1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasStdExtV()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) 132 addRegClassForRVV(VT); 133 134 if (Subtarget.hasStdExtZfh()) 135 for (MVT VT : F16VecVTs) 136 addRegClassForRVV(VT); 137 138 if (Subtarget.hasStdExtF()) 139 for (MVT VT : F32VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasStdExtD()) 143 for (MVT VT : F64VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.useRVVForFixedLengthVectors()) { 147 auto addRegClassForFixedVectors = [this](MVT VT) { 148 MVT ContainerVT = getContainerForFixedLengthVector(VT); 149 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 150 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 151 addRegisterClass(VT, TRI.getRegClass(RCID)); 152 }; 153 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 154 if (useRVVForFixedLengthVectorVT(VT)) 155 addRegClassForFixedVectors(VT); 156 157 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 } 161 } 162 163 // Compute derived properties from the register classes. 164 computeRegisterProperties(STI.getRegisterInfo()); 165 166 setStackPointerRegisterToSaveRestore(RISCV::X2); 167 168 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 169 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 170 171 // TODO: add all necessary setOperationAction calls. 172 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 setOperationAction(ISD::BR_CC, XLenVT, Expand); 176 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 177 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 178 179 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 180 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 181 182 setOperationAction(ISD::VASTART, MVT::Other, Custom); 183 setOperationAction(ISD::VAARG, MVT::Other, Expand); 184 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 185 setOperationAction(ISD::VAEND, MVT::Other, Expand); 186 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 if (!Subtarget.hasStdExtZbb()) { 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 191 } 192 193 if (Subtarget.is64Bit()) { 194 setOperationAction(ISD::ADD, MVT::i32, Custom); 195 setOperationAction(ISD::SUB, MVT::i32, Custom); 196 setOperationAction(ISD::SHL, MVT::i32, Custom); 197 setOperationAction(ISD::SRA, MVT::i32, Custom); 198 setOperationAction(ISD::SRL, MVT::i32, Custom); 199 200 setOperationAction(ISD::UADDO, MVT::i32, Custom); 201 setOperationAction(ISD::USUBO, MVT::i32, Custom); 202 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 203 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 204 } else { 205 setLibcallName(RTLIB::SHL_I128, nullptr); 206 setLibcallName(RTLIB::SRL_I128, nullptr); 207 setLibcallName(RTLIB::SRA_I128, nullptr); 208 setLibcallName(RTLIB::MUL_I128, nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction(ISD::MUL, XLenVT, Expand); 214 setOperationAction(ISD::MULHS, XLenVT, Expand); 215 setOperationAction(ISD::MULHU, XLenVT, Expand); 216 setOperationAction(ISD::SDIV, XLenVT, Expand); 217 setOperationAction(ISD::UDIV, XLenVT, Expand); 218 setOperationAction(ISD::SREM, XLenVT, Expand); 219 setOperationAction(ISD::UREM, XLenVT, Expand); 220 } else { 221 if (Subtarget.is64Bit()) { 222 setOperationAction(ISD::MUL, MVT::i32, Custom); 223 setOperationAction(ISD::MUL, MVT::i128, Custom); 224 225 setOperationAction(ISD::SDIV, MVT::i8, Custom); 226 setOperationAction(ISD::UDIV, MVT::i8, Custom); 227 setOperationAction(ISD::UREM, MVT::i8, Custom); 228 setOperationAction(ISD::SDIV, MVT::i16, Custom); 229 setOperationAction(ISD::UDIV, MVT::i16, Custom); 230 setOperationAction(ISD::UREM, MVT::i16, Custom); 231 setOperationAction(ISD::SDIV, MVT::i32, Custom); 232 setOperationAction(ISD::UDIV, MVT::i32, Custom); 233 setOperationAction(ISD::UREM, MVT::i32, Custom); 234 } else { 235 setOperationAction(ISD::MUL, MVT::i64, Custom); 236 } 237 } 238 239 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 241 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 242 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 243 244 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 246 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 247 248 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 249 if (Subtarget.is64Bit()) { 250 setOperationAction(ISD::ROTL, MVT::i32, Custom); 251 setOperationAction(ISD::ROTR, MVT::i32, Custom); 252 } 253 } else { 254 setOperationAction(ISD::ROTL, XLenVT, Expand); 255 setOperationAction(ISD::ROTR, XLenVT, Expand); 256 } 257 258 if (Subtarget.hasStdExtZbp()) { 259 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 260 // more combining. 261 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 262 setOperationAction(ISD::BSWAP, XLenVT, Custom); 263 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 264 // BSWAP i8 doesn't exist. 265 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 266 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 267 268 if (Subtarget.is64Bit()) { 269 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 271 } 272 } else { 273 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 274 // pattern match it directly in isel. 275 setOperationAction(ISD::BSWAP, XLenVT, 276 Subtarget.hasStdExtZbb() ? Legal : Expand); 277 } 278 279 if (Subtarget.hasStdExtZbb()) { 280 setOperationAction(ISD::SMIN, XLenVT, Legal); 281 setOperationAction(ISD::SMAX, XLenVT, Legal); 282 setOperationAction(ISD::UMIN, XLenVT, Legal); 283 setOperationAction(ISD::UMAX, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) { 286 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 287 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 288 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 290 } 291 } else { 292 setOperationAction(ISD::CTTZ, XLenVT, Expand); 293 setOperationAction(ISD::CTLZ, XLenVT, Expand); 294 setOperationAction(ISD::CTPOP, XLenVT, Expand); 295 } 296 297 if (Subtarget.hasStdExtZbt()) { 298 setOperationAction(ISD::FSHL, XLenVT, Custom); 299 setOperationAction(ISD::FSHR, XLenVT, Custom); 300 setOperationAction(ISD::SELECT, XLenVT, Legal); 301 302 if (Subtarget.is64Bit()) { 303 setOperationAction(ISD::FSHL, MVT::i32, Custom); 304 setOperationAction(ISD::FSHR, MVT::i32, Custom); 305 } 306 } else { 307 setOperationAction(ISD::SELECT, XLenVT, Custom); 308 } 309 310 static const ISD::CondCode FPCCToExpand[] = { 311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 314 315 static const ISD::NodeType FPOpToExpand[] = { 316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 318 319 if (Subtarget.hasStdExtZfh()) 320 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 321 322 if (Subtarget.hasStdExtZfh()) { 323 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 325 setOperationAction(ISD::LRINT, MVT::f16, Legal); 326 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 327 setOperationAction(ISD::LROUND, MVT::f16, Legal); 328 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f16, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 332 setOperationAction(ISD::SELECT, MVT::f16, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f16, Expand); 336 } 337 338 if (Subtarget.hasStdExtF()) { 339 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 340 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 341 setOperationAction(ISD::LRINT, MVT::f32, Legal); 342 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 343 setOperationAction(ISD::LROUND, MVT::f32, Legal); 344 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 348 setOperationAction(ISD::SELECT, MVT::f32, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 350 for (auto Op : FPOpToExpand) 351 setOperationAction(Op, MVT::f32, Expand); 352 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 353 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 354 } 355 356 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 357 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 358 359 if (Subtarget.hasStdExtD()) { 360 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 361 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 362 setOperationAction(ISD::LRINT, MVT::f64, Legal); 363 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 364 setOperationAction(ISD::LROUND, MVT::f64, Legal); 365 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 366 for (auto CC : FPCCToExpand) 367 setCondCodeAction(CC, MVT::f64, Expand); 368 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Custom); 370 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 373 for (auto Op : FPOpToExpand) 374 setOperationAction(Op, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 377 } 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 383 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 384 } 385 386 if (Subtarget.hasStdExtF()) { 387 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 388 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 389 390 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 391 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 392 } 393 394 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 395 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 396 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 397 setOperationAction(ISD::JumpTable, XLenVT, Custom); 398 399 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction(ISD::TRAP, MVT::Other, Legal); 407 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 409 if (Subtarget.is64Bit()) 410 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 411 412 if (Subtarget.hasStdExtA()) { 413 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 414 setMinCmpXchgSizeInBits(32); 415 } else { 416 setMaxAtomicSizeInBitsSupported(0); 417 } 418 419 setBooleanContents(ZeroOrOneBooleanContent); 420 421 if (Subtarget.hasStdExtV()) { 422 setBooleanVectorContents(ZeroOrOneBooleanContent); 423 424 setOperationAction(ISD::VSCALE, XLenVT, Custom); 425 426 // RVV intrinsics may have illegal operands. 427 // We also need to custom legalize vmv.x.s. 428 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 429 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 432 if (Subtarget.is64Bit()) { 433 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 434 } else { 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 436 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 437 } 438 439 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 440 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 441 442 static const unsigned IntegerVPOps[] = { 443 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 444 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 445 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 446 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 447 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 448 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 449 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 450 451 static const unsigned FloatingPointVPOps[] = { 452 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 453 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 454 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 455 456 if (!Subtarget.is64Bit()) { 457 // We must custom-lower certain vXi64 operations on RV32 due to the vector 458 // element type being illegal. 459 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 460 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 461 462 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 463 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 464 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 465 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 466 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 470 471 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 472 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 473 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 474 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 475 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 479 } 480 481 for (MVT VT : BoolVecVTs) { 482 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 483 484 // Mask VTs are custom-expanded into a series of standard nodes 485 setOperationAction(ISD::TRUNCATE, VT, Custom); 486 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 487 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 488 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 489 490 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 491 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 492 493 setOperationAction(ISD::SELECT, VT, Custom); 494 setOperationAction(ISD::SELECT_CC, VT, Expand); 495 setOperationAction(ISD::VSELECT, VT, Expand); 496 497 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 498 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 499 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 500 501 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 504 505 // RVV has native int->float & float->int conversions where the 506 // element type sizes are within one power-of-two of each other. Any 507 // wider distances between type sizes have to be lowered as sequences 508 // which progressively narrow the gap in stages. 509 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 510 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 511 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 512 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 513 514 // Expand all extending loads to types larger than this, and truncating 515 // stores from types larger than this. 516 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 517 setTruncStoreAction(OtherVT, VT, Expand); 518 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 519 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 520 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 521 } 522 } 523 524 for (MVT VT : IntVecVTs) { 525 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 526 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 527 528 setOperationAction(ISD::SMIN, VT, Legal); 529 setOperationAction(ISD::SMAX, VT, Legal); 530 setOperationAction(ISD::UMIN, VT, Legal); 531 setOperationAction(ISD::UMAX, VT, Legal); 532 533 setOperationAction(ISD::ROTL, VT, Expand); 534 setOperationAction(ISD::ROTR, VT, Expand); 535 536 // Custom-lower extensions and truncations from/to mask types. 537 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 538 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 539 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 540 541 // RVV has native int->float & float->int conversions where the 542 // element type sizes are within one power-of-two of each other. Any 543 // wider distances between type sizes have to be lowered as sequences 544 // which progressively narrow the gap in stages. 545 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 546 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 547 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 548 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 549 550 setOperationAction(ISD::SADDSAT, VT, Legal); 551 setOperationAction(ISD::UADDSAT, VT, Legal); 552 setOperationAction(ISD::SSUBSAT, VT, Legal); 553 setOperationAction(ISD::USUBSAT, VT, Legal); 554 555 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 556 // nodes which truncate by one power of two at a time. 557 setOperationAction(ISD::TRUNCATE, VT, Custom); 558 559 // Custom-lower insert/extract operations to simplify patterns. 560 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 562 563 // Custom-lower reduction operations to set up the corresponding custom 564 // nodes' operands. 565 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 566 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 567 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 568 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 569 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 570 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 573 574 for (unsigned VPOpc : IntegerVPOps) 575 setOperationAction(VPOpc, VT, Custom); 576 577 setOperationAction(ISD::LOAD, VT, Custom); 578 setOperationAction(ISD::STORE, VT, Custom); 579 580 setOperationAction(ISD::MLOAD, VT, Custom); 581 setOperationAction(ISD::MSTORE, VT, Custom); 582 setOperationAction(ISD::MGATHER, VT, Custom); 583 setOperationAction(ISD::MSCATTER, VT, Custom); 584 585 setOperationAction(ISD::VP_LOAD, VT, Custom); 586 setOperationAction(ISD::VP_STORE, VT, Custom); 587 setOperationAction(ISD::VP_GATHER, VT, Custom); 588 setOperationAction(ISD::VP_SCATTER, VT, Custom); 589 590 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 591 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 592 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 593 594 setOperationAction(ISD::SELECT, VT, Custom); 595 setOperationAction(ISD::SELECT_CC, VT, Expand); 596 597 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 598 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 599 600 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 601 setTruncStoreAction(VT, OtherVT, Expand); 602 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 603 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 604 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 605 } 606 } 607 608 // Expand various CCs to best match the RVV ISA, which natively supports UNE 609 // but no other unordered comparisons, and supports all ordered comparisons 610 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 611 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 612 // and we pattern-match those back to the "original", swapping operands once 613 // more. This way we catch both operations and both "vf" and "fv" forms with 614 // fewer patterns. 615 static const ISD::CondCode VFPCCToExpand[] = { 616 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 617 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 618 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 619 }; 620 621 // Sets common operation actions on RVV floating-point vector types. 622 const auto SetCommonVFPActions = [&](MVT VT) { 623 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 624 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 625 // sizes are within one power-of-two of each other. Therefore conversions 626 // between vXf16 and vXf64 must be lowered as sequences which convert via 627 // vXf32. 628 setOperationAction(ISD::FP_ROUND, VT, Custom); 629 setOperationAction(ISD::FP_EXTEND, VT, Custom); 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 // Expand various condition codes (explained above). 634 for (auto CC : VFPCCToExpand) 635 setCondCodeAction(CC, VT, Expand); 636 637 setOperationAction(ISD::FMINNUM, VT, Legal); 638 setOperationAction(ISD::FMAXNUM, VT, Legal); 639 640 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 644 645 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 646 647 setOperationAction(ISD::LOAD, VT, Custom); 648 setOperationAction(ISD::STORE, VT, Custom); 649 650 setOperationAction(ISD::MLOAD, VT, Custom); 651 setOperationAction(ISD::MSTORE, VT, Custom); 652 setOperationAction(ISD::MGATHER, VT, Custom); 653 setOperationAction(ISD::MSCATTER, VT, Custom); 654 655 setOperationAction(ISD::VP_LOAD, VT, Custom); 656 setOperationAction(ISD::VP_STORE, VT, Custom); 657 setOperationAction(ISD::VP_GATHER, VT, Custom); 658 setOperationAction(ISD::VP_SCATTER, VT, Custom); 659 660 setOperationAction(ISD::SELECT, VT, Custom); 661 setOperationAction(ISD::SELECT_CC, VT, Expand); 662 663 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 664 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 665 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 666 667 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 668 669 for (unsigned VPOpc : FloatingPointVPOps) 670 setOperationAction(VPOpc, VT, Custom); 671 }; 672 673 // Sets common extload/truncstore actions on RVV floating-point vector 674 // types. 675 const auto SetCommonVFPExtLoadTruncStoreActions = 676 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 677 for (auto SmallVT : SmallerVTs) { 678 setTruncStoreAction(VT, SmallVT, Expand); 679 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 680 } 681 }; 682 683 if (Subtarget.hasStdExtZfh()) 684 for (MVT VT : F16VecVTs) 685 SetCommonVFPActions(VT); 686 687 for (MVT VT : F32VecVTs) { 688 if (Subtarget.hasStdExtF()) 689 SetCommonVFPActions(VT); 690 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 691 } 692 693 for (MVT VT : F64VecVTs) { 694 if (Subtarget.hasStdExtD()) 695 SetCommonVFPActions(VT); 696 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 697 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 698 } 699 700 if (Subtarget.useRVVForFixedLengthVectors()) { 701 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 702 if (!useRVVForFixedLengthVectorVT(VT)) 703 continue; 704 705 // By default everything must be expanded. 706 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 707 setOperationAction(Op, VT, Expand); 708 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 716 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 717 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 718 719 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 720 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 721 722 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 724 725 setOperationAction(ISD::LOAD, VT, Custom); 726 setOperationAction(ISD::STORE, VT, Custom); 727 728 setOperationAction(ISD::SETCC, VT, Custom); 729 730 setOperationAction(ISD::SELECT, VT, Custom); 731 732 setOperationAction(ISD::TRUNCATE, VT, Custom); 733 734 setOperationAction(ISD::BITCAST, VT, Custom); 735 736 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 737 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 738 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 739 740 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 741 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 742 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 743 744 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 745 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 746 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 747 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 748 749 // Operations below are different for between masks and other vectors. 750 if (VT.getVectorElementType() == MVT::i1) { 751 setOperationAction(ISD::AND, VT, Custom); 752 setOperationAction(ISD::OR, VT, Custom); 753 setOperationAction(ISD::XOR, VT, Custom); 754 continue; 755 } 756 757 // Use SPLAT_VECTOR to prevent type legalization from destroying the 758 // splats when type legalizing i64 scalar on RV32. 759 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 760 // improvements first. 761 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 762 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 763 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 764 } 765 766 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 767 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 768 769 setOperationAction(ISD::MLOAD, VT, Custom); 770 setOperationAction(ISD::MSTORE, VT, Custom); 771 setOperationAction(ISD::MGATHER, VT, Custom); 772 setOperationAction(ISD::MSCATTER, VT, Custom); 773 774 setOperationAction(ISD::VP_LOAD, VT, Custom); 775 setOperationAction(ISD::VP_STORE, VT, Custom); 776 setOperationAction(ISD::VP_GATHER, VT, Custom); 777 setOperationAction(ISD::VP_SCATTER, VT, Custom); 778 779 setOperationAction(ISD::ADD, VT, Custom); 780 setOperationAction(ISD::MUL, VT, Custom); 781 setOperationAction(ISD::SUB, VT, Custom); 782 setOperationAction(ISD::AND, VT, Custom); 783 setOperationAction(ISD::OR, VT, Custom); 784 setOperationAction(ISD::XOR, VT, Custom); 785 setOperationAction(ISD::SDIV, VT, Custom); 786 setOperationAction(ISD::SREM, VT, Custom); 787 setOperationAction(ISD::UDIV, VT, Custom); 788 setOperationAction(ISD::UREM, VT, Custom); 789 setOperationAction(ISD::SHL, VT, Custom); 790 setOperationAction(ISD::SRA, VT, Custom); 791 setOperationAction(ISD::SRL, VT, Custom); 792 793 setOperationAction(ISD::SMIN, VT, Custom); 794 setOperationAction(ISD::SMAX, VT, Custom); 795 setOperationAction(ISD::UMIN, VT, Custom); 796 setOperationAction(ISD::UMAX, VT, Custom); 797 setOperationAction(ISD::ABS, VT, Custom); 798 799 setOperationAction(ISD::MULHS, VT, Custom); 800 setOperationAction(ISD::MULHU, VT, Custom); 801 802 setOperationAction(ISD::SADDSAT, VT, Custom); 803 setOperationAction(ISD::UADDSAT, VT, Custom); 804 setOperationAction(ISD::SSUBSAT, VT, Custom); 805 setOperationAction(ISD::USUBSAT, VT, Custom); 806 807 setOperationAction(ISD::VSELECT, VT, Custom); 808 setOperationAction(ISD::SELECT_CC, VT, Expand); 809 810 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 811 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 812 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 813 814 // Custom-lower reduction operations to set up the corresponding custom 815 // nodes' operands. 816 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 817 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 818 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 819 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 820 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 821 822 for (unsigned VPOpc : IntegerVPOps) 823 setOperationAction(VPOpc, VT, Custom); 824 } 825 826 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 827 if (!useRVVForFixedLengthVectorVT(VT)) 828 continue; 829 830 // By default everything must be expanded. 831 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 832 setOperationAction(Op, VT, Expand); 833 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 834 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 835 setTruncStoreAction(VT, OtherVT, Expand); 836 } 837 838 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 839 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 840 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 841 842 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 843 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 844 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 845 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 846 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 847 848 setOperationAction(ISD::LOAD, VT, Custom); 849 setOperationAction(ISD::STORE, VT, Custom); 850 setOperationAction(ISD::MLOAD, VT, Custom); 851 setOperationAction(ISD::MSTORE, VT, Custom); 852 setOperationAction(ISD::MGATHER, VT, Custom); 853 setOperationAction(ISD::MSCATTER, VT, Custom); 854 855 setOperationAction(ISD::VP_LOAD, VT, Custom); 856 setOperationAction(ISD::VP_STORE, VT, Custom); 857 setOperationAction(ISD::VP_GATHER, VT, Custom); 858 setOperationAction(ISD::VP_SCATTER, VT, Custom); 859 860 setOperationAction(ISD::FADD, VT, Custom); 861 setOperationAction(ISD::FSUB, VT, Custom); 862 setOperationAction(ISD::FMUL, VT, Custom); 863 setOperationAction(ISD::FDIV, VT, Custom); 864 setOperationAction(ISD::FNEG, VT, Custom); 865 setOperationAction(ISD::FABS, VT, Custom); 866 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 867 setOperationAction(ISD::FSQRT, VT, Custom); 868 setOperationAction(ISD::FMA, VT, Custom); 869 setOperationAction(ISD::FMINNUM, VT, Custom); 870 setOperationAction(ISD::FMAXNUM, VT, Custom); 871 872 setOperationAction(ISD::FP_ROUND, VT, Custom); 873 setOperationAction(ISD::FP_EXTEND, VT, Custom); 874 875 for (auto CC : VFPCCToExpand) 876 setCondCodeAction(CC, VT, Expand); 877 878 setOperationAction(ISD::VSELECT, VT, Custom); 879 setOperationAction(ISD::SELECT, VT, Custom); 880 setOperationAction(ISD::SELECT_CC, VT, Expand); 881 882 setOperationAction(ISD::BITCAST, VT, Custom); 883 884 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 885 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 886 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 887 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 888 889 for (unsigned VPOpc : FloatingPointVPOps) 890 setOperationAction(VPOpc, VT, Custom); 891 } 892 893 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 894 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 895 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 896 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 897 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 898 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 899 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 900 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 901 } 902 } 903 904 // Function alignments. 905 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 906 setMinFunctionAlignment(FunctionAlignment); 907 setPrefFunctionAlignment(FunctionAlignment); 908 909 setMinimumJumpTableEntries(5); 910 911 // Jumps are expensive, compared to logic 912 setJumpIsExpensive(); 913 914 // We can use any register for comparisons 915 setHasMultipleConditionRegisters(); 916 917 setTargetDAGCombine(ISD::ADD); 918 setTargetDAGCombine(ISD::SUB); 919 setTargetDAGCombine(ISD::AND); 920 setTargetDAGCombine(ISD::OR); 921 setTargetDAGCombine(ISD::XOR); 922 setTargetDAGCombine(ISD::ANY_EXTEND); 923 setTargetDAGCombine(ISD::ZERO_EXTEND); 924 if (Subtarget.hasStdExtV()) { 925 setTargetDAGCombine(ISD::FCOPYSIGN); 926 setTargetDAGCombine(ISD::MGATHER); 927 setTargetDAGCombine(ISD::MSCATTER); 928 setTargetDAGCombine(ISD::VP_GATHER); 929 setTargetDAGCombine(ISD::VP_SCATTER); 930 setTargetDAGCombine(ISD::SRA); 931 setTargetDAGCombine(ISD::SRL); 932 setTargetDAGCombine(ISD::SHL); 933 setTargetDAGCombine(ISD::STORE); 934 } 935 } 936 937 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 938 LLVMContext &Context, 939 EVT VT) const { 940 if (!VT.isVector()) 941 return getPointerTy(DL); 942 if (Subtarget.hasStdExtV() && 943 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 944 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 945 return VT.changeVectorElementTypeToInteger(); 946 } 947 948 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 949 return Subtarget.getXLenVT(); 950 } 951 952 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 953 const CallInst &I, 954 MachineFunction &MF, 955 unsigned Intrinsic) const { 956 auto &DL = I.getModule()->getDataLayout(); 957 switch (Intrinsic) { 958 default: 959 return false; 960 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 961 case Intrinsic::riscv_masked_atomicrmw_add_i32: 962 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 963 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 964 case Intrinsic::riscv_masked_atomicrmw_max_i32: 965 case Intrinsic::riscv_masked_atomicrmw_min_i32: 966 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 967 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 968 case Intrinsic::riscv_masked_cmpxchg_i32: { 969 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 970 Info.opc = ISD::INTRINSIC_W_CHAIN; 971 Info.memVT = MVT::getVT(PtrTy->getElementType()); 972 Info.ptrVal = I.getArgOperand(0); 973 Info.offset = 0; 974 Info.align = Align(4); 975 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 976 MachineMemOperand::MOVolatile; 977 return true; 978 } 979 case Intrinsic::riscv_masked_strided_load: 980 Info.opc = ISD::INTRINSIC_W_CHAIN; 981 Info.ptrVal = I.getArgOperand(1); 982 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 983 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 984 Info.size = MemoryLocation::UnknownSize; 985 Info.flags |= MachineMemOperand::MOLoad; 986 return true; 987 case Intrinsic::riscv_masked_strided_store: 988 Info.opc = ISD::INTRINSIC_VOID; 989 Info.ptrVal = I.getArgOperand(1); 990 Info.memVT = 991 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 992 Info.align = Align( 993 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 994 8); 995 Info.size = MemoryLocation::UnknownSize; 996 Info.flags |= MachineMemOperand::MOStore; 997 return true; 998 } 999 } 1000 1001 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1002 const AddrMode &AM, Type *Ty, 1003 unsigned AS, 1004 Instruction *I) const { 1005 // No global is ever allowed as a base. 1006 if (AM.BaseGV) 1007 return false; 1008 1009 // Require a 12-bit signed offset. 1010 if (!isInt<12>(AM.BaseOffs)) 1011 return false; 1012 1013 switch (AM.Scale) { 1014 case 0: // "r+i" or just "i", depending on HasBaseReg. 1015 break; 1016 case 1: 1017 if (!AM.HasBaseReg) // allow "r+i". 1018 break; 1019 return false; // disallow "r+r" or "r+r+i". 1020 default: 1021 return false; 1022 } 1023 1024 return true; 1025 } 1026 1027 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1028 return isInt<12>(Imm); 1029 } 1030 1031 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1032 return isInt<12>(Imm); 1033 } 1034 1035 // On RV32, 64-bit integers are split into their high and low parts and held 1036 // in two different registers, so the trunc is free since the low register can 1037 // just be used. 1038 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1039 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1040 return false; 1041 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1042 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1043 return (SrcBits == 64 && DestBits == 32); 1044 } 1045 1046 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1047 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1048 !SrcVT.isInteger() || !DstVT.isInteger()) 1049 return false; 1050 unsigned SrcBits = SrcVT.getSizeInBits(); 1051 unsigned DestBits = DstVT.getSizeInBits(); 1052 return (SrcBits == 64 && DestBits == 32); 1053 } 1054 1055 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1056 // Zexts are free if they can be combined with a load. 1057 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1058 EVT MemVT = LD->getMemoryVT(); 1059 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1060 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1061 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1062 LD->getExtensionType() == ISD::ZEXTLOAD)) 1063 return true; 1064 } 1065 1066 return TargetLowering::isZExtFree(Val, VT2); 1067 } 1068 1069 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1070 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1071 } 1072 1073 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1074 return Subtarget.hasStdExtZbb(); 1075 } 1076 1077 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1078 return Subtarget.hasStdExtZbb(); 1079 } 1080 1081 /// Check if sinking \p I's operands to I's basic block is profitable, because 1082 /// the operands can be folded into a target instruction, e.g. 1083 /// splats of scalars can fold into vector instructions. 1084 bool RISCVTargetLowering::shouldSinkOperands( 1085 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1086 using namespace llvm::PatternMatch; 1087 1088 if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV()) 1089 return false; 1090 1091 auto IsSinker = [&](Instruction *I, int Operand) { 1092 switch (I->getOpcode()) { 1093 case Instruction::Add: 1094 case Instruction::Sub: 1095 case Instruction::Mul: 1096 case Instruction::And: 1097 case Instruction::Or: 1098 case Instruction::Xor: 1099 case Instruction::FAdd: 1100 case Instruction::FSub: 1101 case Instruction::FMul: 1102 case Instruction::FDiv: 1103 return true; 1104 case Instruction::Shl: 1105 case Instruction::LShr: 1106 case Instruction::AShr: 1107 return Operand == 1; 1108 case Instruction::Call: 1109 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1110 switch (II->getIntrinsicID()) { 1111 case Intrinsic::fma: 1112 return Operand == 0 || Operand == 1; 1113 default: 1114 return false; 1115 } 1116 } 1117 return false; 1118 default: 1119 return false; 1120 } 1121 }; 1122 1123 for (auto OpIdx : enumerate(I->operands())) { 1124 if (!IsSinker(I, OpIdx.index())) 1125 continue; 1126 1127 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1128 // Make sure we are not already sinking this operand 1129 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1130 continue; 1131 1132 // We are looking for a splat that can be sunk. 1133 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1134 m_Undef(), m_ZeroMask()))) 1135 continue; 1136 1137 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1138 // and vector registers 1139 for (Use &U : Op->uses()) { 1140 Instruction *Insn = cast<Instruction>(U.getUser()); 1141 if (!IsSinker(Insn, U.getOperandNo())) 1142 return false; 1143 } 1144 1145 Ops.push_back(&Op->getOperandUse(0)); 1146 Ops.push_back(&OpIdx.value()); 1147 } 1148 return true; 1149 } 1150 1151 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1152 bool ForCodeSize) const { 1153 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1154 return false; 1155 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1156 return false; 1157 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1158 return false; 1159 if (Imm.isNegZero()) 1160 return false; 1161 return Imm.isZero(); 1162 } 1163 1164 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1165 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1166 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1167 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1168 } 1169 1170 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1171 CallingConv::ID CC, 1172 EVT VT) const { 1173 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1174 // end up using a GPR but that will be decided based on ABI. 1175 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1176 return MVT::f32; 1177 1178 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1179 } 1180 1181 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1182 CallingConv::ID CC, 1183 EVT VT) const { 1184 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1185 // end up using a GPR but that will be decided based on ABI. 1186 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1187 return 1; 1188 1189 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1190 } 1191 1192 // Changes the condition code and swaps operands if necessary, so the SetCC 1193 // operation matches one of the comparisons supported directly by branches 1194 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1195 // with 1/-1. 1196 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1197 ISD::CondCode &CC, SelectionDAG &DAG) { 1198 // Convert X > -1 to X >= 0. 1199 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1200 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1201 CC = ISD::SETGE; 1202 return; 1203 } 1204 // Convert X < 1 to 0 >= X. 1205 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1206 RHS = LHS; 1207 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1208 CC = ISD::SETGE; 1209 return; 1210 } 1211 1212 switch (CC) { 1213 default: 1214 break; 1215 case ISD::SETGT: 1216 case ISD::SETLE: 1217 case ISD::SETUGT: 1218 case ISD::SETULE: 1219 CC = ISD::getSetCCSwappedOperands(CC); 1220 std::swap(LHS, RHS); 1221 break; 1222 } 1223 } 1224 1225 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1226 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1227 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1228 if (VT.getVectorElementType() == MVT::i1) 1229 KnownSize *= 8; 1230 1231 switch (KnownSize) { 1232 default: 1233 llvm_unreachable("Invalid LMUL."); 1234 case 8: 1235 return RISCVII::VLMUL::LMUL_F8; 1236 case 16: 1237 return RISCVII::VLMUL::LMUL_F4; 1238 case 32: 1239 return RISCVII::VLMUL::LMUL_F2; 1240 case 64: 1241 return RISCVII::VLMUL::LMUL_1; 1242 case 128: 1243 return RISCVII::VLMUL::LMUL_2; 1244 case 256: 1245 return RISCVII::VLMUL::LMUL_4; 1246 case 512: 1247 return RISCVII::VLMUL::LMUL_8; 1248 } 1249 } 1250 1251 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1252 switch (LMul) { 1253 default: 1254 llvm_unreachable("Invalid LMUL."); 1255 case RISCVII::VLMUL::LMUL_F8: 1256 case RISCVII::VLMUL::LMUL_F4: 1257 case RISCVII::VLMUL::LMUL_F2: 1258 case RISCVII::VLMUL::LMUL_1: 1259 return RISCV::VRRegClassID; 1260 case RISCVII::VLMUL::LMUL_2: 1261 return RISCV::VRM2RegClassID; 1262 case RISCVII::VLMUL::LMUL_4: 1263 return RISCV::VRM4RegClassID; 1264 case RISCVII::VLMUL::LMUL_8: 1265 return RISCV::VRM8RegClassID; 1266 } 1267 } 1268 1269 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1270 RISCVII::VLMUL LMUL = getLMUL(VT); 1271 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1272 LMUL == RISCVII::VLMUL::LMUL_F4 || 1273 LMUL == RISCVII::VLMUL::LMUL_F2 || 1274 LMUL == RISCVII::VLMUL::LMUL_1) { 1275 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1276 "Unexpected subreg numbering"); 1277 return RISCV::sub_vrm1_0 + Index; 1278 } 1279 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1280 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1281 "Unexpected subreg numbering"); 1282 return RISCV::sub_vrm2_0 + Index; 1283 } 1284 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1285 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1286 "Unexpected subreg numbering"); 1287 return RISCV::sub_vrm4_0 + Index; 1288 } 1289 llvm_unreachable("Invalid vector type."); 1290 } 1291 1292 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1293 if (VT.getVectorElementType() == MVT::i1) 1294 return RISCV::VRRegClassID; 1295 return getRegClassIDForLMUL(getLMUL(VT)); 1296 } 1297 1298 // Attempt to decompose a subvector insert/extract between VecVT and 1299 // SubVecVT via subregister indices. Returns the subregister index that 1300 // can perform the subvector insert/extract with the given element index, as 1301 // well as the index corresponding to any leftover subvectors that must be 1302 // further inserted/extracted within the register class for SubVecVT. 1303 std::pair<unsigned, unsigned> 1304 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1305 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1306 const RISCVRegisterInfo *TRI) { 1307 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1308 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1309 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1310 "Register classes not ordered"); 1311 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1312 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1313 // Try to compose a subregister index that takes us from the incoming 1314 // LMUL>1 register class down to the outgoing one. At each step we half 1315 // the LMUL: 1316 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1317 // Note that this is not guaranteed to find a subregister index, such as 1318 // when we are extracting from one VR type to another. 1319 unsigned SubRegIdx = RISCV::NoSubRegister; 1320 for (const unsigned RCID : 1321 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1322 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1323 VecVT = VecVT.getHalfNumVectorElementsVT(); 1324 bool IsHi = 1325 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1326 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1327 getSubregIndexByMVT(VecVT, IsHi)); 1328 if (IsHi) 1329 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1330 } 1331 return {SubRegIdx, InsertExtractIdx}; 1332 } 1333 1334 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1335 // stores for those types. 1336 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1337 return !Subtarget.useRVVForFixedLengthVectors() || 1338 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1339 } 1340 1341 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1342 if (ScalarTy->isPointerTy()) 1343 return true; 1344 1345 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1346 ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64)) 1347 return true; 1348 1349 if (ScalarTy->isHalfTy()) 1350 return Subtarget.hasStdExtZfh(); 1351 if (ScalarTy->isFloatTy()) 1352 return Subtarget.hasStdExtF(); 1353 if (ScalarTy->isDoubleTy()) 1354 return Subtarget.hasStdExtD(); 1355 1356 return false; 1357 } 1358 1359 static bool useRVVForFixedLengthVectorVT(MVT VT, 1360 const RISCVSubtarget &Subtarget) { 1361 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1362 if (!Subtarget.useRVVForFixedLengthVectors()) 1363 return false; 1364 1365 // We only support a set of vector types with a consistent maximum fixed size 1366 // across all supported vector element types to avoid legalization issues. 1367 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1368 // fixed-length vector type we support is 1024 bytes. 1369 if (VT.getFixedSizeInBits() > 1024 * 8) 1370 return false; 1371 1372 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1373 1374 MVT EltVT = VT.getVectorElementType(); 1375 1376 // Don't use RVV for vectors we cannot scalarize if required. 1377 switch (EltVT.SimpleTy) { 1378 // i1 is supported but has different rules. 1379 default: 1380 return false; 1381 case MVT::i1: 1382 // Masks can only use a single register. 1383 if (VT.getVectorNumElements() > MinVLen) 1384 return false; 1385 MinVLen /= 8; 1386 break; 1387 case MVT::i8: 1388 case MVT::i16: 1389 case MVT::i32: 1390 case MVT::i64: 1391 break; 1392 case MVT::f16: 1393 if (!Subtarget.hasStdExtZfh()) 1394 return false; 1395 break; 1396 case MVT::f32: 1397 if (!Subtarget.hasStdExtF()) 1398 return false; 1399 break; 1400 case MVT::f64: 1401 if (!Subtarget.hasStdExtD()) 1402 return false; 1403 break; 1404 } 1405 1406 // Reject elements larger than ELEN. 1407 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1408 return false; 1409 1410 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1411 // Don't use RVV for types that don't fit. 1412 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1413 return false; 1414 1415 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1416 // the base fixed length RVV support in place. 1417 if (!VT.isPow2VectorType()) 1418 return false; 1419 1420 return true; 1421 } 1422 1423 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1424 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1425 } 1426 1427 // Return the largest legal scalable vector type that matches VT's element type. 1428 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1429 const RISCVSubtarget &Subtarget) { 1430 // This may be called before legal types are setup. 1431 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1432 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1433 "Expected legal fixed length vector!"); 1434 1435 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1436 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1437 1438 MVT EltVT = VT.getVectorElementType(); 1439 switch (EltVT.SimpleTy) { 1440 default: 1441 llvm_unreachable("unexpected element type for RVV container"); 1442 case MVT::i1: 1443 case MVT::i8: 1444 case MVT::i16: 1445 case MVT::i32: 1446 case MVT::i64: 1447 case MVT::f16: 1448 case MVT::f32: 1449 case MVT::f64: { 1450 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1451 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1452 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1453 unsigned NumElts = 1454 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1455 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1456 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1457 return MVT::getScalableVectorVT(EltVT, NumElts); 1458 } 1459 } 1460 } 1461 1462 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1463 const RISCVSubtarget &Subtarget) { 1464 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1465 Subtarget); 1466 } 1467 1468 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1469 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1470 } 1471 1472 // Grow V to consume an entire RVV register. 1473 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1474 const RISCVSubtarget &Subtarget) { 1475 assert(VT.isScalableVector() && 1476 "Expected to convert into a scalable vector!"); 1477 assert(V.getValueType().isFixedLengthVector() && 1478 "Expected a fixed length vector operand!"); 1479 SDLoc DL(V); 1480 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1481 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1482 } 1483 1484 // Shrink V so it's just big enough to maintain a VT's worth of data. 1485 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1486 const RISCVSubtarget &Subtarget) { 1487 assert(VT.isFixedLengthVector() && 1488 "Expected to convert into a fixed length vector!"); 1489 assert(V.getValueType().isScalableVector() && 1490 "Expected a scalable vector operand!"); 1491 SDLoc DL(V); 1492 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1493 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1494 } 1495 1496 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1497 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1498 // the vector type that it is contained in. 1499 static std::pair<SDValue, SDValue> 1500 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1501 const RISCVSubtarget &Subtarget) { 1502 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1503 MVT XLenVT = Subtarget.getXLenVT(); 1504 SDValue VL = VecVT.isFixedLengthVector() 1505 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1506 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1507 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1508 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1509 return {Mask, VL}; 1510 } 1511 1512 // As above but assuming the given type is a scalable vector type. 1513 static std::pair<SDValue, SDValue> 1514 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1515 const RISCVSubtarget &Subtarget) { 1516 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1517 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1518 } 1519 1520 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1521 // of either is (currently) supported. This can get us into an infinite loop 1522 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1523 // as a ..., etc. 1524 // Until either (or both) of these can reliably lower any node, reporting that 1525 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1526 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1527 // which is not desirable. 1528 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1529 EVT VT, unsigned DefinedValues) const { 1530 return false; 1531 } 1532 1533 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1534 // Only splats are currently supported. 1535 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1536 return true; 1537 1538 return false; 1539 } 1540 1541 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1542 // RISCV FP-to-int conversions saturate to the destination register size, but 1543 // don't produce 0 for nan. We can use a conversion instruction and fix the 1544 // nan case with a compare and a select. 1545 SDValue Src = Op.getOperand(0); 1546 1547 EVT DstVT = Op.getValueType(); 1548 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1549 1550 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1551 unsigned Opc; 1552 if (SatVT == DstVT) 1553 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1554 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1555 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1556 else 1557 return SDValue(); 1558 // FIXME: Support other SatVTs by clamping before or after the conversion. 1559 1560 SDLoc DL(Op); 1561 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1562 1563 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1564 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1565 } 1566 1567 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1568 const RISCVSubtarget &Subtarget) { 1569 MVT VT = Op.getSimpleValueType(); 1570 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1571 1572 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1573 1574 SDLoc DL(Op); 1575 SDValue Mask, VL; 1576 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1577 1578 unsigned Opc = 1579 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1580 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1581 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1582 } 1583 1584 struct VIDSequence { 1585 int64_t StepNumerator; 1586 unsigned StepDenominator; 1587 int64_t Addend; 1588 }; 1589 1590 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1591 // to the (non-zero) step S and start value X. This can be then lowered as the 1592 // RVV sequence (VID * S) + X, for example. 1593 // The step S is represented as an integer numerator divided by a positive 1594 // denominator. Note that the implementation currently only identifies 1595 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1596 // cannot detect 2/3, for example. 1597 // Note that this method will also match potentially unappealing index 1598 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1599 // determine whether this is worth generating code for. 1600 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1601 unsigned NumElts = Op.getNumOperands(); 1602 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1603 if (!Op.getValueType().isInteger()) 1604 return None; 1605 1606 Optional<unsigned> SeqStepDenom; 1607 Optional<int64_t> SeqStepNum, SeqAddend; 1608 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1609 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1610 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1611 // Assume undef elements match the sequence; we just have to be careful 1612 // when interpolating across them. 1613 if (Op.getOperand(Idx).isUndef()) 1614 continue; 1615 // The BUILD_VECTOR must be all constants. 1616 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1617 return None; 1618 1619 uint64_t Val = Op.getConstantOperandVal(Idx) & 1620 maskTrailingOnes<uint64_t>(EltSizeInBits); 1621 1622 if (PrevElt) { 1623 // Calculate the step since the last non-undef element, and ensure 1624 // it's consistent across the entire sequence. 1625 unsigned IdxDiff = Idx - PrevElt->second; 1626 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1627 1628 // A zero-value value difference means that we're somewhere in the middle 1629 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1630 // step change before evaluating the sequence. 1631 if (ValDiff != 0) { 1632 int64_t Remainder = ValDiff % IdxDiff; 1633 // Normalize the step if it's greater than 1. 1634 if (Remainder != ValDiff) { 1635 // The difference must cleanly divide the element span. 1636 if (Remainder != 0) 1637 return None; 1638 ValDiff /= IdxDiff; 1639 IdxDiff = 1; 1640 } 1641 1642 if (!SeqStepNum) 1643 SeqStepNum = ValDiff; 1644 else if (ValDiff != SeqStepNum) 1645 return None; 1646 1647 if (!SeqStepDenom) 1648 SeqStepDenom = IdxDiff; 1649 else if (IdxDiff != *SeqStepDenom) 1650 return None; 1651 } 1652 } 1653 1654 // Record and/or check any addend. 1655 if (SeqStepNum && SeqStepDenom) { 1656 uint64_t ExpectedVal = 1657 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1658 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1659 if (!SeqAddend) 1660 SeqAddend = Addend; 1661 else if (SeqAddend != Addend) 1662 return None; 1663 } 1664 1665 // Record this non-undef element for later. 1666 if (!PrevElt || PrevElt->first != Val) 1667 PrevElt = std::make_pair(Val, Idx); 1668 } 1669 // We need to have logged both a step and an addend for this to count as 1670 // a legal index sequence. 1671 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1672 return None; 1673 1674 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1675 } 1676 1677 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1678 const RISCVSubtarget &Subtarget) { 1679 MVT VT = Op.getSimpleValueType(); 1680 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1681 1682 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1683 1684 SDLoc DL(Op); 1685 SDValue Mask, VL; 1686 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1687 1688 MVT XLenVT = Subtarget.getXLenVT(); 1689 unsigned NumElts = Op.getNumOperands(); 1690 1691 if (VT.getVectorElementType() == MVT::i1) { 1692 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1693 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1694 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1695 } 1696 1697 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1698 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1699 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1700 } 1701 1702 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1703 // scalar integer chunks whose bit-width depends on the number of mask 1704 // bits and XLEN. 1705 // First, determine the most appropriate scalar integer type to use. This 1706 // is at most XLenVT, but may be shrunk to a smaller vector element type 1707 // according to the size of the final vector - use i8 chunks rather than 1708 // XLenVT if we're producing a v8i1. This results in more consistent 1709 // codegen across RV32 and RV64. 1710 unsigned NumViaIntegerBits = 1711 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1712 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1713 // If we have to use more than one INSERT_VECTOR_ELT then this 1714 // optimization is likely to increase code size; avoid peforming it in 1715 // such a case. We can use a load from a constant pool in this case. 1716 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1717 return SDValue(); 1718 // Now we can create our integer vector type. Note that it may be larger 1719 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1720 MVT IntegerViaVecVT = 1721 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1722 divideCeil(NumElts, NumViaIntegerBits)); 1723 1724 uint64_t Bits = 0; 1725 unsigned BitPos = 0, IntegerEltIdx = 0; 1726 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1727 1728 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1729 // Once we accumulate enough bits to fill our scalar type, insert into 1730 // our vector and clear our accumulated data. 1731 if (I != 0 && I % NumViaIntegerBits == 0) { 1732 if (NumViaIntegerBits <= 32) 1733 Bits = SignExtend64(Bits, 32); 1734 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1735 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1736 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1737 Bits = 0; 1738 BitPos = 0; 1739 IntegerEltIdx++; 1740 } 1741 SDValue V = Op.getOperand(I); 1742 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1743 Bits |= ((uint64_t)BitValue << BitPos); 1744 } 1745 1746 // Insert the (remaining) scalar value into position in our integer 1747 // vector type. 1748 if (NumViaIntegerBits <= 32) 1749 Bits = SignExtend64(Bits, 32); 1750 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1751 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1752 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1753 1754 if (NumElts < NumViaIntegerBits) { 1755 // If we're producing a smaller vector than our minimum legal integer 1756 // type, bitcast to the equivalent (known-legal) mask type, and extract 1757 // our final mask. 1758 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1759 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1760 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1761 DAG.getConstant(0, DL, XLenVT)); 1762 } else { 1763 // Else we must have produced an integer type with the same size as the 1764 // mask type; bitcast for the final result. 1765 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1766 Vec = DAG.getBitcast(VT, Vec); 1767 } 1768 1769 return Vec; 1770 } 1771 1772 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1773 // vector type, we have a legal equivalently-sized i8 type, so we can use 1774 // that. 1775 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1776 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1777 1778 SDValue WideVec; 1779 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1780 // For a splat, perform a scalar truncate before creating the wider 1781 // vector. 1782 assert(Splat.getValueType() == XLenVT && 1783 "Unexpected type for i1 splat value"); 1784 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1785 DAG.getConstant(1, DL, XLenVT)); 1786 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1787 } else { 1788 SmallVector<SDValue, 8> Ops(Op->op_values()); 1789 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1790 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1791 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1792 } 1793 1794 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1795 } 1796 1797 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1798 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1799 : RISCVISD::VMV_V_X_VL; 1800 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1801 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1802 } 1803 1804 // Try and match index sequences, which we can lower to the vid instruction 1805 // with optional modifications. An all-undef vector is matched by 1806 // getSplatValue, above. 1807 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1808 int64_t StepNumerator = SimpleVID->StepNumerator; 1809 unsigned StepDenominator = SimpleVID->StepDenominator; 1810 int64_t Addend = SimpleVID->Addend; 1811 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1812 // threshold since it's the immediate value many RVV instructions accept. 1813 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1814 isInt<5>(Addend)) { 1815 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1816 // Convert right out of the scalable type so we can use standard ISD 1817 // nodes for the rest of the computation. If we used scalable types with 1818 // these, we'd lose the fixed-length vector info and generate worse 1819 // vsetvli code. 1820 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1821 assert(StepNumerator != 0 && "Invalid step"); 1822 bool Negate = false; 1823 if (StepNumerator != 1) { 1824 int64_t SplatStepVal = StepNumerator; 1825 unsigned Opcode = ISD::MUL; 1826 if (isPowerOf2_64(std::abs(StepNumerator))) { 1827 Negate = StepNumerator < 0; 1828 Opcode = ISD::SHL; 1829 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1830 } 1831 SDValue SplatStep = DAG.getSplatVector( 1832 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1833 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1834 } 1835 if (StepDenominator != 1) { 1836 SDValue SplatStep = DAG.getSplatVector( 1837 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1838 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1839 } 1840 if (Addend != 0 || Negate) { 1841 SDValue SplatAddend = 1842 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1843 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1844 } 1845 return VID; 1846 } 1847 } 1848 1849 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1850 // when re-interpreted as a vector with a larger element type. For example, 1851 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1852 // could be instead splat as 1853 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1854 // TODO: This optimization could also work on non-constant splats, but it 1855 // would require bit-manipulation instructions to construct the splat value. 1856 SmallVector<SDValue> Sequence; 1857 unsigned EltBitSize = VT.getScalarSizeInBits(); 1858 const auto *BV = cast<BuildVectorSDNode>(Op); 1859 if (VT.isInteger() && EltBitSize < 64 && 1860 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1861 BV->getRepeatedSequence(Sequence) && 1862 (Sequence.size() * EltBitSize) <= 64) { 1863 unsigned SeqLen = Sequence.size(); 1864 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1865 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1866 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1867 ViaIntVT == MVT::i64) && 1868 "Unexpected sequence type"); 1869 1870 unsigned EltIdx = 0; 1871 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1872 uint64_t SplatValue = 0; 1873 // Construct the amalgamated value which can be splatted as this larger 1874 // vector type. 1875 for (const auto &SeqV : Sequence) { 1876 if (!SeqV.isUndef()) 1877 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1878 << (EltIdx * EltBitSize)); 1879 EltIdx++; 1880 } 1881 1882 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1883 // achieve better constant materializion. 1884 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1885 SplatValue = SignExtend64(SplatValue, 32); 1886 1887 // Since we can't introduce illegal i64 types at this stage, we can only 1888 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1889 // way we can use RVV instructions to splat. 1890 assert((ViaIntVT.bitsLE(XLenVT) || 1891 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1892 "Unexpected bitcast sequence"); 1893 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1894 SDValue ViaVL = 1895 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1896 MVT ViaContainerVT = 1897 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1898 SDValue Splat = 1899 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1900 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1901 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1902 return DAG.getBitcast(VT, Splat); 1903 } 1904 } 1905 1906 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1907 // which constitute a large proportion of the elements. In such cases we can 1908 // splat a vector with the dominant element and make up the shortfall with 1909 // INSERT_VECTOR_ELTs. 1910 // Note that this includes vectors of 2 elements by association. The 1911 // upper-most element is the "dominant" one, allowing us to use a splat to 1912 // "insert" the upper element, and an insert of the lower element at position 1913 // 0, which improves codegen. 1914 SDValue DominantValue; 1915 unsigned MostCommonCount = 0; 1916 DenseMap<SDValue, unsigned> ValueCounts; 1917 unsigned NumUndefElts = 1918 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1919 1920 // Track the number of scalar loads we know we'd be inserting, estimated as 1921 // any non-zero floating-point constant. Other kinds of element are either 1922 // already in registers or are materialized on demand. The threshold at which 1923 // a vector load is more desirable than several scalar materializion and 1924 // vector-insertion instructions is not known. 1925 unsigned NumScalarLoads = 0; 1926 1927 for (SDValue V : Op->op_values()) { 1928 if (V.isUndef()) 1929 continue; 1930 1931 ValueCounts.insert(std::make_pair(V, 0)); 1932 unsigned &Count = ValueCounts[V]; 1933 1934 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1935 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1936 1937 // Is this value dominant? In case of a tie, prefer the highest element as 1938 // it's cheaper to insert near the beginning of a vector than it is at the 1939 // end. 1940 if (++Count >= MostCommonCount) { 1941 DominantValue = V; 1942 MostCommonCount = Count; 1943 } 1944 } 1945 1946 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1947 unsigned NumDefElts = NumElts - NumUndefElts; 1948 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1949 1950 // Don't perform this optimization when optimizing for size, since 1951 // materializing elements and inserting them tends to cause code bloat. 1952 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1953 ((MostCommonCount > DominantValueCountThreshold) || 1954 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1955 // Start by splatting the most common element. 1956 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1957 1958 DenseSet<SDValue> Processed{DominantValue}; 1959 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1960 for (const auto &OpIdx : enumerate(Op->ops())) { 1961 const SDValue &V = OpIdx.value(); 1962 if (V.isUndef() || !Processed.insert(V).second) 1963 continue; 1964 if (ValueCounts[V] == 1) { 1965 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1966 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1967 } else { 1968 // Blend in all instances of this value using a VSELECT, using a 1969 // mask where each bit signals whether that element is the one 1970 // we're after. 1971 SmallVector<SDValue> Ops; 1972 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1973 return DAG.getConstant(V == V1, DL, XLenVT); 1974 }); 1975 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1976 DAG.getBuildVector(SelMaskTy, DL, Ops), 1977 DAG.getSplatBuildVector(VT, DL, V), Vec); 1978 } 1979 } 1980 1981 return Vec; 1982 } 1983 1984 return SDValue(); 1985 } 1986 1987 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1988 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1989 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1990 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1991 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1992 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1993 // node in order to try and match RVV vector/scalar instructions. 1994 if ((LoC >> 31) == HiC) 1995 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1996 } 1997 1998 // Fall back to a stack store and stride x0 vector load. 1999 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2000 } 2001 2002 // Called by type legalization to handle splat of i64 on RV32. 2003 // FIXME: We can optimize this when the type has sign or zero bits in one 2004 // of the halves. 2005 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2006 SDValue VL, SelectionDAG &DAG) { 2007 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2008 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2009 DAG.getConstant(0, DL, MVT::i32)); 2010 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2011 DAG.getConstant(1, DL, MVT::i32)); 2012 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2013 } 2014 2015 // This function lowers a splat of a scalar operand Splat with the vector 2016 // length VL. It ensures the final sequence is type legal, which is useful when 2017 // lowering a splat after type legalization. 2018 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2019 SelectionDAG &DAG, 2020 const RISCVSubtarget &Subtarget) { 2021 if (VT.isFloatingPoint()) 2022 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2023 2024 MVT XLenVT = Subtarget.getXLenVT(); 2025 2026 // Simplest case is that the operand needs to be promoted to XLenVT. 2027 if (Scalar.getValueType().bitsLE(XLenVT)) { 2028 // If the operand is a constant, sign extend to increase our chances 2029 // of being able to use a .vi instruction. ANY_EXTEND would become a 2030 // a zero extend and the simm5 check in isel would fail. 2031 // FIXME: Should we ignore the upper bits in isel instead? 2032 unsigned ExtOpc = 2033 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2034 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2035 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2036 } 2037 2038 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2039 "Unexpected scalar for splat lowering!"); 2040 2041 // Otherwise use the more complicated splatting algorithm. 2042 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2043 } 2044 2045 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2046 const RISCVSubtarget &Subtarget) { 2047 SDValue V1 = Op.getOperand(0); 2048 SDValue V2 = Op.getOperand(1); 2049 SDLoc DL(Op); 2050 MVT XLenVT = Subtarget.getXLenVT(); 2051 MVT VT = Op.getSimpleValueType(); 2052 unsigned NumElts = VT.getVectorNumElements(); 2053 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2054 2055 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2056 2057 SDValue TrueMask, VL; 2058 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2059 2060 if (SVN->isSplat()) { 2061 const int Lane = SVN->getSplatIndex(); 2062 if (Lane >= 0) { 2063 MVT SVT = VT.getVectorElementType(); 2064 2065 // Turn splatted vector load into a strided load with an X0 stride. 2066 SDValue V = V1; 2067 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2068 // with undef. 2069 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2070 int Offset = Lane; 2071 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2072 int OpElements = 2073 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2074 V = V.getOperand(Offset / OpElements); 2075 Offset %= OpElements; 2076 } 2077 2078 // We need to ensure the load isn't atomic or volatile. 2079 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2080 auto *Ld = cast<LoadSDNode>(V); 2081 Offset *= SVT.getStoreSize(); 2082 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2083 TypeSize::Fixed(Offset), DL); 2084 2085 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2086 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2087 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2088 SDValue IntID = 2089 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2090 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2091 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2092 SDValue NewLoad = DAG.getMemIntrinsicNode( 2093 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2094 DAG.getMachineFunction().getMachineMemOperand( 2095 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2096 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2097 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2098 } 2099 2100 // Otherwise use a scalar load and splat. This will give the best 2101 // opportunity to fold a splat into the operation. ISel can turn it into 2102 // the x0 strided load if we aren't able to fold away the select. 2103 if (SVT.isFloatingPoint()) 2104 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2105 Ld->getPointerInfo().getWithOffset(Offset), 2106 Ld->getOriginalAlign(), 2107 Ld->getMemOperand()->getFlags()); 2108 else 2109 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2110 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2111 Ld->getOriginalAlign(), 2112 Ld->getMemOperand()->getFlags()); 2113 DAG.makeEquivalentMemoryOrdering(Ld, V); 2114 2115 unsigned Opc = 2116 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2117 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2118 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2119 } 2120 2121 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2122 assert(Lane < (int)NumElts && "Unexpected lane!"); 2123 SDValue Gather = 2124 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2125 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2126 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2127 } 2128 } 2129 2130 // Detect shuffles which can be re-expressed as vector selects; these are 2131 // shuffles in which each element in the destination is taken from an element 2132 // at the corresponding index in either source vectors. 2133 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2134 int MaskIndex = MaskIdx.value(); 2135 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2136 }); 2137 2138 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2139 2140 SmallVector<SDValue> MaskVals; 2141 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2142 // merged with a second vrgather. 2143 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2144 2145 // By default we preserve the original operand order, and use a mask to 2146 // select LHS as true and RHS as false. However, since RVV vector selects may 2147 // feature splats but only on the LHS, we may choose to invert our mask and 2148 // instead select between RHS and LHS. 2149 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2150 bool InvertMask = IsSelect == SwapOps; 2151 2152 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2153 // half. 2154 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2155 2156 // Now construct the mask that will be used by the vselect or blended 2157 // vrgather operation. For vrgathers, construct the appropriate indices into 2158 // each vector. 2159 for (int MaskIndex : SVN->getMask()) { 2160 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2161 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2162 if (!IsSelect) { 2163 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2164 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2165 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2166 : DAG.getUNDEF(XLenVT)); 2167 GatherIndicesRHS.push_back( 2168 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2169 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2170 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2171 ++LHSIndexCounts[MaskIndex]; 2172 if (!IsLHSOrUndefIndex) 2173 ++RHSIndexCounts[MaskIndex - NumElts]; 2174 } 2175 } 2176 2177 if (SwapOps) { 2178 std::swap(V1, V2); 2179 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2180 } 2181 2182 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2183 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2184 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2185 2186 if (IsSelect) 2187 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2188 2189 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2190 // On such a large vector we're unable to use i8 as the index type. 2191 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2192 // may involve vector splitting if we're already at LMUL=8, or our 2193 // user-supplied maximum fixed-length LMUL. 2194 return SDValue(); 2195 } 2196 2197 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2198 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2199 MVT IndexVT = VT.changeTypeToInteger(); 2200 // Since we can't introduce illegal index types at this stage, use i16 and 2201 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2202 // than XLenVT. 2203 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2204 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2205 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2206 } 2207 2208 MVT IndexContainerVT = 2209 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2210 2211 SDValue Gather; 2212 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2213 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2214 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2215 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2216 } else { 2217 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2218 // If only one index is used, we can use a "splat" vrgather. 2219 // TODO: We can splat the most-common index and fix-up any stragglers, if 2220 // that's beneficial. 2221 if (LHSIndexCounts.size() == 1) { 2222 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2223 Gather = 2224 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2225 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2226 } else { 2227 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2228 LHSIndices = 2229 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2230 2231 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2232 TrueMask, VL); 2233 } 2234 } 2235 2236 // If a second vector operand is used by this shuffle, blend it in with an 2237 // additional vrgather. 2238 if (!V2.isUndef()) { 2239 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2240 // If only one index is used, we can use a "splat" vrgather. 2241 // TODO: We can splat the most-common index and fix-up any stragglers, if 2242 // that's beneficial. 2243 if (RHSIndexCounts.size() == 1) { 2244 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2245 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2246 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2247 } else { 2248 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2249 RHSIndices = 2250 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2251 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2252 VL); 2253 } 2254 2255 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2256 SelectMask = 2257 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2258 2259 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2260 Gather, VL); 2261 } 2262 2263 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2264 } 2265 2266 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2267 SDLoc DL, SelectionDAG &DAG, 2268 const RISCVSubtarget &Subtarget) { 2269 if (VT.isScalableVector()) 2270 return DAG.getFPExtendOrRound(Op, DL, VT); 2271 assert(VT.isFixedLengthVector() && 2272 "Unexpected value type for RVV FP extend/round lowering"); 2273 SDValue Mask, VL; 2274 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2275 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2276 ? RISCVISD::FP_EXTEND_VL 2277 : RISCVISD::FP_ROUND_VL; 2278 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2279 } 2280 2281 // While RVV has alignment restrictions, we should always be able to load as a 2282 // legal equivalently-sized byte-typed vector instead. This method is 2283 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2284 // the load is already correctly-aligned, it returns SDValue(). 2285 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2286 SelectionDAG &DAG) const { 2287 auto *Load = cast<LoadSDNode>(Op); 2288 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2289 2290 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2291 Load->getMemoryVT(), 2292 *Load->getMemOperand())) 2293 return SDValue(); 2294 2295 SDLoc DL(Op); 2296 MVT VT = Op.getSimpleValueType(); 2297 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2298 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2299 "Unexpected unaligned RVV load type"); 2300 MVT NewVT = 2301 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2302 assert(NewVT.isValid() && 2303 "Expecting equally-sized RVV vector types to be legal"); 2304 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2305 Load->getPointerInfo(), Load->getOriginalAlign(), 2306 Load->getMemOperand()->getFlags()); 2307 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2308 } 2309 2310 // While RVV has alignment restrictions, we should always be able to store as a 2311 // legal equivalently-sized byte-typed vector instead. This method is 2312 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2313 // returns SDValue() if the store is already correctly aligned. 2314 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2315 SelectionDAG &DAG) const { 2316 auto *Store = cast<StoreSDNode>(Op); 2317 assert(Store && Store->getValue().getValueType().isVector() && 2318 "Expected vector store"); 2319 2320 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2321 Store->getMemoryVT(), 2322 *Store->getMemOperand())) 2323 return SDValue(); 2324 2325 SDLoc DL(Op); 2326 SDValue StoredVal = Store->getValue(); 2327 MVT VT = StoredVal.getSimpleValueType(); 2328 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2329 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2330 "Unexpected unaligned RVV store type"); 2331 MVT NewVT = 2332 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2333 assert(NewVT.isValid() && 2334 "Expecting equally-sized RVV vector types to be legal"); 2335 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2336 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2337 Store->getPointerInfo(), Store->getOriginalAlign(), 2338 Store->getMemOperand()->getFlags()); 2339 } 2340 2341 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2342 SelectionDAG &DAG) const { 2343 switch (Op.getOpcode()) { 2344 default: 2345 report_fatal_error("unimplemented operand"); 2346 case ISD::GlobalAddress: 2347 return lowerGlobalAddress(Op, DAG); 2348 case ISD::BlockAddress: 2349 return lowerBlockAddress(Op, DAG); 2350 case ISD::ConstantPool: 2351 return lowerConstantPool(Op, DAG); 2352 case ISD::JumpTable: 2353 return lowerJumpTable(Op, DAG); 2354 case ISD::GlobalTLSAddress: 2355 return lowerGlobalTLSAddress(Op, DAG); 2356 case ISD::SELECT: 2357 return lowerSELECT(Op, DAG); 2358 case ISD::BRCOND: 2359 return lowerBRCOND(Op, DAG); 2360 case ISD::VASTART: 2361 return lowerVASTART(Op, DAG); 2362 case ISD::FRAMEADDR: 2363 return lowerFRAMEADDR(Op, DAG); 2364 case ISD::RETURNADDR: 2365 return lowerRETURNADDR(Op, DAG); 2366 case ISD::SHL_PARTS: 2367 return lowerShiftLeftParts(Op, DAG); 2368 case ISD::SRA_PARTS: 2369 return lowerShiftRightParts(Op, DAG, true); 2370 case ISD::SRL_PARTS: 2371 return lowerShiftRightParts(Op, DAG, false); 2372 case ISD::BITCAST: { 2373 SDLoc DL(Op); 2374 EVT VT = Op.getValueType(); 2375 SDValue Op0 = Op.getOperand(0); 2376 EVT Op0VT = Op0.getValueType(); 2377 MVT XLenVT = Subtarget.getXLenVT(); 2378 if (VT.isFixedLengthVector()) { 2379 // We can handle fixed length vector bitcasts with a simple replacement 2380 // in isel. 2381 if (Op0VT.isFixedLengthVector()) 2382 return Op; 2383 // When bitcasting from scalar to fixed-length vector, insert the scalar 2384 // into a one-element vector of the result type, and perform a vector 2385 // bitcast. 2386 if (!Op0VT.isVector()) { 2387 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2388 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2389 DAG.getUNDEF(BVT), Op0, 2390 DAG.getConstant(0, DL, XLenVT))); 2391 } 2392 return SDValue(); 2393 } 2394 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2395 // thus: bitcast the vector to a one-element vector type whose element type 2396 // is the same as the result type, and extract the first element. 2397 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2398 LLVMContext &Context = *DAG.getContext(); 2399 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2400 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2401 DAG.getConstant(0, DL, XLenVT)); 2402 } 2403 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2404 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2405 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2406 return FPConv; 2407 } 2408 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2409 Subtarget.hasStdExtF()) { 2410 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2411 SDValue FPConv = 2412 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2413 return FPConv; 2414 } 2415 return SDValue(); 2416 } 2417 case ISD::INTRINSIC_WO_CHAIN: 2418 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2419 case ISD::INTRINSIC_W_CHAIN: 2420 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2421 case ISD::INTRINSIC_VOID: 2422 return LowerINTRINSIC_VOID(Op, DAG); 2423 case ISD::BSWAP: 2424 case ISD::BITREVERSE: { 2425 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2426 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2427 MVT VT = Op.getSimpleValueType(); 2428 SDLoc DL(Op); 2429 // Start with the maximum immediate value which is the bitwidth - 1. 2430 unsigned Imm = VT.getSizeInBits() - 1; 2431 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2432 if (Op.getOpcode() == ISD::BSWAP) 2433 Imm &= ~0x7U; 2434 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2435 DAG.getConstant(Imm, DL, VT)); 2436 } 2437 case ISD::FSHL: 2438 case ISD::FSHR: { 2439 MVT VT = Op.getSimpleValueType(); 2440 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2441 SDLoc DL(Op); 2442 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2443 return Op; 2444 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2445 // use log(XLen) bits. Mask the shift amount accordingly. 2446 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2447 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2448 DAG.getConstant(ShAmtWidth, DL, VT)); 2449 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2450 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2451 } 2452 case ISD::TRUNCATE: { 2453 SDLoc DL(Op); 2454 MVT VT = Op.getSimpleValueType(); 2455 // Only custom-lower vector truncates 2456 if (!VT.isVector()) 2457 return Op; 2458 2459 // Truncates to mask types are handled differently 2460 if (VT.getVectorElementType() == MVT::i1) 2461 return lowerVectorMaskTrunc(Op, DAG); 2462 2463 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2464 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2465 // truncate by one power of two at a time. 2466 MVT DstEltVT = VT.getVectorElementType(); 2467 2468 SDValue Src = Op.getOperand(0); 2469 MVT SrcVT = Src.getSimpleValueType(); 2470 MVT SrcEltVT = SrcVT.getVectorElementType(); 2471 2472 assert(DstEltVT.bitsLT(SrcEltVT) && 2473 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2474 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2475 "Unexpected vector truncate lowering"); 2476 2477 MVT ContainerVT = SrcVT; 2478 if (SrcVT.isFixedLengthVector()) { 2479 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2480 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2481 } 2482 2483 SDValue Result = Src; 2484 SDValue Mask, VL; 2485 std::tie(Mask, VL) = 2486 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2487 LLVMContext &Context = *DAG.getContext(); 2488 const ElementCount Count = ContainerVT.getVectorElementCount(); 2489 do { 2490 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2491 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2492 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2493 Mask, VL); 2494 } while (SrcEltVT != DstEltVT); 2495 2496 if (SrcVT.isFixedLengthVector()) 2497 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2498 2499 return Result; 2500 } 2501 case ISD::ANY_EXTEND: 2502 case ISD::ZERO_EXTEND: 2503 if (Op.getOperand(0).getValueType().isVector() && 2504 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2505 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2506 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2507 case ISD::SIGN_EXTEND: 2508 if (Op.getOperand(0).getValueType().isVector() && 2509 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2510 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2511 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2512 case ISD::SPLAT_VECTOR_PARTS: 2513 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2514 case ISD::INSERT_VECTOR_ELT: 2515 return lowerINSERT_VECTOR_ELT(Op, DAG); 2516 case ISD::EXTRACT_VECTOR_ELT: 2517 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2518 case ISD::VSCALE: { 2519 MVT VT = Op.getSimpleValueType(); 2520 SDLoc DL(Op); 2521 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2522 // We define our scalable vector types for lmul=1 to use a 64 bit known 2523 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2524 // vscale as VLENB / 8. 2525 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2526 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2527 // We assume VLENB is a multiple of 8. We manually choose the best shift 2528 // here because SimplifyDemandedBits isn't always able to simplify it. 2529 uint64_t Val = Op.getConstantOperandVal(0); 2530 if (isPowerOf2_64(Val)) { 2531 uint64_t Log2 = Log2_64(Val); 2532 if (Log2 < 3) 2533 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2534 DAG.getConstant(3 - Log2, DL, VT)); 2535 if (Log2 > 3) 2536 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2537 DAG.getConstant(Log2 - 3, DL, VT)); 2538 return VLENB; 2539 } 2540 // If the multiplier is a multiple of 8, scale it down to avoid needing 2541 // to shift the VLENB value. 2542 if ((Val % 8) == 0) 2543 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2544 DAG.getConstant(Val / 8, DL, VT)); 2545 } 2546 2547 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2548 DAG.getConstant(3, DL, VT)); 2549 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2550 } 2551 case ISD::FP_EXTEND: { 2552 // RVV can only do fp_extend to types double the size as the source. We 2553 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2554 // via f32. 2555 SDLoc DL(Op); 2556 MVT VT = Op.getSimpleValueType(); 2557 SDValue Src = Op.getOperand(0); 2558 MVT SrcVT = Src.getSimpleValueType(); 2559 2560 // Prepare any fixed-length vector operands. 2561 MVT ContainerVT = VT; 2562 if (SrcVT.isFixedLengthVector()) { 2563 ContainerVT = getContainerForFixedLengthVector(VT); 2564 MVT SrcContainerVT = 2565 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2566 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2567 } 2568 2569 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2570 SrcVT.getVectorElementType() != MVT::f16) { 2571 // For scalable vectors, we only need to close the gap between 2572 // vXf16->vXf64. 2573 if (!VT.isFixedLengthVector()) 2574 return Op; 2575 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2576 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2577 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2578 } 2579 2580 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2581 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2582 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2583 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2584 2585 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2586 DL, DAG, Subtarget); 2587 if (VT.isFixedLengthVector()) 2588 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2589 return Extend; 2590 } 2591 case ISD::FP_ROUND: { 2592 // RVV can only do fp_round to types half the size as the source. We 2593 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2594 // conversion instruction. 2595 SDLoc DL(Op); 2596 MVT VT = Op.getSimpleValueType(); 2597 SDValue Src = Op.getOperand(0); 2598 MVT SrcVT = Src.getSimpleValueType(); 2599 2600 // Prepare any fixed-length vector operands. 2601 MVT ContainerVT = VT; 2602 if (VT.isFixedLengthVector()) { 2603 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2604 ContainerVT = 2605 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2606 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2607 } 2608 2609 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2610 SrcVT.getVectorElementType() != MVT::f64) { 2611 // For scalable vectors, we only need to close the gap between 2612 // vXf64<->vXf16. 2613 if (!VT.isFixedLengthVector()) 2614 return Op; 2615 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2616 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2617 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2618 } 2619 2620 SDValue Mask, VL; 2621 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2622 2623 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2624 SDValue IntermediateRound = 2625 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2626 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2627 DL, DAG, Subtarget); 2628 2629 if (VT.isFixedLengthVector()) 2630 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2631 return Round; 2632 } 2633 case ISD::FP_TO_SINT: 2634 case ISD::FP_TO_UINT: 2635 case ISD::SINT_TO_FP: 2636 case ISD::UINT_TO_FP: { 2637 // RVV can only do fp<->int conversions to types half/double the size as 2638 // the source. We custom-lower any conversions that do two hops into 2639 // sequences. 2640 MVT VT = Op.getSimpleValueType(); 2641 if (!VT.isVector()) 2642 return Op; 2643 SDLoc DL(Op); 2644 SDValue Src = Op.getOperand(0); 2645 MVT EltVT = VT.getVectorElementType(); 2646 MVT SrcVT = Src.getSimpleValueType(); 2647 MVT SrcEltVT = SrcVT.getVectorElementType(); 2648 unsigned EltSize = EltVT.getSizeInBits(); 2649 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2650 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2651 "Unexpected vector element types"); 2652 2653 bool IsInt2FP = SrcEltVT.isInteger(); 2654 // Widening conversions 2655 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2656 if (IsInt2FP) { 2657 // Do a regular integer sign/zero extension then convert to float. 2658 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2659 VT.getVectorElementCount()); 2660 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2661 ? ISD::ZERO_EXTEND 2662 : ISD::SIGN_EXTEND; 2663 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2664 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2665 } 2666 // FP2Int 2667 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2668 // Do one doubling fp_extend then complete the operation by converting 2669 // to int. 2670 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2671 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2672 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2673 } 2674 2675 // Narrowing conversions 2676 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2677 if (IsInt2FP) { 2678 // One narrowing int_to_fp, then an fp_round. 2679 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2680 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2681 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2682 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2683 } 2684 // FP2Int 2685 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2686 // representable by the integer, the result is poison. 2687 MVT IVecVT = 2688 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2689 VT.getVectorElementCount()); 2690 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2691 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2692 } 2693 2694 // Scalable vectors can exit here. Patterns will handle equally-sized 2695 // conversions halving/doubling ones. 2696 if (!VT.isFixedLengthVector()) 2697 return Op; 2698 2699 // For fixed-length vectors we lower to a custom "VL" node. 2700 unsigned RVVOpc = 0; 2701 switch (Op.getOpcode()) { 2702 default: 2703 llvm_unreachable("Impossible opcode"); 2704 case ISD::FP_TO_SINT: 2705 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2706 break; 2707 case ISD::FP_TO_UINT: 2708 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2709 break; 2710 case ISD::SINT_TO_FP: 2711 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2712 break; 2713 case ISD::UINT_TO_FP: 2714 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2715 break; 2716 } 2717 2718 MVT ContainerVT, SrcContainerVT; 2719 // Derive the reference container type from the larger vector type. 2720 if (SrcEltSize > EltSize) { 2721 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2722 ContainerVT = 2723 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2724 } else { 2725 ContainerVT = getContainerForFixedLengthVector(VT); 2726 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2727 } 2728 2729 SDValue Mask, VL; 2730 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2731 2732 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2733 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2734 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2735 } 2736 case ISD::FP_TO_SINT_SAT: 2737 case ISD::FP_TO_UINT_SAT: 2738 return lowerFP_TO_INT_SAT(Op, DAG); 2739 case ISD::VECREDUCE_ADD: 2740 case ISD::VECREDUCE_UMAX: 2741 case ISD::VECREDUCE_SMAX: 2742 case ISD::VECREDUCE_UMIN: 2743 case ISD::VECREDUCE_SMIN: 2744 return lowerVECREDUCE(Op, DAG); 2745 case ISD::VECREDUCE_AND: 2746 case ISD::VECREDUCE_OR: 2747 case ISD::VECREDUCE_XOR: 2748 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2749 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2750 return lowerVECREDUCE(Op, DAG); 2751 case ISD::VECREDUCE_FADD: 2752 case ISD::VECREDUCE_SEQ_FADD: 2753 case ISD::VECREDUCE_FMIN: 2754 case ISD::VECREDUCE_FMAX: 2755 return lowerFPVECREDUCE(Op, DAG); 2756 case ISD::VP_REDUCE_ADD: 2757 case ISD::VP_REDUCE_UMAX: 2758 case ISD::VP_REDUCE_SMAX: 2759 case ISD::VP_REDUCE_UMIN: 2760 case ISD::VP_REDUCE_SMIN: 2761 case ISD::VP_REDUCE_FADD: 2762 case ISD::VP_REDUCE_SEQ_FADD: 2763 case ISD::VP_REDUCE_FMIN: 2764 case ISD::VP_REDUCE_FMAX: 2765 return lowerVPREDUCE(Op, DAG); 2766 case ISD::VP_REDUCE_AND: 2767 case ISD::VP_REDUCE_OR: 2768 case ISD::VP_REDUCE_XOR: 2769 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2770 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2771 return lowerVPREDUCE(Op, DAG); 2772 case ISD::INSERT_SUBVECTOR: 2773 return lowerINSERT_SUBVECTOR(Op, DAG); 2774 case ISD::EXTRACT_SUBVECTOR: 2775 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2776 case ISD::STEP_VECTOR: 2777 return lowerSTEP_VECTOR(Op, DAG); 2778 case ISD::VECTOR_REVERSE: 2779 return lowerVECTOR_REVERSE(Op, DAG); 2780 case ISD::BUILD_VECTOR: 2781 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2782 case ISD::SPLAT_VECTOR: 2783 if (Op.getValueType().getVectorElementType() == MVT::i1) 2784 return lowerVectorMaskSplat(Op, DAG); 2785 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2786 case ISD::VECTOR_SHUFFLE: 2787 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2788 case ISD::CONCAT_VECTORS: { 2789 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2790 // better than going through the stack, as the default expansion does. 2791 SDLoc DL(Op); 2792 MVT VT = Op.getSimpleValueType(); 2793 unsigned NumOpElts = 2794 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2795 SDValue Vec = DAG.getUNDEF(VT); 2796 for (const auto &OpIdx : enumerate(Op->ops())) 2797 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2798 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2799 return Vec; 2800 } 2801 case ISD::LOAD: 2802 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2803 return V; 2804 if (Op.getValueType().isFixedLengthVector()) 2805 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2806 return Op; 2807 case ISD::STORE: 2808 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2809 return V; 2810 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2811 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2812 return Op; 2813 case ISD::MLOAD: 2814 case ISD::VP_LOAD: 2815 return lowerMaskedLoad(Op, DAG); 2816 case ISD::MSTORE: 2817 case ISD::VP_STORE: 2818 return lowerMaskedStore(Op, DAG); 2819 case ISD::SETCC: 2820 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2821 case ISD::ADD: 2822 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2823 case ISD::SUB: 2824 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2825 case ISD::MUL: 2826 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2827 case ISD::MULHS: 2828 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2829 case ISD::MULHU: 2830 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2831 case ISD::AND: 2832 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2833 RISCVISD::AND_VL); 2834 case ISD::OR: 2835 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2836 RISCVISD::OR_VL); 2837 case ISD::XOR: 2838 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2839 RISCVISD::XOR_VL); 2840 case ISD::SDIV: 2841 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2842 case ISD::SREM: 2843 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2844 case ISD::UDIV: 2845 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2846 case ISD::UREM: 2847 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2848 case ISD::SHL: 2849 case ISD::SRA: 2850 case ISD::SRL: 2851 if (Op.getSimpleValueType().isFixedLengthVector()) 2852 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2853 // This can be called for an i32 shift amount that needs to be promoted. 2854 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2855 "Unexpected custom legalisation"); 2856 return SDValue(); 2857 case ISD::SADDSAT: 2858 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2859 case ISD::UADDSAT: 2860 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2861 case ISD::SSUBSAT: 2862 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2863 case ISD::USUBSAT: 2864 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2865 case ISD::FADD: 2866 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2867 case ISD::FSUB: 2868 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2869 case ISD::FMUL: 2870 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2871 case ISD::FDIV: 2872 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2873 case ISD::FNEG: 2874 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2875 case ISD::FABS: 2876 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2877 case ISD::FSQRT: 2878 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2879 case ISD::FMA: 2880 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2881 case ISD::SMIN: 2882 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2883 case ISD::SMAX: 2884 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2885 case ISD::UMIN: 2886 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2887 case ISD::UMAX: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2889 case ISD::FMINNUM: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2891 case ISD::FMAXNUM: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2893 case ISD::ABS: 2894 return lowerABS(Op, DAG); 2895 case ISD::VSELECT: 2896 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2897 case ISD::FCOPYSIGN: 2898 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2899 case ISD::MGATHER: 2900 case ISD::VP_GATHER: 2901 return lowerMaskedGather(Op, DAG); 2902 case ISD::MSCATTER: 2903 case ISD::VP_SCATTER: 2904 return lowerMaskedScatter(Op, DAG); 2905 case ISD::FLT_ROUNDS_: 2906 return lowerGET_ROUNDING(Op, DAG); 2907 case ISD::SET_ROUNDING: 2908 return lowerSET_ROUNDING(Op, DAG); 2909 case ISD::VP_ADD: 2910 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2911 case ISD::VP_SUB: 2912 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2913 case ISD::VP_MUL: 2914 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2915 case ISD::VP_SDIV: 2916 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2917 case ISD::VP_UDIV: 2918 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2919 case ISD::VP_SREM: 2920 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2921 case ISD::VP_UREM: 2922 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2923 case ISD::VP_AND: 2924 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2925 case ISD::VP_OR: 2926 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2927 case ISD::VP_XOR: 2928 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2929 case ISD::VP_ASHR: 2930 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2931 case ISD::VP_LSHR: 2932 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2933 case ISD::VP_SHL: 2934 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2935 case ISD::VP_FADD: 2936 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2937 case ISD::VP_FSUB: 2938 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2939 case ISD::VP_FMUL: 2940 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2941 case ISD::VP_FDIV: 2942 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2943 } 2944 } 2945 2946 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2947 SelectionDAG &DAG, unsigned Flags) { 2948 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2949 } 2950 2951 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2952 SelectionDAG &DAG, unsigned Flags) { 2953 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2954 Flags); 2955 } 2956 2957 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2958 SelectionDAG &DAG, unsigned Flags) { 2959 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2960 N->getOffset(), Flags); 2961 } 2962 2963 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2964 SelectionDAG &DAG, unsigned Flags) { 2965 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2966 } 2967 2968 template <class NodeTy> 2969 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2970 bool IsLocal) const { 2971 SDLoc DL(N); 2972 EVT Ty = getPointerTy(DAG.getDataLayout()); 2973 2974 if (isPositionIndependent()) { 2975 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2976 if (IsLocal) 2977 // Use PC-relative addressing to access the symbol. This generates the 2978 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2979 // %pcrel_lo(auipc)). 2980 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2981 2982 // Use PC-relative addressing to access the GOT for this symbol, then load 2983 // the address from the GOT. This generates the pattern (PseudoLA sym), 2984 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2985 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2986 } 2987 2988 switch (getTargetMachine().getCodeModel()) { 2989 default: 2990 report_fatal_error("Unsupported code model for lowering"); 2991 case CodeModel::Small: { 2992 // Generate a sequence for accessing addresses within the first 2 GiB of 2993 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2994 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2995 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2996 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2997 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2998 } 2999 case CodeModel::Medium: { 3000 // Generate a sequence for accessing addresses within any 2GiB range within 3001 // the address space. This generates the pattern (PseudoLLA sym), which 3002 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3003 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3004 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3005 } 3006 } 3007 } 3008 3009 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3010 SelectionDAG &DAG) const { 3011 SDLoc DL(Op); 3012 EVT Ty = Op.getValueType(); 3013 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3014 int64_t Offset = N->getOffset(); 3015 MVT XLenVT = Subtarget.getXLenVT(); 3016 3017 const GlobalValue *GV = N->getGlobal(); 3018 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3019 SDValue Addr = getAddr(N, DAG, IsLocal); 3020 3021 // In order to maximise the opportunity for common subexpression elimination, 3022 // emit a separate ADD node for the global address offset instead of folding 3023 // it in the global address node. Later peephole optimisations may choose to 3024 // fold it back in when profitable. 3025 if (Offset != 0) 3026 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3027 DAG.getConstant(Offset, DL, XLenVT)); 3028 return Addr; 3029 } 3030 3031 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3032 SelectionDAG &DAG) const { 3033 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3034 3035 return getAddr(N, DAG); 3036 } 3037 3038 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3039 SelectionDAG &DAG) const { 3040 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3041 3042 return getAddr(N, DAG); 3043 } 3044 3045 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3046 SelectionDAG &DAG) const { 3047 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3048 3049 return getAddr(N, DAG); 3050 } 3051 3052 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3053 SelectionDAG &DAG, 3054 bool UseGOT) const { 3055 SDLoc DL(N); 3056 EVT Ty = getPointerTy(DAG.getDataLayout()); 3057 const GlobalValue *GV = N->getGlobal(); 3058 MVT XLenVT = Subtarget.getXLenVT(); 3059 3060 if (UseGOT) { 3061 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3062 // load the address from the GOT and add the thread pointer. This generates 3063 // the pattern (PseudoLA_TLS_IE sym), which expands to 3064 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3065 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3066 SDValue Load = 3067 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3068 3069 // Add the thread pointer. 3070 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3071 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3072 } 3073 3074 // Generate a sequence for accessing the address relative to the thread 3075 // pointer, with the appropriate adjustment for the thread pointer offset. 3076 // This generates the pattern 3077 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3078 SDValue AddrHi = 3079 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3080 SDValue AddrAdd = 3081 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3082 SDValue AddrLo = 3083 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3084 3085 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3086 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3087 SDValue MNAdd = SDValue( 3088 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3089 0); 3090 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3091 } 3092 3093 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3094 SelectionDAG &DAG) const { 3095 SDLoc DL(N); 3096 EVT Ty = getPointerTy(DAG.getDataLayout()); 3097 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3098 const GlobalValue *GV = N->getGlobal(); 3099 3100 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3101 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3102 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3103 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3104 SDValue Load = 3105 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3106 3107 // Prepare argument list to generate call. 3108 ArgListTy Args; 3109 ArgListEntry Entry; 3110 Entry.Node = Load; 3111 Entry.Ty = CallTy; 3112 Args.push_back(Entry); 3113 3114 // Setup call to __tls_get_addr. 3115 TargetLowering::CallLoweringInfo CLI(DAG); 3116 CLI.setDebugLoc(DL) 3117 .setChain(DAG.getEntryNode()) 3118 .setLibCallee(CallingConv::C, CallTy, 3119 DAG.getExternalSymbol("__tls_get_addr", Ty), 3120 std::move(Args)); 3121 3122 return LowerCallTo(CLI).first; 3123 } 3124 3125 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3126 SelectionDAG &DAG) const { 3127 SDLoc DL(Op); 3128 EVT Ty = Op.getValueType(); 3129 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3130 int64_t Offset = N->getOffset(); 3131 MVT XLenVT = Subtarget.getXLenVT(); 3132 3133 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3134 3135 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3136 CallingConv::GHC) 3137 report_fatal_error("In GHC calling convention TLS is not supported"); 3138 3139 SDValue Addr; 3140 switch (Model) { 3141 case TLSModel::LocalExec: 3142 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3143 break; 3144 case TLSModel::InitialExec: 3145 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3146 break; 3147 case TLSModel::LocalDynamic: 3148 case TLSModel::GeneralDynamic: 3149 Addr = getDynamicTLSAddr(N, DAG); 3150 break; 3151 } 3152 3153 // In order to maximise the opportunity for common subexpression elimination, 3154 // emit a separate ADD node for the global address offset instead of folding 3155 // it in the global address node. Later peephole optimisations may choose to 3156 // fold it back in when profitable. 3157 if (Offset != 0) 3158 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3159 DAG.getConstant(Offset, DL, XLenVT)); 3160 return Addr; 3161 } 3162 3163 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3164 SDValue CondV = Op.getOperand(0); 3165 SDValue TrueV = Op.getOperand(1); 3166 SDValue FalseV = Op.getOperand(2); 3167 SDLoc DL(Op); 3168 MVT VT = Op.getSimpleValueType(); 3169 MVT XLenVT = Subtarget.getXLenVT(); 3170 3171 // Lower vector SELECTs to VSELECTs by splatting the condition. 3172 if (VT.isVector()) { 3173 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3174 SDValue CondSplat = VT.isScalableVector() 3175 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3176 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3177 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3178 } 3179 3180 // If the result type is XLenVT and CondV is the output of a SETCC node 3181 // which also operated on XLenVT inputs, then merge the SETCC node into the 3182 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3183 // compare+branch instructions. i.e.: 3184 // (select (setcc lhs, rhs, cc), truev, falsev) 3185 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3186 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3187 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3188 SDValue LHS = CondV.getOperand(0); 3189 SDValue RHS = CondV.getOperand(1); 3190 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3191 ISD::CondCode CCVal = CC->get(); 3192 3193 // Special case for a select of 2 constants that have a diffence of 1. 3194 // Normally this is done by DAGCombine, but if the select is introduced by 3195 // type legalization or op legalization, we miss it. Restricting to SETLT 3196 // case for now because that is what signed saturating add/sub need. 3197 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3198 // but we would probably want to swap the true/false values if the condition 3199 // is SETGE/SETLE to avoid an XORI. 3200 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3201 CCVal == ISD::SETLT) { 3202 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3203 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3204 if (TrueVal - 1 == FalseVal) 3205 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3206 if (TrueVal + 1 == FalseVal) 3207 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3208 } 3209 3210 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3211 3212 SDValue TargetCC = DAG.getCondCode(CCVal); 3213 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3214 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3215 } 3216 3217 // Otherwise: 3218 // (select condv, truev, falsev) 3219 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3220 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3221 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3222 3223 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3224 3225 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3226 } 3227 3228 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3229 SDValue CondV = Op.getOperand(1); 3230 SDLoc DL(Op); 3231 MVT XLenVT = Subtarget.getXLenVT(); 3232 3233 if (CondV.getOpcode() == ISD::SETCC && 3234 CondV.getOperand(0).getValueType() == XLenVT) { 3235 SDValue LHS = CondV.getOperand(0); 3236 SDValue RHS = CondV.getOperand(1); 3237 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3238 3239 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3240 3241 SDValue TargetCC = DAG.getCondCode(CCVal); 3242 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3243 LHS, RHS, TargetCC, Op.getOperand(2)); 3244 } 3245 3246 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3247 CondV, DAG.getConstant(0, DL, XLenVT), 3248 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3249 } 3250 3251 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3252 MachineFunction &MF = DAG.getMachineFunction(); 3253 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3254 3255 SDLoc DL(Op); 3256 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3257 getPointerTy(MF.getDataLayout())); 3258 3259 // vastart just stores the address of the VarArgsFrameIndex slot into the 3260 // memory location argument. 3261 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3262 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3263 MachinePointerInfo(SV)); 3264 } 3265 3266 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3267 SelectionDAG &DAG) const { 3268 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3269 MachineFunction &MF = DAG.getMachineFunction(); 3270 MachineFrameInfo &MFI = MF.getFrameInfo(); 3271 MFI.setFrameAddressIsTaken(true); 3272 Register FrameReg = RI.getFrameRegister(MF); 3273 int XLenInBytes = Subtarget.getXLen() / 8; 3274 3275 EVT VT = Op.getValueType(); 3276 SDLoc DL(Op); 3277 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3278 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3279 while (Depth--) { 3280 int Offset = -(XLenInBytes * 2); 3281 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3282 DAG.getIntPtrConstant(Offset, DL)); 3283 FrameAddr = 3284 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3285 } 3286 return FrameAddr; 3287 } 3288 3289 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3290 SelectionDAG &DAG) const { 3291 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3292 MachineFunction &MF = DAG.getMachineFunction(); 3293 MachineFrameInfo &MFI = MF.getFrameInfo(); 3294 MFI.setReturnAddressIsTaken(true); 3295 MVT XLenVT = Subtarget.getXLenVT(); 3296 int XLenInBytes = Subtarget.getXLen() / 8; 3297 3298 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3299 return SDValue(); 3300 3301 EVT VT = Op.getValueType(); 3302 SDLoc DL(Op); 3303 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3304 if (Depth) { 3305 int Off = -XLenInBytes; 3306 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3307 SDValue Offset = DAG.getConstant(Off, DL, VT); 3308 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3309 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3310 MachinePointerInfo()); 3311 } 3312 3313 // Return the value of the return address register, marking it an implicit 3314 // live-in. 3315 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3316 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3317 } 3318 3319 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3320 SelectionDAG &DAG) const { 3321 SDLoc DL(Op); 3322 SDValue Lo = Op.getOperand(0); 3323 SDValue Hi = Op.getOperand(1); 3324 SDValue Shamt = Op.getOperand(2); 3325 EVT VT = Lo.getValueType(); 3326 3327 // if Shamt-XLEN < 0: // Shamt < XLEN 3328 // Lo = Lo << Shamt 3329 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3330 // else: 3331 // Lo = 0 3332 // Hi = Lo << (Shamt-XLEN) 3333 3334 SDValue Zero = DAG.getConstant(0, DL, VT); 3335 SDValue One = DAG.getConstant(1, DL, VT); 3336 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3337 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3338 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3339 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3340 3341 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3342 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3343 SDValue ShiftRightLo = 3344 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3345 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3346 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3347 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3348 3349 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3350 3351 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3352 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3353 3354 SDValue Parts[2] = {Lo, Hi}; 3355 return DAG.getMergeValues(Parts, DL); 3356 } 3357 3358 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3359 bool IsSRA) const { 3360 SDLoc DL(Op); 3361 SDValue Lo = Op.getOperand(0); 3362 SDValue Hi = Op.getOperand(1); 3363 SDValue Shamt = Op.getOperand(2); 3364 EVT VT = Lo.getValueType(); 3365 3366 // SRA expansion: 3367 // if Shamt-XLEN < 0: // Shamt < XLEN 3368 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3369 // Hi = Hi >>s Shamt 3370 // else: 3371 // Lo = Hi >>s (Shamt-XLEN); 3372 // Hi = Hi >>s (XLEN-1) 3373 // 3374 // SRL expansion: 3375 // if Shamt-XLEN < 0: // Shamt < XLEN 3376 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3377 // Hi = Hi >>u Shamt 3378 // else: 3379 // Lo = Hi >>u (Shamt-XLEN); 3380 // Hi = 0; 3381 3382 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3383 3384 SDValue Zero = DAG.getConstant(0, DL, VT); 3385 SDValue One = DAG.getConstant(1, DL, VT); 3386 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3387 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3388 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3389 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3390 3391 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3392 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3393 SDValue ShiftLeftHi = 3394 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3395 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3396 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3397 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3398 SDValue HiFalse = 3399 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3400 3401 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3402 3403 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3404 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3405 3406 SDValue Parts[2] = {Lo, Hi}; 3407 return DAG.getMergeValues(Parts, DL); 3408 } 3409 3410 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3411 // legal equivalently-sized i8 type, so we can use that as a go-between. 3412 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3413 SelectionDAG &DAG) const { 3414 SDLoc DL(Op); 3415 MVT VT = Op.getSimpleValueType(); 3416 SDValue SplatVal = Op.getOperand(0); 3417 // All-zeros or all-ones splats are handled specially. 3418 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3419 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3420 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3421 } 3422 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3423 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3424 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3425 } 3426 MVT XLenVT = Subtarget.getXLenVT(); 3427 assert(SplatVal.getValueType() == XLenVT && 3428 "Unexpected type for i1 splat value"); 3429 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3430 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3431 DAG.getConstant(1, DL, XLenVT)); 3432 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3433 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3434 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3435 } 3436 3437 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3438 // illegal (currently only vXi64 RV32). 3439 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3440 // them to SPLAT_VECTOR_I64 3441 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3442 SelectionDAG &DAG) const { 3443 SDLoc DL(Op); 3444 MVT VecVT = Op.getSimpleValueType(); 3445 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3446 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3447 3448 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3449 SDValue Lo = Op.getOperand(0); 3450 SDValue Hi = Op.getOperand(1); 3451 3452 if (VecVT.isFixedLengthVector()) { 3453 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3454 SDLoc DL(Op); 3455 SDValue Mask, VL; 3456 std::tie(Mask, VL) = 3457 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3458 3459 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3460 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3461 } 3462 3463 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3464 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3465 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3466 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3467 // node in order to try and match RVV vector/scalar instructions. 3468 if ((LoC >> 31) == HiC) 3469 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3470 } 3471 3472 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3473 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3474 isa<ConstantSDNode>(Hi.getOperand(1)) && 3475 Hi.getConstantOperandVal(1) == 31) 3476 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3477 3478 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3479 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3480 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3481 } 3482 3483 // Custom-lower extensions from mask vectors by using a vselect either with 1 3484 // for zero/any-extension or -1 for sign-extension: 3485 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3486 // Note that any-extension is lowered identically to zero-extension. 3487 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3488 int64_t ExtTrueVal) const { 3489 SDLoc DL(Op); 3490 MVT VecVT = Op.getSimpleValueType(); 3491 SDValue Src = Op.getOperand(0); 3492 // Only custom-lower extensions from mask types 3493 assert(Src.getValueType().isVector() && 3494 Src.getValueType().getVectorElementType() == MVT::i1); 3495 3496 MVT XLenVT = Subtarget.getXLenVT(); 3497 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3498 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3499 3500 if (VecVT.isScalableVector()) { 3501 // Be careful not to introduce illegal scalar types at this stage, and be 3502 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3503 // illegal and must be expanded. Since we know that the constants are 3504 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3505 bool IsRV32E64 = 3506 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3507 3508 if (!IsRV32E64) { 3509 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3510 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3511 } else { 3512 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3513 SplatTrueVal = 3514 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3515 } 3516 3517 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3518 } 3519 3520 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3521 MVT I1ContainerVT = 3522 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3523 3524 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3525 3526 SDValue Mask, VL; 3527 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3528 3529 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3530 SplatTrueVal = 3531 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3532 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3533 SplatTrueVal, SplatZero, VL); 3534 3535 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3536 } 3537 3538 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3539 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3540 MVT ExtVT = Op.getSimpleValueType(); 3541 // Only custom-lower extensions from fixed-length vector types. 3542 if (!ExtVT.isFixedLengthVector()) 3543 return Op; 3544 MVT VT = Op.getOperand(0).getSimpleValueType(); 3545 // Grab the canonical container type for the extended type. Infer the smaller 3546 // type from that to ensure the same number of vector elements, as we know 3547 // the LMUL will be sufficient to hold the smaller type. 3548 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3549 // Get the extended container type manually to ensure the same number of 3550 // vector elements between source and dest. 3551 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3552 ContainerExtVT.getVectorElementCount()); 3553 3554 SDValue Op1 = 3555 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3556 3557 SDLoc DL(Op); 3558 SDValue Mask, VL; 3559 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3560 3561 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3562 3563 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3564 } 3565 3566 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3567 // setcc operation: 3568 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3569 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3570 SelectionDAG &DAG) const { 3571 SDLoc DL(Op); 3572 EVT MaskVT = Op.getValueType(); 3573 // Only expect to custom-lower truncations to mask types 3574 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3575 "Unexpected type for vector mask lowering"); 3576 SDValue Src = Op.getOperand(0); 3577 MVT VecVT = Src.getSimpleValueType(); 3578 3579 // If this is a fixed vector, we need to convert it to a scalable vector. 3580 MVT ContainerVT = VecVT; 3581 if (VecVT.isFixedLengthVector()) { 3582 ContainerVT = getContainerForFixedLengthVector(VecVT); 3583 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3584 } 3585 3586 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3587 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3588 3589 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3590 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3591 3592 if (VecVT.isScalableVector()) { 3593 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3594 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3595 } 3596 3597 SDValue Mask, VL; 3598 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3599 3600 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3601 SDValue Trunc = 3602 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3603 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3604 DAG.getCondCode(ISD::SETNE), Mask, VL); 3605 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3606 } 3607 3608 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3609 // first position of a vector, and that vector is slid up to the insert index. 3610 // By limiting the active vector length to index+1 and merging with the 3611 // original vector (with an undisturbed tail policy for elements >= VL), we 3612 // achieve the desired result of leaving all elements untouched except the one 3613 // at VL-1, which is replaced with the desired value. 3614 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3615 SelectionDAG &DAG) const { 3616 SDLoc DL(Op); 3617 MVT VecVT = Op.getSimpleValueType(); 3618 SDValue Vec = Op.getOperand(0); 3619 SDValue Val = Op.getOperand(1); 3620 SDValue Idx = Op.getOperand(2); 3621 3622 if (VecVT.getVectorElementType() == MVT::i1) { 3623 // FIXME: For now we just promote to an i8 vector and insert into that, 3624 // but this is probably not optimal. 3625 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3626 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3627 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3628 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3629 } 3630 3631 MVT ContainerVT = VecVT; 3632 // If the operand is a fixed-length vector, convert to a scalable one. 3633 if (VecVT.isFixedLengthVector()) { 3634 ContainerVT = getContainerForFixedLengthVector(VecVT); 3635 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3636 } 3637 3638 MVT XLenVT = Subtarget.getXLenVT(); 3639 3640 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3641 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3642 // Even i64-element vectors on RV32 can be lowered without scalar 3643 // legalization if the most-significant 32 bits of the value are not affected 3644 // by the sign-extension of the lower 32 bits. 3645 // TODO: We could also catch sign extensions of a 32-bit value. 3646 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3647 const auto *CVal = cast<ConstantSDNode>(Val); 3648 if (isInt<32>(CVal->getSExtValue())) { 3649 IsLegalInsert = true; 3650 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3651 } 3652 } 3653 3654 SDValue Mask, VL; 3655 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3656 3657 SDValue ValInVec; 3658 3659 if (IsLegalInsert) { 3660 unsigned Opc = 3661 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3662 if (isNullConstant(Idx)) { 3663 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3664 if (!VecVT.isFixedLengthVector()) 3665 return Vec; 3666 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3667 } 3668 ValInVec = 3669 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3670 } else { 3671 // On RV32, i64-element vectors must be specially handled to place the 3672 // value at element 0, by using two vslide1up instructions in sequence on 3673 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3674 // this. 3675 SDValue One = DAG.getConstant(1, DL, XLenVT); 3676 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3677 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3678 MVT I32ContainerVT = 3679 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3680 SDValue I32Mask = 3681 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3682 // Limit the active VL to two. 3683 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3684 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3685 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3686 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3687 InsertI64VL); 3688 // First slide in the hi value, then the lo in underneath it. 3689 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3690 ValHi, I32Mask, InsertI64VL); 3691 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3692 ValLo, I32Mask, InsertI64VL); 3693 // Bitcast back to the right container type. 3694 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3695 } 3696 3697 // Now that the value is in a vector, slide it into position. 3698 SDValue InsertVL = 3699 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3700 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3701 ValInVec, Idx, Mask, InsertVL); 3702 if (!VecVT.isFixedLengthVector()) 3703 return Slideup; 3704 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3705 } 3706 3707 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3708 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3709 // types this is done using VMV_X_S to allow us to glean information about the 3710 // sign bits of the result. 3711 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3712 SelectionDAG &DAG) const { 3713 SDLoc DL(Op); 3714 SDValue Idx = Op.getOperand(1); 3715 SDValue Vec = Op.getOperand(0); 3716 EVT EltVT = Op.getValueType(); 3717 MVT VecVT = Vec.getSimpleValueType(); 3718 MVT XLenVT = Subtarget.getXLenVT(); 3719 3720 if (VecVT.getVectorElementType() == MVT::i1) { 3721 // FIXME: For now we just promote to an i8 vector and extract from that, 3722 // but this is probably not optimal. 3723 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3724 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3725 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3726 } 3727 3728 // If this is a fixed vector, we need to convert it to a scalable vector. 3729 MVT ContainerVT = VecVT; 3730 if (VecVT.isFixedLengthVector()) { 3731 ContainerVT = getContainerForFixedLengthVector(VecVT); 3732 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3733 } 3734 3735 // If the index is 0, the vector is already in the right position. 3736 if (!isNullConstant(Idx)) { 3737 // Use a VL of 1 to avoid processing more elements than we need. 3738 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3739 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3740 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3741 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3742 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3743 } 3744 3745 if (!EltVT.isInteger()) { 3746 // Floating-point extracts are handled in TableGen. 3747 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3748 DAG.getConstant(0, DL, XLenVT)); 3749 } 3750 3751 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3752 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3753 } 3754 3755 // Some RVV intrinsics may claim that they want an integer operand to be 3756 // promoted or expanded. 3757 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3758 const RISCVSubtarget &Subtarget) { 3759 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3760 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3761 "Unexpected opcode"); 3762 3763 if (!Subtarget.hasStdExtV()) 3764 return SDValue(); 3765 3766 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3767 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3768 SDLoc DL(Op); 3769 3770 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3771 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3772 if (!II || !II->SplatOperand) 3773 return SDValue(); 3774 3775 unsigned SplatOp = II->SplatOperand + HasChain; 3776 assert(SplatOp < Op.getNumOperands()); 3777 3778 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3779 SDValue &ScalarOp = Operands[SplatOp]; 3780 MVT OpVT = ScalarOp.getSimpleValueType(); 3781 MVT XLenVT = Subtarget.getXLenVT(); 3782 3783 // If this isn't a scalar, or its type is XLenVT we're done. 3784 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3785 return SDValue(); 3786 3787 // Simplest case is that the operand needs to be promoted to XLenVT. 3788 if (OpVT.bitsLT(XLenVT)) { 3789 // If the operand is a constant, sign extend to increase our chances 3790 // of being able to use a .vi instruction. ANY_EXTEND would become a 3791 // a zero extend and the simm5 check in isel would fail. 3792 // FIXME: Should we ignore the upper bits in isel instead? 3793 unsigned ExtOpc = 3794 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3795 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3796 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3797 } 3798 3799 // Use the previous operand to get the vXi64 VT. The result might be a mask 3800 // VT for compares. Using the previous operand assumes that the previous 3801 // operand will never have a smaller element size than a scalar operand and 3802 // that a widening operation never uses SEW=64. 3803 // NOTE: If this fails the below assert, we can probably just find the 3804 // element count from any operand or result and use it to construct the VT. 3805 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3806 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3807 3808 // The more complex case is when the scalar is larger than XLenVT. 3809 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3810 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3811 3812 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3813 // on the instruction to sign-extend since SEW>XLEN. 3814 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3815 if (isInt<32>(CVal->getSExtValue())) { 3816 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3817 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3818 } 3819 } 3820 3821 // We need to convert the scalar to a splat vector. 3822 // FIXME: Can we implicitly truncate the scalar if it is known to 3823 // be sign extended? 3824 // VL should be the last operand. 3825 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3826 assert(VL.getValueType() == XLenVT); 3827 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3828 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3829 } 3830 3831 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3832 SelectionDAG &DAG) const { 3833 unsigned IntNo = Op.getConstantOperandVal(0); 3834 SDLoc DL(Op); 3835 MVT XLenVT = Subtarget.getXLenVT(); 3836 3837 switch (IntNo) { 3838 default: 3839 break; // Don't custom lower most intrinsics. 3840 case Intrinsic::thread_pointer: { 3841 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3842 return DAG.getRegister(RISCV::X4, PtrVT); 3843 } 3844 case Intrinsic::riscv_orc_b: 3845 // Lower to the GORCI encoding for orc.b. 3846 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3847 DAG.getConstant(7, DL, XLenVT)); 3848 case Intrinsic::riscv_grev: 3849 case Intrinsic::riscv_gorc: { 3850 unsigned Opc = 3851 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3852 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3853 } 3854 case Intrinsic::riscv_shfl: 3855 case Intrinsic::riscv_unshfl: { 3856 unsigned Opc = 3857 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3858 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3859 } 3860 case Intrinsic::riscv_bcompress: 3861 case Intrinsic::riscv_bdecompress: { 3862 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3863 : RISCVISD::BDECOMPRESS; 3864 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3865 } 3866 case Intrinsic::riscv_vmv_x_s: 3867 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3868 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3869 Op.getOperand(1)); 3870 case Intrinsic::riscv_vmv_v_x: 3871 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3872 Op.getSimpleValueType(), DL, DAG, Subtarget); 3873 case Intrinsic::riscv_vfmv_v_f: 3874 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3875 Op.getOperand(1), Op.getOperand(2)); 3876 case Intrinsic::riscv_vmv_s_x: { 3877 SDValue Scalar = Op.getOperand(2); 3878 3879 if (Scalar.getValueType().bitsLE(XLenVT)) { 3880 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3881 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3882 Op.getOperand(1), Scalar, Op.getOperand(3)); 3883 } 3884 3885 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3886 3887 // This is an i64 value that lives in two scalar registers. We have to 3888 // insert this in a convoluted way. First we build vXi64 splat containing 3889 // the/ two values that we assemble using some bit math. Next we'll use 3890 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3891 // to merge element 0 from our splat into the source vector. 3892 // FIXME: This is probably not the best way to do this, but it is 3893 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3894 // point. 3895 // sw lo, (a0) 3896 // sw hi, 4(a0) 3897 // vlse vX, (a0) 3898 // 3899 // vid.v vVid 3900 // vmseq.vx mMask, vVid, 0 3901 // vmerge.vvm vDest, vSrc, vVal, mMask 3902 MVT VT = Op.getSimpleValueType(); 3903 SDValue Vec = Op.getOperand(1); 3904 SDValue VL = Op.getOperand(3); 3905 3906 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3907 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3908 DAG.getConstant(0, DL, MVT::i32), VL); 3909 3910 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3911 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3912 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3913 SDValue SelectCond = 3914 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3915 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3916 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3917 Vec, VL); 3918 } 3919 case Intrinsic::riscv_vslide1up: 3920 case Intrinsic::riscv_vslide1down: 3921 case Intrinsic::riscv_vslide1up_mask: 3922 case Intrinsic::riscv_vslide1down_mask: { 3923 // We need to special case these when the scalar is larger than XLen. 3924 unsigned NumOps = Op.getNumOperands(); 3925 bool IsMasked = NumOps == 7; 3926 unsigned OpOffset = IsMasked ? 1 : 0; 3927 SDValue Scalar = Op.getOperand(2 + OpOffset); 3928 if (Scalar.getValueType().bitsLE(XLenVT)) 3929 break; 3930 3931 // Splatting a sign extended constant is fine. 3932 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3933 if (isInt<32>(CVal->getSExtValue())) 3934 break; 3935 3936 MVT VT = Op.getSimpleValueType(); 3937 assert(VT.getVectorElementType() == MVT::i64 && 3938 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3939 3940 // Convert the vector source to the equivalent nxvXi32 vector. 3941 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3942 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3943 3944 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3945 DAG.getConstant(0, DL, XLenVT)); 3946 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3947 DAG.getConstant(1, DL, XLenVT)); 3948 3949 // Double the VL since we halved SEW. 3950 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3951 SDValue I32VL = 3952 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3953 3954 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3955 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3956 3957 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3958 // instructions. 3959 if (IntNo == Intrinsic::riscv_vslide1up || 3960 IntNo == Intrinsic::riscv_vslide1up_mask) { 3961 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3962 I32Mask, I32VL); 3963 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3964 I32Mask, I32VL); 3965 } else { 3966 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3967 I32Mask, I32VL); 3968 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3969 I32Mask, I32VL); 3970 } 3971 3972 // Convert back to nxvXi64. 3973 Vec = DAG.getBitcast(VT, Vec); 3974 3975 if (!IsMasked) 3976 return Vec; 3977 3978 // Apply mask after the operation. 3979 SDValue Mask = Op.getOperand(NumOps - 3); 3980 SDValue MaskedOff = Op.getOperand(1); 3981 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3982 } 3983 } 3984 3985 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3986 } 3987 3988 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3989 SelectionDAG &DAG) const { 3990 unsigned IntNo = Op.getConstantOperandVal(1); 3991 switch (IntNo) { 3992 default: 3993 break; 3994 case Intrinsic::riscv_masked_strided_load: { 3995 SDLoc DL(Op); 3996 MVT XLenVT = Subtarget.getXLenVT(); 3997 3998 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3999 // the selection of the masked intrinsics doesn't do this for us. 4000 SDValue Mask = Op.getOperand(5); 4001 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4002 4003 MVT VT = Op->getSimpleValueType(0); 4004 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4005 4006 SDValue PassThru = Op.getOperand(2); 4007 if (!IsUnmasked) { 4008 MVT MaskVT = 4009 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4010 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4011 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4012 } 4013 4014 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4015 4016 SDValue IntID = DAG.getTargetConstant( 4017 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4018 XLenVT); 4019 4020 auto *Load = cast<MemIntrinsicSDNode>(Op); 4021 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4022 if (!IsUnmasked) 4023 Ops.push_back(PassThru); 4024 Ops.push_back(Op.getOperand(3)); // Ptr 4025 Ops.push_back(Op.getOperand(4)); // Stride 4026 if (!IsUnmasked) 4027 Ops.push_back(Mask); 4028 Ops.push_back(VL); 4029 if (!IsUnmasked) { 4030 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4031 Ops.push_back(Policy); 4032 } 4033 4034 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4035 SDValue Result = 4036 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4037 Load->getMemoryVT(), Load->getMemOperand()); 4038 SDValue Chain = Result.getValue(1); 4039 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4040 return DAG.getMergeValues({Result, Chain}, DL); 4041 } 4042 } 4043 4044 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4045 } 4046 4047 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4048 SelectionDAG &DAG) const { 4049 unsigned IntNo = Op.getConstantOperandVal(1); 4050 switch (IntNo) { 4051 default: 4052 break; 4053 case Intrinsic::riscv_masked_strided_store: { 4054 SDLoc DL(Op); 4055 MVT XLenVT = Subtarget.getXLenVT(); 4056 4057 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4058 // the selection of the masked intrinsics doesn't do this for us. 4059 SDValue Mask = Op.getOperand(5); 4060 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4061 4062 SDValue Val = Op.getOperand(2); 4063 MVT VT = Val.getSimpleValueType(); 4064 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4065 4066 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4067 if (!IsUnmasked) { 4068 MVT MaskVT = 4069 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4070 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4071 } 4072 4073 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4074 4075 SDValue IntID = DAG.getTargetConstant( 4076 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4077 XLenVT); 4078 4079 auto *Store = cast<MemIntrinsicSDNode>(Op); 4080 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4081 Ops.push_back(Val); 4082 Ops.push_back(Op.getOperand(3)); // Ptr 4083 Ops.push_back(Op.getOperand(4)); // Stride 4084 if (!IsUnmasked) 4085 Ops.push_back(Mask); 4086 Ops.push_back(VL); 4087 4088 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4089 Ops, Store->getMemoryVT(), 4090 Store->getMemOperand()); 4091 } 4092 } 4093 4094 return SDValue(); 4095 } 4096 4097 static MVT getLMUL1VT(MVT VT) { 4098 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4099 "Unexpected vector MVT"); 4100 return MVT::getScalableVectorVT( 4101 VT.getVectorElementType(), 4102 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4103 } 4104 4105 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4106 switch (ISDOpcode) { 4107 default: 4108 llvm_unreachable("Unhandled reduction"); 4109 case ISD::VECREDUCE_ADD: 4110 return RISCVISD::VECREDUCE_ADD_VL; 4111 case ISD::VECREDUCE_UMAX: 4112 return RISCVISD::VECREDUCE_UMAX_VL; 4113 case ISD::VECREDUCE_SMAX: 4114 return RISCVISD::VECREDUCE_SMAX_VL; 4115 case ISD::VECREDUCE_UMIN: 4116 return RISCVISD::VECREDUCE_UMIN_VL; 4117 case ISD::VECREDUCE_SMIN: 4118 return RISCVISD::VECREDUCE_SMIN_VL; 4119 case ISD::VECREDUCE_AND: 4120 return RISCVISD::VECREDUCE_AND_VL; 4121 case ISD::VECREDUCE_OR: 4122 return RISCVISD::VECREDUCE_OR_VL; 4123 case ISD::VECREDUCE_XOR: 4124 return RISCVISD::VECREDUCE_XOR_VL; 4125 } 4126 } 4127 4128 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4129 SelectionDAG &DAG, 4130 bool IsVP) const { 4131 SDLoc DL(Op); 4132 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4133 MVT VecVT = Vec.getSimpleValueType(); 4134 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4135 Op.getOpcode() == ISD::VECREDUCE_OR || 4136 Op.getOpcode() == ISD::VECREDUCE_XOR || 4137 Op.getOpcode() == ISD::VP_REDUCE_AND || 4138 Op.getOpcode() == ISD::VP_REDUCE_OR || 4139 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4140 "Unexpected reduction lowering"); 4141 4142 MVT XLenVT = Subtarget.getXLenVT(); 4143 assert(Op.getValueType() == XLenVT && 4144 "Expected reduction output to be legalized to XLenVT"); 4145 4146 MVT ContainerVT = VecVT; 4147 if (VecVT.isFixedLengthVector()) { 4148 ContainerVT = getContainerForFixedLengthVector(VecVT); 4149 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4150 } 4151 4152 SDValue Mask, VL; 4153 if (IsVP) { 4154 Mask = Op.getOperand(2); 4155 VL = Op.getOperand(3); 4156 } else { 4157 std::tie(Mask, VL) = 4158 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4159 } 4160 4161 unsigned BaseOpc; 4162 ISD::CondCode CC; 4163 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4164 4165 switch (Op.getOpcode()) { 4166 default: 4167 llvm_unreachable("Unhandled reduction"); 4168 case ISD::VECREDUCE_AND: 4169 case ISD::VP_REDUCE_AND: { 4170 // vpopc ~x == 0 4171 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4172 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4173 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4174 CC = ISD::SETEQ; 4175 BaseOpc = ISD::AND; 4176 break; 4177 } 4178 case ISD::VECREDUCE_OR: 4179 case ISD::VP_REDUCE_OR: 4180 // vpopc x != 0 4181 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4182 CC = ISD::SETNE; 4183 BaseOpc = ISD::OR; 4184 break; 4185 case ISD::VECREDUCE_XOR: 4186 case ISD::VP_REDUCE_XOR: { 4187 // ((vpopc x) & 1) != 0 4188 SDValue One = DAG.getConstant(1, DL, XLenVT); 4189 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4190 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4191 CC = ISD::SETNE; 4192 BaseOpc = ISD::XOR; 4193 break; 4194 } 4195 } 4196 4197 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4198 4199 if (!IsVP) 4200 return SetCC; 4201 4202 // Now include the start value in the operation. 4203 // Note that we must return the start value when no elements are operated 4204 // upon. The vpopc instructions we've emitted in each case above will return 4205 // 0 for an inactive vector, and so we've already received the neutral value: 4206 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4207 // can simply include the start value. 4208 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4209 } 4210 4211 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4212 SelectionDAG &DAG) const { 4213 SDLoc DL(Op); 4214 SDValue Vec = Op.getOperand(0); 4215 EVT VecEVT = Vec.getValueType(); 4216 4217 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4218 4219 // Due to ordering in legalize types we may have a vector type that needs to 4220 // be split. Do that manually so we can get down to a legal type. 4221 while (getTypeAction(*DAG.getContext(), VecEVT) == 4222 TargetLowering::TypeSplitVector) { 4223 SDValue Lo, Hi; 4224 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4225 VecEVT = Lo.getValueType(); 4226 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4227 } 4228 4229 // TODO: The type may need to be widened rather than split. Or widened before 4230 // it can be split. 4231 if (!isTypeLegal(VecEVT)) 4232 return SDValue(); 4233 4234 MVT VecVT = VecEVT.getSimpleVT(); 4235 MVT VecEltVT = VecVT.getVectorElementType(); 4236 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4237 4238 MVT ContainerVT = VecVT; 4239 if (VecVT.isFixedLengthVector()) { 4240 ContainerVT = getContainerForFixedLengthVector(VecVT); 4241 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4242 } 4243 4244 MVT M1VT = getLMUL1VT(ContainerVT); 4245 4246 SDValue Mask, VL; 4247 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4248 4249 // FIXME: This is a VLMAX splat which might be too large and can prevent 4250 // vsetvli removal. 4251 SDValue NeutralElem = 4252 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4253 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4254 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4255 IdentitySplat, Mask, VL); 4256 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4257 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4258 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4259 } 4260 4261 // Given a reduction op, this function returns the matching reduction opcode, 4262 // the vector SDValue and the scalar SDValue required to lower this to a 4263 // RISCVISD node. 4264 static std::tuple<unsigned, SDValue, SDValue> 4265 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4266 SDLoc DL(Op); 4267 auto Flags = Op->getFlags(); 4268 unsigned Opcode = Op.getOpcode(); 4269 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4270 switch (Opcode) { 4271 default: 4272 llvm_unreachable("Unhandled reduction"); 4273 case ISD::VECREDUCE_FADD: 4274 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4275 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4276 case ISD::VECREDUCE_SEQ_FADD: 4277 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4278 Op.getOperand(0)); 4279 case ISD::VECREDUCE_FMIN: 4280 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4281 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4282 case ISD::VECREDUCE_FMAX: 4283 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4284 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4285 } 4286 } 4287 4288 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4289 SelectionDAG &DAG) const { 4290 SDLoc DL(Op); 4291 MVT VecEltVT = Op.getSimpleValueType(); 4292 4293 unsigned RVVOpcode; 4294 SDValue VectorVal, ScalarVal; 4295 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4296 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4297 MVT VecVT = VectorVal.getSimpleValueType(); 4298 4299 MVT ContainerVT = VecVT; 4300 if (VecVT.isFixedLengthVector()) { 4301 ContainerVT = getContainerForFixedLengthVector(VecVT); 4302 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4303 } 4304 4305 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4306 4307 SDValue Mask, VL; 4308 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4309 4310 // FIXME: This is a VLMAX splat which might be too large and can prevent 4311 // vsetvli removal. 4312 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4313 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4314 VectorVal, ScalarSplat, Mask, VL); 4315 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4316 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4317 } 4318 4319 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4320 switch (ISDOpcode) { 4321 default: 4322 llvm_unreachable("Unhandled reduction"); 4323 case ISD::VP_REDUCE_ADD: 4324 return RISCVISD::VECREDUCE_ADD_VL; 4325 case ISD::VP_REDUCE_UMAX: 4326 return RISCVISD::VECREDUCE_UMAX_VL; 4327 case ISD::VP_REDUCE_SMAX: 4328 return RISCVISD::VECREDUCE_SMAX_VL; 4329 case ISD::VP_REDUCE_UMIN: 4330 return RISCVISD::VECREDUCE_UMIN_VL; 4331 case ISD::VP_REDUCE_SMIN: 4332 return RISCVISD::VECREDUCE_SMIN_VL; 4333 case ISD::VP_REDUCE_AND: 4334 return RISCVISD::VECREDUCE_AND_VL; 4335 case ISD::VP_REDUCE_OR: 4336 return RISCVISD::VECREDUCE_OR_VL; 4337 case ISD::VP_REDUCE_XOR: 4338 return RISCVISD::VECREDUCE_XOR_VL; 4339 case ISD::VP_REDUCE_FADD: 4340 return RISCVISD::VECREDUCE_FADD_VL; 4341 case ISD::VP_REDUCE_SEQ_FADD: 4342 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4343 case ISD::VP_REDUCE_FMAX: 4344 return RISCVISD::VECREDUCE_FMAX_VL; 4345 case ISD::VP_REDUCE_FMIN: 4346 return RISCVISD::VECREDUCE_FMIN_VL; 4347 } 4348 } 4349 4350 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4351 SelectionDAG &DAG) const { 4352 SDLoc DL(Op); 4353 SDValue Vec = Op.getOperand(1); 4354 EVT VecEVT = Vec.getValueType(); 4355 4356 // TODO: The type may need to be widened rather than split. Or widened before 4357 // it can be split. 4358 if (!isTypeLegal(VecEVT)) 4359 return SDValue(); 4360 4361 MVT VecVT = VecEVT.getSimpleVT(); 4362 MVT VecEltVT = VecVT.getVectorElementType(); 4363 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4364 4365 MVT ContainerVT = VecVT; 4366 if (VecVT.isFixedLengthVector()) { 4367 ContainerVT = getContainerForFixedLengthVector(VecVT); 4368 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4369 } 4370 4371 SDValue VL = Op.getOperand(3); 4372 SDValue Mask = Op.getOperand(2); 4373 4374 MVT M1VT = getLMUL1VT(ContainerVT); 4375 MVT XLenVT = Subtarget.getXLenVT(); 4376 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4377 4378 // FIXME: This is a VLMAX splat which might be too large and can prevent 4379 // vsetvli removal. 4380 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4381 SDValue Reduction = 4382 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4383 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4384 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4385 if (!VecVT.isInteger()) 4386 return Elt0; 4387 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4388 } 4389 4390 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4391 SelectionDAG &DAG) const { 4392 SDValue Vec = Op.getOperand(0); 4393 SDValue SubVec = Op.getOperand(1); 4394 MVT VecVT = Vec.getSimpleValueType(); 4395 MVT SubVecVT = SubVec.getSimpleValueType(); 4396 4397 SDLoc DL(Op); 4398 MVT XLenVT = Subtarget.getXLenVT(); 4399 unsigned OrigIdx = Op.getConstantOperandVal(2); 4400 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4401 4402 // We don't have the ability to slide mask vectors up indexed by their i1 4403 // elements; the smallest we can do is i8. Often we are able to bitcast to 4404 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4405 // into a scalable one, we might not necessarily have enough scalable 4406 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4407 if (SubVecVT.getVectorElementType() == MVT::i1 && 4408 (OrigIdx != 0 || !Vec.isUndef())) { 4409 if (VecVT.getVectorMinNumElements() >= 8 && 4410 SubVecVT.getVectorMinNumElements() >= 8) { 4411 assert(OrigIdx % 8 == 0 && "Invalid index"); 4412 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4413 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4414 "Unexpected mask vector lowering"); 4415 OrigIdx /= 8; 4416 SubVecVT = 4417 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4418 SubVecVT.isScalableVector()); 4419 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4420 VecVT.isScalableVector()); 4421 Vec = DAG.getBitcast(VecVT, Vec); 4422 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4423 } else { 4424 // We can't slide this mask vector up indexed by its i1 elements. 4425 // This poses a problem when we wish to insert a scalable vector which 4426 // can't be re-expressed as a larger type. Just choose the slow path and 4427 // extend to a larger type, then truncate back down. 4428 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4429 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4430 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4431 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4432 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4433 Op.getOperand(2)); 4434 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4435 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4436 } 4437 } 4438 4439 // If the subvector vector is a fixed-length type, we cannot use subregister 4440 // manipulation to simplify the codegen; we don't know which register of a 4441 // LMUL group contains the specific subvector as we only know the minimum 4442 // register size. Therefore we must slide the vector group up the full 4443 // amount. 4444 if (SubVecVT.isFixedLengthVector()) { 4445 if (OrigIdx == 0 && Vec.isUndef()) 4446 return Op; 4447 MVT ContainerVT = VecVT; 4448 if (VecVT.isFixedLengthVector()) { 4449 ContainerVT = getContainerForFixedLengthVector(VecVT); 4450 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4451 } 4452 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4453 DAG.getUNDEF(ContainerVT), SubVec, 4454 DAG.getConstant(0, DL, XLenVT)); 4455 SDValue Mask = 4456 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4457 // Set the vector length to only the number of elements we care about. Note 4458 // that for slideup this includes the offset. 4459 SDValue VL = 4460 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4461 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4462 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4463 SubVec, SlideupAmt, Mask, VL); 4464 if (VecVT.isFixedLengthVector()) 4465 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4466 return DAG.getBitcast(Op.getValueType(), Slideup); 4467 } 4468 4469 unsigned SubRegIdx, RemIdx; 4470 std::tie(SubRegIdx, RemIdx) = 4471 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4472 VecVT, SubVecVT, OrigIdx, TRI); 4473 4474 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4475 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4476 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4477 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4478 4479 // 1. If the Idx has been completely eliminated and this subvector's size is 4480 // a vector register or a multiple thereof, or the surrounding elements are 4481 // undef, then this is a subvector insert which naturally aligns to a vector 4482 // register. These can easily be handled using subregister manipulation. 4483 // 2. If the subvector is smaller than a vector register, then the insertion 4484 // must preserve the undisturbed elements of the register. We do this by 4485 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4486 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4487 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4488 // LMUL=1 type back into the larger vector (resolving to another subregister 4489 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4490 // to avoid allocating a large register group to hold our subvector. 4491 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4492 return Op; 4493 4494 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4495 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4496 // (in our case undisturbed). This means we can set up a subvector insertion 4497 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4498 // size of the subvector. 4499 MVT InterSubVT = VecVT; 4500 SDValue AlignedExtract = Vec; 4501 unsigned AlignedIdx = OrigIdx - RemIdx; 4502 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4503 InterSubVT = getLMUL1VT(VecVT); 4504 // Extract a subvector equal to the nearest full vector register type. This 4505 // should resolve to a EXTRACT_SUBREG instruction. 4506 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4507 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4508 } 4509 4510 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4511 // For scalable vectors this must be further multiplied by vscale. 4512 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4513 4514 SDValue Mask, VL; 4515 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4516 4517 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4518 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4519 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4520 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4521 4522 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4523 DAG.getUNDEF(InterSubVT), SubVec, 4524 DAG.getConstant(0, DL, XLenVT)); 4525 4526 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4527 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4528 4529 // If required, insert this subvector back into the correct vector register. 4530 // This should resolve to an INSERT_SUBREG instruction. 4531 if (VecVT.bitsGT(InterSubVT)) 4532 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4533 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4534 4535 // We might have bitcast from a mask type: cast back to the original type if 4536 // required. 4537 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4538 } 4539 4540 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4541 SelectionDAG &DAG) const { 4542 SDValue Vec = Op.getOperand(0); 4543 MVT SubVecVT = Op.getSimpleValueType(); 4544 MVT VecVT = Vec.getSimpleValueType(); 4545 4546 SDLoc DL(Op); 4547 MVT XLenVT = Subtarget.getXLenVT(); 4548 unsigned OrigIdx = Op.getConstantOperandVal(1); 4549 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4550 4551 // We don't have the ability to slide mask vectors down indexed by their i1 4552 // elements; the smallest we can do is i8. Often we are able to bitcast to 4553 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4554 // from a scalable one, we might not necessarily have enough scalable 4555 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4556 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4557 if (VecVT.getVectorMinNumElements() >= 8 && 4558 SubVecVT.getVectorMinNumElements() >= 8) { 4559 assert(OrigIdx % 8 == 0 && "Invalid index"); 4560 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4561 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4562 "Unexpected mask vector lowering"); 4563 OrigIdx /= 8; 4564 SubVecVT = 4565 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4566 SubVecVT.isScalableVector()); 4567 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4568 VecVT.isScalableVector()); 4569 Vec = DAG.getBitcast(VecVT, Vec); 4570 } else { 4571 // We can't slide this mask vector down, indexed by its i1 elements. 4572 // This poses a problem when we wish to extract a scalable vector which 4573 // can't be re-expressed as a larger type. Just choose the slow path and 4574 // extend to a larger type, then truncate back down. 4575 // TODO: We could probably improve this when extracting certain fixed 4576 // from fixed, where we can extract as i8 and shift the correct element 4577 // right to reach the desired subvector? 4578 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4579 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4580 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4581 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4582 Op.getOperand(1)); 4583 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4584 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4585 } 4586 } 4587 4588 // If the subvector vector is a fixed-length type, we cannot use subregister 4589 // manipulation to simplify the codegen; we don't know which register of a 4590 // LMUL group contains the specific subvector as we only know the minimum 4591 // register size. Therefore we must slide the vector group down the full 4592 // amount. 4593 if (SubVecVT.isFixedLengthVector()) { 4594 // With an index of 0 this is a cast-like subvector, which can be performed 4595 // with subregister operations. 4596 if (OrigIdx == 0) 4597 return Op; 4598 MVT ContainerVT = VecVT; 4599 if (VecVT.isFixedLengthVector()) { 4600 ContainerVT = getContainerForFixedLengthVector(VecVT); 4601 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4602 } 4603 SDValue Mask = 4604 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4605 // Set the vector length to only the number of elements we care about. This 4606 // avoids sliding down elements we're going to discard straight away. 4607 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4608 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4609 SDValue Slidedown = 4610 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4611 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4612 // Now we can use a cast-like subvector extract to get the result. 4613 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4614 DAG.getConstant(0, DL, XLenVT)); 4615 return DAG.getBitcast(Op.getValueType(), Slidedown); 4616 } 4617 4618 unsigned SubRegIdx, RemIdx; 4619 std::tie(SubRegIdx, RemIdx) = 4620 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4621 VecVT, SubVecVT, OrigIdx, TRI); 4622 4623 // If the Idx has been completely eliminated then this is a subvector extract 4624 // which naturally aligns to a vector register. These can easily be handled 4625 // using subregister manipulation. 4626 if (RemIdx == 0) 4627 return Op; 4628 4629 // Else we must shift our vector register directly to extract the subvector. 4630 // Do this using VSLIDEDOWN. 4631 4632 // If the vector type is an LMUL-group type, extract a subvector equal to the 4633 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4634 // instruction. 4635 MVT InterSubVT = VecVT; 4636 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4637 InterSubVT = getLMUL1VT(VecVT); 4638 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4639 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4640 } 4641 4642 // Slide this vector register down by the desired number of elements in order 4643 // to place the desired subvector starting at element 0. 4644 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4645 // For scalable vectors this must be further multiplied by vscale. 4646 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4647 4648 SDValue Mask, VL; 4649 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4650 SDValue Slidedown = 4651 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4652 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4653 4654 // Now the vector is in the right position, extract our final subvector. This 4655 // should resolve to a COPY. 4656 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4657 DAG.getConstant(0, DL, XLenVT)); 4658 4659 // We might have bitcast from a mask type: cast back to the original type if 4660 // required. 4661 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4662 } 4663 4664 // Lower step_vector to the vid instruction. Any non-identity step value must 4665 // be accounted for my manual expansion. 4666 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4667 SelectionDAG &DAG) const { 4668 SDLoc DL(Op); 4669 MVT VT = Op.getSimpleValueType(); 4670 MVT XLenVT = Subtarget.getXLenVT(); 4671 SDValue Mask, VL; 4672 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4673 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4674 uint64_t StepValImm = Op.getConstantOperandVal(0); 4675 if (StepValImm != 1) { 4676 if (isPowerOf2_64(StepValImm)) { 4677 SDValue StepVal = 4678 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4679 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4680 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4681 } else { 4682 SDValue StepVal = lowerScalarSplat( 4683 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4684 DL, DAG, Subtarget); 4685 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4686 } 4687 } 4688 return StepVec; 4689 } 4690 4691 // Implement vector_reverse using vrgather.vv with indices determined by 4692 // subtracting the id of each element from (VLMAX-1). This will convert 4693 // the indices like so: 4694 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4695 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4696 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4697 SelectionDAG &DAG) const { 4698 SDLoc DL(Op); 4699 MVT VecVT = Op.getSimpleValueType(); 4700 unsigned EltSize = VecVT.getScalarSizeInBits(); 4701 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4702 4703 unsigned MaxVLMAX = 0; 4704 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4705 if (VectorBitsMax != 0) 4706 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4707 4708 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4709 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4710 4711 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4712 // to use vrgatherei16.vv. 4713 // TODO: It's also possible to use vrgatherei16.vv for other types to 4714 // decrease register width for the index calculation. 4715 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4716 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4717 // Reverse each half, then reassemble them in reverse order. 4718 // NOTE: It's also possible that after splitting that VLMAX no longer 4719 // requires vrgatherei16.vv. 4720 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4721 SDValue Lo, Hi; 4722 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4723 EVT LoVT, HiVT; 4724 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4725 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4726 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4727 // Reassemble the low and high pieces reversed. 4728 // FIXME: This is a CONCAT_VECTORS. 4729 SDValue Res = 4730 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4731 DAG.getIntPtrConstant(0, DL)); 4732 return DAG.getNode( 4733 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4734 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4735 } 4736 4737 // Just promote the int type to i16 which will double the LMUL. 4738 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4739 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4740 } 4741 4742 MVT XLenVT = Subtarget.getXLenVT(); 4743 SDValue Mask, VL; 4744 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4745 4746 // Calculate VLMAX-1 for the desired SEW. 4747 unsigned MinElts = VecVT.getVectorMinNumElements(); 4748 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4749 DAG.getConstant(MinElts, DL, XLenVT)); 4750 SDValue VLMinus1 = 4751 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4752 4753 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4754 bool IsRV32E64 = 4755 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4756 SDValue SplatVL; 4757 if (!IsRV32E64) 4758 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4759 else 4760 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4761 4762 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4763 SDValue Indices = 4764 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4765 4766 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4767 } 4768 4769 SDValue 4770 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4771 SelectionDAG &DAG) const { 4772 SDLoc DL(Op); 4773 auto *Load = cast<LoadSDNode>(Op); 4774 4775 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4776 Load->getMemoryVT(), 4777 *Load->getMemOperand()) && 4778 "Expecting a correctly-aligned load"); 4779 4780 MVT VT = Op.getSimpleValueType(); 4781 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4782 4783 SDValue VL = 4784 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4785 4786 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4787 SDValue NewLoad = DAG.getMemIntrinsicNode( 4788 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4789 Load->getMemoryVT(), Load->getMemOperand()); 4790 4791 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4792 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4793 } 4794 4795 SDValue 4796 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4797 SelectionDAG &DAG) const { 4798 SDLoc DL(Op); 4799 auto *Store = cast<StoreSDNode>(Op); 4800 4801 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4802 Store->getMemoryVT(), 4803 *Store->getMemOperand()) && 4804 "Expecting a correctly-aligned store"); 4805 4806 SDValue StoreVal = Store->getValue(); 4807 MVT VT = StoreVal.getSimpleValueType(); 4808 4809 // If the size less than a byte, we need to pad with zeros to make a byte. 4810 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4811 VT = MVT::v8i1; 4812 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4813 DAG.getConstant(0, DL, VT), StoreVal, 4814 DAG.getIntPtrConstant(0, DL)); 4815 } 4816 4817 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4818 4819 SDValue VL = 4820 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4821 4822 SDValue NewValue = 4823 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4824 return DAG.getMemIntrinsicNode( 4825 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4826 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4827 Store->getMemoryVT(), Store->getMemOperand()); 4828 } 4829 4830 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4831 SelectionDAG &DAG) const { 4832 SDLoc DL(Op); 4833 MVT VT = Op.getSimpleValueType(); 4834 4835 const auto *MemSD = cast<MemSDNode>(Op); 4836 EVT MemVT = MemSD->getMemoryVT(); 4837 MachineMemOperand *MMO = MemSD->getMemOperand(); 4838 SDValue Chain = MemSD->getChain(); 4839 SDValue BasePtr = MemSD->getBasePtr(); 4840 4841 SDValue Mask, PassThru, VL; 4842 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4843 Mask = VPLoad->getMask(); 4844 PassThru = DAG.getUNDEF(VT); 4845 VL = VPLoad->getVectorLength(); 4846 } else { 4847 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4848 Mask = MLoad->getMask(); 4849 PassThru = MLoad->getPassThru(); 4850 } 4851 4852 MVT XLenVT = Subtarget.getXLenVT(); 4853 4854 MVT ContainerVT = VT; 4855 if (VT.isFixedLengthVector()) { 4856 ContainerVT = getContainerForFixedLengthVector(VT); 4857 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4858 4859 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4860 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4861 } 4862 4863 if (!VL) 4864 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4865 4866 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4867 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4868 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4869 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy}; 4870 SDValue Result = 4871 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4872 Chain = Result.getValue(1); 4873 4874 if (VT.isFixedLengthVector()) 4875 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4876 4877 return DAG.getMergeValues({Result, Chain}, DL); 4878 } 4879 4880 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4881 SelectionDAG &DAG) const { 4882 SDLoc DL(Op); 4883 4884 const auto *MemSD = cast<MemSDNode>(Op); 4885 EVT MemVT = MemSD->getMemoryVT(); 4886 MachineMemOperand *MMO = MemSD->getMemOperand(); 4887 SDValue Chain = MemSD->getChain(); 4888 SDValue BasePtr = MemSD->getBasePtr(); 4889 SDValue Val, Mask, VL; 4890 4891 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4892 Val = VPStore->getValue(); 4893 Mask = VPStore->getMask(); 4894 VL = VPStore->getVectorLength(); 4895 } else { 4896 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4897 Val = MStore->getValue(); 4898 Mask = MStore->getMask(); 4899 } 4900 4901 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4902 4903 MVT VT = Val.getSimpleValueType(); 4904 MVT XLenVT = Subtarget.getXLenVT(); 4905 4906 MVT ContainerVT = VT; 4907 if (VT.isFixedLengthVector()) { 4908 ContainerVT = getContainerForFixedLengthVector(VT); 4909 4910 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4911 if (!IsUnmasked) { 4912 MVT MaskVT = 4913 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4914 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4915 } 4916 } 4917 4918 if (!VL) 4919 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4920 4921 unsigned IntID = 4922 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4923 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4924 Ops.push_back(Val); 4925 Ops.push_back(BasePtr); 4926 if (!IsUnmasked) 4927 Ops.push_back(Mask); 4928 Ops.push_back(VL); 4929 4930 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4931 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4932 } 4933 4934 SDValue 4935 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4936 SelectionDAG &DAG) const { 4937 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4938 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4939 4940 MVT VT = Op.getSimpleValueType(); 4941 4942 SDValue Op1 = 4943 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4944 SDValue Op2 = 4945 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4946 4947 SDLoc DL(Op); 4948 SDValue VL = 4949 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4950 4951 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4952 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4953 4954 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4955 Op.getOperand(2), Mask, VL); 4956 4957 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4958 } 4959 4960 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4961 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4962 MVT VT = Op.getSimpleValueType(); 4963 4964 if (VT.getVectorElementType() == MVT::i1) 4965 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4966 4967 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4968 } 4969 4970 SDValue 4971 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4972 SelectionDAG &DAG) const { 4973 unsigned Opc; 4974 switch (Op.getOpcode()) { 4975 default: llvm_unreachable("Unexpected opcode!"); 4976 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4977 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4978 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4979 } 4980 4981 return lowerToScalableOp(Op, DAG, Opc); 4982 } 4983 4984 // Lower vector ABS to smax(X, sub(0, X)). 4985 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4986 SDLoc DL(Op); 4987 MVT VT = Op.getSimpleValueType(); 4988 SDValue X = Op.getOperand(0); 4989 4990 assert(VT.isFixedLengthVector() && "Unexpected type"); 4991 4992 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4993 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4994 4995 SDValue Mask, VL; 4996 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4997 4998 SDValue SplatZero = 4999 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5000 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5001 SDValue NegX = 5002 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5003 SDValue Max = 5004 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5005 5006 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5007 } 5008 5009 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5010 SDValue Op, SelectionDAG &DAG) const { 5011 SDLoc DL(Op); 5012 MVT VT = Op.getSimpleValueType(); 5013 SDValue Mag = Op.getOperand(0); 5014 SDValue Sign = Op.getOperand(1); 5015 assert(Mag.getValueType() == Sign.getValueType() && 5016 "Can only handle COPYSIGN with matching types."); 5017 5018 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5019 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5020 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5021 5022 SDValue Mask, VL; 5023 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5024 5025 SDValue CopySign = 5026 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5027 5028 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5029 } 5030 5031 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5032 SDValue Op, SelectionDAG &DAG) const { 5033 MVT VT = Op.getSimpleValueType(); 5034 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5035 5036 MVT I1ContainerVT = 5037 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5038 5039 SDValue CC = 5040 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5041 SDValue Op1 = 5042 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5043 SDValue Op2 = 5044 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5045 5046 SDLoc DL(Op); 5047 SDValue Mask, VL; 5048 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5049 5050 SDValue Select = 5051 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5052 5053 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5054 } 5055 5056 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5057 unsigned NewOpc, 5058 bool HasMask) const { 5059 MVT VT = Op.getSimpleValueType(); 5060 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5061 5062 // Create list of operands by converting existing ones to scalable types. 5063 SmallVector<SDValue, 6> Ops; 5064 for (const SDValue &V : Op->op_values()) { 5065 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5066 5067 // Pass through non-vector operands. 5068 if (!V.getValueType().isVector()) { 5069 Ops.push_back(V); 5070 continue; 5071 } 5072 5073 // "cast" fixed length vector to a scalable vector. 5074 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5075 "Only fixed length vectors are supported!"); 5076 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5077 } 5078 5079 SDLoc DL(Op); 5080 SDValue Mask, VL; 5081 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5082 if (HasMask) 5083 Ops.push_back(Mask); 5084 Ops.push_back(VL); 5085 5086 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5087 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5088 } 5089 5090 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5091 // * Operands of each node are assumed to be in the same order. 5092 // * The EVL operand is promoted from i32 to i64 on RV64. 5093 // * Fixed-length vectors are converted to their scalable-vector container 5094 // types. 5095 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5096 unsigned RISCVISDOpc) const { 5097 SDLoc DL(Op); 5098 MVT VT = Op.getSimpleValueType(); 5099 SmallVector<SDValue, 4> Ops; 5100 5101 for (const auto &OpIdx : enumerate(Op->ops())) { 5102 SDValue V = OpIdx.value(); 5103 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5104 // Pass through operands which aren't fixed-length vectors. 5105 if (!V.getValueType().isFixedLengthVector()) { 5106 Ops.push_back(V); 5107 continue; 5108 } 5109 // "cast" fixed length vector to a scalable vector. 5110 MVT OpVT = V.getSimpleValueType(); 5111 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5112 assert(useRVVForFixedLengthVectorVT(OpVT) && 5113 "Only fixed length vectors are supported!"); 5114 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5115 } 5116 5117 if (!VT.isFixedLengthVector()) 5118 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5119 5120 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5121 5122 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5123 5124 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5125 } 5126 5127 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5128 // matched to a RVV indexed load. The RVV indexed load instructions only 5129 // support the "unsigned unscaled" addressing mode; indices are implicitly 5130 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5131 // signed or scaled indexing is extended to the XLEN value type and scaled 5132 // accordingly. 5133 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5134 SelectionDAG &DAG) const { 5135 SDLoc DL(Op); 5136 MVT VT = Op.getSimpleValueType(); 5137 5138 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5139 EVT MemVT = MemSD->getMemoryVT(); 5140 MachineMemOperand *MMO = MemSD->getMemOperand(); 5141 SDValue Chain = MemSD->getChain(); 5142 SDValue BasePtr = MemSD->getBasePtr(); 5143 5144 ISD::LoadExtType LoadExtType; 5145 SDValue Index, Mask, PassThru, VL; 5146 5147 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5148 Index = VPGN->getIndex(); 5149 Mask = VPGN->getMask(); 5150 PassThru = DAG.getUNDEF(VT); 5151 VL = VPGN->getVectorLength(); 5152 // VP doesn't support extending loads. 5153 LoadExtType = ISD::NON_EXTLOAD; 5154 } else { 5155 // Else it must be a MGATHER. 5156 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5157 Index = MGN->getIndex(); 5158 Mask = MGN->getMask(); 5159 PassThru = MGN->getPassThru(); 5160 LoadExtType = MGN->getExtensionType(); 5161 } 5162 5163 MVT IndexVT = Index.getSimpleValueType(); 5164 MVT XLenVT = Subtarget.getXLenVT(); 5165 5166 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5167 "Unexpected VTs!"); 5168 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5169 // Targets have to explicitly opt-in for extending vector loads. 5170 assert(LoadExtType == ISD::NON_EXTLOAD && 5171 "Unexpected extending MGATHER/VP_GATHER"); 5172 (void)LoadExtType; 5173 5174 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5175 // the selection of the masked intrinsics doesn't do this for us. 5176 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5177 5178 MVT ContainerVT = VT; 5179 if (VT.isFixedLengthVector()) { 5180 // We need to use the larger of the result and index type to determine the 5181 // scalable type to use so we don't increase LMUL for any operand/result. 5182 if (VT.bitsGE(IndexVT)) { 5183 ContainerVT = getContainerForFixedLengthVector(VT); 5184 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5185 ContainerVT.getVectorElementCount()); 5186 } else { 5187 IndexVT = getContainerForFixedLengthVector(IndexVT); 5188 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5189 IndexVT.getVectorElementCount()); 5190 } 5191 5192 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5193 5194 if (!IsUnmasked) { 5195 MVT MaskVT = 5196 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5197 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5198 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5199 } 5200 } 5201 5202 if (!VL) 5203 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5204 5205 unsigned IntID = 5206 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5207 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5208 if (!IsUnmasked) 5209 Ops.push_back(PassThru); 5210 Ops.push_back(BasePtr); 5211 Ops.push_back(Index); 5212 if (!IsUnmasked) 5213 Ops.push_back(Mask); 5214 Ops.push_back(VL); 5215 if (!IsUnmasked) 5216 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5217 5218 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5219 SDValue Result = 5220 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5221 Chain = Result.getValue(1); 5222 5223 if (VT.isFixedLengthVector()) 5224 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5225 5226 return DAG.getMergeValues({Result, Chain}, DL); 5227 } 5228 5229 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5230 // matched to a RVV indexed store. The RVV indexed store instructions only 5231 // support the "unsigned unscaled" addressing mode; indices are implicitly 5232 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5233 // signed or scaled indexing is extended to the XLEN value type and scaled 5234 // accordingly. 5235 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5236 SelectionDAG &DAG) const { 5237 SDLoc DL(Op); 5238 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5239 EVT MemVT = MemSD->getMemoryVT(); 5240 MachineMemOperand *MMO = MemSD->getMemOperand(); 5241 SDValue Chain = MemSD->getChain(); 5242 SDValue BasePtr = MemSD->getBasePtr(); 5243 5244 bool IsTruncatingStore = false; 5245 SDValue Index, Mask, Val, VL; 5246 5247 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5248 Index = VPSN->getIndex(); 5249 Mask = VPSN->getMask(); 5250 Val = VPSN->getValue(); 5251 VL = VPSN->getVectorLength(); 5252 // VP doesn't support truncating stores. 5253 IsTruncatingStore = false; 5254 } else { 5255 // Else it must be a MSCATTER. 5256 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5257 Index = MSN->getIndex(); 5258 Mask = MSN->getMask(); 5259 Val = MSN->getValue(); 5260 IsTruncatingStore = MSN->isTruncatingStore(); 5261 } 5262 5263 MVT VT = Val.getSimpleValueType(); 5264 MVT IndexVT = Index.getSimpleValueType(); 5265 MVT XLenVT = Subtarget.getXLenVT(); 5266 5267 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5268 "Unexpected VTs!"); 5269 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5270 // Targets have to explicitly opt-in for extending vector loads and 5271 // truncating vector stores. 5272 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5273 (void)IsTruncatingStore; 5274 5275 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5276 // the selection of the masked intrinsics doesn't do this for us. 5277 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5278 5279 MVT ContainerVT = VT; 5280 if (VT.isFixedLengthVector()) { 5281 // We need to use the larger of the value and index type to determine the 5282 // scalable type to use so we don't increase LMUL for any operand/result. 5283 if (VT.bitsGE(IndexVT)) { 5284 ContainerVT = getContainerForFixedLengthVector(VT); 5285 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5286 ContainerVT.getVectorElementCount()); 5287 } else { 5288 IndexVT = getContainerForFixedLengthVector(IndexVT); 5289 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5290 IndexVT.getVectorElementCount()); 5291 } 5292 5293 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5294 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5295 5296 if (!IsUnmasked) { 5297 MVT MaskVT = 5298 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5299 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5300 } 5301 } 5302 5303 if (!VL) 5304 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5305 5306 unsigned IntID = 5307 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5308 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5309 Ops.push_back(Val); 5310 Ops.push_back(BasePtr); 5311 Ops.push_back(Index); 5312 if (!IsUnmasked) 5313 Ops.push_back(Mask); 5314 Ops.push_back(VL); 5315 5316 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5317 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5318 } 5319 5320 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5321 SelectionDAG &DAG) const { 5322 const MVT XLenVT = Subtarget.getXLenVT(); 5323 SDLoc DL(Op); 5324 SDValue Chain = Op->getOperand(0); 5325 SDValue SysRegNo = DAG.getConstant( 5326 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5327 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5328 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5329 5330 // Encoding used for rounding mode in RISCV differs from that used in 5331 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5332 // table, which consists of a sequence of 4-bit fields, each representing 5333 // corresponding FLT_ROUNDS mode. 5334 static const int Table = 5335 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5336 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5337 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5338 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5339 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5340 5341 SDValue Shift = 5342 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5343 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5344 DAG.getConstant(Table, DL, XLenVT), Shift); 5345 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5346 DAG.getConstant(7, DL, XLenVT)); 5347 5348 return DAG.getMergeValues({Masked, Chain}, DL); 5349 } 5350 5351 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5352 SelectionDAG &DAG) const { 5353 const MVT XLenVT = Subtarget.getXLenVT(); 5354 SDLoc DL(Op); 5355 SDValue Chain = Op->getOperand(0); 5356 SDValue RMValue = Op->getOperand(1); 5357 SDValue SysRegNo = DAG.getConstant( 5358 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5359 5360 // Encoding used for rounding mode in RISCV differs from that used in 5361 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5362 // a table, which consists of a sequence of 4-bit fields, each representing 5363 // corresponding RISCV mode. 5364 static const unsigned Table = 5365 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5366 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5367 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5368 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5369 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5370 5371 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5372 DAG.getConstant(2, DL, XLenVT)); 5373 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5374 DAG.getConstant(Table, DL, XLenVT), Shift); 5375 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5376 DAG.getConstant(0x7, DL, XLenVT)); 5377 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5378 RMValue); 5379 } 5380 5381 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5382 // form of the given Opcode. 5383 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5384 switch (Opcode) { 5385 default: 5386 llvm_unreachable("Unexpected opcode"); 5387 case ISD::SHL: 5388 return RISCVISD::SLLW; 5389 case ISD::SRA: 5390 return RISCVISD::SRAW; 5391 case ISD::SRL: 5392 return RISCVISD::SRLW; 5393 case ISD::SDIV: 5394 return RISCVISD::DIVW; 5395 case ISD::UDIV: 5396 return RISCVISD::DIVUW; 5397 case ISD::UREM: 5398 return RISCVISD::REMUW; 5399 case ISD::ROTL: 5400 return RISCVISD::ROLW; 5401 case ISD::ROTR: 5402 return RISCVISD::RORW; 5403 case RISCVISD::GREV: 5404 return RISCVISD::GREVW; 5405 case RISCVISD::GORC: 5406 return RISCVISD::GORCW; 5407 } 5408 } 5409 5410 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5411 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5412 // otherwise be promoted to i64, making it difficult to select the 5413 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5414 // type i8/i16/i32 is lost. 5415 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5416 unsigned ExtOpc = ISD::ANY_EXTEND) { 5417 SDLoc DL(N); 5418 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5419 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5420 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5421 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5422 // ReplaceNodeResults requires we maintain the same type for the return value. 5423 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5424 } 5425 5426 // Converts the given 32-bit operation to a i64 operation with signed extension 5427 // semantic to reduce the signed extension instructions. 5428 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5429 SDLoc DL(N); 5430 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5431 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5432 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5433 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5434 DAG.getValueType(MVT::i32)); 5435 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5436 } 5437 5438 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5439 SmallVectorImpl<SDValue> &Results, 5440 SelectionDAG &DAG) const { 5441 SDLoc DL(N); 5442 switch (N->getOpcode()) { 5443 default: 5444 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5445 case ISD::STRICT_FP_TO_SINT: 5446 case ISD::STRICT_FP_TO_UINT: 5447 case ISD::FP_TO_SINT: 5448 case ISD::FP_TO_UINT: { 5449 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5450 "Unexpected custom legalisation"); 5451 bool IsStrict = N->isStrictFPOpcode(); 5452 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5453 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5454 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5455 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5456 TargetLowering::TypeSoftenFloat) { 5457 // FIXME: Support strict FP. 5458 if (IsStrict) 5459 return; 5460 if (!isTypeLegal(Op0.getValueType())) 5461 return; 5462 unsigned Opc = 5463 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5464 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5465 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5466 return; 5467 } 5468 // If the FP type needs to be softened, emit a library call using the 'si' 5469 // version. If we left it to default legalization we'd end up with 'di'. If 5470 // the FP type doesn't need to be softened just let generic type 5471 // legalization promote the result type. 5472 RTLIB::Libcall LC; 5473 if (IsSigned) 5474 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5475 else 5476 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5477 MakeLibCallOptions CallOptions; 5478 EVT OpVT = Op0.getValueType(); 5479 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5480 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5481 SDValue Result; 5482 std::tie(Result, Chain) = 5483 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5484 Results.push_back(Result); 5485 if (IsStrict) 5486 Results.push_back(Chain); 5487 break; 5488 } 5489 case ISD::READCYCLECOUNTER: { 5490 assert(!Subtarget.is64Bit() && 5491 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5492 5493 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5494 SDValue RCW = 5495 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5496 5497 Results.push_back( 5498 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5499 Results.push_back(RCW.getValue(2)); 5500 break; 5501 } 5502 case ISD::MUL: { 5503 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5504 unsigned XLen = Subtarget.getXLen(); 5505 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5506 if (Size > XLen) { 5507 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5508 SDValue LHS = N->getOperand(0); 5509 SDValue RHS = N->getOperand(1); 5510 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5511 5512 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5513 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5514 // We need exactly one side to be unsigned. 5515 if (LHSIsU == RHSIsU) 5516 return; 5517 5518 auto MakeMULPair = [&](SDValue S, SDValue U) { 5519 MVT XLenVT = Subtarget.getXLenVT(); 5520 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5521 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5522 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5523 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5524 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5525 }; 5526 5527 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5528 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5529 5530 // The other operand should be signed, but still prefer MULH when 5531 // possible. 5532 if (RHSIsU && LHSIsS && !RHSIsS) 5533 Results.push_back(MakeMULPair(LHS, RHS)); 5534 else if (LHSIsU && RHSIsS && !LHSIsS) 5535 Results.push_back(MakeMULPair(RHS, LHS)); 5536 5537 return; 5538 } 5539 LLVM_FALLTHROUGH; 5540 } 5541 case ISD::ADD: 5542 case ISD::SUB: 5543 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5544 "Unexpected custom legalisation"); 5545 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5546 break; 5547 case ISD::SHL: 5548 case ISD::SRA: 5549 case ISD::SRL: 5550 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5551 "Unexpected custom legalisation"); 5552 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5553 Results.push_back(customLegalizeToWOp(N, DAG)); 5554 break; 5555 } 5556 5557 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5558 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5559 // shift amount. 5560 if (N->getOpcode() == ISD::SHL) { 5561 SDLoc DL(N); 5562 SDValue NewOp0 = 5563 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5564 SDValue NewOp1 = 5565 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5566 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5567 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5568 DAG.getValueType(MVT::i32)); 5569 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5570 } 5571 5572 break; 5573 case ISD::ROTL: 5574 case ISD::ROTR: 5575 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5576 "Unexpected custom legalisation"); 5577 Results.push_back(customLegalizeToWOp(N, DAG)); 5578 break; 5579 case ISD::CTTZ: 5580 case ISD::CTTZ_ZERO_UNDEF: 5581 case ISD::CTLZ: 5582 case ISD::CTLZ_ZERO_UNDEF: { 5583 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5584 "Unexpected custom legalisation"); 5585 5586 SDValue NewOp0 = 5587 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5588 bool IsCTZ = 5589 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5590 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5591 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5592 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5593 return; 5594 } 5595 case ISD::SDIV: 5596 case ISD::UDIV: 5597 case ISD::UREM: { 5598 MVT VT = N->getSimpleValueType(0); 5599 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5600 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5601 "Unexpected custom legalisation"); 5602 // Don't promote division/remainder by constant since we should expand those 5603 // to multiply by magic constant. 5604 // FIXME: What if the expansion is disabled for minsize. 5605 if (N->getOperand(1).getOpcode() == ISD::Constant) 5606 return; 5607 5608 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5609 // the upper 32 bits. For other types we need to sign or zero extend 5610 // based on the opcode. 5611 unsigned ExtOpc = ISD::ANY_EXTEND; 5612 if (VT != MVT::i32) 5613 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5614 : ISD::ZERO_EXTEND; 5615 5616 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5617 break; 5618 } 5619 case ISD::UADDO: 5620 case ISD::USUBO: { 5621 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5622 "Unexpected custom legalisation"); 5623 bool IsAdd = N->getOpcode() == ISD::UADDO; 5624 // Create an ADDW or SUBW. 5625 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5626 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5627 SDValue Res = 5628 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5629 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5630 DAG.getValueType(MVT::i32)); 5631 5632 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5633 // Since the inputs are sign extended from i32, this is equivalent to 5634 // comparing the lower 32 bits. 5635 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5636 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5637 IsAdd ? ISD::SETULT : ISD::SETUGT); 5638 5639 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5640 Results.push_back(Overflow); 5641 return; 5642 } 5643 case ISD::UADDSAT: 5644 case ISD::USUBSAT: { 5645 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5646 "Unexpected custom legalisation"); 5647 if (Subtarget.hasStdExtZbb()) { 5648 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5649 // sign extend allows overflow of the lower 32 bits to be detected on 5650 // the promoted size. 5651 SDValue LHS = 5652 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5653 SDValue RHS = 5654 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5655 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5656 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5657 return; 5658 } 5659 5660 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5661 // promotion for UADDO/USUBO. 5662 Results.push_back(expandAddSubSat(N, DAG)); 5663 return; 5664 } 5665 case ISD::BITCAST: { 5666 EVT VT = N->getValueType(0); 5667 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5668 SDValue Op0 = N->getOperand(0); 5669 EVT Op0VT = Op0.getValueType(); 5670 MVT XLenVT = Subtarget.getXLenVT(); 5671 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5672 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5673 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5674 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5675 Subtarget.hasStdExtF()) { 5676 SDValue FPConv = 5677 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5678 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5679 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5680 isTypeLegal(Op0VT)) { 5681 // Custom-legalize bitcasts from fixed-length vector types to illegal 5682 // scalar types in order to improve codegen. Bitcast the vector to a 5683 // one-element vector type whose element type is the same as the result 5684 // type, and extract the first element. 5685 LLVMContext &Context = *DAG.getContext(); 5686 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5687 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5688 DAG.getConstant(0, DL, XLenVT))); 5689 } 5690 break; 5691 } 5692 case RISCVISD::GREV: 5693 case RISCVISD::GORC: { 5694 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5695 "Unexpected custom legalisation"); 5696 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5697 // This is similar to customLegalizeToWOp, except that we pass the second 5698 // operand (a TargetConstant) straight through: it is already of type 5699 // XLenVT. 5700 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5701 SDValue NewOp0 = 5702 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5703 SDValue NewOp1 = 5704 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5705 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5706 // ReplaceNodeResults requires we maintain the same type for the return 5707 // value. 5708 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5709 break; 5710 } 5711 case RISCVISD::SHFL: { 5712 // There is no SHFLIW instruction, but we can just promote the operation. 5713 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5714 "Unexpected custom legalisation"); 5715 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5716 SDValue NewOp0 = 5717 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5718 SDValue NewOp1 = 5719 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5720 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5721 // ReplaceNodeResults requires we maintain the same type for the return 5722 // value. 5723 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5724 break; 5725 } 5726 case ISD::BSWAP: 5727 case ISD::BITREVERSE: { 5728 MVT VT = N->getSimpleValueType(0); 5729 MVT XLenVT = Subtarget.getXLenVT(); 5730 assert((VT == MVT::i8 || VT == MVT::i16 || 5731 (VT == MVT::i32 && Subtarget.is64Bit())) && 5732 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5733 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5734 unsigned Imm = VT.getSizeInBits() - 1; 5735 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5736 if (N->getOpcode() == ISD::BSWAP) 5737 Imm &= ~0x7U; 5738 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5739 SDValue GREVI = 5740 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5741 // ReplaceNodeResults requires we maintain the same type for the return 5742 // value. 5743 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5744 break; 5745 } 5746 case ISD::FSHL: 5747 case ISD::FSHR: { 5748 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5749 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5750 SDValue NewOp0 = 5751 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5752 SDValue NewOp1 = 5753 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5754 SDValue NewOp2 = 5755 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5756 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5757 // Mask the shift amount to 5 bits. 5758 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5759 DAG.getConstant(0x1f, DL, MVT::i64)); 5760 unsigned Opc = 5761 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5762 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5763 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5764 break; 5765 } 5766 case ISD::EXTRACT_VECTOR_ELT: { 5767 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5768 // type is illegal (currently only vXi64 RV32). 5769 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5770 // transferred to the destination register. We issue two of these from the 5771 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5772 // first element. 5773 SDValue Vec = N->getOperand(0); 5774 SDValue Idx = N->getOperand(1); 5775 5776 // The vector type hasn't been legalized yet so we can't issue target 5777 // specific nodes if it needs legalization. 5778 // FIXME: We would manually legalize if it's important. 5779 if (!isTypeLegal(Vec.getValueType())) 5780 return; 5781 5782 MVT VecVT = Vec.getSimpleValueType(); 5783 5784 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5785 VecVT.getVectorElementType() == MVT::i64 && 5786 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5787 5788 // If this is a fixed vector, we need to convert it to a scalable vector. 5789 MVT ContainerVT = VecVT; 5790 if (VecVT.isFixedLengthVector()) { 5791 ContainerVT = getContainerForFixedLengthVector(VecVT); 5792 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5793 } 5794 5795 MVT XLenVT = Subtarget.getXLenVT(); 5796 5797 // Use a VL of 1 to avoid processing more elements than we need. 5798 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5799 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5800 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5801 5802 // Unless the index is known to be 0, we must slide the vector down to get 5803 // the desired element into index 0. 5804 if (!isNullConstant(Idx)) { 5805 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5806 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5807 } 5808 5809 // Extract the lower XLEN bits of the correct vector element. 5810 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5811 5812 // To extract the upper XLEN bits of the vector element, shift the first 5813 // element right by 32 bits and re-extract the lower XLEN bits. 5814 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5815 DAG.getConstant(32, DL, XLenVT), VL); 5816 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5817 ThirtyTwoV, Mask, VL); 5818 5819 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5820 5821 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5822 break; 5823 } 5824 case ISD::INTRINSIC_WO_CHAIN: { 5825 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5826 switch (IntNo) { 5827 default: 5828 llvm_unreachable( 5829 "Don't know how to custom type legalize this intrinsic!"); 5830 case Intrinsic::riscv_orc_b: { 5831 // Lower to the GORCI encoding for orc.b with the operand extended. 5832 SDValue NewOp = 5833 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5834 // If Zbp is enabled, use GORCIW which will sign extend the result. 5835 unsigned Opc = 5836 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5837 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5838 DAG.getConstant(7, DL, MVT::i64)); 5839 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5840 return; 5841 } 5842 case Intrinsic::riscv_grev: 5843 case Intrinsic::riscv_gorc: { 5844 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5845 "Unexpected custom legalisation"); 5846 SDValue NewOp1 = 5847 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5848 SDValue NewOp2 = 5849 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5850 unsigned Opc = 5851 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5852 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5853 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5854 break; 5855 } 5856 case Intrinsic::riscv_shfl: 5857 case Intrinsic::riscv_unshfl: { 5858 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5859 "Unexpected custom legalisation"); 5860 SDValue NewOp1 = 5861 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5862 SDValue NewOp2 = 5863 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5864 unsigned Opc = 5865 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5866 if (isa<ConstantSDNode>(N->getOperand(2))) { 5867 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5868 DAG.getConstant(0xf, DL, MVT::i64)); 5869 Opc = 5870 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5871 } 5872 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5873 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5874 break; 5875 } 5876 case Intrinsic::riscv_bcompress: 5877 case Intrinsic::riscv_bdecompress: { 5878 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5879 "Unexpected custom legalisation"); 5880 SDValue NewOp1 = 5881 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5882 SDValue NewOp2 = 5883 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5884 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5885 ? RISCVISD::BCOMPRESSW 5886 : RISCVISD::BDECOMPRESSW; 5887 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5888 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5889 break; 5890 } 5891 case Intrinsic::riscv_vmv_x_s: { 5892 EVT VT = N->getValueType(0); 5893 MVT XLenVT = Subtarget.getXLenVT(); 5894 if (VT.bitsLT(XLenVT)) { 5895 // Simple case just extract using vmv.x.s and truncate. 5896 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5897 Subtarget.getXLenVT(), N->getOperand(1)); 5898 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5899 return; 5900 } 5901 5902 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5903 "Unexpected custom legalization"); 5904 5905 // We need to do the move in two steps. 5906 SDValue Vec = N->getOperand(1); 5907 MVT VecVT = Vec.getSimpleValueType(); 5908 5909 // First extract the lower XLEN bits of the element. 5910 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5911 5912 // To extract the upper XLEN bits of the vector element, shift the first 5913 // element right by 32 bits and re-extract the lower XLEN bits. 5914 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5915 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5916 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5917 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5918 DAG.getConstant(32, DL, XLenVT), VL); 5919 SDValue LShr32 = 5920 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5921 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5922 5923 Results.push_back( 5924 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5925 break; 5926 } 5927 } 5928 break; 5929 } 5930 case ISD::VECREDUCE_ADD: 5931 case ISD::VECREDUCE_AND: 5932 case ISD::VECREDUCE_OR: 5933 case ISD::VECREDUCE_XOR: 5934 case ISD::VECREDUCE_SMAX: 5935 case ISD::VECREDUCE_UMAX: 5936 case ISD::VECREDUCE_SMIN: 5937 case ISD::VECREDUCE_UMIN: 5938 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5939 Results.push_back(V); 5940 break; 5941 case ISD::VP_REDUCE_ADD: 5942 case ISD::VP_REDUCE_AND: 5943 case ISD::VP_REDUCE_OR: 5944 case ISD::VP_REDUCE_XOR: 5945 case ISD::VP_REDUCE_SMAX: 5946 case ISD::VP_REDUCE_UMAX: 5947 case ISD::VP_REDUCE_SMIN: 5948 case ISD::VP_REDUCE_UMIN: 5949 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5950 Results.push_back(V); 5951 break; 5952 case ISD::FLT_ROUNDS_: { 5953 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5954 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5955 Results.push_back(Res.getValue(0)); 5956 Results.push_back(Res.getValue(1)); 5957 break; 5958 } 5959 } 5960 } 5961 5962 // A structure to hold one of the bit-manipulation patterns below. Together, a 5963 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5964 // (or (and (shl x, 1), 0xAAAAAAAA), 5965 // (and (srl x, 1), 0x55555555)) 5966 struct RISCVBitmanipPat { 5967 SDValue Op; 5968 unsigned ShAmt; 5969 bool IsSHL; 5970 5971 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5972 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5973 } 5974 }; 5975 5976 // Matches patterns of the form 5977 // (and (shl x, C2), (C1 << C2)) 5978 // (and (srl x, C2), C1) 5979 // (shl (and x, C1), C2) 5980 // (srl (and x, (C1 << C2)), C2) 5981 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5982 // The expected masks for each shift amount are specified in BitmanipMasks where 5983 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5984 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5985 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5986 // XLen is 64. 5987 static Optional<RISCVBitmanipPat> 5988 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5989 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5990 "Unexpected number of masks"); 5991 Optional<uint64_t> Mask; 5992 // Optionally consume a mask around the shift operation. 5993 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5994 Mask = Op.getConstantOperandVal(1); 5995 Op = Op.getOperand(0); 5996 } 5997 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5998 return None; 5999 bool IsSHL = Op.getOpcode() == ISD::SHL; 6000 6001 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6002 return None; 6003 uint64_t ShAmt = Op.getConstantOperandVal(1); 6004 6005 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6006 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6007 return None; 6008 // If we don't have enough masks for 64 bit, then we must be trying to 6009 // match SHFL so we're only allowed to shift 1/4 of the width. 6010 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6011 return None; 6012 6013 SDValue Src = Op.getOperand(0); 6014 6015 // The expected mask is shifted left when the AND is found around SHL 6016 // patterns. 6017 // ((x >> 1) & 0x55555555) 6018 // ((x << 1) & 0xAAAAAAAA) 6019 bool SHLExpMask = IsSHL; 6020 6021 if (!Mask) { 6022 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6023 // the mask is all ones: consume that now. 6024 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6025 Mask = Src.getConstantOperandVal(1); 6026 Src = Src.getOperand(0); 6027 // The expected mask is now in fact shifted left for SRL, so reverse the 6028 // decision. 6029 // ((x & 0xAAAAAAAA) >> 1) 6030 // ((x & 0x55555555) << 1) 6031 SHLExpMask = !SHLExpMask; 6032 } else { 6033 // Use a default shifted mask of all-ones if there's no AND, truncated 6034 // down to the expected width. This simplifies the logic later on. 6035 Mask = maskTrailingOnes<uint64_t>(Width); 6036 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6037 } 6038 } 6039 6040 unsigned MaskIdx = Log2_32(ShAmt); 6041 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6042 6043 if (SHLExpMask) 6044 ExpMask <<= ShAmt; 6045 6046 if (Mask != ExpMask) 6047 return None; 6048 6049 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6050 } 6051 6052 // Matches any of the following bit-manipulation patterns: 6053 // (and (shl x, 1), (0x55555555 << 1)) 6054 // (and (srl x, 1), 0x55555555) 6055 // (shl (and x, 0x55555555), 1) 6056 // (srl (and x, (0x55555555 << 1)), 1) 6057 // where the shift amount and mask may vary thus: 6058 // [1] = 0x55555555 / 0xAAAAAAAA 6059 // [2] = 0x33333333 / 0xCCCCCCCC 6060 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6061 // [8] = 0x00FF00FF / 0xFF00FF00 6062 // [16] = 0x0000FFFF / 0xFFFFFFFF 6063 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6064 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6065 // These are the unshifted masks which we use to match bit-manipulation 6066 // patterns. They may be shifted left in certain circumstances. 6067 static const uint64_t BitmanipMasks[] = { 6068 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6069 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6070 6071 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6072 } 6073 6074 // Match the following pattern as a GREVI(W) operation 6075 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6076 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6077 const RISCVSubtarget &Subtarget) { 6078 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6079 EVT VT = Op.getValueType(); 6080 6081 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6082 auto LHS = matchGREVIPat(Op.getOperand(0)); 6083 auto RHS = matchGREVIPat(Op.getOperand(1)); 6084 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6085 SDLoc DL(Op); 6086 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6087 DAG.getConstant(LHS->ShAmt, DL, VT)); 6088 } 6089 } 6090 return SDValue(); 6091 } 6092 6093 // Matches any the following pattern as a GORCI(W) operation 6094 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6095 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6096 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6097 // Note that with the variant of 3., 6098 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6099 // the inner pattern will first be matched as GREVI and then the outer 6100 // pattern will be matched to GORC via the first rule above. 6101 // 4. (or (rotl/rotr x, bitwidth/2), x) 6102 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6103 const RISCVSubtarget &Subtarget) { 6104 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6105 EVT VT = Op.getValueType(); 6106 6107 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6108 SDLoc DL(Op); 6109 SDValue Op0 = Op.getOperand(0); 6110 SDValue Op1 = Op.getOperand(1); 6111 6112 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6113 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6114 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6115 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6116 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6117 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6118 if ((Reverse.getOpcode() == ISD::ROTL || 6119 Reverse.getOpcode() == ISD::ROTR) && 6120 Reverse.getOperand(0) == X && 6121 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6122 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6123 if (RotAmt == (VT.getSizeInBits() / 2)) 6124 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6125 DAG.getConstant(RotAmt, DL, VT)); 6126 } 6127 return SDValue(); 6128 }; 6129 6130 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6131 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6132 return V; 6133 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6134 return V; 6135 6136 // OR is commutable so canonicalize its OR operand to the left 6137 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6138 std::swap(Op0, Op1); 6139 if (Op0.getOpcode() != ISD::OR) 6140 return SDValue(); 6141 SDValue OrOp0 = Op0.getOperand(0); 6142 SDValue OrOp1 = Op0.getOperand(1); 6143 auto LHS = matchGREVIPat(OrOp0); 6144 // OR is commutable so swap the operands and try again: x might have been 6145 // on the left 6146 if (!LHS) { 6147 std::swap(OrOp0, OrOp1); 6148 LHS = matchGREVIPat(OrOp0); 6149 } 6150 auto RHS = matchGREVIPat(Op1); 6151 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6152 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6153 DAG.getConstant(LHS->ShAmt, DL, VT)); 6154 } 6155 } 6156 return SDValue(); 6157 } 6158 6159 // Matches any of the following bit-manipulation patterns: 6160 // (and (shl x, 1), (0x22222222 << 1)) 6161 // (and (srl x, 1), 0x22222222) 6162 // (shl (and x, 0x22222222), 1) 6163 // (srl (and x, (0x22222222 << 1)), 1) 6164 // where the shift amount and mask may vary thus: 6165 // [1] = 0x22222222 / 0x44444444 6166 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6167 // [4] = 0x00F000F0 / 0x0F000F00 6168 // [8] = 0x0000FF00 / 0x00FF0000 6169 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6170 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6171 // These are the unshifted masks which we use to match bit-manipulation 6172 // patterns. They may be shifted left in certain circumstances. 6173 static const uint64_t BitmanipMasks[] = { 6174 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6175 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6176 6177 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6178 } 6179 6180 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6181 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6182 const RISCVSubtarget &Subtarget) { 6183 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6184 EVT VT = Op.getValueType(); 6185 6186 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6187 return SDValue(); 6188 6189 SDValue Op0 = Op.getOperand(0); 6190 SDValue Op1 = Op.getOperand(1); 6191 6192 // Or is commutable so canonicalize the second OR to the LHS. 6193 if (Op0.getOpcode() != ISD::OR) 6194 std::swap(Op0, Op1); 6195 if (Op0.getOpcode() != ISD::OR) 6196 return SDValue(); 6197 6198 // We found an inner OR, so our operands are the operands of the inner OR 6199 // and the other operand of the outer OR. 6200 SDValue A = Op0.getOperand(0); 6201 SDValue B = Op0.getOperand(1); 6202 SDValue C = Op1; 6203 6204 auto Match1 = matchSHFLPat(A); 6205 auto Match2 = matchSHFLPat(B); 6206 6207 // If neither matched, we failed. 6208 if (!Match1 && !Match2) 6209 return SDValue(); 6210 6211 // We had at least one match. if one failed, try the remaining C operand. 6212 if (!Match1) { 6213 std::swap(A, C); 6214 Match1 = matchSHFLPat(A); 6215 if (!Match1) 6216 return SDValue(); 6217 } else if (!Match2) { 6218 std::swap(B, C); 6219 Match2 = matchSHFLPat(B); 6220 if (!Match2) 6221 return SDValue(); 6222 } 6223 assert(Match1 && Match2); 6224 6225 // Make sure our matches pair up. 6226 if (!Match1->formsPairWith(*Match2)) 6227 return SDValue(); 6228 6229 // All the remains is to make sure C is an AND with the same input, that masks 6230 // out the bits that are being shuffled. 6231 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6232 C.getOperand(0) != Match1->Op) 6233 return SDValue(); 6234 6235 uint64_t Mask = C.getConstantOperandVal(1); 6236 6237 static const uint64_t BitmanipMasks[] = { 6238 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6239 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6240 }; 6241 6242 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6243 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6244 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6245 6246 if (Mask != ExpMask) 6247 return SDValue(); 6248 6249 SDLoc DL(Op); 6250 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6251 DAG.getConstant(Match1->ShAmt, DL, VT)); 6252 } 6253 6254 // Optimize (add (shl x, c0), (shl y, c1)) -> 6255 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6256 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6257 const RISCVSubtarget &Subtarget) { 6258 // Perform this optimization only in the zba extension. 6259 if (!Subtarget.hasStdExtZba()) 6260 return SDValue(); 6261 6262 // Skip for vector types and larger types. 6263 EVT VT = N->getValueType(0); 6264 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6265 return SDValue(); 6266 6267 // The two operand nodes must be SHL and have no other use. 6268 SDValue N0 = N->getOperand(0); 6269 SDValue N1 = N->getOperand(1); 6270 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6271 !N0->hasOneUse() || !N1->hasOneUse()) 6272 return SDValue(); 6273 6274 // Check c0 and c1. 6275 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6276 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6277 if (!N0C || !N1C) 6278 return SDValue(); 6279 int64_t C0 = N0C->getSExtValue(); 6280 int64_t C1 = N1C->getSExtValue(); 6281 if (C0 <= 0 || C1 <= 0) 6282 return SDValue(); 6283 6284 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6285 int64_t Bits = std::min(C0, C1); 6286 int64_t Diff = std::abs(C0 - C1); 6287 if (Diff != 1 && Diff != 2 && Diff != 3) 6288 return SDValue(); 6289 6290 // Build nodes. 6291 SDLoc DL(N); 6292 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6293 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6294 SDValue NA0 = 6295 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6296 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6297 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6298 } 6299 6300 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6301 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6302 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6303 // not undo itself, but they are redundant. 6304 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6305 SDValue Src = N->getOperand(0); 6306 6307 if (Src.getOpcode() != N->getOpcode()) 6308 return SDValue(); 6309 6310 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6311 !isa<ConstantSDNode>(Src.getOperand(1))) 6312 return SDValue(); 6313 6314 unsigned ShAmt1 = N->getConstantOperandVal(1); 6315 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6316 Src = Src.getOperand(0); 6317 6318 unsigned CombinedShAmt; 6319 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6320 CombinedShAmt = ShAmt1 | ShAmt2; 6321 else 6322 CombinedShAmt = ShAmt1 ^ ShAmt2; 6323 6324 if (CombinedShAmt == 0) 6325 return Src; 6326 6327 SDLoc DL(N); 6328 return DAG.getNode( 6329 N->getOpcode(), DL, N->getValueType(0), Src, 6330 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6331 } 6332 6333 // Combine a constant select operand into its use: 6334 // 6335 // (and (select cond, -1, c), x) 6336 // -> (select cond, x, (and x, c)) [AllOnes=1] 6337 // (or (select cond, 0, c), x) 6338 // -> (select cond, x, (or x, c)) [AllOnes=0] 6339 // (xor (select cond, 0, c), x) 6340 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6341 // (add (select cond, 0, c), x) 6342 // -> (select cond, x, (add x, c)) [AllOnes=0] 6343 // (sub x, (select cond, 0, c)) 6344 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6345 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6346 SelectionDAG &DAG, bool AllOnes) { 6347 EVT VT = N->getValueType(0); 6348 6349 // Skip vectors. 6350 if (VT.isVector()) 6351 return SDValue(); 6352 6353 if ((Slct.getOpcode() != ISD::SELECT && 6354 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6355 !Slct.hasOneUse()) 6356 return SDValue(); 6357 6358 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6359 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6360 }; 6361 6362 bool SwapSelectOps; 6363 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6364 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6365 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6366 SDValue NonConstantVal; 6367 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6368 SwapSelectOps = false; 6369 NonConstantVal = FalseVal; 6370 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6371 SwapSelectOps = true; 6372 NonConstantVal = TrueVal; 6373 } else 6374 return SDValue(); 6375 6376 // Slct is now know to be the desired identity constant when CC is true. 6377 TrueVal = OtherOp; 6378 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6379 // Unless SwapSelectOps says the condition should be false. 6380 if (SwapSelectOps) 6381 std::swap(TrueVal, FalseVal); 6382 6383 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6384 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6385 {Slct.getOperand(0), Slct.getOperand(1), 6386 Slct.getOperand(2), TrueVal, FalseVal}); 6387 6388 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6389 {Slct.getOperand(0), TrueVal, FalseVal}); 6390 } 6391 6392 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6393 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6394 bool AllOnes) { 6395 SDValue N0 = N->getOperand(0); 6396 SDValue N1 = N->getOperand(1); 6397 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6398 return Result; 6399 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6400 return Result; 6401 return SDValue(); 6402 } 6403 6404 // Transform (add (mul x, c0), c1) -> 6405 // (add (mul (add x, c1/c0), c0), c1%c0). 6406 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6407 // Or transform (add (mul x, c0), c1) -> 6408 // (mul (add x, c1/c0), c0). 6409 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6410 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6411 const RISCVSubtarget &Subtarget) { 6412 // Skip for vector types and larger types. 6413 EVT VT = N->getValueType(0); 6414 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6415 return SDValue(); 6416 // The first operand node must be a MUL and has no other use. 6417 SDValue N0 = N->getOperand(0); 6418 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6419 return SDValue(); 6420 // Check if c0 and c1 match above conditions. 6421 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6422 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6423 if (!N0C || !N1C) 6424 return SDValue(); 6425 int64_t C0 = N0C->getSExtValue(); 6426 int64_t C1 = N1C->getSExtValue(); 6427 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6428 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6429 return SDValue(); 6430 // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed. 6431 if (isInt<12>(C0 * (C1 / C0))) 6432 return SDValue(); 6433 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6434 SDLoc DL(N); 6435 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6436 DAG.getConstant(C1 / C0, DL, VT)); 6437 SDValue New1 = 6438 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6439 if ((C1 % C0) == 0) 6440 return New1; 6441 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6442 } 6443 6444 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6445 const RISCVSubtarget &Subtarget) { 6446 // Transform (add (mul x, c0), c1) -> 6447 // (add (mul (add x, c1/c0), c0), c1%c0). 6448 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6449 // Or transform (add (mul x, c0), c1) -> 6450 // (mul (add x, c1/c0), c0). 6451 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6452 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6453 return V; 6454 // Fold (add (shl x, c0), (shl y, c1)) -> 6455 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6456 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6457 return V; 6458 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6459 // (select lhs, rhs, cc, x, (add x, y)) 6460 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6461 } 6462 6463 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6464 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6465 // (select lhs, rhs, cc, x, (sub x, y)) 6466 SDValue N0 = N->getOperand(0); 6467 SDValue N1 = N->getOperand(1); 6468 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6469 } 6470 6471 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6472 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6473 // (select lhs, rhs, cc, x, (and x, y)) 6474 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6475 } 6476 6477 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6478 const RISCVSubtarget &Subtarget) { 6479 if (Subtarget.hasStdExtZbp()) { 6480 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6481 return GREV; 6482 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6483 return GORC; 6484 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6485 return SHFL; 6486 } 6487 6488 // fold (or (select cond, 0, y), x) -> 6489 // (select cond, x, (or x, y)) 6490 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6491 } 6492 6493 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6494 // fold (xor (select cond, 0, y), x) -> 6495 // (select cond, x, (xor x, y)) 6496 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6497 } 6498 6499 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6500 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6501 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6502 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6503 // ADDW/SUBW/MULW. 6504 static SDValue performANY_EXTENDCombine(SDNode *N, 6505 TargetLowering::DAGCombinerInfo &DCI, 6506 const RISCVSubtarget &Subtarget) { 6507 if (!Subtarget.is64Bit()) 6508 return SDValue(); 6509 6510 SelectionDAG &DAG = DCI.DAG; 6511 6512 SDValue Src = N->getOperand(0); 6513 EVT VT = N->getValueType(0); 6514 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6515 return SDValue(); 6516 6517 // The opcode must be one that can implicitly sign_extend. 6518 // FIXME: Additional opcodes. 6519 switch (Src.getOpcode()) { 6520 default: 6521 return SDValue(); 6522 case ISD::MUL: 6523 if (!Subtarget.hasStdExtM()) 6524 return SDValue(); 6525 LLVM_FALLTHROUGH; 6526 case ISD::ADD: 6527 case ISD::SUB: 6528 break; 6529 } 6530 6531 // Only handle cases where the result is used by a CopyToReg. That likely 6532 // means the value is a liveout of the basic block. This helps prevent 6533 // infinite combine loops like PR51206. 6534 if (none_of(N->uses(), 6535 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6536 return SDValue(); 6537 6538 SmallVector<SDNode *, 4> SetCCs; 6539 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6540 UE = Src.getNode()->use_end(); 6541 UI != UE; ++UI) { 6542 SDNode *User = *UI; 6543 if (User == N) 6544 continue; 6545 if (UI.getUse().getResNo() != Src.getResNo()) 6546 continue; 6547 // All i32 setccs are legalized by sign extending operands. 6548 if (User->getOpcode() == ISD::SETCC) { 6549 SetCCs.push_back(User); 6550 continue; 6551 } 6552 // We don't know if we can extend this user. 6553 break; 6554 } 6555 6556 // If we don't have any SetCCs, this isn't worthwhile. 6557 if (SetCCs.empty()) 6558 return SDValue(); 6559 6560 SDLoc DL(N); 6561 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6562 DCI.CombineTo(N, SExt); 6563 6564 // Promote all the setccs. 6565 for (SDNode *SetCC : SetCCs) { 6566 SmallVector<SDValue, 4> Ops; 6567 6568 for (unsigned j = 0; j != 2; ++j) { 6569 SDValue SOp = SetCC->getOperand(j); 6570 if (SOp == Src) 6571 Ops.push_back(SExt); 6572 else 6573 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6574 } 6575 6576 Ops.push_back(SetCC->getOperand(2)); 6577 DCI.CombineTo(SetCC, 6578 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6579 } 6580 return SDValue(N, 0); 6581 } 6582 6583 // Try to form VWMUL or VWMULU. 6584 // FIXME: Support VWMULSU. 6585 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6586 SelectionDAG &DAG) { 6587 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6588 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6589 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6590 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6591 return SDValue(); 6592 6593 SDValue Mask = N->getOperand(2); 6594 SDValue VL = N->getOperand(3); 6595 6596 // Make sure the mask and VL match. 6597 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6598 return SDValue(); 6599 6600 MVT VT = N->getSimpleValueType(0); 6601 6602 // Determine the narrow size for a widening multiply. 6603 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6604 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6605 VT.getVectorElementCount()); 6606 6607 SDLoc DL(N); 6608 6609 // See if the other operand is the same opcode. 6610 if (Op0.getOpcode() == Op1.getOpcode()) { 6611 if (!Op1.hasOneUse()) 6612 return SDValue(); 6613 6614 // Make sure the mask and VL match. 6615 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6616 return SDValue(); 6617 6618 Op1 = Op1.getOperand(0); 6619 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6620 // The operand is a splat of a scalar. 6621 6622 // The VL must be the same. 6623 if (Op1.getOperand(1) != VL) 6624 return SDValue(); 6625 6626 // Get the scalar value. 6627 Op1 = Op1.getOperand(0); 6628 6629 // See if have enough sign bits or zero bits in the scalar to use a 6630 // widening multiply by splatting to smaller element size. 6631 unsigned EltBits = VT.getScalarSizeInBits(); 6632 unsigned ScalarBits = Op1.getValueSizeInBits(); 6633 // Make sure we're getting all element bits from the scalar register. 6634 // FIXME: Support implicit sign extension of vmv.v.x? 6635 if (ScalarBits < EltBits) 6636 return SDValue(); 6637 6638 if (IsSignExt) { 6639 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6640 return SDValue(); 6641 } else { 6642 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6643 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6644 return SDValue(); 6645 } 6646 6647 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6648 } else 6649 return SDValue(); 6650 6651 Op0 = Op0.getOperand(0); 6652 6653 // Re-introduce narrower extends if needed. 6654 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6655 if (Op0.getValueType() != NarrowVT) 6656 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6657 if (Op1.getValueType() != NarrowVT) 6658 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6659 6660 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6661 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6662 } 6663 6664 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6665 DAGCombinerInfo &DCI) const { 6666 SelectionDAG &DAG = DCI.DAG; 6667 6668 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6669 // bits are demanded. N will be added to the Worklist if it was not deleted. 6670 // Caller should return SDValue(N, 0) if this returns true. 6671 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6672 SDValue Op = N->getOperand(OpNo); 6673 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6674 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6675 return false; 6676 6677 if (N->getOpcode() != ISD::DELETED_NODE) 6678 DCI.AddToWorklist(N); 6679 return true; 6680 }; 6681 6682 switch (N->getOpcode()) { 6683 default: 6684 break; 6685 case RISCVISD::SplitF64: { 6686 SDValue Op0 = N->getOperand(0); 6687 // If the input to SplitF64 is just BuildPairF64 then the operation is 6688 // redundant. Instead, use BuildPairF64's operands directly. 6689 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6690 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6691 6692 SDLoc DL(N); 6693 6694 // It's cheaper to materialise two 32-bit integers than to load a double 6695 // from the constant pool and transfer it to integer registers through the 6696 // stack. 6697 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6698 APInt V = C->getValueAPF().bitcastToAPInt(); 6699 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6700 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6701 return DCI.CombineTo(N, Lo, Hi); 6702 } 6703 6704 // This is a target-specific version of a DAGCombine performed in 6705 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6706 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6707 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6708 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6709 !Op0.getNode()->hasOneUse()) 6710 break; 6711 SDValue NewSplitF64 = 6712 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6713 Op0.getOperand(0)); 6714 SDValue Lo = NewSplitF64.getValue(0); 6715 SDValue Hi = NewSplitF64.getValue(1); 6716 APInt SignBit = APInt::getSignMask(32); 6717 if (Op0.getOpcode() == ISD::FNEG) { 6718 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6719 DAG.getConstant(SignBit, DL, MVT::i32)); 6720 return DCI.CombineTo(N, Lo, NewHi); 6721 } 6722 assert(Op0.getOpcode() == ISD::FABS); 6723 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6724 DAG.getConstant(~SignBit, DL, MVT::i32)); 6725 return DCI.CombineTo(N, Lo, NewHi); 6726 } 6727 case RISCVISD::SLLW: 6728 case RISCVISD::SRAW: 6729 case RISCVISD::SRLW: 6730 case RISCVISD::ROLW: 6731 case RISCVISD::RORW: { 6732 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6733 if (SimplifyDemandedLowBitsHelper(0, 32) || 6734 SimplifyDemandedLowBitsHelper(1, 5)) 6735 return SDValue(N, 0); 6736 break; 6737 } 6738 case RISCVISD::CLZW: 6739 case RISCVISD::CTZW: { 6740 // Only the lower 32 bits of the first operand are read 6741 if (SimplifyDemandedLowBitsHelper(0, 32)) 6742 return SDValue(N, 0); 6743 break; 6744 } 6745 case RISCVISD::FSL: 6746 case RISCVISD::FSR: { 6747 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6748 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6749 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6750 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6751 return SDValue(N, 0); 6752 break; 6753 } 6754 case RISCVISD::FSLW: 6755 case RISCVISD::FSRW: { 6756 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6757 // read. 6758 if (SimplifyDemandedLowBitsHelper(0, 32) || 6759 SimplifyDemandedLowBitsHelper(1, 32) || 6760 SimplifyDemandedLowBitsHelper(2, 6)) 6761 return SDValue(N, 0); 6762 break; 6763 } 6764 case RISCVISD::GREV: 6765 case RISCVISD::GORC: { 6766 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6767 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6768 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6769 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6770 return SDValue(N, 0); 6771 6772 return combineGREVI_GORCI(N, DCI.DAG); 6773 } 6774 case RISCVISD::GREVW: 6775 case RISCVISD::GORCW: { 6776 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6777 if (SimplifyDemandedLowBitsHelper(0, 32) || 6778 SimplifyDemandedLowBitsHelper(1, 5)) 6779 return SDValue(N, 0); 6780 6781 return combineGREVI_GORCI(N, DCI.DAG); 6782 } 6783 case RISCVISD::SHFL: 6784 case RISCVISD::UNSHFL: { 6785 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6786 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6787 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6788 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6789 return SDValue(N, 0); 6790 6791 break; 6792 } 6793 case RISCVISD::SHFLW: 6794 case RISCVISD::UNSHFLW: { 6795 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6796 SDValue LHS = N->getOperand(0); 6797 SDValue RHS = N->getOperand(1); 6798 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6799 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6800 if (SimplifyDemandedLowBitsHelper(0, 32) || 6801 SimplifyDemandedLowBitsHelper(1, 4)) 6802 return SDValue(N, 0); 6803 6804 break; 6805 } 6806 case RISCVISD::BCOMPRESSW: 6807 case RISCVISD::BDECOMPRESSW: { 6808 // Only the lower 32 bits of LHS and RHS are read. 6809 if (SimplifyDemandedLowBitsHelper(0, 32) || 6810 SimplifyDemandedLowBitsHelper(1, 32)) 6811 return SDValue(N, 0); 6812 6813 break; 6814 } 6815 case RISCVISD::FMV_X_ANYEXTH: 6816 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6817 SDLoc DL(N); 6818 SDValue Op0 = N->getOperand(0); 6819 MVT VT = N->getSimpleValueType(0); 6820 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6821 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6822 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6823 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6824 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6825 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6826 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6827 assert(Op0.getOperand(0).getValueType() == VT && 6828 "Unexpected value type!"); 6829 return Op0.getOperand(0); 6830 } 6831 6832 // This is a target-specific version of a DAGCombine performed in 6833 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6834 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6835 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6836 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6837 !Op0.getNode()->hasOneUse()) 6838 break; 6839 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6840 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6841 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6842 if (Op0.getOpcode() == ISD::FNEG) 6843 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6844 DAG.getConstant(SignBit, DL, VT)); 6845 6846 assert(Op0.getOpcode() == ISD::FABS); 6847 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6848 DAG.getConstant(~SignBit, DL, VT)); 6849 } 6850 case ISD::ADD: 6851 return performADDCombine(N, DAG, Subtarget); 6852 case ISD::SUB: 6853 return performSUBCombine(N, DAG); 6854 case ISD::AND: 6855 return performANDCombine(N, DAG); 6856 case ISD::OR: 6857 return performORCombine(N, DAG, Subtarget); 6858 case ISD::XOR: 6859 return performXORCombine(N, DAG); 6860 case ISD::ANY_EXTEND: 6861 return performANY_EXTENDCombine(N, DCI, Subtarget); 6862 case ISD::ZERO_EXTEND: 6863 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6864 // type legalization. This is safe because fp_to_uint produces poison if 6865 // it overflows. 6866 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6867 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6868 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6869 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6870 N->getOperand(0).getOperand(0)); 6871 return SDValue(); 6872 case RISCVISD::SELECT_CC: { 6873 // Transform 6874 SDValue LHS = N->getOperand(0); 6875 SDValue RHS = N->getOperand(1); 6876 SDValue TrueV = N->getOperand(3); 6877 SDValue FalseV = N->getOperand(4); 6878 6879 // If the True and False values are the same, we don't need a select_cc. 6880 if (TrueV == FalseV) 6881 return TrueV; 6882 6883 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6884 if (!ISD::isIntEqualitySetCC(CCVal)) 6885 break; 6886 6887 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6888 // (select_cc X, Y, lt, trueV, falseV) 6889 // Sometimes the setcc is introduced after select_cc has been formed. 6890 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6891 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6892 // If we're looking for eq 0 instead of ne 0, we need to invert the 6893 // condition. 6894 bool Invert = CCVal == ISD::SETEQ; 6895 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6896 if (Invert) 6897 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6898 6899 SDLoc DL(N); 6900 RHS = LHS.getOperand(1); 6901 LHS = LHS.getOperand(0); 6902 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6903 6904 SDValue TargetCC = DAG.getCondCode(CCVal); 6905 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6906 {LHS, RHS, TargetCC, TrueV, FalseV}); 6907 } 6908 6909 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6910 // (select_cc X, Y, eq/ne, trueV, falseV) 6911 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6912 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6913 {LHS.getOperand(0), LHS.getOperand(1), 6914 N->getOperand(2), TrueV, FalseV}); 6915 // (select_cc X, 1, setne, trueV, falseV) -> 6916 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6917 // This can occur when legalizing some floating point comparisons. 6918 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6919 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6920 SDLoc DL(N); 6921 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6922 SDValue TargetCC = DAG.getCondCode(CCVal); 6923 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6924 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6925 {LHS, RHS, TargetCC, TrueV, FalseV}); 6926 } 6927 6928 break; 6929 } 6930 case RISCVISD::BR_CC: { 6931 SDValue LHS = N->getOperand(1); 6932 SDValue RHS = N->getOperand(2); 6933 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6934 if (!ISD::isIntEqualitySetCC(CCVal)) 6935 break; 6936 6937 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6938 // (br_cc X, Y, lt, dest) 6939 // Sometimes the setcc is introduced after br_cc has been formed. 6940 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6941 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6942 // If we're looking for eq 0 instead of ne 0, we need to invert the 6943 // condition. 6944 bool Invert = CCVal == ISD::SETEQ; 6945 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6946 if (Invert) 6947 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6948 6949 SDLoc DL(N); 6950 RHS = LHS.getOperand(1); 6951 LHS = LHS.getOperand(0); 6952 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6953 6954 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6955 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6956 N->getOperand(4)); 6957 } 6958 6959 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6960 // (br_cc X, Y, eq/ne, trueV, falseV) 6961 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6962 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6963 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6964 N->getOperand(3), N->getOperand(4)); 6965 6966 // (br_cc X, 1, setne, br_cc) -> 6967 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6968 // This can occur when legalizing some floating point comparisons. 6969 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6970 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6971 SDLoc DL(N); 6972 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6973 SDValue TargetCC = DAG.getCondCode(CCVal); 6974 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6975 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6976 N->getOperand(0), LHS, RHS, TargetCC, 6977 N->getOperand(4)); 6978 } 6979 break; 6980 } 6981 case ISD::FCOPYSIGN: { 6982 EVT VT = N->getValueType(0); 6983 if (!VT.isVector()) 6984 break; 6985 // There is a form of VFSGNJ which injects the negated sign of its second 6986 // operand. Try and bubble any FNEG up after the extend/round to produce 6987 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6988 // TRUNC=1. 6989 SDValue In2 = N->getOperand(1); 6990 // Avoid cases where the extend/round has multiple uses, as duplicating 6991 // those is typically more expensive than removing a fneg. 6992 if (!In2.hasOneUse()) 6993 break; 6994 if (In2.getOpcode() != ISD::FP_EXTEND && 6995 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6996 break; 6997 In2 = In2.getOperand(0); 6998 if (In2.getOpcode() != ISD::FNEG) 6999 break; 7000 SDLoc DL(N); 7001 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7002 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7003 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7004 } 7005 case ISD::MGATHER: 7006 case ISD::MSCATTER: 7007 case ISD::VP_GATHER: 7008 case ISD::VP_SCATTER: { 7009 if (!DCI.isBeforeLegalize()) 7010 break; 7011 SDValue Index, ScaleOp; 7012 bool IsIndexScaled = false; 7013 bool IsIndexSigned = false; 7014 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7015 Index = VPGSN->getIndex(); 7016 ScaleOp = VPGSN->getScale(); 7017 IsIndexScaled = VPGSN->isIndexScaled(); 7018 IsIndexSigned = VPGSN->isIndexSigned(); 7019 } else { 7020 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7021 Index = MGSN->getIndex(); 7022 ScaleOp = MGSN->getScale(); 7023 IsIndexScaled = MGSN->isIndexScaled(); 7024 IsIndexSigned = MGSN->isIndexSigned(); 7025 } 7026 EVT IndexVT = Index.getValueType(); 7027 MVT XLenVT = Subtarget.getXLenVT(); 7028 // RISCV indexed loads only support the "unsigned unscaled" addressing 7029 // mode, so anything else must be manually legalized. 7030 bool NeedsIdxLegalization = 7031 IsIndexScaled || 7032 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7033 if (!NeedsIdxLegalization) 7034 break; 7035 7036 SDLoc DL(N); 7037 7038 // Any index legalization should first promote to XLenVT, so we don't lose 7039 // bits when scaling. This may create an illegal index type so we let 7040 // LLVM's legalization take care of the splitting. 7041 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7042 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7043 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7044 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7045 DL, IndexVT, Index); 7046 } 7047 7048 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7049 if (IsIndexScaled && Scale != 1) { 7050 // Manually scale the indices by the element size. 7051 // TODO: Sanitize the scale operand here? 7052 // TODO: For VP nodes, should we use VP_SHL here? 7053 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7054 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7055 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7056 } 7057 7058 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7059 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7060 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7061 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7062 VPGN->getScale(), VPGN->getMask(), 7063 VPGN->getVectorLength()}, 7064 VPGN->getMemOperand(), NewIndexTy); 7065 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7066 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7067 {VPSN->getChain(), VPSN->getValue(), 7068 VPSN->getBasePtr(), Index, VPSN->getScale(), 7069 VPSN->getMask(), VPSN->getVectorLength()}, 7070 VPSN->getMemOperand(), NewIndexTy); 7071 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7072 return DAG.getMaskedGather( 7073 N->getVTList(), MGN->getMemoryVT(), DL, 7074 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7075 MGN->getBasePtr(), Index, MGN->getScale()}, 7076 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7077 const auto *MSN = cast<MaskedScatterSDNode>(N); 7078 return DAG.getMaskedScatter( 7079 N->getVTList(), MSN->getMemoryVT(), DL, 7080 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7081 Index, MSN->getScale()}, 7082 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7083 } 7084 case RISCVISD::SRA_VL: 7085 case RISCVISD::SRL_VL: 7086 case RISCVISD::SHL_VL: { 7087 SDValue ShAmt = N->getOperand(1); 7088 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7089 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7090 SDLoc DL(N); 7091 SDValue VL = N->getOperand(3); 7092 EVT VT = N->getValueType(0); 7093 ShAmt = 7094 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7095 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7096 N->getOperand(2), N->getOperand(3)); 7097 } 7098 break; 7099 } 7100 case ISD::SRA: 7101 case ISD::SRL: 7102 case ISD::SHL: { 7103 SDValue ShAmt = N->getOperand(1); 7104 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7105 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7106 SDLoc DL(N); 7107 EVT VT = N->getValueType(0); 7108 ShAmt = 7109 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7110 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7111 } 7112 break; 7113 } 7114 case RISCVISD::MUL_VL: { 7115 SDValue Op0 = N->getOperand(0); 7116 SDValue Op1 = N->getOperand(1); 7117 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7118 return V; 7119 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7120 return V; 7121 return SDValue(); 7122 } 7123 case ISD::STORE: { 7124 auto *Store = cast<StoreSDNode>(N); 7125 SDValue Val = Store->getValue(); 7126 // Combine store of vmv.x.s to vse with VL of 1. 7127 // FIXME: Support FP. 7128 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7129 SDValue Src = Val.getOperand(0); 7130 EVT VecVT = Src.getValueType(); 7131 EVT MemVT = Store->getMemoryVT(); 7132 // The memory VT and the element type must match. 7133 if (VecVT.getVectorElementType() == MemVT) { 7134 SDLoc DL(N); 7135 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7136 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7137 DAG.getConstant(1, DL, MaskVT), 7138 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7139 Store->getPointerInfo(), 7140 Store->getOriginalAlign(), 7141 Store->getMemOperand()->getFlags()); 7142 } 7143 } 7144 7145 break; 7146 } 7147 } 7148 7149 return SDValue(); 7150 } 7151 7152 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7153 const SDNode *N, CombineLevel Level) const { 7154 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7155 // materialised in fewer instructions than `(OP _, c1)`: 7156 // 7157 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7158 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7159 SDValue N0 = N->getOperand(0); 7160 EVT Ty = N0.getValueType(); 7161 if (Ty.isScalarInteger() && 7162 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7163 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7164 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7165 if (C1 && C2) { 7166 const APInt &C1Int = C1->getAPIntValue(); 7167 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7168 7169 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7170 // and the combine should happen, to potentially allow further combines 7171 // later. 7172 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7173 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7174 return true; 7175 7176 // We can materialise `c1` in an add immediate, so it's "free", and the 7177 // combine should be prevented. 7178 if (C1Int.getMinSignedBits() <= 64 && 7179 isLegalAddImmediate(C1Int.getSExtValue())) 7180 return false; 7181 7182 // Neither constant will fit into an immediate, so find materialisation 7183 // costs. 7184 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7185 Subtarget.getFeatureBits(), 7186 /*CompressionCost*/true); 7187 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7188 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7189 /*CompressionCost*/true); 7190 7191 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7192 // combine should be prevented. 7193 if (C1Cost < ShiftedC1Cost) 7194 return false; 7195 } 7196 } 7197 return true; 7198 } 7199 7200 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7201 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7202 TargetLoweringOpt &TLO) const { 7203 // Delay this optimization as late as possible. 7204 if (!TLO.LegalOps) 7205 return false; 7206 7207 EVT VT = Op.getValueType(); 7208 if (VT.isVector()) 7209 return false; 7210 7211 // Only handle AND for now. 7212 if (Op.getOpcode() != ISD::AND) 7213 return false; 7214 7215 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7216 if (!C) 7217 return false; 7218 7219 const APInt &Mask = C->getAPIntValue(); 7220 7221 // Clear all non-demanded bits initially. 7222 APInt ShrunkMask = Mask & DemandedBits; 7223 7224 // Try to make a smaller immediate by setting undemanded bits. 7225 7226 APInt ExpandedMask = Mask | ~DemandedBits; 7227 7228 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7229 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7230 }; 7231 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7232 if (NewMask == Mask) 7233 return true; 7234 SDLoc DL(Op); 7235 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7236 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7237 return TLO.CombineTo(Op, NewOp); 7238 }; 7239 7240 // If the shrunk mask fits in sign extended 12 bits, let the target 7241 // independent code apply it. 7242 if (ShrunkMask.isSignedIntN(12)) 7243 return false; 7244 7245 // Preserve (and X, 0xffff) when zext.h is supported. 7246 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7247 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7248 if (IsLegalMask(NewMask)) 7249 return UseMask(NewMask); 7250 } 7251 7252 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7253 if (VT == MVT::i64) { 7254 APInt NewMask = APInt(64, 0xffffffff); 7255 if (IsLegalMask(NewMask)) 7256 return UseMask(NewMask); 7257 } 7258 7259 // For the remaining optimizations, we need to be able to make a negative 7260 // number through a combination of mask and undemanded bits. 7261 if (!ExpandedMask.isNegative()) 7262 return false; 7263 7264 // What is the fewest number of bits we need to represent the negative number. 7265 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7266 7267 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7268 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7269 APInt NewMask = ShrunkMask; 7270 if (MinSignedBits <= 12) 7271 NewMask.setBitsFrom(11); 7272 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7273 NewMask.setBitsFrom(31); 7274 else 7275 return false; 7276 7277 // Sanity check that our new mask is a subset of the demanded mask. 7278 assert(IsLegalMask(NewMask)); 7279 return UseMask(NewMask); 7280 } 7281 7282 static void computeGREV(APInt &Src, unsigned ShAmt) { 7283 ShAmt &= Src.getBitWidth() - 1; 7284 uint64_t x = Src.getZExtValue(); 7285 if (ShAmt & 1) 7286 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7287 if (ShAmt & 2) 7288 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7289 if (ShAmt & 4) 7290 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7291 if (ShAmt & 8) 7292 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7293 if (ShAmt & 16) 7294 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7295 if (ShAmt & 32) 7296 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7297 Src = x; 7298 } 7299 7300 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7301 KnownBits &Known, 7302 const APInt &DemandedElts, 7303 const SelectionDAG &DAG, 7304 unsigned Depth) const { 7305 unsigned BitWidth = Known.getBitWidth(); 7306 unsigned Opc = Op.getOpcode(); 7307 assert((Opc >= ISD::BUILTIN_OP_END || 7308 Opc == ISD::INTRINSIC_WO_CHAIN || 7309 Opc == ISD::INTRINSIC_W_CHAIN || 7310 Opc == ISD::INTRINSIC_VOID) && 7311 "Should use MaskedValueIsZero if you don't know whether Op" 7312 " is a target node!"); 7313 7314 Known.resetAll(); 7315 switch (Opc) { 7316 default: break; 7317 case RISCVISD::SELECT_CC: { 7318 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7319 // If we don't know any bits, early out. 7320 if (Known.isUnknown()) 7321 break; 7322 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7323 7324 // Only known if known in both the LHS and RHS. 7325 Known = KnownBits::commonBits(Known, Known2); 7326 break; 7327 } 7328 case RISCVISD::REMUW: { 7329 KnownBits Known2; 7330 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7331 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7332 // We only care about the lower 32 bits. 7333 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7334 // Restore the original width by sign extending. 7335 Known = Known.sext(BitWidth); 7336 break; 7337 } 7338 case RISCVISD::DIVUW: { 7339 KnownBits Known2; 7340 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7341 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7342 // We only care about the lower 32 bits. 7343 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7344 // Restore the original width by sign extending. 7345 Known = Known.sext(BitWidth); 7346 break; 7347 } 7348 case RISCVISD::CTZW: { 7349 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7350 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7351 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7352 Known.Zero.setBitsFrom(LowBits); 7353 break; 7354 } 7355 case RISCVISD::CLZW: { 7356 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7357 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7358 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7359 Known.Zero.setBitsFrom(LowBits); 7360 break; 7361 } 7362 case RISCVISD::GREV: 7363 case RISCVISD::GREVW: { 7364 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7365 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7366 if (Opc == RISCVISD::GREVW) 7367 Known = Known.trunc(32); 7368 unsigned ShAmt = C->getZExtValue(); 7369 computeGREV(Known.Zero, ShAmt); 7370 computeGREV(Known.One, ShAmt); 7371 if (Opc == RISCVISD::GREVW) 7372 Known = Known.sext(BitWidth); 7373 } 7374 break; 7375 } 7376 case RISCVISD::READ_VLENB: 7377 // We assume VLENB is at least 16 bytes. 7378 Known.Zero.setLowBits(4); 7379 // We assume VLENB is no more than 65536 / 8 bytes. 7380 Known.Zero.setBitsFrom(14); 7381 break; 7382 case ISD::INTRINSIC_W_CHAIN: { 7383 unsigned IntNo = Op.getConstantOperandVal(1); 7384 switch (IntNo) { 7385 default: 7386 // We can't do anything for most intrinsics. 7387 break; 7388 case Intrinsic::riscv_vsetvli: 7389 case Intrinsic::riscv_vsetvlimax: 7390 // Assume that VL output is positive and would fit in an int32_t. 7391 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7392 if (BitWidth >= 32) 7393 Known.Zero.setBitsFrom(31); 7394 break; 7395 } 7396 break; 7397 } 7398 } 7399 } 7400 7401 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7402 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7403 unsigned Depth) const { 7404 switch (Op.getOpcode()) { 7405 default: 7406 break; 7407 case RISCVISD::SELECT_CC: { 7408 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7409 if (Tmp == 1) return 1; // Early out. 7410 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7411 return std::min(Tmp, Tmp2); 7412 } 7413 case RISCVISD::SLLW: 7414 case RISCVISD::SRAW: 7415 case RISCVISD::SRLW: 7416 case RISCVISD::DIVW: 7417 case RISCVISD::DIVUW: 7418 case RISCVISD::REMUW: 7419 case RISCVISD::ROLW: 7420 case RISCVISD::RORW: 7421 case RISCVISD::GREVW: 7422 case RISCVISD::GORCW: 7423 case RISCVISD::FSLW: 7424 case RISCVISD::FSRW: 7425 case RISCVISD::SHFLW: 7426 case RISCVISD::UNSHFLW: 7427 case RISCVISD::BCOMPRESSW: 7428 case RISCVISD::BDECOMPRESSW: 7429 case RISCVISD::FCVT_W_RTZ_RV64: 7430 case RISCVISD::FCVT_WU_RTZ_RV64: 7431 // TODO: As the result is sign-extended, this is conservatively correct. A 7432 // more precise answer could be calculated for SRAW depending on known 7433 // bits in the shift amount. 7434 return 33; 7435 case RISCVISD::SHFL: 7436 case RISCVISD::UNSHFL: { 7437 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7438 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7439 // will stay within the upper 32 bits. If there were more than 32 sign bits 7440 // before there will be at least 33 sign bits after. 7441 if (Op.getValueType() == MVT::i64 && 7442 isa<ConstantSDNode>(Op.getOperand(1)) && 7443 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7444 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7445 if (Tmp > 32) 7446 return 33; 7447 } 7448 break; 7449 } 7450 case RISCVISD::VMV_X_S: 7451 // The number of sign bits of the scalar result is computed by obtaining the 7452 // element type of the input vector operand, subtracting its width from the 7453 // XLEN, and then adding one (sign bit within the element type). If the 7454 // element type is wider than XLen, the least-significant XLEN bits are 7455 // taken. 7456 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7457 return 1; 7458 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7459 } 7460 7461 return 1; 7462 } 7463 7464 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7465 MachineBasicBlock *BB) { 7466 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7467 7468 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7469 // Should the count have wrapped while it was being read, we need to try 7470 // again. 7471 // ... 7472 // read: 7473 // rdcycleh x3 # load high word of cycle 7474 // rdcycle x2 # load low word of cycle 7475 // rdcycleh x4 # load high word of cycle 7476 // bne x3, x4, read # check if high word reads match, otherwise try again 7477 // ... 7478 7479 MachineFunction &MF = *BB->getParent(); 7480 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7481 MachineFunction::iterator It = ++BB->getIterator(); 7482 7483 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7484 MF.insert(It, LoopMBB); 7485 7486 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7487 MF.insert(It, DoneMBB); 7488 7489 // Transfer the remainder of BB and its successor edges to DoneMBB. 7490 DoneMBB->splice(DoneMBB->begin(), BB, 7491 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7492 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7493 7494 BB->addSuccessor(LoopMBB); 7495 7496 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7497 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7498 Register LoReg = MI.getOperand(0).getReg(); 7499 Register HiReg = MI.getOperand(1).getReg(); 7500 DebugLoc DL = MI.getDebugLoc(); 7501 7502 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7503 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7504 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7505 .addReg(RISCV::X0); 7506 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7507 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7508 .addReg(RISCV::X0); 7509 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7510 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7511 .addReg(RISCV::X0); 7512 7513 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7514 .addReg(HiReg) 7515 .addReg(ReadAgainReg) 7516 .addMBB(LoopMBB); 7517 7518 LoopMBB->addSuccessor(LoopMBB); 7519 LoopMBB->addSuccessor(DoneMBB); 7520 7521 MI.eraseFromParent(); 7522 7523 return DoneMBB; 7524 } 7525 7526 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7527 MachineBasicBlock *BB) { 7528 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7529 7530 MachineFunction &MF = *BB->getParent(); 7531 DebugLoc DL = MI.getDebugLoc(); 7532 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7533 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7534 Register LoReg = MI.getOperand(0).getReg(); 7535 Register HiReg = MI.getOperand(1).getReg(); 7536 Register SrcReg = MI.getOperand(2).getReg(); 7537 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7538 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7539 7540 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7541 RI); 7542 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7543 MachineMemOperand *MMOLo = 7544 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7545 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7546 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7547 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7548 .addFrameIndex(FI) 7549 .addImm(0) 7550 .addMemOperand(MMOLo); 7551 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7552 .addFrameIndex(FI) 7553 .addImm(4) 7554 .addMemOperand(MMOHi); 7555 MI.eraseFromParent(); // The pseudo instruction is gone now. 7556 return BB; 7557 } 7558 7559 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7560 MachineBasicBlock *BB) { 7561 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7562 "Unexpected instruction"); 7563 7564 MachineFunction &MF = *BB->getParent(); 7565 DebugLoc DL = MI.getDebugLoc(); 7566 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7567 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7568 Register DstReg = MI.getOperand(0).getReg(); 7569 Register LoReg = MI.getOperand(1).getReg(); 7570 Register HiReg = MI.getOperand(2).getReg(); 7571 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7572 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7573 7574 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7575 MachineMemOperand *MMOLo = 7576 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7577 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7578 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7579 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7580 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7581 .addFrameIndex(FI) 7582 .addImm(0) 7583 .addMemOperand(MMOLo); 7584 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7585 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7586 .addFrameIndex(FI) 7587 .addImm(4) 7588 .addMemOperand(MMOHi); 7589 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7590 MI.eraseFromParent(); // The pseudo instruction is gone now. 7591 return BB; 7592 } 7593 7594 static bool isSelectPseudo(MachineInstr &MI) { 7595 switch (MI.getOpcode()) { 7596 default: 7597 return false; 7598 case RISCV::Select_GPR_Using_CC_GPR: 7599 case RISCV::Select_FPR16_Using_CC_GPR: 7600 case RISCV::Select_FPR32_Using_CC_GPR: 7601 case RISCV::Select_FPR64_Using_CC_GPR: 7602 return true; 7603 } 7604 } 7605 7606 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7607 MachineBasicBlock *BB, 7608 const RISCVSubtarget &Subtarget) { 7609 // To "insert" Select_* instructions, we actually have to insert the triangle 7610 // control-flow pattern. The incoming instructions know the destination vreg 7611 // to set, the condition code register to branch on, the true/false values to 7612 // select between, and the condcode to use to select the appropriate branch. 7613 // 7614 // We produce the following control flow: 7615 // HeadMBB 7616 // | \ 7617 // | IfFalseMBB 7618 // | / 7619 // TailMBB 7620 // 7621 // When we find a sequence of selects we attempt to optimize their emission 7622 // by sharing the control flow. Currently we only handle cases where we have 7623 // multiple selects with the exact same condition (same LHS, RHS and CC). 7624 // The selects may be interleaved with other instructions if the other 7625 // instructions meet some requirements we deem safe: 7626 // - They are debug instructions. Otherwise, 7627 // - They do not have side-effects, do not access memory and their inputs do 7628 // not depend on the results of the select pseudo-instructions. 7629 // The TrueV/FalseV operands of the selects cannot depend on the result of 7630 // previous selects in the sequence. 7631 // These conditions could be further relaxed. See the X86 target for a 7632 // related approach and more information. 7633 Register LHS = MI.getOperand(1).getReg(); 7634 Register RHS = MI.getOperand(2).getReg(); 7635 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7636 7637 SmallVector<MachineInstr *, 4> SelectDebugValues; 7638 SmallSet<Register, 4> SelectDests; 7639 SelectDests.insert(MI.getOperand(0).getReg()); 7640 7641 MachineInstr *LastSelectPseudo = &MI; 7642 7643 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7644 SequenceMBBI != E; ++SequenceMBBI) { 7645 if (SequenceMBBI->isDebugInstr()) 7646 continue; 7647 else if (isSelectPseudo(*SequenceMBBI)) { 7648 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7649 SequenceMBBI->getOperand(2).getReg() != RHS || 7650 SequenceMBBI->getOperand(3).getImm() != CC || 7651 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7652 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7653 break; 7654 LastSelectPseudo = &*SequenceMBBI; 7655 SequenceMBBI->collectDebugValues(SelectDebugValues); 7656 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7657 } else { 7658 if (SequenceMBBI->hasUnmodeledSideEffects() || 7659 SequenceMBBI->mayLoadOrStore()) 7660 break; 7661 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7662 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7663 })) 7664 break; 7665 } 7666 } 7667 7668 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7669 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7670 DebugLoc DL = MI.getDebugLoc(); 7671 MachineFunction::iterator I = ++BB->getIterator(); 7672 7673 MachineBasicBlock *HeadMBB = BB; 7674 MachineFunction *F = BB->getParent(); 7675 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7676 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7677 7678 F->insert(I, IfFalseMBB); 7679 F->insert(I, TailMBB); 7680 7681 // Transfer debug instructions associated with the selects to TailMBB. 7682 for (MachineInstr *DebugInstr : SelectDebugValues) { 7683 TailMBB->push_back(DebugInstr->removeFromParent()); 7684 } 7685 7686 // Move all instructions after the sequence to TailMBB. 7687 TailMBB->splice(TailMBB->end(), HeadMBB, 7688 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7689 // Update machine-CFG edges by transferring all successors of the current 7690 // block to the new block which will contain the Phi nodes for the selects. 7691 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7692 // Set the successors for HeadMBB. 7693 HeadMBB->addSuccessor(IfFalseMBB); 7694 HeadMBB->addSuccessor(TailMBB); 7695 7696 // Insert appropriate branch. 7697 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7698 .addReg(LHS) 7699 .addReg(RHS) 7700 .addMBB(TailMBB); 7701 7702 // IfFalseMBB just falls through to TailMBB. 7703 IfFalseMBB->addSuccessor(TailMBB); 7704 7705 // Create PHIs for all of the select pseudo-instructions. 7706 auto SelectMBBI = MI.getIterator(); 7707 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7708 auto InsertionPoint = TailMBB->begin(); 7709 while (SelectMBBI != SelectEnd) { 7710 auto Next = std::next(SelectMBBI); 7711 if (isSelectPseudo(*SelectMBBI)) { 7712 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7713 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7714 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7715 .addReg(SelectMBBI->getOperand(4).getReg()) 7716 .addMBB(HeadMBB) 7717 .addReg(SelectMBBI->getOperand(5).getReg()) 7718 .addMBB(IfFalseMBB); 7719 SelectMBBI->eraseFromParent(); 7720 } 7721 SelectMBBI = Next; 7722 } 7723 7724 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7725 return TailMBB; 7726 } 7727 7728 MachineBasicBlock * 7729 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7730 MachineBasicBlock *BB) const { 7731 switch (MI.getOpcode()) { 7732 default: 7733 llvm_unreachable("Unexpected instr type to insert"); 7734 case RISCV::ReadCycleWide: 7735 assert(!Subtarget.is64Bit() && 7736 "ReadCycleWrite is only to be used on riscv32"); 7737 return emitReadCycleWidePseudo(MI, BB); 7738 case RISCV::Select_GPR_Using_CC_GPR: 7739 case RISCV::Select_FPR16_Using_CC_GPR: 7740 case RISCV::Select_FPR32_Using_CC_GPR: 7741 case RISCV::Select_FPR64_Using_CC_GPR: 7742 return emitSelectPseudo(MI, BB, Subtarget); 7743 case RISCV::BuildPairF64Pseudo: 7744 return emitBuildPairF64Pseudo(MI, BB); 7745 case RISCV::SplitF64Pseudo: 7746 return emitSplitF64Pseudo(MI, BB); 7747 } 7748 } 7749 7750 // Calling Convention Implementation. 7751 // The expectations for frontend ABI lowering vary from target to target. 7752 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7753 // details, but this is a longer term goal. For now, we simply try to keep the 7754 // role of the frontend as simple and well-defined as possible. The rules can 7755 // be summarised as: 7756 // * Never split up large scalar arguments. We handle them here. 7757 // * If a hardfloat calling convention is being used, and the struct may be 7758 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7759 // available, then pass as two separate arguments. If either the GPRs or FPRs 7760 // are exhausted, then pass according to the rule below. 7761 // * If a struct could never be passed in registers or directly in a stack 7762 // slot (as it is larger than 2*XLEN and the floating point rules don't 7763 // apply), then pass it using a pointer with the byval attribute. 7764 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7765 // word-sized array or a 2*XLEN scalar (depending on alignment). 7766 // * The frontend can determine whether a struct is returned by reference or 7767 // not based on its size and fields. If it will be returned by reference, the 7768 // frontend must modify the prototype so a pointer with the sret annotation is 7769 // passed as the first argument. This is not necessary for large scalar 7770 // returns. 7771 // * Struct return values and varargs should be coerced to structs containing 7772 // register-size fields in the same situations they would be for fixed 7773 // arguments. 7774 7775 static const MCPhysReg ArgGPRs[] = { 7776 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7777 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7778 }; 7779 static const MCPhysReg ArgFPR16s[] = { 7780 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7781 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7782 }; 7783 static const MCPhysReg ArgFPR32s[] = { 7784 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7785 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7786 }; 7787 static const MCPhysReg ArgFPR64s[] = { 7788 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7789 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7790 }; 7791 // This is an interim calling convention and it may be changed in the future. 7792 static const MCPhysReg ArgVRs[] = { 7793 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7794 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7795 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7796 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7797 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7798 RISCV::V20M2, RISCV::V22M2}; 7799 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7800 RISCV::V20M4}; 7801 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7802 7803 // Pass a 2*XLEN argument that has been split into two XLEN values through 7804 // registers or the stack as necessary. 7805 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7806 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7807 MVT ValVT2, MVT LocVT2, 7808 ISD::ArgFlagsTy ArgFlags2) { 7809 unsigned XLenInBytes = XLen / 8; 7810 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7811 // At least one half can be passed via register. 7812 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7813 VA1.getLocVT(), CCValAssign::Full)); 7814 } else { 7815 // Both halves must be passed on the stack, with proper alignment. 7816 Align StackAlign = 7817 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7818 State.addLoc( 7819 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7820 State.AllocateStack(XLenInBytes, StackAlign), 7821 VA1.getLocVT(), CCValAssign::Full)); 7822 State.addLoc(CCValAssign::getMem( 7823 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7824 LocVT2, CCValAssign::Full)); 7825 return false; 7826 } 7827 7828 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7829 // The second half can also be passed via register. 7830 State.addLoc( 7831 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7832 } else { 7833 // The second half is passed via the stack, without additional alignment. 7834 State.addLoc(CCValAssign::getMem( 7835 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7836 LocVT2, CCValAssign::Full)); 7837 } 7838 7839 return false; 7840 } 7841 7842 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7843 Optional<unsigned> FirstMaskArgument, 7844 CCState &State, const RISCVTargetLowering &TLI) { 7845 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7846 if (RC == &RISCV::VRRegClass) { 7847 // Assign the first mask argument to V0. 7848 // This is an interim calling convention and it may be changed in the 7849 // future. 7850 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7851 return State.AllocateReg(RISCV::V0); 7852 return State.AllocateReg(ArgVRs); 7853 } 7854 if (RC == &RISCV::VRM2RegClass) 7855 return State.AllocateReg(ArgVRM2s); 7856 if (RC == &RISCV::VRM4RegClass) 7857 return State.AllocateReg(ArgVRM4s); 7858 if (RC == &RISCV::VRM8RegClass) 7859 return State.AllocateReg(ArgVRM8s); 7860 llvm_unreachable("Unhandled register class for ValueType"); 7861 } 7862 7863 // Implements the RISC-V calling convention. Returns true upon failure. 7864 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7865 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7866 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7867 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7868 Optional<unsigned> FirstMaskArgument) { 7869 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7870 assert(XLen == 32 || XLen == 64); 7871 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7872 7873 // Any return value split in to more than two values can't be returned 7874 // directly. Vectors are returned via the available vector registers. 7875 if (!LocVT.isVector() && IsRet && ValNo > 1) 7876 return true; 7877 7878 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7879 // variadic argument, or if no F16/F32 argument registers are available. 7880 bool UseGPRForF16_F32 = true; 7881 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7882 // variadic argument, or if no F64 argument registers are available. 7883 bool UseGPRForF64 = true; 7884 7885 switch (ABI) { 7886 default: 7887 llvm_unreachable("Unexpected ABI"); 7888 case RISCVABI::ABI_ILP32: 7889 case RISCVABI::ABI_LP64: 7890 break; 7891 case RISCVABI::ABI_ILP32F: 7892 case RISCVABI::ABI_LP64F: 7893 UseGPRForF16_F32 = !IsFixed; 7894 break; 7895 case RISCVABI::ABI_ILP32D: 7896 case RISCVABI::ABI_LP64D: 7897 UseGPRForF16_F32 = !IsFixed; 7898 UseGPRForF64 = !IsFixed; 7899 break; 7900 } 7901 7902 // FPR16, FPR32, and FPR64 alias each other. 7903 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7904 UseGPRForF16_F32 = true; 7905 UseGPRForF64 = true; 7906 } 7907 7908 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7909 // similar local variables rather than directly checking against the target 7910 // ABI. 7911 7912 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7913 LocVT = XLenVT; 7914 LocInfo = CCValAssign::BCvt; 7915 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7916 LocVT = MVT::i64; 7917 LocInfo = CCValAssign::BCvt; 7918 } 7919 7920 // If this is a variadic argument, the RISC-V calling convention requires 7921 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7922 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7923 // be used regardless of whether the original argument was split during 7924 // legalisation or not. The argument will not be passed by registers if the 7925 // original type is larger than 2*XLEN, so the register alignment rule does 7926 // not apply. 7927 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7928 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7929 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7930 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7931 // Skip 'odd' register if necessary. 7932 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7933 State.AllocateReg(ArgGPRs); 7934 } 7935 7936 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7937 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7938 State.getPendingArgFlags(); 7939 7940 assert(PendingLocs.size() == PendingArgFlags.size() && 7941 "PendingLocs and PendingArgFlags out of sync"); 7942 7943 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7944 // registers are exhausted. 7945 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7946 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7947 "Can't lower f64 if it is split"); 7948 // Depending on available argument GPRS, f64 may be passed in a pair of 7949 // GPRs, split between a GPR and the stack, or passed completely on the 7950 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7951 // cases. 7952 Register Reg = State.AllocateReg(ArgGPRs); 7953 LocVT = MVT::i32; 7954 if (!Reg) { 7955 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7956 State.addLoc( 7957 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7958 return false; 7959 } 7960 if (!State.AllocateReg(ArgGPRs)) 7961 State.AllocateStack(4, Align(4)); 7962 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7963 return false; 7964 } 7965 7966 // Fixed-length vectors are located in the corresponding scalable-vector 7967 // container types. 7968 if (ValVT.isFixedLengthVector()) 7969 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7970 7971 // Split arguments might be passed indirectly, so keep track of the pending 7972 // values. Split vectors are passed via a mix of registers and indirectly, so 7973 // treat them as we would any other argument. 7974 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7975 LocVT = XLenVT; 7976 LocInfo = CCValAssign::Indirect; 7977 PendingLocs.push_back( 7978 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7979 PendingArgFlags.push_back(ArgFlags); 7980 if (!ArgFlags.isSplitEnd()) { 7981 return false; 7982 } 7983 } 7984 7985 // If the split argument only had two elements, it should be passed directly 7986 // in registers or on the stack. 7987 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7988 PendingLocs.size() <= 2) { 7989 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7990 // Apply the normal calling convention rules to the first half of the 7991 // split argument. 7992 CCValAssign VA = PendingLocs[0]; 7993 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7994 PendingLocs.clear(); 7995 PendingArgFlags.clear(); 7996 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7997 ArgFlags); 7998 } 7999 8000 // Allocate to a register if possible, or else a stack slot. 8001 Register Reg; 8002 unsigned StoreSizeBytes = XLen / 8; 8003 Align StackAlign = Align(XLen / 8); 8004 8005 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8006 Reg = State.AllocateReg(ArgFPR16s); 8007 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8008 Reg = State.AllocateReg(ArgFPR32s); 8009 else if (ValVT == MVT::f64 && !UseGPRForF64) 8010 Reg = State.AllocateReg(ArgFPR64s); 8011 else if (ValVT.isVector()) { 8012 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8013 if (!Reg) { 8014 // For return values, the vector must be passed fully via registers or 8015 // via the stack. 8016 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8017 // but we're using all of them. 8018 if (IsRet) 8019 return true; 8020 // Try using a GPR to pass the address 8021 if ((Reg = State.AllocateReg(ArgGPRs))) { 8022 LocVT = XLenVT; 8023 LocInfo = CCValAssign::Indirect; 8024 } else if (ValVT.isScalableVector()) { 8025 report_fatal_error("Unable to pass scalable vector types on the stack"); 8026 } else { 8027 // Pass fixed-length vectors on the stack. 8028 LocVT = ValVT; 8029 StoreSizeBytes = ValVT.getStoreSize(); 8030 // Align vectors to their element sizes, being careful for vXi1 8031 // vectors. 8032 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8033 } 8034 } 8035 } else { 8036 Reg = State.AllocateReg(ArgGPRs); 8037 } 8038 8039 unsigned StackOffset = 8040 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8041 8042 // If we reach this point and PendingLocs is non-empty, we must be at the 8043 // end of a split argument that must be passed indirectly. 8044 if (!PendingLocs.empty()) { 8045 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8046 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8047 8048 for (auto &It : PendingLocs) { 8049 if (Reg) 8050 It.convertToReg(Reg); 8051 else 8052 It.convertToMem(StackOffset); 8053 State.addLoc(It); 8054 } 8055 PendingLocs.clear(); 8056 PendingArgFlags.clear(); 8057 return false; 8058 } 8059 8060 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8061 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 8062 "Expected an XLenVT or vector types at this stage"); 8063 8064 if (Reg) { 8065 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8066 return false; 8067 } 8068 8069 // When a floating-point value is passed on the stack, no bit-conversion is 8070 // needed. 8071 if (ValVT.isFloatingPoint()) { 8072 LocVT = ValVT; 8073 LocInfo = CCValAssign::Full; 8074 } 8075 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8076 return false; 8077 } 8078 8079 template <typename ArgTy> 8080 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8081 for (const auto &ArgIdx : enumerate(Args)) { 8082 MVT ArgVT = ArgIdx.value().VT; 8083 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8084 return ArgIdx.index(); 8085 } 8086 return None; 8087 } 8088 8089 void RISCVTargetLowering::analyzeInputArgs( 8090 MachineFunction &MF, CCState &CCInfo, 8091 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8092 RISCVCCAssignFn Fn) const { 8093 unsigned NumArgs = Ins.size(); 8094 FunctionType *FType = MF.getFunction().getFunctionType(); 8095 8096 Optional<unsigned> FirstMaskArgument; 8097 if (Subtarget.hasStdExtV()) 8098 FirstMaskArgument = preAssignMask(Ins); 8099 8100 for (unsigned i = 0; i != NumArgs; ++i) { 8101 MVT ArgVT = Ins[i].VT; 8102 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8103 8104 Type *ArgTy = nullptr; 8105 if (IsRet) 8106 ArgTy = FType->getReturnType(); 8107 else if (Ins[i].isOrigArg()) 8108 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8109 8110 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8111 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8112 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8113 FirstMaskArgument)) { 8114 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8115 << EVT(ArgVT).getEVTString() << '\n'); 8116 llvm_unreachable(nullptr); 8117 } 8118 } 8119 } 8120 8121 void RISCVTargetLowering::analyzeOutputArgs( 8122 MachineFunction &MF, CCState &CCInfo, 8123 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8124 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8125 unsigned NumArgs = Outs.size(); 8126 8127 Optional<unsigned> FirstMaskArgument; 8128 if (Subtarget.hasStdExtV()) 8129 FirstMaskArgument = preAssignMask(Outs); 8130 8131 for (unsigned i = 0; i != NumArgs; i++) { 8132 MVT ArgVT = Outs[i].VT; 8133 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8134 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8135 8136 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8137 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8138 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8139 FirstMaskArgument)) { 8140 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8141 << EVT(ArgVT).getEVTString() << "\n"); 8142 llvm_unreachable(nullptr); 8143 } 8144 } 8145 } 8146 8147 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8148 // values. 8149 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8150 const CCValAssign &VA, const SDLoc &DL, 8151 const RISCVSubtarget &Subtarget) { 8152 switch (VA.getLocInfo()) { 8153 default: 8154 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8155 case CCValAssign::Full: 8156 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8157 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8158 break; 8159 case CCValAssign::BCvt: 8160 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8161 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8162 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8163 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8164 else 8165 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8166 break; 8167 } 8168 return Val; 8169 } 8170 8171 // The caller is responsible for loading the full value if the argument is 8172 // passed with CCValAssign::Indirect. 8173 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8174 const CCValAssign &VA, const SDLoc &DL, 8175 const RISCVTargetLowering &TLI) { 8176 MachineFunction &MF = DAG.getMachineFunction(); 8177 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8178 EVT LocVT = VA.getLocVT(); 8179 SDValue Val; 8180 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8181 Register VReg = RegInfo.createVirtualRegister(RC); 8182 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8183 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8184 8185 if (VA.getLocInfo() == CCValAssign::Indirect) 8186 return Val; 8187 8188 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8189 } 8190 8191 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8192 const CCValAssign &VA, const SDLoc &DL, 8193 const RISCVSubtarget &Subtarget) { 8194 EVT LocVT = VA.getLocVT(); 8195 8196 switch (VA.getLocInfo()) { 8197 default: 8198 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8199 case CCValAssign::Full: 8200 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8201 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8202 break; 8203 case CCValAssign::BCvt: 8204 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8205 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8206 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8207 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8208 else 8209 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8210 break; 8211 } 8212 return Val; 8213 } 8214 8215 // The caller is responsible for loading the full value if the argument is 8216 // passed with CCValAssign::Indirect. 8217 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8218 const CCValAssign &VA, const SDLoc &DL) { 8219 MachineFunction &MF = DAG.getMachineFunction(); 8220 MachineFrameInfo &MFI = MF.getFrameInfo(); 8221 EVT LocVT = VA.getLocVT(); 8222 EVT ValVT = VA.getValVT(); 8223 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8224 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8225 /*Immutable=*/true); 8226 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8227 SDValue Val; 8228 8229 ISD::LoadExtType ExtType; 8230 switch (VA.getLocInfo()) { 8231 default: 8232 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8233 case CCValAssign::Full: 8234 case CCValAssign::Indirect: 8235 case CCValAssign::BCvt: 8236 ExtType = ISD::NON_EXTLOAD; 8237 break; 8238 } 8239 Val = DAG.getExtLoad( 8240 ExtType, DL, LocVT, Chain, FIN, 8241 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8242 return Val; 8243 } 8244 8245 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8246 const CCValAssign &VA, const SDLoc &DL) { 8247 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8248 "Unexpected VA"); 8249 MachineFunction &MF = DAG.getMachineFunction(); 8250 MachineFrameInfo &MFI = MF.getFrameInfo(); 8251 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8252 8253 if (VA.isMemLoc()) { 8254 // f64 is passed on the stack. 8255 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8256 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8257 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8258 MachinePointerInfo::getFixedStack(MF, FI)); 8259 } 8260 8261 assert(VA.isRegLoc() && "Expected register VA assignment"); 8262 8263 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8264 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8265 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8266 SDValue Hi; 8267 if (VA.getLocReg() == RISCV::X17) { 8268 // Second half of f64 is passed on the stack. 8269 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8270 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8271 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8272 MachinePointerInfo::getFixedStack(MF, FI)); 8273 } else { 8274 // Second half of f64 is passed in another GPR. 8275 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8276 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8277 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8278 } 8279 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8280 } 8281 8282 // FastCC has less than 1% performance improvement for some particular 8283 // benchmark. But theoretically, it may has benenfit for some cases. 8284 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8285 unsigned ValNo, MVT ValVT, MVT LocVT, 8286 CCValAssign::LocInfo LocInfo, 8287 ISD::ArgFlagsTy ArgFlags, CCState &State, 8288 bool IsFixed, bool IsRet, Type *OrigTy, 8289 const RISCVTargetLowering &TLI, 8290 Optional<unsigned> FirstMaskArgument) { 8291 8292 // X5 and X6 might be used for save-restore libcall. 8293 static const MCPhysReg GPRList[] = { 8294 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8295 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8296 RISCV::X29, RISCV::X30, RISCV::X31}; 8297 8298 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8299 if (unsigned Reg = State.AllocateReg(GPRList)) { 8300 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8301 return false; 8302 } 8303 } 8304 8305 if (LocVT == MVT::f16) { 8306 static const MCPhysReg FPR16List[] = { 8307 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8308 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8309 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8310 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8311 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8312 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8313 return false; 8314 } 8315 } 8316 8317 if (LocVT == MVT::f32) { 8318 static const MCPhysReg FPR32List[] = { 8319 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8320 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8321 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8322 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8323 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8324 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8325 return false; 8326 } 8327 } 8328 8329 if (LocVT == MVT::f64) { 8330 static const MCPhysReg FPR64List[] = { 8331 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8332 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8333 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8334 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8335 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8336 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8337 return false; 8338 } 8339 } 8340 8341 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8342 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8343 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8344 return false; 8345 } 8346 8347 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8348 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8349 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8350 return false; 8351 } 8352 8353 if (LocVT.isVector()) { 8354 if (unsigned Reg = 8355 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8356 // Fixed-length vectors are located in the corresponding scalable-vector 8357 // container types. 8358 if (ValVT.isFixedLengthVector()) 8359 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8360 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8361 } else { 8362 // Try and pass the address via a "fast" GPR. 8363 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8364 LocInfo = CCValAssign::Indirect; 8365 LocVT = TLI.getSubtarget().getXLenVT(); 8366 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8367 } else if (ValVT.isFixedLengthVector()) { 8368 auto StackAlign = 8369 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8370 unsigned StackOffset = 8371 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8372 State.addLoc( 8373 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8374 } else { 8375 // Can't pass scalable vectors on the stack. 8376 return true; 8377 } 8378 } 8379 8380 return false; 8381 } 8382 8383 return true; // CC didn't match. 8384 } 8385 8386 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8387 CCValAssign::LocInfo LocInfo, 8388 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8389 8390 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8391 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8392 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8393 static const MCPhysReg GPRList[] = { 8394 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8395 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8396 if (unsigned Reg = State.AllocateReg(GPRList)) { 8397 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8398 return false; 8399 } 8400 } 8401 8402 if (LocVT == MVT::f32) { 8403 // Pass in STG registers: F1, ..., F6 8404 // fs0 ... fs5 8405 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8406 RISCV::F18_F, RISCV::F19_F, 8407 RISCV::F20_F, RISCV::F21_F}; 8408 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8409 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8410 return false; 8411 } 8412 } 8413 8414 if (LocVT == MVT::f64) { 8415 // Pass in STG registers: D1, ..., D6 8416 // fs6 ... fs11 8417 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8418 RISCV::F24_D, RISCV::F25_D, 8419 RISCV::F26_D, RISCV::F27_D}; 8420 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8421 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8422 return false; 8423 } 8424 } 8425 8426 report_fatal_error("No registers left in GHC calling convention"); 8427 return true; 8428 } 8429 8430 // Transform physical registers into virtual registers. 8431 SDValue RISCVTargetLowering::LowerFormalArguments( 8432 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8433 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8434 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8435 8436 MachineFunction &MF = DAG.getMachineFunction(); 8437 8438 switch (CallConv) { 8439 default: 8440 report_fatal_error("Unsupported calling convention"); 8441 case CallingConv::C: 8442 case CallingConv::Fast: 8443 break; 8444 case CallingConv::GHC: 8445 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8446 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8447 report_fatal_error( 8448 "GHC calling convention requires the F and D instruction set extensions"); 8449 } 8450 8451 const Function &Func = MF.getFunction(); 8452 if (Func.hasFnAttribute("interrupt")) { 8453 if (!Func.arg_empty()) 8454 report_fatal_error( 8455 "Functions with the interrupt attribute cannot have arguments!"); 8456 8457 StringRef Kind = 8458 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8459 8460 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8461 report_fatal_error( 8462 "Function interrupt attribute argument not supported!"); 8463 } 8464 8465 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8466 MVT XLenVT = Subtarget.getXLenVT(); 8467 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8468 // Used with vargs to acumulate store chains. 8469 std::vector<SDValue> OutChains; 8470 8471 // Assign locations to all of the incoming arguments. 8472 SmallVector<CCValAssign, 16> ArgLocs; 8473 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8474 8475 if (CallConv == CallingConv::GHC) 8476 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8477 else 8478 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8479 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8480 : CC_RISCV); 8481 8482 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8483 CCValAssign &VA = ArgLocs[i]; 8484 SDValue ArgValue; 8485 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8486 // case. 8487 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8488 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8489 else if (VA.isRegLoc()) 8490 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8491 else 8492 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8493 8494 if (VA.getLocInfo() == CCValAssign::Indirect) { 8495 // If the original argument was split and passed by reference (e.g. i128 8496 // on RV32), we need to load all parts of it here (using the same 8497 // address). Vectors may be partly split to registers and partly to the 8498 // stack, in which case the base address is partly offset and subsequent 8499 // stores are relative to that. 8500 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8501 MachinePointerInfo())); 8502 unsigned ArgIndex = Ins[i].OrigArgIndex; 8503 unsigned ArgPartOffset = Ins[i].PartOffset; 8504 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8505 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8506 CCValAssign &PartVA = ArgLocs[i + 1]; 8507 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8508 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8509 if (PartVA.getValVT().isScalableVector()) 8510 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8511 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8512 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8513 MachinePointerInfo())); 8514 ++i; 8515 } 8516 continue; 8517 } 8518 InVals.push_back(ArgValue); 8519 } 8520 8521 if (IsVarArg) { 8522 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8523 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8524 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8525 MachineFrameInfo &MFI = MF.getFrameInfo(); 8526 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8527 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8528 8529 // Offset of the first variable argument from stack pointer, and size of 8530 // the vararg save area. For now, the varargs save area is either zero or 8531 // large enough to hold a0-a7. 8532 int VaArgOffset, VarArgsSaveSize; 8533 8534 // If all registers are allocated, then all varargs must be passed on the 8535 // stack and we don't need to save any argregs. 8536 if (ArgRegs.size() == Idx) { 8537 VaArgOffset = CCInfo.getNextStackOffset(); 8538 VarArgsSaveSize = 0; 8539 } else { 8540 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8541 VaArgOffset = -VarArgsSaveSize; 8542 } 8543 8544 // Record the frame index of the first variable argument 8545 // which is a value necessary to VASTART. 8546 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8547 RVFI->setVarArgsFrameIndex(FI); 8548 8549 // If saving an odd number of registers then create an extra stack slot to 8550 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8551 // offsets to even-numbered registered remain 2*XLEN-aligned. 8552 if (Idx % 2) { 8553 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8554 VarArgsSaveSize += XLenInBytes; 8555 } 8556 8557 // Copy the integer registers that may have been used for passing varargs 8558 // to the vararg save area. 8559 for (unsigned I = Idx; I < ArgRegs.size(); 8560 ++I, VaArgOffset += XLenInBytes) { 8561 const Register Reg = RegInfo.createVirtualRegister(RC); 8562 RegInfo.addLiveIn(ArgRegs[I], Reg); 8563 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8564 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8565 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8566 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8567 MachinePointerInfo::getFixedStack(MF, FI)); 8568 cast<StoreSDNode>(Store.getNode()) 8569 ->getMemOperand() 8570 ->setValue((Value *)nullptr); 8571 OutChains.push_back(Store); 8572 } 8573 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8574 } 8575 8576 // All stores are grouped in one node to allow the matching between 8577 // the size of Ins and InVals. This only happens for vararg functions. 8578 if (!OutChains.empty()) { 8579 OutChains.push_back(Chain); 8580 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8581 } 8582 8583 return Chain; 8584 } 8585 8586 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8587 /// for tail call optimization. 8588 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8589 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8590 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8591 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8592 8593 auto &Callee = CLI.Callee; 8594 auto CalleeCC = CLI.CallConv; 8595 auto &Outs = CLI.Outs; 8596 auto &Caller = MF.getFunction(); 8597 auto CallerCC = Caller.getCallingConv(); 8598 8599 // Exception-handling functions need a special set of instructions to 8600 // indicate a return to the hardware. Tail-calling another function would 8601 // probably break this. 8602 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8603 // should be expanded as new function attributes are introduced. 8604 if (Caller.hasFnAttribute("interrupt")) 8605 return false; 8606 8607 // Do not tail call opt if the stack is used to pass parameters. 8608 if (CCInfo.getNextStackOffset() != 0) 8609 return false; 8610 8611 // Do not tail call opt if any parameters need to be passed indirectly. 8612 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8613 // passed indirectly. So the address of the value will be passed in a 8614 // register, or if not available, then the address is put on the stack. In 8615 // order to pass indirectly, space on the stack often needs to be allocated 8616 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8617 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8618 // are passed CCValAssign::Indirect. 8619 for (auto &VA : ArgLocs) 8620 if (VA.getLocInfo() == CCValAssign::Indirect) 8621 return false; 8622 8623 // Do not tail call opt if either caller or callee uses struct return 8624 // semantics. 8625 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8626 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8627 if (IsCallerStructRet || IsCalleeStructRet) 8628 return false; 8629 8630 // Externally-defined functions with weak linkage should not be 8631 // tail-called. The behaviour of branch instructions in this situation (as 8632 // used for tail calls) is implementation-defined, so we cannot rely on the 8633 // linker replacing the tail call with a return. 8634 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8635 const GlobalValue *GV = G->getGlobal(); 8636 if (GV->hasExternalWeakLinkage()) 8637 return false; 8638 } 8639 8640 // The callee has to preserve all registers the caller needs to preserve. 8641 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8642 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8643 if (CalleeCC != CallerCC) { 8644 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8645 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8646 return false; 8647 } 8648 8649 // Byval parameters hand the function a pointer directly into the stack area 8650 // we want to reuse during a tail call. Working around this *is* possible 8651 // but less efficient and uglier in LowerCall. 8652 for (auto &Arg : Outs) 8653 if (Arg.Flags.isByVal()) 8654 return false; 8655 8656 return true; 8657 } 8658 8659 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8660 return DAG.getDataLayout().getPrefTypeAlign( 8661 VT.getTypeForEVT(*DAG.getContext())); 8662 } 8663 8664 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8665 // and output parameter nodes. 8666 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8667 SmallVectorImpl<SDValue> &InVals) const { 8668 SelectionDAG &DAG = CLI.DAG; 8669 SDLoc &DL = CLI.DL; 8670 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8671 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8672 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8673 SDValue Chain = CLI.Chain; 8674 SDValue Callee = CLI.Callee; 8675 bool &IsTailCall = CLI.IsTailCall; 8676 CallingConv::ID CallConv = CLI.CallConv; 8677 bool IsVarArg = CLI.IsVarArg; 8678 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8679 MVT XLenVT = Subtarget.getXLenVT(); 8680 8681 MachineFunction &MF = DAG.getMachineFunction(); 8682 8683 // Analyze the operands of the call, assigning locations to each operand. 8684 SmallVector<CCValAssign, 16> ArgLocs; 8685 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8686 8687 if (CallConv == CallingConv::GHC) 8688 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8689 else 8690 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8691 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8692 : CC_RISCV); 8693 8694 // Check if it's really possible to do a tail call. 8695 if (IsTailCall) 8696 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8697 8698 if (IsTailCall) 8699 ++NumTailCalls; 8700 else if (CLI.CB && CLI.CB->isMustTailCall()) 8701 report_fatal_error("failed to perform tail call elimination on a call " 8702 "site marked musttail"); 8703 8704 // Get a count of how many bytes are to be pushed on the stack. 8705 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8706 8707 // Create local copies for byval args 8708 SmallVector<SDValue, 8> ByValArgs; 8709 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8710 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8711 if (!Flags.isByVal()) 8712 continue; 8713 8714 SDValue Arg = OutVals[i]; 8715 unsigned Size = Flags.getByValSize(); 8716 Align Alignment = Flags.getNonZeroByValAlign(); 8717 8718 int FI = 8719 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8720 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8721 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8722 8723 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8724 /*IsVolatile=*/false, 8725 /*AlwaysInline=*/false, IsTailCall, 8726 MachinePointerInfo(), MachinePointerInfo()); 8727 ByValArgs.push_back(FIPtr); 8728 } 8729 8730 if (!IsTailCall) 8731 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8732 8733 // Copy argument values to their designated locations. 8734 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8735 SmallVector<SDValue, 8> MemOpChains; 8736 SDValue StackPtr; 8737 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8738 CCValAssign &VA = ArgLocs[i]; 8739 SDValue ArgValue = OutVals[i]; 8740 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8741 8742 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8743 bool IsF64OnRV32DSoftABI = 8744 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8745 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8746 SDValue SplitF64 = DAG.getNode( 8747 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8748 SDValue Lo = SplitF64.getValue(0); 8749 SDValue Hi = SplitF64.getValue(1); 8750 8751 Register RegLo = VA.getLocReg(); 8752 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8753 8754 if (RegLo == RISCV::X17) { 8755 // Second half of f64 is passed on the stack. 8756 // Work out the address of the stack slot. 8757 if (!StackPtr.getNode()) 8758 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8759 // Emit the store. 8760 MemOpChains.push_back( 8761 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8762 } else { 8763 // Second half of f64 is passed in another GPR. 8764 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8765 Register RegHigh = RegLo + 1; 8766 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8767 } 8768 continue; 8769 } 8770 8771 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8772 // as any other MemLoc. 8773 8774 // Promote the value if needed. 8775 // For now, only handle fully promoted and indirect arguments. 8776 if (VA.getLocInfo() == CCValAssign::Indirect) { 8777 // Store the argument in a stack slot and pass its address. 8778 Align StackAlign = 8779 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8780 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8781 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8782 // If the original argument was split (e.g. i128), we need 8783 // to store the required parts of it here (and pass just one address). 8784 // Vectors may be partly split to registers and partly to the stack, in 8785 // which case the base address is partly offset and subsequent stores are 8786 // relative to that. 8787 unsigned ArgIndex = Outs[i].OrigArgIndex; 8788 unsigned ArgPartOffset = Outs[i].PartOffset; 8789 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8790 // Calculate the total size to store. We don't have access to what we're 8791 // actually storing other than performing the loop and collecting the 8792 // info. 8793 SmallVector<std::pair<SDValue, SDValue>> Parts; 8794 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8795 SDValue PartValue = OutVals[i + 1]; 8796 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8797 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8798 EVT PartVT = PartValue.getValueType(); 8799 if (PartVT.isScalableVector()) 8800 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8801 StoredSize += PartVT.getStoreSize(); 8802 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8803 Parts.push_back(std::make_pair(PartValue, Offset)); 8804 ++i; 8805 } 8806 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8807 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8808 MemOpChains.push_back( 8809 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8810 MachinePointerInfo::getFixedStack(MF, FI))); 8811 for (const auto &Part : Parts) { 8812 SDValue PartValue = Part.first; 8813 SDValue PartOffset = Part.second; 8814 SDValue Address = 8815 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8816 MemOpChains.push_back( 8817 DAG.getStore(Chain, DL, PartValue, Address, 8818 MachinePointerInfo::getFixedStack(MF, FI))); 8819 } 8820 ArgValue = SpillSlot; 8821 } else { 8822 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8823 } 8824 8825 // Use local copy if it is a byval arg. 8826 if (Flags.isByVal()) 8827 ArgValue = ByValArgs[j++]; 8828 8829 if (VA.isRegLoc()) { 8830 // Queue up the argument copies and emit them at the end. 8831 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8832 } else { 8833 assert(VA.isMemLoc() && "Argument not register or memory"); 8834 assert(!IsTailCall && "Tail call not allowed if stack is used " 8835 "for passing parameters"); 8836 8837 // Work out the address of the stack slot. 8838 if (!StackPtr.getNode()) 8839 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8840 SDValue Address = 8841 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8842 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8843 8844 // Emit the store. 8845 MemOpChains.push_back( 8846 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8847 } 8848 } 8849 8850 // Join the stores, which are independent of one another. 8851 if (!MemOpChains.empty()) 8852 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8853 8854 SDValue Glue; 8855 8856 // Build a sequence of copy-to-reg nodes, chained and glued together. 8857 for (auto &Reg : RegsToPass) { 8858 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8859 Glue = Chain.getValue(1); 8860 } 8861 8862 // Validate that none of the argument registers have been marked as 8863 // reserved, if so report an error. Do the same for the return address if this 8864 // is not a tailcall. 8865 validateCCReservedRegs(RegsToPass, MF); 8866 if (!IsTailCall && 8867 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8868 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8869 MF.getFunction(), 8870 "Return address register required, but has been reserved."}); 8871 8872 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8873 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8874 // split it and then direct call can be matched by PseudoCALL. 8875 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8876 const GlobalValue *GV = S->getGlobal(); 8877 8878 unsigned OpFlags = RISCVII::MO_CALL; 8879 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8880 OpFlags = RISCVII::MO_PLT; 8881 8882 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8883 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8884 unsigned OpFlags = RISCVII::MO_CALL; 8885 8886 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8887 nullptr)) 8888 OpFlags = RISCVII::MO_PLT; 8889 8890 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8891 } 8892 8893 // The first call operand is the chain and the second is the target address. 8894 SmallVector<SDValue, 8> Ops; 8895 Ops.push_back(Chain); 8896 Ops.push_back(Callee); 8897 8898 // Add argument registers to the end of the list so that they are 8899 // known live into the call. 8900 for (auto &Reg : RegsToPass) 8901 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8902 8903 if (!IsTailCall) { 8904 // Add a register mask operand representing the call-preserved registers. 8905 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8906 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8907 assert(Mask && "Missing call preserved mask for calling convention"); 8908 Ops.push_back(DAG.getRegisterMask(Mask)); 8909 } 8910 8911 // Glue the call to the argument copies, if any. 8912 if (Glue.getNode()) 8913 Ops.push_back(Glue); 8914 8915 // Emit the call. 8916 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8917 8918 if (IsTailCall) { 8919 MF.getFrameInfo().setHasTailCall(); 8920 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8921 } 8922 8923 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8924 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8925 Glue = Chain.getValue(1); 8926 8927 // Mark the end of the call, which is glued to the call itself. 8928 Chain = DAG.getCALLSEQ_END(Chain, 8929 DAG.getConstant(NumBytes, DL, PtrVT, true), 8930 DAG.getConstant(0, DL, PtrVT, true), 8931 Glue, DL); 8932 Glue = Chain.getValue(1); 8933 8934 // Assign locations to each value returned by this call. 8935 SmallVector<CCValAssign, 16> RVLocs; 8936 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8937 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8938 8939 // Copy all of the result registers out of their specified physreg. 8940 for (auto &VA : RVLocs) { 8941 // Copy the value out 8942 SDValue RetValue = 8943 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8944 // Glue the RetValue to the end of the call sequence 8945 Chain = RetValue.getValue(1); 8946 Glue = RetValue.getValue(2); 8947 8948 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8949 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8950 SDValue RetValue2 = 8951 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8952 Chain = RetValue2.getValue(1); 8953 Glue = RetValue2.getValue(2); 8954 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8955 RetValue2); 8956 } 8957 8958 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8959 8960 InVals.push_back(RetValue); 8961 } 8962 8963 return Chain; 8964 } 8965 8966 bool RISCVTargetLowering::CanLowerReturn( 8967 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8968 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8969 SmallVector<CCValAssign, 16> RVLocs; 8970 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8971 8972 Optional<unsigned> FirstMaskArgument; 8973 if (Subtarget.hasStdExtV()) 8974 FirstMaskArgument = preAssignMask(Outs); 8975 8976 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8977 MVT VT = Outs[i].VT; 8978 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8979 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8980 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8981 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8982 *this, FirstMaskArgument)) 8983 return false; 8984 } 8985 return true; 8986 } 8987 8988 SDValue 8989 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8990 bool IsVarArg, 8991 const SmallVectorImpl<ISD::OutputArg> &Outs, 8992 const SmallVectorImpl<SDValue> &OutVals, 8993 const SDLoc &DL, SelectionDAG &DAG) const { 8994 const MachineFunction &MF = DAG.getMachineFunction(); 8995 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8996 8997 // Stores the assignment of the return value to a location. 8998 SmallVector<CCValAssign, 16> RVLocs; 8999 9000 // Info about the registers and stack slot. 9001 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9002 *DAG.getContext()); 9003 9004 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9005 nullptr, CC_RISCV); 9006 9007 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9008 report_fatal_error("GHC functions return void only"); 9009 9010 SDValue Glue; 9011 SmallVector<SDValue, 4> RetOps(1, Chain); 9012 9013 // Copy the result values into the output registers. 9014 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9015 SDValue Val = OutVals[i]; 9016 CCValAssign &VA = RVLocs[i]; 9017 assert(VA.isRegLoc() && "Can only return in registers!"); 9018 9019 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9020 // Handle returning f64 on RV32D with a soft float ABI. 9021 assert(VA.isRegLoc() && "Expected return via registers"); 9022 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9023 DAG.getVTList(MVT::i32, MVT::i32), Val); 9024 SDValue Lo = SplitF64.getValue(0); 9025 SDValue Hi = SplitF64.getValue(1); 9026 Register RegLo = VA.getLocReg(); 9027 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9028 Register RegHi = RegLo + 1; 9029 9030 if (STI.isRegisterReservedByUser(RegLo) || 9031 STI.isRegisterReservedByUser(RegHi)) 9032 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9033 MF.getFunction(), 9034 "Return value register required, but has been reserved."}); 9035 9036 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9037 Glue = Chain.getValue(1); 9038 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9039 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9040 Glue = Chain.getValue(1); 9041 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9042 } else { 9043 // Handle a 'normal' return. 9044 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9045 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9046 9047 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9048 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9049 MF.getFunction(), 9050 "Return value register required, but has been reserved."}); 9051 9052 // Guarantee that all emitted copies are stuck together. 9053 Glue = Chain.getValue(1); 9054 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9055 } 9056 } 9057 9058 RetOps[0] = Chain; // Update chain. 9059 9060 // Add the glue node if we have it. 9061 if (Glue.getNode()) { 9062 RetOps.push_back(Glue); 9063 } 9064 9065 unsigned RetOpc = RISCVISD::RET_FLAG; 9066 // Interrupt service routines use different return instructions. 9067 const Function &Func = DAG.getMachineFunction().getFunction(); 9068 if (Func.hasFnAttribute("interrupt")) { 9069 if (!Func.getReturnType()->isVoidTy()) 9070 report_fatal_error( 9071 "Functions with the interrupt attribute must have void return type!"); 9072 9073 MachineFunction &MF = DAG.getMachineFunction(); 9074 StringRef Kind = 9075 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9076 9077 if (Kind == "user") 9078 RetOpc = RISCVISD::URET_FLAG; 9079 else if (Kind == "supervisor") 9080 RetOpc = RISCVISD::SRET_FLAG; 9081 else 9082 RetOpc = RISCVISD::MRET_FLAG; 9083 } 9084 9085 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9086 } 9087 9088 void RISCVTargetLowering::validateCCReservedRegs( 9089 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9090 MachineFunction &MF) const { 9091 const Function &F = MF.getFunction(); 9092 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9093 9094 if (llvm::any_of(Regs, [&STI](auto Reg) { 9095 return STI.isRegisterReservedByUser(Reg.first); 9096 })) 9097 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9098 F, "Argument register required, but has been reserved."}); 9099 } 9100 9101 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9102 return CI->isTailCall(); 9103 } 9104 9105 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9106 #define NODE_NAME_CASE(NODE) \ 9107 case RISCVISD::NODE: \ 9108 return "RISCVISD::" #NODE; 9109 // clang-format off 9110 switch ((RISCVISD::NodeType)Opcode) { 9111 case RISCVISD::FIRST_NUMBER: 9112 break; 9113 NODE_NAME_CASE(RET_FLAG) 9114 NODE_NAME_CASE(URET_FLAG) 9115 NODE_NAME_CASE(SRET_FLAG) 9116 NODE_NAME_CASE(MRET_FLAG) 9117 NODE_NAME_CASE(CALL) 9118 NODE_NAME_CASE(SELECT_CC) 9119 NODE_NAME_CASE(BR_CC) 9120 NODE_NAME_CASE(BuildPairF64) 9121 NODE_NAME_CASE(SplitF64) 9122 NODE_NAME_CASE(TAIL) 9123 NODE_NAME_CASE(MULHSU) 9124 NODE_NAME_CASE(SLLW) 9125 NODE_NAME_CASE(SRAW) 9126 NODE_NAME_CASE(SRLW) 9127 NODE_NAME_CASE(DIVW) 9128 NODE_NAME_CASE(DIVUW) 9129 NODE_NAME_CASE(REMUW) 9130 NODE_NAME_CASE(ROLW) 9131 NODE_NAME_CASE(RORW) 9132 NODE_NAME_CASE(CLZW) 9133 NODE_NAME_CASE(CTZW) 9134 NODE_NAME_CASE(FSLW) 9135 NODE_NAME_CASE(FSRW) 9136 NODE_NAME_CASE(FSL) 9137 NODE_NAME_CASE(FSR) 9138 NODE_NAME_CASE(FMV_H_X) 9139 NODE_NAME_CASE(FMV_X_ANYEXTH) 9140 NODE_NAME_CASE(FMV_W_X_RV64) 9141 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9142 NODE_NAME_CASE(FCVT_X_RTZ) 9143 NODE_NAME_CASE(FCVT_XU_RTZ) 9144 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9145 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9146 NODE_NAME_CASE(READ_CYCLE_WIDE) 9147 NODE_NAME_CASE(GREV) 9148 NODE_NAME_CASE(GREVW) 9149 NODE_NAME_CASE(GORC) 9150 NODE_NAME_CASE(GORCW) 9151 NODE_NAME_CASE(SHFL) 9152 NODE_NAME_CASE(SHFLW) 9153 NODE_NAME_CASE(UNSHFL) 9154 NODE_NAME_CASE(UNSHFLW) 9155 NODE_NAME_CASE(BCOMPRESS) 9156 NODE_NAME_CASE(BCOMPRESSW) 9157 NODE_NAME_CASE(BDECOMPRESS) 9158 NODE_NAME_CASE(BDECOMPRESSW) 9159 NODE_NAME_CASE(VMV_V_X_VL) 9160 NODE_NAME_CASE(VFMV_V_F_VL) 9161 NODE_NAME_CASE(VMV_X_S) 9162 NODE_NAME_CASE(VMV_S_X_VL) 9163 NODE_NAME_CASE(VFMV_S_F_VL) 9164 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9165 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9166 NODE_NAME_CASE(READ_VLENB) 9167 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9168 NODE_NAME_CASE(VSLIDEUP_VL) 9169 NODE_NAME_CASE(VSLIDE1UP_VL) 9170 NODE_NAME_CASE(VSLIDEDOWN_VL) 9171 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9172 NODE_NAME_CASE(VID_VL) 9173 NODE_NAME_CASE(VFNCVT_ROD_VL) 9174 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9175 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9176 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9177 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9178 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9179 NODE_NAME_CASE(VECREDUCE_AND_VL) 9180 NODE_NAME_CASE(VECREDUCE_OR_VL) 9181 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9182 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9183 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9184 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9185 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9186 NODE_NAME_CASE(ADD_VL) 9187 NODE_NAME_CASE(AND_VL) 9188 NODE_NAME_CASE(MUL_VL) 9189 NODE_NAME_CASE(OR_VL) 9190 NODE_NAME_CASE(SDIV_VL) 9191 NODE_NAME_CASE(SHL_VL) 9192 NODE_NAME_CASE(SREM_VL) 9193 NODE_NAME_CASE(SRA_VL) 9194 NODE_NAME_CASE(SRL_VL) 9195 NODE_NAME_CASE(SUB_VL) 9196 NODE_NAME_CASE(UDIV_VL) 9197 NODE_NAME_CASE(UREM_VL) 9198 NODE_NAME_CASE(XOR_VL) 9199 NODE_NAME_CASE(SADDSAT_VL) 9200 NODE_NAME_CASE(UADDSAT_VL) 9201 NODE_NAME_CASE(SSUBSAT_VL) 9202 NODE_NAME_CASE(USUBSAT_VL) 9203 NODE_NAME_CASE(FADD_VL) 9204 NODE_NAME_CASE(FSUB_VL) 9205 NODE_NAME_CASE(FMUL_VL) 9206 NODE_NAME_CASE(FDIV_VL) 9207 NODE_NAME_CASE(FNEG_VL) 9208 NODE_NAME_CASE(FABS_VL) 9209 NODE_NAME_CASE(FSQRT_VL) 9210 NODE_NAME_CASE(FMA_VL) 9211 NODE_NAME_CASE(FCOPYSIGN_VL) 9212 NODE_NAME_CASE(SMIN_VL) 9213 NODE_NAME_CASE(SMAX_VL) 9214 NODE_NAME_CASE(UMIN_VL) 9215 NODE_NAME_CASE(UMAX_VL) 9216 NODE_NAME_CASE(FMINNUM_VL) 9217 NODE_NAME_CASE(FMAXNUM_VL) 9218 NODE_NAME_CASE(MULHS_VL) 9219 NODE_NAME_CASE(MULHU_VL) 9220 NODE_NAME_CASE(FP_TO_SINT_VL) 9221 NODE_NAME_CASE(FP_TO_UINT_VL) 9222 NODE_NAME_CASE(SINT_TO_FP_VL) 9223 NODE_NAME_CASE(UINT_TO_FP_VL) 9224 NODE_NAME_CASE(FP_EXTEND_VL) 9225 NODE_NAME_CASE(FP_ROUND_VL) 9226 NODE_NAME_CASE(VWMUL_VL) 9227 NODE_NAME_CASE(VWMULU_VL) 9228 NODE_NAME_CASE(SETCC_VL) 9229 NODE_NAME_CASE(VSELECT_VL) 9230 NODE_NAME_CASE(VMAND_VL) 9231 NODE_NAME_CASE(VMOR_VL) 9232 NODE_NAME_CASE(VMXOR_VL) 9233 NODE_NAME_CASE(VMCLR_VL) 9234 NODE_NAME_CASE(VMSET_VL) 9235 NODE_NAME_CASE(VRGATHER_VX_VL) 9236 NODE_NAME_CASE(VRGATHER_VV_VL) 9237 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9238 NODE_NAME_CASE(VSEXT_VL) 9239 NODE_NAME_CASE(VZEXT_VL) 9240 NODE_NAME_CASE(VPOPC_VL) 9241 NODE_NAME_CASE(VLE_VL) 9242 NODE_NAME_CASE(VSE_VL) 9243 NODE_NAME_CASE(READ_CSR) 9244 NODE_NAME_CASE(WRITE_CSR) 9245 NODE_NAME_CASE(SWAP_CSR) 9246 } 9247 // clang-format on 9248 return nullptr; 9249 #undef NODE_NAME_CASE 9250 } 9251 9252 /// getConstraintType - Given a constraint letter, return the type of 9253 /// constraint it is for this target. 9254 RISCVTargetLowering::ConstraintType 9255 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9256 if (Constraint.size() == 1) { 9257 switch (Constraint[0]) { 9258 default: 9259 break; 9260 case 'f': 9261 return C_RegisterClass; 9262 case 'I': 9263 case 'J': 9264 case 'K': 9265 return C_Immediate; 9266 case 'A': 9267 return C_Memory; 9268 case 'S': // A symbolic address 9269 return C_Other; 9270 } 9271 } else { 9272 if (Constraint == "vr" || Constraint == "vm") 9273 return C_RegisterClass; 9274 } 9275 return TargetLowering::getConstraintType(Constraint); 9276 } 9277 9278 std::pair<unsigned, const TargetRegisterClass *> 9279 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9280 StringRef Constraint, 9281 MVT VT) const { 9282 // First, see if this is a constraint that directly corresponds to a 9283 // RISCV register class. 9284 if (Constraint.size() == 1) { 9285 switch (Constraint[0]) { 9286 case 'r': 9287 return std::make_pair(0U, &RISCV::GPRRegClass); 9288 case 'f': 9289 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9290 return std::make_pair(0U, &RISCV::FPR16RegClass); 9291 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9292 return std::make_pair(0U, &RISCV::FPR32RegClass); 9293 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9294 return std::make_pair(0U, &RISCV::FPR64RegClass); 9295 break; 9296 default: 9297 break; 9298 } 9299 } else { 9300 if (Constraint == "vr") { 9301 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9302 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9303 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9304 return std::make_pair(0U, RC); 9305 } 9306 } else if (Constraint == "vm") { 9307 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9308 return std::make_pair(0U, &RISCV::VMRegClass); 9309 } 9310 } 9311 9312 // Clang will correctly decode the usage of register name aliases into their 9313 // official names. However, other frontends like `rustc` do not. This allows 9314 // users of these frontends to use the ABI names for registers in LLVM-style 9315 // register constraints. 9316 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9317 .Case("{zero}", RISCV::X0) 9318 .Case("{ra}", RISCV::X1) 9319 .Case("{sp}", RISCV::X2) 9320 .Case("{gp}", RISCV::X3) 9321 .Case("{tp}", RISCV::X4) 9322 .Case("{t0}", RISCV::X5) 9323 .Case("{t1}", RISCV::X6) 9324 .Case("{t2}", RISCV::X7) 9325 .Cases("{s0}", "{fp}", RISCV::X8) 9326 .Case("{s1}", RISCV::X9) 9327 .Case("{a0}", RISCV::X10) 9328 .Case("{a1}", RISCV::X11) 9329 .Case("{a2}", RISCV::X12) 9330 .Case("{a3}", RISCV::X13) 9331 .Case("{a4}", RISCV::X14) 9332 .Case("{a5}", RISCV::X15) 9333 .Case("{a6}", RISCV::X16) 9334 .Case("{a7}", RISCV::X17) 9335 .Case("{s2}", RISCV::X18) 9336 .Case("{s3}", RISCV::X19) 9337 .Case("{s4}", RISCV::X20) 9338 .Case("{s5}", RISCV::X21) 9339 .Case("{s6}", RISCV::X22) 9340 .Case("{s7}", RISCV::X23) 9341 .Case("{s8}", RISCV::X24) 9342 .Case("{s9}", RISCV::X25) 9343 .Case("{s10}", RISCV::X26) 9344 .Case("{s11}", RISCV::X27) 9345 .Case("{t3}", RISCV::X28) 9346 .Case("{t4}", RISCV::X29) 9347 .Case("{t5}", RISCV::X30) 9348 .Case("{t6}", RISCV::X31) 9349 .Default(RISCV::NoRegister); 9350 if (XRegFromAlias != RISCV::NoRegister) 9351 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9352 9353 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9354 // TableGen record rather than the AsmName to choose registers for InlineAsm 9355 // constraints, plus we want to match those names to the widest floating point 9356 // register type available, manually select floating point registers here. 9357 // 9358 // The second case is the ABI name of the register, so that frontends can also 9359 // use the ABI names in register constraint lists. 9360 if (Subtarget.hasStdExtF()) { 9361 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9362 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9363 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9364 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9365 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9366 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9367 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9368 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9369 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9370 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9371 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9372 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9373 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9374 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9375 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9376 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9377 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9378 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9379 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9380 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9381 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9382 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9383 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9384 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9385 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9386 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9387 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9388 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9389 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9390 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9391 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9392 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9393 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9394 .Default(RISCV::NoRegister); 9395 if (FReg != RISCV::NoRegister) { 9396 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9397 if (Subtarget.hasStdExtD()) { 9398 unsigned RegNo = FReg - RISCV::F0_F; 9399 unsigned DReg = RISCV::F0_D + RegNo; 9400 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9401 } 9402 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9403 } 9404 } 9405 9406 if (Subtarget.hasStdExtV()) { 9407 Register VReg = StringSwitch<Register>(Constraint.lower()) 9408 .Case("{v0}", RISCV::V0) 9409 .Case("{v1}", RISCV::V1) 9410 .Case("{v2}", RISCV::V2) 9411 .Case("{v3}", RISCV::V3) 9412 .Case("{v4}", RISCV::V4) 9413 .Case("{v5}", RISCV::V5) 9414 .Case("{v6}", RISCV::V6) 9415 .Case("{v7}", RISCV::V7) 9416 .Case("{v8}", RISCV::V8) 9417 .Case("{v9}", RISCV::V9) 9418 .Case("{v10}", RISCV::V10) 9419 .Case("{v11}", RISCV::V11) 9420 .Case("{v12}", RISCV::V12) 9421 .Case("{v13}", RISCV::V13) 9422 .Case("{v14}", RISCV::V14) 9423 .Case("{v15}", RISCV::V15) 9424 .Case("{v16}", RISCV::V16) 9425 .Case("{v17}", RISCV::V17) 9426 .Case("{v18}", RISCV::V18) 9427 .Case("{v19}", RISCV::V19) 9428 .Case("{v20}", RISCV::V20) 9429 .Case("{v21}", RISCV::V21) 9430 .Case("{v22}", RISCV::V22) 9431 .Case("{v23}", RISCV::V23) 9432 .Case("{v24}", RISCV::V24) 9433 .Case("{v25}", RISCV::V25) 9434 .Case("{v26}", RISCV::V26) 9435 .Case("{v27}", RISCV::V27) 9436 .Case("{v28}", RISCV::V28) 9437 .Case("{v29}", RISCV::V29) 9438 .Case("{v30}", RISCV::V30) 9439 .Case("{v31}", RISCV::V31) 9440 .Default(RISCV::NoRegister); 9441 if (VReg != RISCV::NoRegister) { 9442 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9443 return std::make_pair(VReg, &RISCV::VMRegClass); 9444 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9445 return std::make_pair(VReg, &RISCV::VRRegClass); 9446 for (const auto *RC : 9447 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9448 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9449 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9450 return std::make_pair(VReg, RC); 9451 } 9452 } 9453 } 9454 } 9455 9456 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9457 } 9458 9459 unsigned 9460 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9461 // Currently only support length 1 constraints. 9462 if (ConstraintCode.size() == 1) { 9463 switch (ConstraintCode[0]) { 9464 case 'A': 9465 return InlineAsm::Constraint_A; 9466 default: 9467 break; 9468 } 9469 } 9470 9471 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9472 } 9473 9474 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9475 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9476 SelectionDAG &DAG) const { 9477 // Currently only support length 1 constraints. 9478 if (Constraint.length() == 1) { 9479 switch (Constraint[0]) { 9480 case 'I': 9481 // Validate & create a 12-bit signed immediate operand. 9482 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9483 uint64_t CVal = C->getSExtValue(); 9484 if (isInt<12>(CVal)) 9485 Ops.push_back( 9486 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9487 } 9488 return; 9489 case 'J': 9490 // Validate & create an integer zero operand. 9491 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9492 if (C->getZExtValue() == 0) 9493 Ops.push_back( 9494 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9495 return; 9496 case 'K': 9497 // Validate & create a 5-bit unsigned immediate operand. 9498 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9499 uint64_t CVal = C->getZExtValue(); 9500 if (isUInt<5>(CVal)) 9501 Ops.push_back( 9502 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9503 } 9504 return; 9505 case 'S': 9506 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9507 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9508 GA->getValueType(0))); 9509 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9510 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9511 BA->getValueType(0))); 9512 } 9513 return; 9514 default: 9515 break; 9516 } 9517 } 9518 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9519 } 9520 9521 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9522 Instruction *Inst, 9523 AtomicOrdering Ord) const { 9524 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9525 return Builder.CreateFence(Ord); 9526 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9527 return Builder.CreateFence(AtomicOrdering::Release); 9528 return nullptr; 9529 } 9530 9531 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9532 Instruction *Inst, 9533 AtomicOrdering Ord) const { 9534 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9535 return Builder.CreateFence(AtomicOrdering::Acquire); 9536 return nullptr; 9537 } 9538 9539 TargetLowering::AtomicExpansionKind 9540 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9541 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9542 // point operations can't be used in an lr/sc sequence without breaking the 9543 // forward-progress guarantee. 9544 if (AI->isFloatingPointOperation()) 9545 return AtomicExpansionKind::CmpXChg; 9546 9547 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9548 if (Size == 8 || Size == 16) 9549 return AtomicExpansionKind::MaskedIntrinsic; 9550 return AtomicExpansionKind::None; 9551 } 9552 9553 static Intrinsic::ID 9554 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9555 if (XLen == 32) { 9556 switch (BinOp) { 9557 default: 9558 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9559 case AtomicRMWInst::Xchg: 9560 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9561 case AtomicRMWInst::Add: 9562 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9563 case AtomicRMWInst::Sub: 9564 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9565 case AtomicRMWInst::Nand: 9566 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9567 case AtomicRMWInst::Max: 9568 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9569 case AtomicRMWInst::Min: 9570 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9571 case AtomicRMWInst::UMax: 9572 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9573 case AtomicRMWInst::UMin: 9574 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9575 } 9576 } 9577 9578 if (XLen == 64) { 9579 switch (BinOp) { 9580 default: 9581 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9582 case AtomicRMWInst::Xchg: 9583 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9584 case AtomicRMWInst::Add: 9585 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9586 case AtomicRMWInst::Sub: 9587 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9588 case AtomicRMWInst::Nand: 9589 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9590 case AtomicRMWInst::Max: 9591 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9592 case AtomicRMWInst::Min: 9593 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9594 case AtomicRMWInst::UMax: 9595 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9596 case AtomicRMWInst::UMin: 9597 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9598 } 9599 } 9600 9601 llvm_unreachable("Unexpected XLen\n"); 9602 } 9603 9604 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9605 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9606 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9607 unsigned XLen = Subtarget.getXLen(); 9608 Value *Ordering = 9609 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9610 Type *Tys[] = {AlignedAddr->getType()}; 9611 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9612 AI->getModule(), 9613 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9614 9615 if (XLen == 64) { 9616 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9617 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9618 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9619 } 9620 9621 Value *Result; 9622 9623 // Must pass the shift amount needed to sign extend the loaded value prior 9624 // to performing a signed comparison for min/max. ShiftAmt is the number of 9625 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9626 // is the number of bits to left+right shift the value in order to 9627 // sign-extend. 9628 if (AI->getOperation() == AtomicRMWInst::Min || 9629 AI->getOperation() == AtomicRMWInst::Max) { 9630 const DataLayout &DL = AI->getModule()->getDataLayout(); 9631 unsigned ValWidth = 9632 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9633 Value *SextShamt = 9634 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9635 Result = Builder.CreateCall(LrwOpScwLoop, 9636 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9637 } else { 9638 Result = 9639 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9640 } 9641 9642 if (XLen == 64) 9643 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9644 return Result; 9645 } 9646 9647 TargetLowering::AtomicExpansionKind 9648 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9649 AtomicCmpXchgInst *CI) const { 9650 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9651 if (Size == 8 || Size == 16) 9652 return AtomicExpansionKind::MaskedIntrinsic; 9653 return AtomicExpansionKind::None; 9654 } 9655 9656 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9657 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9658 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9659 unsigned XLen = Subtarget.getXLen(); 9660 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9661 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9662 if (XLen == 64) { 9663 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9664 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9665 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9666 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9667 } 9668 Type *Tys[] = {AlignedAddr->getType()}; 9669 Function *MaskedCmpXchg = 9670 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9671 Value *Result = Builder.CreateCall( 9672 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9673 if (XLen == 64) 9674 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9675 return Result; 9676 } 9677 9678 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9679 return false; 9680 } 9681 9682 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9683 EVT VT) const { 9684 VT = VT.getScalarType(); 9685 9686 if (!VT.isSimple()) 9687 return false; 9688 9689 switch (VT.getSimpleVT().SimpleTy) { 9690 case MVT::f16: 9691 return Subtarget.hasStdExtZfh(); 9692 case MVT::f32: 9693 return Subtarget.hasStdExtF(); 9694 case MVT::f64: 9695 return Subtarget.hasStdExtD(); 9696 default: 9697 break; 9698 } 9699 9700 return false; 9701 } 9702 9703 Register RISCVTargetLowering::getExceptionPointerRegister( 9704 const Constant *PersonalityFn) const { 9705 return RISCV::X10; 9706 } 9707 9708 Register RISCVTargetLowering::getExceptionSelectorRegister( 9709 const Constant *PersonalityFn) const { 9710 return RISCV::X11; 9711 } 9712 9713 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9714 // Return false to suppress the unnecessary extensions if the LibCall 9715 // arguments or return value is f32 type for LP64 ABI. 9716 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9717 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9718 return false; 9719 9720 return true; 9721 } 9722 9723 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9724 if (Subtarget.is64Bit() && Type == MVT::i32) 9725 return true; 9726 9727 return IsSigned; 9728 } 9729 9730 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9731 SDValue C) const { 9732 // Check integral scalar types. 9733 if (VT.isScalarInteger()) { 9734 // Omit the optimization if the sub target has the M extension and the data 9735 // size exceeds XLen. 9736 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9737 return false; 9738 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9739 // Break the MUL to a SLLI and an ADD/SUB. 9740 const APInt &Imm = ConstNode->getAPIntValue(); 9741 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9742 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9743 return true; 9744 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9745 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9746 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9747 (Imm - 8).isPowerOf2())) 9748 return true; 9749 // Omit the following optimization if the sub target has the M extension 9750 // and the data size >= XLen. 9751 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9752 return false; 9753 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9754 // a pair of LUI/ADDI. 9755 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9756 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9757 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9758 (1 - ImmS).isPowerOf2()) 9759 return true; 9760 } 9761 } 9762 } 9763 9764 return false; 9765 } 9766 9767 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9768 const SDValue &AddNode, const SDValue &ConstNode) const { 9769 // Let the DAGCombiner decide for vectors. 9770 EVT VT = AddNode.getValueType(); 9771 if (VT.isVector()) 9772 return true; 9773 9774 // Let the DAGCombiner decide for larger types. 9775 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9776 return true; 9777 9778 // It is worse if c1 is simm12 while c1*c2 is not. 9779 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9780 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9781 const APInt &C1 = C1Node->getAPIntValue(); 9782 const APInt &C2 = C2Node->getAPIntValue(); 9783 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9784 return false; 9785 9786 // Default to true and let the DAGCombiner decide. 9787 return true; 9788 } 9789 9790 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9791 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9792 bool *Fast) const { 9793 if (!VT.isVector()) 9794 return false; 9795 9796 EVT ElemVT = VT.getVectorElementType(); 9797 if (Alignment >= ElemVT.getStoreSize()) { 9798 if (Fast) 9799 *Fast = true; 9800 return true; 9801 } 9802 9803 return false; 9804 } 9805 9806 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9807 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9808 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9809 bool IsABIRegCopy = CC.hasValue(); 9810 EVT ValueVT = Val.getValueType(); 9811 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9812 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9813 // and cast to f32. 9814 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9815 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9816 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9817 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9818 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9819 Parts[0] = Val; 9820 return true; 9821 } 9822 9823 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9824 LLVMContext &Context = *DAG.getContext(); 9825 EVT ValueEltVT = ValueVT.getVectorElementType(); 9826 EVT PartEltVT = PartVT.getVectorElementType(); 9827 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9828 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9829 if (PartVTBitSize % ValueVTBitSize == 0) { 9830 // If the element types are different, bitcast to the same element type of 9831 // PartVT first. 9832 if (ValueEltVT != PartEltVT) { 9833 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9834 assert(Count != 0 && "The number of element should not be zero."); 9835 EVT SameEltTypeVT = 9836 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9837 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9838 } 9839 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9840 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9841 Parts[0] = Val; 9842 return true; 9843 } 9844 } 9845 return false; 9846 } 9847 9848 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9849 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9850 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9851 bool IsABIRegCopy = CC.hasValue(); 9852 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9853 SDValue Val = Parts[0]; 9854 9855 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9856 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9857 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9858 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9859 return Val; 9860 } 9861 9862 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9863 LLVMContext &Context = *DAG.getContext(); 9864 SDValue Val = Parts[0]; 9865 EVT ValueEltVT = ValueVT.getVectorElementType(); 9866 EVT PartEltVT = PartVT.getVectorElementType(); 9867 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9868 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9869 if (PartVTBitSize % ValueVTBitSize == 0) { 9870 EVT SameEltTypeVT = ValueVT; 9871 // If the element types are different, convert it to the same element type 9872 // of PartVT. 9873 if (ValueEltVT != PartEltVT) { 9874 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9875 assert(Count != 0 && "The number of element should not be zero."); 9876 SameEltTypeVT = 9877 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9878 } 9879 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9880 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9881 if (ValueEltVT != PartEltVT) 9882 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9883 return Val; 9884 } 9885 } 9886 return SDValue(); 9887 } 9888 9889 #define GET_REGISTER_MATCHER 9890 #include "RISCVGenAsmMatcher.inc" 9891 9892 Register 9893 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9894 const MachineFunction &MF) const { 9895 Register Reg = MatchRegisterAltName(RegName); 9896 if (Reg == RISCV::NoRegister) 9897 Reg = MatchRegisterName(RegName); 9898 if (Reg == RISCV::NoRegister) 9899 report_fatal_error( 9900 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9901 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9902 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9903 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9904 StringRef(RegName) + "\".")); 9905 return Reg; 9906 } 9907 9908 namespace llvm { 9909 namespace RISCVVIntrinsicsTable { 9910 9911 #define GET_RISCVVIntrinsicsTable_IMPL 9912 #include "RISCVGenSearchableTables.inc" 9913 9914 } // namespace RISCVVIntrinsicsTable 9915 9916 } // namespace llvm 9917