1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 256 if (Subtarget.is64Bit()) { 257 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 259 } 260 } else { 261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 262 // pattern match it directly in isel. 263 setOperationAction(ISD::BSWAP, XLenVT, 264 Subtarget.hasStdExtZbb() ? Legal : Expand); 265 } 266 267 if (Subtarget.hasStdExtZbb()) { 268 setOperationAction(ISD::SMIN, XLenVT, Legal); 269 setOperationAction(ISD::SMAX, XLenVT, Legal); 270 setOperationAction(ISD::UMIN, XLenVT, Legal); 271 setOperationAction(ISD::UMAX, XLenVT, Legal); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 275 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 276 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 277 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 278 } 279 } else { 280 setOperationAction(ISD::CTTZ, XLenVT, Expand); 281 setOperationAction(ISD::CTLZ, XLenVT, Expand); 282 setOperationAction(ISD::CTPOP, XLenVT, Expand); 283 } 284 285 if (Subtarget.hasStdExtZbt()) { 286 setOperationAction(ISD::FSHL, XLenVT, Custom); 287 setOperationAction(ISD::FSHR, XLenVT, Custom); 288 setOperationAction(ISD::SELECT, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::FSHL, MVT::i32, Custom); 292 setOperationAction(ISD::FSHR, MVT::i32, Custom); 293 } 294 } else { 295 setOperationAction(ISD::SELECT, XLenVT, Custom); 296 } 297 298 ISD::CondCode FPCCToExpand[] = { 299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 302 303 ISD::NodeType FPOpToExpand[] = { 304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 305 ISD::FP_TO_FP16}; 306 307 if (Subtarget.hasStdExtZfh()) 308 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 309 310 if (Subtarget.hasStdExtZfh()) { 311 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 312 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 313 for (auto CC : FPCCToExpand) 314 setCondCodeAction(CC, MVT::f16, Expand); 315 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 316 setOperationAction(ISD::SELECT, MVT::f16, Custom); 317 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 318 for (auto Op : FPOpToExpand) 319 setOperationAction(Op, MVT::f16, Expand); 320 } 321 322 if (Subtarget.hasStdExtF()) { 323 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 325 for (auto CC : FPCCToExpand) 326 setCondCodeAction(CC, MVT::f32, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 328 setOperationAction(ISD::SELECT, MVT::f32, Custom); 329 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 330 for (auto Op : FPOpToExpand) 331 setOperationAction(Op, MVT::f32, Expand); 332 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 333 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 334 } 335 336 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 337 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 338 339 if (Subtarget.hasStdExtD()) { 340 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 341 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 342 for (auto CC : FPCCToExpand) 343 setCondCodeAction(CC, MVT::f64, Expand); 344 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 345 setOperationAction(ISD::SELECT, MVT::f64, Custom); 346 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 347 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 348 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 353 } 354 355 if (Subtarget.is64Bit()) { 356 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 358 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 359 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 360 } 361 362 if (Subtarget.hasStdExtF()) { 363 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 364 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 365 } 366 367 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 368 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 369 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 370 setOperationAction(ISD::JumpTable, XLenVT, Custom); 371 372 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 373 374 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 375 // Unfortunately this can't be determined just from the ISA naming string. 376 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 377 Subtarget.is64Bit() ? Legal : Custom); 378 379 setOperationAction(ISD::TRAP, MVT::Other, Legal); 380 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 381 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 382 if (Subtarget.is64Bit()) 383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 384 385 if (Subtarget.hasStdExtA()) { 386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 387 setMinCmpXchgSizeInBits(32); 388 } else { 389 setMaxAtomicSizeInBitsSupported(0); 390 } 391 392 setBooleanContents(ZeroOrOneBooleanContent); 393 394 if (Subtarget.hasStdExtV()) { 395 setBooleanVectorContents(ZeroOrOneBooleanContent); 396 397 setOperationAction(ISD::VSCALE, XLenVT, Custom); 398 399 // RVV intrinsics may have illegal operands. 400 // We also need to custom legalize vmv.x.s. 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 405 if (Subtarget.is64Bit()) { 406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 407 } else { 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 410 } 411 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 413 414 static unsigned IntegerVPOps[] = { 415 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 416 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 417 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 418 419 if (!Subtarget.is64Bit()) { 420 // We must custom-lower certain vXi64 operations on RV32 due to the vector 421 // element type being illegal. 422 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 423 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 424 425 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 428 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 429 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 432 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 433 } 434 435 for (MVT VT : BoolVecVTs) { 436 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 437 438 // Mask VTs are custom-expanded into a series of standard nodes 439 setOperationAction(ISD::TRUNCATE, VT, Custom); 440 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 441 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 442 443 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 444 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 445 446 setOperationAction(ISD::SELECT, VT, Expand); 447 setOperationAction(ISD::SELECT_CC, VT, Expand); 448 449 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 450 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 451 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 452 453 // Expand all extending loads to types larger than this, and truncating 454 // stores from types larger than this. 455 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 456 setTruncStoreAction(OtherVT, VT, Expand); 457 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 458 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 459 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 460 } 461 } 462 463 for (MVT VT : IntVecVTs) { 464 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 465 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 466 467 setOperationAction(ISD::SMIN, VT, Legal); 468 setOperationAction(ISD::SMAX, VT, Legal); 469 setOperationAction(ISD::UMIN, VT, Legal); 470 setOperationAction(ISD::UMAX, VT, Legal); 471 472 setOperationAction(ISD::ROTL, VT, Expand); 473 setOperationAction(ISD::ROTR, VT, Expand); 474 475 // Custom-lower extensions and truncations from/to mask types. 476 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 477 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 478 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 479 480 // RVV has native int->float & float->int conversions where the 481 // element type sizes are within one power-of-two of each other. Any 482 // wider distances between type sizes have to be lowered as sequences 483 // which progressively narrow the gap in stages. 484 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 485 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 486 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 487 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 488 489 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 490 // nodes which truncate by one power of two at a time. 491 setOperationAction(ISD::TRUNCATE, VT, Custom); 492 493 // Custom-lower insert/extract operations to simplify patterns. 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 497 // Custom-lower reduction operations to set up the corresponding custom 498 // nodes' operands. 499 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 500 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 501 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 504 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 505 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 506 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 507 508 for (unsigned VPOpc : IntegerVPOps) { 509 setOperationAction(VPOpc, VT, Custom); 510 // RV64 must custom-legalize the i32 EVL parameter. 511 if (Subtarget.is64Bit()) 512 setOperationAction(VPOpc, MVT::i32, Custom); 513 } 514 515 setOperationAction(ISD::MLOAD, VT, Custom); 516 setOperationAction(ISD::MSTORE, VT, Custom); 517 setOperationAction(ISD::MGATHER, VT, Custom); 518 setOperationAction(ISD::MSCATTER, VT, Custom); 519 520 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 521 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 522 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 523 524 setOperationAction(ISD::SELECT, VT, Expand); 525 setOperationAction(ISD::SELECT_CC, VT, Expand); 526 527 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 528 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 529 530 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 531 setTruncStoreAction(VT, OtherVT, Expand); 532 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 533 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 534 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 535 } 536 } 537 538 // Expand various CCs to best match the RVV ISA, which natively supports UNE 539 // but no other unordered comparisons, and supports all ordered comparisons 540 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 541 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 542 // and we pattern-match those back to the "original", swapping operands once 543 // more. This way we catch both operations and both "vf" and "fv" forms with 544 // fewer patterns. 545 ISD::CondCode VFPCCToExpand[] = { 546 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 547 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 548 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 549 }; 550 551 // Sets common operation actions on RVV floating-point vector types. 552 const auto SetCommonVFPActions = [&](MVT VT) { 553 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 554 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 555 // sizes are within one power-of-two of each other. Therefore conversions 556 // between vXf16 and vXf64 must be lowered as sequences which convert via 557 // vXf32. 558 setOperationAction(ISD::FP_ROUND, VT, Custom); 559 setOperationAction(ISD::FP_EXTEND, VT, Custom); 560 // Custom-lower insert/extract operations to simplify patterns. 561 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 562 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 563 // Expand various condition codes (explained above). 564 for (auto CC : VFPCCToExpand) 565 setCondCodeAction(CC, VT, Expand); 566 567 setOperationAction(ISD::FMINNUM, VT, Legal); 568 setOperationAction(ISD::FMAXNUM, VT, Legal); 569 570 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 573 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 574 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 575 576 setOperationAction(ISD::MLOAD, VT, Custom); 577 setOperationAction(ISD::MSTORE, VT, Custom); 578 setOperationAction(ISD::MGATHER, VT, Custom); 579 setOperationAction(ISD::MSCATTER, VT, Custom); 580 581 setOperationAction(ISD::SELECT, VT, Expand); 582 setOperationAction(ISD::SELECT_CC, VT, Expand); 583 584 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 585 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 586 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 587 588 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 589 }; 590 591 // Sets common extload/truncstore actions on RVV floating-point vector 592 // types. 593 const auto SetCommonVFPExtLoadTruncStoreActions = 594 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 595 for (auto SmallVT : SmallerVTs) { 596 setTruncStoreAction(VT, SmallVT, Expand); 597 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 598 } 599 }; 600 601 if (Subtarget.hasStdExtZfh()) 602 for (MVT VT : F16VecVTs) 603 SetCommonVFPActions(VT); 604 605 for (MVT VT : F32VecVTs) { 606 if (Subtarget.hasStdExtF()) 607 SetCommonVFPActions(VT); 608 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 609 } 610 611 for (MVT VT : F64VecVTs) { 612 if (Subtarget.hasStdExtD()) 613 SetCommonVFPActions(VT); 614 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 615 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 616 } 617 618 if (Subtarget.useRVVForFixedLengthVectors()) { 619 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 620 if (!useRVVForFixedLengthVectorVT(VT)) 621 continue; 622 623 // By default everything must be expanded. 624 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 625 setOperationAction(Op, VT, Expand); 626 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 627 setTruncStoreAction(VT, OtherVT, Expand); 628 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 629 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 630 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 631 } 632 633 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 634 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 635 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 636 637 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 638 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 639 640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 641 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 642 643 setOperationAction(ISD::LOAD, VT, Custom); 644 setOperationAction(ISD::STORE, VT, Custom); 645 646 setOperationAction(ISD::SETCC, VT, Custom); 647 648 setOperationAction(ISD::TRUNCATE, VT, Custom); 649 650 setOperationAction(ISD::BITCAST, VT, Custom); 651 652 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 654 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 655 656 // Operations below are different for between masks and other vectors. 657 if (VT.getVectorElementType() == MVT::i1) { 658 setOperationAction(ISD::AND, VT, Custom); 659 setOperationAction(ISD::OR, VT, Custom); 660 setOperationAction(ISD::XOR, VT, Custom); 661 continue; 662 } 663 664 // Use SPLAT_VECTOR to prevent type legalization from destroying the 665 // splats when type legalizing i64 scalar on RV32. 666 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 667 // improvements first. 668 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 669 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 670 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 671 } 672 673 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 674 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 675 676 setOperationAction(ISD::MLOAD, VT, Custom); 677 setOperationAction(ISD::MSTORE, VT, Custom); 678 setOperationAction(ISD::MGATHER, VT, Custom); 679 setOperationAction(ISD::MSCATTER, VT, Custom); 680 setOperationAction(ISD::ADD, VT, Custom); 681 setOperationAction(ISD::MUL, VT, Custom); 682 setOperationAction(ISD::SUB, VT, Custom); 683 setOperationAction(ISD::AND, VT, Custom); 684 setOperationAction(ISD::OR, VT, Custom); 685 setOperationAction(ISD::XOR, VT, Custom); 686 setOperationAction(ISD::SDIV, VT, Custom); 687 setOperationAction(ISD::SREM, VT, Custom); 688 setOperationAction(ISD::UDIV, VT, Custom); 689 setOperationAction(ISD::UREM, VT, Custom); 690 setOperationAction(ISD::SHL, VT, Custom); 691 setOperationAction(ISD::SRA, VT, Custom); 692 setOperationAction(ISD::SRL, VT, Custom); 693 694 setOperationAction(ISD::SMIN, VT, Custom); 695 setOperationAction(ISD::SMAX, VT, Custom); 696 setOperationAction(ISD::UMIN, VT, Custom); 697 setOperationAction(ISD::UMAX, VT, Custom); 698 setOperationAction(ISD::ABS, VT, Custom); 699 700 setOperationAction(ISD::MULHS, VT, Custom); 701 setOperationAction(ISD::MULHU, VT, Custom); 702 703 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 704 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 705 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 706 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 707 708 setOperationAction(ISD::VSELECT, VT, Custom); 709 setOperationAction(ISD::SELECT, VT, Expand); 710 setOperationAction(ISD::SELECT_CC, VT, Expand); 711 712 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 713 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 714 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 715 716 // Custom-lower reduction operations to set up the corresponding custom 717 // nodes' operands. 718 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 719 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 720 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 721 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 722 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 723 724 for (unsigned VPOpc : IntegerVPOps) { 725 setOperationAction(VPOpc, VT, Custom); 726 // RV64 must custom-legalize the i32 EVL parameter. 727 if (Subtarget.is64Bit()) 728 setOperationAction(VPOpc, MVT::i32, Custom); 729 } 730 } 731 732 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 733 if (!useRVVForFixedLengthVectorVT(VT)) 734 continue; 735 736 // By default everything must be expanded. 737 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 738 setOperationAction(Op, VT, Expand); 739 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 740 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 741 setTruncStoreAction(VT, OtherVT, Expand); 742 } 743 744 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 745 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 746 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 747 748 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 749 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 750 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 751 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 752 753 setOperationAction(ISD::LOAD, VT, Custom); 754 setOperationAction(ISD::STORE, VT, Custom); 755 setOperationAction(ISD::MLOAD, VT, Custom); 756 setOperationAction(ISD::MSTORE, VT, Custom); 757 setOperationAction(ISD::MGATHER, VT, Custom); 758 setOperationAction(ISD::MSCATTER, VT, Custom); 759 setOperationAction(ISD::FADD, VT, Custom); 760 setOperationAction(ISD::FSUB, VT, Custom); 761 setOperationAction(ISD::FMUL, VT, Custom); 762 setOperationAction(ISD::FDIV, VT, Custom); 763 setOperationAction(ISD::FNEG, VT, Custom); 764 setOperationAction(ISD::FABS, VT, Custom); 765 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 766 setOperationAction(ISD::FSQRT, VT, Custom); 767 setOperationAction(ISD::FMA, VT, Custom); 768 setOperationAction(ISD::FMINNUM, VT, Custom); 769 setOperationAction(ISD::FMAXNUM, VT, Custom); 770 771 setOperationAction(ISD::FP_ROUND, VT, Custom); 772 setOperationAction(ISD::FP_EXTEND, VT, Custom); 773 774 for (auto CC : VFPCCToExpand) 775 setCondCodeAction(CC, VT, Expand); 776 777 setOperationAction(ISD::VSELECT, VT, Custom); 778 setOperationAction(ISD::SELECT, VT, Expand); 779 setOperationAction(ISD::SELECT_CC, VT, Expand); 780 781 setOperationAction(ISD::BITCAST, VT, Custom); 782 783 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 784 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 785 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 786 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 787 } 788 789 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 790 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 791 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 792 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 793 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 794 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 795 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 796 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 797 } 798 } 799 800 // Function alignments. 801 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 802 setMinFunctionAlignment(FunctionAlignment); 803 setPrefFunctionAlignment(FunctionAlignment); 804 805 setMinimumJumpTableEntries(5); 806 807 // Jumps are expensive, compared to logic 808 setJumpIsExpensive(); 809 810 // We can use any register for comparisons 811 setHasMultipleConditionRegisters(); 812 813 setTargetDAGCombine(ISD::AND); 814 setTargetDAGCombine(ISD::OR); 815 setTargetDAGCombine(ISD::XOR); 816 if (Subtarget.hasStdExtV()) { 817 setTargetDAGCombine(ISD::FCOPYSIGN); 818 setTargetDAGCombine(ISD::MGATHER); 819 setTargetDAGCombine(ISD::MSCATTER); 820 } 821 } 822 823 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 824 LLVMContext &Context, 825 EVT VT) const { 826 if (!VT.isVector()) 827 return getPointerTy(DL); 828 if (Subtarget.hasStdExtV() && 829 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 830 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 831 return VT.changeVectorElementTypeToInteger(); 832 } 833 834 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 835 const CallInst &I, 836 MachineFunction &MF, 837 unsigned Intrinsic) const { 838 switch (Intrinsic) { 839 default: 840 return false; 841 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 842 case Intrinsic::riscv_masked_atomicrmw_add_i32: 843 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 844 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 845 case Intrinsic::riscv_masked_atomicrmw_max_i32: 846 case Intrinsic::riscv_masked_atomicrmw_min_i32: 847 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 848 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 849 case Intrinsic::riscv_masked_cmpxchg_i32: 850 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 851 Info.opc = ISD::INTRINSIC_W_CHAIN; 852 Info.memVT = MVT::getVT(PtrTy->getElementType()); 853 Info.ptrVal = I.getArgOperand(0); 854 Info.offset = 0; 855 Info.align = Align(4); 856 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 857 MachineMemOperand::MOVolatile; 858 return true; 859 } 860 } 861 862 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 863 const AddrMode &AM, Type *Ty, 864 unsigned AS, 865 Instruction *I) const { 866 // No global is ever allowed as a base. 867 if (AM.BaseGV) 868 return false; 869 870 // Require a 12-bit signed offset. 871 if (!isInt<12>(AM.BaseOffs)) 872 return false; 873 874 switch (AM.Scale) { 875 case 0: // "r+i" or just "i", depending on HasBaseReg. 876 break; 877 case 1: 878 if (!AM.HasBaseReg) // allow "r+i". 879 break; 880 return false; // disallow "r+r" or "r+r+i". 881 default: 882 return false; 883 } 884 885 return true; 886 } 887 888 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 889 return isInt<12>(Imm); 890 } 891 892 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 893 return isInt<12>(Imm); 894 } 895 896 // On RV32, 64-bit integers are split into their high and low parts and held 897 // in two different registers, so the trunc is free since the low register can 898 // just be used. 899 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 900 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 901 return false; 902 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 903 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 904 return (SrcBits == 64 && DestBits == 32); 905 } 906 907 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 908 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 909 !SrcVT.isInteger() || !DstVT.isInteger()) 910 return false; 911 unsigned SrcBits = SrcVT.getSizeInBits(); 912 unsigned DestBits = DstVT.getSizeInBits(); 913 return (SrcBits == 64 && DestBits == 32); 914 } 915 916 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 917 // Zexts are free if they can be combined with a load. 918 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 919 EVT MemVT = LD->getMemoryVT(); 920 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 921 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 922 (LD->getExtensionType() == ISD::NON_EXTLOAD || 923 LD->getExtensionType() == ISD::ZEXTLOAD)) 924 return true; 925 } 926 927 return TargetLowering::isZExtFree(Val, VT2); 928 } 929 930 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 931 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 932 } 933 934 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 935 return Subtarget.hasStdExtZbb(); 936 } 937 938 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 939 return Subtarget.hasStdExtZbb(); 940 } 941 942 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 943 bool ForCodeSize) const { 944 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 945 return false; 946 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 947 return false; 948 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 949 return false; 950 if (Imm.isNegZero()) 951 return false; 952 return Imm.isZero(); 953 } 954 955 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 956 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 957 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 958 (VT == MVT::f64 && Subtarget.hasStdExtD()); 959 } 960 961 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 962 CallingConv::ID CC, 963 EVT VT) const { 964 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 965 // end up using a GPR but that will be decided based on ABI. 966 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 967 return MVT::f32; 968 969 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 970 } 971 972 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 973 CallingConv::ID CC, 974 EVT VT) const { 975 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 976 // end up using a GPR but that will be decided based on ABI. 977 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 978 return 1; 979 980 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 981 } 982 983 // Changes the condition code and swaps operands if necessary, so the SetCC 984 // operation matches one of the comparisons supported directly by branches 985 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 986 // with 1/-1. 987 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 988 ISD::CondCode &CC, SelectionDAG &DAG) { 989 // Convert X > -1 to X >= 0. 990 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 991 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 992 CC = ISD::SETGE; 993 return; 994 } 995 // Convert X < 1 to 0 >= X. 996 if (CC == ISD::SETLT && isOneConstant(RHS)) { 997 RHS = LHS; 998 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 999 CC = ISD::SETGE; 1000 return; 1001 } 1002 1003 switch (CC) { 1004 default: 1005 break; 1006 case ISD::SETGT: 1007 case ISD::SETLE: 1008 case ISD::SETUGT: 1009 case ISD::SETULE: 1010 CC = ISD::getSetCCSwappedOperands(CC); 1011 std::swap(LHS, RHS); 1012 break; 1013 } 1014 } 1015 1016 // Return the RISC-V branch opcode that matches the given DAG integer 1017 // condition code. The CondCode must be one of those supported by the RISC-V 1018 // ISA (see translateSetCCForBranch). 1019 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1020 switch (CC) { 1021 default: 1022 llvm_unreachable("Unsupported CondCode"); 1023 case ISD::SETEQ: 1024 return RISCV::BEQ; 1025 case ISD::SETNE: 1026 return RISCV::BNE; 1027 case ISD::SETLT: 1028 return RISCV::BLT; 1029 case ISD::SETGE: 1030 return RISCV::BGE; 1031 case ISD::SETULT: 1032 return RISCV::BLTU; 1033 case ISD::SETUGE: 1034 return RISCV::BGEU; 1035 } 1036 } 1037 1038 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1039 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1040 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1041 if (VT.getVectorElementType() == MVT::i1) 1042 KnownSize *= 8; 1043 1044 switch (KnownSize) { 1045 default: 1046 llvm_unreachable("Invalid LMUL."); 1047 case 8: 1048 return RISCVII::VLMUL::LMUL_F8; 1049 case 16: 1050 return RISCVII::VLMUL::LMUL_F4; 1051 case 32: 1052 return RISCVII::VLMUL::LMUL_F2; 1053 case 64: 1054 return RISCVII::VLMUL::LMUL_1; 1055 case 128: 1056 return RISCVII::VLMUL::LMUL_2; 1057 case 256: 1058 return RISCVII::VLMUL::LMUL_4; 1059 case 512: 1060 return RISCVII::VLMUL::LMUL_8; 1061 } 1062 } 1063 1064 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1065 switch (LMul) { 1066 default: 1067 llvm_unreachable("Invalid LMUL."); 1068 case RISCVII::VLMUL::LMUL_F8: 1069 case RISCVII::VLMUL::LMUL_F4: 1070 case RISCVII::VLMUL::LMUL_F2: 1071 case RISCVII::VLMUL::LMUL_1: 1072 return RISCV::VRRegClassID; 1073 case RISCVII::VLMUL::LMUL_2: 1074 return RISCV::VRM2RegClassID; 1075 case RISCVII::VLMUL::LMUL_4: 1076 return RISCV::VRM4RegClassID; 1077 case RISCVII::VLMUL::LMUL_8: 1078 return RISCV::VRM8RegClassID; 1079 } 1080 } 1081 1082 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1083 RISCVII::VLMUL LMUL = getLMUL(VT); 1084 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1085 LMUL == RISCVII::VLMUL::LMUL_F4 || 1086 LMUL == RISCVII::VLMUL::LMUL_F2 || 1087 LMUL == RISCVII::VLMUL::LMUL_1) { 1088 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1089 "Unexpected subreg numbering"); 1090 return RISCV::sub_vrm1_0 + Index; 1091 } 1092 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1093 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1094 "Unexpected subreg numbering"); 1095 return RISCV::sub_vrm2_0 + Index; 1096 } 1097 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1098 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1099 "Unexpected subreg numbering"); 1100 return RISCV::sub_vrm4_0 + Index; 1101 } 1102 llvm_unreachable("Invalid vector type."); 1103 } 1104 1105 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1106 if (VT.getVectorElementType() == MVT::i1) 1107 return RISCV::VRRegClassID; 1108 return getRegClassIDForLMUL(getLMUL(VT)); 1109 } 1110 1111 // Attempt to decompose a subvector insert/extract between VecVT and 1112 // SubVecVT via subregister indices. Returns the subregister index that 1113 // can perform the subvector insert/extract with the given element index, as 1114 // well as the index corresponding to any leftover subvectors that must be 1115 // further inserted/extracted within the register class for SubVecVT. 1116 std::pair<unsigned, unsigned> 1117 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1118 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1119 const RISCVRegisterInfo *TRI) { 1120 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1121 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1122 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1123 "Register classes not ordered"); 1124 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1125 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1126 // Try to compose a subregister index that takes us from the incoming 1127 // LMUL>1 register class down to the outgoing one. At each step we half 1128 // the LMUL: 1129 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1130 // Note that this is not guaranteed to find a subregister index, such as 1131 // when we are extracting from one VR type to another. 1132 unsigned SubRegIdx = RISCV::NoSubRegister; 1133 for (const unsigned RCID : 1134 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1135 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1136 VecVT = VecVT.getHalfNumVectorElementsVT(); 1137 bool IsHi = 1138 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1139 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1140 getSubregIndexByMVT(VecVT, IsHi)); 1141 if (IsHi) 1142 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1143 } 1144 return {SubRegIdx, InsertExtractIdx}; 1145 } 1146 1147 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1148 // stores for those types. 1149 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1150 return !Subtarget.useRVVForFixedLengthVectors() || 1151 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1152 } 1153 1154 static bool useRVVForFixedLengthVectorVT(MVT VT, 1155 const RISCVSubtarget &Subtarget) { 1156 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1157 if (!Subtarget.useRVVForFixedLengthVectors()) 1158 return false; 1159 1160 // We only support a set of vector types with an equivalent number of 1161 // elements to avoid legalization issues. Therefore -- since we don't have 1162 // v512i8/v512i16/etc -- the longest fixed-length vector type we support has 1163 // 256 elements. 1164 if (VT.getVectorNumElements() > 256) 1165 return false; 1166 1167 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1168 1169 // Don't use RVV for vectors we cannot scalarize if required. 1170 switch (VT.getVectorElementType().SimpleTy) { 1171 // i1 is supported but has different rules. 1172 default: 1173 return false; 1174 case MVT::i1: 1175 // Masks can only use a single register. 1176 if (VT.getVectorNumElements() > MinVLen) 1177 return false; 1178 MinVLen /= 8; 1179 break; 1180 case MVT::i8: 1181 case MVT::i16: 1182 case MVT::i32: 1183 case MVT::i64: 1184 break; 1185 case MVT::f16: 1186 if (!Subtarget.hasStdExtZfh()) 1187 return false; 1188 break; 1189 case MVT::f32: 1190 if (!Subtarget.hasStdExtF()) 1191 return false; 1192 break; 1193 case MVT::f64: 1194 if (!Subtarget.hasStdExtD()) 1195 return false; 1196 break; 1197 } 1198 1199 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1200 // Don't use RVV for types that don't fit. 1201 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1202 return false; 1203 1204 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1205 // the base fixed length RVV support in place. 1206 if (!VT.isPow2VectorType()) 1207 return false; 1208 1209 return true; 1210 } 1211 1212 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1213 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1214 } 1215 1216 // Return the largest legal scalable vector type that matches VT's element type. 1217 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1218 const RISCVSubtarget &Subtarget) { 1219 // This may be called before legal types are setup. 1220 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1221 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1222 "Expected legal fixed length vector!"); 1223 1224 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1225 1226 MVT EltVT = VT.getVectorElementType(); 1227 switch (EltVT.SimpleTy) { 1228 default: 1229 llvm_unreachable("unexpected element type for RVV container"); 1230 case MVT::i1: 1231 case MVT::i8: 1232 case MVT::i16: 1233 case MVT::i32: 1234 case MVT::i64: 1235 case MVT::f16: 1236 case MVT::f32: 1237 case MVT::f64: { 1238 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1239 // narrower types, but we can't have a fractional LMUL with demoninator less 1240 // than 64/SEW. 1241 unsigned NumElts = 1242 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1243 return MVT::getScalableVectorVT(EltVT, NumElts); 1244 } 1245 } 1246 } 1247 1248 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1249 const RISCVSubtarget &Subtarget) { 1250 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1251 Subtarget); 1252 } 1253 1254 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1255 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1256 } 1257 1258 // Grow V to consume an entire RVV register. 1259 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1260 const RISCVSubtarget &Subtarget) { 1261 assert(VT.isScalableVector() && 1262 "Expected to convert into a scalable vector!"); 1263 assert(V.getValueType().isFixedLengthVector() && 1264 "Expected a fixed length vector operand!"); 1265 SDLoc DL(V); 1266 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1267 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1268 } 1269 1270 // Shrink V so it's just big enough to maintain a VT's worth of data. 1271 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1272 const RISCVSubtarget &Subtarget) { 1273 assert(VT.isFixedLengthVector() && 1274 "Expected to convert into a fixed length vector!"); 1275 assert(V.getValueType().isScalableVector() && 1276 "Expected a scalable vector operand!"); 1277 SDLoc DL(V); 1278 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1279 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1280 } 1281 1282 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1283 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1284 // the vector type that it is contained in. 1285 static std::pair<SDValue, SDValue> 1286 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1287 const RISCVSubtarget &Subtarget) { 1288 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1289 MVT XLenVT = Subtarget.getXLenVT(); 1290 SDValue VL = VecVT.isFixedLengthVector() 1291 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1292 : DAG.getRegister(RISCV::X0, XLenVT); 1293 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1294 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1295 return {Mask, VL}; 1296 } 1297 1298 // As above but assuming the given type is a scalable vector type. 1299 static std::pair<SDValue, SDValue> 1300 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1301 const RISCVSubtarget &Subtarget) { 1302 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1303 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1304 } 1305 1306 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1307 // of either is (currently) supported. This can get us into an infinite loop 1308 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1309 // as a ..., etc. 1310 // Until either (or both) of these can reliably lower any node, reporting that 1311 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1312 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1313 // which is not desirable. 1314 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1315 EVT VT, unsigned DefinedValues) const { 1316 return false; 1317 } 1318 1319 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1320 // Only splats are currently supported. 1321 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1322 return true; 1323 1324 return false; 1325 } 1326 1327 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1328 const RISCVSubtarget &Subtarget) { 1329 MVT VT = Op.getSimpleValueType(); 1330 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1331 1332 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1333 1334 SDLoc DL(Op); 1335 SDValue Mask, VL; 1336 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1337 1338 unsigned Opc = 1339 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1340 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1341 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1342 } 1343 1344 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1345 const RISCVSubtarget &Subtarget) { 1346 MVT VT = Op.getSimpleValueType(); 1347 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1348 1349 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1350 1351 SDLoc DL(Op); 1352 SDValue Mask, VL; 1353 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1354 1355 MVT XLenVT = Subtarget.getXLenVT(); 1356 unsigned NumElts = Op.getNumOperands(); 1357 1358 if (VT.getVectorElementType() == MVT::i1) { 1359 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1360 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1361 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1362 } 1363 1364 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1365 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1366 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1367 } 1368 1369 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1370 // scalar integer chunks whose bit-width depends on the number of mask 1371 // bits and XLEN. 1372 // First, determine the most appropriate scalar integer type to use. This 1373 // is at most XLenVT, but may be shrunk to a smaller vector element type 1374 // according to the size of the final vector - use i8 chunks rather than 1375 // XLenVT if we're producing a v8i1. This results in more consistent 1376 // codegen across RV32 and RV64. 1377 unsigned NumViaIntegerBits = 1378 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1379 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1380 // If we have to use more than one INSERT_VECTOR_ELT then this 1381 // optimization is likely to increase code size; avoid peforming it in 1382 // such a case. We can use a load from a constant pool in this case. 1383 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1384 return SDValue(); 1385 // Now we can create our integer vector type. Note that it may be larger 1386 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1387 MVT IntegerViaVecVT = 1388 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1389 divideCeil(NumElts, NumViaIntegerBits)); 1390 1391 uint64_t Bits = 0; 1392 unsigned BitPos = 0, IntegerEltIdx = 0; 1393 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1394 1395 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1396 // Once we accumulate enough bits to fill our scalar type, insert into 1397 // our vector and clear our accumulated data. 1398 if (I != 0 && I % NumViaIntegerBits == 0) { 1399 if (NumViaIntegerBits <= 32) 1400 Bits = SignExtend64(Bits, 32); 1401 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1402 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1403 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1404 Bits = 0; 1405 BitPos = 0; 1406 IntegerEltIdx++; 1407 } 1408 SDValue V = Op.getOperand(I); 1409 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1410 Bits |= ((uint64_t)BitValue << BitPos); 1411 } 1412 1413 // Insert the (remaining) scalar value into position in our integer 1414 // vector type. 1415 if (NumViaIntegerBits <= 32) 1416 Bits = SignExtend64(Bits, 32); 1417 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1418 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1419 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1420 1421 if (NumElts < NumViaIntegerBits) { 1422 // If we're producing a smaller vector than our minimum legal integer 1423 // type, bitcast to the equivalent (known-legal) mask type, and extract 1424 // our final mask. 1425 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1426 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1427 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1428 DAG.getConstant(0, DL, XLenVT)); 1429 } else { 1430 // Else we must have produced an integer type with the same size as the 1431 // mask type; bitcast for the final result. 1432 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1433 Vec = DAG.getBitcast(VT, Vec); 1434 } 1435 1436 return Vec; 1437 } 1438 1439 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1440 // vector type, we have a legal equivalently-sized i8 type, so we can use 1441 // that. 1442 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1443 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1444 1445 SDValue WideVec; 1446 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1447 // For a splat, perform a scalar truncate before creating the wider 1448 // vector. 1449 assert(Splat.getValueType() == XLenVT && 1450 "Unexpected type for i1 splat value"); 1451 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1452 DAG.getConstant(1, DL, XLenVT)); 1453 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1454 } else { 1455 SmallVector<SDValue, 8> Ops(Op->op_values()); 1456 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1457 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1458 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1459 } 1460 1461 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1462 } 1463 1464 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1465 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1466 : RISCVISD::VMV_V_X_VL; 1467 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1468 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1469 } 1470 1471 // Try and match an index sequence, which we can lower directly to the vid 1472 // instruction. An all-undef vector is matched by getSplatValue, above. 1473 if (VT.isInteger()) { 1474 bool IsVID = true; 1475 for (unsigned I = 0; I < NumElts && IsVID; I++) 1476 IsVID &= Op.getOperand(I).isUndef() || 1477 (isa<ConstantSDNode>(Op.getOperand(I)) && 1478 Op.getConstantOperandVal(I) == I); 1479 1480 if (IsVID) { 1481 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1482 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1483 } 1484 } 1485 1486 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1487 // when re-interpreted as a vector with a larger element type. For example, 1488 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1489 // could be instead splat as 1490 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1491 // TODO: This optimization could also work on non-constant splats, but it 1492 // would require bit-manipulation instructions to construct the splat value. 1493 SmallVector<SDValue> Sequence; 1494 unsigned EltBitSize = VT.getScalarSizeInBits(); 1495 const auto *BV = cast<BuildVectorSDNode>(Op); 1496 if (VT.isInteger() && EltBitSize < 64 && 1497 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1498 BV->getRepeatedSequence(Sequence) && 1499 (Sequence.size() * EltBitSize) <= 64) { 1500 unsigned SeqLen = Sequence.size(); 1501 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1502 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1503 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1504 ViaIntVT == MVT::i64) && 1505 "Unexpected sequence type"); 1506 1507 unsigned EltIdx = 0; 1508 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1509 uint64_t SplatValue = 0; 1510 // Construct the amalgamated value which can be splatted as this larger 1511 // vector type. 1512 for (const auto &SeqV : Sequence) { 1513 if (!SeqV.isUndef()) 1514 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1515 << (EltIdx * EltBitSize)); 1516 EltIdx++; 1517 } 1518 1519 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1520 // achieve better constant materializion. 1521 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1522 SplatValue = SignExtend64(SplatValue, 32); 1523 1524 // Since we can't introduce illegal i64 types at this stage, we can only 1525 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1526 // way we can use RVV instructions to splat. 1527 assert((ViaIntVT.bitsLE(XLenVT) || 1528 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1529 "Unexpected bitcast sequence"); 1530 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1531 SDValue ViaVL = 1532 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1533 MVT ViaContainerVT = 1534 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1535 SDValue Splat = 1536 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1537 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1538 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1539 return DAG.getBitcast(VT, Splat); 1540 } 1541 } 1542 1543 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1544 // which constitute a large proportion of the elements. In such cases we can 1545 // splat a vector with the dominant element and make up the shortfall with 1546 // INSERT_VECTOR_ELTs. 1547 // Note that this includes vectors of 2 elements by association. The 1548 // upper-most element is the "dominant" one, allowing us to use a splat to 1549 // "insert" the upper element, and an insert of the lower element at position 1550 // 0, which improves codegen. 1551 SDValue DominantValue; 1552 unsigned MostCommonCount = 0; 1553 DenseMap<SDValue, unsigned> ValueCounts; 1554 unsigned NumUndefElts = 1555 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1556 1557 for (SDValue V : Op->op_values()) { 1558 if (V.isUndef()) 1559 continue; 1560 1561 ValueCounts.insert(std::make_pair(V, 0)); 1562 unsigned &Count = ValueCounts[V]; 1563 1564 // Is this value dominant? In case of a tie, prefer the highest element as 1565 // it's cheaper to insert near the beginning of a vector than it is at the 1566 // end. 1567 if (++Count >= MostCommonCount) { 1568 DominantValue = V; 1569 MostCommonCount = Count; 1570 } 1571 } 1572 1573 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1574 unsigned NumDefElts = NumElts - NumUndefElts; 1575 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1576 1577 // Don't perform this optimization when optimizing for size, since 1578 // materializing elements and inserting them tends to cause code bloat. 1579 if (!DAG.shouldOptForSize() && 1580 ((MostCommonCount > DominantValueCountThreshold) || 1581 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1582 // Start by splatting the most common element. 1583 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1584 1585 DenseSet<SDValue> Processed{DominantValue}; 1586 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1587 for (const auto &OpIdx : enumerate(Op->ops())) { 1588 const SDValue &V = OpIdx.value(); 1589 if (V.isUndef() || !Processed.insert(V).second) 1590 continue; 1591 if (ValueCounts[V] == 1) { 1592 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1593 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1594 } else { 1595 // Blend in all instances of this value using a VSELECT, using a 1596 // mask where each bit signals whether that element is the one 1597 // we're after. 1598 SmallVector<SDValue> Ops; 1599 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1600 return DAG.getConstant(V == V1, DL, XLenVT); 1601 }); 1602 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1603 DAG.getBuildVector(SelMaskTy, DL, Ops), 1604 DAG.getSplatBuildVector(VT, DL, V), Vec); 1605 } 1606 } 1607 1608 return Vec; 1609 } 1610 1611 return SDValue(); 1612 } 1613 1614 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired 1615 // vector nxvXi64 VT. 1616 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo, 1617 SDValue Hi, SDValue VL, 1618 SelectionDAG &DAG) { 1619 assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && 1620 Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && 1621 "Unexpected VTs!"); 1622 MachineFunction &MF = DAG.getMachineFunction(); 1623 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1624 1625 // We use the same frame index we use for moving two i32s into 64-bit FPR. 1626 // This is an analogous operation. 1627 int FI = FuncInfo->getMoveF64FrameIndex(MF); 1628 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1630 SDValue StackSlot = 1631 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout())); 1632 1633 SDValue Chain = DAG.getEntryNode(); 1634 Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8)); 1635 1636 SDValue OffsetSlot = 1637 DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL); 1638 Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8)); 1639 1640 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 1641 1642 SDVTList VTs = DAG.getVTList({VT, MVT::Other}); 1643 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64); 1644 SDValue Ops[] = {Chain, IntID, StackSlot, 1645 DAG.getRegister(RISCV::X0, MVT::i64), VL}; 1646 1647 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64, 1648 MPI, Align(8), MachineMemOperand::MOLoad); 1649 } 1650 1651 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1652 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1653 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1654 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1655 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1656 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1657 // node in order to try and match RVV vector/scalar instructions. 1658 if ((LoC >> 31) == HiC) 1659 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1660 } 1661 1662 // Fall back to a stack store and stride x0 vector load. 1663 return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG); 1664 } 1665 1666 // Called by type legalization to handle splat of i64 on RV32. 1667 // FIXME: We can optimize this when the type has sign or zero bits in one 1668 // of the halves. 1669 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1670 SDValue VL, SelectionDAG &DAG) { 1671 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1672 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1673 DAG.getConstant(0, DL, MVT::i32)); 1674 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1675 DAG.getConstant(1, DL, MVT::i32)); 1676 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1677 } 1678 1679 // This function lowers a splat of a scalar operand Splat with the vector 1680 // length VL. It ensures the final sequence is type legal, which is useful when 1681 // lowering a splat after type legalization. 1682 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1683 SelectionDAG &DAG, 1684 const RISCVSubtarget &Subtarget) { 1685 if (VT.isFloatingPoint()) 1686 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1687 1688 MVT XLenVT = Subtarget.getXLenVT(); 1689 1690 // Simplest case is that the operand needs to be promoted to XLenVT. 1691 if (Scalar.getValueType().bitsLE(XLenVT)) { 1692 // If the operand is a constant, sign extend to increase our chances 1693 // of being able to use a .vi instruction. ANY_EXTEND would become a 1694 // a zero extend and the simm5 check in isel would fail. 1695 // FIXME: Should we ignore the upper bits in isel instead? 1696 unsigned ExtOpc = 1697 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1698 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1699 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1700 } 1701 1702 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1703 "Unexpected scalar for splat lowering!"); 1704 1705 // Otherwise use the more complicated splatting algorithm. 1706 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1707 } 1708 1709 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1710 const RISCVSubtarget &Subtarget) { 1711 SDValue V1 = Op.getOperand(0); 1712 SDValue V2 = Op.getOperand(1); 1713 SDLoc DL(Op); 1714 MVT XLenVT = Subtarget.getXLenVT(); 1715 MVT VT = Op.getSimpleValueType(); 1716 unsigned NumElts = VT.getVectorNumElements(); 1717 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1718 1719 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1720 1721 SDValue TrueMask, VL; 1722 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1723 1724 if (SVN->isSplat()) { 1725 const int Lane = SVN->getSplatIndex(); 1726 if (Lane >= 0) { 1727 MVT SVT = VT.getVectorElementType(); 1728 1729 // Turn splatted vector load into a strided load with an X0 stride. 1730 SDValue V = V1; 1731 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1732 // with undef. 1733 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1734 int Offset = Lane; 1735 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1736 int OpElements = 1737 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1738 V = V.getOperand(Offset / OpElements); 1739 Offset %= OpElements; 1740 } 1741 1742 // We need to ensure the load isn't atomic or volatile. 1743 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1744 auto *Ld = cast<LoadSDNode>(V); 1745 Offset *= SVT.getStoreSize(); 1746 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1747 TypeSize::Fixed(Offset), DL); 1748 1749 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1750 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1751 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1752 SDValue IntID = 1753 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1754 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1755 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1756 SDValue NewLoad = DAG.getMemIntrinsicNode( 1757 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1758 DAG.getMachineFunction().getMachineMemOperand( 1759 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1760 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1761 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1762 } 1763 1764 // Otherwise use a scalar load and splat. This will give the best 1765 // opportunity to fold a splat into the operation. ISel can turn it into 1766 // the x0 strided load if we aren't able to fold away the select. 1767 if (SVT.isFloatingPoint()) 1768 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1769 Ld->getPointerInfo().getWithOffset(Offset), 1770 Ld->getOriginalAlign(), 1771 Ld->getMemOperand()->getFlags()); 1772 else 1773 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1774 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1775 Ld->getOriginalAlign(), 1776 Ld->getMemOperand()->getFlags()); 1777 DAG.makeEquivalentMemoryOrdering(Ld, V); 1778 1779 unsigned Opc = 1780 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1781 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1782 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1783 } 1784 1785 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1786 assert(Lane < (int)NumElts && "Unexpected lane!"); 1787 SDValue Gather = 1788 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1789 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1790 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1791 } 1792 } 1793 1794 // Detect shuffles which can be re-expressed as vector selects; these are 1795 // shuffles in which each element in the destination is taken from an element 1796 // at the corresponding index in either source vectors. 1797 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1798 int MaskIndex = MaskIdx.value(); 1799 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1800 }); 1801 1802 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1803 1804 SmallVector<SDValue> MaskVals; 1805 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1806 // merged with a second vrgather. 1807 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1808 1809 // By default we preserve the original operand order, and use a mask to 1810 // select LHS as true and RHS as false. However, since RVV vector selects may 1811 // feature splats but only on the LHS, we may choose to invert our mask and 1812 // instead select between RHS and LHS. 1813 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1814 bool InvertMask = IsSelect == SwapOps; 1815 1816 // Now construct the mask that will be used by the vselect or blended 1817 // vrgather operation. For vrgathers, construct the appropriate indices into 1818 // each vector. 1819 for (int MaskIndex : SVN->getMask()) { 1820 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1821 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1822 if (!IsSelect) { 1823 bool IsLHS = MaskIndex < (int)NumElts; 1824 // For "undef" elements of -1, shuffle in element 0 instead. 1825 GatherIndicesLHS.push_back( 1826 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1827 // TODO: If we're masking out unused elements anyway, it might produce 1828 // better code if we use the most-common element index instead of 0. 1829 GatherIndicesRHS.push_back( 1830 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1831 } 1832 } 1833 1834 if (SwapOps) { 1835 std::swap(V1, V2); 1836 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1837 } 1838 1839 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1840 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1841 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1842 1843 if (IsSelect) 1844 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1845 1846 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1847 // On such a large vector we're unable to use i8 as the index type. 1848 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1849 // may involve vector splitting if we're already at LMUL=8, or our 1850 // user-supplied maximum fixed-length LMUL. 1851 return SDValue(); 1852 } 1853 1854 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1855 MVT IndexVT = VT.changeTypeToInteger(); 1856 // Since we can't introduce illegal index types at this stage, use i16 and 1857 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1858 // than XLenVT. 1859 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1860 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1861 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1862 } 1863 1864 MVT IndexContainerVT = 1865 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1866 1867 SDValue Gather; 1868 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1869 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1870 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1871 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1872 } else { 1873 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1874 LHSIndices = 1875 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1876 1877 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1878 Gather = 1879 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1880 } 1881 1882 // If a second vector operand is used by this shuffle, blend it in with an 1883 // additional vrgather. 1884 if (!V2.isUndef()) { 1885 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1886 SelectMask = 1887 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1888 1889 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1890 RHSIndices = 1891 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1892 1893 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1894 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1895 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1896 Gather, VL); 1897 } 1898 1899 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1900 } 1901 1902 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1903 SDLoc DL, SelectionDAG &DAG, 1904 const RISCVSubtarget &Subtarget) { 1905 if (VT.isScalableVector()) 1906 return DAG.getFPExtendOrRound(Op, DL, VT); 1907 assert(VT.isFixedLengthVector() && 1908 "Unexpected value type for RVV FP extend/round lowering"); 1909 SDValue Mask, VL; 1910 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1911 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1912 ? RISCVISD::FP_EXTEND_VL 1913 : RISCVISD::FP_ROUND_VL; 1914 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1915 } 1916 1917 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1918 SelectionDAG &DAG) const { 1919 switch (Op.getOpcode()) { 1920 default: 1921 report_fatal_error("unimplemented operand"); 1922 case ISD::GlobalAddress: 1923 return lowerGlobalAddress(Op, DAG); 1924 case ISD::BlockAddress: 1925 return lowerBlockAddress(Op, DAG); 1926 case ISD::ConstantPool: 1927 return lowerConstantPool(Op, DAG); 1928 case ISD::JumpTable: 1929 return lowerJumpTable(Op, DAG); 1930 case ISD::GlobalTLSAddress: 1931 return lowerGlobalTLSAddress(Op, DAG); 1932 case ISD::SELECT: 1933 return lowerSELECT(Op, DAG); 1934 case ISD::BRCOND: 1935 return lowerBRCOND(Op, DAG); 1936 case ISD::VASTART: 1937 return lowerVASTART(Op, DAG); 1938 case ISD::FRAMEADDR: 1939 return lowerFRAMEADDR(Op, DAG); 1940 case ISD::RETURNADDR: 1941 return lowerRETURNADDR(Op, DAG); 1942 case ISD::SHL_PARTS: 1943 return lowerShiftLeftParts(Op, DAG); 1944 case ISD::SRA_PARTS: 1945 return lowerShiftRightParts(Op, DAG, true); 1946 case ISD::SRL_PARTS: 1947 return lowerShiftRightParts(Op, DAG, false); 1948 case ISD::BITCAST: { 1949 SDLoc DL(Op); 1950 EVT VT = Op.getValueType(); 1951 SDValue Op0 = Op.getOperand(0); 1952 EVT Op0VT = Op0.getValueType(); 1953 MVT XLenVT = Subtarget.getXLenVT(); 1954 if (VT.isFixedLengthVector()) { 1955 // We can handle fixed length vector bitcasts with a simple replacement 1956 // in isel. 1957 if (Op0VT.isFixedLengthVector()) 1958 return Op; 1959 // When bitcasting from scalar to fixed-length vector, insert the scalar 1960 // into a one-element vector of the result type, and perform a vector 1961 // bitcast. 1962 if (!Op0VT.isVector()) { 1963 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1964 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1965 DAG.getUNDEF(BVT), Op0, 1966 DAG.getConstant(0, DL, XLenVT))); 1967 } 1968 return SDValue(); 1969 } 1970 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1971 // thus: bitcast the vector to a one-element vector type whose element type 1972 // is the same as the result type, and extract the first element. 1973 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1974 LLVMContext &Context = *DAG.getContext(); 1975 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1976 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1977 DAG.getConstant(0, DL, XLenVT)); 1978 } 1979 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1980 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1981 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1982 return FPConv; 1983 } 1984 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1985 Subtarget.hasStdExtF()) { 1986 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1987 SDValue FPConv = 1988 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1989 return FPConv; 1990 } 1991 return SDValue(); 1992 } 1993 case ISD::INTRINSIC_WO_CHAIN: 1994 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1995 case ISD::INTRINSIC_W_CHAIN: 1996 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1997 case ISD::BSWAP: 1998 case ISD::BITREVERSE: { 1999 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2000 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2001 MVT VT = Op.getSimpleValueType(); 2002 SDLoc DL(Op); 2003 // Start with the maximum immediate value which is the bitwidth - 1. 2004 unsigned Imm = VT.getSizeInBits() - 1; 2005 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2006 if (Op.getOpcode() == ISD::BSWAP) 2007 Imm &= ~0x7U; 2008 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2009 DAG.getConstant(Imm, DL, VT)); 2010 } 2011 case ISD::FSHL: 2012 case ISD::FSHR: { 2013 MVT VT = Op.getSimpleValueType(); 2014 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2015 SDLoc DL(Op); 2016 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2017 return Op; 2018 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2019 // use log(XLen) bits. Mask the shift amount accordingly. 2020 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2021 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2022 DAG.getConstant(ShAmtWidth, DL, VT)); 2023 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2024 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2025 } 2026 case ISD::TRUNCATE: { 2027 SDLoc DL(Op); 2028 MVT VT = Op.getSimpleValueType(); 2029 // Only custom-lower vector truncates 2030 if (!VT.isVector()) 2031 return Op; 2032 2033 // Truncates to mask types are handled differently 2034 if (VT.getVectorElementType() == MVT::i1) 2035 return lowerVectorMaskTrunc(Op, DAG); 2036 2037 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2038 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2039 // truncate by one power of two at a time. 2040 MVT DstEltVT = VT.getVectorElementType(); 2041 2042 SDValue Src = Op.getOperand(0); 2043 MVT SrcVT = Src.getSimpleValueType(); 2044 MVT SrcEltVT = SrcVT.getVectorElementType(); 2045 2046 assert(DstEltVT.bitsLT(SrcEltVT) && 2047 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2048 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2049 "Unexpected vector truncate lowering"); 2050 2051 MVT ContainerVT = SrcVT; 2052 if (SrcVT.isFixedLengthVector()) { 2053 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2054 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2055 } 2056 2057 SDValue Result = Src; 2058 SDValue Mask, VL; 2059 std::tie(Mask, VL) = 2060 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2061 LLVMContext &Context = *DAG.getContext(); 2062 const ElementCount Count = ContainerVT.getVectorElementCount(); 2063 do { 2064 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2065 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2066 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2067 Mask, VL); 2068 } while (SrcEltVT != DstEltVT); 2069 2070 if (SrcVT.isFixedLengthVector()) 2071 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2072 2073 return Result; 2074 } 2075 case ISD::ANY_EXTEND: 2076 case ISD::ZERO_EXTEND: 2077 if (Op.getOperand(0).getValueType().isVector() && 2078 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2079 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2080 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2081 case ISD::SIGN_EXTEND: 2082 if (Op.getOperand(0).getValueType().isVector() && 2083 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2084 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2085 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2086 case ISD::SPLAT_VECTOR_PARTS: 2087 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2088 case ISD::INSERT_VECTOR_ELT: 2089 return lowerINSERT_VECTOR_ELT(Op, DAG); 2090 case ISD::EXTRACT_VECTOR_ELT: 2091 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2092 case ISD::VSCALE: { 2093 MVT VT = Op.getSimpleValueType(); 2094 SDLoc DL(Op); 2095 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2096 // We define our scalable vector types for lmul=1 to use a 64 bit known 2097 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2098 // vscale as VLENB / 8. 2099 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2100 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2101 DAG.getConstant(3, DL, VT)); 2102 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2103 } 2104 case ISD::FP_EXTEND: { 2105 // RVV can only do fp_extend to types double the size as the source. We 2106 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2107 // via f32. 2108 SDLoc DL(Op); 2109 MVT VT = Op.getSimpleValueType(); 2110 SDValue Src = Op.getOperand(0); 2111 MVT SrcVT = Src.getSimpleValueType(); 2112 2113 // Prepare any fixed-length vector operands. 2114 MVT ContainerVT = VT; 2115 if (SrcVT.isFixedLengthVector()) { 2116 ContainerVT = getContainerForFixedLengthVector(VT); 2117 MVT SrcContainerVT = 2118 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2119 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2120 } 2121 2122 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2123 SrcVT.getVectorElementType() != MVT::f16) { 2124 // For scalable vectors, we only need to close the gap between 2125 // vXf16->vXf64. 2126 if (!VT.isFixedLengthVector()) 2127 return Op; 2128 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2129 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2130 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2131 } 2132 2133 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2134 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2135 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2136 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2137 2138 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2139 DL, DAG, Subtarget); 2140 if (VT.isFixedLengthVector()) 2141 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2142 return Extend; 2143 } 2144 case ISD::FP_ROUND: { 2145 // RVV can only do fp_round to types half the size as the source. We 2146 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2147 // conversion instruction. 2148 SDLoc DL(Op); 2149 MVT VT = Op.getSimpleValueType(); 2150 SDValue Src = Op.getOperand(0); 2151 MVT SrcVT = Src.getSimpleValueType(); 2152 2153 // Prepare any fixed-length vector operands. 2154 MVT ContainerVT = VT; 2155 if (VT.isFixedLengthVector()) { 2156 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2157 ContainerVT = 2158 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2159 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2160 } 2161 2162 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2163 SrcVT.getVectorElementType() != MVT::f64) { 2164 // For scalable vectors, we only need to close the gap between 2165 // vXf64<->vXf16. 2166 if (!VT.isFixedLengthVector()) 2167 return Op; 2168 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2169 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2170 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2171 } 2172 2173 SDValue Mask, VL; 2174 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2175 2176 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2177 SDValue IntermediateRound = 2178 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2179 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2180 DL, DAG, Subtarget); 2181 2182 if (VT.isFixedLengthVector()) 2183 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2184 return Round; 2185 } 2186 case ISD::FP_TO_SINT: 2187 case ISD::FP_TO_UINT: 2188 case ISD::SINT_TO_FP: 2189 case ISD::UINT_TO_FP: { 2190 // RVV can only do fp<->int conversions to types half/double the size as 2191 // the source. We custom-lower any conversions that do two hops into 2192 // sequences. 2193 MVT VT = Op.getSimpleValueType(); 2194 if (!VT.isVector()) 2195 return Op; 2196 SDLoc DL(Op); 2197 SDValue Src = Op.getOperand(0); 2198 MVT EltVT = VT.getVectorElementType(); 2199 MVT SrcVT = Src.getSimpleValueType(); 2200 MVT SrcEltVT = SrcVT.getVectorElementType(); 2201 unsigned EltSize = EltVT.getSizeInBits(); 2202 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2203 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2204 "Unexpected vector element types"); 2205 2206 bool IsInt2FP = SrcEltVT.isInteger(); 2207 // Widening conversions 2208 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2209 if (IsInt2FP) { 2210 // Do a regular integer sign/zero extension then convert to float. 2211 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2212 VT.getVectorElementCount()); 2213 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2214 ? ISD::ZERO_EXTEND 2215 : ISD::SIGN_EXTEND; 2216 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2217 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2218 } 2219 // FP2Int 2220 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2221 // Do one doubling fp_extend then complete the operation by converting 2222 // to int. 2223 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2224 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2225 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2226 } 2227 2228 // Narrowing conversions 2229 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2230 if (IsInt2FP) { 2231 // One narrowing int_to_fp, then an fp_round. 2232 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2233 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2234 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2235 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2236 } 2237 // FP2Int 2238 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2239 // representable by the integer, the result is poison. 2240 MVT IVecVT = 2241 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2242 VT.getVectorElementCount()); 2243 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2244 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2245 } 2246 2247 // Scalable vectors can exit here. Patterns will handle equally-sized 2248 // conversions halving/doubling ones. 2249 if (!VT.isFixedLengthVector()) 2250 return Op; 2251 2252 // For fixed-length vectors we lower to a custom "VL" node. 2253 unsigned RVVOpc = 0; 2254 switch (Op.getOpcode()) { 2255 default: 2256 llvm_unreachable("Impossible opcode"); 2257 case ISD::FP_TO_SINT: 2258 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2259 break; 2260 case ISD::FP_TO_UINT: 2261 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2262 break; 2263 case ISD::SINT_TO_FP: 2264 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2265 break; 2266 case ISD::UINT_TO_FP: 2267 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2268 break; 2269 } 2270 2271 MVT ContainerVT, SrcContainerVT; 2272 // Derive the reference container type from the larger vector type. 2273 if (SrcEltSize > EltSize) { 2274 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2275 ContainerVT = 2276 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2277 } else { 2278 ContainerVT = getContainerForFixedLengthVector(VT); 2279 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2280 } 2281 2282 SDValue Mask, VL; 2283 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2284 2285 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2286 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2287 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2288 } 2289 case ISD::VECREDUCE_ADD: 2290 case ISD::VECREDUCE_UMAX: 2291 case ISD::VECREDUCE_SMAX: 2292 case ISD::VECREDUCE_UMIN: 2293 case ISD::VECREDUCE_SMIN: 2294 return lowerVECREDUCE(Op, DAG); 2295 case ISD::VECREDUCE_AND: 2296 case ISD::VECREDUCE_OR: 2297 case ISD::VECREDUCE_XOR: 2298 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2299 return lowerVectorMaskVECREDUCE(Op, DAG); 2300 return lowerVECREDUCE(Op, DAG); 2301 case ISD::VECREDUCE_FADD: 2302 case ISD::VECREDUCE_SEQ_FADD: 2303 case ISD::VECREDUCE_FMIN: 2304 case ISD::VECREDUCE_FMAX: 2305 return lowerFPVECREDUCE(Op, DAG); 2306 case ISD::INSERT_SUBVECTOR: 2307 return lowerINSERT_SUBVECTOR(Op, DAG); 2308 case ISD::EXTRACT_SUBVECTOR: 2309 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2310 case ISD::STEP_VECTOR: 2311 return lowerSTEP_VECTOR(Op, DAG); 2312 case ISD::VECTOR_REVERSE: 2313 return lowerVECTOR_REVERSE(Op, DAG); 2314 case ISD::BUILD_VECTOR: 2315 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2316 case ISD::SPLAT_VECTOR: 2317 if (Op.getValueType().getVectorElementType() == MVT::i1) 2318 return lowerVectorMaskSplat(Op, DAG); 2319 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2320 case ISD::VECTOR_SHUFFLE: 2321 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2322 case ISD::CONCAT_VECTORS: { 2323 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2324 // better than going through the stack, as the default expansion does. 2325 SDLoc DL(Op); 2326 MVT VT = Op.getSimpleValueType(); 2327 unsigned NumOpElts = 2328 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2329 SDValue Vec = DAG.getUNDEF(VT); 2330 for (const auto &OpIdx : enumerate(Op->ops())) 2331 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2332 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2333 return Vec; 2334 } 2335 case ISD::LOAD: 2336 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2337 case ISD::STORE: 2338 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2339 case ISD::MLOAD: 2340 return lowerMLOAD(Op, DAG); 2341 case ISD::MSTORE: 2342 return lowerMSTORE(Op, DAG); 2343 case ISD::SETCC: 2344 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2345 case ISD::ADD: 2346 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2347 case ISD::SUB: 2348 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2349 case ISD::MUL: 2350 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2351 case ISD::MULHS: 2352 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2353 case ISD::MULHU: 2354 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2355 case ISD::AND: 2356 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2357 RISCVISD::AND_VL); 2358 case ISD::OR: 2359 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2360 RISCVISD::OR_VL); 2361 case ISD::XOR: 2362 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2363 RISCVISD::XOR_VL); 2364 case ISD::SDIV: 2365 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2366 case ISD::SREM: 2367 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2368 case ISD::UDIV: 2369 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2370 case ISD::UREM: 2371 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2372 case ISD::SHL: 2373 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2374 case ISD::SRA: 2375 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2376 case ISD::SRL: 2377 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2378 case ISD::FADD: 2379 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2380 case ISD::FSUB: 2381 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2382 case ISD::FMUL: 2383 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2384 case ISD::FDIV: 2385 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2386 case ISD::FNEG: 2387 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2388 case ISD::FABS: 2389 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2390 case ISD::FSQRT: 2391 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2392 case ISD::FMA: 2393 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2394 case ISD::SMIN: 2395 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2396 case ISD::SMAX: 2397 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2398 case ISD::UMIN: 2399 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2400 case ISD::UMAX: 2401 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2402 case ISD::FMINNUM: 2403 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2404 case ISD::FMAXNUM: 2405 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2406 case ISD::ABS: 2407 return lowerABS(Op, DAG); 2408 case ISD::VSELECT: 2409 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2410 case ISD::FCOPYSIGN: 2411 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2412 case ISD::MGATHER: 2413 return lowerMGATHER(Op, DAG); 2414 case ISD::MSCATTER: 2415 return lowerMSCATTER(Op, DAG); 2416 case ISD::FLT_ROUNDS_: 2417 return lowerGET_ROUNDING(Op, DAG); 2418 case ISD::SET_ROUNDING: 2419 return lowerSET_ROUNDING(Op, DAG); 2420 case ISD::VP_ADD: 2421 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2422 case ISD::VP_SUB: 2423 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2424 case ISD::VP_MUL: 2425 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2426 case ISD::VP_SDIV: 2427 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2428 case ISD::VP_UDIV: 2429 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2430 case ISD::VP_SREM: 2431 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2432 case ISD::VP_UREM: 2433 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2434 case ISD::VP_AND: 2435 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2436 case ISD::VP_OR: 2437 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2438 case ISD::VP_XOR: 2439 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2440 case ISD::VP_ASHR: 2441 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2442 case ISD::VP_LSHR: 2443 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2444 case ISD::VP_SHL: 2445 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2446 } 2447 } 2448 2449 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2450 SelectionDAG &DAG, unsigned Flags) { 2451 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2452 } 2453 2454 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2455 SelectionDAG &DAG, unsigned Flags) { 2456 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2457 Flags); 2458 } 2459 2460 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2461 SelectionDAG &DAG, unsigned Flags) { 2462 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2463 N->getOffset(), Flags); 2464 } 2465 2466 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2467 SelectionDAG &DAG, unsigned Flags) { 2468 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2469 } 2470 2471 template <class NodeTy> 2472 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2473 bool IsLocal) const { 2474 SDLoc DL(N); 2475 EVT Ty = getPointerTy(DAG.getDataLayout()); 2476 2477 if (isPositionIndependent()) { 2478 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2479 if (IsLocal) 2480 // Use PC-relative addressing to access the symbol. This generates the 2481 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2482 // %pcrel_lo(auipc)). 2483 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2484 2485 // Use PC-relative addressing to access the GOT for this symbol, then load 2486 // the address from the GOT. This generates the pattern (PseudoLA sym), 2487 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2488 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2489 } 2490 2491 switch (getTargetMachine().getCodeModel()) { 2492 default: 2493 report_fatal_error("Unsupported code model for lowering"); 2494 case CodeModel::Small: { 2495 // Generate a sequence for accessing addresses within the first 2 GiB of 2496 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2497 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2498 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2499 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2500 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2501 } 2502 case CodeModel::Medium: { 2503 // Generate a sequence for accessing addresses within any 2GiB range within 2504 // the address space. This generates the pattern (PseudoLLA sym), which 2505 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2506 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2507 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2508 } 2509 } 2510 } 2511 2512 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2513 SelectionDAG &DAG) const { 2514 SDLoc DL(Op); 2515 EVT Ty = Op.getValueType(); 2516 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2517 int64_t Offset = N->getOffset(); 2518 MVT XLenVT = Subtarget.getXLenVT(); 2519 2520 const GlobalValue *GV = N->getGlobal(); 2521 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2522 SDValue Addr = getAddr(N, DAG, IsLocal); 2523 2524 // In order to maximise the opportunity for common subexpression elimination, 2525 // emit a separate ADD node for the global address offset instead of folding 2526 // it in the global address node. Later peephole optimisations may choose to 2527 // fold it back in when profitable. 2528 if (Offset != 0) 2529 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2530 DAG.getConstant(Offset, DL, XLenVT)); 2531 return Addr; 2532 } 2533 2534 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2535 SelectionDAG &DAG) const { 2536 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2537 2538 return getAddr(N, DAG); 2539 } 2540 2541 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2542 SelectionDAG &DAG) const { 2543 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2544 2545 return getAddr(N, DAG); 2546 } 2547 2548 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2549 SelectionDAG &DAG) const { 2550 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2551 2552 return getAddr(N, DAG); 2553 } 2554 2555 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2556 SelectionDAG &DAG, 2557 bool UseGOT) const { 2558 SDLoc DL(N); 2559 EVT Ty = getPointerTy(DAG.getDataLayout()); 2560 const GlobalValue *GV = N->getGlobal(); 2561 MVT XLenVT = Subtarget.getXLenVT(); 2562 2563 if (UseGOT) { 2564 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2565 // load the address from the GOT and add the thread pointer. This generates 2566 // the pattern (PseudoLA_TLS_IE sym), which expands to 2567 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2568 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2569 SDValue Load = 2570 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2571 2572 // Add the thread pointer. 2573 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2574 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2575 } 2576 2577 // Generate a sequence for accessing the address relative to the thread 2578 // pointer, with the appropriate adjustment for the thread pointer offset. 2579 // This generates the pattern 2580 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2581 SDValue AddrHi = 2582 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2583 SDValue AddrAdd = 2584 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2585 SDValue AddrLo = 2586 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2587 2588 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2589 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2590 SDValue MNAdd = SDValue( 2591 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2592 0); 2593 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2594 } 2595 2596 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2597 SelectionDAG &DAG) const { 2598 SDLoc DL(N); 2599 EVT Ty = getPointerTy(DAG.getDataLayout()); 2600 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2601 const GlobalValue *GV = N->getGlobal(); 2602 2603 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2604 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2605 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2606 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2607 SDValue Load = 2608 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2609 2610 // Prepare argument list to generate call. 2611 ArgListTy Args; 2612 ArgListEntry Entry; 2613 Entry.Node = Load; 2614 Entry.Ty = CallTy; 2615 Args.push_back(Entry); 2616 2617 // Setup call to __tls_get_addr. 2618 TargetLowering::CallLoweringInfo CLI(DAG); 2619 CLI.setDebugLoc(DL) 2620 .setChain(DAG.getEntryNode()) 2621 .setLibCallee(CallingConv::C, CallTy, 2622 DAG.getExternalSymbol("__tls_get_addr", Ty), 2623 std::move(Args)); 2624 2625 return LowerCallTo(CLI).first; 2626 } 2627 2628 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2629 SelectionDAG &DAG) const { 2630 SDLoc DL(Op); 2631 EVT Ty = Op.getValueType(); 2632 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2633 int64_t Offset = N->getOffset(); 2634 MVT XLenVT = Subtarget.getXLenVT(); 2635 2636 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2637 2638 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2639 CallingConv::GHC) 2640 report_fatal_error("In GHC calling convention TLS is not supported"); 2641 2642 SDValue Addr; 2643 switch (Model) { 2644 case TLSModel::LocalExec: 2645 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2646 break; 2647 case TLSModel::InitialExec: 2648 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2649 break; 2650 case TLSModel::LocalDynamic: 2651 case TLSModel::GeneralDynamic: 2652 Addr = getDynamicTLSAddr(N, DAG); 2653 break; 2654 } 2655 2656 // In order to maximise the opportunity for common subexpression elimination, 2657 // emit a separate ADD node for the global address offset instead of folding 2658 // it in the global address node. Later peephole optimisations may choose to 2659 // fold it back in when profitable. 2660 if (Offset != 0) 2661 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2662 DAG.getConstant(Offset, DL, XLenVT)); 2663 return Addr; 2664 } 2665 2666 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2667 SDValue CondV = Op.getOperand(0); 2668 SDValue TrueV = Op.getOperand(1); 2669 SDValue FalseV = Op.getOperand(2); 2670 SDLoc DL(Op); 2671 MVT XLenVT = Subtarget.getXLenVT(); 2672 2673 // If the result type is XLenVT and CondV is the output of a SETCC node 2674 // which also operated on XLenVT inputs, then merge the SETCC node into the 2675 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2676 // compare+branch instructions. i.e.: 2677 // (select (setcc lhs, rhs, cc), truev, falsev) 2678 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2679 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2680 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2681 SDValue LHS = CondV.getOperand(0); 2682 SDValue RHS = CondV.getOperand(1); 2683 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2684 ISD::CondCode CCVal = CC->get(); 2685 2686 // Special case for a select of 2 constants that have a diffence of 1. 2687 // Normally this is done by DAGCombine, but if the select is introduced by 2688 // type legalization or op legalization, we miss it. Restricting to SETLT 2689 // case for now because that is what signed saturating add/sub need. 2690 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2691 // but we would probably want to swap the true/false values if the condition 2692 // is SETGE/SETLE to avoid an XORI. 2693 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2694 CCVal == ISD::SETLT) { 2695 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2696 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2697 if (TrueVal - 1 == FalseVal) 2698 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2699 if (TrueVal + 1 == FalseVal) 2700 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2701 } 2702 2703 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2704 2705 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2706 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2707 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2708 } 2709 2710 // Otherwise: 2711 // (select condv, truev, falsev) 2712 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2713 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2714 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2715 2716 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2717 2718 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2719 } 2720 2721 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2722 SDValue CondV = Op.getOperand(1); 2723 SDLoc DL(Op); 2724 MVT XLenVT = Subtarget.getXLenVT(); 2725 2726 if (CondV.getOpcode() == ISD::SETCC && 2727 CondV.getOperand(0).getValueType() == XLenVT) { 2728 SDValue LHS = CondV.getOperand(0); 2729 SDValue RHS = CondV.getOperand(1); 2730 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2731 2732 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2733 2734 SDValue TargetCC = DAG.getCondCode(CCVal); 2735 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2736 LHS, RHS, TargetCC, Op.getOperand(2)); 2737 } 2738 2739 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2740 CondV, DAG.getConstant(0, DL, XLenVT), 2741 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2742 } 2743 2744 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2745 MachineFunction &MF = DAG.getMachineFunction(); 2746 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2747 2748 SDLoc DL(Op); 2749 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2750 getPointerTy(MF.getDataLayout())); 2751 2752 // vastart just stores the address of the VarArgsFrameIndex slot into the 2753 // memory location argument. 2754 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2755 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2756 MachinePointerInfo(SV)); 2757 } 2758 2759 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2760 SelectionDAG &DAG) const { 2761 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2762 MachineFunction &MF = DAG.getMachineFunction(); 2763 MachineFrameInfo &MFI = MF.getFrameInfo(); 2764 MFI.setFrameAddressIsTaken(true); 2765 Register FrameReg = RI.getFrameRegister(MF); 2766 int XLenInBytes = Subtarget.getXLen() / 8; 2767 2768 EVT VT = Op.getValueType(); 2769 SDLoc DL(Op); 2770 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2771 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2772 while (Depth--) { 2773 int Offset = -(XLenInBytes * 2); 2774 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2775 DAG.getIntPtrConstant(Offset, DL)); 2776 FrameAddr = 2777 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2778 } 2779 return FrameAddr; 2780 } 2781 2782 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2783 SelectionDAG &DAG) const { 2784 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2785 MachineFunction &MF = DAG.getMachineFunction(); 2786 MachineFrameInfo &MFI = MF.getFrameInfo(); 2787 MFI.setReturnAddressIsTaken(true); 2788 MVT XLenVT = Subtarget.getXLenVT(); 2789 int XLenInBytes = Subtarget.getXLen() / 8; 2790 2791 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2792 return SDValue(); 2793 2794 EVT VT = Op.getValueType(); 2795 SDLoc DL(Op); 2796 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2797 if (Depth) { 2798 int Off = -XLenInBytes; 2799 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2800 SDValue Offset = DAG.getConstant(Off, DL, VT); 2801 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2802 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2803 MachinePointerInfo()); 2804 } 2805 2806 // Return the value of the return address register, marking it an implicit 2807 // live-in. 2808 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2809 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2810 } 2811 2812 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2813 SelectionDAG &DAG) const { 2814 SDLoc DL(Op); 2815 SDValue Lo = Op.getOperand(0); 2816 SDValue Hi = Op.getOperand(1); 2817 SDValue Shamt = Op.getOperand(2); 2818 EVT VT = Lo.getValueType(); 2819 2820 // if Shamt-XLEN < 0: // Shamt < XLEN 2821 // Lo = Lo << Shamt 2822 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2823 // else: 2824 // Lo = 0 2825 // Hi = Lo << (Shamt-XLEN) 2826 2827 SDValue Zero = DAG.getConstant(0, DL, VT); 2828 SDValue One = DAG.getConstant(1, DL, VT); 2829 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2830 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2831 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2832 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2833 2834 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2835 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2836 SDValue ShiftRightLo = 2837 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2838 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2839 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2840 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2841 2842 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2843 2844 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2845 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2846 2847 SDValue Parts[2] = {Lo, Hi}; 2848 return DAG.getMergeValues(Parts, DL); 2849 } 2850 2851 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2852 bool IsSRA) const { 2853 SDLoc DL(Op); 2854 SDValue Lo = Op.getOperand(0); 2855 SDValue Hi = Op.getOperand(1); 2856 SDValue Shamt = Op.getOperand(2); 2857 EVT VT = Lo.getValueType(); 2858 2859 // SRA expansion: 2860 // if Shamt-XLEN < 0: // Shamt < XLEN 2861 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2862 // Hi = Hi >>s Shamt 2863 // else: 2864 // Lo = Hi >>s (Shamt-XLEN); 2865 // Hi = Hi >>s (XLEN-1) 2866 // 2867 // SRL expansion: 2868 // if Shamt-XLEN < 0: // Shamt < XLEN 2869 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2870 // Hi = Hi >>u Shamt 2871 // else: 2872 // Lo = Hi >>u (Shamt-XLEN); 2873 // Hi = 0; 2874 2875 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2876 2877 SDValue Zero = DAG.getConstant(0, DL, VT); 2878 SDValue One = DAG.getConstant(1, DL, VT); 2879 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2880 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2881 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2882 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2883 2884 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2885 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2886 SDValue ShiftLeftHi = 2887 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2888 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2889 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2890 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2891 SDValue HiFalse = 2892 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2893 2894 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2895 2896 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2897 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2898 2899 SDValue Parts[2] = {Lo, Hi}; 2900 return DAG.getMergeValues(Parts, DL); 2901 } 2902 2903 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2904 // legal equivalently-sized i8 type, so we can use that as a go-between. 2905 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 2906 SelectionDAG &DAG) const { 2907 SDLoc DL(Op); 2908 MVT VT = Op.getSimpleValueType(); 2909 SDValue SplatVal = Op.getOperand(0); 2910 // All-zeros or all-ones splats are handled specially. 2911 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 2912 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2913 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 2914 } 2915 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 2916 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2917 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 2918 } 2919 MVT XLenVT = Subtarget.getXLenVT(); 2920 assert(SplatVal.getValueType() == XLenVT && 2921 "Unexpected type for i1 splat value"); 2922 MVT InterVT = VT.changeVectorElementType(MVT::i8); 2923 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 2924 DAG.getConstant(1, DL, XLenVT)); 2925 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 2926 SDValue Zero = DAG.getConstant(0, DL, InterVT); 2927 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 2928 } 2929 2930 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2931 // illegal (currently only vXi64 RV32). 2932 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2933 // them to SPLAT_VECTOR_I64 2934 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2935 SelectionDAG &DAG) const { 2936 SDLoc DL(Op); 2937 MVT VecVT = Op.getSimpleValueType(); 2938 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2939 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2940 2941 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2942 SDValue Lo = Op.getOperand(0); 2943 SDValue Hi = Op.getOperand(1); 2944 2945 if (VecVT.isFixedLengthVector()) { 2946 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2947 SDLoc DL(Op); 2948 SDValue Mask, VL; 2949 std::tie(Mask, VL) = 2950 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2951 2952 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 2953 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 2954 } 2955 2956 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2957 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2958 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2959 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2960 // node in order to try and match RVV vector/scalar instructions. 2961 if ((LoC >> 31) == HiC) 2962 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2963 } 2964 2965 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 2966 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 2967 isa<ConstantSDNode>(Hi.getOperand(1)) && 2968 Hi.getConstantOperandVal(1) == 31) 2969 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2970 2971 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 2972 return splatPartsI64ThroughStack(DL, VecVT, Lo, Hi, 2973 DAG.getRegister(RISCV::X0, MVT::i64), DAG); 2974 } 2975 2976 // Custom-lower extensions from mask vectors by using a vselect either with 1 2977 // for zero/any-extension or -1 for sign-extension: 2978 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2979 // Note that any-extension is lowered identically to zero-extension. 2980 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2981 int64_t ExtTrueVal) const { 2982 SDLoc DL(Op); 2983 MVT VecVT = Op.getSimpleValueType(); 2984 SDValue Src = Op.getOperand(0); 2985 // Only custom-lower extensions from mask types 2986 assert(Src.getValueType().isVector() && 2987 Src.getValueType().getVectorElementType() == MVT::i1); 2988 2989 MVT XLenVT = Subtarget.getXLenVT(); 2990 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2991 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2992 2993 if (VecVT.isScalableVector()) { 2994 // Be careful not to introduce illegal scalar types at this stage, and be 2995 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2996 // illegal and must be expanded. Since we know that the constants are 2997 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2998 bool IsRV32E64 = 2999 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3000 3001 if (!IsRV32E64) { 3002 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3003 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3004 } else { 3005 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3006 SplatTrueVal = 3007 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3008 } 3009 3010 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3011 } 3012 3013 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3014 MVT I1ContainerVT = 3015 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3016 3017 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3018 3019 SDValue Mask, VL; 3020 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3021 3022 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3023 SplatTrueVal = 3024 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3025 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3026 SplatTrueVal, SplatZero, VL); 3027 3028 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3029 } 3030 3031 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3032 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3033 MVT ExtVT = Op.getSimpleValueType(); 3034 // Only custom-lower extensions from fixed-length vector types. 3035 if (!ExtVT.isFixedLengthVector()) 3036 return Op; 3037 MVT VT = Op.getOperand(0).getSimpleValueType(); 3038 // Grab the canonical container type for the extended type. Infer the smaller 3039 // type from that to ensure the same number of vector elements, as we know 3040 // the LMUL will be sufficient to hold the smaller type. 3041 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3042 // Get the extended container type manually to ensure the same number of 3043 // vector elements between source and dest. 3044 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3045 ContainerExtVT.getVectorElementCount()); 3046 3047 SDValue Op1 = 3048 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3049 3050 SDLoc DL(Op); 3051 SDValue Mask, VL; 3052 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3053 3054 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3055 3056 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3057 } 3058 3059 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3060 // setcc operation: 3061 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3062 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3063 SelectionDAG &DAG) const { 3064 SDLoc DL(Op); 3065 EVT MaskVT = Op.getValueType(); 3066 // Only expect to custom-lower truncations to mask types 3067 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3068 "Unexpected type for vector mask lowering"); 3069 SDValue Src = Op.getOperand(0); 3070 MVT VecVT = Src.getSimpleValueType(); 3071 3072 // If this is a fixed vector, we need to convert it to a scalable vector. 3073 MVT ContainerVT = VecVT; 3074 if (VecVT.isFixedLengthVector()) { 3075 ContainerVT = getContainerForFixedLengthVector(VecVT); 3076 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3077 } 3078 3079 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3080 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3081 3082 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3083 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3084 3085 if (VecVT.isScalableVector()) { 3086 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3087 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3088 } 3089 3090 SDValue Mask, VL; 3091 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3092 3093 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3094 SDValue Trunc = 3095 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3096 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3097 DAG.getCondCode(ISD::SETNE), Mask, VL); 3098 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3099 } 3100 3101 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3102 // first position of a vector, and that vector is slid up to the insert index. 3103 // By limiting the active vector length to index+1 and merging with the 3104 // original vector (with an undisturbed tail policy for elements >= VL), we 3105 // achieve the desired result of leaving all elements untouched except the one 3106 // at VL-1, which is replaced with the desired value. 3107 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3108 SelectionDAG &DAG) const { 3109 SDLoc DL(Op); 3110 MVT VecVT = Op.getSimpleValueType(); 3111 SDValue Vec = Op.getOperand(0); 3112 SDValue Val = Op.getOperand(1); 3113 SDValue Idx = Op.getOperand(2); 3114 3115 if (VecVT.getVectorElementType() == MVT::i1) { 3116 // FIXME: For now we just promote to an i8 vector and insert into that, 3117 // but this is probably not optimal. 3118 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3119 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3120 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3121 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3122 } 3123 3124 MVT ContainerVT = VecVT; 3125 // If the operand is a fixed-length vector, convert to a scalable one. 3126 if (VecVT.isFixedLengthVector()) { 3127 ContainerVT = getContainerForFixedLengthVector(VecVT); 3128 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3129 } 3130 3131 MVT XLenVT = Subtarget.getXLenVT(); 3132 3133 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3134 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3135 // Even i64-element vectors on RV32 can be lowered without scalar 3136 // legalization if the most-significant 32 bits of the value are not affected 3137 // by the sign-extension of the lower 32 bits. 3138 // TODO: We could also catch sign extensions of a 32-bit value. 3139 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3140 const auto *CVal = cast<ConstantSDNode>(Val); 3141 if (isInt<32>(CVal->getSExtValue())) { 3142 IsLegalInsert = true; 3143 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3144 } 3145 } 3146 3147 SDValue Mask, VL; 3148 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3149 3150 SDValue ValInVec; 3151 3152 if (IsLegalInsert) { 3153 unsigned Opc = 3154 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3155 if (isNullConstant(Idx)) { 3156 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3157 if (!VecVT.isFixedLengthVector()) 3158 return Vec; 3159 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3160 } 3161 ValInVec = 3162 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3163 } else { 3164 // On RV32, i64-element vectors must be specially handled to place the 3165 // value at element 0, by using two vslide1up instructions in sequence on 3166 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3167 // this. 3168 SDValue One = DAG.getConstant(1, DL, XLenVT); 3169 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3170 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3171 MVT I32ContainerVT = 3172 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3173 SDValue I32Mask = 3174 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3175 // Limit the active VL to two. 3176 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3177 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3178 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3179 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3180 InsertI64VL); 3181 // First slide in the hi value, then the lo in underneath it. 3182 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3183 ValHi, I32Mask, InsertI64VL); 3184 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3185 ValLo, I32Mask, InsertI64VL); 3186 // Bitcast back to the right container type. 3187 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3188 } 3189 3190 // Now that the value is in a vector, slide it into position. 3191 SDValue InsertVL = 3192 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3193 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3194 ValInVec, Idx, Mask, InsertVL); 3195 if (!VecVT.isFixedLengthVector()) 3196 return Slideup; 3197 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3198 } 3199 3200 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3201 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3202 // types this is done using VMV_X_S to allow us to glean information about the 3203 // sign bits of the result. 3204 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3205 SelectionDAG &DAG) const { 3206 SDLoc DL(Op); 3207 SDValue Idx = Op.getOperand(1); 3208 SDValue Vec = Op.getOperand(0); 3209 EVT EltVT = Op.getValueType(); 3210 MVT VecVT = Vec.getSimpleValueType(); 3211 MVT XLenVT = Subtarget.getXLenVT(); 3212 3213 if (VecVT.getVectorElementType() == MVT::i1) { 3214 // FIXME: For now we just promote to an i8 vector and extract from that, 3215 // but this is probably not optimal. 3216 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3217 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3218 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3219 } 3220 3221 // If this is a fixed vector, we need to convert it to a scalable vector. 3222 MVT ContainerVT = VecVT; 3223 if (VecVT.isFixedLengthVector()) { 3224 ContainerVT = getContainerForFixedLengthVector(VecVT); 3225 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3226 } 3227 3228 // If the index is 0, the vector is already in the right position. 3229 if (!isNullConstant(Idx)) { 3230 // Use a VL of 1 to avoid processing more elements than we need. 3231 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3232 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3233 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3234 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3235 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3236 } 3237 3238 if (!EltVT.isInteger()) { 3239 // Floating-point extracts are handled in TableGen. 3240 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3241 DAG.getConstant(0, DL, XLenVT)); 3242 } 3243 3244 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3245 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3246 } 3247 3248 // Some RVV intrinsics may claim that they want an integer operand to be 3249 // promoted or expanded. 3250 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3251 const RISCVSubtarget &Subtarget) { 3252 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3253 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3254 "Unexpected opcode"); 3255 3256 if (!Subtarget.hasStdExtV()) 3257 return SDValue(); 3258 3259 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3260 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3261 SDLoc DL(Op); 3262 3263 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3264 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3265 if (!II || !II->SplatOperand) 3266 return SDValue(); 3267 3268 unsigned SplatOp = II->SplatOperand + HasChain; 3269 assert(SplatOp < Op.getNumOperands()); 3270 3271 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3272 SDValue &ScalarOp = Operands[SplatOp]; 3273 MVT OpVT = ScalarOp.getSimpleValueType(); 3274 MVT XLenVT = Subtarget.getXLenVT(); 3275 3276 // If this isn't a scalar, or its type is XLenVT we're done. 3277 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3278 return SDValue(); 3279 3280 // Simplest case is that the operand needs to be promoted to XLenVT. 3281 if (OpVT.bitsLT(XLenVT)) { 3282 // If the operand is a constant, sign extend to increase our chances 3283 // of being able to use a .vi instruction. ANY_EXTEND would become a 3284 // a zero extend and the simm5 check in isel would fail. 3285 // FIXME: Should we ignore the upper bits in isel instead? 3286 unsigned ExtOpc = 3287 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3288 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3289 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3290 } 3291 3292 // Use the previous operand to get the vXi64 VT. The result might be a mask 3293 // VT for compares. Using the previous operand assumes that the previous 3294 // operand will never have a smaller element size than a scalar operand and 3295 // that a widening operation never uses SEW=64. 3296 // NOTE: If this fails the below assert, we can probably just find the 3297 // element count from any operand or result and use it to construct the VT. 3298 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3299 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3300 3301 // The more complex case is when the scalar is larger than XLenVT. 3302 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3303 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3304 3305 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3306 // on the instruction to sign-extend since SEW>XLEN. 3307 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3308 if (isInt<32>(CVal->getSExtValue())) { 3309 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3310 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3311 } 3312 } 3313 3314 // We need to convert the scalar to a splat vector. 3315 // FIXME: Can we implicitly truncate the scalar if it is known to 3316 // be sign extended? 3317 // VL should be the last operand. 3318 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3319 assert(VL.getValueType() == XLenVT); 3320 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3321 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3322 } 3323 3324 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3325 SelectionDAG &DAG) const { 3326 unsigned IntNo = Op.getConstantOperandVal(0); 3327 SDLoc DL(Op); 3328 MVT XLenVT = Subtarget.getXLenVT(); 3329 3330 switch (IntNo) { 3331 default: 3332 break; // Don't custom lower most intrinsics. 3333 case Intrinsic::thread_pointer: { 3334 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3335 return DAG.getRegister(RISCV::X4, PtrVT); 3336 } 3337 case Intrinsic::riscv_orc_b: 3338 // Lower to the GORCI encoding for orc.b. 3339 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3340 DAG.getConstant(7, DL, XLenVT)); 3341 case Intrinsic::riscv_grev: 3342 case Intrinsic::riscv_gorc: { 3343 unsigned Opc = 3344 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3345 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3346 } 3347 case Intrinsic::riscv_shfl: 3348 case Intrinsic::riscv_unshfl: { 3349 unsigned Opc = 3350 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3351 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3352 } 3353 case Intrinsic::riscv_bcompress: 3354 case Intrinsic::riscv_bdecompress: { 3355 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3356 : RISCVISD::BDECOMPRESS; 3357 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3358 } 3359 case Intrinsic::riscv_vmv_x_s: 3360 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3361 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3362 Op.getOperand(1)); 3363 case Intrinsic::riscv_vmv_v_x: 3364 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3365 Op.getSimpleValueType(), DL, DAG, Subtarget); 3366 case Intrinsic::riscv_vfmv_v_f: 3367 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3368 Op.getOperand(1), Op.getOperand(2)); 3369 case Intrinsic::riscv_vmv_s_x: { 3370 SDValue Scalar = Op.getOperand(2); 3371 3372 if (Scalar.getValueType().bitsLE(XLenVT)) { 3373 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3374 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3375 Op.getOperand(1), Scalar, Op.getOperand(3)); 3376 } 3377 3378 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3379 3380 // This is an i64 value that lives in two scalar registers. We have to 3381 // insert this in a convoluted way. First we build vXi64 splat containing 3382 // the/ two values that we assemble using some bit math. Next we'll use 3383 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3384 // to merge element 0 from our splat into the source vector. 3385 // FIXME: This is probably not the best way to do this, but it is 3386 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3387 // point. 3388 // sw lo, (a0) 3389 // sw hi, 4(a0) 3390 // vlse vX, (a0) 3391 // 3392 // vid.v vVid 3393 // vmseq.vx mMask, vVid, 0 3394 // vmerge.vvm vDest, vSrc, vVal, mMask 3395 MVT VT = Op.getSimpleValueType(); 3396 SDValue Vec = Op.getOperand(1); 3397 SDValue VL = Op.getOperand(3); 3398 3399 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3400 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3401 DAG.getConstant(0, DL, MVT::i32), VL); 3402 3403 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3404 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3405 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3406 SDValue SelectCond = 3407 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3408 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3409 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3410 Vec, VL); 3411 } 3412 case Intrinsic::riscv_vslide1up: 3413 case Intrinsic::riscv_vslide1down: 3414 case Intrinsic::riscv_vslide1up_mask: 3415 case Intrinsic::riscv_vslide1down_mask: { 3416 // We need to special case these when the scalar is larger than XLen. 3417 unsigned NumOps = Op.getNumOperands(); 3418 bool IsMasked = NumOps == 6; 3419 unsigned OpOffset = IsMasked ? 1 : 0; 3420 SDValue Scalar = Op.getOperand(2 + OpOffset); 3421 if (Scalar.getValueType().bitsLE(XLenVT)) 3422 break; 3423 3424 // Splatting a sign extended constant is fine. 3425 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3426 if (isInt<32>(CVal->getSExtValue())) 3427 break; 3428 3429 MVT VT = Op.getSimpleValueType(); 3430 assert(VT.getVectorElementType() == MVT::i64 && 3431 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3432 3433 // Convert the vector source to the equivalent nxvXi32 vector. 3434 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3435 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3436 3437 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3438 DAG.getConstant(0, DL, XLenVT)); 3439 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3440 DAG.getConstant(1, DL, XLenVT)); 3441 3442 // Double the VL since we halved SEW. 3443 SDValue VL = Op.getOperand(NumOps - 1); 3444 SDValue I32VL = 3445 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3446 3447 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3448 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3449 3450 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3451 // instructions. 3452 if (IntNo == Intrinsic::riscv_vslide1up || 3453 IntNo == Intrinsic::riscv_vslide1up_mask) { 3454 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3455 I32Mask, I32VL); 3456 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3457 I32Mask, I32VL); 3458 } else { 3459 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3460 I32Mask, I32VL); 3461 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3462 I32Mask, I32VL); 3463 } 3464 3465 // Convert back to nxvXi64. 3466 Vec = DAG.getBitcast(VT, Vec); 3467 3468 if (!IsMasked) 3469 return Vec; 3470 3471 // Apply mask after the operation. 3472 SDValue Mask = Op.getOperand(NumOps - 2); 3473 SDValue MaskedOff = Op.getOperand(1); 3474 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3475 } 3476 } 3477 3478 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3479 } 3480 3481 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3482 SelectionDAG &DAG) const { 3483 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3484 } 3485 3486 static MVT getLMUL1VT(MVT VT) { 3487 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3488 "Unexpected vector MVT"); 3489 return MVT::getScalableVectorVT( 3490 VT.getVectorElementType(), 3491 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3492 } 3493 3494 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3495 switch (ISDOpcode) { 3496 default: 3497 llvm_unreachable("Unhandled reduction"); 3498 case ISD::VECREDUCE_ADD: 3499 return RISCVISD::VECREDUCE_ADD_VL; 3500 case ISD::VECREDUCE_UMAX: 3501 return RISCVISD::VECREDUCE_UMAX_VL; 3502 case ISD::VECREDUCE_SMAX: 3503 return RISCVISD::VECREDUCE_SMAX_VL; 3504 case ISD::VECREDUCE_UMIN: 3505 return RISCVISD::VECREDUCE_UMIN_VL; 3506 case ISD::VECREDUCE_SMIN: 3507 return RISCVISD::VECREDUCE_SMIN_VL; 3508 case ISD::VECREDUCE_AND: 3509 return RISCVISD::VECREDUCE_AND_VL; 3510 case ISD::VECREDUCE_OR: 3511 return RISCVISD::VECREDUCE_OR_VL; 3512 case ISD::VECREDUCE_XOR: 3513 return RISCVISD::VECREDUCE_XOR_VL; 3514 } 3515 } 3516 3517 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3518 SelectionDAG &DAG) const { 3519 SDLoc DL(Op); 3520 SDValue Vec = Op.getOperand(0); 3521 MVT VecVT = Vec.getSimpleValueType(); 3522 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3523 Op.getOpcode() == ISD::VECREDUCE_OR || 3524 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3525 "Unexpected reduction lowering"); 3526 3527 MVT XLenVT = Subtarget.getXLenVT(); 3528 assert(Op.getValueType() == XLenVT && 3529 "Expected reduction output to be legalized to XLenVT"); 3530 3531 MVT ContainerVT = VecVT; 3532 if (VecVT.isFixedLengthVector()) { 3533 ContainerVT = getContainerForFixedLengthVector(VecVT); 3534 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3535 } 3536 3537 SDValue Mask, VL; 3538 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3539 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3540 3541 switch (Op.getOpcode()) { 3542 default: 3543 llvm_unreachable("Unhandled reduction"); 3544 case ISD::VECREDUCE_AND: 3545 // vpopc ~x == 0 3546 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3547 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3548 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3549 case ISD::VECREDUCE_OR: 3550 // vpopc x != 0 3551 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3552 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3553 case ISD::VECREDUCE_XOR: { 3554 // ((vpopc x) & 1) != 0 3555 SDValue One = DAG.getConstant(1, DL, XLenVT); 3556 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3557 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3558 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3559 } 3560 } 3561 } 3562 3563 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3564 SelectionDAG &DAG) const { 3565 SDLoc DL(Op); 3566 SDValue Vec = Op.getOperand(0); 3567 EVT VecEVT = Vec.getValueType(); 3568 3569 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3570 3571 // Due to ordering in legalize types we may have a vector type that needs to 3572 // be split. Do that manually so we can get down to a legal type. 3573 while (getTypeAction(*DAG.getContext(), VecEVT) == 3574 TargetLowering::TypeSplitVector) { 3575 SDValue Lo, Hi; 3576 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3577 VecEVT = Lo.getValueType(); 3578 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3579 } 3580 3581 // TODO: The type may need to be widened rather than split. Or widened before 3582 // it can be split. 3583 if (!isTypeLegal(VecEVT)) 3584 return SDValue(); 3585 3586 MVT VecVT = VecEVT.getSimpleVT(); 3587 MVT VecEltVT = VecVT.getVectorElementType(); 3588 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3589 3590 MVT ContainerVT = VecVT; 3591 if (VecVT.isFixedLengthVector()) { 3592 ContainerVT = getContainerForFixedLengthVector(VecVT); 3593 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3594 } 3595 3596 MVT M1VT = getLMUL1VT(ContainerVT); 3597 3598 SDValue Mask, VL; 3599 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3600 3601 // FIXME: This is a VLMAX splat which might be too large and can prevent 3602 // vsetvli removal. 3603 SDValue NeutralElem = 3604 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3605 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3606 SDValue Reduction = 3607 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3608 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3609 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3610 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3611 } 3612 3613 // Given a reduction op, this function returns the matching reduction opcode, 3614 // the vector SDValue and the scalar SDValue required to lower this to a 3615 // RISCVISD node. 3616 static std::tuple<unsigned, SDValue, SDValue> 3617 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3618 SDLoc DL(Op); 3619 auto Flags = Op->getFlags(); 3620 unsigned Opcode = Op.getOpcode(); 3621 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3622 switch (Opcode) { 3623 default: 3624 llvm_unreachable("Unhandled reduction"); 3625 case ISD::VECREDUCE_FADD: 3626 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3627 DAG.getConstantFP(0.0, DL, EltVT)); 3628 case ISD::VECREDUCE_SEQ_FADD: 3629 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3630 Op.getOperand(0)); 3631 case ISD::VECREDUCE_FMIN: 3632 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3633 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3634 case ISD::VECREDUCE_FMAX: 3635 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3636 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3637 } 3638 } 3639 3640 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3641 SelectionDAG &DAG) const { 3642 SDLoc DL(Op); 3643 MVT VecEltVT = Op.getSimpleValueType(); 3644 3645 unsigned RVVOpcode; 3646 SDValue VectorVal, ScalarVal; 3647 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3648 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3649 MVT VecVT = VectorVal.getSimpleValueType(); 3650 3651 MVT ContainerVT = VecVT; 3652 if (VecVT.isFixedLengthVector()) { 3653 ContainerVT = getContainerForFixedLengthVector(VecVT); 3654 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3655 } 3656 3657 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3658 3659 SDValue Mask, VL; 3660 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3661 3662 // FIXME: This is a VLMAX splat which might be too large and can prevent 3663 // vsetvli removal. 3664 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3665 SDValue Reduction = 3666 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3667 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3668 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3669 } 3670 3671 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3672 SelectionDAG &DAG) const { 3673 SDValue Vec = Op.getOperand(0); 3674 SDValue SubVec = Op.getOperand(1); 3675 MVT VecVT = Vec.getSimpleValueType(); 3676 MVT SubVecVT = SubVec.getSimpleValueType(); 3677 3678 SDLoc DL(Op); 3679 MVT XLenVT = Subtarget.getXLenVT(); 3680 unsigned OrigIdx = Op.getConstantOperandVal(2); 3681 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3682 3683 // We don't have the ability to slide mask vectors up indexed by their i1 3684 // elements; the smallest we can do is i8. Often we are able to bitcast to 3685 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3686 // into a scalable one, we might not necessarily have enough scalable 3687 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3688 if (SubVecVT.getVectorElementType() == MVT::i1 && 3689 (OrigIdx != 0 || !Vec.isUndef())) { 3690 if (VecVT.getVectorMinNumElements() >= 8 && 3691 SubVecVT.getVectorMinNumElements() >= 8) { 3692 assert(OrigIdx % 8 == 0 && "Invalid index"); 3693 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3694 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3695 "Unexpected mask vector lowering"); 3696 OrigIdx /= 8; 3697 SubVecVT = 3698 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3699 SubVecVT.isScalableVector()); 3700 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3701 VecVT.isScalableVector()); 3702 Vec = DAG.getBitcast(VecVT, Vec); 3703 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3704 } else { 3705 // We can't slide this mask vector up indexed by its i1 elements. 3706 // This poses a problem when we wish to insert a scalable vector which 3707 // can't be re-expressed as a larger type. Just choose the slow path and 3708 // extend to a larger type, then truncate back down. 3709 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3710 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3711 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3712 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3713 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3714 Op.getOperand(2)); 3715 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3716 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3717 } 3718 } 3719 3720 // If the subvector vector is a fixed-length type, we cannot use subregister 3721 // manipulation to simplify the codegen; we don't know which register of a 3722 // LMUL group contains the specific subvector as we only know the minimum 3723 // register size. Therefore we must slide the vector group up the full 3724 // amount. 3725 if (SubVecVT.isFixedLengthVector()) { 3726 if (OrigIdx == 0 && Vec.isUndef()) 3727 return Op; 3728 MVT ContainerVT = VecVT; 3729 if (VecVT.isFixedLengthVector()) { 3730 ContainerVT = getContainerForFixedLengthVector(VecVT); 3731 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3732 } 3733 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3734 DAG.getUNDEF(ContainerVT), SubVec, 3735 DAG.getConstant(0, DL, XLenVT)); 3736 SDValue Mask = 3737 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3738 // Set the vector length to only the number of elements we care about. Note 3739 // that for slideup this includes the offset. 3740 SDValue VL = 3741 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3742 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3743 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3744 SubVec, SlideupAmt, Mask, VL); 3745 if (VecVT.isFixedLengthVector()) 3746 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3747 return DAG.getBitcast(Op.getValueType(), Slideup); 3748 } 3749 3750 unsigned SubRegIdx, RemIdx; 3751 std::tie(SubRegIdx, RemIdx) = 3752 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3753 VecVT, SubVecVT, OrigIdx, TRI); 3754 3755 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3756 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3757 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3758 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3759 3760 // 1. If the Idx has been completely eliminated and this subvector's size is 3761 // a vector register or a multiple thereof, or the surrounding elements are 3762 // undef, then this is a subvector insert which naturally aligns to a vector 3763 // register. These can easily be handled using subregister manipulation. 3764 // 2. If the subvector is smaller than a vector register, then the insertion 3765 // must preserve the undisturbed elements of the register. We do this by 3766 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3767 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3768 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3769 // LMUL=1 type back into the larger vector (resolving to another subregister 3770 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3771 // to avoid allocating a large register group to hold our subvector. 3772 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3773 return Op; 3774 3775 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3776 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3777 // (in our case undisturbed). This means we can set up a subvector insertion 3778 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3779 // size of the subvector. 3780 MVT InterSubVT = VecVT; 3781 SDValue AlignedExtract = Vec; 3782 unsigned AlignedIdx = OrigIdx - RemIdx; 3783 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3784 InterSubVT = getLMUL1VT(VecVT); 3785 // Extract a subvector equal to the nearest full vector register type. This 3786 // should resolve to a EXTRACT_SUBREG instruction. 3787 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3788 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3789 } 3790 3791 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3792 // For scalable vectors this must be further multiplied by vscale. 3793 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3794 3795 SDValue Mask, VL; 3796 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3797 3798 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3799 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3800 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3801 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3802 3803 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3804 DAG.getUNDEF(InterSubVT), SubVec, 3805 DAG.getConstant(0, DL, XLenVT)); 3806 3807 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3808 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3809 3810 // If required, insert this subvector back into the correct vector register. 3811 // This should resolve to an INSERT_SUBREG instruction. 3812 if (VecVT.bitsGT(InterSubVT)) 3813 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3814 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3815 3816 // We might have bitcast from a mask type: cast back to the original type if 3817 // required. 3818 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3819 } 3820 3821 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3822 SelectionDAG &DAG) const { 3823 SDValue Vec = Op.getOperand(0); 3824 MVT SubVecVT = Op.getSimpleValueType(); 3825 MVT VecVT = Vec.getSimpleValueType(); 3826 3827 SDLoc DL(Op); 3828 MVT XLenVT = Subtarget.getXLenVT(); 3829 unsigned OrigIdx = Op.getConstantOperandVal(1); 3830 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3831 3832 // We don't have the ability to slide mask vectors down indexed by their i1 3833 // elements; the smallest we can do is i8. Often we are able to bitcast to 3834 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3835 // from a scalable one, we might not necessarily have enough scalable 3836 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3837 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3838 if (VecVT.getVectorMinNumElements() >= 8 && 3839 SubVecVT.getVectorMinNumElements() >= 8) { 3840 assert(OrigIdx % 8 == 0 && "Invalid index"); 3841 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3842 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3843 "Unexpected mask vector lowering"); 3844 OrigIdx /= 8; 3845 SubVecVT = 3846 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3847 SubVecVT.isScalableVector()); 3848 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3849 VecVT.isScalableVector()); 3850 Vec = DAG.getBitcast(VecVT, Vec); 3851 } else { 3852 // We can't slide this mask vector down, indexed by its i1 elements. 3853 // This poses a problem when we wish to extract a scalable vector which 3854 // can't be re-expressed as a larger type. Just choose the slow path and 3855 // extend to a larger type, then truncate back down. 3856 // TODO: We could probably improve this when extracting certain fixed 3857 // from fixed, where we can extract as i8 and shift the correct element 3858 // right to reach the desired subvector? 3859 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3860 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3861 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3862 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3863 Op.getOperand(1)); 3864 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3865 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3866 } 3867 } 3868 3869 // If the subvector vector is a fixed-length type, we cannot use subregister 3870 // manipulation to simplify the codegen; we don't know which register of a 3871 // LMUL group contains the specific subvector as we only know the minimum 3872 // register size. Therefore we must slide the vector group down the full 3873 // amount. 3874 if (SubVecVT.isFixedLengthVector()) { 3875 // With an index of 0 this is a cast-like subvector, which can be performed 3876 // with subregister operations. 3877 if (OrigIdx == 0) 3878 return Op; 3879 MVT ContainerVT = VecVT; 3880 if (VecVT.isFixedLengthVector()) { 3881 ContainerVT = getContainerForFixedLengthVector(VecVT); 3882 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3883 } 3884 SDValue Mask = 3885 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3886 // Set the vector length to only the number of elements we care about. This 3887 // avoids sliding down elements we're going to discard straight away. 3888 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3889 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3890 SDValue Slidedown = 3891 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3892 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3893 // Now we can use a cast-like subvector extract to get the result. 3894 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3895 DAG.getConstant(0, DL, XLenVT)); 3896 return DAG.getBitcast(Op.getValueType(), Slidedown); 3897 } 3898 3899 unsigned SubRegIdx, RemIdx; 3900 std::tie(SubRegIdx, RemIdx) = 3901 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3902 VecVT, SubVecVT, OrigIdx, TRI); 3903 3904 // If the Idx has been completely eliminated then this is a subvector extract 3905 // which naturally aligns to a vector register. These can easily be handled 3906 // using subregister manipulation. 3907 if (RemIdx == 0) 3908 return Op; 3909 3910 // Else we must shift our vector register directly to extract the subvector. 3911 // Do this using VSLIDEDOWN. 3912 3913 // If the vector type is an LMUL-group type, extract a subvector equal to the 3914 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3915 // instruction. 3916 MVT InterSubVT = VecVT; 3917 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3918 InterSubVT = getLMUL1VT(VecVT); 3919 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3920 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3921 } 3922 3923 // Slide this vector register down by the desired number of elements in order 3924 // to place the desired subvector starting at element 0. 3925 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3926 // For scalable vectors this must be further multiplied by vscale. 3927 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3928 3929 SDValue Mask, VL; 3930 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3931 SDValue Slidedown = 3932 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3933 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3934 3935 // Now the vector is in the right position, extract our final subvector. This 3936 // should resolve to a COPY. 3937 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3938 DAG.getConstant(0, DL, XLenVT)); 3939 3940 // We might have bitcast from a mask type: cast back to the original type if 3941 // required. 3942 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3943 } 3944 3945 // Lower step_vector to the vid instruction. Any non-identity step value must 3946 // be accounted for my manual expansion. 3947 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3948 SelectionDAG &DAG) const { 3949 SDLoc DL(Op); 3950 MVT VT = Op.getSimpleValueType(); 3951 MVT XLenVT = Subtarget.getXLenVT(); 3952 SDValue Mask, VL; 3953 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3954 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3955 uint64_t StepValImm = Op.getConstantOperandVal(0); 3956 if (StepValImm != 1) { 3957 assert(Op.getOperand(0).getValueType() == XLenVT && 3958 "Unexpected step value type"); 3959 if (isPowerOf2_64(StepValImm)) { 3960 SDValue StepVal = 3961 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3962 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 3963 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 3964 } else { 3965 SDValue StepVal = 3966 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 3967 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 3968 } 3969 } 3970 return StepVec; 3971 } 3972 3973 // Implement vector_reverse using vrgather.vv with indices determined by 3974 // subtracting the id of each element from (VLMAX-1). This will convert 3975 // the indices like so: 3976 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3977 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3978 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3979 SelectionDAG &DAG) const { 3980 SDLoc DL(Op); 3981 MVT VecVT = Op.getSimpleValueType(); 3982 unsigned EltSize = VecVT.getScalarSizeInBits(); 3983 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3984 3985 unsigned MaxVLMAX = 0; 3986 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3987 if (VectorBitsMax != 0) 3988 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3989 3990 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3991 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3992 3993 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3994 // to use vrgatherei16.vv. 3995 // TODO: It's also possible to use vrgatherei16.vv for other types to 3996 // decrease register width for the index calculation. 3997 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3998 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3999 // Reverse each half, then reassemble them in reverse order. 4000 // NOTE: It's also possible that after splitting that VLMAX no longer 4001 // requires vrgatherei16.vv. 4002 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4003 SDValue Lo, Hi; 4004 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4005 EVT LoVT, HiVT; 4006 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4007 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4008 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4009 // Reassemble the low and high pieces reversed. 4010 // FIXME: This is a CONCAT_VECTORS. 4011 SDValue Res = 4012 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4013 DAG.getIntPtrConstant(0, DL)); 4014 return DAG.getNode( 4015 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4016 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4017 } 4018 4019 // Just promote the int type to i16 which will double the LMUL. 4020 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4021 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4022 } 4023 4024 MVT XLenVT = Subtarget.getXLenVT(); 4025 SDValue Mask, VL; 4026 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4027 4028 // Calculate VLMAX-1 for the desired SEW. 4029 unsigned MinElts = VecVT.getVectorMinNumElements(); 4030 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4031 DAG.getConstant(MinElts, DL, XLenVT)); 4032 SDValue VLMinus1 = 4033 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4034 4035 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4036 bool IsRV32E64 = 4037 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4038 SDValue SplatVL; 4039 if (!IsRV32E64) 4040 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4041 else 4042 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4043 4044 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4045 SDValue Indices = 4046 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4047 4048 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4049 } 4050 4051 SDValue 4052 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4053 SelectionDAG &DAG) const { 4054 auto *Load = cast<LoadSDNode>(Op); 4055 4056 SDLoc DL(Op); 4057 MVT VT = Op.getSimpleValueType(); 4058 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4059 4060 SDValue VL = 4061 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4062 4063 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4064 SDValue NewLoad = DAG.getMemIntrinsicNode( 4065 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4066 Load->getMemoryVT(), Load->getMemOperand()); 4067 4068 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4069 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4070 } 4071 4072 SDValue 4073 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4074 SelectionDAG &DAG) const { 4075 auto *Store = cast<StoreSDNode>(Op); 4076 4077 SDLoc DL(Op); 4078 SDValue StoreVal = Store->getValue(); 4079 MVT VT = StoreVal.getSimpleValueType(); 4080 4081 // If the size less than a byte, we need to pad with zeros to make a byte. 4082 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4083 VT = MVT::v8i1; 4084 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4085 DAG.getConstant(0, DL, VT), StoreVal, 4086 DAG.getIntPtrConstant(0, DL)); 4087 } 4088 4089 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4090 4091 SDValue VL = 4092 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4093 4094 SDValue NewValue = 4095 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4096 return DAG.getMemIntrinsicNode( 4097 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4098 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4099 Store->getMemoryVT(), Store->getMemOperand()); 4100 } 4101 4102 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4103 auto *Load = cast<MaskedLoadSDNode>(Op); 4104 4105 SDLoc DL(Op); 4106 MVT VT = Op.getSimpleValueType(); 4107 MVT XLenVT = Subtarget.getXLenVT(); 4108 4109 SDValue Mask = Load->getMask(); 4110 SDValue PassThru = Load->getPassThru(); 4111 SDValue VL; 4112 4113 MVT ContainerVT = VT; 4114 if (VT.isFixedLengthVector()) { 4115 ContainerVT = getContainerForFixedLengthVector(VT); 4116 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4117 4118 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4119 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4120 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4121 } else 4122 VL = DAG.getRegister(RISCV::X0, XLenVT); 4123 4124 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4125 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4126 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4127 Load->getBasePtr(), Mask, VL}; 4128 SDValue Result = 4129 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4130 Load->getMemoryVT(), Load->getMemOperand()); 4131 SDValue Chain = Result.getValue(1); 4132 4133 if (VT.isFixedLengthVector()) 4134 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4135 4136 return DAG.getMergeValues({Result, Chain}, DL); 4137 } 4138 4139 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4140 auto *Store = cast<MaskedStoreSDNode>(Op); 4141 4142 SDLoc DL(Op); 4143 SDValue Val = Store->getValue(); 4144 SDValue Mask = Store->getMask(); 4145 MVT VT = Val.getSimpleValueType(); 4146 MVT XLenVT = Subtarget.getXLenVT(); 4147 SDValue VL; 4148 4149 MVT ContainerVT = VT; 4150 if (VT.isFixedLengthVector()) { 4151 ContainerVT = getContainerForFixedLengthVector(VT); 4152 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4153 4154 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4155 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4156 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4157 } else 4158 VL = DAG.getRegister(RISCV::X0, XLenVT); 4159 4160 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4161 return DAG.getMemIntrinsicNode( 4162 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4163 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4164 Store->getMemoryVT(), Store->getMemOperand()); 4165 } 4166 4167 SDValue 4168 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4169 SelectionDAG &DAG) const { 4170 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4171 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4172 4173 MVT VT = Op.getSimpleValueType(); 4174 4175 SDValue Op1 = 4176 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4177 SDValue Op2 = 4178 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4179 4180 SDLoc DL(Op); 4181 SDValue VL = 4182 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4183 4184 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4185 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4186 4187 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4188 Op.getOperand(2), Mask, VL); 4189 4190 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4191 } 4192 4193 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4194 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4195 MVT VT = Op.getSimpleValueType(); 4196 4197 if (VT.getVectorElementType() == MVT::i1) 4198 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4199 4200 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4201 } 4202 4203 // Lower vector ABS to smax(X, sub(0, X)). 4204 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4205 SDLoc DL(Op); 4206 MVT VT = Op.getSimpleValueType(); 4207 SDValue X = Op.getOperand(0); 4208 4209 assert(VT.isFixedLengthVector() && "Unexpected type"); 4210 4211 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4212 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4213 4214 SDValue Mask, VL; 4215 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4216 4217 SDValue SplatZero = 4218 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4219 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4220 SDValue NegX = 4221 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4222 SDValue Max = 4223 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4224 4225 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4226 } 4227 4228 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4229 SDValue Op, SelectionDAG &DAG) const { 4230 SDLoc DL(Op); 4231 MVT VT = Op.getSimpleValueType(); 4232 SDValue Mag = Op.getOperand(0); 4233 SDValue Sign = Op.getOperand(1); 4234 assert(Mag.getValueType() == Sign.getValueType() && 4235 "Can only handle COPYSIGN with matching types."); 4236 4237 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4238 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4239 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4240 4241 SDValue Mask, VL; 4242 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4243 4244 SDValue CopySign = 4245 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4246 4247 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4248 } 4249 4250 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4251 SDValue Op, SelectionDAG &DAG) const { 4252 MVT VT = Op.getSimpleValueType(); 4253 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4254 4255 MVT I1ContainerVT = 4256 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4257 4258 SDValue CC = 4259 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4260 SDValue Op1 = 4261 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4262 SDValue Op2 = 4263 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4264 4265 SDLoc DL(Op); 4266 SDValue Mask, VL; 4267 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4268 4269 SDValue Select = 4270 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4271 4272 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4273 } 4274 4275 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4276 unsigned NewOpc, 4277 bool HasMask) const { 4278 MVT VT = Op.getSimpleValueType(); 4279 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4280 4281 // Create list of operands by converting existing ones to scalable types. 4282 SmallVector<SDValue, 6> Ops; 4283 for (const SDValue &V : Op->op_values()) { 4284 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4285 4286 // Pass through non-vector operands. 4287 if (!V.getValueType().isVector()) { 4288 Ops.push_back(V); 4289 continue; 4290 } 4291 4292 // "cast" fixed length vector to a scalable vector. 4293 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4294 "Only fixed length vectors are supported!"); 4295 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4296 } 4297 4298 SDLoc DL(Op); 4299 SDValue Mask, VL; 4300 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4301 if (HasMask) 4302 Ops.push_back(Mask); 4303 Ops.push_back(VL); 4304 4305 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4306 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4307 } 4308 4309 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4310 // * Operands of each node are assumed to be in the same order. 4311 // * The EVL operand is promoted from i32 to i64 on RV64. 4312 // * Fixed-length vectors are converted to their scalable-vector container 4313 // types. 4314 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4315 unsigned RISCVISDOpc) const { 4316 SDLoc DL(Op); 4317 MVT VT = Op.getSimpleValueType(); 4318 Optional<unsigned> EVLIdx = ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()); 4319 4320 SmallVector<SDValue, 4> Ops; 4321 MVT XLenVT = Subtarget.getXLenVT(); 4322 4323 for (const auto &OpIdx : enumerate(Op->ops())) { 4324 SDValue V = OpIdx.value(); 4325 if ((unsigned)OpIdx.index() == EVLIdx) { 4326 Ops.push_back(DAG.getZExtOrTrunc(V, DL, XLenVT)); 4327 continue; 4328 } 4329 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4330 // Pass through operands which aren't fixed-length vectors. 4331 if (!V.getValueType().isFixedLengthVector()) { 4332 Ops.push_back(V); 4333 continue; 4334 } 4335 // "cast" fixed length vector to a scalable vector. 4336 MVT OpVT = V.getSimpleValueType(); 4337 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4338 assert(useRVVForFixedLengthVectorVT(OpVT) && 4339 "Only fixed length vectors are supported!"); 4340 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4341 } 4342 4343 if (!VT.isFixedLengthVector()) 4344 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4345 4346 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4347 4348 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4349 4350 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4351 } 4352 4353 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4354 // a RVV indexed load. The RVV indexed load instructions only support the 4355 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4356 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4357 // indexing is extended to the XLEN value type and scaled accordingly. 4358 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4359 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4360 SDLoc DL(Op); 4361 4362 SDValue Index = MGN->getIndex(); 4363 SDValue Mask = MGN->getMask(); 4364 SDValue PassThru = MGN->getPassThru(); 4365 4366 MVT VT = Op.getSimpleValueType(); 4367 MVT IndexVT = Index.getSimpleValueType(); 4368 MVT XLenVT = Subtarget.getXLenVT(); 4369 4370 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4371 "Unexpected VTs!"); 4372 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4373 "Unexpected pointer type"); 4374 // Targets have to explicitly opt-in for extending vector loads. 4375 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4376 "Unexpected extending MGATHER"); 4377 4378 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4379 // the selection of the masked intrinsics doesn't do this for us. 4380 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4381 4382 SDValue VL; 4383 MVT ContainerVT = VT; 4384 if (VT.isFixedLengthVector()) { 4385 // We need to use the larger of the result and index type to determine the 4386 // scalable type to use so we don't increase LMUL for any operand/result. 4387 if (VT.bitsGE(IndexVT)) { 4388 ContainerVT = getContainerForFixedLengthVector(VT); 4389 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4390 ContainerVT.getVectorElementCount()); 4391 } else { 4392 IndexVT = getContainerForFixedLengthVector(IndexVT); 4393 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4394 IndexVT.getVectorElementCount()); 4395 } 4396 4397 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4398 4399 if (!IsUnmasked) { 4400 MVT MaskVT = 4401 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4402 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4403 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4404 } 4405 4406 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4407 } else 4408 VL = DAG.getRegister(RISCV::X0, XLenVT); 4409 4410 unsigned IntID = 4411 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4412 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4413 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4414 if (!IsUnmasked) 4415 Ops.push_back(PassThru); 4416 Ops.push_back(MGN->getBasePtr()); 4417 Ops.push_back(Index); 4418 if (!IsUnmasked) 4419 Ops.push_back(Mask); 4420 Ops.push_back(VL); 4421 4422 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4423 SDValue Result = 4424 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4425 MGN->getMemoryVT(), MGN->getMemOperand()); 4426 SDValue Chain = Result.getValue(1); 4427 4428 if (VT.isFixedLengthVector()) 4429 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4430 4431 return DAG.getMergeValues({Result, Chain}, DL); 4432 } 4433 4434 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4435 // a RVV indexed store. The RVV indexed store instructions only support the 4436 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4437 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4438 // indexing is extended to the XLEN value type and scaled accordingly. 4439 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4440 SelectionDAG &DAG) const { 4441 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4442 SDLoc DL(Op); 4443 SDValue Index = MSN->getIndex(); 4444 SDValue Mask = MSN->getMask(); 4445 SDValue Val = MSN->getValue(); 4446 4447 MVT VT = Val.getSimpleValueType(); 4448 MVT IndexVT = Index.getSimpleValueType(); 4449 MVT XLenVT = Subtarget.getXLenVT(); 4450 4451 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4452 "Unexpected VTs!"); 4453 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4454 "Unexpected pointer type"); 4455 // Targets have to explicitly opt-in for extending vector loads and 4456 // truncating vector stores. 4457 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4458 4459 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4460 // the selection of the masked intrinsics doesn't do this for us. 4461 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4462 4463 SDValue VL; 4464 if (VT.isFixedLengthVector()) { 4465 // We need to use the larger of the value and index type to determine the 4466 // scalable type to use so we don't increase LMUL for any operand/result. 4467 MVT ContainerVT; 4468 if (VT.bitsGE(IndexVT)) { 4469 ContainerVT = getContainerForFixedLengthVector(VT); 4470 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4471 ContainerVT.getVectorElementCount()); 4472 } else { 4473 IndexVT = getContainerForFixedLengthVector(IndexVT); 4474 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4475 IndexVT.getVectorElementCount()); 4476 } 4477 4478 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4479 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4480 4481 if (!IsUnmasked) { 4482 MVT MaskVT = 4483 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4484 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4485 } 4486 4487 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4488 } else 4489 VL = DAG.getRegister(RISCV::X0, XLenVT); 4490 4491 unsigned IntID = 4492 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4493 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4494 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4495 Ops.push_back(Val); 4496 Ops.push_back(MSN->getBasePtr()); 4497 Ops.push_back(Index); 4498 if (!IsUnmasked) 4499 Ops.push_back(Mask); 4500 Ops.push_back(VL); 4501 4502 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4503 MSN->getMemoryVT(), MSN->getMemOperand()); 4504 } 4505 4506 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4507 SelectionDAG &DAG) const { 4508 const MVT XLenVT = Subtarget.getXLenVT(); 4509 SDLoc DL(Op); 4510 SDValue Chain = Op->getOperand(0); 4511 SDValue SysRegNo = DAG.getConstant( 4512 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4513 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4514 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4515 4516 // Encoding used for rounding mode in RISCV differs from that used in 4517 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4518 // table, which consists of a sequence of 4-bit fields, each representing 4519 // corresponding FLT_ROUNDS mode. 4520 static const int Table = 4521 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4522 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4523 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4524 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4525 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4526 4527 SDValue Shift = 4528 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4529 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4530 DAG.getConstant(Table, DL, XLenVT), Shift); 4531 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4532 DAG.getConstant(7, DL, XLenVT)); 4533 4534 return DAG.getMergeValues({Masked, Chain}, DL); 4535 } 4536 4537 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4538 SelectionDAG &DAG) const { 4539 const MVT XLenVT = Subtarget.getXLenVT(); 4540 SDLoc DL(Op); 4541 SDValue Chain = Op->getOperand(0); 4542 SDValue RMValue = Op->getOperand(1); 4543 SDValue SysRegNo = DAG.getConstant( 4544 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4545 4546 // Encoding used for rounding mode in RISCV differs from that used in 4547 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4548 // a table, which consists of a sequence of 4-bit fields, each representing 4549 // corresponding RISCV mode. 4550 static const unsigned Table = 4551 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4552 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4553 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4554 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4555 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4556 4557 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4558 DAG.getConstant(2, DL, XLenVT)); 4559 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4560 DAG.getConstant(Table, DL, XLenVT), Shift); 4561 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4562 DAG.getConstant(0x7, DL, XLenVT)); 4563 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4564 RMValue); 4565 } 4566 4567 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4568 // form of the given Opcode. 4569 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4570 switch (Opcode) { 4571 default: 4572 llvm_unreachable("Unexpected opcode"); 4573 case ISD::SHL: 4574 return RISCVISD::SLLW; 4575 case ISD::SRA: 4576 return RISCVISD::SRAW; 4577 case ISD::SRL: 4578 return RISCVISD::SRLW; 4579 case ISD::SDIV: 4580 return RISCVISD::DIVW; 4581 case ISD::UDIV: 4582 return RISCVISD::DIVUW; 4583 case ISD::UREM: 4584 return RISCVISD::REMUW; 4585 case ISD::ROTL: 4586 return RISCVISD::ROLW; 4587 case ISD::ROTR: 4588 return RISCVISD::RORW; 4589 case RISCVISD::GREV: 4590 return RISCVISD::GREVW; 4591 case RISCVISD::GORC: 4592 return RISCVISD::GORCW; 4593 } 4594 } 4595 4596 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4597 // Because i32 isn't a legal type for RV64, these operations would otherwise 4598 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4599 // later one because the fact the operation was originally of type i32 is 4600 // lost. 4601 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4602 unsigned ExtOpc = ISD::ANY_EXTEND) { 4603 SDLoc DL(N); 4604 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4605 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4606 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4607 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4608 // ReplaceNodeResults requires we maintain the same type for the return value. 4609 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4610 } 4611 4612 // Converts the given 32-bit operation to a i64 operation with signed extension 4613 // semantic to reduce the signed extension instructions. 4614 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4615 SDLoc DL(N); 4616 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4617 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4618 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4619 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4620 DAG.getValueType(MVT::i32)); 4621 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4622 } 4623 4624 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4625 SmallVectorImpl<SDValue> &Results, 4626 SelectionDAG &DAG) const { 4627 SDLoc DL(N); 4628 switch (N->getOpcode()) { 4629 default: 4630 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4631 case ISD::STRICT_FP_TO_SINT: 4632 case ISD::STRICT_FP_TO_UINT: 4633 case ISD::FP_TO_SINT: 4634 case ISD::FP_TO_UINT: { 4635 bool IsStrict = N->isStrictFPOpcode(); 4636 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4637 "Unexpected custom legalisation"); 4638 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4639 // If the FP type needs to be softened, emit a library call using the 'si' 4640 // version. If we left it to default legalization we'd end up with 'di'. If 4641 // the FP type doesn't need to be softened just let generic type 4642 // legalization promote the result type. 4643 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4644 TargetLowering::TypeSoftenFloat) 4645 return; 4646 RTLIB::Libcall LC; 4647 if (N->getOpcode() == ISD::FP_TO_SINT || 4648 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4649 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4650 else 4651 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4652 MakeLibCallOptions CallOptions; 4653 EVT OpVT = Op0.getValueType(); 4654 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4655 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4656 SDValue Result; 4657 std::tie(Result, Chain) = 4658 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4659 Results.push_back(Result); 4660 if (IsStrict) 4661 Results.push_back(Chain); 4662 break; 4663 } 4664 case ISD::READCYCLECOUNTER: { 4665 assert(!Subtarget.is64Bit() && 4666 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4667 4668 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4669 SDValue RCW = 4670 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4671 4672 Results.push_back( 4673 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4674 Results.push_back(RCW.getValue(2)); 4675 break; 4676 } 4677 case ISD::MUL: { 4678 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4679 unsigned XLen = Subtarget.getXLen(); 4680 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4681 if (Size > XLen) { 4682 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4683 SDValue LHS = N->getOperand(0); 4684 SDValue RHS = N->getOperand(1); 4685 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4686 4687 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4688 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4689 // We need exactly one side to be unsigned. 4690 if (LHSIsU == RHSIsU) 4691 return; 4692 4693 auto MakeMULPair = [&](SDValue S, SDValue U) { 4694 MVT XLenVT = Subtarget.getXLenVT(); 4695 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4696 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4697 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4698 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4699 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4700 }; 4701 4702 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4703 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4704 4705 // The other operand should be signed, but still prefer MULH when 4706 // possible. 4707 if (RHSIsU && LHSIsS && !RHSIsS) 4708 Results.push_back(MakeMULPair(LHS, RHS)); 4709 else if (LHSIsU && RHSIsS && !LHSIsS) 4710 Results.push_back(MakeMULPair(RHS, LHS)); 4711 4712 return; 4713 } 4714 LLVM_FALLTHROUGH; 4715 } 4716 case ISD::ADD: 4717 case ISD::SUB: 4718 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4719 "Unexpected custom legalisation"); 4720 if (N->getOperand(1).getOpcode() == ISD::Constant) 4721 return; 4722 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4723 break; 4724 case ISD::SHL: 4725 case ISD::SRA: 4726 case ISD::SRL: 4727 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4728 "Unexpected custom legalisation"); 4729 if (N->getOperand(1).getOpcode() == ISD::Constant) 4730 return; 4731 Results.push_back(customLegalizeToWOp(N, DAG)); 4732 break; 4733 case ISD::ROTL: 4734 case ISD::ROTR: 4735 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4736 "Unexpected custom legalisation"); 4737 Results.push_back(customLegalizeToWOp(N, DAG)); 4738 break; 4739 case ISD::CTTZ: 4740 case ISD::CTTZ_ZERO_UNDEF: 4741 case ISD::CTLZ: 4742 case ISD::CTLZ_ZERO_UNDEF: { 4743 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4744 "Unexpected custom legalisation"); 4745 4746 SDValue NewOp0 = 4747 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4748 bool IsCTZ = 4749 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4750 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4751 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4752 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4753 return; 4754 } 4755 case ISD::SDIV: 4756 case ISD::UDIV: 4757 case ISD::UREM: { 4758 MVT VT = N->getSimpleValueType(0); 4759 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4760 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4761 "Unexpected custom legalisation"); 4762 if (N->getOperand(0).getOpcode() == ISD::Constant || 4763 N->getOperand(1).getOpcode() == ISD::Constant) 4764 return; 4765 4766 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4767 // the upper 32 bits. For other types we need to sign or zero extend 4768 // based on the opcode. 4769 unsigned ExtOpc = ISD::ANY_EXTEND; 4770 if (VT != MVT::i32) 4771 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4772 : ISD::ZERO_EXTEND; 4773 4774 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4775 break; 4776 } 4777 case ISD::UADDO: 4778 case ISD::USUBO: { 4779 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4780 "Unexpected custom legalisation"); 4781 bool IsAdd = N->getOpcode() == ISD::UADDO; 4782 // Create an ADDW or SUBW. 4783 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4784 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4785 SDValue Res = 4786 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4787 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4788 DAG.getValueType(MVT::i32)); 4789 4790 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4791 // Since the inputs are sign extended from i32, this is equivalent to 4792 // comparing the lower 32 bits. 4793 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4794 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4795 IsAdd ? ISD::SETULT : ISD::SETUGT); 4796 4797 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4798 Results.push_back(Overflow); 4799 return; 4800 } 4801 case ISD::UADDSAT: 4802 case ISD::USUBSAT: { 4803 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4804 "Unexpected custom legalisation"); 4805 if (Subtarget.hasStdExtZbb()) { 4806 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4807 // sign extend allows overflow of the lower 32 bits to be detected on 4808 // the promoted size. 4809 SDValue LHS = 4810 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4811 SDValue RHS = 4812 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4813 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4814 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4815 return; 4816 } 4817 4818 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4819 // promotion for UADDO/USUBO. 4820 Results.push_back(expandAddSubSat(N, DAG)); 4821 return; 4822 } 4823 case ISD::BITCAST: { 4824 EVT VT = N->getValueType(0); 4825 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4826 SDValue Op0 = N->getOperand(0); 4827 EVT Op0VT = Op0.getValueType(); 4828 MVT XLenVT = Subtarget.getXLenVT(); 4829 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4830 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4831 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4832 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4833 Subtarget.hasStdExtF()) { 4834 SDValue FPConv = 4835 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4836 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4837 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4838 isTypeLegal(Op0VT)) { 4839 // Custom-legalize bitcasts from fixed-length vector types to illegal 4840 // scalar types in order to improve codegen. Bitcast the vector to a 4841 // one-element vector type whose element type is the same as the result 4842 // type, and extract the first element. 4843 LLVMContext &Context = *DAG.getContext(); 4844 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4845 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4846 DAG.getConstant(0, DL, XLenVT))); 4847 } 4848 break; 4849 } 4850 case RISCVISD::GREV: 4851 case RISCVISD::GORC: { 4852 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4853 "Unexpected custom legalisation"); 4854 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4855 // This is similar to customLegalizeToWOp, except that we pass the second 4856 // operand (a TargetConstant) straight through: it is already of type 4857 // XLenVT. 4858 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4859 SDValue NewOp0 = 4860 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4861 SDValue NewOp1 = 4862 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4863 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4864 // ReplaceNodeResults requires we maintain the same type for the return 4865 // value. 4866 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4867 break; 4868 } 4869 case RISCVISD::SHFL: { 4870 // There is no SHFLIW instruction, but we can just promote the operation. 4871 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4872 "Unexpected custom legalisation"); 4873 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4874 SDValue NewOp0 = 4875 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4876 SDValue NewOp1 = 4877 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4878 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4879 // ReplaceNodeResults requires we maintain the same type for the return 4880 // value. 4881 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4882 break; 4883 } 4884 case ISD::BSWAP: 4885 case ISD::BITREVERSE: { 4886 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4887 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4888 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4889 N->getOperand(0)); 4890 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4891 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0, 4892 DAG.getConstant(Imm, DL, MVT::i64)); 4893 // ReplaceNodeResults requires we maintain the same type for the return 4894 // value. 4895 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4896 break; 4897 } 4898 case ISD::FSHL: 4899 case ISD::FSHR: { 4900 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4901 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4902 SDValue NewOp0 = 4903 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4904 SDValue NewOp1 = 4905 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4906 SDValue NewOp2 = 4907 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4908 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4909 // Mask the shift amount to 5 bits. 4910 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4911 DAG.getConstant(0x1f, DL, MVT::i64)); 4912 unsigned Opc = 4913 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4914 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4915 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4916 break; 4917 } 4918 case ISD::EXTRACT_VECTOR_ELT: { 4919 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4920 // type is illegal (currently only vXi64 RV32). 4921 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4922 // transferred to the destination register. We issue two of these from the 4923 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4924 // first element. 4925 SDValue Vec = N->getOperand(0); 4926 SDValue Idx = N->getOperand(1); 4927 4928 // The vector type hasn't been legalized yet so we can't issue target 4929 // specific nodes if it needs legalization. 4930 // FIXME: We would manually legalize if it's important. 4931 if (!isTypeLegal(Vec.getValueType())) 4932 return; 4933 4934 MVT VecVT = Vec.getSimpleValueType(); 4935 4936 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4937 VecVT.getVectorElementType() == MVT::i64 && 4938 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4939 4940 // If this is a fixed vector, we need to convert it to a scalable vector. 4941 MVT ContainerVT = VecVT; 4942 if (VecVT.isFixedLengthVector()) { 4943 ContainerVT = getContainerForFixedLengthVector(VecVT); 4944 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4945 } 4946 4947 MVT XLenVT = Subtarget.getXLenVT(); 4948 4949 // Use a VL of 1 to avoid processing more elements than we need. 4950 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4951 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4952 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4953 4954 // Unless the index is known to be 0, we must slide the vector down to get 4955 // the desired element into index 0. 4956 if (!isNullConstant(Idx)) { 4957 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4958 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4959 } 4960 4961 // Extract the lower XLEN bits of the correct vector element. 4962 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4963 4964 // To extract the upper XLEN bits of the vector element, shift the first 4965 // element right by 32 bits and re-extract the lower XLEN bits. 4966 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4967 DAG.getConstant(32, DL, XLenVT), VL); 4968 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4969 ThirtyTwoV, Mask, VL); 4970 4971 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4972 4973 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4974 break; 4975 } 4976 case ISD::INTRINSIC_WO_CHAIN: { 4977 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4978 switch (IntNo) { 4979 default: 4980 llvm_unreachable( 4981 "Don't know how to custom type legalize this intrinsic!"); 4982 case Intrinsic::riscv_orc_b: { 4983 // Lower to the GORCI encoding for orc.b with the operand extended. 4984 SDValue NewOp = 4985 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4986 // If Zbp is enabled, use GORCIW which will sign extend the result. 4987 unsigned Opc = 4988 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 4989 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4990 DAG.getConstant(7, DL, MVT::i64)); 4991 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4992 return; 4993 } 4994 case Intrinsic::riscv_grev: 4995 case Intrinsic::riscv_gorc: { 4996 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4997 "Unexpected custom legalisation"); 4998 SDValue NewOp1 = 4999 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5000 SDValue NewOp2 = 5001 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5002 unsigned Opc = 5003 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5004 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5005 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5006 break; 5007 } 5008 case Intrinsic::riscv_shfl: 5009 case Intrinsic::riscv_unshfl: { 5010 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5011 "Unexpected custom legalisation"); 5012 SDValue NewOp1 = 5013 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5014 SDValue NewOp2 = 5015 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5016 unsigned Opc = 5017 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5018 if (isa<ConstantSDNode>(N->getOperand(2))) { 5019 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5020 DAG.getConstant(0xf, DL, MVT::i64)); 5021 Opc = 5022 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5023 } 5024 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5025 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5026 break; 5027 } 5028 case Intrinsic::riscv_bcompress: 5029 case Intrinsic::riscv_bdecompress: { 5030 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5031 "Unexpected custom legalisation"); 5032 SDValue NewOp1 = 5033 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5034 SDValue NewOp2 = 5035 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5036 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5037 ? RISCVISD::BCOMPRESSW 5038 : RISCVISD::BDECOMPRESSW; 5039 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5040 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5041 break; 5042 } 5043 case Intrinsic::riscv_vmv_x_s: { 5044 EVT VT = N->getValueType(0); 5045 MVT XLenVT = Subtarget.getXLenVT(); 5046 if (VT.bitsLT(XLenVT)) { 5047 // Simple case just extract using vmv.x.s and truncate. 5048 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5049 Subtarget.getXLenVT(), N->getOperand(1)); 5050 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5051 return; 5052 } 5053 5054 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5055 "Unexpected custom legalization"); 5056 5057 // We need to do the move in two steps. 5058 SDValue Vec = N->getOperand(1); 5059 MVT VecVT = Vec.getSimpleValueType(); 5060 5061 // First extract the lower XLEN bits of the element. 5062 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5063 5064 // To extract the upper XLEN bits of the vector element, shift the first 5065 // element right by 32 bits and re-extract the lower XLEN bits. 5066 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5067 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5068 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5069 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5070 DAG.getConstant(32, DL, XLenVT), VL); 5071 SDValue LShr32 = 5072 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5073 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5074 5075 Results.push_back( 5076 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5077 break; 5078 } 5079 } 5080 break; 5081 } 5082 case ISD::VECREDUCE_ADD: 5083 case ISD::VECREDUCE_AND: 5084 case ISD::VECREDUCE_OR: 5085 case ISD::VECREDUCE_XOR: 5086 case ISD::VECREDUCE_SMAX: 5087 case ISD::VECREDUCE_UMAX: 5088 case ISD::VECREDUCE_SMIN: 5089 case ISD::VECREDUCE_UMIN: 5090 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5091 Results.push_back(V); 5092 break; 5093 case ISD::FLT_ROUNDS_: { 5094 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5095 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5096 Results.push_back(Res.getValue(0)); 5097 Results.push_back(Res.getValue(1)); 5098 break; 5099 } 5100 } 5101 } 5102 5103 // A structure to hold one of the bit-manipulation patterns below. Together, a 5104 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5105 // (or (and (shl x, 1), 0xAAAAAAAA), 5106 // (and (srl x, 1), 0x55555555)) 5107 struct RISCVBitmanipPat { 5108 SDValue Op; 5109 unsigned ShAmt; 5110 bool IsSHL; 5111 5112 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5113 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5114 } 5115 }; 5116 5117 // Matches patterns of the form 5118 // (and (shl x, C2), (C1 << C2)) 5119 // (and (srl x, C2), C1) 5120 // (shl (and x, C1), C2) 5121 // (srl (and x, (C1 << C2)), C2) 5122 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5123 // The expected masks for each shift amount are specified in BitmanipMasks where 5124 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5125 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5126 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5127 // XLen is 64. 5128 static Optional<RISCVBitmanipPat> 5129 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5130 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5131 "Unexpected number of masks"); 5132 Optional<uint64_t> Mask; 5133 // Optionally consume a mask around the shift operation. 5134 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5135 Mask = Op.getConstantOperandVal(1); 5136 Op = Op.getOperand(0); 5137 } 5138 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5139 return None; 5140 bool IsSHL = Op.getOpcode() == ISD::SHL; 5141 5142 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5143 return None; 5144 uint64_t ShAmt = Op.getConstantOperandVal(1); 5145 5146 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5147 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 5148 return None; 5149 // If we don't have enough masks for 64 bit, then we must be trying to 5150 // match SHFL so we're only allowed to shift 1/4 of the width. 5151 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5152 return None; 5153 5154 SDValue Src = Op.getOperand(0); 5155 5156 // The expected mask is shifted left when the AND is found around SHL 5157 // patterns. 5158 // ((x >> 1) & 0x55555555) 5159 // ((x << 1) & 0xAAAAAAAA) 5160 bool SHLExpMask = IsSHL; 5161 5162 if (!Mask) { 5163 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5164 // the mask is all ones: consume that now. 5165 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5166 Mask = Src.getConstantOperandVal(1); 5167 Src = Src.getOperand(0); 5168 // The expected mask is now in fact shifted left for SRL, so reverse the 5169 // decision. 5170 // ((x & 0xAAAAAAAA) >> 1) 5171 // ((x & 0x55555555) << 1) 5172 SHLExpMask = !SHLExpMask; 5173 } else { 5174 // Use a default shifted mask of all-ones if there's no AND, truncated 5175 // down to the expected width. This simplifies the logic later on. 5176 Mask = maskTrailingOnes<uint64_t>(Width); 5177 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5178 } 5179 } 5180 5181 unsigned MaskIdx = Log2_32(ShAmt); 5182 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5183 5184 if (SHLExpMask) 5185 ExpMask <<= ShAmt; 5186 5187 if (Mask != ExpMask) 5188 return None; 5189 5190 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5191 } 5192 5193 // Matches any of the following bit-manipulation patterns: 5194 // (and (shl x, 1), (0x55555555 << 1)) 5195 // (and (srl x, 1), 0x55555555) 5196 // (shl (and x, 0x55555555), 1) 5197 // (srl (and x, (0x55555555 << 1)), 1) 5198 // where the shift amount and mask may vary thus: 5199 // [1] = 0x55555555 / 0xAAAAAAAA 5200 // [2] = 0x33333333 / 0xCCCCCCCC 5201 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5202 // [8] = 0x00FF00FF / 0xFF00FF00 5203 // [16] = 0x0000FFFF / 0xFFFFFFFF 5204 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5205 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5206 // These are the unshifted masks which we use to match bit-manipulation 5207 // patterns. They may be shifted left in certain circumstances. 5208 static const uint64_t BitmanipMasks[] = { 5209 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5210 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5211 5212 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5213 } 5214 5215 // Match the following pattern as a GREVI(W) operation 5216 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5217 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5218 const RISCVSubtarget &Subtarget) { 5219 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5220 EVT VT = Op.getValueType(); 5221 5222 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5223 auto LHS = matchGREVIPat(Op.getOperand(0)); 5224 auto RHS = matchGREVIPat(Op.getOperand(1)); 5225 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5226 SDLoc DL(Op); 5227 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5228 DAG.getConstant(LHS->ShAmt, DL, VT)); 5229 } 5230 } 5231 return SDValue(); 5232 } 5233 5234 // Matches any the following pattern as a GORCI(W) operation 5235 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5236 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5237 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5238 // Note that with the variant of 3., 5239 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5240 // the inner pattern will first be matched as GREVI and then the outer 5241 // pattern will be matched to GORC via the first rule above. 5242 // 4. (or (rotl/rotr x, bitwidth/2), x) 5243 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5244 const RISCVSubtarget &Subtarget) { 5245 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5246 EVT VT = Op.getValueType(); 5247 5248 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5249 SDLoc DL(Op); 5250 SDValue Op0 = Op.getOperand(0); 5251 SDValue Op1 = Op.getOperand(1); 5252 5253 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5254 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5255 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5256 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5257 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5258 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5259 if ((Reverse.getOpcode() == ISD::ROTL || 5260 Reverse.getOpcode() == ISD::ROTR) && 5261 Reverse.getOperand(0) == X && 5262 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5263 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5264 if (RotAmt == (VT.getSizeInBits() / 2)) 5265 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5266 DAG.getConstant(RotAmt, DL, VT)); 5267 } 5268 return SDValue(); 5269 }; 5270 5271 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5272 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5273 return V; 5274 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5275 return V; 5276 5277 // OR is commutable so canonicalize its OR operand to the left 5278 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5279 std::swap(Op0, Op1); 5280 if (Op0.getOpcode() != ISD::OR) 5281 return SDValue(); 5282 SDValue OrOp0 = Op0.getOperand(0); 5283 SDValue OrOp1 = Op0.getOperand(1); 5284 auto LHS = matchGREVIPat(OrOp0); 5285 // OR is commutable so swap the operands and try again: x might have been 5286 // on the left 5287 if (!LHS) { 5288 std::swap(OrOp0, OrOp1); 5289 LHS = matchGREVIPat(OrOp0); 5290 } 5291 auto RHS = matchGREVIPat(Op1); 5292 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5293 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5294 DAG.getConstant(LHS->ShAmt, DL, VT)); 5295 } 5296 } 5297 return SDValue(); 5298 } 5299 5300 // Matches any of the following bit-manipulation patterns: 5301 // (and (shl x, 1), (0x22222222 << 1)) 5302 // (and (srl x, 1), 0x22222222) 5303 // (shl (and x, 0x22222222), 1) 5304 // (srl (and x, (0x22222222 << 1)), 1) 5305 // where the shift amount and mask may vary thus: 5306 // [1] = 0x22222222 / 0x44444444 5307 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5308 // [4] = 0x00F000F0 / 0x0F000F00 5309 // [8] = 0x0000FF00 / 0x00FF0000 5310 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5311 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5312 // These are the unshifted masks which we use to match bit-manipulation 5313 // patterns. They may be shifted left in certain circumstances. 5314 static const uint64_t BitmanipMasks[] = { 5315 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5316 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5317 5318 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5319 } 5320 5321 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5322 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5323 const RISCVSubtarget &Subtarget) { 5324 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5325 EVT VT = Op.getValueType(); 5326 5327 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5328 return SDValue(); 5329 5330 SDValue Op0 = Op.getOperand(0); 5331 SDValue Op1 = Op.getOperand(1); 5332 5333 // Or is commutable so canonicalize the second OR to the LHS. 5334 if (Op0.getOpcode() != ISD::OR) 5335 std::swap(Op0, Op1); 5336 if (Op0.getOpcode() != ISD::OR) 5337 return SDValue(); 5338 5339 // We found an inner OR, so our operands are the operands of the inner OR 5340 // and the other operand of the outer OR. 5341 SDValue A = Op0.getOperand(0); 5342 SDValue B = Op0.getOperand(1); 5343 SDValue C = Op1; 5344 5345 auto Match1 = matchSHFLPat(A); 5346 auto Match2 = matchSHFLPat(B); 5347 5348 // If neither matched, we failed. 5349 if (!Match1 && !Match2) 5350 return SDValue(); 5351 5352 // We had at least one match. if one failed, try the remaining C operand. 5353 if (!Match1) { 5354 std::swap(A, C); 5355 Match1 = matchSHFLPat(A); 5356 if (!Match1) 5357 return SDValue(); 5358 } else if (!Match2) { 5359 std::swap(B, C); 5360 Match2 = matchSHFLPat(B); 5361 if (!Match2) 5362 return SDValue(); 5363 } 5364 assert(Match1 && Match2); 5365 5366 // Make sure our matches pair up. 5367 if (!Match1->formsPairWith(*Match2)) 5368 return SDValue(); 5369 5370 // All the remains is to make sure C is an AND with the same input, that masks 5371 // out the bits that are being shuffled. 5372 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5373 C.getOperand(0) != Match1->Op) 5374 return SDValue(); 5375 5376 uint64_t Mask = C.getConstantOperandVal(1); 5377 5378 static const uint64_t BitmanipMasks[] = { 5379 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5380 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5381 }; 5382 5383 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5384 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5385 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5386 5387 if (Mask != ExpMask) 5388 return SDValue(); 5389 5390 SDLoc DL(Op); 5391 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5392 DAG.getConstant(Match1->ShAmt, DL, VT)); 5393 } 5394 5395 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5396 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5397 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5398 // not undo itself, but they are redundant. 5399 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5400 SDValue Src = N->getOperand(0); 5401 5402 if (Src.getOpcode() != N->getOpcode()) 5403 return SDValue(); 5404 5405 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5406 !isa<ConstantSDNode>(Src.getOperand(1))) 5407 return SDValue(); 5408 5409 unsigned ShAmt1 = N->getConstantOperandVal(1); 5410 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5411 Src = Src.getOperand(0); 5412 5413 unsigned CombinedShAmt; 5414 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5415 CombinedShAmt = ShAmt1 | ShAmt2; 5416 else 5417 CombinedShAmt = ShAmt1 ^ ShAmt2; 5418 5419 if (CombinedShAmt == 0) 5420 return Src; 5421 5422 SDLoc DL(N); 5423 return DAG.getNode( 5424 N->getOpcode(), DL, N->getValueType(0), Src, 5425 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5426 } 5427 5428 // Combine a constant select operand into its use: 5429 // 5430 // (and (select_cc lhs, rhs, cc, -1, c), x) 5431 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5432 // (or (select_cc lhs, rhs, cc, 0, c), x) 5433 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5434 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5435 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5436 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5437 SelectionDAG &DAG, bool AllOnes) { 5438 EVT VT = N->getValueType(0); 5439 5440 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5441 return SDValue(); 5442 5443 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5444 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5445 }; 5446 5447 bool SwapSelectOps; 5448 SDValue TrueVal = Slct.getOperand(3); 5449 SDValue FalseVal = Slct.getOperand(4); 5450 SDValue NonConstantVal; 5451 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5452 SwapSelectOps = false; 5453 NonConstantVal = FalseVal; 5454 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5455 SwapSelectOps = true; 5456 NonConstantVal = TrueVal; 5457 } else 5458 return SDValue(); 5459 5460 // Slct is now know to be the desired identity constant when CC is true. 5461 TrueVal = OtherOp; 5462 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5463 // Unless SwapSelectOps says CC should be false. 5464 if (SwapSelectOps) 5465 std::swap(TrueVal, FalseVal); 5466 5467 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5468 {Slct.getOperand(0), Slct.getOperand(1), 5469 Slct.getOperand(2), TrueVal, FalseVal}); 5470 } 5471 5472 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5473 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5474 bool AllOnes) { 5475 SDValue N0 = N->getOperand(0); 5476 SDValue N1 = N->getOperand(1); 5477 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5478 return Result; 5479 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5480 return Result; 5481 return SDValue(); 5482 } 5483 5484 static SDValue performANDCombine(SDNode *N, 5485 TargetLowering::DAGCombinerInfo &DCI, 5486 const RISCVSubtarget &Subtarget) { 5487 SelectionDAG &DAG = DCI.DAG; 5488 5489 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5490 // (select lhs, rhs, cc, x, (and x, y)) 5491 return combineSelectCCAndUseCommutative(N, DAG, true); 5492 } 5493 5494 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5495 const RISCVSubtarget &Subtarget) { 5496 SelectionDAG &DAG = DCI.DAG; 5497 if (Subtarget.hasStdExtZbp()) { 5498 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5499 return GREV; 5500 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5501 return GORC; 5502 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5503 return SHFL; 5504 } 5505 5506 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5507 // (select lhs, rhs, cc, x, (or x, y)) 5508 return combineSelectCCAndUseCommutative(N, DAG, false); 5509 } 5510 5511 static SDValue performXORCombine(SDNode *N, 5512 TargetLowering::DAGCombinerInfo &DCI, 5513 const RISCVSubtarget &Subtarget) { 5514 SelectionDAG &DAG = DCI.DAG; 5515 5516 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5517 // (select lhs, rhs, cc, x, (xor x, y)) 5518 return combineSelectCCAndUseCommutative(N, DAG, false); 5519 } 5520 5521 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5522 DAGCombinerInfo &DCI) const { 5523 SelectionDAG &DAG = DCI.DAG; 5524 5525 switch (N->getOpcode()) { 5526 default: 5527 break; 5528 case RISCVISD::SplitF64: { 5529 SDValue Op0 = N->getOperand(0); 5530 // If the input to SplitF64 is just BuildPairF64 then the operation is 5531 // redundant. Instead, use BuildPairF64's operands directly. 5532 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5533 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5534 5535 SDLoc DL(N); 5536 5537 // It's cheaper to materialise two 32-bit integers than to load a double 5538 // from the constant pool and transfer it to integer registers through the 5539 // stack. 5540 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5541 APInt V = C->getValueAPF().bitcastToAPInt(); 5542 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5543 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5544 return DCI.CombineTo(N, Lo, Hi); 5545 } 5546 5547 // This is a target-specific version of a DAGCombine performed in 5548 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5549 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5550 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5551 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5552 !Op0.getNode()->hasOneUse()) 5553 break; 5554 SDValue NewSplitF64 = 5555 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5556 Op0.getOperand(0)); 5557 SDValue Lo = NewSplitF64.getValue(0); 5558 SDValue Hi = NewSplitF64.getValue(1); 5559 APInt SignBit = APInt::getSignMask(32); 5560 if (Op0.getOpcode() == ISD::FNEG) { 5561 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5562 DAG.getConstant(SignBit, DL, MVT::i32)); 5563 return DCI.CombineTo(N, Lo, NewHi); 5564 } 5565 assert(Op0.getOpcode() == ISD::FABS); 5566 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5567 DAG.getConstant(~SignBit, DL, MVT::i32)); 5568 return DCI.CombineTo(N, Lo, NewHi); 5569 } 5570 case RISCVISD::SLLW: 5571 case RISCVISD::SRAW: 5572 case RISCVISD::SRLW: 5573 case RISCVISD::ROLW: 5574 case RISCVISD::RORW: { 5575 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5576 SDValue LHS = N->getOperand(0); 5577 SDValue RHS = N->getOperand(1); 5578 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5579 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5580 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5581 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5582 if (N->getOpcode() != ISD::DELETED_NODE) 5583 DCI.AddToWorklist(N); 5584 return SDValue(N, 0); 5585 } 5586 break; 5587 } 5588 case RISCVISD::CLZW: 5589 case RISCVISD::CTZW: { 5590 // Only the lower 32 bits of the first operand are read 5591 SDValue Op0 = N->getOperand(0); 5592 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5593 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5594 if (N->getOpcode() != ISD::DELETED_NODE) 5595 DCI.AddToWorklist(N); 5596 return SDValue(N, 0); 5597 } 5598 break; 5599 } 5600 case RISCVISD::FSL: 5601 case RISCVISD::FSR: { 5602 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5603 SDValue ShAmt = N->getOperand(2); 5604 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5605 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5606 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5607 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5608 if (N->getOpcode() != ISD::DELETED_NODE) 5609 DCI.AddToWorklist(N); 5610 return SDValue(N, 0); 5611 } 5612 break; 5613 } 5614 case RISCVISD::FSLW: 5615 case RISCVISD::FSRW: { 5616 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5617 // read. 5618 SDValue Op0 = N->getOperand(0); 5619 SDValue Op1 = N->getOperand(1); 5620 SDValue ShAmt = N->getOperand(2); 5621 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5622 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5623 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5624 SimplifyDemandedBits(Op1, OpMask, DCI) || 5625 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5626 if (N->getOpcode() != ISD::DELETED_NODE) 5627 DCI.AddToWorklist(N); 5628 return SDValue(N, 0); 5629 } 5630 break; 5631 } 5632 case RISCVISD::GREV: 5633 case RISCVISD::GORC: { 5634 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5635 SDValue ShAmt = N->getOperand(1); 5636 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5637 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5638 APInt ShAmtMask(BitWidth, BitWidth - 1); 5639 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5640 if (N->getOpcode() != ISD::DELETED_NODE) 5641 DCI.AddToWorklist(N); 5642 return SDValue(N, 0); 5643 } 5644 5645 return combineGREVI_GORCI(N, DCI.DAG); 5646 } 5647 case RISCVISD::GREVW: 5648 case RISCVISD::GORCW: { 5649 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5650 SDValue LHS = N->getOperand(0); 5651 SDValue RHS = N->getOperand(1); 5652 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5653 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5654 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5655 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5656 if (N->getOpcode() != ISD::DELETED_NODE) 5657 DCI.AddToWorklist(N); 5658 return SDValue(N, 0); 5659 } 5660 5661 return combineGREVI_GORCI(N, DCI.DAG); 5662 } 5663 case RISCVISD::SHFL: 5664 case RISCVISD::UNSHFL: { 5665 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5666 SDValue ShAmt = N->getOperand(1); 5667 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5668 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5669 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5670 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5671 if (N->getOpcode() != ISD::DELETED_NODE) 5672 DCI.AddToWorklist(N); 5673 return SDValue(N, 0); 5674 } 5675 5676 break; 5677 } 5678 case RISCVISD::SHFLW: 5679 case RISCVISD::UNSHFLW: { 5680 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5681 SDValue LHS = N->getOperand(0); 5682 SDValue RHS = N->getOperand(1); 5683 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5684 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5685 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5686 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5687 if (N->getOpcode() != ISD::DELETED_NODE) 5688 DCI.AddToWorklist(N); 5689 return SDValue(N, 0); 5690 } 5691 5692 break; 5693 } 5694 case RISCVISD::BCOMPRESSW: 5695 case RISCVISD::BDECOMPRESSW: { 5696 // Only the lower 32 bits of LHS and RHS are read. 5697 SDValue LHS = N->getOperand(0); 5698 SDValue RHS = N->getOperand(1); 5699 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5700 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5701 SimplifyDemandedBits(RHS, Mask, DCI)) { 5702 if (N->getOpcode() != ISD::DELETED_NODE) 5703 DCI.AddToWorklist(N); 5704 return SDValue(N, 0); 5705 } 5706 5707 break; 5708 } 5709 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5710 SDLoc DL(N); 5711 SDValue Op0 = N->getOperand(0); 5712 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5713 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5714 // of the FMV_W_X_RV64 operand. 5715 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5716 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5717 "Unexpected value type!"); 5718 return Op0.getOperand(0); 5719 } 5720 5721 // This is a target-specific version of a DAGCombine performed in 5722 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5723 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5724 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5725 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5726 !Op0.getNode()->hasOneUse()) 5727 break; 5728 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5729 Op0.getOperand(0)); 5730 APInt SignBit = APInt::getSignMask(32).sext(64); 5731 if (Op0.getOpcode() == ISD::FNEG) 5732 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5733 DAG.getConstant(SignBit, DL, MVT::i64)); 5734 5735 assert(Op0.getOpcode() == ISD::FABS); 5736 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5737 DAG.getConstant(~SignBit, DL, MVT::i64)); 5738 } 5739 case ISD::AND: 5740 return performANDCombine(N, DCI, Subtarget); 5741 case ISD::OR: 5742 return performORCombine(N, DCI, Subtarget); 5743 case ISD::XOR: 5744 return performXORCombine(N, DCI, Subtarget); 5745 case RISCVISD::SELECT_CC: { 5746 // Transform 5747 SDValue LHS = N->getOperand(0); 5748 SDValue RHS = N->getOperand(1); 5749 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5750 if (!ISD::isIntEqualitySetCC(CCVal)) 5751 break; 5752 5753 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5754 // (select_cc X, Y, lt, trueV, falseV) 5755 // Sometimes the setcc is introduced after select_cc has been formed. 5756 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5757 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5758 // If we're looking for eq 0 instead of ne 0, we need to invert the 5759 // condition. 5760 bool Invert = CCVal == ISD::SETEQ; 5761 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5762 if (Invert) 5763 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5764 5765 SDLoc DL(N); 5766 RHS = LHS.getOperand(1); 5767 LHS = LHS.getOperand(0); 5768 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5769 5770 SDValue TargetCC = 5771 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5772 return DAG.getNode( 5773 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5774 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5775 } 5776 5777 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5778 // (select_cc X, Y, eq/ne, trueV, falseV) 5779 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5780 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5781 {LHS.getOperand(0), LHS.getOperand(1), 5782 N->getOperand(2), N->getOperand(3), 5783 N->getOperand(4)}); 5784 // (select_cc X, 1, setne, trueV, falseV) -> 5785 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5786 // This can occur when legalizing some floating point comparisons. 5787 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5788 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5789 SDLoc DL(N); 5790 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5791 SDValue TargetCC = 5792 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5793 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5794 return DAG.getNode( 5795 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5796 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5797 } 5798 5799 break; 5800 } 5801 case RISCVISD::BR_CC: { 5802 SDValue LHS = N->getOperand(1); 5803 SDValue RHS = N->getOperand(2); 5804 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5805 if (!ISD::isIntEqualitySetCC(CCVal)) 5806 break; 5807 5808 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5809 // (br_cc X, Y, lt, dest) 5810 // Sometimes the setcc is introduced after br_cc has been formed. 5811 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5812 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5813 // If we're looking for eq 0 instead of ne 0, we need to invert the 5814 // condition. 5815 bool Invert = CCVal == ISD::SETEQ; 5816 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5817 if (Invert) 5818 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5819 5820 SDLoc DL(N); 5821 RHS = LHS.getOperand(1); 5822 LHS = LHS.getOperand(0); 5823 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5824 5825 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5826 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5827 N->getOperand(4)); 5828 } 5829 5830 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5831 // (br_cc X, Y, eq/ne, trueV, falseV) 5832 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5833 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5834 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5835 N->getOperand(3), N->getOperand(4)); 5836 5837 // (br_cc X, 1, setne, br_cc) -> 5838 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5839 // This can occur when legalizing some floating point comparisons. 5840 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5841 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5842 SDLoc DL(N); 5843 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5844 SDValue TargetCC = DAG.getCondCode(CCVal); 5845 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5846 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5847 N->getOperand(0), LHS, RHS, TargetCC, 5848 N->getOperand(4)); 5849 } 5850 break; 5851 } 5852 case ISD::FCOPYSIGN: { 5853 EVT VT = N->getValueType(0); 5854 if (!VT.isVector()) 5855 break; 5856 // There is a form of VFSGNJ which injects the negated sign of its second 5857 // operand. Try and bubble any FNEG up after the extend/round to produce 5858 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5859 // TRUNC=1. 5860 SDValue In2 = N->getOperand(1); 5861 // Avoid cases where the extend/round has multiple uses, as duplicating 5862 // those is typically more expensive than removing a fneg. 5863 if (!In2.hasOneUse()) 5864 break; 5865 if (In2.getOpcode() != ISD::FP_EXTEND && 5866 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5867 break; 5868 In2 = In2.getOperand(0); 5869 if (In2.getOpcode() != ISD::FNEG) 5870 break; 5871 SDLoc DL(N); 5872 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5873 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5874 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5875 } 5876 case ISD::MGATHER: 5877 case ISD::MSCATTER: { 5878 if (!DCI.isBeforeLegalize()) 5879 break; 5880 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5881 SDValue Index = MGSN->getIndex(); 5882 EVT IndexVT = Index.getValueType(); 5883 MVT XLenVT = Subtarget.getXLenVT(); 5884 // RISCV indexed loads only support the "unsigned unscaled" addressing 5885 // mode, so anything else must be manually legalized. 5886 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5887 (MGSN->isIndexSigned() && 5888 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5889 if (!NeedsIdxLegalization) 5890 break; 5891 5892 SDLoc DL(N); 5893 5894 // Any index legalization should first promote to XLenVT, so we don't lose 5895 // bits when scaling. This may create an illegal index type so we let 5896 // LLVM's legalization take care of the splitting. 5897 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5898 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5899 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5900 : ISD::ZERO_EXTEND, 5901 DL, IndexVT, Index); 5902 } 5903 5904 unsigned Scale = N->getConstantOperandVal(5); 5905 if (MGSN->isIndexScaled() && Scale != 1) { 5906 // Manually scale the indices by the element size. 5907 // TODO: Sanitize the scale operand here? 5908 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5909 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5910 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5911 } 5912 5913 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5914 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5915 return DAG.getMaskedGather( 5916 N->getVTList(), MGSN->getMemoryVT(), DL, 5917 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5918 MGSN->getBasePtr(), Index, MGN->getScale()}, 5919 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5920 } 5921 const auto *MSN = cast<MaskedScatterSDNode>(N); 5922 return DAG.getMaskedScatter( 5923 N->getVTList(), MGSN->getMemoryVT(), DL, 5924 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5925 Index, MGSN->getScale()}, 5926 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5927 } 5928 } 5929 5930 return SDValue(); 5931 } 5932 5933 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5934 const SDNode *N, CombineLevel Level) const { 5935 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5936 // materialised in fewer instructions than `(OP _, c1)`: 5937 // 5938 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5939 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5940 SDValue N0 = N->getOperand(0); 5941 EVT Ty = N0.getValueType(); 5942 if (Ty.isScalarInteger() && 5943 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5944 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5945 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5946 if (C1 && C2) { 5947 const APInt &C1Int = C1->getAPIntValue(); 5948 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5949 5950 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5951 // and the combine should happen, to potentially allow further combines 5952 // later. 5953 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5954 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5955 return true; 5956 5957 // We can materialise `c1` in an add immediate, so it's "free", and the 5958 // combine should be prevented. 5959 if (C1Int.getMinSignedBits() <= 64 && 5960 isLegalAddImmediate(C1Int.getSExtValue())) 5961 return false; 5962 5963 // Neither constant will fit into an immediate, so find materialisation 5964 // costs. 5965 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5966 Subtarget.is64Bit()); 5967 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5968 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5969 5970 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5971 // combine should be prevented. 5972 if (C1Cost < ShiftedC1Cost) 5973 return false; 5974 } 5975 } 5976 return true; 5977 } 5978 5979 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5980 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5981 TargetLoweringOpt &TLO) const { 5982 // Delay this optimization as late as possible. 5983 if (!TLO.LegalOps) 5984 return false; 5985 5986 EVT VT = Op.getValueType(); 5987 if (VT.isVector()) 5988 return false; 5989 5990 // Only handle AND for now. 5991 if (Op.getOpcode() != ISD::AND) 5992 return false; 5993 5994 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5995 if (!C) 5996 return false; 5997 5998 const APInt &Mask = C->getAPIntValue(); 5999 6000 // Clear all non-demanded bits initially. 6001 APInt ShrunkMask = Mask & DemandedBits; 6002 6003 // Try to make a smaller immediate by setting undemanded bits. 6004 6005 APInt ExpandedMask = Mask | ~DemandedBits; 6006 6007 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6008 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6009 }; 6010 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6011 if (NewMask == Mask) 6012 return true; 6013 SDLoc DL(Op); 6014 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6015 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6016 return TLO.CombineTo(Op, NewOp); 6017 }; 6018 6019 // If the shrunk mask fits in sign extended 12 bits, let the target 6020 // independent code apply it. 6021 if (ShrunkMask.isSignedIntN(12)) 6022 return false; 6023 6024 // Preserve (and X, 0xffff) when zext.h is supported. 6025 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6026 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6027 if (IsLegalMask(NewMask)) 6028 return UseMask(NewMask); 6029 } 6030 6031 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6032 if (VT == MVT::i64) { 6033 APInt NewMask = APInt(64, 0xffffffff); 6034 if (IsLegalMask(NewMask)) 6035 return UseMask(NewMask); 6036 } 6037 6038 // For the remaining optimizations, we need to be able to make a negative 6039 // number through a combination of mask and undemanded bits. 6040 if (!ExpandedMask.isNegative()) 6041 return false; 6042 6043 // What is the fewest number of bits we need to represent the negative number. 6044 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6045 6046 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6047 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6048 APInt NewMask = ShrunkMask; 6049 if (MinSignedBits <= 12) 6050 NewMask.setBitsFrom(11); 6051 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6052 NewMask.setBitsFrom(31); 6053 else 6054 return false; 6055 6056 // Sanity check that our new mask is a subset of the demanded mask. 6057 assert(IsLegalMask(NewMask)); 6058 return UseMask(NewMask); 6059 } 6060 6061 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6062 KnownBits &Known, 6063 const APInt &DemandedElts, 6064 const SelectionDAG &DAG, 6065 unsigned Depth) const { 6066 unsigned BitWidth = Known.getBitWidth(); 6067 unsigned Opc = Op.getOpcode(); 6068 assert((Opc >= ISD::BUILTIN_OP_END || 6069 Opc == ISD::INTRINSIC_WO_CHAIN || 6070 Opc == ISD::INTRINSIC_W_CHAIN || 6071 Opc == ISD::INTRINSIC_VOID) && 6072 "Should use MaskedValueIsZero if you don't know whether Op" 6073 " is a target node!"); 6074 6075 Known.resetAll(); 6076 switch (Opc) { 6077 default: break; 6078 case RISCVISD::SELECT_CC: { 6079 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6080 // If we don't know any bits, early out. 6081 if (Known.isUnknown()) 6082 break; 6083 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6084 6085 // Only known if known in both the LHS and RHS. 6086 Known = KnownBits::commonBits(Known, Known2); 6087 break; 6088 } 6089 case RISCVISD::REMUW: { 6090 KnownBits Known2; 6091 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6092 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6093 // We only care about the lower 32 bits. 6094 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6095 // Restore the original width by sign extending. 6096 Known = Known.sext(BitWidth); 6097 break; 6098 } 6099 case RISCVISD::DIVUW: { 6100 KnownBits Known2; 6101 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6102 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6103 // We only care about the lower 32 bits. 6104 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6105 // Restore the original width by sign extending. 6106 Known = Known.sext(BitWidth); 6107 break; 6108 } 6109 case RISCVISD::CTZW: { 6110 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6111 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6112 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6113 Known.Zero.setBitsFrom(LowBits); 6114 break; 6115 } 6116 case RISCVISD::CLZW: { 6117 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6118 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6119 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6120 Known.Zero.setBitsFrom(LowBits); 6121 break; 6122 } 6123 case RISCVISD::READ_VLENB: 6124 // We assume VLENB is at least 16 bytes. 6125 Known.Zero.setLowBits(4); 6126 break; 6127 case ISD::INTRINSIC_W_CHAIN: { 6128 unsigned IntNo = Op.getConstantOperandVal(1); 6129 switch (IntNo) { 6130 default: 6131 // We can't do anything for most intrinsics. 6132 break; 6133 case Intrinsic::riscv_vsetvli: 6134 case Intrinsic::riscv_vsetvlimax: 6135 // Assume that VL output is positive and would fit in an int32_t. 6136 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6137 if (BitWidth >= 32) 6138 Known.Zero.setBitsFrom(31); 6139 break; 6140 } 6141 break; 6142 } 6143 } 6144 } 6145 6146 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6147 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6148 unsigned Depth) const { 6149 switch (Op.getOpcode()) { 6150 default: 6151 break; 6152 case RISCVISD::SLLW: 6153 case RISCVISD::SRAW: 6154 case RISCVISD::SRLW: 6155 case RISCVISD::DIVW: 6156 case RISCVISD::DIVUW: 6157 case RISCVISD::REMUW: 6158 case RISCVISD::ROLW: 6159 case RISCVISD::RORW: 6160 case RISCVISD::GREVW: 6161 case RISCVISD::GORCW: 6162 case RISCVISD::FSLW: 6163 case RISCVISD::FSRW: 6164 case RISCVISD::SHFLW: 6165 case RISCVISD::UNSHFLW: 6166 case RISCVISD::BCOMPRESSW: 6167 case RISCVISD::BDECOMPRESSW: 6168 // TODO: As the result is sign-extended, this is conservatively correct. A 6169 // more precise answer could be calculated for SRAW depending on known 6170 // bits in the shift amount. 6171 return 33; 6172 case RISCVISD::SHFL: 6173 case RISCVISD::UNSHFL: { 6174 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6175 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6176 // will stay within the upper 32 bits. If there were more than 32 sign bits 6177 // before there will be at least 33 sign bits after. 6178 if (Op.getValueType() == MVT::i64 && 6179 isa<ConstantSDNode>(Op.getOperand(1)) && 6180 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6181 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6182 if (Tmp > 32) 6183 return 33; 6184 } 6185 break; 6186 } 6187 case RISCVISD::VMV_X_S: 6188 // The number of sign bits of the scalar result is computed by obtaining the 6189 // element type of the input vector operand, subtracting its width from the 6190 // XLEN, and then adding one (sign bit within the element type). If the 6191 // element type is wider than XLen, the least-significant XLEN bits are 6192 // taken. 6193 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6194 return 1; 6195 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6196 } 6197 6198 return 1; 6199 } 6200 6201 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6202 MachineBasicBlock *BB) { 6203 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6204 6205 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6206 // Should the count have wrapped while it was being read, we need to try 6207 // again. 6208 // ... 6209 // read: 6210 // rdcycleh x3 # load high word of cycle 6211 // rdcycle x2 # load low word of cycle 6212 // rdcycleh x4 # load high word of cycle 6213 // bne x3, x4, read # check if high word reads match, otherwise try again 6214 // ... 6215 6216 MachineFunction &MF = *BB->getParent(); 6217 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6218 MachineFunction::iterator It = ++BB->getIterator(); 6219 6220 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6221 MF.insert(It, LoopMBB); 6222 6223 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6224 MF.insert(It, DoneMBB); 6225 6226 // Transfer the remainder of BB and its successor edges to DoneMBB. 6227 DoneMBB->splice(DoneMBB->begin(), BB, 6228 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6229 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6230 6231 BB->addSuccessor(LoopMBB); 6232 6233 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6234 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6235 Register LoReg = MI.getOperand(0).getReg(); 6236 Register HiReg = MI.getOperand(1).getReg(); 6237 DebugLoc DL = MI.getDebugLoc(); 6238 6239 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6240 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6241 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6242 .addReg(RISCV::X0); 6243 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6244 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6245 .addReg(RISCV::X0); 6246 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6247 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6248 .addReg(RISCV::X0); 6249 6250 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6251 .addReg(HiReg) 6252 .addReg(ReadAgainReg) 6253 .addMBB(LoopMBB); 6254 6255 LoopMBB->addSuccessor(LoopMBB); 6256 LoopMBB->addSuccessor(DoneMBB); 6257 6258 MI.eraseFromParent(); 6259 6260 return DoneMBB; 6261 } 6262 6263 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6264 MachineBasicBlock *BB) { 6265 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6266 6267 MachineFunction &MF = *BB->getParent(); 6268 DebugLoc DL = MI.getDebugLoc(); 6269 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6270 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6271 Register LoReg = MI.getOperand(0).getReg(); 6272 Register HiReg = MI.getOperand(1).getReg(); 6273 Register SrcReg = MI.getOperand(2).getReg(); 6274 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6275 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6276 6277 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6278 RI); 6279 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6280 MachineMemOperand *MMOLo = 6281 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6282 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6283 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6284 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6285 .addFrameIndex(FI) 6286 .addImm(0) 6287 .addMemOperand(MMOLo); 6288 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6289 .addFrameIndex(FI) 6290 .addImm(4) 6291 .addMemOperand(MMOHi); 6292 MI.eraseFromParent(); // The pseudo instruction is gone now. 6293 return BB; 6294 } 6295 6296 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6297 MachineBasicBlock *BB) { 6298 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6299 "Unexpected instruction"); 6300 6301 MachineFunction &MF = *BB->getParent(); 6302 DebugLoc DL = MI.getDebugLoc(); 6303 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6304 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6305 Register DstReg = MI.getOperand(0).getReg(); 6306 Register LoReg = MI.getOperand(1).getReg(); 6307 Register HiReg = MI.getOperand(2).getReg(); 6308 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6309 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6310 6311 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6312 MachineMemOperand *MMOLo = 6313 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6314 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6315 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6316 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6317 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6318 .addFrameIndex(FI) 6319 .addImm(0) 6320 .addMemOperand(MMOLo); 6321 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6322 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6323 .addFrameIndex(FI) 6324 .addImm(4) 6325 .addMemOperand(MMOHi); 6326 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6327 MI.eraseFromParent(); // The pseudo instruction is gone now. 6328 return BB; 6329 } 6330 6331 static bool isSelectPseudo(MachineInstr &MI) { 6332 switch (MI.getOpcode()) { 6333 default: 6334 return false; 6335 case RISCV::Select_GPR_Using_CC_GPR: 6336 case RISCV::Select_FPR16_Using_CC_GPR: 6337 case RISCV::Select_FPR32_Using_CC_GPR: 6338 case RISCV::Select_FPR64_Using_CC_GPR: 6339 return true; 6340 } 6341 } 6342 6343 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6344 MachineBasicBlock *BB) { 6345 // To "insert" Select_* instructions, we actually have to insert the triangle 6346 // control-flow pattern. The incoming instructions know the destination vreg 6347 // to set, the condition code register to branch on, the true/false values to 6348 // select between, and the condcode to use to select the appropriate branch. 6349 // 6350 // We produce the following control flow: 6351 // HeadMBB 6352 // | \ 6353 // | IfFalseMBB 6354 // | / 6355 // TailMBB 6356 // 6357 // When we find a sequence of selects we attempt to optimize their emission 6358 // by sharing the control flow. Currently we only handle cases where we have 6359 // multiple selects with the exact same condition (same LHS, RHS and CC). 6360 // The selects may be interleaved with other instructions if the other 6361 // instructions meet some requirements we deem safe: 6362 // - They are debug instructions. Otherwise, 6363 // - They do not have side-effects, do not access memory and their inputs do 6364 // not depend on the results of the select pseudo-instructions. 6365 // The TrueV/FalseV operands of the selects cannot depend on the result of 6366 // previous selects in the sequence. 6367 // These conditions could be further relaxed. See the X86 target for a 6368 // related approach and more information. 6369 Register LHS = MI.getOperand(1).getReg(); 6370 Register RHS = MI.getOperand(2).getReg(); 6371 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6372 6373 SmallVector<MachineInstr *, 4> SelectDebugValues; 6374 SmallSet<Register, 4> SelectDests; 6375 SelectDests.insert(MI.getOperand(0).getReg()); 6376 6377 MachineInstr *LastSelectPseudo = &MI; 6378 6379 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6380 SequenceMBBI != E; ++SequenceMBBI) { 6381 if (SequenceMBBI->isDebugInstr()) 6382 continue; 6383 else if (isSelectPseudo(*SequenceMBBI)) { 6384 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6385 SequenceMBBI->getOperand(2).getReg() != RHS || 6386 SequenceMBBI->getOperand(3).getImm() != CC || 6387 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6388 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6389 break; 6390 LastSelectPseudo = &*SequenceMBBI; 6391 SequenceMBBI->collectDebugValues(SelectDebugValues); 6392 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6393 } else { 6394 if (SequenceMBBI->hasUnmodeledSideEffects() || 6395 SequenceMBBI->mayLoadOrStore()) 6396 break; 6397 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6398 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6399 })) 6400 break; 6401 } 6402 } 6403 6404 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6405 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6406 DebugLoc DL = MI.getDebugLoc(); 6407 MachineFunction::iterator I = ++BB->getIterator(); 6408 6409 MachineBasicBlock *HeadMBB = BB; 6410 MachineFunction *F = BB->getParent(); 6411 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6412 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6413 6414 F->insert(I, IfFalseMBB); 6415 F->insert(I, TailMBB); 6416 6417 // Transfer debug instructions associated with the selects to TailMBB. 6418 for (MachineInstr *DebugInstr : SelectDebugValues) { 6419 TailMBB->push_back(DebugInstr->removeFromParent()); 6420 } 6421 6422 // Move all instructions after the sequence to TailMBB. 6423 TailMBB->splice(TailMBB->end(), HeadMBB, 6424 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6425 // Update machine-CFG edges by transferring all successors of the current 6426 // block to the new block which will contain the Phi nodes for the selects. 6427 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6428 // Set the successors for HeadMBB. 6429 HeadMBB->addSuccessor(IfFalseMBB); 6430 HeadMBB->addSuccessor(TailMBB); 6431 6432 // Insert appropriate branch. 6433 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6434 6435 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6436 .addReg(LHS) 6437 .addReg(RHS) 6438 .addMBB(TailMBB); 6439 6440 // IfFalseMBB just falls through to TailMBB. 6441 IfFalseMBB->addSuccessor(TailMBB); 6442 6443 // Create PHIs for all of the select pseudo-instructions. 6444 auto SelectMBBI = MI.getIterator(); 6445 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6446 auto InsertionPoint = TailMBB->begin(); 6447 while (SelectMBBI != SelectEnd) { 6448 auto Next = std::next(SelectMBBI); 6449 if (isSelectPseudo(*SelectMBBI)) { 6450 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6451 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6452 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6453 .addReg(SelectMBBI->getOperand(4).getReg()) 6454 .addMBB(HeadMBB) 6455 .addReg(SelectMBBI->getOperand(5).getReg()) 6456 .addMBB(IfFalseMBB); 6457 SelectMBBI->eraseFromParent(); 6458 } 6459 SelectMBBI = Next; 6460 } 6461 6462 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6463 return TailMBB; 6464 } 6465 6466 MachineBasicBlock * 6467 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6468 MachineBasicBlock *BB) const { 6469 switch (MI.getOpcode()) { 6470 default: 6471 llvm_unreachable("Unexpected instr type to insert"); 6472 case RISCV::ReadCycleWide: 6473 assert(!Subtarget.is64Bit() && 6474 "ReadCycleWrite is only to be used on riscv32"); 6475 return emitReadCycleWidePseudo(MI, BB); 6476 case RISCV::Select_GPR_Using_CC_GPR: 6477 case RISCV::Select_FPR16_Using_CC_GPR: 6478 case RISCV::Select_FPR32_Using_CC_GPR: 6479 case RISCV::Select_FPR64_Using_CC_GPR: 6480 return emitSelectPseudo(MI, BB); 6481 case RISCV::BuildPairF64Pseudo: 6482 return emitBuildPairF64Pseudo(MI, BB); 6483 case RISCV::SplitF64Pseudo: 6484 return emitSplitF64Pseudo(MI, BB); 6485 } 6486 } 6487 6488 // Calling Convention Implementation. 6489 // The expectations for frontend ABI lowering vary from target to target. 6490 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6491 // details, but this is a longer term goal. For now, we simply try to keep the 6492 // role of the frontend as simple and well-defined as possible. The rules can 6493 // be summarised as: 6494 // * Never split up large scalar arguments. We handle them here. 6495 // * If a hardfloat calling convention is being used, and the struct may be 6496 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6497 // available, then pass as two separate arguments. If either the GPRs or FPRs 6498 // are exhausted, then pass according to the rule below. 6499 // * If a struct could never be passed in registers or directly in a stack 6500 // slot (as it is larger than 2*XLEN and the floating point rules don't 6501 // apply), then pass it using a pointer with the byval attribute. 6502 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6503 // word-sized array or a 2*XLEN scalar (depending on alignment). 6504 // * The frontend can determine whether a struct is returned by reference or 6505 // not based on its size and fields. If it will be returned by reference, the 6506 // frontend must modify the prototype so a pointer with the sret annotation is 6507 // passed as the first argument. This is not necessary for large scalar 6508 // returns. 6509 // * Struct return values and varargs should be coerced to structs containing 6510 // register-size fields in the same situations they would be for fixed 6511 // arguments. 6512 6513 static const MCPhysReg ArgGPRs[] = { 6514 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6515 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6516 }; 6517 static const MCPhysReg ArgFPR16s[] = { 6518 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6519 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6520 }; 6521 static const MCPhysReg ArgFPR32s[] = { 6522 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6523 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6524 }; 6525 static const MCPhysReg ArgFPR64s[] = { 6526 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6527 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6528 }; 6529 // This is an interim calling convention and it may be changed in the future. 6530 static const MCPhysReg ArgVRs[] = { 6531 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6532 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6533 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6534 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6535 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6536 RISCV::V20M2, RISCV::V22M2}; 6537 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6538 RISCV::V20M4}; 6539 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6540 6541 // Pass a 2*XLEN argument that has been split into two XLEN values through 6542 // registers or the stack as necessary. 6543 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6544 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6545 MVT ValVT2, MVT LocVT2, 6546 ISD::ArgFlagsTy ArgFlags2) { 6547 unsigned XLenInBytes = XLen / 8; 6548 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6549 // At least one half can be passed via register. 6550 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6551 VA1.getLocVT(), CCValAssign::Full)); 6552 } else { 6553 // Both halves must be passed on the stack, with proper alignment. 6554 Align StackAlign = 6555 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6556 State.addLoc( 6557 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6558 State.AllocateStack(XLenInBytes, StackAlign), 6559 VA1.getLocVT(), CCValAssign::Full)); 6560 State.addLoc(CCValAssign::getMem( 6561 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6562 LocVT2, CCValAssign::Full)); 6563 return false; 6564 } 6565 6566 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6567 // The second half can also be passed via register. 6568 State.addLoc( 6569 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6570 } else { 6571 // The second half is passed via the stack, without additional alignment. 6572 State.addLoc(CCValAssign::getMem( 6573 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6574 LocVT2, CCValAssign::Full)); 6575 } 6576 6577 return false; 6578 } 6579 6580 // Implements the RISC-V calling convention. Returns true upon failure. 6581 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6582 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6583 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6584 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6585 Optional<unsigned> FirstMaskArgument) { 6586 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6587 assert(XLen == 32 || XLen == 64); 6588 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6589 6590 // Any return value split in to more than two values can't be returned 6591 // directly. Vectors are returned via the available vector registers. 6592 if (!LocVT.isVector() && IsRet && ValNo > 1) 6593 return true; 6594 6595 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6596 // variadic argument, or if no F16/F32 argument registers are available. 6597 bool UseGPRForF16_F32 = true; 6598 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6599 // variadic argument, or if no F64 argument registers are available. 6600 bool UseGPRForF64 = true; 6601 6602 switch (ABI) { 6603 default: 6604 llvm_unreachable("Unexpected ABI"); 6605 case RISCVABI::ABI_ILP32: 6606 case RISCVABI::ABI_LP64: 6607 break; 6608 case RISCVABI::ABI_ILP32F: 6609 case RISCVABI::ABI_LP64F: 6610 UseGPRForF16_F32 = !IsFixed; 6611 break; 6612 case RISCVABI::ABI_ILP32D: 6613 case RISCVABI::ABI_LP64D: 6614 UseGPRForF16_F32 = !IsFixed; 6615 UseGPRForF64 = !IsFixed; 6616 break; 6617 } 6618 6619 // FPR16, FPR32, and FPR64 alias each other. 6620 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6621 UseGPRForF16_F32 = true; 6622 UseGPRForF64 = true; 6623 } 6624 6625 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6626 // similar local variables rather than directly checking against the target 6627 // ABI. 6628 6629 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6630 LocVT = XLenVT; 6631 LocInfo = CCValAssign::BCvt; 6632 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6633 LocVT = MVT::i64; 6634 LocInfo = CCValAssign::BCvt; 6635 } 6636 6637 // If this is a variadic argument, the RISC-V calling convention requires 6638 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6639 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6640 // be used regardless of whether the original argument was split during 6641 // legalisation or not. The argument will not be passed by registers if the 6642 // original type is larger than 2*XLEN, so the register alignment rule does 6643 // not apply. 6644 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6645 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6646 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6647 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6648 // Skip 'odd' register if necessary. 6649 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6650 State.AllocateReg(ArgGPRs); 6651 } 6652 6653 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6654 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6655 State.getPendingArgFlags(); 6656 6657 assert(PendingLocs.size() == PendingArgFlags.size() && 6658 "PendingLocs and PendingArgFlags out of sync"); 6659 6660 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6661 // registers are exhausted. 6662 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6663 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6664 "Can't lower f64 if it is split"); 6665 // Depending on available argument GPRS, f64 may be passed in a pair of 6666 // GPRs, split between a GPR and the stack, or passed completely on the 6667 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6668 // cases. 6669 Register Reg = State.AllocateReg(ArgGPRs); 6670 LocVT = MVT::i32; 6671 if (!Reg) { 6672 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6673 State.addLoc( 6674 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6675 return false; 6676 } 6677 if (!State.AllocateReg(ArgGPRs)) 6678 State.AllocateStack(4, Align(4)); 6679 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6680 return false; 6681 } 6682 6683 // Fixed-length vectors are located in the corresponding scalable-vector 6684 // container types. 6685 if (ValVT.isFixedLengthVector()) 6686 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6687 6688 // Split arguments might be passed indirectly, so keep track of the pending 6689 // values. Split vectors are passed via a mix of registers and indirectly, so 6690 // treat them as we would any other argument. 6691 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6692 LocVT = XLenVT; 6693 LocInfo = CCValAssign::Indirect; 6694 PendingLocs.push_back( 6695 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6696 PendingArgFlags.push_back(ArgFlags); 6697 if (!ArgFlags.isSplitEnd()) { 6698 return false; 6699 } 6700 } 6701 6702 // If the split argument only had two elements, it should be passed directly 6703 // in registers or on the stack. 6704 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6705 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6706 // Apply the normal calling convention rules to the first half of the 6707 // split argument. 6708 CCValAssign VA = PendingLocs[0]; 6709 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6710 PendingLocs.clear(); 6711 PendingArgFlags.clear(); 6712 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6713 ArgFlags); 6714 } 6715 6716 // Allocate to a register if possible, or else a stack slot. 6717 Register Reg; 6718 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6719 Reg = State.AllocateReg(ArgFPR16s); 6720 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6721 Reg = State.AllocateReg(ArgFPR32s); 6722 else if (ValVT == MVT::f64 && !UseGPRForF64) 6723 Reg = State.AllocateReg(ArgFPR64s); 6724 else if (ValVT.isVector()) { 6725 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6726 if (RC == &RISCV::VRRegClass) { 6727 // Assign the first mask argument to V0. 6728 // This is an interim calling convention and it may be changed in the 6729 // future. 6730 if (FirstMaskArgument.hasValue() && 6731 ValNo == FirstMaskArgument.getValue()) { 6732 Reg = State.AllocateReg(RISCV::V0); 6733 } else { 6734 Reg = State.AllocateReg(ArgVRs); 6735 } 6736 } else if (RC == &RISCV::VRM2RegClass) { 6737 Reg = State.AllocateReg(ArgVRM2s); 6738 } else if (RC == &RISCV::VRM4RegClass) { 6739 Reg = State.AllocateReg(ArgVRM4s); 6740 } else if (RC == &RISCV::VRM8RegClass) { 6741 Reg = State.AllocateReg(ArgVRM8s); 6742 } else { 6743 llvm_unreachable("Unhandled class register for ValueType"); 6744 } 6745 if (!Reg) { 6746 // For return values, the vector must be passed fully via registers or 6747 // via the stack. 6748 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6749 // but we're using all of them. 6750 if (IsRet) 6751 return true; 6752 LocInfo = CCValAssign::Indirect; 6753 // Try using a GPR to pass the address 6754 Reg = State.AllocateReg(ArgGPRs); 6755 LocVT = XLenVT; 6756 } 6757 } else 6758 Reg = State.AllocateReg(ArgGPRs); 6759 unsigned StackOffset = 6760 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 6761 6762 // If we reach this point and PendingLocs is non-empty, we must be at the 6763 // end of a split argument that must be passed indirectly. 6764 if (!PendingLocs.empty()) { 6765 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6766 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6767 6768 for (auto &It : PendingLocs) { 6769 if (Reg) 6770 It.convertToReg(Reg); 6771 else 6772 It.convertToMem(StackOffset); 6773 State.addLoc(It); 6774 } 6775 PendingLocs.clear(); 6776 PendingArgFlags.clear(); 6777 return false; 6778 } 6779 6780 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6781 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6782 "Expected an XLenVT or vector types at this stage"); 6783 6784 if (Reg) { 6785 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6786 return false; 6787 } 6788 6789 // When a floating-point value is passed on the stack, no bit-conversion is 6790 // needed. 6791 if (ValVT.isFloatingPoint()) { 6792 LocVT = ValVT; 6793 LocInfo = CCValAssign::Full; 6794 } 6795 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6796 return false; 6797 } 6798 6799 template <typename ArgTy> 6800 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6801 for (const auto &ArgIdx : enumerate(Args)) { 6802 MVT ArgVT = ArgIdx.value().VT; 6803 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6804 return ArgIdx.index(); 6805 } 6806 return None; 6807 } 6808 6809 void RISCVTargetLowering::analyzeInputArgs( 6810 MachineFunction &MF, CCState &CCInfo, 6811 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 6812 unsigned NumArgs = Ins.size(); 6813 FunctionType *FType = MF.getFunction().getFunctionType(); 6814 6815 Optional<unsigned> FirstMaskArgument; 6816 if (Subtarget.hasStdExtV()) 6817 FirstMaskArgument = preAssignMask(Ins); 6818 6819 for (unsigned i = 0; i != NumArgs; ++i) { 6820 MVT ArgVT = Ins[i].VT; 6821 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6822 6823 Type *ArgTy = nullptr; 6824 if (IsRet) 6825 ArgTy = FType->getReturnType(); 6826 else if (Ins[i].isOrigArg()) 6827 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6828 6829 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6830 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6831 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6832 FirstMaskArgument)) { 6833 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6834 << EVT(ArgVT).getEVTString() << '\n'); 6835 llvm_unreachable(nullptr); 6836 } 6837 } 6838 } 6839 6840 void RISCVTargetLowering::analyzeOutputArgs( 6841 MachineFunction &MF, CCState &CCInfo, 6842 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6843 CallLoweringInfo *CLI) const { 6844 unsigned NumArgs = Outs.size(); 6845 6846 Optional<unsigned> FirstMaskArgument; 6847 if (Subtarget.hasStdExtV()) 6848 FirstMaskArgument = preAssignMask(Outs); 6849 6850 for (unsigned i = 0; i != NumArgs; i++) { 6851 MVT ArgVT = Outs[i].VT; 6852 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6853 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6854 6855 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6856 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6857 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6858 FirstMaskArgument)) { 6859 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6860 << EVT(ArgVT).getEVTString() << "\n"); 6861 llvm_unreachable(nullptr); 6862 } 6863 } 6864 } 6865 6866 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6867 // values. 6868 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6869 const CCValAssign &VA, const SDLoc &DL, 6870 const RISCVSubtarget &Subtarget) { 6871 switch (VA.getLocInfo()) { 6872 default: 6873 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6874 case CCValAssign::Full: 6875 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6876 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6877 break; 6878 case CCValAssign::BCvt: 6879 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6880 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6881 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6882 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6883 else 6884 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6885 break; 6886 } 6887 return Val; 6888 } 6889 6890 // The caller is responsible for loading the full value if the argument is 6891 // passed with CCValAssign::Indirect. 6892 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6893 const CCValAssign &VA, const SDLoc &DL, 6894 const RISCVTargetLowering &TLI) { 6895 MachineFunction &MF = DAG.getMachineFunction(); 6896 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6897 EVT LocVT = VA.getLocVT(); 6898 SDValue Val; 6899 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6900 Register VReg = RegInfo.createVirtualRegister(RC); 6901 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6902 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6903 6904 if (VA.getLocInfo() == CCValAssign::Indirect) 6905 return Val; 6906 6907 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 6908 } 6909 6910 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 6911 const CCValAssign &VA, const SDLoc &DL, 6912 const RISCVSubtarget &Subtarget) { 6913 EVT LocVT = VA.getLocVT(); 6914 6915 switch (VA.getLocInfo()) { 6916 default: 6917 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6918 case CCValAssign::Full: 6919 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 6920 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 6921 break; 6922 case CCValAssign::BCvt: 6923 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6924 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 6925 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6926 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 6927 else 6928 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 6929 break; 6930 } 6931 return Val; 6932 } 6933 6934 // The caller is responsible for loading the full value if the argument is 6935 // passed with CCValAssign::Indirect. 6936 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 6937 const CCValAssign &VA, const SDLoc &DL) { 6938 MachineFunction &MF = DAG.getMachineFunction(); 6939 MachineFrameInfo &MFI = MF.getFrameInfo(); 6940 EVT LocVT = VA.getLocVT(); 6941 EVT ValVT = VA.getValVT(); 6942 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 6943 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 6944 VA.getLocMemOffset(), /*Immutable=*/true); 6945 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6946 SDValue Val; 6947 6948 ISD::LoadExtType ExtType; 6949 switch (VA.getLocInfo()) { 6950 default: 6951 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6952 case CCValAssign::Full: 6953 case CCValAssign::Indirect: 6954 case CCValAssign::BCvt: 6955 ExtType = ISD::NON_EXTLOAD; 6956 break; 6957 } 6958 Val = DAG.getExtLoad( 6959 ExtType, DL, LocVT, Chain, FIN, 6960 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 6961 return Val; 6962 } 6963 6964 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 6965 const CCValAssign &VA, const SDLoc &DL) { 6966 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 6967 "Unexpected VA"); 6968 MachineFunction &MF = DAG.getMachineFunction(); 6969 MachineFrameInfo &MFI = MF.getFrameInfo(); 6970 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6971 6972 if (VA.isMemLoc()) { 6973 // f64 is passed on the stack. 6974 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 6975 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6976 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 6977 MachinePointerInfo::getFixedStack(MF, FI)); 6978 } 6979 6980 assert(VA.isRegLoc() && "Expected register VA assignment"); 6981 6982 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6983 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 6984 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 6985 SDValue Hi; 6986 if (VA.getLocReg() == RISCV::X17) { 6987 // Second half of f64 is passed on the stack. 6988 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 6989 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6990 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 6991 MachinePointerInfo::getFixedStack(MF, FI)); 6992 } else { 6993 // Second half of f64 is passed in another GPR. 6994 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6995 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 6996 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 6997 } 6998 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 6999 } 7000 7001 // FastCC has less than 1% performance improvement for some particular 7002 // benchmark. But theoretically, it may has benenfit for some cases. 7003 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 7004 CCValAssign::LocInfo LocInfo, 7005 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7006 7007 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7008 // X5 and X6 might be used for save-restore libcall. 7009 static const MCPhysReg GPRList[] = { 7010 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7011 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7012 RISCV::X29, RISCV::X30, RISCV::X31}; 7013 if (unsigned Reg = State.AllocateReg(GPRList)) { 7014 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7015 return false; 7016 } 7017 } 7018 7019 if (LocVT == MVT::f16) { 7020 static const MCPhysReg FPR16List[] = { 7021 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7022 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7023 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7024 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7025 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7026 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7027 return false; 7028 } 7029 } 7030 7031 if (LocVT == MVT::f32) { 7032 static const MCPhysReg FPR32List[] = { 7033 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7034 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7035 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7036 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7037 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7038 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7039 return false; 7040 } 7041 } 7042 7043 if (LocVT == MVT::f64) { 7044 static const MCPhysReg FPR64List[] = { 7045 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7046 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7047 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7048 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7049 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7050 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7051 return false; 7052 } 7053 } 7054 7055 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7056 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7057 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7058 return false; 7059 } 7060 7061 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7062 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7063 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7064 return false; 7065 } 7066 7067 return true; // CC didn't match. 7068 } 7069 7070 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7071 CCValAssign::LocInfo LocInfo, 7072 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7073 7074 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7075 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7076 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7077 static const MCPhysReg GPRList[] = { 7078 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7079 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7080 if (unsigned Reg = State.AllocateReg(GPRList)) { 7081 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7082 return false; 7083 } 7084 } 7085 7086 if (LocVT == MVT::f32) { 7087 // Pass in STG registers: F1, ..., F6 7088 // fs0 ... fs5 7089 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7090 RISCV::F18_F, RISCV::F19_F, 7091 RISCV::F20_F, RISCV::F21_F}; 7092 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7093 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7094 return false; 7095 } 7096 } 7097 7098 if (LocVT == MVT::f64) { 7099 // Pass in STG registers: D1, ..., D6 7100 // fs6 ... fs11 7101 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7102 RISCV::F24_D, RISCV::F25_D, 7103 RISCV::F26_D, RISCV::F27_D}; 7104 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7105 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7106 return false; 7107 } 7108 } 7109 7110 report_fatal_error("No registers left in GHC calling convention"); 7111 return true; 7112 } 7113 7114 // Transform physical registers into virtual registers. 7115 SDValue RISCVTargetLowering::LowerFormalArguments( 7116 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7117 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7118 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7119 7120 MachineFunction &MF = DAG.getMachineFunction(); 7121 7122 switch (CallConv) { 7123 default: 7124 report_fatal_error("Unsupported calling convention"); 7125 case CallingConv::C: 7126 case CallingConv::Fast: 7127 break; 7128 case CallingConv::GHC: 7129 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7130 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7131 report_fatal_error( 7132 "GHC calling convention requires the F and D instruction set extensions"); 7133 } 7134 7135 const Function &Func = MF.getFunction(); 7136 if (Func.hasFnAttribute("interrupt")) { 7137 if (!Func.arg_empty()) 7138 report_fatal_error( 7139 "Functions with the interrupt attribute cannot have arguments!"); 7140 7141 StringRef Kind = 7142 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7143 7144 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7145 report_fatal_error( 7146 "Function interrupt attribute argument not supported!"); 7147 } 7148 7149 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7150 MVT XLenVT = Subtarget.getXLenVT(); 7151 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7152 // Used with vargs to acumulate store chains. 7153 std::vector<SDValue> OutChains; 7154 7155 // Assign locations to all of the incoming arguments. 7156 SmallVector<CCValAssign, 16> ArgLocs; 7157 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7158 7159 if (CallConv == CallingConv::Fast) 7160 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 7161 else if (CallConv == CallingConv::GHC) 7162 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7163 else 7164 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 7165 7166 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7167 CCValAssign &VA = ArgLocs[i]; 7168 SDValue ArgValue; 7169 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7170 // case. 7171 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7172 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7173 else if (VA.isRegLoc()) 7174 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7175 else 7176 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7177 7178 if (VA.getLocInfo() == CCValAssign::Indirect) { 7179 // If the original argument was split and passed by reference (e.g. i128 7180 // on RV32), we need to load all parts of it here (using the same 7181 // address). Vectors may be partly split to registers and partly to the 7182 // stack, in which case the base address is partly offset and subsequent 7183 // stores are relative to that. 7184 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7185 MachinePointerInfo())); 7186 unsigned ArgIndex = Ins[i].OrigArgIndex; 7187 unsigned ArgPartOffset = Ins[i].PartOffset; 7188 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7189 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7190 CCValAssign &PartVA = ArgLocs[i + 1]; 7191 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7192 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 7193 DAG.getIntPtrConstant(PartOffset, DL)); 7194 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7195 MachinePointerInfo())); 7196 ++i; 7197 } 7198 continue; 7199 } 7200 InVals.push_back(ArgValue); 7201 } 7202 7203 if (IsVarArg) { 7204 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7205 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7206 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7207 MachineFrameInfo &MFI = MF.getFrameInfo(); 7208 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7209 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7210 7211 // Offset of the first variable argument from stack pointer, and size of 7212 // the vararg save area. For now, the varargs save area is either zero or 7213 // large enough to hold a0-a7. 7214 int VaArgOffset, VarArgsSaveSize; 7215 7216 // If all registers are allocated, then all varargs must be passed on the 7217 // stack and we don't need to save any argregs. 7218 if (ArgRegs.size() == Idx) { 7219 VaArgOffset = CCInfo.getNextStackOffset(); 7220 VarArgsSaveSize = 0; 7221 } else { 7222 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7223 VaArgOffset = -VarArgsSaveSize; 7224 } 7225 7226 // Record the frame index of the first variable argument 7227 // which is a value necessary to VASTART. 7228 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7229 RVFI->setVarArgsFrameIndex(FI); 7230 7231 // If saving an odd number of registers then create an extra stack slot to 7232 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7233 // offsets to even-numbered registered remain 2*XLEN-aligned. 7234 if (Idx % 2) { 7235 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7236 VarArgsSaveSize += XLenInBytes; 7237 } 7238 7239 // Copy the integer registers that may have been used for passing varargs 7240 // to the vararg save area. 7241 for (unsigned I = Idx; I < ArgRegs.size(); 7242 ++I, VaArgOffset += XLenInBytes) { 7243 const Register Reg = RegInfo.createVirtualRegister(RC); 7244 RegInfo.addLiveIn(ArgRegs[I], Reg); 7245 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7246 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7247 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7248 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7249 MachinePointerInfo::getFixedStack(MF, FI)); 7250 cast<StoreSDNode>(Store.getNode()) 7251 ->getMemOperand() 7252 ->setValue((Value *)nullptr); 7253 OutChains.push_back(Store); 7254 } 7255 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7256 } 7257 7258 // All stores are grouped in one node to allow the matching between 7259 // the size of Ins and InVals. This only happens for vararg functions. 7260 if (!OutChains.empty()) { 7261 OutChains.push_back(Chain); 7262 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7263 } 7264 7265 return Chain; 7266 } 7267 7268 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7269 /// for tail call optimization. 7270 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7271 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7272 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7273 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7274 7275 auto &Callee = CLI.Callee; 7276 auto CalleeCC = CLI.CallConv; 7277 auto &Outs = CLI.Outs; 7278 auto &Caller = MF.getFunction(); 7279 auto CallerCC = Caller.getCallingConv(); 7280 7281 // Exception-handling functions need a special set of instructions to 7282 // indicate a return to the hardware. Tail-calling another function would 7283 // probably break this. 7284 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7285 // should be expanded as new function attributes are introduced. 7286 if (Caller.hasFnAttribute("interrupt")) 7287 return false; 7288 7289 // Do not tail call opt if the stack is used to pass parameters. 7290 if (CCInfo.getNextStackOffset() != 0) 7291 return false; 7292 7293 // Do not tail call opt if any parameters need to be passed indirectly. 7294 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7295 // passed indirectly. So the address of the value will be passed in a 7296 // register, or if not available, then the address is put on the stack. In 7297 // order to pass indirectly, space on the stack often needs to be allocated 7298 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7299 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7300 // are passed CCValAssign::Indirect. 7301 for (auto &VA : ArgLocs) 7302 if (VA.getLocInfo() == CCValAssign::Indirect) 7303 return false; 7304 7305 // Do not tail call opt if either caller or callee uses struct return 7306 // semantics. 7307 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7308 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7309 if (IsCallerStructRet || IsCalleeStructRet) 7310 return false; 7311 7312 // Externally-defined functions with weak linkage should not be 7313 // tail-called. The behaviour of branch instructions in this situation (as 7314 // used for tail calls) is implementation-defined, so we cannot rely on the 7315 // linker replacing the tail call with a return. 7316 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7317 const GlobalValue *GV = G->getGlobal(); 7318 if (GV->hasExternalWeakLinkage()) 7319 return false; 7320 } 7321 7322 // The callee has to preserve all registers the caller needs to preserve. 7323 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7324 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7325 if (CalleeCC != CallerCC) { 7326 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7327 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7328 return false; 7329 } 7330 7331 // Byval parameters hand the function a pointer directly into the stack area 7332 // we want to reuse during a tail call. Working around this *is* possible 7333 // but less efficient and uglier in LowerCall. 7334 for (auto &Arg : Outs) 7335 if (Arg.Flags.isByVal()) 7336 return false; 7337 7338 return true; 7339 } 7340 7341 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7342 return DAG.getDataLayout().getPrefTypeAlign( 7343 VT.getTypeForEVT(*DAG.getContext())); 7344 } 7345 7346 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7347 // and output parameter nodes. 7348 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7349 SmallVectorImpl<SDValue> &InVals) const { 7350 SelectionDAG &DAG = CLI.DAG; 7351 SDLoc &DL = CLI.DL; 7352 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7353 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7354 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7355 SDValue Chain = CLI.Chain; 7356 SDValue Callee = CLI.Callee; 7357 bool &IsTailCall = CLI.IsTailCall; 7358 CallingConv::ID CallConv = CLI.CallConv; 7359 bool IsVarArg = CLI.IsVarArg; 7360 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7361 MVT XLenVT = Subtarget.getXLenVT(); 7362 7363 MachineFunction &MF = DAG.getMachineFunction(); 7364 7365 // Analyze the operands of the call, assigning locations to each operand. 7366 SmallVector<CCValAssign, 16> ArgLocs; 7367 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7368 7369 if (CallConv == CallingConv::Fast) 7370 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 7371 else if (CallConv == CallingConv::GHC) 7372 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7373 else 7374 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 7375 7376 // Check if it's really possible to do a tail call. 7377 if (IsTailCall) 7378 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7379 7380 if (IsTailCall) 7381 ++NumTailCalls; 7382 else if (CLI.CB && CLI.CB->isMustTailCall()) 7383 report_fatal_error("failed to perform tail call elimination on a call " 7384 "site marked musttail"); 7385 7386 // Get a count of how many bytes are to be pushed on the stack. 7387 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7388 7389 // Create local copies for byval args 7390 SmallVector<SDValue, 8> ByValArgs; 7391 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7392 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7393 if (!Flags.isByVal()) 7394 continue; 7395 7396 SDValue Arg = OutVals[i]; 7397 unsigned Size = Flags.getByValSize(); 7398 Align Alignment = Flags.getNonZeroByValAlign(); 7399 7400 int FI = 7401 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7402 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7403 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7404 7405 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7406 /*IsVolatile=*/false, 7407 /*AlwaysInline=*/false, IsTailCall, 7408 MachinePointerInfo(), MachinePointerInfo()); 7409 ByValArgs.push_back(FIPtr); 7410 } 7411 7412 if (!IsTailCall) 7413 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7414 7415 // Copy argument values to their designated locations. 7416 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7417 SmallVector<SDValue, 8> MemOpChains; 7418 SDValue StackPtr; 7419 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7420 CCValAssign &VA = ArgLocs[i]; 7421 SDValue ArgValue = OutVals[i]; 7422 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7423 7424 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7425 bool IsF64OnRV32DSoftABI = 7426 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7427 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7428 SDValue SplitF64 = DAG.getNode( 7429 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7430 SDValue Lo = SplitF64.getValue(0); 7431 SDValue Hi = SplitF64.getValue(1); 7432 7433 Register RegLo = VA.getLocReg(); 7434 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7435 7436 if (RegLo == RISCV::X17) { 7437 // Second half of f64 is passed on the stack. 7438 // Work out the address of the stack slot. 7439 if (!StackPtr.getNode()) 7440 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7441 // Emit the store. 7442 MemOpChains.push_back( 7443 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7444 } else { 7445 // Second half of f64 is passed in another GPR. 7446 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7447 Register RegHigh = RegLo + 1; 7448 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7449 } 7450 continue; 7451 } 7452 7453 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7454 // as any other MemLoc. 7455 7456 // Promote the value if needed. 7457 // For now, only handle fully promoted and indirect arguments. 7458 if (VA.getLocInfo() == CCValAssign::Indirect) { 7459 // Store the argument in a stack slot and pass its address. 7460 Align StackAlign = 7461 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7462 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7463 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7464 // If the original argument was split (e.g. i128), we need 7465 // to store the required parts of it here (and pass just one address). 7466 // Vectors may be partly split to registers and partly to the stack, in 7467 // which case the base address is partly offset and subsequent stores are 7468 // relative to that. 7469 unsigned ArgIndex = Outs[i].OrigArgIndex; 7470 unsigned ArgPartOffset = Outs[i].PartOffset; 7471 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7472 // Calculate the total size to store. We don't have access to what we're 7473 // actually storing other than performing the loop and collecting the 7474 // info. 7475 SmallVector<std::pair<SDValue, unsigned>> Parts; 7476 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7477 SDValue PartValue = OutVals[i + 1]; 7478 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7479 EVT PartVT = PartValue.getValueType(); 7480 StoredSize += PartVT.getStoreSize(); 7481 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7482 Parts.push_back(std::make_pair(PartValue, PartOffset)); 7483 ++i; 7484 } 7485 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7486 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7487 MemOpChains.push_back( 7488 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7489 MachinePointerInfo::getFixedStack(MF, FI))); 7490 for (const auto &Part : Parts) { 7491 SDValue PartValue = Part.first; 7492 unsigned PartOffset = Part.second; 7493 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 7494 DAG.getIntPtrConstant(PartOffset, DL)); 7495 MemOpChains.push_back( 7496 DAG.getStore(Chain, DL, PartValue, Address, 7497 MachinePointerInfo::getFixedStack(MF, FI))); 7498 } 7499 ArgValue = SpillSlot; 7500 } else { 7501 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7502 } 7503 7504 // Use local copy if it is a byval arg. 7505 if (Flags.isByVal()) 7506 ArgValue = ByValArgs[j++]; 7507 7508 if (VA.isRegLoc()) { 7509 // Queue up the argument copies and emit them at the end. 7510 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7511 } else { 7512 assert(VA.isMemLoc() && "Argument not register or memory"); 7513 assert(!IsTailCall && "Tail call not allowed if stack is used " 7514 "for passing parameters"); 7515 7516 // Work out the address of the stack slot. 7517 if (!StackPtr.getNode()) 7518 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7519 SDValue Address = 7520 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7521 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7522 7523 // Emit the store. 7524 MemOpChains.push_back( 7525 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7526 } 7527 } 7528 7529 // Join the stores, which are independent of one another. 7530 if (!MemOpChains.empty()) 7531 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7532 7533 SDValue Glue; 7534 7535 // Build a sequence of copy-to-reg nodes, chained and glued together. 7536 for (auto &Reg : RegsToPass) { 7537 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7538 Glue = Chain.getValue(1); 7539 } 7540 7541 // Validate that none of the argument registers have been marked as 7542 // reserved, if so report an error. Do the same for the return address if this 7543 // is not a tailcall. 7544 validateCCReservedRegs(RegsToPass, MF); 7545 if (!IsTailCall && 7546 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7547 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7548 MF.getFunction(), 7549 "Return address register required, but has been reserved."}); 7550 7551 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7552 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7553 // split it and then direct call can be matched by PseudoCALL. 7554 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7555 const GlobalValue *GV = S->getGlobal(); 7556 7557 unsigned OpFlags = RISCVII::MO_CALL; 7558 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7559 OpFlags = RISCVII::MO_PLT; 7560 7561 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7562 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7563 unsigned OpFlags = RISCVII::MO_CALL; 7564 7565 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7566 nullptr)) 7567 OpFlags = RISCVII::MO_PLT; 7568 7569 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7570 } 7571 7572 // The first call operand is the chain and the second is the target address. 7573 SmallVector<SDValue, 8> Ops; 7574 Ops.push_back(Chain); 7575 Ops.push_back(Callee); 7576 7577 // Add argument registers to the end of the list so that they are 7578 // known live into the call. 7579 for (auto &Reg : RegsToPass) 7580 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7581 7582 if (!IsTailCall) { 7583 // Add a register mask operand representing the call-preserved registers. 7584 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7585 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7586 assert(Mask && "Missing call preserved mask for calling convention"); 7587 Ops.push_back(DAG.getRegisterMask(Mask)); 7588 } 7589 7590 // Glue the call to the argument copies, if any. 7591 if (Glue.getNode()) 7592 Ops.push_back(Glue); 7593 7594 // Emit the call. 7595 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7596 7597 if (IsTailCall) { 7598 MF.getFrameInfo().setHasTailCall(); 7599 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7600 } 7601 7602 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7603 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7604 Glue = Chain.getValue(1); 7605 7606 // Mark the end of the call, which is glued to the call itself. 7607 Chain = DAG.getCALLSEQ_END(Chain, 7608 DAG.getConstant(NumBytes, DL, PtrVT, true), 7609 DAG.getConstant(0, DL, PtrVT, true), 7610 Glue, DL); 7611 Glue = Chain.getValue(1); 7612 7613 // Assign locations to each value returned by this call. 7614 SmallVector<CCValAssign, 16> RVLocs; 7615 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7616 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 7617 7618 // Copy all of the result registers out of their specified physreg. 7619 for (auto &VA : RVLocs) { 7620 // Copy the value out 7621 SDValue RetValue = 7622 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7623 // Glue the RetValue to the end of the call sequence 7624 Chain = RetValue.getValue(1); 7625 Glue = RetValue.getValue(2); 7626 7627 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7628 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7629 SDValue RetValue2 = 7630 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7631 Chain = RetValue2.getValue(1); 7632 Glue = RetValue2.getValue(2); 7633 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7634 RetValue2); 7635 } 7636 7637 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7638 7639 InVals.push_back(RetValue); 7640 } 7641 7642 return Chain; 7643 } 7644 7645 bool RISCVTargetLowering::CanLowerReturn( 7646 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7647 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7648 SmallVector<CCValAssign, 16> RVLocs; 7649 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7650 7651 Optional<unsigned> FirstMaskArgument; 7652 if (Subtarget.hasStdExtV()) 7653 FirstMaskArgument = preAssignMask(Outs); 7654 7655 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7656 MVT VT = Outs[i].VT; 7657 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7658 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7659 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7660 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7661 *this, FirstMaskArgument)) 7662 return false; 7663 } 7664 return true; 7665 } 7666 7667 SDValue 7668 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7669 bool IsVarArg, 7670 const SmallVectorImpl<ISD::OutputArg> &Outs, 7671 const SmallVectorImpl<SDValue> &OutVals, 7672 const SDLoc &DL, SelectionDAG &DAG) const { 7673 const MachineFunction &MF = DAG.getMachineFunction(); 7674 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7675 7676 // Stores the assignment of the return value to a location. 7677 SmallVector<CCValAssign, 16> RVLocs; 7678 7679 // Info about the registers and stack slot. 7680 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7681 *DAG.getContext()); 7682 7683 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7684 nullptr); 7685 7686 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7687 report_fatal_error("GHC functions return void only"); 7688 7689 SDValue Glue; 7690 SmallVector<SDValue, 4> RetOps(1, Chain); 7691 7692 // Copy the result values into the output registers. 7693 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7694 SDValue Val = OutVals[i]; 7695 CCValAssign &VA = RVLocs[i]; 7696 assert(VA.isRegLoc() && "Can only return in registers!"); 7697 7698 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7699 // Handle returning f64 on RV32D with a soft float ABI. 7700 assert(VA.isRegLoc() && "Expected return via registers"); 7701 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7702 DAG.getVTList(MVT::i32, MVT::i32), Val); 7703 SDValue Lo = SplitF64.getValue(0); 7704 SDValue Hi = SplitF64.getValue(1); 7705 Register RegLo = VA.getLocReg(); 7706 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7707 Register RegHi = RegLo + 1; 7708 7709 if (STI.isRegisterReservedByUser(RegLo) || 7710 STI.isRegisterReservedByUser(RegHi)) 7711 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7712 MF.getFunction(), 7713 "Return value register required, but has been reserved."}); 7714 7715 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7716 Glue = Chain.getValue(1); 7717 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7718 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7719 Glue = Chain.getValue(1); 7720 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7721 } else { 7722 // Handle a 'normal' return. 7723 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7724 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7725 7726 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7727 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7728 MF.getFunction(), 7729 "Return value register required, but has been reserved."}); 7730 7731 // Guarantee that all emitted copies are stuck together. 7732 Glue = Chain.getValue(1); 7733 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7734 } 7735 } 7736 7737 RetOps[0] = Chain; // Update chain. 7738 7739 // Add the glue node if we have it. 7740 if (Glue.getNode()) { 7741 RetOps.push_back(Glue); 7742 } 7743 7744 // Interrupt service routines use different return instructions. 7745 const Function &Func = DAG.getMachineFunction().getFunction(); 7746 if (Func.hasFnAttribute("interrupt")) { 7747 if (!Func.getReturnType()->isVoidTy()) 7748 report_fatal_error( 7749 "Functions with the interrupt attribute must have void return type!"); 7750 7751 MachineFunction &MF = DAG.getMachineFunction(); 7752 StringRef Kind = 7753 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7754 7755 unsigned RetOpc; 7756 if (Kind == "user") 7757 RetOpc = RISCVISD::URET_FLAG; 7758 else if (Kind == "supervisor") 7759 RetOpc = RISCVISD::SRET_FLAG; 7760 else 7761 RetOpc = RISCVISD::MRET_FLAG; 7762 7763 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7764 } 7765 7766 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7767 } 7768 7769 void RISCVTargetLowering::validateCCReservedRegs( 7770 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7771 MachineFunction &MF) const { 7772 const Function &F = MF.getFunction(); 7773 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7774 7775 if (llvm::any_of(Regs, [&STI](auto Reg) { 7776 return STI.isRegisterReservedByUser(Reg.first); 7777 })) 7778 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7779 F, "Argument register required, but has been reserved."}); 7780 } 7781 7782 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7783 return CI->isTailCall(); 7784 } 7785 7786 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7787 #define NODE_NAME_CASE(NODE) \ 7788 case RISCVISD::NODE: \ 7789 return "RISCVISD::" #NODE; 7790 // clang-format off 7791 switch ((RISCVISD::NodeType)Opcode) { 7792 case RISCVISD::FIRST_NUMBER: 7793 break; 7794 NODE_NAME_CASE(RET_FLAG) 7795 NODE_NAME_CASE(URET_FLAG) 7796 NODE_NAME_CASE(SRET_FLAG) 7797 NODE_NAME_CASE(MRET_FLAG) 7798 NODE_NAME_CASE(CALL) 7799 NODE_NAME_CASE(SELECT_CC) 7800 NODE_NAME_CASE(BR_CC) 7801 NODE_NAME_CASE(BuildPairF64) 7802 NODE_NAME_CASE(SplitF64) 7803 NODE_NAME_CASE(TAIL) 7804 NODE_NAME_CASE(MULHSU) 7805 NODE_NAME_CASE(SLLW) 7806 NODE_NAME_CASE(SRAW) 7807 NODE_NAME_CASE(SRLW) 7808 NODE_NAME_CASE(DIVW) 7809 NODE_NAME_CASE(DIVUW) 7810 NODE_NAME_CASE(REMUW) 7811 NODE_NAME_CASE(ROLW) 7812 NODE_NAME_CASE(RORW) 7813 NODE_NAME_CASE(CLZW) 7814 NODE_NAME_CASE(CTZW) 7815 NODE_NAME_CASE(FSLW) 7816 NODE_NAME_CASE(FSRW) 7817 NODE_NAME_CASE(FSL) 7818 NODE_NAME_CASE(FSR) 7819 NODE_NAME_CASE(FMV_H_X) 7820 NODE_NAME_CASE(FMV_X_ANYEXTH) 7821 NODE_NAME_CASE(FMV_W_X_RV64) 7822 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 7823 NODE_NAME_CASE(READ_CYCLE_WIDE) 7824 NODE_NAME_CASE(GREV) 7825 NODE_NAME_CASE(GREVW) 7826 NODE_NAME_CASE(GORC) 7827 NODE_NAME_CASE(GORCW) 7828 NODE_NAME_CASE(SHFL) 7829 NODE_NAME_CASE(SHFLW) 7830 NODE_NAME_CASE(UNSHFL) 7831 NODE_NAME_CASE(UNSHFLW) 7832 NODE_NAME_CASE(BCOMPRESS) 7833 NODE_NAME_CASE(BCOMPRESSW) 7834 NODE_NAME_CASE(BDECOMPRESS) 7835 NODE_NAME_CASE(BDECOMPRESSW) 7836 NODE_NAME_CASE(VMV_V_X_VL) 7837 NODE_NAME_CASE(VFMV_V_F_VL) 7838 NODE_NAME_CASE(VMV_X_S) 7839 NODE_NAME_CASE(VMV_S_X_VL) 7840 NODE_NAME_CASE(VFMV_S_F_VL) 7841 NODE_NAME_CASE(SPLAT_VECTOR_I64) 7842 NODE_NAME_CASE(READ_VLENB) 7843 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 7844 NODE_NAME_CASE(VSLIDEUP_VL) 7845 NODE_NAME_CASE(VSLIDE1UP_VL) 7846 NODE_NAME_CASE(VSLIDEDOWN_VL) 7847 NODE_NAME_CASE(VSLIDE1DOWN_VL) 7848 NODE_NAME_CASE(VID_VL) 7849 NODE_NAME_CASE(VFNCVT_ROD_VL) 7850 NODE_NAME_CASE(VECREDUCE_ADD_VL) 7851 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 7852 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 7853 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 7854 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 7855 NODE_NAME_CASE(VECREDUCE_AND_VL) 7856 NODE_NAME_CASE(VECREDUCE_OR_VL) 7857 NODE_NAME_CASE(VECREDUCE_XOR_VL) 7858 NODE_NAME_CASE(VECREDUCE_FADD_VL) 7859 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 7860 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 7861 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 7862 NODE_NAME_CASE(ADD_VL) 7863 NODE_NAME_CASE(AND_VL) 7864 NODE_NAME_CASE(MUL_VL) 7865 NODE_NAME_CASE(OR_VL) 7866 NODE_NAME_CASE(SDIV_VL) 7867 NODE_NAME_CASE(SHL_VL) 7868 NODE_NAME_CASE(SREM_VL) 7869 NODE_NAME_CASE(SRA_VL) 7870 NODE_NAME_CASE(SRL_VL) 7871 NODE_NAME_CASE(SUB_VL) 7872 NODE_NAME_CASE(UDIV_VL) 7873 NODE_NAME_CASE(UREM_VL) 7874 NODE_NAME_CASE(XOR_VL) 7875 NODE_NAME_CASE(FADD_VL) 7876 NODE_NAME_CASE(FSUB_VL) 7877 NODE_NAME_CASE(FMUL_VL) 7878 NODE_NAME_CASE(FDIV_VL) 7879 NODE_NAME_CASE(FNEG_VL) 7880 NODE_NAME_CASE(FABS_VL) 7881 NODE_NAME_CASE(FSQRT_VL) 7882 NODE_NAME_CASE(FMA_VL) 7883 NODE_NAME_CASE(FCOPYSIGN_VL) 7884 NODE_NAME_CASE(SMIN_VL) 7885 NODE_NAME_CASE(SMAX_VL) 7886 NODE_NAME_CASE(UMIN_VL) 7887 NODE_NAME_CASE(UMAX_VL) 7888 NODE_NAME_CASE(FMINNUM_VL) 7889 NODE_NAME_CASE(FMAXNUM_VL) 7890 NODE_NAME_CASE(MULHS_VL) 7891 NODE_NAME_CASE(MULHU_VL) 7892 NODE_NAME_CASE(FP_TO_SINT_VL) 7893 NODE_NAME_CASE(FP_TO_UINT_VL) 7894 NODE_NAME_CASE(SINT_TO_FP_VL) 7895 NODE_NAME_CASE(UINT_TO_FP_VL) 7896 NODE_NAME_CASE(FP_EXTEND_VL) 7897 NODE_NAME_CASE(FP_ROUND_VL) 7898 NODE_NAME_CASE(SETCC_VL) 7899 NODE_NAME_CASE(VSELECT_VL) 7900 NODE_NAME_CASE(VMAND_VL) 7901 NODE_NAME_CASE(VMOR_VL) 7902 NODE_NAME_CASE(VMXOR_VL) 7903 NODE_NAME_CASE(VMCLR_VL) 7904 NODE_NAME_CASE(VMSET_VL) 7905 NODE_NAME_CASE(VRGATHER_VX_VL) 7906 NODE_NAME_CASE(VRGATHER_VV_VL) 7907 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 7908 NODE_NAME_CASE(VSEXT_VL) 7909 NODE_NAME_CASE(VZEXT_VL) 7910 NODE_NAME_CASE(VPOPC_VL) 7911 NODE_NAME_CASE(VLE_VL) 7912 NODE_NAME_CASE(VSE_VL) 7913 NODE_NAME_CASE(READ_CSR) 7914 NODE_NAME_CASE(WRITE_CSR) 7915 NODE_NAME_CASE(SWAP_CSR) 7916 } 7917 // clang-format on 7918 return nullptr; 7919 #undef NODE_NAME_CASE 7920 } 7921 7922 /// getConstraintType - Given a constraint letter, return the type of 7923 /// constraint it is for this target. 7924 RISCVTargetLowering::ConstraintType 7925 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 7926 if (Constraint.size() == 1) { 7927 switch (Constraint[0]) { 7928 default: 7929 break; 7930 case 'f': 7931 case 'v': 7932 return C_RegisterClass; 7933 case 'I': 7934 case 'J': 7935 case 'K': 7936 return C_Immediate; 7937 case 'A': 7938 return C_Memory; 7939 } 7940 } 7941 return TargetLowering::getConstraintType(Constraint); 7942 } 7943 7944 std::pair<unsigned, const TargetRegisterClass *> 7945 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 7946 StringRef Constraint, 7947 MVT VT) const { 7948 // First, see if this is a constraint that directly corresponds to a 7949 // RISCV register class. 7950 if (Constraint.size() == 1) { 7951 switch (Constraint[0]) { 7952 case 'r': 7953 return std::make_pair(0U, &RISCV::GPRRegClass); 7954 case 'f': 7955 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 7956 return std::make_pair(0U, &RISCV::FPR16RegClass); 7957 if (Subtarget.hasStdExtF() && VT == MVT::f32) 7958 return std::make_pair(0U, &RISCV::FPR32RegClass); 7959 if (Subtarget.hasStdExtD() && VT == MVT::f64) 7960 return std::make_pair(0U, &RISCV::FPR64RegClass); 7961 break; 7962 case 'v': 7963 for (const auto *RC : 7964 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 7965 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7966 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 7967 return std::make_pair(0U, RC); 7968 } 7969 break; 7970 default: 7971 break; 7972 } 7973 } 7974 7975 // Clang will correctly decode the usage of register name aliases into their 7976 // official names. However, other frontends like `rustc` do not. This allows 7977 // users of these frontends to use the ABI names for registers in LLVM-style 7978 // register constraints. 7979 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 7980 .Case("{zero}", RISCV::X0) 7981 .Case("{ra}", RISCV::X1) 7982 .Case("{sp}", RISCV::X2) 7983 .Case("{gp}", RISCV::X3) 7984 .Case("{tp}", RISCV::X4) 7985 .Case("{t0}", RISCV::X5) 7986 .Case("{t1}", RISCV::X6) 7987 .Case("{t2}", RISCV::X7) 7988 .Cases("{s0}", "{fp}", RISCV::X8) 7989 .Case("{s1}", RISCV::X9) 7990 .Case("{a0}", RISCV::X10) 7991 .Case("{a1}", RISCV::X11) 7992 .Case("{a2}", RISCV::X12) 7993 .Case("{a3}", RISCV::X13) 7994 .Case("{a4}", RISCV::X14) 7995 .Case("{a5}", RISCV::X15) 7996 .Case("{a6}", RISCV::X16) 7997 .Case("{a7}", RISCV::X17) 7998 .Case("{s2}", RISCV::X18) 7999 .Case("{s3}", RISCV::X19) 8000 .Case("{s4}", RISCV::X20) 8001 .Case("{s5}", RISCV::X21) 8002 .Case("{s6}", RISCV::X22) 8003 .Case("{s7}", RISCV::X23) 8004 .Case("{s8}", RISCV::X24) 8005 .Case("{s9}", RISCV::X25) 8006 .Case("{s10}", RISCV::X26) 8007 .Case("{s11}", RISCV::X27) 8008 .Case("{t3}", RISCV::X28) 8009 .Case("{t4}", RISCV::X29) 8010 .Case("{t5}", RISCV::X30) 8011 .Case("{t6}", RISCV::X31) 8012 .Default(RISCV::NoRegister); 8013 if (XRegFromAlias != RISCV::NoRegister) 8014 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8015 8016 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8017 // TableGen record rather than the AsmName to choose registers for InlineAsm 8018 // constraints, plus we want to match those names to the widest floating point 8019 // register type available, manually select floating point registers here. 8020 // 8021 // The second case is the ABI name of the register, so that frontends can also 8022 // use the ABI names in register constraint lists. 8023 if (Subtarget.hasStdExtF()) { 8024 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8025 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8026 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8027 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8028 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8029 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8030 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8031 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8032 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8033 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8034 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8035 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8036 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8037 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8038 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8039 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8040 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8041 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8042 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8043 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8044 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8045 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8046 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8047 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8048 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8049 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8050 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8051 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8052 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8053 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8054 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8055 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8056 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8057 .Default(RISCV::NoRegister); 8058 if (FReg != RISCV::NoRegister) { 8059 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8060 if (Subtarget.hasStdExtD()) { 8061 unsigned RegNo = FReg - RISCV::F0_F; 8062 unsigned DReg = RISCV::F0_D + RegNo; 8063 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8064 } 8065 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8066 } 8067 } 8068 8069 if (Subtarget.hasStdExtV()) { 8070 Register VReg = StringSwitch<Register>(Constraint.lower()) 8071 .Case("{v0}", RISCV::V0) 8072 .Case("{v1}", RISCV::V1) 8073 .Case("{v2}", RISCV::V2) 8074 .Case("{v3}", RISCV::V3) 8075 .Case("{v4}", RISCV::V4) 8076 .Case("{v5}", RISCV::V5) 8077 .Case("{v6}", RISCV::V6) 8078 .Case("{v7}", RISCV::V7) 8079 .Case("{v8}", RISCV::V8) 8080 .Case("{v9}", RISCV::V9) 8081 .Case("{v10}", RISCV::V10) 8082 .Case("{v11}", RISCV::V11) 8083 .Case("{v12}", RISCV::V12) 8084 .Case("{v13}", RISCV::V13) 8085 .Case("{v14}", RISCV::V14) 8086 .Case("{v15}", RISCV::V15) 8087 .Case("{v16}", RISCV::V16) 8088 .Case("{v17}", RISCV::V17) 8089 .Case("{v18}", RISCV::V18) 8090 .Case("{v19}", RISCV::V19) 8091 .Case("{v20}", RISCV::V20) 8092 .Case("{v21}", RISCV::V21) 8093 .Case("{v22}", RISCV::V22) 8094 .Case("{v23}", RISCV::V23) 8095 .Case("{v24}", RISCV::V24) 8096 .Case("{v25}", RISCV::V25) 8097 .Case("{v26}", RISCV::V26) 8098 .Case("{v27}", RISCV::V27) 8099 .Case("{v28}", RISCV::V28) 8100 .Case("{v29}", RISCV::V29) 8101 .Case("{v30}", RISCV::V30) 8102 .Case("{v31}", RISCV::V31) 8103 .Default(RISCV::NoRegister); 8104 if (VReg != RISCV::NoRegister) { 8105 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8106 return std::make_pair(VReg, &RISCV::VMRegClass); 8107 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8108 return std::make_pair(VReg, &RISCV::VRRegClass); 8109 for (const auto *RC : 8110 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8111 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8112 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8113 return std::make_pair(VReg, RC); 8114 } 8115 } 8116 } 8117 } 8118 8119 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8120 } 8121 8122 unsigned 8123 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8124 // Currently only support length 1 constraints. 8125 if (ConstraintCode.size() == 1) { 8126 switch (ConstraintCode[0]) { 8127 case 'A': 8128 return InlineAsm::Constraint_A; 8129 default: 8130 break; 8131 } 8132 } 8133 8134 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8135 } 8136 8137 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8138 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8139 SelectionDAG &DAG) const { 8140 // Currently only support length 1 constraints. 8141 if (Constraint.length() == 1) { 8142 switch (Constraint[0]) { 8143 case 'I': 8144 // Validate & create a 12-bit signed immediate operand. 8145 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8146 uint64_t CVal = C->getSExtValue(); 8147 if (isInt<12>(CVal)) 8148 Ops.push_back( 8149 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8150 } 8151 return; 8152 case 'J': 8153 // Validate & create an integer zero operand. 8154 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8155 if (C->getZExtValue() == 0) 8156 Ops.push_back( 8157 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8158 return; 8159 case 'K': 8160 // Validate & create a 5-bit unsigned immediate operand. 8161 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8162 uint64_t CVal = C->getZExtValue(); 8163 if (isUInt<5>(CVal)) 8164 Ops.push_back( 8165 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8166 } 8167 return; 8168 default: 8169 break; 8170 } 8171 } 8172 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8173 } 8174 8175 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8176 Instruction *Inst, 8177 AtomicOrdering Ord) const { 8178 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8179 return Builder.CreateFence(Ord); 8180 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8181 return Builder.CreateFence(AtomicOrdering::Release); 8182 return nullptr; 8183 } 8184 8185 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8186 Instruction *Inst, 8187 AtomicOrdering Ord) const { 8188 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8189 return Builder.CreateFence(AtomicOrdering::Acquire); 8190 return nullptr; 8191 } 8192 8193 TargetLowering::AtomicExpansionKind 8194 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8195 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8196 // point operations can't be used in an lr/sc sequence without breaking the 8197 // forward-progress guarantee. 8198 if (AI->isFloatingPointOperation()) 8199 return AtomicExpansionKind::CmpXChg; 8200 8201 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8202 if (Size == 8 || Size == 16) 8203 return AtomicExpansionKind::MaskedIntrinsic; 8204 return AtomicExpansionKind::None; 8205 } 8206 8207 static Intrinsic::ID 8208 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8209 if (XLen == 32) { 8210 switch (BinOp) { 8211 default: 8212 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8213 case AtomicRMWInst::Xchg: 8214 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8215 case AtomicRMWInst::Add: 8216 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8217 case AtomicRMWInst::Sub: 8218 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8219 case AtomicRMWInst::Nand: 8220 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8221 case AtomicRMWInst::Max: 8222 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8223 case AtomicRMWInst::Min: 8224 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8225 case AtomicRMWInst::UMax: 8226 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8227 case AtomicRMWInst::UMin: 8228 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8229 } 8230 } 8231 8232 if (XLen == 64) { 8233 switch (BinOp) { 8234 default: 8235 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8236 case AtomicRMWInst::Xchg: 8237 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8238 case AtomicRMWInst::Add: 8239 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8240 case AtomicRMWInst::Sub: 8241 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8242 case AtomicRMWInst::Nand: 8243 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8244 case AtomicRMWInst::Max: 8245 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8246 case AtomicRMWInst::Min: 8247 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8248 case AtomicRMWInst::UMax: 8249 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8250 case AtomicRMWInst::UMin: 8251 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8252 } 8253 } 8254 8255 llvm_unreachable("Unexpected XLen\n"); 8256 } 8257 8258 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8259 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8260 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8261 unsigned XLen = Subtarget.getXLen(); 8262 Value *Ordering = 8263 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8264 Type *Tys[] = {AlignedAddr->getType()}; 8265 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8266 AI->getModule(), 8267 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8268 8269 if (XLen == 64) { 8270 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8271 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8272 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8273 } 8274 8275 Value *Result; 8276 8277 // Must pass the shift amount needed to sign extend the loaded value prior 8278 // to performing a signed comparison for min/max. ShiftAmt is the number of 8279 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8280 // is the number of bits to left+right shift the value in order to 8281 // sign-extend. 8282 if (AI->getOperation() == AtomicRMWInst::Min || 8283 AI->getOperation() == AtomicRMWInst::Max) { 8284 const DataLayout &DL = AI->getModule()->getDataLayout(); 8285 unsigned ValWidth = 8286 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8287 Value *SextShamt = 8288 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8289 Result = Builder.CreateCall(LrwOpScwLoop, 8290 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8291 } else { 8292 Result = 8293 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8294 } 8295 8296 if (XLen == 64) 8297 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8298 return Result; 8299 } 8300 8301 TargetLowering::AtomicExpansionKind 8302 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8303 AtomicCmpXchgInst *CI) const { 8304 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8305 if (Size == 8 || Size == 16) 8306 return AtomicExpansionKind::MaskedIntrinsic; 8307 return AtomicExpansionKind::None; 8308 } 8309 8310 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8311 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8312 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8313 unsigned XLen = Subtarget.getXLen(); 8314 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8315 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8316 if (XLen == 64) { 8317 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8318 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8319 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8320 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8321 } 8322 Type *Tys[] = {AlignedAddr->getType()}; 8323 Function *MaskedCmpXchg = 8324 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8325 Value *Result = Builder.CreateCall( 8326 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8327 if (XLen == 64) 8328 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8329 return Result; 8330 } 8331 8332 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8333 return false; 8334 } 8335 8336 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8337 EVT VT) const { 8338 VT = VT.getScalarType(); 8339 8340 if (!VT.isSimple()) 8341 return false; 8342 8343 switch (VT.getSimpleVT().SimpleTy) { 8344 case MVT::f16: 8345 return Subtarget.hasStdExtZfh(); 8346 case MVT::f32: 8347 return Subtarget.hasStdExtF(); 8348 case MVT::f64: 8349 return Subtarget.hasStdExtD(); 8350 default: 8351 break; 8352 } 8353 8354 return false; 8355 } 8356 8357 Register RISCVTargetLowering::getExceptionPointerRegister( 8358 const Constant *PersonalityFn) const { 8359 return RISCV::X10; 8360 } 8361 8362 Register RISCVTargetLowering::getExceptionSelectorRegister( 8363 const Constant *PersonalityFn) const { 8364 return RISCV::X11; 8365 } 8366 8367 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8368 // Return false to suppress the unnecessary extensions if the LibCall 8369 // arguments or return value is f32 type for LP64 ABI. 8370 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8371 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8372 return false; 8373 8374 return true; 8375 } 8376 8377 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8378 if (Subtarget.is64Bit() && Type == MVT::i32) 8379 return true; 8380 8381 return IsSigned; 8382 } 8383 8384 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8385 SDValue C) const { 8386 // Check integral scalar types. 8387 if (VT.isScalarInteger()) { 8388 // Omit the optimization if the sub target has the M extension and the data 8389 // size exceeds XLen. 8390 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8391 return false; 8392 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8393 // Break the MUL to a SLLI and an ADD/SUB. 8394 const APInt &Imm = ConstNode->getAPIntValue(); 8395 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8396 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8397 return true; 8398 // Omit the following optimization if the sub target has the M extension 8399 // and the data size >= XLen. 8400 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8401 return false; 8402 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8403 // a pair of LUI/ADDI. 8404 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8405 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8406 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8407 (1 - ImmS).isPowerOf2()) 8408 return true; 8409 } 8410 } 8411 } 8412 8413 return false; 8414 } 8415 8416 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8417 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8418 bool *Fast) const { 8419 if (!VT.isScalableVector()) 8420 return false; 8421 8422 EVT ElemVT = VT.getVectorElementType(); 8423 if (Alignment >= ElemVT.getStoreSize()) { 8424 if (Fast) 8425 *Fast = true; 8426 return true; 8427 } 8428 8429 return false; 8430 } 8431 8432 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8433 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8434 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8435 bool IsABIRegCopy = CC.hasValue(); 8436 EVT ValueVT = Val.getValueType(); 8437 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8438 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8439 // and cast to f32. 8440 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8441 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8442 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8443 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8444 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8445 Parts[0] = Val; 8446 return true; 8447 } 8448 8449 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8450 LLVMContext &Context = *DAG.getContext(); 8451 EVT ValueEltVT = ValueVT.getVectorElementType(); 8452 EVT PartEltVT = PartVT.getVectorElementType(); 8453 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8454 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8455 if (PartVTBitSize % ValueVTBitSize == 0) { 8456 // If the element types are different, bitcast to the same element type of 8457 // PartVT first. 8458 if (ValueEltVT != PartEltVT) { 8459 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8460 assert(Count != 0 && "The number of element should not be zero."); 8461 EVT SameEltTypeVT = 8462 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8463 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8464 } 8465 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8466 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8467 Parts[0] = Val; 8468 return true; 8469 } 8470 } 8471 return false; 8472 } 8473 8474 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8475 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8476 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8477 bool IsABIRegCopy = CC.hasValue(); 8478 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8479 SDValue Val = Parts[0]; 8480 8481 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8482 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8483 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8484 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8485 return Val; 8486 } 8487 8488 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8489 LLVMContext &Context = *DAG.getContext(); 8490 SDValue Val = Parts[0]; 8491 EVT ValueEltVT = ValueVT.getVectorElementType(); 8492 EVT PartEltVT = PartVT.getVectorElementType(); 8493 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8494 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8495 if (PartVTBitSize % ValueVTBitSize == 0) { 8496 EVT SameEltTypeVT = ValueVT; 8497 // If the element types are different, convert it to the same element type 8498 // of PartVT. 8499 if (ValueEltVT != PartEltVT) { 8500 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8501 assert(Count != 0 && "The number of element should not be zero."); 8502 SameEltTypeVT = 8503 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8504 } 8505 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8506 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8507 if (ValueEltVT != PartEltVT) 8508 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8509 return Val; 8510 } 8511 } 8512 return SDValue(); 8513 } 8514 8515 #define GET_REGISTER_MATCHER 8516 #include "RISCVGenAsmMatcher.inc" 8517 8518 Register 8519 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8520 const MachineFunction &MF) const { 8521 Register Reg = MatchRegisterAltName(RegName); 8522 if (Reg == RISCV::NoRegister) 8523 Reg = MatchRegisterName(RegName); 8524 if (Reg == RISCV::NoRegister) 8525 report_fatal_error( 8526 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8527 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8528 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8529 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8530 StringRef(RegName) + "\".")); 8531 return Reg; 8532 } 8533 8534 namespace llvm { 8535 namespace RISCVVIntrinsicsTable { 8536 8537 #define GET_RISCVVIntrinsicsTable_IMPL 8538 #include "RISCVGenSearchableTables.inc" 8539 8540 } // namespace RISCVVIntrinsicsTable 8541 8542 } // namespace llvm 8543