index, Mask, PassThru, VL; 5390 5391 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5392 Index = VPGN->getIndex(); 5393 Mask = VPGN->getMask(); 5394 PassThru = DAG.getUNDEF(VT); 5395 VL = VPGN->getVectorLength(); 5396 // VP doesn't support extending loads. 5397 LoadExtType = ISD::NON_EXTLOAD; 5398 } else { 5399 // Else it must be a MGATHER. 5400 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5401 Index = MGN->getIndex(); 5402 Mask = MGN->getMask(); 5403 PassThru = MGN->getPassThru(); 5404 LoadExtType = MGN->getExtensionType(); 5405 } 5406 5407 MVT IndexVT = Index.getSimpleValueType(); 5408 MVT XLenVT = Subtarget.getXLenVT(); 5409 5410 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5411 "Unexpected VTs!"); 5412 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5413 // Targets have to explicitly opt-in for extending vector loads. 5414 assert(LoadExtType == ISD::NON_EXTLOAD && 5415 "Unexpected extending MGATHER/VP_GATHER"); 5416 (void)LoadExtType; 5417 5418 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5419 // the selection of the masked intrinsics doesn't do this for us. 5420 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5421 5422 MVT ContainerVT = VT; 5423 if (VT.isFixedLengthVector()) { 5424 // We need to use the larger of the result and index type to determine the 5425 // scalable type to use so we don't increase LMUL for any operand/result. 5426 if (VT.bitsGE(IndexVT)) { 5427 ContainerVT = getContainerForFixedLengthVector(VT); 5428 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5429 ContainerVT.getVectorElementCount()); 5430 } else { 5431 IndexVT = getContainerForFixedLengthVector(IndexVT); 5432 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5433 IndexVT.getVectorElementCount()); 5434 } 5435 5436 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5437 5438 if (!IsUnmasked) { 5439 MVT MaskVT = 5440 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5441 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5442 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5443 } 5444 } 5445 5446 if (!VL) 5447 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5448 5449 unsigned IntID = 5450 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5451 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5452 if (!IsUnmasked) 5453 Ops.push_back(PassThru); 5454 Ops.push_back(BasePtr); 5455 Ops.push_back(Index); 5456 if (!IsUnmasked) 5457 Ops.push_back(Mask); 5458 Ops.push_back(VL); 5459 if (!IsUnmasked) 5460 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5461 5462 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5463 SDValue Result = 5464 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5465 Chain = Result.getValue(1); 5466 5467 if (VT.isFixedLengthVector()) 5468 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5469 5470 return DAG.getMergeValues({Result, Chain}, DL); 5471 } 5472 5473 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5474 // matched to a RVV indexed store. The RVV indexed store instructions only 5475 // support the "unsigned unscaled" addressing mode; indices are implicitly 5476 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5477 // signed or scaled indexing is extended to the XLEN value type and scaled 5478 // accordingly. 5479 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5480 SelectionDAG &DAG) const { 5481 SDLoc DL(Op); 5482 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5483 EVT MemVT = MemSD->getMemoryVT(); 5484 MachineMemOperand *MMO = MemSD->getMemOperand(); 5485 SDValue Chain = MemSD->getChain(); 5486 SDValue BasePtr = MemSD->getBasePtr(); 5487 5488 bool IsTruncatingStore = false; 5489 SDValue Index, Mask, Val, VL; 5490 5491 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5492 Index = VPSN->getIndex(); 5493 Mask = VPSN->getMask(); 5494 Val = VPSN->getValue(); 5495 VL = VPSN->getVectorLength(); 5496 // VP doesn't support truncating stores. 5497 IsTruncatingStore = false; 5498 } else { 5499 // Else it must be a MSCATTER. 5500 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5501 Index = MSN->getIndex(); 5502 Mask = MSN->getMask(); 5503 Val = MSN->getValue(); 5504 IsTruncatingStore = MSN->isTruncatingStore(); 5505 } 5506 5507 MVT VT = Val.getSimpleValueType(); 5508 MVT IndexVT = Index.getSimpleValueType(); 5509 MVT XLenVT = Subtarget.getXLenVT(); 5510 5511 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5512 "Unexpected VTs!"); 5513 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5514 // Targets have to explicitly opt-in for extending vector loads and 5515 // truncating vector stores. 5516 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5517 (void)IsTruncatingStore; 5518 5519 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5520 // the selection of the masked intrinsics doesn't do this for us. 5521 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5522 5523 MVT ContainerVT = VT; 5524 if (VT.isFixedLengthVector()) { 5525 // We need to use the larger of the value and index type to determine the 5526 // scalable type to use so we don't increase LMUL for any operand/result. 5527 if (VT.bitsGE(IndexVT)) { 5528 ContainerVT = getContainerForFixedLengthVector(VT); 5529 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5530 ContainerVT.getVectorElementCount()); 5531 } else { 5532 IndexVT = getContainerForFixedLengthVector(IndexVT); 5533 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5534 IndexVT.getVectorElementCount()); 5535 } 5536 5537 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5538 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5539 5540 if (!IsUnmasked) { 5541 MVT MaskVT = 5542 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5543 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5544 } 5545 } 5546 5547 if (!VL) 5548 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5549 5550 unsigned IntID = 5551 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5552 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5553 Ops.push_back(Val); 5554 Ops.push_back(BasePtr); 5555 Ops.push_back(Index); 5556 if (!IsUnmasked) 5557 Ops.push_back(Mask); 5558 Ops.push_back(VL); 5559 5560 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5561 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5562 } 5563 5564 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5565 SelectionDAG &DAG) const { 5566 const MVT XLenVT = Subtarget.getXLenVT(); 5567 SDLoc DL(Op); 5568 SDValue Chain = Op->getOperand(0); 5569 SDValue SysRegNo = DAG.getTargetConstant( 5570 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5571 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5572 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5573 5574 // Encoding used for rounding mode in RISCV differs from that used in 5575 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5576 // table, which consists of a sequence of 4-bit fields, each representing 5577 // corresponding FLT_ROUNDS mode. 5578 static const int Table = 5579 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5580 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5581 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5582 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5583 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5584 5585 SDValue Shift = 5586 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5587 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5588 DAG.getConstant(Table, DL, XLenVT), Shift); 5589 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5590 DAG.getConstant(7, DL, XLenVT)); 5591 5592 return DAG.getMergeValues({Masked, Chain}, DL); 5593 } 5594 5595 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5596 SelectionDAG &DAG) const { 5597 const MVT XLenVT = Subtarget.getXLenVT(); 5598 SDLoc DL(Op); 5599 SDValue Chain = Op->getOperand(0); 5600 SDValue RMValue = Op->getOperand(1); 5601 SDValue SysRegNo = DAG.getTargetConstant( 5602 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5603 5604 // Encoding used for rounding mode in RISCV differs from that used in 5605 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5606 // a table, which consists of a sequence of 4-bit fields, each representing 5607 // corresponding RISCV mode. 5608 static const unsigned Table = 5609 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5610 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5611 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5612 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5613 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5614 5615 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5616 DAG.getConstant(2, DL, XLenVT)); 5617 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5618 DAG.getConstant(Table, DL, XLenVT), Shift); 5619 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5620 DAG.getConstant(0x7, DL, XLenVT)); 5621 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5622 RMValue); 5623 } 5624 5625 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5626 // form of the given Opcode. 5627 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5628 switch (Opcode) { 5629 default: 5630 llvm_unreachable("Unexpected opcode"); 5631 case ISD::SHL: 5632 return RISCVISD::SLLW; 5633 case ISD::SRA: 5634 return RISCVISD::SRAW; 5635 case ISD::SRL: 5636 return RISCVISD::SRLW; 5637 case ISD::SDIV: 5638 return RISCVISD::DIVW; 5639 case ISD::UDIV: 5640 return RISCVISD::DIVUW; 5641 case ISD::UREM: 5642 return RISCVISD::REMUW; 5643 case ISD::ROTL: 5644 return RISCVISD::ROLW; 5645 case ISD::ROTR: 5646 return RISCVISD::RORW; 5647 case RISCVISD::GREV: 5648 return RISCVISD::GREVW; 5649 case RISCVISD::GORC: 5650 return RISCVISD::GORCW; 5651 } 5652 } 5653 5654 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5655 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5656 // otherwise be promoted to i64, making it difficult to select the 5657 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5658 // type i8/i16/i32 is lost. 5659 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5660 unsigned ExtOpc = ISD::ANY_EXTEND) { 5661 SDLoc DL(N); 5662 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5663 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5664 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5665 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5666 // ReplaceNodeResults requires we maintain the same type for the return value. 5667 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5668 } 5669 5670 // Converts the given 32-bit operation to a i64 operation with signed extension 5671 // semantic to reduce the signed extension instructions. 5672 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5673 SDLoc DL(N); 5674 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5675 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5676 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5677 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5678 DAG.getValueType(MVT::i32)); 5679 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5680 } 5681 5682 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5683 SmallVectorImpl<SDValue> &Results, 5684 SelectionDAG &DAG) const { 5685 SDLoc DL(N); 5686 switch (N->getOpcode()) { 5687 default: 5688 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5689 case ISD::STRICT_FP_TO_SINT: 5690 case ISD::STRICT_FP_TO_UINT: 5691 case ISD::FP_TO_SINT: 5692 case ISD::FP_TO_UINT: { 5693 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5694 "Unexpected custom legalisation"); 5695 bool IsStrict = N->isStrictFPOpcode(); 5696 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5697 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5698 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5699 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5700 TargetLowering::TypeSoftenFloat) { 5701 // FIXME: Support strict FP. 5702 if (IsStrict) 5703 return; 5704 if (!isTypeLegal(Op0.getValueType())) 5705 return; 5706 unsigned Opc = 5707 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5708 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5709 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5710 return; 5711 } 5712 // If the FP type needs to be softened, emit a library call using the 'si' 5713 // version. If we left it to default legalization we'd end up with 'di'. If 5714 // the FP type doesn't need to be softened just let generic type 5715 // legalization promote the result type. 5716 RTLIB::Libcall LC; 5717 if (IsSigned) 5718 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5719 else 5720 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5721 MakeLibCallOptions CallOptions; 5722 EVT OpVT = Op0.getValueType(); 5723 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5724 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5725 SDValue Result; 5726 std::tie(Result, Chain) = 5727 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5728 Results.push_back(Result); 5729 if (IsStrict) 5730 Results.push_back(Chain); 5731 break; 5732 } 5733 case ISD::READCYCLECOUNTER: { 5734 assert(!Subtarget.is64Bit() && 5735 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5736 5737 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5738 SDValue RCW = 5739 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5740 5741 Results.push_back( 5742 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5743 Results.push_back(RCW.getValue(2)); 5744 break; 5745 } 5746 case ISD::MUL: { 5747 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5748 unsigned XLen = Subtarget.getXLen(); 5749 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5750 if (Size > XLen) { 5751 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5752 SDValue LHS = N->getOperand(0); 5753 SDValue RHS = N->getOperand(1); 5754 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5755 5756 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5757 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5758 // We need exactly one side to be unsigned. 5759 if (LHSIsU == RHSIsU) 5760 return; 5761 5762 auto MakeMULPair = [&](SDValue S, SDValue U) { 5763 MVT XLenVT = Subtarget.getXLenVT(); 5764 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5765 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5766 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5767 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5768 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5769 }; 5770 5771 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5772 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5773 5774 // The other operand should be signed, but still prefer MULH when 5775 // possible. 5776 if (RHSIsU && LHSIsS && !RHSIsS) 5777 Results.push_back(MakeMULPair(LHS, RHS)); 5778 else if (LHSIsU && RHSIsS && !LHSIsS) 5779 Results.push_back(MakeMULPair(RHS, LHS)); 5780 5781 return; 5782 } 5783 LLVM_FALLTHROUGH; 5784 } 5785 case ISD::ADD: 5786 case ISD::SUB: 5787 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5788 "Unexpected custom legalisation"); 5789 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5790 break; 5791 case ISD::SHL: 5792 case ISD::SRA: 5793 case ISD::SRL: 5794 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5795 "Unexpected custom legalisation"); 5796 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5797 Results.push_back(customLegalizeToWOp(N, DAG)); 5798 break; 5799 } 5800 5801 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5802 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5803 // shift amount. 5804 if (N->getOpcode() == ISD::SHL) { 5805 SDLoc DL(N); 5806 SDValue NewOp0 = 5807 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5808 SDValue NewOp1 = 5809 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5810 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5811 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5812 DAG.getValueType(MVT::i32)); 5813 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5814 } 5815 5816 break; 5817 case ISD::ROTL: 5818 case ISD::ROTR: 5819 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5820 "Unexpected custom legalisation"); 5821 Results.push_back(customLegalizeToWOp(N, DAG)); 5822 break; 5823 case ISD::CTTZ: 5824 case ISD::CTTZ_ZERO_UNDEF: 5825 case ISD::CTLZ: 5826 case ISD::CTLZ_ZERO_UNDEF: { 5827 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5828 "Unexpected custom legalisation"); 5829 5830 SDValue NewOp0 = 5831 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5832 bool IsCTZ = 5833 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5834 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5835 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5836 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5837 return; 5838 } 5839 case ISD::SDIV: 5840 case ISD::UDIV: 5841 case ISD::UREM: { 5842 MVT VT = N->getSimpleValueType(0); 5843 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5844 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5845 "Unexpected custom legalisation"); 5846 // Don't promote division/remainder by constant since we should expand those 5847 // to multiply by magic constant. 5848 // FIXME: What if the expansion is disabled for minsize. 5849 if (N->getOperand(1).getOpcode() == ISD::Constant) 5850 return; 5851 5852 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5853 // the upper 32 bits. For other types we need to sign or zero extend 5854 // based on the opcode. 5855 unsigned ExtOpc = ISD::ANY_EXTEND; 5856 if (VT != MVT::i32) 5857 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5858 : ISD::ZERO_EXTEND; 5859 5860 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5861 break; 5862 } 5863 case ISD::UADDO: 5864 case ISD::USUBO: { 5865 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5866 "Unexpected custom legalisation"); 5867 bool IsAdd = N->getOpcode() == ISD::UADDO; 5868 // Create an ADDW or SUBW. 5869 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5870 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5871 SDValue Res = 5872 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5873 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5874 DAG.getValueType(MVT::i32)); 5875 5876 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5877 // Since the inputs are sign extended from i32, this is equivalent to 5878 // comparing the lower 32 bits. 5879 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5880 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5881 IsAdd ? ISD::SETULT : ISD::SETUGT); 5882 5883 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5884 Results.push_back(Overflow); 5885 return; 5886 } 5887 case ISD::UADDSAT: 5888 case ISD::USUBSAT: { 5889 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5890 "Unexpected custom legalisation"); 5891 if (Subtarget.hasStdExtZbb()) { 5892 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5893 // sign extend allows overflow of the lower 32 bits to be detected on 5894 // the promoted size. 5895 SDValue LHS = 5896 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5897 SDValue RHS = 5898 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5899 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5900 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5901 return; 5902 } 5903 5904 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5905 // promotion for UADDO/USUBO. 5906 Results.push_back(expandAddSubSat(N, DAG)); 5907 return; 5908 } 5909 case ISD::BITCAST: { 5910 EVT VT = N->getValueType(0); 5911 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5912 SDValue Op0 = N->getOperand(0); 5913 EVT Op0VT = Op0.getValueType(); 5914 MVT XLenVT = Subtarget.getXLenVT(); 5915 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5916 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5917 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5918 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5919 Subtarget.hasStdExtF()) { 5920 SDValue FPConv = 5921 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5922 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5923 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5924 isTypeLegal(Op0VT)) { 5925 // Custom-legalize bitcasts from fixed-length vector types to illegal 5926 // scalar types in order to improve codegen. Bitcast the vector to a 5927 // one-element vector type whose element type is the same as the result 5928 // type, and extract the first element. 5929 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 5930 if (isTypeLegal(BVT)) { 5931 SDValue BVec = DAG.getBitcast(BVT, Op0); 5932 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5933 DAG.getConstant(0, DL, XLenVT))); 5934 } 5935 } 5936 break; 5937 } 5938 case RISCVISD::GREV: 5939 case RISCVISD::GORC: { 5940 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5941 "Unexpected custom legalisation"); 5942 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5943 // This is similar to customLegalizeToWOp, except that we pass the second 5944 // operand (a TargetConstant) straight through: it is already of type 5945 // XLenVT. 5946 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5947 SDValue NewOp0 = 5948 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5949 SDValue NewOp1 = 5950 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5951 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5952 // ReplaceNodeResults requires we maintain the same type for the return 5953 // value. 5954 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5955 break; 5956 } 5957 case RISCVISD::SHFL: { 5958 // There is no SHFLIW instruction, but we can just promote the operation. 5959 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5960 "Unexpected custom legalisation"); 5961 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5962 SDValue NewOp0 = 5963 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5964 SDValue NewOp1 = 5965 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5966 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5967 // ReplaceNodeResults requires we maintain the same type for the return 5968 // value. 5969 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5970 break; 5971 } 5972 case ISD::BSWAP: 5973 case ISD::BITREVERSE: { 5974 MVT VT = N->getSimpleValueType(0); 5975 MVT XLenVT = Subtarget.getXLenVT(); 5976 assert((VT == MVT::i8 || VT == MVT::i16 || 5977 (VT == MVT::i32 && Subtarget.is64Bit())) && 5978 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5979 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5980 unsigned Imm = VT.getSizeInBits() - 1; 5981 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5982 if (N->getOpcode() == ISD::BSWAP) 5983 Imm &= ~0x7U; 5984 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5985 SDValue GREVI = 5986 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5987 // ReplaceNodeResults requires we maintain the same type for the return 5988 // value. 5989 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5990 break; 5991 } 5992 case ISD::FSHL: 5993 case ISD::FSHR: { 5994 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5995 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5996 SDValue NewOp0 = 5997 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5998 SDValue NewOp1 = 5999 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6000 SDValue NewOp2 = 6001 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6002 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6003 // Mask the shift amount to 5 bits. 6004 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6005 DAG.getConstant(0x1f, DL, MVT::i64)); 6006 unsigned Opc = 6007 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6008 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6009 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6010 break; 6011 } 6012 case ISD::EXTRACT_VECTOR_ELT: { 6013 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6014 // type is illegal (currently only vXi64 RV32). 6015 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6016 // transferred to the destination register. We issue two of these from the 6017 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6018 // first element. 6019 SDValue Vec = N->getOperand(0); 6020 SDValue Idx = N->getOperand(1); 6021 6022 // The vector type hasn't been legalized yet so we can't issue target 6023 // specific nodes if it needs legalization. 6024 // FIXME: We would manually legalize if it's important. 6025 if (!isTypeLegal(Vec.getValueType())) 6026 return; 6027 6028 MVT VecVT = Vec.getSimpleValueType(); 6029 6030 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6031 VecVT.getVectorElementType() == MVT::i64 && 6032 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6033 6034 // If this is a fixed vector, we need to convert it to a scalable vector. 6035 MVT ContainerVT = VecVT; 6036 if (VecVT.isFixedLengthVector()) { 6037 ContainerVT = getContainerForFixedLengthVector(VecVT); 6038 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6039 } 6040 6041 MVT XLenVT = Subtarget.getXLenVT(); 6042 6043 // Use a VL of 1 to avoid processing more elements than we need. 6044 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6045 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6046 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6047 6048 // Unless the index is known to be 0, we must slide the vector down to get 6049 // the desired element into index 0. 6050 if (!isNullConstant(Idx)) { 6051 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6052 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6053 } 6054 6055 // Extract the lower XLEN bits of the correct vector element. 6056 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6057 6058 // To extract the upper XLEN bits of the vector element, shift the first 6059 // element right by 32 bits and re-extract the lower XLEN bits. 6060 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6061 DAG.getConstant(32, DL, XLenVT), VL); 6062 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6063 ThirtyTwoV, Mask, VL); 6064 6065 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6066 6067 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6068 break; 6069 } 6070 case ISD::INTRINSIC_WO_CHAIN: { 6071 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6072 switch (IntNo) { 6073 default: 6074 llvm_unreachable( 6075 "Don't know how to custom type legalize this intrinsic!"); 6076 case Intrinsic::riscv_orc_b: { 6077 // Lower to the GORCI encoding for orc.b with the operand extended. 6078 SDValue NewOp = 6079 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6080 // If Zbp is enabled, use GORCIW which will sign extend the result. 6081 unsigned Opc = 6082 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6083 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6084 DAG.getConstant(7, DL, MVT::i64)); 6085 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6086 return; 6087 } 6088 case Intrinsic::riscv_grev: 6089 case Intrinsic::riscv_gorc: { 6090 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6091 "Unexpected custom legalisation"); 6092 SDValue NewOp1 = 6093 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6094 SDValue NewOp2 = 6095 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6096 unsigned Opc = 6097 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6098 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6099 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6100 break; 6101 } 6102 case Intrinsic::riscv_shfl: 6103 case Intrinsic::riscv_unshfl: { 6104 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6105 "Unexpected custom legalisation"); 6106 SDValue NewOp1 = 6107 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6108 SDValue NewOp2 = 6109 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6110 unsigned Opc = 6111 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6112 if (isa<ConstantSDNode>(N->getOperand(2))) { 6113 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6114 DAG.getConstant(0xf, DL, MVT::i64)); 6115 Opc = 6116 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6117 } 6118 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6119 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6120 break; 6121 } 6122 case Intrinsic::riscv_bcompress: 6123 case Intrinsic::riscv_bdecompress: { 6124 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6125 "Unexpected custom legalisation"); 6126 SDValue NewOp1 = 6127 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6128 SDValue NewOp2 = 6129 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6130 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6131 ? RISCVISD::BCOMPRESSW 6132 : RISCVISD::BDECOMPRESSW; 6133 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6134 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6135 break; 6136 } 6137 case Intrinsic::riscv_vmv_x_s: { 6138 EVT VT = N->getValueType(0); 6139 MVT XLenVT = Subtarget.getXLenVT(); 6140 if (VT.bitsLT(XLenVT)) { 6141 // Simple case just extract using vmv.x.s and truncate. 6142 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6143 Subtarget.getXLenVT(), N->getOperand(1)); 6144 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6145 return; 6146 } 6147 6148 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6149 "Unexpected custom legalization"); 6150 6151 // We need to do the move in two steps. 6152 SDValue Vec = N->getOperand(1); 6153 MVT VecVT = Vec.getSimpleValueType(); 6154 6155 // First extract the lower XLEN bits of the element. 6156 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6157 6158 // To extract the upper XLEN bits of the vector element, shift the first 6159 // element right by 32 bits and re-extract the lower XLEN bits. 6160 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6161 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6162 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6163 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6164 DAG.getConstant(32, DL, XLenVT), VL); 6165 SDValue LShr32 = 6166 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6167 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6168 6169 Results.push_back( 6170 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6171 break; 6172 } 6173 } 6174 break; 6175 } 6176 case ISD::VECREDUCE_ADD: 6177 case ISD::VECREDUCE_AND: 6178 case ISD::VECREDUCE_OR: 6179 case ISD::VECREDUCE_XOR: 6180 case ISD::VECREDUCE_SMAX: 6181 case ISD::VECREDUCE_UMAX: 6182 case ISD::VECREDUCE_SMIN: 6183 case ISD::VECREDUCE_UMIN: 6184 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6185 Results.push_back(V); 6186 break; 6187 case ISD::VP_REDUCE_ADD: 6188 case ISD::VP_REDUCE_AND: 6189 case ISD::VP_REDUCE_OR: 6190 case ISD::VP_REDUCE_XOR: 6191 case ISD::VP_REDUCE_SMAX: 6192 case ISD::VP_REDUCE_UMAX: 6193 case ISD::VP_REDUCE_SMIN: 6194 case ISD::VP_REDUCE_UMIN: 6195 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6196 Results.push_back(V); 6197 break; 6198 case ISD::FLT_ROUNDS_: { 6199 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6200 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6201 Results.push_back(Res.getValue(0)); 6202 Results.push_back(Res.getValue(1)); 6203 break; 6204 } 6205 } 6206 } 6207 6208 // A structure to hold one of the bit-manipulation patterns below. Together, a 6209 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6210 // (or (and (shl x, 1), 0xAAAAAAAA), 6211 // (and (srl x, 1), 0x55555555)) 6212 struct RISCVBitmanipPat { 6213 SDValue Op; 6214 unsigned ShAmt; 6215 bool IsSHL; 6216 6217 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6218 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6219 } 6220 }; 6221 6222 // Matches patterns of the form 6223 // (and (shl x, C2), (C1 << C2)) 6224 // (and (srl x, C2), C1) 6225 // (shl (and x, C1), C2) 6226 // (srl (and x, (C1 << C2)), C2) 6227 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6228 // The expected masks for each shift amount are specified in BitmanipMasks where 6229 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6230 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6231 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6232 // XLen is 64. 6233 static Optional<RISCVBitmanipPat> 6234 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6235 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6236 "Unexpected number of masks"); 6237 Optional<uint64_t> Mask; 6238 // Optionally consume a mask around the shift operation. 6239 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6240 Mask = Op.getConstantOperandVal(1); 6241 Op = Op.getOperand(0); 6242 } 6243 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6244 return None; 6245 bool IsSHL = Op.getOpcode() == ISD::SHL; 6246 6247 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6248 return None; 6249 uint64_t ShAmt = Op.getConstantOperandVal(1); 6250 6251 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6252 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6253 return None; 6254 // If we don't have enough masks for 64 bit, then we must be trying to 6255 // match SHFL so we're only allowed to shift 1/4 of the width. 6256 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6257 return None; 6258 6259 SDValue Src = Op.getOperand(0); 6260 6261 // The expected mask is shifted left when the AND is found around SHL 6262 // patterns. 6263 // ((x >> 1) & 0x55555555) 6264 // ((x << 1) & 0xAAAAAAAA) 6265 bool SHLExpMask = IsSHL; 6266 6267 if (!Mask) { 6268 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6269 // the mask is all ones: consume that now. 6270 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6271 Mask = Src.getConstantOperandVal(1); 6272 Src = Src.getOperand(0); 6273 // The expected mask is now in fact shifted left for SRL, so reverse the 6274 // decision. 6275 // ((x & 0xAAAAAAAA) >> 1) 6276 // ((x & 0x55555555) << 1) 6277 SHLExpMask = !SHLExpMask; 6278 } else { 6279 // Use a default shifted mask of all-ones if there's no AND, truncated 6280 // down to the expected width. This simplifies the logic later on. 6281 Mask = maskTrailingOnes<uint64_t>(Width); 6282 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6283 } 6284 } 6285 6286 unsigned MaskIdx = Log2_32(ShAmt); 6287 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6288 6289 if (SHLExpMask) 6290 ExpMask <<= ShAmt; 6291 6292 if (Mask != ExpMask) 6293 return None; 6294 6295 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6296 } 6297 6298 // Matches any of the following bit-manipulation patterns: 6299 // (and (shl x, 1), (0x55555555 << 1)) 6300 // (and (srl x, 1), 0x55555555) 6301 // (shl (and x, 0x55555555), 1) 6302 // (srl (and x, (0x55555555 << 1)), 1) 6303 // where the shift amount and mask may vary thus: 6304 // [1] = 0x55555555 / 0xAAAAAAAA 6305 // [2] = 0x33333333 / 0xCCCCCCCC 6306 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6307 // [8] = 0x00FF00FF / 0xFF00FF00 6308 // [16] = 0x0000FFFF / 0xFFFFFFFF 6309 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6310 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6311 // These are the unshifted masks which we use to match bit-manipulation 6312 // patterns. They may be shifted left in certain circumstances. 6313 static const uint64_t BitmanipMasks[] = { 6314 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6315 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6316 6317 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6318 } 6319 6320 // Match the following pattern as a GREVI(W) operation 6321 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6322 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6323 const RISCVSubtarget &Subtarget) { 6324 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6325 EVT VT = Op.getValueType(); 6326 6327 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6328 auto LHS = matchGREVIPat(Op.getOperand(0)); 6329 auto RHS = matchGREVIPat(Op.getOperand(1)); 6330 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6331 SDLoc DL(Op); 6332 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6333 DAG.getConstant(LHS->ShAmt, DL, VT)); 6334 } 6335 } 6336 return SDValue(); 6337 } 6338 6339 // Matches any the following pattern as a GORCI(W) operation 6340 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6341 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6342 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6343 // Note that with the variant of 3., 6344 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6345 // the inner pattern will first be matched as GREVI and then the outer 6346 // pattern will be matched to GORC via the first rule above. 6347 // 4. (or (rotl/rotr x, bitwidth/2), x) 6348 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6349 const RISCVSubtarget &Subtarget) { 6350 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6351 EVT VT = Op.getValueType(); 6352 6353 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6354 SDLoc DL(Op); 6355 SDValue Op0 = Op.getOperand(0); 6356 SDValue Op1 = Op.getOperand(1); 6357 6358 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6359 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6360 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6361 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6362 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6363 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6364 if ((Reverse.getOpcode() == ISD::ROTL || 6365 Reverse.getOpcode() == ISD::ROTR) && 6366 Reverse.getOperand(0) == X && 6367 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6368 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6369 if (RotAmt == (VT.getSizeInBits() / 2)) 6370 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6371 DAG.getConstant(RotAmt, DL, VT)); 6372 } 6373 return SDValue(); 6374 }; 6375 6376 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6377 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6378 return V; 6379 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6380 return V; 6381 6382 // OR is commutable so canonicalize its OR operand to the left 6383 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6384 std::swap(Op0, Op1); 6385 if (Op0.getOpcode() != ISD::OR) 6386 return SDValue(); 6387 SDValue OrOp0 = Op0.getOperand(0); 6388 SDValue OrOp1 = Op0.getOperand(1); 6389 auto LHS = matchGREVIPat(OrOp0); 6390 // OR is commutable so swap the operands and try again: x might have been 6391 // on the left 6392 if (!LHS) { 6393 std::swap(OrOp0, OrOp1); 6394 LHS = matchGREVIPat(OrOp0); 6395 } 6396 auto RHS = matchGREVIPat(Op1); 6397 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6398 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6399 DAG.getConstant(LHS->ShAmt, DL, VT)); 6400 } 6401 } 6402 return SDValue(); 6403 } 6404 6405 // Matches any of the following bit-manipulation patterns: 6406 // (and (shl x, 1), (0x22222222 << 1)) 6407 // (and (srl x, 1), 0x22222222) 6408 // (shl (and x, 0x22222222), 1) 6409 // (srl (and x, (0x22222222 << 1)), 1) 6410 // where the shift amount and mask may vary thus: 6411 // [1] = 0x22222222 / 0x44444444 6412 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6413 // [4] = 0x00F000F0 / 0x0F000F00 6414 // [8] = 0x0000FF00 / 0x00FF0000 6415 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6416 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6417 // These are the unshifted masks which we use to match bit-manipulation 6418 // patterns. They may be shifted left in certain circumstances. 6419 static const uint64_t BitmanipMasks[] = { 6420 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6421 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6422 6423 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6424 } 6425 6426 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6427 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6428 const RISCVSubtarget &Subtarget) { 6429 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6430 EVT VT = Op.getValueType(); 6431 6432 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6433 return SDValue(); 6434 6435 SDValue Op0 = Op.getOperand(0); 6436 SDValue Op1 = Op.getOperand(1); 6437 6438 // Or is commutable so canonicalize the second OR to the LHS. 6439 if (Op0.getOpcode() != ISD::OR) 6440 std::swap(Op0, Op1); 6441 if (Op0.getOpcode() != ISD::OR) 6442 return SDValue(); 6443 6444 // We found an inner OR, so our operands are the operands of the inner OR 6445 // and the other operand of the outer OR. 6446 SDValue A = Op0.getOperand(0); 6447 SDValue B = Op0.getOperand(1); 6448 SDValue C = Op1; 6449 6450 auto Match1 = matchSHFLPat(A); 6451 auto Match2 = matchSHFLPat(B); 6452 6453 // If neither matched, we failed. 6454 if (!Match1 && !Match2) 6455 return SDValue(); 6456 6457 // We had at least one match. if one failed, try the remaining C operand. 6458 if (!Match1) { 6459 std::swap(A, C); 6460 Match1 = matchSHFLPat(A); 6461 if (!Match1) 6462 return SDValue(); 6463 } else if (!Match2) { 6464 std::swap(B, C); 6465 Match2 = matchSHFLPat(B); 6466 if (!Match2) 6467 return SDValue(); 6468 } 6469 assert(Match1 && Match2); 6470 6471 // Make sure our matches pair up. 6472 if (!Match1->formsPairWith(*Match2)) 6473 return SDValue(); 6474 6475 // All the remains is to make sure C is an AND with the same input, that masks 6476 // out the bits that are being shuffled. 6477 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6478 C.getOperand(0) != Match1->Op) 6479 return SDValue(); 6480 6481 uint64_t Mask = C.getConstantOperandVal(1); 6482 6483 static const uint64_t BitmanipMasks[] = { 6484 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6485 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6486 }; 6487 6488 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6489 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6490 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6491 6492 if (Mask != ExpMask) 6493 return SDValue(); 6494 6495 SDLoc DL(Op); 6496 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6497 DAG.getConstant(Match1->ShAmt, DL, VT)); 6498 } 6499 6500 // Optimize (add (shl x, c0), (shl y, c1)) -> 6501 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6502 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6503 const RISCVSubtarget &Subtarget) { 6504 // Perform this optimization only in the zba extension. 6505 if (!Subtarget.hasStdExtZba()) 6506 return SDValue(); 6507 6508 // Skip for vector types and larger types. 6509 EVT VT = N->getValueType(0); 6510 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6511 return SDValue(); 6512 6513 // The two operand nodes must be SHL and have no other use. 6514 SDValue N0 = N->getOperand(0); 6515 SDValue N1 = N->getOperand(1); 6516 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6517 !N0->hasOneUse() || !N1->hasOneUse()) 6518 return SDValue(); 6519 6520 // Check c0 and c1. 6521 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6522 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6523 if (!N0C || !N1C) 6524 return SDValue(); 6525 int64_t C0 = N0C->getSExtValue(); 6526 int64_t C1 = N1C->getSExtValue(); 6527 if (C0 <= 0 || C1 <= 0) 6528 return SDValue(); 6529 6530 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6531 int64_t Bits = std::min(C0, C1); 6532 int64_t Diff = std::abs(C0 - C1); 6533 if (Diff != 1 && Diff != 2 && Diff != 3) 6534 return SDValue(); 6535 6536 // Build nodes. 6537 SDLoc DL(N); 6538 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6539 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6540 SDValue NA0 = 6541 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6542 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6543 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6544 } 6545 6546 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6547 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6548 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6549 // not undo itself, but they are redundant. 6550 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6551 SDValue Src = N->getOperand(0); 6552 6553 if (Src.getOpcode() != N->getOpcode()) 6554 return SDValue(); 6555 6556 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6557 !isa<ConstantSDNode>(Src.getOperand(1))) 6558 return SDValue(); 6559 6560 unsigned ShAmt1 = N->getConstantOperandVal(1); 6561 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6562 Src = Src.getOperand(0); 6563 6564 unsigned CombinedShAmt; 6565 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6566 CombinedShAmt = ShAmt1 | ShAmt2; 6567 else 6568 CombinedShAmt = ShAmt1 ^ ShAmt2; 6569 6570 if (CombinedShAmt == 0) 6571 return Src; 6572 6573 SDLoc DL(N); 6574 return DAG.getNode( 6575 N->getOpcode(), DL, N->getValueType(0), Src, 6576 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6577 } 6578 6579 // Combine a constant select operand into its use: 6580 // 6581 // (and (select cond, -1, c), x) 6582 // -> (select cond, x, (and x, c)) [AllOnes=1] 6583 // (or (select cond, 0, c), x) 6584 // -> (select cond, x, (or x, c)) [AllOnes=0] 6585 // (xor (select cond, 0, c), x) 6586 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6587 // (add (select cond, 0, c), x) 6588 // -> (select cond, x, (add x, c)) [AllOnes=0] 6589 // (sub x, (select cond, 0, c)) 6590 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6591 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6592 SelectionDAG &DAG, bool AllOnes) { 6593 EVT VT = N->getValueType(0); 6594 6595 // Skip vectors. 6596 if (VT.isVector()) 6597 return SDValue(); 6598 6599 if ((Slct.getOpcode() != ISD::SELECT && 6600 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6601 !Slct.hasOneUse()) 6602 return SDValue(); 6603 6604 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6605 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6606 }; 6607 6608 bool SwapSelectOps; 6609 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6610 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6611 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6612 SDValue NonConstantVal; 6613 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6614 SwapSelectOps = false; 6615 NonConstantVal = FalseVal; 6616 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6617 SwapSelectOps = true; 6618 NonConstantVal = TrueVal; 6619 } else 6620 return SDValue(); 6621 6622 // Slct is now know to be the desired identity constant when CC is true. 6623 TrueVal = OtherOp; 6624 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6625 // Unless SwapSelectOps says the condition should be false. 6626 if (SwapSelectOps) 6627 std::swap(TrueVal, FalseVal); 6628 6629 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6630 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6631 {Slct.getOperand(0), Slct.getOperand(1), 6632 Slct.getOperand(2), TrueVal, FalseVal}); 6633 6634 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6635 {Slct.getOperand(0), TrueVal, FalseVal}); 6636 } 6637 6638 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6639 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6640 bool AllOnes) { 6641 SDValue N0 = N->getOperand(0); 6642 SDValue N1 = N->getOperand(1); 6643 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6644 return Result; 6645 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6646 return Result; 6647 return SDValue(); 6648 } 6649 6650 // Transform (add (mul x, c0), c1) -> 6651 // (add (mul (add x, c1/c0), c0), c1%c0). 6652 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6653 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6654 // to an infinite loop in DAGCombine if transformed. 6655 // Or transform (add (mul x, c0), c1) -> 6656 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6657 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6658 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6659 // lead to an infinite loop in DAGCombine if transformed. 6660 // Or transform (add (mul x, c0), c1) -> 6661 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6662 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6663 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6664 // lead to an infinite loop in DAGCombine if transformed. 6665 // Or transform (add (mul x, c0), c1) -> 6666 // (mul (add x, c1/c0), c0). 6667 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6668 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6669 const RISCVSubtarget &Subtarget) { 6670 // Skip for vector types and larger types. 6671 EVT VT = N->getValueType(0); 6672 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6673 return SDValue(); 6674 // The first operand node must be a MUL and has no other use. 6675 SDValue N0 = N->getOperand(0); 6676 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6677 return SDValue(); 6678 // Check if c0 and c1 match above conditions. 6679 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6680 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6681 if (!N0C || !N1C) 6682 return SDValue(); 6683 int64_t C0 = N0C->getSExtValue(); 6684 int64_t C1 = N1C->getSExtValue(); 6685 int64_t CA, CB; 6686 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6687 return SDValue(); 6688 // Search for proper CA (non-zero) and CB that both are simm12. 6689 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6690 !isInt<12>(C0 * (C1 / C0))) { 6691 CA = C1 / C0; 6692 CB = C1 % C0; 6693 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6694 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6695 CA = C1 / C0 + 1; 6696 CB = C1 % C0 - C0; 6697 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6698 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6699 CA = C1 / C0 - 1; 6700 CB = C1 % C0 + C0; 6701 } else 6702 return SDValue(); 6703 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6704 SDLoc DL(N); 6705 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6706 DAG.getConstant(CA, DL, VT)); 6707 SDValue New1 = 6708 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6709 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6710 } 6711 6712 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6713 const RISCVSubtarget &Subtarget) { 6714 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6715 return V; 6716 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6717 return V; 6718 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6719 // (select lhs, rhs, cc, x, (add x, y)) 6720 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6721 } 6722 6723 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6724 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6725 // (select lhs, rhs, cc, x, (sub x, y)) 6726 SDValue N0 = N->getOperand(0); 6727 SDValue N1 = N->getOperand(1); 6728 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6729 } 6730 6731 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6732 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6733 // (select lhs, rhs, cc, x, (and x, y)) 6734 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6735 } 6736 6737 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6738 const RISCVSubtarget &Subtarget) { 6739 if (Subtarget.hasStdExtZbp()) { 6740 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6741 return GREV; 6742 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6743 return GORC; 6744 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6745 return SHFL; 6746 } 6747 6748 // fold (or (select cond, 0, y), x) -> 6749 // (select cond, x, (or x, y)) 6750 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6751 } 6752 6753 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6754 // fold (xor (select cond, 0, y), x) -> 6755 // (select cond, x, (xor x, y)) 6756 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6757 } 6758 6759 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6760 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6761 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6762 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6763 // ADDW/SUBW/MULW. 6764 static SDValue performANY_EXTENDCombine(SDNode *N, 6765 TargetLowering::DAGCombinerInfo &DCI, 6766 const RISCVSubtarget &Subtarget) { 6767 if (!Subtarget.is64Bit()) 6768 return SDValue(); 6769 6770 SelectionDAG &DAG = DCI.DAG; 6771 6772 SDValue Src = N->getOperand(0); 6773 EVT VT = N->getValueType(0); 6774 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6775 return SDValue(); 6776 6777 // The opcode must be one that can implicitly sign_extend. 6778 // FIXME: Additional opcodes. 6779 switch (Src.getOpcode()) { 6780 default: 6781 return SDValue(); 6782 case ISD::MUL: 6783 if (!Subtarget.hasStdExtM()) 6784 return SDValue(); 6785 LLVM_FALLTHROUGH; 6786 case ISD::ADD: 6787 case ISD::SUB: 6788 break; 6789 } 6790 6791 // Only handle cases where the result is used by a CopyToReg. That likely 6792 // means the value is a liveout of the basic block. This helps prevent 6793 // infinite combine loops like PR51206. 6794 if (none_of(N->uses(), 6795 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6796 return SDValue(); 6797 6798 SmallVector<SDNode *, 4> SetCCs; 6799 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6800 UE = Src.getNode()->use_end(); 6801 UI != UE; ++UI) { 6802 SDNode *User = *UI; 6803 if (User == N) 6804 continue; 6805 if (UI.getUse().getResNo() != Src.getResNo()) 6806 continue; 6807 // All i32 setccs are legalized by sign extending operands. 6808 if (User->getOpcode() == ISD::SETCC) { 6809 SetCCs.push_back(User); 6810 continue; 6811 } 6812 // We don't know if we can extend this user. 6813 break; 6814 } 6815 6816 // If we don't have any SetCCs, this isn't worthwhile. 6817 if (SetCCs.empty()) 6818 return SDValue(); 6819 6820 SDLoc DL(N); 6821 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6822 DCI.CombineTo(N, SExt); 6823 6824 // Promote all the setccs. 6825 for (SDNode *SetCC : SetCCs) { 6826 SmallVector<SDValue, 4> Ops; 6827 6828 for (unsigned j = 0; j != 2; ++j) { 6829 SDValue SOp = SetCC->getOperand(j); 6830 if (SOp == Src) 6831 Ops.push_back(SExt); 6832 else 6833 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6834 } 6835 6836 Ops.push_back(SetCC->getOperand(2)); 6837 DCI.CombineTo(SetCC, 6838 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6839 } 6840 return SDValue(N, 0); 6841 } 6842 6843 // Try to form VWMUL or VWMULU. 6844 // FIXME: Support VWMULSU. 6845 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6846 SelectionDAG &DAG) { 6847 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6848 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6849 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6850 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6851 return SDValue(); 6852 6853 SDValue Mask = N->getOperand(2); 6854 SDValue VL = N->getOperand(3); 6855 6856 // Make sure the mask and VL match. 6857 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6858 return SDValue(); 6859 6860 MVT VT = N->getSimpleValueType(0); 6861 6862 // Determine the narrow size for a widening multiply. 6863 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6864 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6865 VT.getVectorElementCount()); 6866 6867 SDLoc DL(N); 6868 6869 // See if the other operand is the same opcode. 6870 if (Op0.getOpcode() == Op1.getOpcode()) { 6871 if (!Op1.hasOneUse()) 6872 return SDValue(); 6873 6874 // Make sure the mask and VL match. 6875 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6876 return SDValue(); 6877 6878 Op1 = Op1.getOperand(0); 6879 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6880 // The operand is a splat of a scalar. 6881 6882 // The VL must be the same. 6883 if (Op1.getOperand(1) != VL) 6884 return SDValue(); 6885 6886 // Get the scalar value. 6887 Op1 = Op1.getOperand(0); 6888 6889 // See if have enough sign bits or zero bits in the scalar to use a 6890 // widening multiply by splatting to smaller element size. 6891 unsigned EltBits = VT.getScalarSizeInBits(); 6892 unsigned ScalarBits = Op1.getValueSizeInBits(); 6893 // Make sure we're getting all element bits from the scalar register. 6894 // FIXME: Support implicit sign extension of vmv.v.x? 6895 if (ScalarBits < EltBits) 6896 return SDValue(); 6897 6898 if (IsSignExt) { 6899 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6900 return SDValue(); 6901 } else { 6902 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6903 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6904 return SDValue(); 6905 } 6906 6907 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6908 } else 6909 return SDValue(); 6910 6911 Op0 = Op0.getOperand(0); 6912 6913 // Re-introduce narrower extends if needed. 6914 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6915 if (Op0.getValueType() != NarrowVT) 6916 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6917 if (Op1.getValueType() != NarrowVT) 6918 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6919 6920 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6921 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6922 } 6923 6924 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6925 DAGCombinerInfo &DCI) const { 6926 SelectionDAG &DAG = DCI.DAG; 6927 6928 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6929 // bits are demanded. N will be added to the Worklist if it was not deleted. 6930 // Caller should return SDValue(N, 0) if this returns true. 6931 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6932 SDValue Op = N->getOperand(OpNo); 6933 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6934 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6935 return false; 6936 6937 if (N->getOpcode() != ISD::DELETED_NODE) 6938 DCI.AddToWorklist(N); 6939 return true; 6940 }; 6941 6942 switch (N->getOpcode()) { 6943 default: 6944 break; 6945 case RISCVISD::SplitF64: { 6946 SDValue Op0 = N->getOperand(0); 6947 // If the input to SplitF64 is just BuildPairF64 then the operation is 6948 // redundant. Instead, use BuildPairF64's operands directly. 6949 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6950 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6951 6952 SDLoc DL(N); 6953 6954 // It's cheaper to materialise two 32-bit integers than to load a double 6955 // from the constant pool and transfer it to integer registers through the 6956 // stack. 6957 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6958 APInt V = C->getValueAPF().bitcastToAPInt(); 6959 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6960 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6961 return DCI.CombineTo(N, Lo, Hi); 6962 } 6963 6964 // This is a target-specific version of a DAGCombine performed in 6965 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6966 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6967 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6968 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6969 !Op0.getNode()->hasOneUse()) 6970 break; 6971 SDValue NewSplitF64 = 6972 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6973 Op0.getOperand(0)); 6974 SDValue Lo = NewSplitF64.getValue(0); 6975 SDValue Hi = NewSplitF64.getValue(1); 6976 APInt SignBit = APInt::getSignMask(32); 6977 if (Op0.getOpcode() == ISD::FNEG) { 6978 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6979 DAG.getConstant(SignBit, DL, MVT::i32)); 6980 return DCI.CombineTo(N, Lo, NewHi); 6981 } 6982 assert(Op0.getOpcode() == ISD::FABS); 6983 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6984 DAG.getConstant(~SignBit, DL, MVT::i32)); 6985 return DCI.CombineTo(N, Lo, NewHi); 6986 } 6987 case RISCVISD::SLLW: 6988 case RISCVISD::SRAW: 6989 case RISCVISD::SRLW: 6990 case RISCVISD::ROLW: 6991 case RISCVISD::RORW: { 6992 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6993 if (SimplifyDemandedLowBitsHelper(0, 32) || 6994 SimplifyDemandedLowBitsHelper(1, 5)) 6995 return SDValue(N, 0); 6996 break; 6997 } 6998 case RISCVISD::CLZW: 6999 case RISCVISD::CTZW: { 7000 // Only the lower 32 bits of the first operand are read 7001 if (SimplifyDemandedLowBitsHelper(0, 32)) 7002 return SDValue(N, 0); 7003 break; 7004 } 7005 case RISCVISD::FSL: 7006 case RISCVISD::FSR: { 7007 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7008 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7009 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7010 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7011 return SDValue(N, 0); 7012 break; 7013 } 7014 case RISCVISD::FSLW: 7015 case RISCVISD::FSRW: { 7016 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7017 // read. 7018 if (SimplifyDemandedLowBitsHelper(0, 32) || 7019 SimplifyDemandedLowBitsHelper(1, 32) || 7020 SimplifyDemandedLowBitsHelper(2, 6)) 7021 return SDValue(N, 0); 7022 break; 7023 } 7024 case RISCVISD::GREV: 7025 case RISCVISD::GORC: { 7026 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7027 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7028 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7029 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7030 return SDValue(N, 0); 7031 7032 return combineGREVI_GORCI(N, DCI.DAG); 7033 } 7034 case RISCVISD::GREVW: 7035 case RISCVISD::GORCW: { 7036 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7037 if (SimplifyDemandedLowBitsHelper(0, 32) || 7038 SimplifyDemandedLowBitsHelper(1, 5)) 7039 return SDValue(N, 0); 7040 7041 return combineGREVI_GORCI(N, DCI.DAG); 7042 } 7043 case RISCVISD::SHFL: 7044 case RISCVISD::UNSHFL: { 7045 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7046 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7047 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7048 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7049 return SDValue(N, 0); 7050 7051 break; 7052 } 7053 case RISCVISD::SHFLW: 7054 case RISCVISD::UNSHFLW: { 7055 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7056 SDValue LHS = N->getOperand(0); 7057 SDValue RHS = N->getOperand(1); 7058 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7059 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7060 if (SimplifyDemandedLowBitsHelper(0, 32) || 7061 SimplifyDemandedLowBitsHelper(1, 4)) 7062 return SDValue(N, 0); 7063 7064 break; 7065 } 7066 case RISCVISD::BCOMPRESSW: 7067 case RISCVISD::BDECOMPRESSW: { 7068 // Only the lower 32 bits of LHS and RHS are read. 7069 if (SimplifyDemandedLowBitsHelper(0, 32) || 7070 SimplifyDemandedLowBitsHelper(1, 32)) 7071 return SDValue(N, 0); 7072 7073 break; 7074 } 7075 case RISCVISD::FMV_X_ANYEXTH: 7076 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7077 SDLoc DL(N); 7078 SDValue Op0 = N->getOperand(0); 7079 MVT VT = N->getSimpleValueType(0); 7080 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7081 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7082 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7083 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7084 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7085 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7086 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7087 assert(Op0.getOperand(0).getValueType() == VT && 7088 "Unexpected value type!"); 7089 return Op0.getOperand(0); 7090 } 7091 7092 // This is a target-specific version of a DAGCombine performed in 7093 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7094 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7095 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7096 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7097 !Op0.getNode()->hasOneUse()) 7098 break; 7099 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7100 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7101 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7102 if (Op0.getOpcode() == ISD::FNEG) 7103 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7104 DAG.getConstant(SignBit, DL, VT)); 7105 7106 assert(Op0.getOpcode() == ISD::FABS); 7107 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7108 DAG.getConstant(~SignBit, DL, VT)); 7109 } 7110 case ISD::ADD: 7111 return performADDCombine(N, DAG, Subtarget); 7112 case ISD::SUB: 7113 return performSUBCombine(N, DAG); 7114 case ISD::AND: 7115 return performANDCombine(N, DAG); 7116 case ISD::OR: 7117 return performORCombine(N, DAG, Subtarget); 7118 case ISD::XOR: 7119 return performXORCombine(N, DAG); 7120 case ISD::ANY_EXTEND: 7121 return performANY_EXTENDCombine(N, DCI, Subtarget); 7122 case ISD::ZERO_EXTEND: 7123 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7124 // type legalization. This is safe because fp_to_uint produces poison if 7125 // it overflows. 7126 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 7127 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 7128 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 7129 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7130 N->getOperand(0).getOperand(0)); 7131 return SDValue(); 7132 case RISCVISD::SELECT_CC: { 7133 // Transform 7134 SDValue LHS = N->getOperand(0); 7135 SDValue RHS = N->getOperand(1); 7136 SDValue TrueV = N->getOperand(3); 7137 SDValue FalseV = N->getOperand(4); 7138 7139 // If the True and False values are the same, we don't need a select_cc. 7140 if (TrueV == FalseV) 7141 return TrueV; 7142 7143 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7144 if (!ISD::isIntEqualitySetCC(CCVal)) 7145 break; 7146 7147 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7148 // (select_cc X, Y, lt, trueV, falseV) 7149 // Sometimes the setcc is introduced after select_cc has been formed. 7150 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7151 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7152 // If we're looking for eq 0 instead of ne 0, we need to invert the 7153 // condition. 7154 bool Invert = CCVal == ISD::SETEQ; 7155 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7156 if (Invert) 7157 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7158 7159 SDLoc DL(N); 7160 RHS = LHS.getOperand(1); 7161 LHS = LHS.getOperand(0); 7162 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7163 7164 SDValue TargetCC = DAG.getCondCode(CCVal); 7165 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7166 {LHS, RHS, TargetCC, TrueV, FalseV}); 7167 } 7168 7169 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7170 // (select_cc X, Y, eq/ne, trueV, falseV) 7171 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7172 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7173 {LHS.getOperand(0), LHS.getOperand(1), 7174 N->getOperand(2), TrueV, FalseV}); 7175 // (select_cc X, 1, setne, trueV, falseV) -> 7176 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7177 // This can occur when legalizing some floating point comparisons. 7178 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7179 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7180 SDLoc DL(N); 7181 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7182 SDValue TargetCC = DAG.getCondCode(CCVal); 7183 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7184 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7185 {LHS, RHS, TargetCC, TrueV, FalseV}); 7186 } 7187 7188 break; 7189 } 7190 case RISCVISD::BR_CC: { 7191 SDValue LHS = N->getOperand(1); 7192 SDValue RHS = N->getOperand(2); 7193 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7194 if (!ISD::isIntEqualitySetCC(CCVal)) 7195 break; 7196 7197 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7198 // (br_cc X, Y, lt, dest) 7199 // Sometimes the setcc is introduced after br_cc has been formed. 7200 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7201 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7202 // If we're looking for eq 0 instead of ne 0, we need to invert the 7203 // condition. 7204 bool Invert = CCVal == ISD::SETEQ; 7205 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7206 if (Invert) 7207 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7208 7209 SDLoc DL(N); 7210 RHS = LHS.getOperand(1); 7211 LHS = LHS.getOperand(0); 7212 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7213 7214 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7215 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7216 N->getOperand(4)); 7217 } 7218 7219 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7220 // (br_cc X, Y, eq/ne, trueV, falseV) 7221 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7222 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7223 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7224 N->getOperand(3), N->getOperand(4)); 7225 7226 // (br_cc X, 1, setne, br_cc) -> 7227 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7228 // This can occur when legalizing some floating point comparisons. 7229 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7230 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7231 SDLoc DL(N); 7232 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7233 SDValue TargetCC = DAG.getCondCode(CCVal); 7234 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7235 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7236 N->getOperand(0), LHS, RHS, TargetCC, 7237 N->getOperand(4)); 7238 } 7239 break; 7240 } 7241 case ISD::FCOPYSIGN: { 7242 EVT VT = N->getValueType(0); 7243 if (!VT.isVector()) 7244 break; 7245 // There is a form of VFSGNJ which injects the negated sign of its second 7246 // operand. Try and bubble any FNEG up after the extend/round to produce 7247 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7248 // TRUNC=1. 7249 SDValue In2 = N->getOperand(1); 7250 // Avoid cases where the extend/round has multiple uses, as duplicating 7251 // those is typically more expensive than removing a fneg. 7252 if (!In2.hasOneUse()) 7253 break; 7254 if (In2.getOpcode() != ISD::FP_EXTEND && 7255 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7256 break; 7257 In2 = In2.getOperand(0); 7258 if (In2.getOpcode() != ISD::FNEG) 7259 break; 7260 SDLoc DL(N); 7261 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7262 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7263 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7264 } 7265 case ISD::MGATHER: 7266 case ISD::MSCATTER: 7267 case ISD::VP_GATHER: 7268 case ISD::VP_SCATTER: { 7269 if (!DCI.isBeforeLegalize()) 7270 break; 7271 SDValue Index, ScaleOp; 7272 bool IsIndexScaled = false; 7273 bool IsIndexSigned = false; 7274 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7275 Index = VPGSN->getIndex(); 7276 ScaleOp = VPGSN->getScale(); 7277 IsIndexScaled = VPGSN->isIndexScaled(); 7278 IsIndexSigned = VPGSN->isIndexSigned(); 7279 } else { 7280 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7281 Index = MGSN->getIndex(); 7282 ScaleOp = MGSN->getScale(); 7283 IsIndexScaled = MGSN->isIndexScaled(); 7284 IsIndexSigned = MGSN->isIndexSigned(); 7285 } 7286 EVT IndexVT = Index.getValueType(); 7287 MVT XLenVT = Subtarget.getXLenVT(); 7288 // RISCV indexed loads only support the "unsigned unscaled" addressing 7289 // mode, so anything else must be manually legalized. 7290 bool NeedsIdxLegalization = 7291 IsIndexScaled || 7292 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7293 if (!NeedsIdxLegalization) 7294 break; 7295 7296 SDLoc DL(N); 7297 7298 // Any index legalization should first promote to XLenVT, so we don't lose 7299 // bits when scaling. This may create an illegal index type so we let 7300 // LLVM's legalization take care of the splitting. 7301 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7302 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7303 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7304 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7305 DL, IndexVT, Index); 7306 } 7307 7308 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7309 if (IsIndexScaled && Scale != 1) { 7310 // Manually scale the indices by the element size. 7311 // TODO: Sanitize the scale operand here? 7312 // TODO: For VP nodes, should we use VP_SHL here? 7313 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7314 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7315 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7316 } 7317 7318 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7319 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7320 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7321 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7322 VPGN->getScale(), VPGN->getMask(), 7323 VPGN->getVectorLength()}, 7324 VPGN->getMemOperand(), NewIndexTy); 7325 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7326 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7327 {VPSN->getChain(), VPSN->getValue(), 7328 VPSN->getBasePtr(), Index, VPSN->getScale(), 7329 VPSN->getMask(), VPSN->getVectorLength()}, 7330 VPSN->getMemOperand(), NewIndexTy); 7331 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7332 return DAG.getMaskedGather( 7333 N->getVTList(), MGN->getMemoryVT(), DL, 7334 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7335 MGN->getBasePtr(), Index, MGN->getScale()}, 7336 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7337 const auto *MSN = cast<MaskedScatterSDNode>(N); 7338 return DAG.getMaskedScatter( 7339 N->getVTList(), MSN->getMemoryVT(), DL, 7340 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7341 Index, MSN->getScale()}, 7342 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7343 } 7344 case RISCVISD::SRA_VL: 7345 case RISCVISD::SRL_VL: 7346 case RISCVISD::SHL_VL: { 7347 SDValue ShAmt = N->getOperand(1); 7348 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7349 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7350 SDLoc DL(N); 7351 SDValue VL = N->getOperand(3); 7352 EVT VT = N->getValueType(0); 7353 ShAmt = 7354 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7355 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7356 N->getOperand(2), N->getOperand(3)); 7357 } 7358 break; 7359 } 7360 case ISD::SRA: 7361 case ISD::SRL: 7362 case ISD::SHL: { 7363 SDValue ShAmt = N->getOperand(1); 7364 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7365 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7366 SDLoc DL(N); 7367 EVT VT = N->getValueType(0); 7368 ShAmt = 7369 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7370 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7371 } 7372 break; 7373 } 7374 case RISCVISD::MUL_VL: { 7375 SDValue Op0 = N->getOperand(0); 7376 SDValue Op1 = N->getOperand(1); 7377 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7378 return V; 7379 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7380 return V; 7381 return SDValue(); 7382 } 7383 case ISD::STORE: { 7384 auto *Store = cast<StoreSDNode>(N); 7385 SDValue Val = Store->getValue(); 7386 // Combine store of vmv.x.s to vse with VL of 1. 7387 // FIXME: Support FP. 7388 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7389 SDValue Src = Val.getOperand(0); 7390 EVT VecVT = Src.getValueType(); 7391 EVT MemVT = Store->getMemoryVT(); 7392 // The memory VT and the element type must match. 7393 if (VecVT.getVectorElementType() == MemVT) { 7394 SDLoc DL(N); 7395 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7396 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7397 DAG.getConstant(1, DL, MaskVT), 7398 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7399 Store->getPointerInfo(), 7400 Store->getOriginalAlign(), 7401 Store->getMemOperand()->getFlags()); 7402 } 7403 } 7404 7405 break; 7406 } 7407 } 7408 7409 return SDValue(); 7410 } 7411 7412 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7413 const SDNode *N, CombineLevel Level) const { 7414 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7415 // materialised in fewer instructions than `(OP _, c1)`: 7416 // 7417 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7418 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7419 SDValue N0 = N->getOperand(0); 7420 EVT Ty = N0.getValueType(); 7421 if (Ty.isScalarInteger() && 7422 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7423 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7424 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7425 if (C1 && C2) { 7426 const APInt &C1Int = C1->getAPIntValue(); 7427 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7428 7429 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7430 // and the combine should happen, to potentially allow further combines 7431 // later. 7432 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7433 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7434 return true; 7435 7436 // We can materialise `c1` in an add immediate, so it's "free", and the 7437 // combine should be prevented. 7438 if (C1Int.getMinSignedBits() <= 64 && 7439 isLegalAddImmediate(C1Int.getSExtValue())) 7440 return false; 7441 7442 // Neither constant will fit into an immediate, so find materialisation 7443 // costs. 7444 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7445 Subtarget.getFeatureBits(), 7446 /*CompressionCost*/true); 7447 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7448 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7449 /*CompressionCost*/true); 7450 7451 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7452 // combine should be prevented. 7453 if (C1Cost < ShiftedC1Cost) 7454 return false; 7455 } 7456 } 7457 return true; 7458 } 7459 7460 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7461 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7462 TargetLoweringOpt &TLO) const { 7463 // Delay this optimization as late as possible. 7464 if (!TLO.LegalOps) 7465 return false; 7466 7467 EVT VT = Op.getValueType(); 7468 if (VT.isVector()) 7469 return false; 7470 7471 // Only handle AND for now. 7472 if (Op.getOpcode() != ISD::AND) 7473 return false; 7474 7475 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7476 if (!C) 7477 return false; 7478 7479 const APInt &Mask = C->getAPIntValue(); 7480 7481 // Clear all non-demanded bits initially. 7482 APInt ShrunkMask = Mask & DemandedBits; 7483 7484 // Try to make a smaller immediate by setting undemanded bits. 7485 7486 APInt ExpandedMask = Mask | ~DemandedBits; 7487 7488 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7489 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7490 }; 7491 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7492 if (NewMask == Mask) 7493 return true; 7494 SDLoc DL(Op); 7495 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7496 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7497 return TLO.CombineTo(Op, NewOp); 7498 }; 7499 7500 // If the shrunk mask fits in sign extended 12 bits, let the target 7501 // independent code apply it. 7502 if (ShrunkMask.isSignedIntN(12)) 7503 return false; 7504 7505 // Preserve (and X, 0xffff) when zext.h is supported. 7506 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7507 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7508 if (IsLegalMask(NewMask)) 7509 return UseMask(NewMask); 7510 } 7511 7512 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7513 if (VT == MVT::i64) { 7514 APInt NewMask = APInt(64, 0xffffffff); 7515 if (IsLegalMask(NewMask)) 7516 return UseMask(NewMask); 7517 } 7518 7519 // For the remaining optimizations, we need to be able to make a negative 7520 // number through a combination of mask and undemanded bits. 7521 if (!ExpandedMask.isNegative()) 7522 return false; 7523 7524 // What is the fewest number of bits we need to represent the negative number. 7525 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7526 7527 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7528 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7529 APInt NewMask = ShrunkMask; 7530 if (MinSignedBits <= 12) 7531 NewMask.setBitsFrom(11); 7532 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7533 NewMask.setBitsFrom(31); 7534 else 7535 return false; 7536 7537 // Check that our new mask is a subset of the demanded mask. 7538 assert(IsLegalMask(NewMask)); 7539 return UseMask(NewMask); 7540 } 7541 7542 static void computeGREV(APInt &Src, unsigned ShAmt) { 7543 ShAmt &= Src.getBitWidth() - 1; 7544 uint64_t x = Src.getZExtValue(); 7545 if (ShAmt & 1) 7546 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7547 if (ShAmt & 2) 7548 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7549 if (ShAmt & 4) 7550 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7551 if (ShAmt & 8) 7552 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7553 if (ShAmt & 16) 7554 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7555 if (ShAmt & 32) 7556 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7557 Src = x; 7558 } 7559 7560 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7561 KnownBits &Known, 7562 const APInt &DemandedElts, 7563 const SelectionDAG &DAG, 7564 unsigned Depth) const { 7565 unsigned BitWidth = Known.getBitWidth(); 7566 unsigned Opc = Op.getOpcode(); 7567 assert((Opc >= ISD::BUILTIN_OP_END || 7568 Opc == ISD::INTRINSIC_WO_CHAIN || 7569 Opc == ISD::INTRINSIC_W_CHAIN || 7570 Opc == ISD::INTRINSIC_VOID) && 7571 "Should use MaskedValueIsZero if you don't know whether Op" 7572 " is a target node!"); 7573 7574 Known.resetAll(); 7575 switch (Opc) { 7576 default: break; 7577 case RISCVISD::SELECT_CC: { 7578 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7579 // If we don't know any bits, early out. 7580 if (Known.isUnknown()) 7581 break; 7582 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7583 7584 // Only known if known in both the LHS and RHS. 7585 Known = KnownBits::commonBits(Known, Known2); 7586 break; 7587 } 7588 case RISCVISD::REMUW: { 7589 KnownBits Known2; 7590 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7591 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7592 // We only care about the lower 32 bits. 7593 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7594 // Restore the original width by sign extending. 7595 Known = Known.sext(BitWidth); 7596 break; 7597 } 7598 case RISCVISD::DIVUW: { 7599 KnownBits Known2; 7600 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7601 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7602 // We only care about the lower 32 bits. 7603 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7604 // Restore the original width by sign extending. 7605 Known = Known.sext(BitWidth); 7606 break; 7607 } 7608 case RISCVISD::CTZW: { 7609 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7610 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7611 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7612 Known.Zero.setBitsFrom(LowBits); 7613 break; 7614 } 7615 case RISCVISD::CLZW: { 7616 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7617 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7618 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7619 Known.Zero.setBitsFrom(LowBits); 7620 break; 7621 } 7622 case RISCVISD::GREV: 7623 case RISCVISD::GREVW: { 7624 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7625 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7626 if (Opc == RISCVISD::GREVW) 7627 Known = Known.trunc(32); 7628 unsigned ShAmt = C->getZExtValue(); 7629 computeGREV(Known.Zero, ShAmt); 7630 computeGREV(Known.One, ShAmt); 7631 if (Opc == RISCVISD::GREVW) 7632 Known = Known.sext(BitWidth); 7633 } 7634 break; 7635 } 7636 case RISCVISD::READ_VLENB: 7637 // We assume VLENB is at least 16 bytes. 7638 Known.Zero.setLowBits(4); 7639 // We assume VLENB is no more than 65536 / 8 bytes. 7640 Known.Zero.setBitsFrom(14); 7641 break; 7642 case ISD::INTRINSIC_W_CHAIN: { 7643 unsigned IntNo = Op.getConstantOperandVal(1); 7644 switch (IntNo) { 7645 default: 7646 // We can't do anything for most intrinsics. 7647 break; 7648 case Intrinsic::riscv_vsetvli: 7649 case Intrinsic::riscv_vsetvlimax: 7650 // Assume that VL output is positive and would fit in an int32_t. 7651 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7652 if (BitWidth >= 32) 7653 Known.Zero.setBitsFrom(31); 7654 break; 7655 } 7656 break; 7657 } 7658 } 7659 } 7660 7661 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7662 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7663 unsigned Depth) const { 7664 switch (Op.getOpcode()) { 7665 default: 7666 break; 7667 case RISCVISD::SELECT_CC: { 7668 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7669 if (Tmp == 1) return 1; // Early out. 7670 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7671 return std::min(Tmp, Tmp2); 7672 } 7673 case RISCVISD::SLLW: 7674 case RISCVISD::SRAW: 7675 case RISCVISD::SRLW: 7676 case RISCVISD::DIVW: 7677 case RISCVISD::DIVUW: 7678 case RISCVISD::REMUW: 7679 case RISCVISD::ROLW: 7680 case RISCVISD::RORW: 7681 case RISCVISD::GREVW: 7682 case RISCVISD::GORCW: 7683 case RISCVISD::FSLW: 7684 case RISCVISD::FSRW: 7685 case RISCVISD::SHFLW: 7686 case RISCVISD::UNSHFLW: 7687 case RISCVISD::BCOMPRESSW: 7688 case RISCVISD::BDECOMPRESSW: 7689 case RISCVISD::FCVT_W_RTZ_RV64: 7690 case RISCVISD::FCVT_WU_RTZ_RV64: 7691 // TODO: As the result is sign-extended, this is conservatively correct. A 7692 // more precise answer could be calculated for SRAW depending on known 7693 // bits in the shift amount. 7694 return 33; 7695 case RISCVISD::SHFL: 7696 case RISCVISD::UNSHFL: { 7697 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7698 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7699 // will stay within the upper 32 bits. If there were more than 32 sign bits 7700 // before there will be at least 33 sign bits after. 7701 if (Op.getValueType() == MVT::i64 && 7702 isa<ConstantSDNode>(Op.getOperand(1)) && 7703 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7704 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7705 if (Tmp > 32) 7706 return 33; 7707 } 7708 break; 7709 } 7710 case RISCVISD::VMV_X_S: 7711 // The number of sign bits of the scalar result is computed by obtaining the 7712 // element type of the input vector operand, subtracting its width from the 7713 // XLEN, and then adding one (sign bit within the element type). If the 7714 // element type is wider than XLen, the least-significant XLEN bits are 7715 // taken. 7716 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7717 return 1; 7718 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7719 } 7720 7721 return 1; 7722 } 7723 7724 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7725 MachineBasicBlock *BB) { 7726 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7727 7728 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7729 // Should the count have wrapped while it was being read, we need to try 7730 // again. 7731 // ... 7732 // read: 7733 // rdcycleh x3 # load high word of cycle 7734 // rdcycle x2 # load low word of cycle 7735 // rdcycleh x4 # load high word of cycle 7736 // bne x3, x4, read # check if high word reads match, otherwise try again 7737 // ... 7738 7739 MachineFunction &MF = *BB->getParent(); 7740 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7741 MachineFunction::iterator It = ++BB->getIterator(); 7742 7743 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7744 MF.insert(It, LoopMBB); 7745 7746 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7747 MF.insert(It, DoneMBB); 7748 7749 // Transfer the remainder of BB and its successor edges to DoneMBB. 7750 DoneMBB->splice(DoneMBB->begin(), BB, 7751 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7752 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7753 7754 BB->addSuccessor(LoopMBB); 7755 7756 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7757 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7758 Register LoReg = MI.getOperand(0).getReg(); 7759 Register HiReg = MI.getOperand(1).getReg(); 7760 DebugLoc DL = MI.getDebugLoc(); 7761 7762 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7763 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7764 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7765 .addReg(RISCV::X0); 7766 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7767 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7768 .addReg(RISCV::X0); 7769 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7770 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7771 .addReg(RISCV::X0); 7772 7773 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7774 .addReg(HiReg) 7775 .addReg(ReadAgainReg) 7776 .addMBB(LoopMBB); 7777 7778 LoopMBB->addSuccessor(LoopMBB); 7779 LoopMBB->addSuccessor(DoneMBB); 7780 7781 MI.eraseFromParent(); 7782 7783 return DoneMBB; 7784 } 7785 7786 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7787 MachineBasicBlock *BB) { 7788 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7789 7790 MachineFunction &MF = *BB->getParent(); 7791 DebugLoc DL = MI.getDebugLoc(); 7792 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7793 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7794 Register LoReg = MI.getOperand(0).getReg(); 7795 Register HiReg = MI.getOperand(1).getReg(); 7796 Register SrcReg = MI.getOperand(2).getReg(); 7797 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7798 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7799 7800 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7801 RI); 7802 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7803 MachineMemOperand *MMOLo = 7804 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7805 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7806 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7807 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7808 .addFrameIndex(FI) 7809 .addImm(0) 7810 .addMemOperand(MMOLo); 7811 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7812 .addFrameIndex(FI) 7813 .addImm(4) 7814 .addMemOperand(MMOHi); 7815 MI.eraseFromParent(); // The pseudo instruction is gone now. 7816 return BB; 7817 } 7818 7819 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7820 MachineBasicBlock *BB) { 7821 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7822 "Unexpected instruction"); 7823 7824 MachineFunction &MF = *BB->getParent(); 7825 DebugLoc DL = MI.getDebugLoc(); 7826 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7827 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7828 Register DstReg = MI.getOperand(0).getReg(); 7829 Register LoReg = MI.getOperand(1).getReg(); 7830 Register HiReg = MI.getOperand(2).getReg(); 7831 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7832 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7833 7834 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7835 MachineMemOperand *MMOLo = 7836 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7837 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7838 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7839 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7840 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7841 .addFrameIndex(FI) 7842 .addImm(0) 7843 .addMemOperand(MMOLo); 7844 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7845 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7846 .addFrameIndex(FI) 7847 .addImm(4) 7848 .addMemOperand(MMOHi); 7849 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7850 MI.eraseFromParent(); // The pseudo instruction is gone now. 7851 return BB; 7852 } 7853 7854 static bool isSelectPseudo(MachineInstr &MI) { 7855 switch (MI.getOpcode()) { 7856 default: 7857 return false; 7858 case RISCV::Select_GPR_Using_CC_GPR: 7859 case RISCV::Select_FPR16_Using_CC_GPR: 7860 case RISCV::Select_FPR32_Using_CC_GPR: 7861 case RISCV::Select_FPR64_Using_CC_GPR: 7862 return true; 7863 } 7864 } 7865 7866 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7867 MachineBasicBlock *BB, 7868 const RISCVSubtarget &Subtarget) { 7869 // To "insert" Select_* instructions, we actually have to insert the triangle 7870 // control-flow pattern. The incoming instructions know the destination vreg 7871 // to set, the condition code register to branch on, the true/false values to 7872 // select between, and the condcode to use to select the appropriate branch. 7873 // 7874 // We produce the following control flow: 7875 // HeadMBB 7876 // | \ 7877 // | IfFalseMBB 7878 // | / 7879 // TailMBB 7880 // 7881 // When we find a sequence of selects we attempt to optimize their emission 7882 // by sharing the control flow. Currently we only handle cases where we have 7883 // multiple selects with the exact same condition (same LHS, RHS and CC). 7884 // The selects may be interleaved with other instructions if the other 7885 // instructions meet some requirements we deem safe: 7886 // - They are debug instructions. Otherwise, 7887 // - They do not have side-effects, do not access memory and their inputs do 7888 // not depend on the results of the select pseudo-instructions. 7889 // The TrueV/FalseV operands of the selects cannot depend on the result of 7890 // previous selects in the sequence. 7891 // These conditions could be further relaxed. See the X86 target for a 7892 // related approach and more information. 7893 Register LHS = MI.getOperand(1).getReg(); 7894 Register RHS = MI.getOperand(2).getReg(); 7895 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7896 7897 SmallVector<MachineInstr *, 4> SelectDebugValues; 7898 SmallSet<Register, 4> SelectDests; 7899 SelectDests.insert(MI.getOperand(0).getReg()); 7900 7901 MachineInstr *LastSelectPseudo = &MI; 7902 7903 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7904 SequenceMBBI != E; ++SequenceMBBI) { 7905 if (SequenceMBBI->isDebugInstr()) 7906 continue; 7907 else if (isSelectPseudo(*SequenceMBBI)) { 7908 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7909 SequenceMBBI->getOperand(2).getReg() != RHS || 7910 SequenceMBBI->getOperand(3).getImm() != CC || 7911 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7912 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7913 break; 7914 LastSelectPseudo = &*SequenceMBBI; 7915 SequenceMBBI->collectDebugValues(SelectDebugValues); 7916 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7917 } else { 7918 if (SequenceMBBI->hasUnmodeledSideEffects() || 7919 SequenceMBBI->mayLoadOrStore()) 7920 break; 7921 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7922 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7923 })) 7924 break; 7925 } 7926 } 7927 7928 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7929 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7930 DebugLoc DL = MI.getDebugLoc(); 7931 MachineFunction::iterator I = ++BB->getIterator(); 7932 7933 MachineBasicBlock *HeadMBB = BB; 7934 MachineFunction *F = BB->getParent(); 7935 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7936 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7937 7938 F->insert(I, IfFalseMBB); 7939 F->insert(I, TailMBB); 7940 7941 // Transfer debug instructions associated with the selects to TailMBB. 7942 for (MachineInstr *DebugInstr : SelectDebugValues) { 7943 TailMBB->push_back(DebugInstr->removeFromParent()); 7944 } 7945 7946 // Move all instructions after the sequence to TailMBB. 7947 TailMBB->splice(TailMBB->end(), HeadMBB, 7948 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7949 // Update machine-CFG edges by transferring all successors of the current 7950 // block to the new block which will contain the Phi nodes for the selects. 7951 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7952 // Set the successors for HeadMBB. 7953 HeadMBB->addSuccessor(IfFalseMBB); 7954 HeadMBB->addSuccessor(TailMBB); 7955 7956 // Insert appropriate branch. 7957 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7958 .addReg(LHS) 7959 .addReg(RHS) 7960 .addMBB(TailMBB); 7961 7962 // IfFalseMBB just falls through to TailMBB. 7963 IfFalseMBB->addSuccessor(TailMBB); 7964 7965 // Create PHIs for all of the select pseudo-instructions. 7966 auto SelectMBBI = MI.getIterator(); 7967 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7968 auto InsertionPoint = TailMBB->begin(); 7969 while (SelectMBBI != SelectEnd) { 7970 auto Next = std::next(SelectMBBI); 7971 if (isSelectPseudo(*SelectMBBI)) { 7972 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7973 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7974 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7975 .addReg(SelectMBBI->getOperand(4).getReg()) 7976 .addMBB(HeadMBB) 7977 .addReg(SelectMBBI->getOperand(5).getReg()) 7978 .addMBB(IfFalseMBB); 7979 SelectMBBI->eraseFromParent(); 7980 } 7981 SelectMBBI = Next; 7982 } 7983 7984 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7985 return TailMBB; 7986 } 7987 7988 MachineBasicBlock * 7989 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7990 MachineBasicBlock *BB) const { 7991 switch (MI.getOpcode()) { 7992 default: 7993 llvm_unreachable("Unexpected instr type to insert"); 7994 case RISCV::ReadCycleWide: 7995 assert(!Subtarget.is64Bit() && 7996 "ReadCycleWrite is only to be used on riscv32"); 7997 return emitReadCycleWidePseudo(MI, BB); 7998 case RISCV::Select_GPR_Using_CC_GPR: 7999 case RISCV::Select_FPR16_Using_CC_GPR: 8000 case RISCV::Select_FPR32_Using_CC_GPR: 8001 case RISCV::Select_FPR64_Using_CC_GPR: 8002 return emitSelectPseudo(MI, BB, Subtarget); 8003 case RISCV::BuildPairF64Pseudo: 8004 return emitBuildPairF64Pseudo(MI, BB); 8005 case RISCV::SplitF64Pseudo: 8006 return emitSplitF64Pseudo(MI, BB); 8007 } 8008 } 8009 8010 // Calling Convention Implementation. 8011 // The expectations for frontend ABI lowering vary from target to target. 8012 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8013 // details, but this is a longer term goal. For now, we simply try to keep the 8014 // role of the frontend as simple and well-defined as possible. The rules can 8015 // be summarised as: 8016 // * Never split up large scalar arguments. We handle them here. 8017 // * If a hardfloat calling convention is being used, and the struct may be 8018 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8019 // available, then pass as two separate arguments. If either the GPRs or FPRs 8020 // are exhausted, then pass according to the rule below. 8021 // * If a struct could never be passed in registers or directly in a stack 8022 // slot (as it is larger than 2*XLEN and the floating point rules don't 8023 // apply), then pass it using a pointer with the byval attribute. 8024 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8025 // word-sized array or a 2*XLEN scalar (depending on alignment). 8026 // * The frontend can determine whether a struct is returned by reference or 8027 // not based on its size and fields. If it will be returned by reference, the 8028 // frontend must modify the prototype so a pointer with the sret annotation is 8029 // passed as the first argument. This is not necessary for large scalar 8030 // returns. 8031 // * Struct return values and varargs should be coerced to structs containing 8032 // register-size fields in the same situations they would be for fixed 8033 // arguments. 8034 8035 static const MCPhysReg ArgGPRs[] = { 8036 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8037 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8038 }; 8039 static const MCPhysReg ArgFPR16s[] = { 8040 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8041 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8042 }; 8043 static const MCPhysReg ArgFPR32s[] = { 8044 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8045 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8046 }; 8047 static const MCPhysReg ArgFPR64s[] = { 8048 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8049 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8050 }; 8051 // This is an interim calling convention and it may be changed in the future. 8052 static const MCPhysReg ArgVRs[] = { 8053 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8054 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8055 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8056 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8057 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8058 RISCV::V20M2, RISCV::V22M2}; 8059 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8060 RISCV::V20M4}; 8061 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8062 8063 // Pass a 2*XLEN argument that has been split into two XLEN values through 8064 // registers or the stack as necessary. 8065 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8066 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8067 MVT ValVT2, MVT LocVT2, 8068 ISD::ArgFlagsTy ArgFlags2) { 8069 unsigned XLenInBytes = XLen / 8; 8070 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8071 // At least one half can be passed via register. 8072 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8073 VA1.getLocVT(), CCValAssign::Full)); 8074 } else { 8075 // Both halves must be passed on the stack, with proper alignment. 8076 Align StackAlign = 8077 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8078 State.addLoc( 8079 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8080 State.AllocateStack(XLenInBytes, StackAlign), 8081 VA1.getLocVT(), CCValAssign::Full)); 8082 State.addLoc(CCValAssign::getMem( 8083 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8084 LocVT2, CCValAssign::Full)); 8085 return false; 8086 } 8087 8088 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8089 // The second half can also be passed via register. 8090 State.addLoc( 8091 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8092 } else { 8093 // The second half is passed via the stack, without additional alignment. 8094 State.addLoc(CCValAssign::getMem( 8095 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8096 LocVT2, CCValAssign::Full)); 8097 } 8098 8099 return false; 8100 } 8101 8102 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8103 Optional<unsigned> FirstMaskArgument, 8104 CCState &State, const RISCVTargetLowering &TLI) { 8105 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8106 if (RC == &RISCV::VRRegClass) { 8107 // Assign the first mask argument to V0. 8108 // This is an interim calling convention and it may be changed in the 8109 // future. 8110 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8111 return State.AllocateReg(RISCV::V0); 8112 return State.AllocateReg(ArgVRs); 8113 } 8114 if (RC == &RISCV::VRM2RegClass) 8115 return State.AllocateReg(ArgVRM2s); 8116 if (RC == &RISCV::VRM4RegClass) 8117 return State.AllocateReg(ArgVRM4s); 8118 if (RC == &RISCV::VRM8RegClass) 8119 return State.AllocateReg(ArgVRM8s); 8120 llvm_unreachable("Unhandled register class for ValueType"); 8121 } 8122 8123 // Implements the RISC-V calling convention. Returns true upon failure. 8124 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8125 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8126 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8127 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8128 Optional<unsigned> FirstMaskArgument) { 8129 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8130 assert(XLen == 32 || XLen == 64); 8131 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8132 8133 // Any return value split in to more than two values can't be returned 8134 // directly. Vectors are returned via the available vector registers. 8135 if (!LocVT.isVector() && IsRet && ValNo > 1) 8136 return true; 8137 8138 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8139 // variadic argument, or if no F16/F32 argument registers are available. 8140 bool UseGPRForF16_F32 = true; 8141 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8142 // variadic argument, or if no F64 argument registers are available. 8143 bool UseGPRForF64 = true; 8144 8145 switch (ABI) { 8146 default: 8147 llvm_unreachable("Unexpected ABI"); 8148 case RISCVABI::ABI_ILP32: 8149 case RISCVABI::ABI_LP64: 8150 break; 8151 case RISCVABI::ABI_ILP32F: 8152 case RISCVABI::ABI_LP64F: 8153 UseGPRForF16_F32 = !IsFixed; 8154 break; 8155 case RISCVABI::ABI_ILP32D: 8156 case RISCVABI::ABI_LP64D: 8157 UseGPRForF16_F32 = !IsFixed; 8158 UseGPRForF64 = !IsFixed; 8159 break; 8160 } 8161 8162 // FPR16, FPR32, and FPR64 alias each other. 8163 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8164 UseGPRForF16_F32 = true; 8165 UseGPRForF64 = true; 8166 } 8167 8168 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8169 // similar local variables rather than directly checking against the target 8170 // ABI. 8171 8172 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8173 LocVT = XLenVT; 8174 LocInfo = CCValAssign::BCvt; 8175 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8176 LocVT = MVT::i64; 8177 LocInfo = CCValAssign::BCvt; 8178 } 8179 8180 // If this is a variadic argument, the RISC-V calling convention requires 8181 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8182 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8183 // be used regardless of whether the original argument was split during 8184 // legalisation or not. The argument will not be passed by registers if the 8185 // original type is larger than 2*XLEN, so the register alignment rule does 8186 // not apply. 8187 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8188 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8189 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8190 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8191 // Skip 'odd' register if necessary. 8192 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8193 State.AllocateReg(ArgGPRs); 8194 } 8195 8196 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8197 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8198 State.getPendingArgFlags(); 8199 8200 assert(PendingLocs.size() == PendingArgFlags.size() && 8201 "PendingLocs and PendingArgFlags out of sync"); 8202 8203 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8204 // registers are exhausted. 8205 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8206 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8207 "Can't lower f64 if it is split"); 8208 // Depending on available argument GPRS, f64 may be passed in a pair of 8209 // GPRs, split between a GPR and the stack, or passed completely on the 8210 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8211 // cases. 8212 Register Reg = State.AllocateReg(ArgGPRs); 8213 LocVT = MVT::i32; 8214 if (!Reg) { 8215 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8216 State.addLoc( 8217 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8218 return false; 8219 } 8220 if (!State.AllocateReg(ArgGPRs)) 8221 State.AllocateStack(4, Align(4)); 8222 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8223 return false; 8224 } 8225 8226 // Fixed-length vectors are located in the corresponding scalable-vector 8227 // container types. 8228 if (ValVT.isFixedLengthVector()) 8229 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8230 8231 // Split arguments might be passed indirectly, so keep track of the pending 8232 // values. Split vectors are passed via a mix of registers and indirectly, so 8233 // treat them as we would any other argument. 8234 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8235 LocVT = XLenVT; 8236 LocInfo = CCValAssign::Indirect; 8237 PendingLocs.push_back( 8238 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8239 PendingArgFlags.push_back(ArgFlags); 8240 if (!ArgFlags.isSplitEnd()) { 8241 return false; 8242 } 8243 } 8244 8245 // If the split argument only had two elements, it should be passed directly 8246 // in registers or on the stack. 8247 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8248 PendingLocs.size() <= 2) { 8249 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8250 // Apply the normal calling convention rules to the first half of the 8251 // split argument. 8252 CCValAssign VA = PendingLocs[0]; 8253 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8254 PendingLocs.clear(); 8255 PendingArgFlags.clear(); 8256 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8257 ArgFlags); 8258 } 8259 8260 // Allocate to a register if possible, or else a stack slot. 8261 Register Reg; 8262 unsigned StoreSizeBytes = XLen / 8; 8263 Align StackAlign = Align(XLen / 8); 8264 8265 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8266 Reg = State.AllocateReg(ArgFPR16s); 8267 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8268 Reg = State.AllocateReg(ArgFPR32s); 8269 else if (ValVT == MVT::f64 && !UseGPRForF64) 8270 Reg = State.AllocateReg(ArgFPR64s); 8271 else if (ValVT.isVector()) { 8272 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8273 if (!Reg) { 8274 // For return values, the vector must be passed fully via registers or 8275 // via the stack. 8276 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8277 // but we're using all of them. 8278 if (IsRet) 8279 return true; 8280 // Try using a GPR to pass the address 8281 if ((Reg = State.AllocateReg(ArgGPRs))) { 8282 LocVT = XLenVT; 8283 LocInfo = CCValAssign::Indirect; 8284 } else if (ValVT.isScalableVector()) { 8285 report_fatal_error("Unable to pass scalable vector types on the stack"); 8286 } else { 8287 // Pass fixed-length vectors on the stack. 8288 LocVT = ValVT; 8289 StoreSizeBytes = ValVT.getStoreSize(); 8290 // Align vectors to their element sizes, being careful for vXi1 8291 // vectors. 8292 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8293 } 8294 } 8295 } else { 8296 Reg = State.AllocateReg(ArgGPRs); 8297 } 8298 8299 unsigned StackOffset = 8300 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8301 8302 // If we reach this point and PendingLocs is non-empty, we must be at the 8303 // end of a split argument that must be passed indirectly. 8304 if (!PendingLocs.empty()) { 8305 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8306 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8307 8308 for (auto &It : PendingLocs) { 8309 if (Reg) 8310 It.convertToReg(Reg); 8311 else 8312 It.convertToMem(StackOffset); 8313 State.addLoc(It); 8314 } 8315 PendingLocs.clear(); 8316 PendingArgFlags.clear(); 8317 return false; 8318 } 8319 8320 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8321 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8322 "Expected an XLenVT or vector types at this stage"); 8323 8324 if (Reg) { 8325 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8326 return false; 8327 } 8328 8329 // When a floating-point value is passed on the stack, no bit-conversion is 8330 // needed. 8331 if (ValVT.isFloatingPoint()) { 8332 LocVT = ValVT; 8333 LocInfo = CCValAssign::Full; 8334 } 8335 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8336 return false; 8337 } 8338 8339 template <typename ArgTy> 8340 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8341 for (const auto &ArgIdx : enumerate(Args)) { 8342 MVT ArgVT = ArgIdx.value().VT; 8343 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8344 return ArgIdx.index(); 8345 } 8346 return None; 8347 } 8348 8349 void RISCVTargetLowering::analyzeInputArgs( 8350 MachineFunction &MF, CCState &CCInfo, 8351 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8352 RISCVCCAssignFn Fn) const { 8353 unsigned NumArgs = Ins.size(); 8354 FunctionType *FType = MF.getFunction().getFunctionType(); 8355 8356 Optional<unsigned> FirstMaskArgument; 8357 if (Subtarget.hasVInstructions()) 8358 FirstMaskArgument = preAssignMask(Ins); 8359 8360 for (unsigned i = 0; i != NumArgs; ++i) { 8361 MVT ArgVT = Ins[i].VT; 8362 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8363 8364 Type *ArgTy = nullptr; 8365 if (IsRet) 8366 ArgTy = FType->getReturnType(); 8367 else if (Ins[i].isOrigArg()) 8368 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8369 8370 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8371 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8372 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8373 FirstMaskArgument)) { 8374 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8375 << EVT(ArgVT).getEVTString() << '\n'); 8376 llvm_unreachable(nullptr); 8377 } 8378 } 8379 } 8380 8381 void RISCVTargetLowering::analyzeOutputArgs( 8382 MachineFunction &MF, CCState &CCInfo, 8383 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8384 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8385 unsigned NumArgs = Outs.size(); 8386 8387 Optional<unsigned> FirstMaskArgument; 8388 if (Subtarget.hasVInstructions()) 8389 FirstMaskArgument = preAssignMask(Outs); 8390 8391 for (unsigned i = 0; i != NumArgs; i++) { 8392 MVT ArgVT = Outs[i].VT; 8393 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8394 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8395 8396 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8397 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8398 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8399 FirstMaskArgument)) { 8400 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8401 << EVT(ArgVT).getEVTString() << "\n"); 8402 llvm_unreachable(nullptr); 8403 } 8404 } 8405 } 8406 8407 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8408 // values. 8409 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8410 const CCValAssign &VA, const SDLoc &DL, 8411 const RISCVSubtarget &Subtarget) { 8412 switch (VA.getLocInfo()) { 8413 default: 8414 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8415 case CCValAssign::Full: 8416 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8417 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8418 break; 8419 case CCValAssign::BCvt: 8420 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8421 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8422 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8423 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8424 else 8425 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8426 break; 8427 } 8428 return Val; 8429 } 8430 8431 // The caller is responsible for loading the full value if the argument is 8432 // passed with CCValAssign::Indirect. 8433 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8434 const CCValAssign &VA, const SDLoc &DL, 8435 const RISCVTargetLowering &TLI) { 8436 MachineFunction &MF = DAG.getMachineFunction(); 8437 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8438 EVT LocVT = VA.getLocVT(); 8439 SDValue Val; 8440 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8441 Register VReg = RegInfo.createVirtualRegister(RC); 8442 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8443 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8444 8445 if (VA.getLocInfo() == CCValAssign::Indirect) 8446 return Val; 8447 8448 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8449 } 8450 8451 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8452 const CCValAssign &VA, const SDLoc &DL, 8453 const RISCVSubtarget &Subtarget) { 8454 EVT LocVT = VA.getLocVT(); 8455 8456 switch (VA.getLocInfo()) { 8457 default: 8458 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8459 case CCValAssign::Full: 8460 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8461 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8462 break; 8463 case CCValAssign::BCvt: 8464 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8465 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8466 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8467 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8468 else 8469 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8470 break; 8471 } 8472 return Val; 8473 } 8474 8475 // The caller is responsible for loading the full value if the argument is 8476 // passed with CCValAssign::Indirect. 8477 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8478 const CCValAssign &VA, const SDLoc &DL) { 8479 MachineFunction &MF = DAG.getMachineFunction(); 8480 MachineFrameInfo &MFI = MF.getFrameInfo(); 8481 EVT LocVT = VA.getLocVT(); 8482 EVT ValVT = VA.getValVT(); 8483 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8484 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8485 /*Immutable=*/true); 8486 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8487 SDValue Val; 8488 8489 ISD::LoadExtType ExtType; 8490 switch (VA.getLocInfo()) { 8491 default: 8492 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8493 case CCValAssign::Full: 8494 case CCValAssign::Indirect: 8495 case CCValAssign::BCvt: 8496 ExtType = ISD::NON_EXTLOAD; 8497 break; 8498 } 8499 Val = DAG.getExtLoad( 8500 ExtType, DL, LocVT, Chain, FIN, 8501 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8502 return Val; 8503 } 8504 8505 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8506 const CCValAssign &VA, const SDLoc &DL) { 8507 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8508 "Unexpected VA"); 8509 MachineFunction &MF = DAG.getMachineFunction(); 8510 MachineFrameInfo &MFI = MF.getFrameInfo(); 8511 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8512 8513 if (VA.isMemLoc()) { 8514 // f64 is passed on the stack. 8515 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8516 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8517 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8518 MachinePointerInfo::getFixedStack(MF, FI)); 8519 } 8520 8521 assert(VA.isRegLoc() && "Expected register VA assignment"); 8522 8523 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8524 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8525 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8526 SDValue Hi; 8527 if (VA.getLocReg() == RISCV::X17) { 8528 // Second half of f64 is passed on the stack. 8529 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8530 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8531 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8532 MachinePointerInfo::getFixedStack(MF, FI)); 8533 } else { 8534 // Second half of f64 is passed in another GPR. 8535 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8536 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8537 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8538 } 8539 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8540 } 8541 8542 // FastCC has less than 1% performance improvement for some particular 8543 // benchmark. But theoretically, it may has benenfit for some cases. 8544 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8545 unsigned ValNo, MVT ValVT, MVT LocVT, 8546 CCValAssign::LocInfo LocInfo, 8547 ISD::ArgFlagsTy ArgFlags, CCState &State, 8548 bool IsFixed, bool IsRet, Type *OrigTy, 8549 const RISCVTargetLowering &TLI, 8550 Optional<unsigned> FirstMaskArgument) { 8551 8552 // X5 and X6 might be used for save-restore libcall. 8553 static const MCPhysReg GPRList[] = { 8554 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8555 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8556 RISCV::X29, RISCV::X30, RISCV::X31}; 8557 8558 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8559 if (unsigned Reg = State.AllocateReg(GPRList)) { 8560 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8561 return false; 8562 } 8563 } 8564 8565 if (LocVT == MVT::f16) { 8566 static const MCPhysReg FPR16List[] = { 8567 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8568 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8569 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8570 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8571 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8572 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8573 return false; 8574 } 8575 } 8576 8577 if (LocVT == MVT::f32) { 8578 static const MCPhysReg FPR32List[] = { 8579 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8580 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8581 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8582 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8583 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8584 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8585 return false; 8586 } 8587 } 8588 8589 if (LocVT == MVT::f64) { 8590 static const MCPhysReg FPR64List[] = { 8591 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8592 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8593 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8594 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8595 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8596 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8597 return false; 8598 } 8599 } 8600 8601 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8602 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8603 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8604 return false; 8605 } 8606 8607 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8608 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8609 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8610 return false; 8611 } 8612 8613 if (LocVT.isVector()) { 8614 if (unsigned Reg = 8615 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8616 // Fixed-length vectors are located in the corresponding scalable-vector 8617 // container types. 8618 if (ValVT.isFixedLengthVector()) 8619 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8620 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8621 } else { 8622 // Try and pass the address via a "fast" GPR. 8623 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8624 LocInfo = CCValAssign::Indirect; 8625 LocVT = TLI.getSubtarget().getXLenVT(); 8626 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8627 } else if (ValVT.isFixedLengthVector()) { 8628 auto StackAlign = 8629 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8630 unsigned StackOffset = 8631 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8632 State.addLoc( 8633 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8634 } else { 8635 // Can't pass scalable vectors on the stack. 8636 return true; 8637 } 8638 } 8639 8640 return false; 8641 } 8642 8643 return true; // CC didn't match. 8644 } 8645 8646 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8647 CCValAssign::LocInfo LocInfo, 8648 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8649 8650 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8651 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8652 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8653 static const MCPhysReg GPRList[] = { 8654 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8655 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8656 if (unsigned Reg = State.AllocateReg(GPRList)) { 8657 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8658 return false; 8659 } 8660 } 8661 8662 if (LocVT == MVT::f32) { 8663 // Pass in STG registers: F1, ..., F6 8664 // fs0 ... fs5 8665 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8666 RISCV::F18_F, RISCV::F19_F, 8667 RISCV::F20_F, RISCV::F21_F}; 8668 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8669 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8670 return false; 8671 } 8672 } 8673 8674 if (LocVT == MVT::f64) { 8675 // Pass in STG registers: D1, ..., D6 8676 // fs6 ... fs11 8677 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8678 RISCV::F24_D, RISCV::F25_D, 8679 RISCV::F26_D, RISCV::F27_D}; 8680 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8681 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8682 return false; 8683 } 8684 } 8685 8686 report_fatal_error("No registers left in GHC calling convention"); 8687 return true; 8688 } 8689 8690 // Transform physical registers into virtual registers. 8691 SDValue RISCVTargetLowering::LowerFormalArguments( 8692 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8695 8696 MachineFunction &MF = DAG.getMachineFunction(); 8697 8698 switch (CallConv) { 8699 default: 8700 report_fatal_error("Unsupported calling convention"); 8701 case CallingConv::C: 8702 case CallingConv::Fast: 8703 break; 8704 case CallingConv::GHC: 8705 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8706 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8707 report_fatal_error( 8708 "GHC calling convention requires the F and D instruction set extensions"); 8709 } 8710 8711 const Function &Func = MF.getFunction(); 8712 if (Func.hasFnAttribute("interrupt")) { 8713 if (!Func.arg_empty()) 8714 report_fatal_error( 8715 "Functions with the interrupt attribute cannot have arguments!"); 8716 8717 StringRef Kind = 8718 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8719 8720 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8721 report_fatal_error( 8722 "Function interrupt attribute argument not supported!"); 8723 } 8724 8725 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8726 MVT XLenVT = Subtarget.getXLenVT(); 8727 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8728 // Used with vargs to acumulate store chains. 8729 std::vector<SDValue> OutChains; 8730 8731 // Assign locations to all of the incoming arguments. 8732 SmallVector<CCValAssign, 16> ArgLocs; 8733 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8734 8735 if (CallConv == CallingConv::GHC) 8736 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8737 else 8738 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8739 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8740 : CC_RISCV); 8741 8742 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8743 CCValAssign &VA = ArgLocs[i]; 8744 SDValue ArgValue; 8745 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8746 // case. 8747 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8748 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8749 else if (VA.isRegLoc()) 8750 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8751 else 8752 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8753 8754 if (VA.getLocInfo() == CCValAssign::Indirect) { 8755 // If the original argument was split and passed by reference (e.g. i128 8756 // on RV32), we need to load all parts of it here (using the same 8757 // address). Vectors may be partly split to registers and partly to the 8758 // stack, in which case the base address is partly offset and subsequent 8759 // stores are relative to that. 8760 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8761 MachinePointerInfo())); 8762 unsigned ArgIndex = Ins[i].OrigArgIndex; 8763 unsigned ArgPartOffset = Ins[i].PartOffset; 8764 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8765 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8766 CCValAssign &PartVA = ArgLocs[i + 1]; 8767 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8768 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8769 if (PartVA.getValVT().isScalableVector()) 8770 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8771 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8772 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8773 MachinePointerInfo())); 8774 ++i; 8775 } 8776 continue; 8777 } 8778 InVals.push_back(ArgValue); 8779 } 8780 8781 if (IsVarArg) { 8782 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8783 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8784 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8785 MachineFrameInfo &MFI = MF.getFrameInfo(); 8786 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8787 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8788 8789 // Offset of the first variable argument from stack pointer, and size of 8790 // the vararg save area. For now, the varargs save area is either zero or 8791 // large enough to hold a0-a7. 8792 int VaArgOffset, VarArgsSaveSize; 8793 8794 // If all registers are allocated, then all varargs must be passed on the 8795 // stack and we don't need to save any argregs. 8796 if (ArgRegs.size() == Idx) { 8797 VaArgOffset = CCInfo.getNextStackOffset(); 8798 VarArgsSaveSize = 0; 8799 } else { 8800 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8801 VaArgOffset = -VarArgsSaveSize; 8802 } 8803 8804 // Record the frame index of the first variable argument 8805 // which is a value necessary to VASTART. 8806 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8807 RVFI->setVarArgsFrameIndex(FI); 8808 8809 // If saving an odd number of registers then create an extra stack slot to 8810 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8811 // offsets to even-numbered registered remain 2*XLEN-aligned. 8812 if (Idx % 2) { 8813 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8814 VarArgsSaveSize += XLenInBytes; 8815 } 8816 8817 // Copy the integer registers that may have been used for passing varargs 8818 // to the vararg save area. 8819 for (unsigned I = Idx; I < ArgRegs.size(); 8820 ++I, VaArgOffset += XLenInBytes) { 8821 const Register Reg = RegInfo.createVirtualRegister(RC); 8822 RegInfo.addLiveIn(ArgRegs[I], Reg); 8823 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8824 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8825 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8826 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8827 MachinePointerInfo::getFixedStack(MF, FI)); 8828 cast<StoreSDNode>(Store.getNode()) 8829 ->getMemOperand() 8830 ->setValue((Value *)nullptr); 8831 OutChains.push_back(Store); 8832 } 8833 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8834 } 8835 8836 // All stores are grouped in one node to allow the matching between 8837 // the size of Ins and InVals. This only happens for vararg functions. 8838 if (!OutChains.empty()) { 8839 OutChains.push_back(Chain); 8840 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8841 } 8842 8843 return Chain; 8844 } 8845 8846 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8847 /// for tail call optimization. 8848 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8849 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8850 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8851 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8852 8853 auto &Callee = CLI.Callee; 8854 auto CalleeCC = CLI.CallConv; 8855 auto &Outs = CLI.Outs; 8856 auto &Caller = MF.getFunction(); 8857 auto CallerCC = Caller.getCallingConv(); 8858 8859 // Exception-handling functions need a special set of instructions to 8860 // indicate a return to the hardware. Tail-calling another function would 8861 // probably break this. 8862 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8863 // should be expanded as new function attributes are introduced. 8864 if (Caller.hasFnAttribute("interrupt")) 8865 return false; 8866 8867 // Do not tail call opt if the stack is used to pass parameters. 8868 if (CCInfo.getNextStackOffset() != 0) 8869 return false; 8870 8871 // Do not tail call opt if any parameters need to be passed indirectly. 8872 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8873 // passed indirectly. So the address of the value will be passed in a 8874 // register, or if not available, then the address is put on the stack. In 8875 // order to pass indirectly, space on the stack often needs to be allocated 8876 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8877 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8878 // are passed CCValAssign::Indirect. 8879 for (auto &VA : ArgLocs) 8880 if (VA.getLocInfo() == CCValAssign::Indirect) 8881 return false; 8882 8883 // Do not tail call opt if either caller or callee uses struct return 8884 // semantics. 8885 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8886 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8887 if (IsCallerStructRet || IsCalleeStructRet) 8888 return false; 8889 8890 // Externally-defined functions with weak linkage should not be 8891 // tail-called. The behaviour of branch instructions in this situation (as 8892 // used for tail calls) is implementation-defined, so we cannot rely on the 8893 // linker replacing the tail call with a return. 8894 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8895 const GlobalValue *GV = G->getGlobal(); 8896 if (GV->hasExternalWeakLinkage()) 8897 return false; 8898 } 8899 8900 // The callee has to preserve all registers the caller needs to preserve. 8901 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8902 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8903 if (CalleeCC != CallerCC) { 8904 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8905 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8906 return false; 8907 } 8908 8909 // Byval parameters hand the function a pointer directly into the stack area 8910 // we want to reuse during a tail call. Working around this *is* possible 8911 // but less efficient and uglier in LowerCall. 8912 for (auto &Arg : Outs) 8913 if (Arg.Flags.isByVal()) 8914 return false; 8915 8916 return true; 8917 } 8918 8919 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8920 return DAG.getDataLayout().getPrefTypeAlign( 8921 VT.getTypeForEVT(*DAG.getContext())); 8922 } 8923 8924 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8925 // and output parameter nodes. 8926 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8927 SmallVectorImpl<SDValue> &InVals) const { 8928 SelectionDAG &DAG = CLI.DAG; 8929 SDLoc &DL = CLI.DL; 8930 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8931 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8932 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8933 SDValue Chain = CLI.Chain; 8934 SDValue Callee = CLI.Callee; 8935 bool &IsTailCall = CLI.IsTailCall; 8936 CallingConv::ID CallConv = CLI.CallConv; 8937 bool IsVarArg = CLI.IsVarArg; 8938 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8939 MVT XLenVT = Subtarget.getXLenVT(); 8940 8941 MachineFunction &MF = DAG.getMachineFunction(); 8942 8943 // Analyze the operands of the call, assigning locations to each operand. 8944 SmallVector<CCValAssign, 16> ArgLocs; 8945 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8946 8947 if (CallConv == CallingConv::GHC) 8948 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8949 else 8950 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8951 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8952 : CC_RISCV); 8953 8954 // Check if it's really possible to do a tail call. 8955 if (IsTailCall) 8956 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8957 8958 if (IsTailCall) 8959 ++NumTailCalls; 8960 else if (CLI.CB && CLI.CB->isMustTailCall()) 8961 report_fatal_error("failed to perform tail call elimination on a call " 8962 "site marked musttail"); 8963 8964 // Get a count of how many bytes are to be pushed on the stack. 8965 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8966 8967 // Create local copies for byval args 8968 SmallVector<SDValue, 8> ByValArgs; 8969 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8970 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8971 if (!Flags.isByVal()) 8972 continue; 8973 8974 SDValue Arg = OutVals[i]; 8975 unsigned Size = Flags.getByValSize(); 8976 Align Alignment = Flags.getNonZeroByValAlign(); 8977 8978 int FI = 8979 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8980 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8981 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8982 8983 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8984 /*IsVolatile=*/false, 8985 /*AlwaysInline=*/false, IsTailCall, 8986 MachinePointerInfo(), MachinePointerInfo()); 8987 ByValArgs.push_back(FIPtr); 8988 } 8989 8990 if (!IsTailCall) 8991 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8992 8993 // Copy argument values to their designated locations. 8994 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8995 SmallVector<SDValue, 8> MemOpChains; 8996 SDValue StackPtr; 8997 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8998 CCValAssign &VA = ArgLocs[i]; 8999 SDValue ArgValue = OutVals[i]; 9000 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9001 9002 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9003 bool IsF64OnRV32DSoftABI = 9004 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9005 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9006 SDValue SplitF64 = DAG.getNode( 9007 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9008 SDValue Lo = SplitF64.getValue(0); 9009 SDValue Hi = SplitF64.getValue(1); 9010 9011 Register RegLo = VA.getLocReg(); 9012 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9013 9014 if (RegLo == RISCV::X17) { 9015 // Second half of f64 is passed on the stack. 9016 // Work out the address of the stack slot. 9017 if (!StackPtr.getNode()) 9018 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9019 // Emit the store. 9020 MemOpChains.push_back( 9021 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9022 } else { 9023 // Second half of f64 is passed in another GPR. 9024 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9025 Register RegHigh = RegLo + 1; 9026 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9027 } 9028 continue; 9029 } 9030 9031 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9032 // as any other MemLoc. 9033 9034 // Promote the value if needed. 9035 // For now, only handle fully promoted and indirect arguments. 9036 if (VA.getLocInfo() == CCValAssign::Indirect) { 9037 // Store the argument in a stack slot and pass its address. 9038 Align StackAlign = 9039 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9040 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9041 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9042 // If the original argument was split (e.g. i128), we need 9043 // to store the required parts of it here (and pass just one address). 9044 // Vectors may be partly split to registers and partly to the stack, in 9045 // which case the base address is partly offset and subsequent stores are 9046 // relative to that. 9047 unsigned ArgIndex = Outs[i].OrigArgIndex; 9048 unsigned ArgPartOffset = Outs[i].PartOffset; 9049 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9050 // Calculate the total size to store. We don't have access to what we're 9051 // actually storing other than performing the loop and collecting the 9052 // info. 9053 SmallVector<std::pair<SDValue, SDValue>> Parts; 9054 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9055 SDValue PartValue = OutVals[i + 1]; 9056 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9057 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9058 EVT PartVT = PartValue.getValueType(); 9059 if (PartVT.isScalableVector()) 9060 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9061 StoredSize += PartVT.getStoreSize(); 9062 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9063 Parts.push_back(std::make_pair(PartValue, Offset)); 9064 ++i; 9065 } 9066 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9067 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9068 MemOpChains.push_back( 9069 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9070 MachinePointerInfo::getFixedStack(MF, FI))); 9071 for (const auto &Part : Parts) { 9072 SDValue PartValue = Part.first; 9073 SDValue PartOffset = Part.second; 9074 SDValue Address = 9075 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9076 MemOpChains.push_back( 9077 DAG.getStore(Chain, DL, PartValue, Address, 9078 MachinePointerInfo::getFixedStack(MF, FI))); 9079 } 9080 ArgValue = SpillSlot; 9081 } else { 9082 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9083 } 9084 9085 // Use local copy if it is a byval arg. 9086 if (Flags.isByVal()) 9087 ArgValue = ByValArgs[j++]; 9088 9089 if (VA.isRegLoc()) { 9090 // Queue up the argument copies and emit them at the end. 9091 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9092 } else { 9093 assert(VA.isMemLoc() && "Argument not register or memory"); 9094 assert(!IsTailCall && "Tail call not allowed if stack is used " 9095 "for passing parameters"); 9096 9097 // Work out the address of the stack slot. 9098 if (!StackPtr.getNode()) 9099 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9100 SDValue Address = 9101 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9102 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9103 9104 // Emit the store. 9105 MemOpChains.push_back( 9106 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9107 } 9108 } 9109 9110 // Join the stores, which are independent of one another. 9111 if (!MemOpChains.empty()) 9112 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9113 9114 SDValue Glue; 9115 9116 // Build a sequence of copy-to-reg nodes, chained and glued together. 9117 for (auto &Reg : RegsToPass) { 9118 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9119 Glue = Chain.getValue(1); 9120 } 9121 9122 // Validate that none of the argument registers have been marked as 9123 // reserved, if so report an error. Do the same for the return address if this 9124 // is not a tailcall. 9125 validateCCReservedRegs(RegsToPass, MF); 9126 if (!IsTailCall && 9127 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9128 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9129 MF.getFunction(), 9130 "Return address register required, but has been reserved."}); 9131 9132 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9133 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9134 // split it and then direct call can be matched by PseudoCALL. 9135 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9136 const GlobalValue *GV = S->getGlobal(); 9137 9138 unsigned OpFlags = RISCVII::MO_CALL; 9139 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9140 OpFlags = RISCVII::MO_PLT; 9141 9142 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9143 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9144 unsigned OpFlags = RISCVII::MO_CALL; 9145 9146 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9147 nullptr)) 9148 OpFlags = RISCVII::MO_PLT; 9149 9150 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9151 } 9152 9153 // The first call operand is the chain and the second is the target address. 9154 SmallVector<SDValue, 8> Ops; 9155 Ops.push_back(Chain); 9156 Ops.push_back(Callee); 9157 9158 // Add argument registers to the end of the list so that they are 9159 // known live into the call. 9160 for (auto &Reg : RegsToPass) 9161 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9162 9163 if (!IsTailCall) { 9164 // Add a register mask operand representing the call-preserved registers. 9165 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9166 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9167 assert(Mask && "Missing call preserved mask for calling convention"); 9168 Ops.push_back(DAG.getRegisterMask(Mask)); 9169 } 9170 9171 // Glue the call to the argument copies, if any. 9172 if (Glue.getNode()) 9173 Ops.push_back(Glue); 9174 9175 // Emit the call. 9176 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9177 9178 if (IsTailCall) { 9179 MF.getFrameInfo().setHasTailCall(); 9180 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9181 } 9182 9183 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9184 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9185 Glue = Chain.getValue(1); 9186 9187 // Mark the end of the call, which is glued to the call itself. 9188 Chain = DAG.getCALLSEQ_END(Chain, 9189 DAG.getConstant(NumBytes, DL, PtrVT, true), 9190 DAG.getConstant(0, DL, PtrVT, true), 9191 Glue, DL); 9192 Glue = Chain.getValue(1); 9193 9194 // Assign locations to each value returned by this call. 9195 SmallVector<CCValAssign, 16> RVLocs; 9196 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9197 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9198 9199 // Copy all of the result registers out of their specified physreg. 9200 for (auto &VA : RVLocs) { 9201 // Copy the value out 9202 SDValue RetValue = 9203 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9204 // Glue the RetValue to the end of the call sequence 9205 Chain = RetValue.getValue(1); 9206 Glue = RetValue.getValue(2); 9207 9208 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9209 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9210 SDValue RetValue2 = 9211 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9212 Chain = RetValue2.getValue(1); 9213 Glue = RetValue2.getValue(2); 9214 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9215 RetValue2); 9216 } 9217 9218 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9219 9220 InVals.push_back(RetValue); 9221 } 9222 9223 return Chain; 9224 } 9225 9226 bool RISCVTargetLowering::CanLowerReturn( 9227 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9228 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9229 SmallVector<CCValAssign, 16> RVLocs; 9230 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9231 9232 Optional<unsigned> FirstMaskArgument; 9233 if (Subtarget.hasVInstructions()) 9234 FirstMaskArgument = preAssignMask(Outs); 9235 9236 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9237 MVT VT = Outs[i].VT; 9238 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9239 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9240 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9241 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9242 *this, FirstMaskArgument)) 9243 return false; 9244 } 9245 return true; 9246 } 9247 9248 SDValue 9249 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9250 bool IsVarArg, 9251 const SmallVectorImpl<ISD::OutputArg> &Outs, 9252 const SmallVectorImpl<SDValue> &OutVals, 9253 const SDLoc &DL, SelectionDAG &DAG) const { 9254 const MachineFunction &MF = DAG.getMachineFunction(); 9255 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9256 9257 // Stores the assignment of the return value to a location. 9258 SmallVector<CCValAssign, 16> RVLocs; 9259 9260 // Info about the registers and stack slot. 9261 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9262 *DAG.getContext()); 9263 9264 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9265 nullptr, CC_RISCV); 9266 9267 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9268 report_fatal_error("GHC functions return void only"); 9269 9270 SDValue Glue; 9271 SmallVector<SDValue, 4> RetOps(1, Chain); 9272 9273 // Copy the result values into the output registers. 9274 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9275 SDValue Val = OutVals[i]; 9276 CCValAssign &VA = RVLocs[i]; 9277 assert(VA.isRegLoc() && "Can only return in registers!"); 9278 9279 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9280 // Handle returning f64 on RV32D with a soft float ABI. 9281 assert(VA.isRegLoc() && "Expected return via registers"); 9282 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9283 DAG.getVTList(MVT::i32, MVT::i32), Val); 9284 SDValue Lo = SplitF64.getValue(0); 9285 SDValue Hi = SplitF64.getValue(1); 9286 Register RegLo = VA.getLocReg(); 9287 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9288 Register RegHi = RegLo + 1; 9289 9290 if (STI.isRegisterReservedByUser(RegLo) || 9291 STI.isRegisterReservedByUser(RegHi)) 9292 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9293 MF.getFunction(), 9294 "Return value register required, but has been reserved."}); 9295 9296 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9297 Glue = Chain.getValue(1); 9298 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9299 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9300 Glue = Chain.getValue(1); 9301 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9302 } else { 9303 // Handle a 'normal' return. 9304 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9305 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9306 9307 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9308 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9309 MF.getFunction(), 9310 "Return value register required, but has been reserved."}); 9311 9312 // Guarantee that all emitted copies are stuck together. 9313 Glue = Chain.getValue(1); 9314 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9315 } 9316 } 9317 9318 RetOps[0] = Chain; // Update chain. 9319 9320 // Add the glue node if we have it. 9321 if (Glue.getNode()) { 9322 RetOps.push_back(Glue); 9323 } 9324 9325 unsigned RetOpc = RISCVISD::RET_FLAG; 9326 // Interrupt service routines use different return instructions. 9327 const Function &Func = DAG.getMachineFunction().getFunction(); 9328 if (Func.hasFnAttribute("interrupt")) { 9329 if (!Func.getReturnType()->isVoidTy()) 9330 report_fatal_error( 9331 "Functions with the interrupt attribute must have void return type!"); 9332 9333 MachineFunction &MF = DAG.getMachineFunction(); 9334 StringRef Kind = 9335 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9336 9337 if (Kind == "user") 9338 RetOpc = RISCVISD::URET_FLAG; 9339 else if (Kind == "supervisor") 9340 RetOpc = RISCVISD::SRET_FLAG; 9341 else 9342 RetOpc = RISCVISD::MRET_FLAG; 9343 } 9344 9345 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9346 } 9347 9348 void RISCVTargetLowering::validateCCReservedRegs( 9349 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9350 MachineFunction &MF) const { 9351 const Function &F = MF.getFunction(); 9352 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9353 9354 if (llvm::any_of(Regs, [&STI](auto Reg) { 9355 return STI.isRegisterReservedByUser(Reg.first); 9356 })) 9357 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9358 F, "Argument register required, but has been reserved."}); 9359 } 9360 9361 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9362 return CI->isTailCall(); 9363 } 9364 9365 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9366 #define NODE_NAME_CASE(NODE) \ 9367 case RISCVISD::NODE: \ 9368 return "RISCVISD::" #NODE; 9369 // clang-format off 9370 switch ((RISCVISD::NodeType)Opcode) { 9371 case RISCVISD::FIRST_NUMBER: 9372 break; 9373 NODE_NAME_CASE(RET_FLAG) 9374 NODE_NAME_CASE(URET_FLAG) 9375 NODE_NAME_CASE(SRET_FLAG) 9376 NODE_NAME_CASE(MRET_FLAG) 9377 NODE_NAME_CASE(CALL) 9378 NODE_NAME_CASE(SELECT_CC) 9379 NODE_NAME_CASE(BR_CC) 9380 NODE_NAME_CASE(BuildPairF64) 9381 NODE_NAME_CASE(SplitF64) 9382 NODE_NAME_CASE(TAIL) 9383 NODE_NAME_CASE(MULHSU) 9384 NODE_NAME_CASE(SLLW) 9385 NODE_NAME_CASE(SRAW) 9386 NODE_NAME_CASE(SRLW) 9387 NODE_NAME_CASE(DIVW) 9388 NODE_NAME_CASE(DIVUW) 9389 NODE_NAME_CASE(REMUW) 9390 NODE_NAME_CASE(ROLW) 9391 NODE_NAME_CASE(RORW) 9392 NODE_NAME_CASE(CLZW) 9393 NODE_NAME_CASE(CTZW) 9394 NODE_NAME_CASE(FSLW) 9395 NODE_NAME_CASE(FSRW) 9396 NODE_NAME_CASE(FSL) 9397 NODE_NAME_CASE(FSR) 9398 NODE_NAME_CASE(FMV_H_X) 9399 NODE_NAME_CASE(FMV_X_ANYEXTH) 9400 NODE_NAME_CASE(FMV_W_X_RV64) 9401 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9402 NODE_NAME_CASE(FCVT_X_RTZ) 9403 NODE_NAME_CASE(FCVT_XU_RTZ) 9404 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9405 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9406 NODE_NAME_CASE(READ_CYCLE_WIDE) 9407 NODE_NAME_CASE(GREV) 9408 NODE_NAME_CASE(GREVW) 9409 NODE_NAME_CASE(GORC) 9410 NODE_NAME_CASE(GORCW) 9411 NODE_NAME_CASE(SHFL) 9412 NODE_NAME_CASE(SHFLW) 9413 NODE_NAME_CASE(UNSHFL) 9414 NODE_NAME_CASE(UNSHFLW) 9415 NODE_NAME_CASE(BCOMPRESS) 9416 NODE_NAME_CASE(BCOMPRESSW) 9417 NODE_NAME_CASE(BDECOMPRESS) 9418 NODE_NAME_CASE(BDECOMPRESSW) 9419 NODE_NAME_CASE(VMV_V_X_VL) 9420 NODE_NAME_CASE(VFMV_V_F_VL) 9421 NODE_NAME_CASE(VMV_X_S) 9422 NODE_NAME_CASE(VMV_S_X_VL) 9423 NODE_NAME_CASE(VFMV_S_F_VL) 9424 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9425 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9426 NODE_NAME_CASE(READ_VLENB) 9427 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9428 NODE_NAME_CASE(VSLIDEUP_VL) 9429 NODE_NAME_CASE(VSLIDE1UP_VL) 9430 NODE_NAME_CASE(VSLIDEDOWN_VL) 9431 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9432 NODE_NAME_CASE(VID_VL) 9433 NODE_NAME_CASE(VFNCVT_ROD_VL) 9434 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9435 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9436 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9437 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9438 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9439 NODE_NAME_CASE(VECREDUCE_AND_VL) 9440 NODE_NAME_CASE(VECREDUCE_OR_VL) 9441 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9442 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9443 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9444 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9445 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9446 NODE_NAME_CASE(ADD_VL) 9447 NODE_NAME_CASE(AND_VL) 9448 NODE_NAME_CASE(MUL_VL) 9449 NODE_NAME_CASE(OR_VL) 9450 NODE_NAME_CASE(SDIV_VL) 9451 NODE_NAME_CASE(SHL_VL) 9452 NODE_NAME_CASE(SREM_VL) 9453 NODE_NAME_CASE(SRA_VL) 9454 NODE_NAME_CASE(SRL_VL) 9455 NODE_NAME_CASE(SUB_VL) 9456 NODE_NAME_CASE(UDIV_VL) 9457 NODE_NAME_CASE(UREM_VL) 9458 NODE_NAME_CASE(XOR_VL) 9459 NODE_NAME_CASE(SADDSAT_VL) 9460 NODE_NAME_CASE(UADDSAT_VL) 9461 NODE_NAME_CASE(SSUBSAT_VL) 9462 NODE_NAME_CASE(USUBSAT_VL) 9463 NODE_NAME_CASE(FADD_VL) 9464 NODE_NAME_CASE(FSUB_VL) 9465 NODE_NAME_CASE(FMUL_VL) 9466 NODE_NAME_CASE(FDIV_VL) 9467 NODE_NAME_CASE(FNEG_VL) 9468 NODE_NAME_CASE(FABS_VL) 9469 NODE_NAME_CASE(FSQRT_VL) 9470 NODE_NAME_CASE(FMA_VL) 9471 NODE_NAME_CASE(FCOPYSIGN_VL) 9472 NODE_NAME_CASE(SMIN_VL) 9473 NODE_NAME_CASE(SMAX_VL) 9474 NODE_NAME_CASE(UMIN_VL) 9475 NODE_NAME_CASE(UMAX_VL) 9476 NODE_NAME_CASE(FMINNUM_VL) 9477 NODE_NAME_CASE(FMAXNUM_VL) 9478 NODE_NAME_CASE(MULHS_VL) 9479 NODE_NAME_CASE(MULHU_VL) 9480 NODE_NAME_CASE(FP_TO_SINT_VL) 9481 NODE_NAME_CASE(FP_TO_UINT_VL) 9482 NODE_NAME_CASE(SINT_TO_FP_VL) 9483 NODE_NAME_CASE(UINT_TO_FP_VL) 9484 NODE_NAME_CASE(FP_EXTEND_VL) 9485 NODE_NAME_CASE(FP_ROUND_VL) 9486 NODE_NAME_CASE(VWMUL_VL) 9487 NODE_NAME_CASE(VWMULU_VL) 9488 NODE_NAME_CASE(SETCC_VL) 9489 NODE_NAME_CASE(VSELECT_VL) 9490 NODE_NAME_CASE(VMAND_VL) 9491 NODE_NAME_CASE(VMOR_VL) 9492 NODE_NAME_CASE(VMXOR_VL) 9493 NODE_NAME_CASE(VMCLR_VL) 9494 NODE_NAME_CASE(VMSET_VL) 9495 NODE_NAME_CASE(VRGATHER_VX_VL) 9496 NODE_NAME_CASE(VRGATHER_VV_VL) 9497 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9498 NODE_NAME_CASE(VSEXT_VL) 9499 NODE_NAME_CASE(VZEXT_VL) 9500 NODE_NAME_CASE(VCPOP_VL) 9501 NODE_NAME_CASE(VLE_VL) 9502 NODE_NAME_CASE(VSE_VL) 9503 NODE_NAME_CASE(READ_CSR) 9504 NODE_NAME_CASE(WRITE_CSR) 9505 NODE_NAME_CASE(SWAP_CSR) 9506 } 9507 // clang-format on 9508 return nullptr; 9509 #undef NODE_NAME_CASE 9510 } 9511 9512 /// getConstraintType - Given a constraint letter, return the type of 9513 /// constraint it is for this target. 9514 RISCVTargetLowering::ConstraintType 9515 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9516 if (Constraint.size() == 1) { 9517 switch (Constraint[0]) { 9518 default: 9519 break; 9520 case 'f': 9521 return C_RegisterClass; 9522 case 'I': 9523 case 'J': 9524 case 'K': 9525 return C_Immediate; 9526 case 'A': 9527 return C_Memory; 9528 case 'S': // A symbolic address 9529 return C_Other; 9530 } 9531 } else { 9532 if (Constraint == "vr" || Constraint == "vm") 9533 return C_RegisterClass; 9534 } 9535 return TargetLowering::getConstraintType(Constraint); 9536 } 9537 9538 std::pair<unsigned, const TargetRegisterClass *> 9539 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9540 StringRef Constraint, 9541 MVT VT) const { 9542 // First, see if this is a constraint that directly corresponds to a 9543 // RISCV register class. 9544 if (Constraint.size() == 1) { 9545 switch (Constraint[0]) { 9546 case 'r': 9547 return std::make_pair(0U, &RISCV::GPRRegClass); 9548 case 'f': 9549 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9550 return std::make_pair(0U, &RISCV::FPR16RegClass); 9551 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9552 return std::make_pair(0U, &RISCV::FPR32RegClass); 9553 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9554 return std::make_pair(0U, &RISCV::FPR64RegClass); 9555 break; 9556 default: 9557 break; 9558 } 9559 } else { 9560 if (Constraint == "vr") { 9561 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9562 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9563 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9564 return std::make_pair(0U, RC); 9565 } 9566 } else if (Constraint == "vm") { 9567 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9568 return std::make_pair(0U, &RISCV::VMRegClass); 9569 } 9570 } 9571 9572 // Clang will correctly decode the usage of register name aliases into their 9573 // official names. However, other frontends like `rustc` do not. This allows 9574 // users of these frontends to use the ABI names for registers in LLVM-style 9575 // register constraints. 9576 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9577 .Case("{zero}", RISCV::X0) 9578 .Case("{ra}", RISCV::X1) 9579 .Case("{sp}", RISCV::X2) 9580 .Case("{gp}", RISCV::X3) 9581 .Case("{tp}", RISCV::X4) 9582 .Case("{t0}", RISCV::X5) 9583 .Case("{t1}", RISCV::X6) 9584 .Case("{t2}", RISCV::X7) 9585 .Cases("{s0}", "{fp}", RISCV::X8) 9586 .Case("{s1}", RISCV::X9) 9587 .Case("{a0}", RISCV::X10) 9588 .Case("{a1}", RISCV::X11) 9589 .Case("{a2}", RISCV::X12) 9590 .Case("{a3}", RISCV::X13) 9591 .Case("{a4}", RISCV::X14) 9592 .Case("{a5}", RISCV::X15) 9593 .Case("{a6}", RISCV::X16) 9594 .Case("{a7}", RISCV::X17) 9595 .Case("{s2}", RISCV::X18) 9596 .Case("{s3}", RISCV::X19) 9597 .Case("{s4}", RISCV::X20) 9598 .Case("{s5}", RISCV::X21) 9599 .Case("{s6}", RISCV::X22) 9600 .Case("{s7}", RISCV::X23) 9601 .Case("{s8}", RISCV::X24) 9602 .Case("{s9}", RISCV::X25) 9603 .Case("{s10}", RISCV::X26) 9604 .Case("{s11}", RISCV::X27) 9605 .Case("{t3}", RISCV::X28) 9606 .Case("{t4}", RISCV::X29) 9607 .Case("{t5}", RISCV::X30) 9608 .Case("{t6}", RISCV::X31) 9609 .Default(RISCV::NoRegister); 9610 if (XRegFromAlias != RISCV::NoRegister) 9611 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9612 9613 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9614 // TableGen record rather than the AsmName to choose registers for InlineAsm 9615 // constraints, plus we want to match those names to the widest floating point 9616 // register type available, manually select floating point registers here. 9617 // 9618 // The second case is the ABI name of the register, so that frontends can also 9619 // use the ABI names in register constraint lists. 9620 if (Subtarget.hasStdExtF()) { 9621 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9622 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9623 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9624 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9625 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9626 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9627 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9628 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9629 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9630 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9631 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9632 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9633 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9634 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9635 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9636 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9637 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9638 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9639 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9640 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9641 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9642 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9643 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9644 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9645 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9646 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9647 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9648 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9649 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9650 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9651 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9652 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9653 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9654 .Default(RISCV::NoRegister); 9655 if (FReg != RISCV::NoRegister) { 9656 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9657 if (Subtarget.hasStdExtD()) { 9658 unsigned RegNo = FReg - RISCV::F0_F; 9659 unsigned DReg = RISCV::F0_D + RegNo; 9660 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9661 } 9662 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9663 } 9664 } 9665 9666 if (Subtarget.hasVInstructions()) { 9667 Register VReg = StringSwitch<Register>(Constraint.lower()) 9668 .Case("{v0}", RISCV::V0) 9669 .Case("{v1}", RISCV::V1) 9670 .Case("{v2}", RISCV::V2) 9671 .Case("{v3}", RISCV::V3) 9672 .Case("{v4}", RISCV::V4) 9673 .Case("{v5}", RISCV::V5) 9674 .Case("{v6}", RISCV::V6) 9675 .Case("{v7}", RISCV::V7) 9676 .Case("{v8}", RISCV::V8) 9677 .Case("{v9}", RISCV::V9) 9678 .Case("{v10}", RISCV::V10) 9679 .Case("{v11}", RISCV::V11) 9680 .Case("{v12}", RISCV::V12) 9681 .Case("{v13}", RISCV::V13) 9682 .Case("{v14}", RISCV::V14) 9683 .Case("{v15}", RISCV::V15) 9684 .Case("{v16}", RISCV::V16) 9685 .Case("{v17}", RISCV::V17) 9686 .Case("{v18}", RISCV::V18) 9687 .Case("{v19}", RISCV::V19) 9688 .Case("{v20}", RISCV::V20) 9689 .Case("{v21}", RISCV::V21) 9690 .Case("{v22}", RISCV::V22) 9691 .Case("{v23}", RISCV::V23) 9692 .Case("{v24}", RISCV::V24) 9693 .Case("{v25}", RISCV::V25) 9694 .Case("{v26}", RISCV::V26) 9695 .Case("{v27}", RISCV::V27) 9696 .Case("{v28}", RISCV::V28) 9697 .Case("{v29}", RISCV::V29) 9698 .Case("{v30}", RISCV::V30) 9699 .Case("{v31}", RISCV::V31) 9700 .Default(RISCV::NoRegister); 9701 if (VReg != RISCV::NoRegister) { 9702 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9703 return std::make_pair(VReg, &RISCV::VMRegClass); 9704 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9705 return std::make_pair(VReg, &RISCV::VRRegClass); 9706 for (const auto *RC : 9707 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9708 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9709 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9710 return std::make_pair(VReg, RC); 9711 } 9712 } 9713 } 9714 } 9715 9716 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9717 } 9718 9719 unsigned 9720 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9721 // Currently only support length 1 constraints. 9722 if (ConstraintCode.size() == 1) { 9723 switch (ConstraintCode[0]) { 9724 case 'A': 9725 return InlineAsm::Constraint_A; 9726 default: 9727 break; 9728 } 9729 } 9730 9731 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9732 } 9733 9734 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9735 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9736 SelectionDAG &DAG) const { 9737 // Currently only support length 1 constraints. 9738 if (Constraint.length() == 1) { 9739 switch (Constraint[0]) { 9740 case 'I': 9741 // Validate & create a 12-bit signed immediate operand. 9742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9743 uint64_t CVal = C->getSExtValue(); 9744 if (isInt<12>(CVal)) 9745 Ops.push_back( 9746 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9747 } 9748 return; 9749 case 'J': 9750 // Validate & create an integer zero operand. 9751 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9752 if (C->getZExtValue() == 0) 9753 Ops.push_back( 9754 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9755 return; 9756 case 'K': 9757 // Validate & create a 5-bit unsigned immediate operand. 9758 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9759 uint64_t CVal = C->getZExtValue(); 9760 if (isUInt<5>(CVal)) 9761 Ops.push_back( 9762 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9763 } 9764 return; 9765 case 'S': 9766 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9767 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9768 GA->getValueType(0))); 9769 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9770 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9771 BA->getValueType(0))); 9772 } 9773 return; 9774 default: 9775 break; 9776 } 9777 } 9778 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9779 } 9780 9781 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9782 Instruction *Inst, 9783 AtomicOrdering Ord) const { 9784 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9785 return Builder.CreateFence(Ord); 9786 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9787 return Builder.CreateFence(AtomicOrdering::Release); 9788 return nullptr; 9789 } 9790 9791 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9792 Instruction *Inst, 9793 AtomicOrdering Ord) const { 9794 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9795 return Builder.CreateFence(AtomicOrdering::Acquire); 9796 return nullptr; 9797 } 9798 9799 TargetLowering::AtomicExpansionKind 9800 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9801 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9802 // point operations can't be used in an lr/sc sequence without breaking the 9803 // forward-progress guarantee. 9804 if (AI->isFloatingPointOperation()) 9805 return AtomicExpansionKind::CmpXChg; 9806 9807 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9808 if (Size == 8 || Size == 16) 9809 return AtomicExpansionKind::MaskedIntrinsic; 9810 return AtomicExpansionKind::None; 9811 } 9812 9813 static Intrinsic::ID 9814 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9815 if (XLen == 32) { 9816 switch (BinOp) { 9817 default: 9818 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9819 case AtomicRMWInst::Xchg: 9820 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9821 case AtomicRMWInst::Add: 9822 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9823 case AtomicRMWInst::Sub: 9824 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9825 case AtomicRMWInst::Nand: 9826 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9827 case AtomicRMWInst::Max: 9828 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9829 case AtomicRMWInst::Min: 9830 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9831 case AtomicRMWInst::UMax: 9832 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9833 case AtomicRMWInst::UMin: 9834 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9835 } 9836 } 9837 9838 if (XLen == 64) { 9839 switch (BinOp) { 9840 default: 9841 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9842 case AtomicRMWInst::Xchg: 9843 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9844 case AtomicRMWInst::Add: 9845 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9846 case AtomicRMWInst::Sub: 9847 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9848 case AtomicRMWInst::Nand: 9849 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9850 case AtomicRMWInst::Max: 9851 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9852 case AtomicRMWInst::Min: 9853 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9854 case AtomicRMWInst::UMax: 9855 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9856 case AtomicRMWInst::UMin: 9857 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9858 } 9859 } 9860 9861 llvm_unreachable("Unexpected XLen\n"); 9862 } 9863 9864 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9865 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9866 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9867 unsigned XLen = Subtarget.getXLen(); 9868 Value *Ordering = 9869 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9870 Type *Tys[] = {AlignedAddr->getType()}; 9871 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9872 AI->getModule(), 9873 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9874 9875 if (XLen == 64) { 9876 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9877 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9878 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9879 } 9880 9881 Value *Result; 9882 9883 // Must pass the shift amount needed to sign extend the loaded value prior 9884 // to performing a signed comparison for min/max. ShiftAmt is the number of 9885 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9886 // is the number of bits to left+right shift the value in order to 9887 // sign-extend. 9888 if (AI->getOperation() == AtomicRMWInst::Min || 9889 AI->getOperation() == AtomicRMWInst::Max) { 9890 const DataLayout &DL = AI->getModule()->getDataLayout(); 9891 unsigned ValWidth = 9892 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9893 Value *SextShamt = 9894 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9895 Result = Builder.CreateCall(LrwOpScwLoop, 9896 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9897 } else { 9898 Result = 9899 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9900 } 9901 9902 if (XLen == 64) 9903 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9904 return Result; 9905 } 9906 9907 TargetLowering::AtomicExpansionKind 9908 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9909 AtomicCmpXchgInst *CI) const { 9910 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9911 if (Size == 8 || Size == 16) 9912 return AtomicExpansionKind::MaskedIntrinsic; 9913 return AtomicExpansionKind::None; 9914 } 9915 9916 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9917 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9918 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9919 unsigned XLen = Subtarget.getXLen(); 9920 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9921 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9922 if (XLen == 64) { 9923 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9924 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9925 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9926 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9927 } 9928 Type *Tys[] = {AlignedAddr->getType()}; 9929 Function *MaskedCmpXchg = 9930 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9931 Value *Result = Builder.CreateCall( 9932 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9933 if (XLen == 64) 9934 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9935 return Result; 9936 } 9937 9938 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9939 return false; 9940 } 9941 9942 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 9943 EVT VT) const { 9944 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 9945 return false; 9946 9947 switch (FPVT.getSimpleVT().SimpleTy) { 9948 case MVT::f16: 9949 return Subtarget.hasStdExtZfh(); 9950 case MVT::f32: 9951 return Subtarget.hasStdExtF(); 9952 case MVT::f64: 9953 return Subtarget.hasStdExtD(); 9954 default: 9955 return false; 9956 } 9957 } 9958 9959 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9960 EVT VT) const { 9961 VT = VT.getScalarType(); 9962 9963 if (!VT.isSimple()) 9964 return false; 9965 9966 switch (VT.getSimpleVT().SimpleTy) { 9967 case MVT::f16: 9968 return Subtarget.hasStdExtZfh(); 9969 case MVT::f32: 9970 return Subtarget.hasStdExtF(); 9971 case MVT::f64: 9972 return Subtarget.hasStdExtD(); 9973 default: 9974 break; 9975 } 9976 9977 return false; 9978 } 9979 9980 Register RISCVTargetLowering::getExceptionPointerRegister( 9981 const Constant *PersonalityFn) const { 9982 return RISCV::X10; 9983 } 9984 9985 Register RISCVTargetLowering::getExceptionSelectorRegister( 9986 const Constant *PersonalityFn) const { 9987 return RISCV::X11; 9988 } 9989 9990 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9991 // Return false to suppress the unnecessary extensions if the LibCall 9992 // arguments or return value is f32 type for LP64 ABI. 9993 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9994 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9995 return false; 9996 9997 return true; 9998 } 9999 10000 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10001 if (Subtarget.is64Bit() && Type == MVT::i32) 10002 return true; 10003 10004 return IsSigned; 10005 } 10006 10007 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10008 SDValue C) const { 10009 // Check integral scalar types. 10010 if (VT.isScalarInteger()) { 10011 // Omit the optimization if the sub target has the M extension and the data 10012 // size exceeds XLen. 10013 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10014 return false; 10015 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10016 // Break the MUL to a SLLI and an ADD/SUB. 10017 const APInt &Imm = ConstNode->getAPIntValue(); 10018 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10019 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10020 return true; 10021 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10022 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10023 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10024 (Imm - 8).isPowerOf2())) 10025 return true; 10026 // Omit the following optimization if the sub target has the M extension 10027 // and the data size >= XLen. 10028 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10029 return false; 10030 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10031 // a pair of LUI/ADDI. 10032 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10033 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10034 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10035 (1 - ImmS).isPowerOf2()) 10036 return true; 10037 } 10038 } 10039 } 10040 10041 return false; 10042 } 10043 10044 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10045 const SDValue &AddNode, const SDValue &ConstNode) const { 10046 // Let the DAGCombiner decide for vectors. 10047 EVT VT = AddNode.getValueType(); 10048 if (VT.isVector()) 10049 return true; 10050 10051 // Let the DAGCombiner decide for larger types. 10052 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10053 return true; 10054 10055 // It is worse if c1 is simm12 while c1*c2 is not. 10056 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10057 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10058 const APInt &C1 = C1Node->getAPIntValue(); 10059 const APInt &C2 = C2Node->getAPIntValue(); 10060 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10061 return false; 10062 10063 // Default to true and let the DAGCombiner decide. 10064 return true; 10065 } 10066 10067 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10068 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10069 bool *Fast) const { 10070 if (!VT.isVector()) 10071 return false; 10072 10073 EVT ElemVT = VT.getVectorElementType(); 10074 if (Alignment >= ElemVT.getStoreSize()) { 10075 if (Fast) 10076 *Fast = true; 10077 return true; 10078 } 10079 10080 return false; 10081 } 10082 10083 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10084 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10085 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10086 bool IsABIRegCopy = CC.hasValue(); 10087 EVT ValueVT = Val.getValueType(); 10088 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10089 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10090 // and cast to f32. 10091 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10092 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10093 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10094 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10095 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10096 Parts[0] = Val; 10097 return true; 10098 } 10099 10100 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10101 LLVMContext &Context = *DAG.getContext(); 10102 EVT ValueEltVT = ValueVT.getVectorElementType(); 10103 EVT PartEltVT = PartVT.getVectorElementType(); 10104 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10105 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10106 if (PartVTBitSize % ValueVTBitSize == 0) { 10107 // If the element types are different, bitcast to the same element type of 10108 // PartVT first. 10109 if (ValueEltVT != PartEltVT) { 10110 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 10111 assert(Count != 0 && "The number of element should not be zero."); 10112 EVT SameEltTypeVT = 10113 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 10114 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10115 } 10116 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10117 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 10118 Parts[0] = Val; 10119 return true; 10120 } 10121 } 10122 return false; 10123 } 10124 10125 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10126 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10127 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10128 bool IsABIRegCopy = CC.hasValue(); 10129 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10130 SDValue Val = Parts[0]; 10131 10132 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10133 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10134 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10135 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10136 return Val; 10137 } 10138 10139 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10140 LLVMContext &Context = *DAG.getContext(); 10141 SDValue Val = Parts[0]; 10142 EVT ValueEltVT = ValueVT.getVectorElementType(); 10143 EVT PartEltVT = PartVT.getVectorElementType(); 10144 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10145 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10146 if (PartVTBitSize % ValueVTBitSize == 0) { 10147 EVT SameEltTypeVT = ValueVT; 10148 // If the element types are different, convert it to the same element type 10149 // of PartVT. 10150 if (ValueEltVT != PartEltVT) { 10151 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 10152 assert(Count != 0 && "The number of element should not be zero."); 10153 SameEltTypeVT = 10154 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 10155 } 10156 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 10157 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 10158 if (ValueEltVT != PartEltVT) 10159 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 10160 return Val; 10161 } 10162 } 10163 return SDValue(); 10164 } 10165 10166 #define GET_REGISTER_MATCHER 10167 #include "RISCVGenAsmMatcher.inc" 10168 10169 Register 10170 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10171 const MachineFunction &MF) const { 10172 Register Reg = MatchRegisterAltName(RegName); 10173 if (Reg == RISCV::NoRegister) 10174 Reg = MatchRegisterName(RegName); 10175 if (Reg == RISCV::NoRegister) 10176 report_fatal_error( 10177 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10178 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10179 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10180 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10181 StringRef(RegName) + "\".")); 10182 return Reg; 10183 } 10184 10185 namespace llvm { 10186 namespace RISCVVIntrinsicsTable { 10187 10188 #define GET_RISCVVIntrinsicsTable_IMPL 10189 #include "RISCVGenSearchableTables.inc" 10190 10191 } // namespace RISCVVIntrinsicsTable 10192 10193 } // namespace llvm 10194