1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "riscv-lower" 40 41 STATISTIC(NumTailCalls, "Number of tail calls"); 42 43 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 44 const RISCVSubtarget &STI) 45 : TargetLowering(TM), Subtarget(STI) { 46 47 if (Subtarget.isRV32E()) 48 report_fatal_error("Codegen not yet implemented for RV32E"); 49 50 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 51 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 52 53 switch (ABI) { 54 default: 55 report_fatal_error("Don't know how to lower this ABI"); 56 case RISCVABI::ABI_ILP32: 57 case RISCVABI::ABI_ILP32F: 58 case RISCVABI::ABI_ILP32D: 59 case RISCVABI::ABI_LP64: 60 case RISCVABI::ABI_LP64F: 61 case RISCVABI::ABI_LP64D: 62 break; 63 } 64 65 MVT XLenVT = Subtarget.getXLenVT(); 66 67 // Set up the register classes. 68 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 69 70 if (Subtarget.hasStdExtF()) 71 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 72 if (Subtarget.hasStdExtD()) 73 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 74 75 // Compute derived properties from the register classes. 76 computeRegisterProperties(STI.getRegisterInfo()); 77 78 setStackPointerRegisterToSaveRestore(RISCV::X2); 79 80 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 81 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 82 83 // TODO: add all necessary setOperationAction calls. 84 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 85 86 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 87 setOperationAction(ISD::BR_CC, XLenVT, Expand); 88 setOperationAction(ISD::SELECT, XLenVT, Custom); 89 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 90 91 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 92 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 93 94 setOperationAction(ISD::VASTART, MVT::Other, Custom); 95 setOperationAction(ISD::VAARG, MVT::Other, Expand); 96 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 97 setOperationAction(ISD::VAEND, MVT::Other, Expand); 98 99 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 100 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 101 102 if (Subtarget.is64Bit()) { 103 setOperationAction(ISD::SHL, MVT::i32, Custom); 104 setOperationAction(ISD::SRA, MVT::i32, Custom); 105 setOperationAction(ISD::SRL, MVT::i32, Custom); 106 } 107 108 if (!Subtarget.hasStdExtM()) { 109 setOperationAction(ISD::MUL, XLenVT, Expand); 110 setOperationAction(ISD::MULHS, XLenVT, Expand); 111 setOperationAction(ISD::MULHU, XLenVT, Expand); 112 setOperationAction(ISD::SDIV, XLenVT, Expand); 113 setOperationAction(ISD::UDIV, XLenVT, Expand); 114 setOperationAction(ISD::SREM, XLenVT, Expand); 115 setOperationAction(ISD::UREM, XLenVT, Expand); 116 } 117 118 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 119 setOperationAction(ISD::SDIV, MVT::i32, Custom); 120 setOperationAction(ISD::UDIV, MVT::i32, Custom); 121 setOperationAction(ISD::UREM, MVT::i32, Custom); 122 } 123 124 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 125 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 126 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 127 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 128 129 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 130 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 131 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 132 133 setOperationAction(ISD::ROTL, XLenVT, Expand); 134 setOperationAction(ISD::ROTR, XLenVT, Expand); 135 setOperationAction(ISD::BSWAP, XLenVT, Expand); 136 setOperationAction(ISD::CTTZ, XLenVT, Expand); 137 setOperationAction(ISD::CTLZ, XLenVT, Expand); 138 setOperationAction(ISD::CTPOP, XLenVT, Expand); 139 140 ISD::CondCode FPCCToExtend[] = { 141 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 142 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 143 ISD::SETGE, ISD::SETNE}; 144 145 ISD::NodeType FPOpToExtend[] = { 146 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; 147 148 if (Subtarget.hasStdExtF()) { 149 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 150 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 151 for (auto CC : FPCCToExtend) 152 setCondCodeAction(CC, MVT::f32, Expand); 153 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 154 setOperationAction(ISD::SELECT, MVT::f32, Custom); 155 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 156 for (auto Op : FPOpToExtend) 157 setOperationAction(Op, MVT::f32, Expand); 158 } 159 160 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 161 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 162 163 if (Subtarget.hasStdExtD()) { 164 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 165 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 166 for (auto CC : FPCCToExtend) 167 setCondCodeAction(CC, MVT::f64, Expand); 168 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 169 setOperationAction(ISD::SELECT, MVT::f64, Custom); 170 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 172 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 173 for (auto Op : FPOpToExtend) 174 setOperationAction(Op, MVT::f64, Expand); 175 } 176 177 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 178 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 179 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 180 181 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 182 183 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 184 // Unfortunately this can't be determined just from the ISA naming string. 185 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 186 Subtarget.is64Bit() ? Legal : Custom); 187 188 if (Subtarget.hasStdExtA()) { 189 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 190 setMinCmpXchgSizeInBits(32); 191 } else { 192 setMaxAtomicSizeInBitsSupported(0); 193 } 194 195 setBooleanContents(ZeroOrOneBooleanContent); 196 197 // Function alignments (log2). 198 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 199 setMinFunctionAlignment(FunctionAlignment); 200 setPrefFunctionAlignment(FunctionAlignment); 201 202 // Effectively disable jump table generation. 203 setMinimumJumpTableEntries(INT_MAX); 204 } 205 206 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 207 EVT VT) const { 208 if (!VT.isVector()) 209 return getPointerTy(DL); 210 return VT.changeVectorElementTypeToInteger(); 211 } 212 213 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 214 const CallInst &I, 215 MachineFunction &MF, 216 unsigned Intrinsic) const { 217 switch (Intrinsic) { 218 default: 219 return false; 220 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 221 case Intrinsic::riscv_masked_atomicrmw_add_i32: 222 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 223 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 224 case Intrinsic::riscv_masked_atomicrmw_max_i32: 225 case Intrinsic::riscv_masked_atomicrmw_min_i32: 226 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 227 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 228 case Intrinsic::riscv_masked_cmpxchg_i32: 229 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 230 Info.opc = ISD::INTRINSIC_W_CHAIN; 231 Info.memVT = MVT::getVT(PtrTy->getElementType()); 232 Info.ptrVal = I.getArgOperand(0); 233 Info.offset = 0; 234 Info.align = 4; 235 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 236 MachineMemOperand::MOVolatile; 237 return true; 238 } 239 } 240 241 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 242 const AddrMode &AM, Type *Ty, 243 unsigned AS, 244 Instruction *I) const { 245 // No global is ever allowed as a base. 246 if (AM.BaseGV) 247 return false; 248 249 // Require a 12-bit signed offset. 250 if (!isInt<12>(AM.BaseOffs)) 251 return false; 252 253 switch (AM.Scale) { 254 case 0: // "r+i" or just "i", depending on HasBaseReg. 255 break; 256 case 1: 257 if (!AM.HasBaseReg) // allow "r+i". 258 break; 259 return false; // disallow "r+r" or "r+r+i". 260 default: 261 return false; 262 } 263 264 return true; 265 } 266 267 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 268 return isInt<12>(Imm); 269 } 270 271 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 272 return isInt<12>(Imm); 273 } 274 275 // On RV32, 64-bit integers are split into their high and low parts and held 276 // in two different registers, so the trunc is free since the low register can 277 // just be used. 278 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 279 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 280 return false; 281 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 282 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 283 return (SrcBits == 64 && DestBits == 32); 284 } 285 286 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 287 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 288 !SrcVT.isInteger() || !DstVT.isInteger()) 289 return false; 290 unsigned SrcBits = SrcVT.getSizeInBits(); 291 unsigned DestBits = DstVT.getSizeInBits(); 292 return (SrcBits == 64 && DestBits == 32); 293 } 294 295 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 296 // Zexts are free if they can be combined with a load. 297 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 298 EVT MemVT = LD->getMemoryVT(); 299 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 300 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 301 (LD->getExtensionType() == ISD::NON_EXTLOAD || 302 LD->getExtensionType() == ISD::ZEXTLOAD)) 303 return true; 304 } 305 306 return TargetLowering::isZExtFree(Val, VT2); 307 } 308 309 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 310 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 311 } 312 313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 314 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 315 (VT == MVT::f64 && Subtarget.hasStdExtD()); 316 } 317 318 // Changes the condition code and swaps operands if necessary, so the SetCC 319 // operation matches one of the comparisons supported directly in the RISC-V 320 // ISA. 321 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 322 switch (CC) { 323 default: 324 break; 325 case ISD::SETGT: 326 case ISD::SETLE: 327 case ISD::SETUGT: 328 case ISD::SETULE: 329 CC = ISD::getSetCCSwappedOperands(CC); 330 std::swap(LHS, RHS); 331 break; 332 } 333 } 334 335 // Return the RISC-V branch opcode that matches the given DAG integer 336 // condition code. The CondCode must be one of those supported by the RISC-V 337 // ISA (see normaliseSetCC). 338 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 339 switch (CC) { 340 default: 341 llvm_unreachable("Unsupported CondCode"); 342 case ISD::SETEQ: 343 return RISCV::BEQ; 344 case ISD::SETNE: 345 return RISCV::BNE; 346 case ISD::SETLT: 347 return RISCV::BLT; 348 case ISD::SETGE: 349 return RISCV::BGE; 350 case ISD::SETULT: 351 return RISCV::BLTU; 352 case ISD::SETUGE: 353 return RISCV::BGEU; 354 } 355 } 356 357 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 358 SelectionDAG &DAG) const { 359 switch (Op.getOpcode()) { 360 default: 361 report_fatal_error("unimplemented operand"); 362 case ISD::GlobalAddress: 363 return lowerGlobalAddress(Op, DAG); 364 case ISD::BlockAddress: 365 return lowerBlockAddress(Op, DAG); 366 case ISD::ConstantPool: 367 return lowerConstantPool(Op, DAG); 368 case ISD::GlobalTLSAddress: 369 return lowerGlobalTLSAddress(Op, DAG); 370 case ISD::SELECT: 371 return lowerSELECT(Op, DAG); 372 case ISD::VASTART: 373 return lowerVASTART(Op, DAG); 374 case ISD::FRAMEADDR: 375 return lowerFRAMEADDR(Op, DAG); 376 case ISD::RETURNADDR: 377 return lowerRETURNADDR(Op, DAG); 378 case ISD::SHL_PARTS: 379 return lowerShiftLeftParts(Op, DAG); 380 case ISD::SRA_PARTS: 381 return lowerShiftRightParts(Op, DAG, true); 382 case ISD::SRL_PARTS: 383 return lowerShiftRightParts(Op, DAG, false); 384 case ISD::BITCAST: { 385 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 386 "Unexpected custom legalisation"); 387 SDLoc DL(Op); 388 SDValue Op0 = Op.getOperand(0); 389 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 390 return SDValue(); 391 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 392 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 393 return FPConv; 394 } 395 } 396 } 397 398 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 399 SelectionDAG &DAG, unsigned Flags) { 400 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 401 } 402 403 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 404 SelectionDAG &DAG, unsigned Flags) { 405 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 406 Flags); 407 } 408 409 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 410 SelectionDAG &DAG, unsigned Flags) { 411 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 412 N->getOffset(), Flags); 413 } 414 415 template <class NodeTy> 416 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 417 bool IsLocal) const { 418 SDLoc DL(N); 419 EVT Ty = getPointerTy(DAG.getDataLayout()); 420 421 if (isPositionIndependent()) { 422 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 423 if (IsLocal) 424 // Use PC-relative addressing to access the symbol. This generates the 425 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 426 // %pcrel_lo(auipc)). 427 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 428 429 // Use PC-relative addressing to access the GOT for this symbol, then load 430 // the address from the GOT. This generates the pattern (PseudoLA sym), 431 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 432 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 433 } 434 435 switch (getTargetMachine().getCodeModel()) { 436 default: 437 report_fatal_error("Unsupported code model for lowering"); 438 case CodeModel::Small: { 439 // Generate a sequence for accessing addresses within the first 2 GiB of 440 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 441 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 442 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 443 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 444 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 445 } 446 case CodeModel::Medium: { 447 // Generate a sequence for accessing addresses within any 2GiB range within 448 // the address space. This generates the pattern (PseudoLLA sym), which 449 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 450 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 451 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 452 } 453 } 454 } 455 456 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 457 SelectionDAG &DAG) const { 458 SDLoc DL(Op); 459 EVT Ty = Op.getValueType(); 460 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 461 int64_t Offset = N->getOffset(); 462 MVT XLenVT = Subtarget.getXLenVT(); 463 464 const GlobalValue *GV = N->getGlobal(); 465 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 466 SDValue Addr = getAddr(N, DAG, IsLocal); 467 468 // In order to maximise the opportunity for common subexpression elimination, 469 // emit a separate ADD node for the global address offset instead of folding 470 // it in the global address node. Later peephole optimisations may choose to 471 // fold it back in when profitable. 472 if (Offset != 0) 473 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 474 DAG.getConstant(Offset, DL, XLenVT)); 475 return Addr; 476 } 477 478 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 479 SelectionDAG &DAG) const { 480 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 481 482 return getAddr(N, DAG); 483 } 484 485 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 486 SelectionDAG &DAG) const { 487 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 488 489 return getAddr(N, DAG); 490 } 491 492 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 493 SelectionDAG &DAG, 494 bool UseGOT) const { 495 SDLoc DL(N); 496 EVT Ty = getPointerTy(DAG.getDataLayout()); 497 const GlobalValue *GV = N->getGlobal(); 498 MVT XLenVT = Subtarget.getXLenVT(); 499 500 if (UseGOT) { 501 // Use PC-relative addressing to access the GOT for this TLS symbol, then 502 // load the address from the GOT and add the thread pointer. This generates 503 // the pattern (PseudoLA_TLS_IE sym), which expands to 504 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 505 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 506 SDValue Load = 507 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 508 509 // Add the thread pointer. 510 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 511 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 512 } 513 514 // Generate a sequence for accessing the address relative to the thread 515 // pointer, with the appropriate adjustment for the thread pointer offset. 516 // This generates the pattern 517 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 518 SDValue AddrHi = 519 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 520 SDValue AddrAdd = 521 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 522 SDValue AddrLo = 523 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 524 525 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 526 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 527 SDValue MNAdd = SDValue( 528 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 529 0); 530 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 531 } 532 533 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 534 SelectionDAG &DAG) const { 535 SDLoc DL(N); 536 EVT Ty = getPointerTy(DAG.getDataLayout()); 537 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 538 const GlobalValue *GV = N->getGlobal(); 539 540 // Use a PC-relative addressing mode to access the global dynamic GOT address. 541 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 542 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 543 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 544 SDValue Load = 545 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 546 547 // Prepare argument list to generate call. 548 ArgListTy Args; 549 ArgListEntry Entry; 550 Entry.Node = Load; 551 Entry.Ty = CallTy; 552 Args.push_back(Entry); 553 554 // Setup call to __tls_get_addr. 555 TargetLowering::CallLoweringInfo CLI(DAG); 556 CLI.setDebugLoc(DL) 557 .setChain(DAG.getEntryNode()) 558 .setLibCallee(CallingConv::C, CallTy, 559 DAG.getExternalSymbol("__tls_get_addr", Ty), 560 std::move(Args)); 561 562 return LowerCallTo(CLI).first; 563 } 564 565 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 566 SelectionDAG &DAG) const { 567 SDLoc DL(Op); 568 EVT Ty = Op.getValueType(); 569 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 570 int64_t Offset = N->getOffset(); 571 MVT XLenVT = Subtarget.getXLenVT(); 572 573 // Non-PIC TLS lowering should always use the LocalExec model. 574 TLSModel::Model Model = isPositionIndependent() 575 ? getTargetMachine().getTLSModel(N->getGlobal()) 576 : TLSModel::LocalExec; 577 578 SDValue Addr; 579 switch (Model) { 580 case TLSModel::LocalExec: 581 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 582 break; 583 case TLSModel::InitialExec: 584 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 585 break; 586 case TLSModel::LocalDynamic: 587 case TLSModel::GeneralDynamic: 588 Addr = getDynamicTLSAddr(N, DAG); 589 break; 590 } 591 592 // In order to maximise the opportunity for common subexpression elimination, 593 // emit a separate ADD node for the global address offset instead of folding 594 // it in the global address node. Later peephole optimisations may choose to 595 // fold it back in when profitable. 596 if (Offset != 0) 597 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 598 DAG.getConstant(Offset, DL, XLenVT)); 599 return Addr; 600 } 601 602 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 603 SDValue CondV = Op.getOperand(0); 604 SDValue TrueV = Op.getOperand(1); 605 SDValue FalseV = Op.getOperand(2); 606 SDLoc DL(Op); 607 MVT XLenVT = Subtarget.getXLenVT(); 608 609 // If the result type is XLenVT and CondV is the output of a SETCC node 610 // which also operated on XLenVT inputs, then merge the SETCC node into the 611 // lowered RISCVISD::SELECT_CC to take advantage of the integer 612 // compare+branch instructions. i.e.: 613 // (select (setcc lhs, rhs, cc), truev, falsev) 614 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 615 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 616 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 617 SDValue LHS = CondV.getOperand(0); 618 SDValue RHS = CondV.getOperand(1); 619 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 620 ISD::CondCode CCVal = CC->get(); 621 622 normaliseSetCC(LHS, RHS, CCVal); 623 624 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 625 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 626 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 627 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 628 } 629 630 // Otherwise: 631 // (select condv, truev, falsev) 632 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 633 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 634 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 635 636 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 637 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 638 639 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 640 } 641 642 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 643 MachineFunction &MF = DAG.getMachineFunction(); 644 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 645 646 SDLoc DL(Op); 647 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 648 getPointerTy(MF.getDataLayout())); 649 650 // vastart just stores the address of the VarArgsFrameIndex slot into the 651 // memory location argument. 652 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 653 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 654 MachinePointerInfo(SV)); 655 } 656 657 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 658 SelectionDAG &DAG) const { 659 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 660 MachineFunction &MF = DAG.getMachineFunction(); 661 MachineFrameInfo &MFI = MF.getFrameInfo(); 662 MFI.setFrameAddressIsTaken(true); 663 unsigned FrameReg = RI.getFrameRegister(MF); 664 int XLenInBytes = Subtarget.getXLen() / 8; 665 666 EVT VT = Op.getValueType(); 667 SDLoc DL(Op); 668 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 669 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 670 while (Depth--) { 671 int Offset = -(XLenInBytes * 2); 672 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 673 DAG.getIntPtrConstant(Offset, DL)); 674 FrameAddr = 675 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 676 } 677 return FrameAddr; 678 } 679 680 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 681 SelectionDAG &DAG) const { 682 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 683 MachineFunction &MF = DAG.getMachineFunction(); 684 MachineFrameInfo &MFI = MF.getFrameInfo(); 685 MFI.setReturnAddressIsTaken(true); 686 MVT XLenVT = Subtarget.getXLenVT(); 687 int XLenInBytes = Subtarget.getXLen() / 8; 688 689 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 690 return SDValue(); 691 692 EVT VT = Op.getValueType(); 693 SDLoc DL(Op); 694 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 695 if (Depth) { 696 int Off = -XLenInBytes; 697 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 698 SDValue Offset = DAG.getConstant(Off, DL, VT); 699 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 700 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 701 MachinePointerInfo()); 702 } 703 704 // Return the value of the return address register, marking it an implicit 705 // live-in. 706 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 707 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 708 } 709 710 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 711 SelectionDAG &DAG) const { 712 SDLoc DL(Op); 713 SDValue Lo = Op.getOperand(0); 714 SDValue Hi = Op.getOperand(1); 715 SDValue Shamt = Op.getOperand(2); 716 EVT VT = Lo.getValueType(); 717 718 // if Shamt-XLEN < 0: // Shamt < XLEN 719 // Lo = Lo << Shamt 720 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 721 // else: 722 // Lo = 0 723 // Hi = Lo << (Shamt-XLEN) 724 725 SDValue Zero = DAG.getConstant(0, DL, VT); 726 SDValue One = DAG.getConstant(1, DL, VT); 727 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 728 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 729 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 730 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 731 732 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 733 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 734 SDValue ShiftRightLo = 735 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 736 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 737 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 738 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 739 740 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 741 742 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 743 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 744 745 SDValue Parts[2] = {Lo, Hi}; 746 return DAG.getMergeValues(Parts, DL); 747 } 748 749 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 750 bool IsSRA) const { 751 SDLoc DL(Op); 752 SDValue Lo = Op.getOperand(0); 753 SDValue Hi = Op.getOperand(1); 754 SDValue Shamt = Op.getOperand(2); 755 EVT VT = Lo.getValueType(); 756 757 // SRA expansion: 758 // if Shamt-XLEN < 0: // Shamt < XLEN 759 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 760 // Hi = Hi >>s Shamt 761 // else: 762 // Lo = Hi >>s (Shamt-XLEN); 763 // Hi = Hi >>s (XLEN-1) 764 // 765 // SRL expansion: 766 // if Shamt-XLEN < 0: // Shamt < XLEN 767 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 768 // Hi = Hi >>u Shamt 769 // else: 770 // Lo = Hi >>u (Shamt-XLEN); 771 // Hi = 0; 772 773 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 774 775 SDValue Zero = DAG.getConstant(0, DL, VT); 776 SDValue One = DAG.getConstant(1, DL, VT); 777 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 778 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 779 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 780 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 781 782 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 783 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 784 SDValue ShiftLeftHi = 785 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 786 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 787 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 788 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 789 SDValue HiFalse = 790 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 791 792 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 793 794 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 795 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 796 797 SDValue Parts[2] = {Lo, Hi}; 798 return DAG.getMergeValues(Parts, DL); 799 } 800 801 // Returns the opcode of the target-specific SDNode that implements the 32-bit 802 // form of the given Opcode. 803 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 804 switch (Opcode) { 805 default: 806 llvm_unreachable("Unexpected opcode"); 807 case ISD::SHL: 808 return RISCVISD::SLLW; 809 case ISD::SRA: 810 return RISCVISD::SRAW; 811 case ISD::SRL: 812 return RISCVISD::SRLW; 813 case ISD::SDIV: 814 return RISCVISD::DIVW; 815 case ISD::UDIV: 816 return RISCVISD::DIVUW; 817 case ISD::UREM: 818 return RISCVISD::REMUW; 819 } 820 } 821 822 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 823 // Because i32 isn't a legal type for RV64, these operations would otherwise 824 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 825 // later one because the fact the operation was originally of type i32 is 826 // lost. 827 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 828 SDLoc DL(N); 829 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 830 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 831 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 832 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 833 // ReplaceNodeResults requires we maintain the same type for the return value. 834 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 835 } 836 837 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 838 SmallVectorImpl<SDValue> &Results, 839 SelectionDAG &DAG) const { 840 SDLoc DL(N); 841 switch (N->getOpcode()) { 842 default: 843 llvm_unreachable("Don't know how to custom type legalize this operation!"); 844 case ISD::READCYCLECOUNTER: { 845 assert(!Subtarget.is64Bit() && 846 "READCYCLECOUNTER only has custom type legalization on riscv32"); 847 848 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 849 SDValue RCW = 850 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 851 852 Results.push_back(RCW); 853 Results.push_back(RCW.getValue(1)); 854 Results.push_back(RCW.getValue(2)); 855 break; 856 } 857 case ISD::SHL: 858 case ISD::SRA: 859 case ISD::SRL: 860 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 861 "Unexpected custom legalisation"); 862 if (N->getOperand(1).getOpcode() == ISD::Constant) 863 return; 864 Results.push_back(customLegalizeToWOp(N, DAG)); 865 break; 866 case ISD::SDIV: 867 case ISD::UDIV: 868 case ISD::UREM: 869 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 870 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 871 if (N->getOperand(0).getOpcode() == ISD::Constant || 872 N->getOperand(1).getOpcode() == ISD::Constant) 873 return; 874 Results.push_back(customLegalizeToWOp(N, DAG)); 875 break; 876 case ISD::BITCAST: { 877 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 878 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 879 SDLoc DL(N); 880 SDValue Op0 = N->getOperand(0); 881 if (Op0.getValueType() != MVT::f32) 882 return; 883 SDValue FPConv = 884 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 885 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 886 break; 887 } 888 } 889 } 890 891 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 892 DAGCombinerInfo &DCI) const { 893 SelectionDAG &DAG = DCI.DAG; 894 895 switch (N->getOpcode()) { 896 default: 897 break; 898 case RISCVISD::SplitF64: { 899 SDValue Op0 = N->getOperand(0); 900 // If the input to SplitF64 is just BuildPairF64 then the operation is 901 // redundant. Instead, use BuildPairF64's operands directly. 902 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 903 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 904 905 SDLoc DL(N); 906 907 // It's cheaper to materialise two 32-bit integers than to load a double 908 // from the constant pool and transfer it to integer registers through the 909 // stack. 910 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 911 APInt V = C->getValueAPF().bitcastToAPInt(); 912 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 913 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 914 return DCI.CombineTo(N, Lo, Hi); 915 } 916 917 // This is a target-specific version of a DAGCombine performed in 918 // DAGCombiner::visitBITCAST. It performs the equivalent of: 919 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 920 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 921 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 922 !Op0.getNode()->hasOneUse()) 923 break; 924 SDValue NewSplitF64 = 925 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 926 Op0.getOperand(0)); 927 SDValue Lo = NewSplitF64.getValue(0); 928 SDValue Hi = NewSplitF64.getValue(1); 929 APInt SignBit = APInt::getSignMask(32); 930 if (Op0.getOpcode() == ISD::FNEG) { 931 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 932 DAG.getConstant(SignBit, DL, MVT::i32)); 933 return DCI.CombineTo(N, Lo, NewHi); 934 } 935 assert(Op0.getOpcode() == ISD::FABS); 936 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 937 DAG.getConstant(~SignBit, DL, MVT::i32)); 938 return DCI.CombineTo(N, Lo, NewHi); 939 } 940 case RISCVISD::SLLW: 941 case RISCVISD::SRAW: 942 case RISCVISD::SRLW: { 943 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 944 SDValue LHS = N->getOperand(0); 945 SDValue RHS = N->getOperand(1); 946 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 947 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 948 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 949 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 950 return SDValue(); 951 break; 952 } 953 case RISCVISD::FMV_X_ANYEXTW_RV64: { 954 SDLoc DL(N); 955 SDValue Op0 = N->getOperand(0); 956 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 957 // conversion is unnecessary and can be replaced with an ANY_EXTEND 958 // of the FMV_W_X_RV64 operand. 959 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 960 SDValue AExtOp = 961 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 962 return DCI.CombineTo(N, AExtOp); 963 } 964 965 // This is a target-specific version of a DAGCombine performed in 966 // DAGCombiner::visitBITCAST. It performs the equivalent of: 967 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 968 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 969 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 970 !Op0.getNode()->hasOneUse()) 971 break; 972 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 973 Op0.getOperand(0)); 974 APInt SignBit = APInt::getSignMask(32).sext(64); 975 if (Op0.getOpcode() == ISD::FNEG) { 976 return DCI.CombineTo(N, 977 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 978 DAG.getConstant(SignBit, DL, MVT::i64))); 979 } 980 assert(Op0.getOpcode() == ISD::FABS); 981 return DCI.CombineTo(N, 982 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 983 DAG.getConstant(~SignBit, DL, MVT::i64))); 984 } 985 } 986 987 return SDValue(); 988 } 989 990 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 991 const SDNode *N, CombineLevel Level) const { 992 // The following folds are only desirable if `(OP _, c1 << c2)` can be 993 // materialised in fewer instructions than `(OP _, c1)`: 994 // 995 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 996 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 997 SDValue N0 = N->getOperand(0); 998 EVT Ty = N0.getValueType(); 999 if (Ty.isScalarInteger() && 1000 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1001 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1002 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1003 if (C1 && C2) { 1004 APInt C1Int = C1->getAPIntValue(); 1005 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1006 1007 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1008 // and the combine should happen, to potentially allow further combines 1009 // later. 1010 if (isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1011 return true; 1012 1013 // We can materialise `c1` in an add immediate, so it's "free", and the 1014 // combine should be prevented. 1015 if (isLegalAddImmediate(C1Int.getSExtValue())) 1016 return false; 1017 1018 // Neither constant will fit into an immediate, so find materialisation 1019 // costs. 1020 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1021 Subtarget.is64Bit()); 1022 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1023 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1024 1025 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1026 // combine should be prevented. 1027 if (C1Cost < ShiftedC1Cost) 1028 return false; 1029 } 1030 } 1031 return true; 1032 } 1033 1034 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1035 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1036 unsigned Depth) const { 1037 switch (Op.getOpcode()) { 1038 default: 1039 break; 1040 case RISCVISD::SLLW: 1041 case RISCVISD::SRAW: 1042 case RISCVISD::SRLW: 1043 case RISCVISD::DIVW: 1044 case RISCVISD::DIVUW: 1045 case RISCVISD::REMUW: 1046 // TODO: As the result is sign-extended, this is conservatively correct. A 1047 // more precise answer could be calculated for SRAW depending on known 1048 // bits in the shift amount. 1049 return 33; 1050 } 1051 1052 return 1; 1053 } 1054 1055 MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1056 MachineBasicBlock *BB) { 1057 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1058 1059 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1060 // Should the count have wrapped while it was being read, we need to try 1061 // again. 1062 // ... 1063 // read: 1064 // rdcycleh x3 # load high word of cycle 1065 // rdcycle x2 # load low word of cycle 1066 // rdcycleh x4 # load high word of cycle 1067 // bne x3, x4, read # check if high word reads match, otherwise try again 1068 // ... 1069 1070 MachineFunction &MF = *BB->getParent(); 1071 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1072 MachineFunction::iterator It = ++BB->getIterator(); 1073 1074 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1075 MF.insert(It, LoopMBB); 1076 1077 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1078 MF.insert(It, DoneMBB); 1079 1080 // Transfer the remainder of BB and its successor edges to DoneMBB. 1081 DoneMBB->splice(DoneMBB->begin(), BB, 1082 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1083 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1084 1085 BB->addSuccessor(LoopMBB); 1086 1087 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1088 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1089 unsigned LoReg = MI.getOperand(0).getReg(); 1090 unsigned HiReg = MI.getOperand(1).getReg(); 1091 DebugLoc DL = MI.getDebugLoc(); 1092 1093 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1094 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1095 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1096 .addReg(RISCV::X0); 1097 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1098 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1099 .addReg(RISCV::X0); 1100 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1101 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1102 .addReg(RISCV::X0); 1103 1104 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1105 .addReg(HiReg) 1106 .addReg(ReadAgainReg) 1107 .addMBB(LoopMBB); 1108 1109 LoopMBB->addSuccessor(LoopMBB); 1110 LoopMBB->addSuccessor(DoneMBB); 1111 1112 MI.eraseFromParent(); 1113 1114 return DoneMBB; 1115 } 1116 1117 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1118 MachineBasicBlock *BB) { 1119 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1120 1121 MachineFunction &MF = *BB->getParent(); 1122 DebugLoc DL = MI.getDebugLoc(); 1123 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1124 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1125 unsigned LoReg = MI.getOperand(0).getReg(); 1126 unsigned HiReg = MI.getOperand(1).getReg(); 1127 unsigned SrcReg = MI.getOperand(2).getReg(); 1128 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1129 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1130 1131 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1132 RI); 1133 MachineMemOperand *MMO = 1134 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1135 MachineMemOperand::MOLoad, 8, 8); 1136 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1137 .addFrameIndex(FI) 1138 .addImm(0) 1139 .addMemOperand(MMO); 1140 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1141 .addFrameIndex(FI) 1142 .addImm(4) 1143 .addMemOperand(MMO); 1144 MI.eraseFromParent(); // The pseudo instruction is gone now. 1145 return BB; 1146 } 1147 1148 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1149 MachineBasicBlock *BB) { 1150 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1151 "Unexpected instruction"); 1152 1153 MachineFunction &MF = *BB->getParent(); 1154 DebugLoc DL = MI.getDebugLoc(); 1155 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1156 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1157 unsigned DstReg = MI.getOperand(0).getReg(); 1158 unsigned LoReg = MI.getOperand(1).getReg(); 1159 unsigned HiReg = MI.getOperand(2).getReg(); 1160 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1161 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 1162 1163 MachineMemOperand *MMO = 1164 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1165 MachineMemOperand::MOStore, 8, 8); 1166 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1167 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1168 .addFrameIndex(FI) 1169 .addImm(0) 1170 .addMemOperand(MMO); 1171 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1172 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1173 .addFrameIndex(FI) 1174 .addImm(4) 1175 .addMemOperand(MMO); 1176 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1177 MI.eraseFromParent(); // The pseudo instruction is gone now. 1178 return BB; 1179 } 1180 1181 static bool isSelectPseudo(MachineInstr &MI) { 1182 switch (MI.getOpcode()) { 1183 default: 1184 return false; 1185 case RISCV::Select_GPR_Using_CC_GPR: 1186 case RISCV::Select_FPR32_Using_CC_GPR: 1187 case RISCV::Select_FPR64_Using_CC_GPR: 1188 return true; 1189 } 1190 } 1191 1192 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1193 MachineBasicBlock *BB) { 1194 // To "insert" Select_* instructions, we actually have to insert the triangle 1195 // control-flow pattern. The incoming instructions know the destination vreg 1196 // to set, the condition code register to branch on, the true/false values to 1197 // select between, and the condcode to use to select the appropriate branch. 1198 // 1199 // We produce the following control flow: 1200 // HeadMBB 1201 // | \ 1202 // | IfFalseMBB 1203 // | / 1204 // TailMBB 1205 // 1206 // When we find a sequence of selects we attempt to optimize their emission 1207 // by sharing the control flow. Currently we only handle cases where we have 1208 // multiple selects with the exact same condition (same LHS, RHS and CC). 1209 // The selects may be interleaved with other instructions if the other 1210 // instructions meet some requirements we deem safe: 1211 // - They are debug instructions. Otherwise, 1212 // - They do not have side-effects, do not access memory and their inputs do 1213 // not depend on the results of the select pseudo-instructions. 1214 // The TrueV/FalseV operands of the selects cannot depend on the result of 1215 // previous selects in the sequence. 1216 // These conditions could be further relaxed. See the X86 target for a 1217 // related approach and more information. 1218 unsigned LHS = MI.getOperand(1).getReg(); 1219 unsigned RHS = MI.getOperand(2).getReg(); 1220 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1221 1222 SmallVector<MachineInstr *, 4> SelectDebugValues; 1223 SmallSet<unsigned, 4> SelectDests; 1224 SelectDests.insert(MI.getOperand(0).getReg()); 1225 1226 MachineInstr *LastSelectPseudo = &MI; 1227 1228 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1229 SequenceMBBI != E; ++SequenceMBBI) { 1230 if (SequenceMBBI->isDebugInstr()) 1231 continue; 1232 else if (isSelectPseudo(*SequenceMBBI)) { 1233 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1234 SequenceMBBI->getOperand(2).getReg() != RHS || 1235 SequenceMBBI->getOperand(3).getImm() != CC || 1236 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1237 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1238 break; 1239 LastSelectPseudo = &*SequenceMBBI; 1240 SequenceMBBI->collectDebugValues(SelectDebugValues); 1241 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1242 } else { 1243 if (SequenceMBBI->hasUnmodeledSideEffects() || 1244 SequenceMBBI->mayLoadOrStore()) 1245 break; 1246 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1247 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1248 })) 1249 break; 1250 } 1251 } 1252 1253 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1254 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1255 DebugLoc DL = MI.getDebugLoc(); 1256 MachineFunction::iterator I = ++BB->getIterator(); 1257 1258 MachineBasicBlock *HeadMBB = BB; 1259 MachineFunction *F = BB->getParent(); 1260 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1261 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1262 1263 F->insert(I, IfFalseMBB); 1264 F->insert(I, TailMBB); 1265 1266 // Transfer debug instructions associated with the selects to TailMBB. 1267 for (MachineInstr *DebugInstr : SelectDebugValues) { 1268 TailMBB->push_back(DebugInstr->removeFromParent()); 1269 } 1270 1271 // Move all instructions after the sequence to TailMBB. 1272 TailMBB->splice(TailMBB->end(), HeadMBB, 1273 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1274 // Update machine-CFG edges by transferring all successors of the current 1275 // block to the new block which will contain the Phi nodes for the selects. 1276 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1277 // Set the successors for HeadMBB. 1278 HeadMBB->addSuccessor(IfFalseMBB); 1279 HeadMBB->addSuccessor(TailMBB); 1280 1281 // Insert appropriate branch. 1282 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1283 1284 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1285 .addReg(LHS) 1286 .addReg(RHS) 1287 .addMBB(TailMBB); 1288 1289 // IfFalseMBB just falls through to TailMBB. 1290 IfFalseMBB->addSuccessor(TailMBB); 1291 1292 // Create PHIs for all of the select pseudo-instructions. 1293 auto SelectMBBI = MI.getIterator(); 1294 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1295 auto InsertionPoint = TailMBB->begin(); 1296 while (SelectMBBI != SelectEnd) { 1297 auto Next = std::next(SelectMBBI); 1298 if (isSelectPseudo(*SelectMBBI)) { 1299 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1300 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1301 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1302 .addReg(SelectMBBI->getOperand(4).getReg()) 1303 .addMBB(HeadMBB) 1304 .addReg(SelectMBBI->getOperand(5).getReg()) 1305 .addMBB(IfFalseMBB); 1306 SelectMBBI->eraseFromParent(); 1307 } 1308 SelectMBBI = Next; 1309 } 1310 1311 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1312 return TailMBB; 1313 } 1314 1315 MachineBasicBlock * 1316 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1317 MachineBasicBlock *BB) const { 1318 switch (MI.getOpcode()) { 1319 default: 1320 llvm_unreachable("Unexpected instr type to insert"); 1321 case RISCV::ReadCycleWide: 1322 assert(!Subtarget.is64Bit() && 1323 "ReadCycleWrite is only to be used on riscv32"); 1324 return emitReadCycleWidePseudo(MI, BB); 1325 case RISCV::Select_GPR_Using_CC_GPR: 1326 case RISCV::Select_FPR32_Using_CC_GPR: 1327 case RISCV::Select_FPR64_Using_CC_GPR: 1328 return emitSelectPseudo(MI, BB); 1329 case RISCV::BuildPairF64Pseudo: 1330 return emitBuildPairF64Pseudo(MI, BB); 1331 case RISCV::SplitF64Pseudo: 1332 return emitSplitF64Pseudo(MI, BB); 1333 } 1334 } 1335 1336 // Calling Convention Implementation. 1337 // The expectations for frontend ABI lowering vary from target to target. 1338 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1339 // details, but this is a longer term goal. For now, we simply try to keep the 1340 // role of the frontend as simple and well-defined as possible. The rules can 1341 // be summarised as: 1342 // * Never split up large scalar arguments. We handle them here. 1343 // * If a hardfloat calling convention is being used, and the struct may be 1344 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1345 // available, then pass as two separate arguments. If either the GPRs or FPRs 1346 // are exhausted, then pass according to the rule below. 1347 // * If a struct could never be passed in registers or directly in a stack 1348 // slot (as it is larger than 2*XLEN and the floating point rules don't 1349 // apply), then pass it using a pointer with the byval attribute. 1350 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1351 // word-sized array or a 2*XLEN scalar (depending on alignment). 1352 // * The frontend can determine whether a struct is returned by reference or 1353 // not based on its size and fields. If it will be returned by reference, the 1354 // frontend must modify the prototype so a pointer with the sret annotation is 1355 // passed as the first argument. This is not necessary for large scalar 1356 // returns. 1357 // * Struct return values and varargs should be coerced to structs containing 1358 // register-size fields in the same situations they would be for fixed 1359 // arguments. 1360 1361 static const MCPhysReg ArgGPRs[] = { 1362 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1363 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1364 }; 1365 static const MCPhysReg ArgFPR32s[] = { 1366 RISCV::F10_32, RISCV::F11_32, RISCV::F12_32, RISCV::F13_32, 1367 RISCV::F14_32, RISCV::F15_32, RISCV::F16_32, RISCV::F17_32 1368 }; 1369 static const MCPhysReg ArgFPR64s[] = { 1370 RISCV::F10_64, RISCV::F11_64, RISCV::F12_64, RISCV::F13_64, 1371 RISCV::F14_64, RISCV::F15_64, RISCV::F16_64, RISCV::F17_64 1372 }; 1373 1374 // Pass a 2*XLEN argument that has been split into two XLEN values through 1375 // registers or the stack as necessary. 1376 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1377 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1378 MVT ValVT2, MVT LocVT2, 1379 ISD::ArgFlagsTy ArgFlags2) { 1380 unsigned XLenInBytes = XLen / 8; 1381 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1382 // At least one half can be passed via register. 1383 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1384 VA1.getLocVT(), CCValAssign::Full)); 1385 } else { 1386 // Both halves must be passed on the stack, with proper alignment. 1387 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 1388 State.addLoc( 1389 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1390 State.AllocateStack(XLenInBytes, StackAlign), 1391 VA1.getLocVT(), CCValAssign::Full)); 1392 State.addLoc(CCValAssign::getMem( 1393 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1394 CCValAssign::Full)); 1395 return false; 1396 } 1397 1398 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 1399 // The second half can also be passed via register. 1400 State.addLoc( 1401 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1402 } else { 1403 // The second half is passed via the stack, without additional alignment. 1404 State.addLoc(CCValAssign::getMem( 1405 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 1406 CCValAssign::Full)); 1407 } 1408 1409 return false; 1410 } 1411 1412 // Implements the RISC-V calling convention. Returns true upon failure. 1413 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1414 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1415 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1416 bool IsRet, Type *OrigTy) { 1417 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1418 assert(XLen == 32 || XLen == 64); 1419 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1420 1421 // Any return value split in to more than two values can't be returned 1422 // directly. 1423 if (IsRet && ValNo > 1) 1424 return true; 1425 1426 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1427 // variadic argument, or if no F32 argument registers are available. 1428 bool UseGPRForF32 = true; 1429 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1430 // variadic argument, or if no F64 argument registers are available. 1431 bool UseGPRForF64 = true; 1432 1433 switch (ABI) { 1434 default: 1435 llvm_unreachable("Unexpected ABI"); 1436 case RISCVABI::ABI_ILP32: 1437 case RISCVABI::ABI_LP64: 1438 break; 1439 case RISCVABI::ABI_ILP32F: 1440 case RISCVABI::ABI_LP64F: 1441 UseGPRForF32 = !IsFixed; 1442 break; 1443 case RISCVABI::ABI_ILP32D: 1444 case RISCVABI::ABI_LP64D: 1445 UseGPRForF32 = !IsFixed; 1446 UseGPRForF64 = !IsFixed; 1447 break; 1448 } 1449 1450 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1451 UseGPRForF32 = true; 1452 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1453 UseGPRForF64 = true; 1454 1455 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1456 // variables rather than directly checking against the target ABI. 1457 1458 if (UseGPRForF32 && ValVT == MVT::f32) { 1459 LocVT = XLenVT; 1460 LocInfo = CCValAssign::BCvt; 1461 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1462 LocVT = MVT::i64; 1463 LocInfo = CCValAssign::BCvt; 1464 } 1465 1466 // If this is a variadic argument, the RISC-V calling convention requires 1467 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1468 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1469 // be used regardless of whether the original argument was split during 1470 // legalisation or not. The argument will not be passed by registers if the 1471 // original type is larger than 2*XLEN, so the register alignment rule does 1472 // not apply. 1473 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1474 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 1475 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1476 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1477 // Skip 'odd' register if necessary. 1478 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1479 State.AllocateReg(ArgGPRs); 1480 } 1481 1482 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1483 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1484 State.getPendingArgFlags(); 1485 1486 assert(PendingLocs.size() == PendingArgFlags.size() && 1487 "PendingLocs and PendingArgFlags out of sync"); 1488 1489 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1490 // registers are exhausted. 1491 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1492 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1493 "Can't lower f64 if it is split"); 1494 // Depending on available argument GPRS, f64 may be passed in a pair of 1495 // GPRs, split between a GPR and the stack, or passed completely on the 1496 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1497 // cases. 1498 unsigned Reg = State.AllocateReg(ArgGPRs); 1499 LocVT = MVT::i32; 1500 if (!Reg) { 1501 unsigned StackOffset = State.AllocateStack(8, 8); 1502 State.addLoc( 1503 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1504 return false; 1505 } 1506 if (!State.AllocateReg(ArgGPRs)) 1507 State.AllocateStack(4, 4); 1508 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1509 return false; 1510 } 1511 1512 // Split arguments might be passed indirectly, so keep track of the pending 1513 // values. 1514 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1515 LocVT = XLenVT; 1516 LocInfo = CCValAssign::Indirect; 1517 PendingLocs.push_back( 1518 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1519 PendingArgFlags.push_back(ArgFlags); 1520 if (!ArgFlags.isSplitEnd()) { 1521 return false; 1522 } 1523 } 1524 1525 // If the split argument only had two elements, it should be passed directly 1526 // in registers or on the stack. 1527 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1528 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1529 // Apply the normal calling convention rules to the first half of the 1530 // split argument. 1531 CCValAssign VA = PendingLocs[0]; 1532 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1533 PendingLocs.clear(); 1534 PendingArgFlags.clear(); 1535 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1536 ArgFlags); 1537 } 1538 1539 // Allocate to a register if possible, or else a stack slot. 1540 unsigned Reg; 1541 if (ValVT == MVT::f32 && !UseGPRForF32) 1542 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1543 else if (ValVT == MVT::f64 && !UseGPRForF64) 1544 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1545 else 1546 Reg = State.AllocateReg(ArgGPRs); 1547 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 1548 1549 // If we reach this point and PendingLocs is non-empty, we must be at the 1550 // end of a split argument that must be passed indirectly. 1551 if (!PendingLocs.empty()) { 1552 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1553 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1554 1555 for (auto &It : PendingLocs) { 1556 if (Reg) 1557 It.convertToReg(Reg); 1558 else 1559 It.convertToMem(StackOffset); 1560 State.addLoc(It); 1561 } 1562 PendingLocs.clear(); 1563 PendingArgFlags.clear(); 1564 return false; 1565 } 1566 1567 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1568 "Expected an XLenVT at this stage"); 1569 1570 if (Reg) { 1571 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1572 return false; 1573 } 1574 1575 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1576 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1577 LocVT = ValVT; 1578 LocInfo = CCValAssign::Full; 1579 } 1580 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1581 return false; 1582 } 1583 1584 void RISCVTargetLowering::analyzeInputArgs( 1585 MachineFunction &MF, CCState &CCInfo, 1586 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1587 unsigned NumArgs = Ins.size(); 1588 FunctionType *FType = MF.getFunction().getFunctionType(); 1589 1590 for (unsigned i = 0; i != NumArgs; ++i) { 1591 MVT ArgVT = Ins[i].VT; 1592 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1593 1594 Type *ArgTy = nullptr; 1595 if (IsRet) 1596 ArgTy = FType->getReturnType(); 1597 else if (Ins[i].isOrigArg()) 1598 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1599 1600 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1601 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1602 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 1603 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1604 << EVT(ArgVT).getEVTString() << '\n'); 1605 llvm_unreachable(nullptr); 1606 } 1607 } 1608 } 1609 1610 void RISCVTargetLowering::analyzeOutputArgs( 1611 MachineFunction &MF, CCState &CCInfo, 1612 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1613 CallLoweringInfo *CLI) const { 1614 unsigned NumArgs = Outs.size(); 1615 1616 for (unsigned i = 0; i != NumArgs; i++) { 1617 MVT ArgVT = Outs[i].VT; 1618 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1619 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1620 1621 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1622 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1623 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1624 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1625 << EVT(ArgVT).getEVTString() << "\n"); 1626 llvm_unreachable(nullptr); 1627 } 1628 } 1629 } 1630 1631 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1632 // values. 1633 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1634 const CCValAssign &VA, const SDLoc &DL) { 1635 switch (VA.getLocInfo()) { 1636 default: 1637 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1638 case CCValAssign::Full: 1639 break; 1640 case CCValAssign::BCvt: 1641 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1642 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1643 break; 1644 } 1645 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1646 break; 1647 } 1648 return Val; 1649 } 1650 1651 // The caller is responsible for loading the full value if the argument is 1652 // passed with CCValAssign::Indirect. 1653 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1654 const CCValAssign &VA, const SDLoc &DL) { 1655 MachineFunction &MF = DAG.getMachineFunction(); 1656 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1657 EVT LocVT = VA.getLocVT(); 1658 SDValue Val; 1659 const TargetRegisterClass *RC; 1660 1661 switch (LocVT.getSimpleVT().SimpleTy) { 1662 default: 1663 llvm_unreachable("Unexpected register type"); 1664 case MVT::i32: 1665 case MVT::i64: 1666 RC = &RISCV::GPRRegClass; 1667 break; 1668 case MVT::f32: 1669 RC = &RISCV::FPR32RegClass; 1670 break; 1671 case MVT::f64: 1672 RC = &RISCV::FPR64RegClass; 1673 break; 1674 } 1675 1676 unsigned VReg = RegInfo.createVirtualRegister(RC); 1677 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1678 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1679 1680 if (VA.getLocInfo() == CCValAssign::Indirect) 1681 return Val; 1682 1683 return convertLocVTToValVT(DAG, Val, VA, DL); 1684 } 1685 1686 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1687 const CCValAssign &VA, const SDLoc &DL) { 1688 EVT LocVT = VA.getLocVT(); 1689 1690 switch (VA.getLocInfo()) { 1691 default: 1692 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1693 case CCValAssign::Full: 1694 break; 1695 case CCValAssign::BCvt: 1696 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1697 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1698 break; 1699 } 1700 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1701 break; 1702 } 1703 return Val; 1704 } 1705 1706 // The caller is responsible for loading the full value if the argument is 1707 // passed with CCValAssign::Indirect. 1708 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1709 const CCValAssign &VA, const SDLoc &DL) { 1710 MachineFunction &MF = DAG.getMachineFunction(); 1711 MachineFrameInfo &MFI = MF.getFrameInfo(); 1712 EVT LocVT = VA.getLocVT(); 1713 EVT ValVT = VA.getValVT(); 1714 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1715 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1716 VA.getLocMemOffset(), /*Immutable=*/true); 1717 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1718 SDValue Val; 1719 1720 ISD::LoadExtType ExtType; 1721 switch (VA.getLocInfo()) { 1722 default: 1723 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1724 case CCValAssign::Full: 1725 case CCValAssign::Indirect: 1726 case CCValAssign::BCvt: 1727 ExtType = ISD::NON_EXTLOAD; 1728 break; 1729 } 1730 Val = DAG.getExtLoad( 1731 ExtType, DL, LocVT, Chain, FIN, 1732 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1733 return Val; 1734 } 1735 1736 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1737 const CCValAssign &VA, const SDLoc &DL) { 1738 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1739 "Unexpected VA"); 1740 MachineFunction &MF = DAG.getMachineFunction(); 1741 MachineFrameInfo &MFI = MF.getFrameInfo(); 1742 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1743 1744 if (VA.isMemLoc()) { 1745 // f64 is passed on the stack. 1746 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1747 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1748 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1749 MachinePointerInfo::getFixedStack(MF, FI)); 1750 } 1751 1752 assert(VA.isRegLoc() && "Expected register VA assignment"); 1753 1754 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1755 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1756 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1757 SDValue Hi; 1758 if (VA.getLocReg() == RISCV::X17) { 1759 // Second half of f64 is passed on the stack. 1760 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1761 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1762 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1763 MachinePointerInfo::getFixedStack(MF, FI)); 1764 } else { 1765 // Second half of f64 is passed in another GPR. 1766 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1767 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1768 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1769 } 1770 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1771 } 1772 1773 // Transform physical registers into virtual registers. 1774 SDValue RISCVTargetLowering::LowerFormalArguments( 1775 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1776 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1777 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1778 1779 switch (CallConv) { 1780 default: 1781 report_fatal_error("Unsupported calling convention"); 1782 case CallingConv::C: 1783 case CallingConv::Fast: 1784 break; 1785 } 1786 1787 MachineFunction &MF = DAG.getMachineFunction(); 1788 1789 const Function &Func = MF.getFunction(); 1790 if (Func.hasFnAttribute("interrupt")) { 1791 if (!Func.arg_empty()) 1792 report_fatal_error( 1793 "Functions with the interrupt attribute cannot have arguments!"); 1794 1795 StringRef Kind = 1796 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1797 1798 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1799 report_fatal_error( 1800 "Function interrupt attribute argument not supported!"); 1801 } 1802 1803 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1804 MVT XLenVT = Subtarget.getXLenVT(); 1805 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1806 // Used with vargs to acumulate store chains. 1807 std::vector<SDValue> OutChains; 1808 1809 // Assign locations to all of the incoming arguments. 1810 SmallVector<CCValAssign, 16> ArgLocs; 1811 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1812 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1813 1814 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1815 CCValAssign &VA = ArgLocs[i]; 1816 SDValue ArgValue; 1817 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1818 // case. 1819 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1820 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1821 else if (VA.isRegLoc()) 1822 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 1823 else 1824 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 1825 1826 if (VA.getLocInfo() == CCValAssign::Indirect) { 1827 // If the original argument was split and passed by reference (e.g. i128 1828 // on RV32), we need to load all parts of it here (using the same 1829 // address). 1830 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1831 MachinePointerInfo())); 1832 unsigned ArgIndex = Ins[i].OrigArgIndex; 1833 assert(Ins[i].PartOffset == 0); 1834 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 1835 CCValAssign &PartVA = ArgLocs[i + 1]; 1836 unsigned PartOffset = Ins[i + 1].PartOffset; 1837 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1838 DAG.getIntPtrConstant(PartOffset, DL)); 1839 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1840 MachinePointerInfo())); 1841 ++i; 1842 } 1843 continue; 1844 } 1845 InVals.push_back(ArgValue); 1846 } 1847 1848 if (IsVarArg) { 1849 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1850 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1851 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1852 MachineFrameInfo &MFI = MF.getFrameInfo(); 1853 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1854 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1855 1856 // Offset of the first variable argument from stack pointer, and size of 1857 // the vararg save area. For now, the varargs save area is either zero or 1858 // large enough to hold a0-a7. 1859 int VaArgOffset, VarArgsSaveSize; 1860 1861 // If all registers are allocated, then all varargs must be passed on the 1862 // stack and we don't need to save any argregs. 1863 if (ArgRegs.size() == Idx) { 1864 VaArgOffset = CCInfo.getNextStackOffset(); 1865 VarArgsSaveSize = 0; 1866 } else { 1867 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1868 VaArgOffset = -VarArgsSaveSize; 1869 } 1870 1871 // Record the frame index of the first variable argument 1872 // which is a value necessary to VASTART. 1873 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1874 RVFI->setVarArgsFrameIndex(FI); 1875 1876 // If saving an odd number of registers then create an extra stack slot to 1877 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1878 // offsets to even-numbered registered remain 2*XLEN-aligned. 1879 if (Idx % 2) { 1880 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1881 true); 1882 VarArgsSaveSize += XLenInBytes; 1883 } 1884 1885 // Copy the integer registers that may have been used for passing varargs 1886 // to the vararg save area. 1887 for (unsigned I = Idx; I < ArgRegs.size(); 1888 ++I, VaArgOffset += XLenInBytes) { 1889 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1890 RegInfo.addLiveIn(ArgRegs[I], Reg); 1891 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1892 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1893 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1894 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1895 MachinePointerInfo::getFixedStack(MF, FI)); 1896 cast<StoreSDNode>(Store.getNode()) 1897 ->getMemOperand() 1898 ->setValue((Value *)nullptr); 1899 OutChains.push_back(Store); 1900 } 1901 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1902 } 1903 1904 // All stores are grouped in one node to allow the matching between 1905 // the size of Ins and InVals. This only happens for vararg functions. 1906 if (!OutChains.empty()) { 1907 OutChains.push_back(Chain); 1908 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1909 } 1910 1911 return Chain; 1912 } 1913 1914 /// isEligibleForTailCallOptimization - Check whether the call is eligible 1915 /// for tail call optimization. 1916 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1917 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 1918 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1919 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1920 1921 auto &Callee = CLI.Callee; 1922 auto CalleeCC = CLI.CallConv; 1923 auto IsVarArg = CLI.IsVarArg; 1924 auto &Outs = CLI.Outs; 1925 auto &Caller = MF.getFunction(); 1926 auto CallerCC = Caller.getCallingConv(); 1927 1928 // Do not tail call opt functions with "disable-tail-calls" attribute. 1929 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1930 return false; 1931 1932 // Exception-handling functions need a special set of instructions to 1933 // indicate a return to the hardware. Tail-calling another function would 1934 // probably break this. 1935 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1936 // should be expanded as new function attributes are introduced. 1937 if (Caller.hasFnAttribute("interrupt")) 1938 return false; 1939 1940 // Do not tail call opt functions with varargs. 1941 if (IsVarArg) 1942 return false; 1943 1944 // Do not tail call opt if the stack is used to pass parameters. 1945 if (CCInfo.getNextStackOffset() != 0) 1946 return false; 1947 1948 // Do not tail call opt if any parameters need to be passed indirectly. 1949 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1950 // passed indirectly. So the address of the value will be passed in a 1951 // register, or if not available, then the address is put on the stack. In 1952 // order to pass indirectly, space on the stack often needs to be allocated 1953 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1954 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1955 // are passed CCValAssign::Indirect. 1956 for (auto &VA : ArgLocs) 1957 if (VA.getLocInfo() == CCValAssign::Indirect) 1958 return false; 1959 1960 // Do not tail call opt if either caller or callee uses struct return 1961 // semantics. 1962 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1963 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1964 if (IsCallerStructRet || IsCalleeStructRet) 1965 return false; 1966 1967 // Externally-defined functions with weak linkage should not be 1968 // tail-called. The behaviour of branch instructions in this situation (as 1969 // used for tail calls) is implementation-defined, so we cannot rely on the 1970 // linker replacing the tail call with a return. 1971 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1972 const GlobalValue *GV = G->getGlobal(); 1973 if (GV->hasExternalWeakLinkage()) 1974 return false; 1975 } 1976 1977 // The callee has to preserve all registers the caller needs to preserve. 1978 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1979 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1980 if (CalleeCC != CallerCC) { 1981 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1982 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1983 return false; 1984 } 1985 1986 // Byval parameters hand the function a pointer directly into the stack area 1987 // we want to reuse during a tail call. Working around this *is* possible 1988 // but less efficient and uglier in LowerCall. 1989 for (auto &Arg : Outs) 1990 if (Arg.Flags.isByVal()) 1991 return false; 1992 1993 return true; 1994 } 1995 1996 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1997 // and output parameter nodes. 1998 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1999 SmallVectorImpl<SDValue> &InVals) const { 2000 SelectionDAG &DAG = CLI.DAG; 2001 SDLoc &DL = CLI.DL; 2002 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2003 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2004 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2005 SDValue Chain = CLI.Chain; 2006 SDValue Callee = CLI.Callee; 2007 bool &IsTailCall = CLI.IsTailCall; 2008 CallingConv::ID CallConv = CLI.CallConv; 2009 bool IsVarArg = CLI.IsVarArg; 2010 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2011 MVT XLenVT = Subtarget.getXLenVT(); 2012 2013 MachineFunction &MF = DAG.getMachineFunction(); 2014 2015 // Analyze the operands of the call, assigning locations to each operand. 2016 SmallVector<CCValAssign, 16> ArgLocs; 2017 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2018 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2019 2020 // Check if it's really possible to do a tail call. 2021 if (IsTailCall) 2022 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2023 2024 if (IsTailCall) 2025 ++NumTailCalls; 2026 else if (CLI.CS && CLI.CS.isMustTailCall()) 2027 report_fatal_error("failed to perform tail call elimination on a call " 2028 "site marked musttail"); 2029 2030 // Get a count of how many bytes are to be pushed on the stack. 2031 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2032 2033 // Create local copies for byval args 2034 SmallVector<SDValue, 8> ByValArgs; 2035 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2036 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2037 if (!Flags.isByVal()) 2038 continue; 2039 2040 SDValue Arg = OutVals[i]; 2041 unsigned Size = Flags.getByValSize(); 2042 unsigned Align = Flags.getByValAlign(); 2043 2044 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 2045 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2046 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2047 2048 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 2049 /*IsVolatile=*/false, 2050 /*AlwaysInline=*/false, 2051 IsTailCall, MachinePointerInfo(), 2052 MachinePointerInfo()); 2053 ByValArgs.push_back(FIPtr); 2054 } 2055 2056 if (!IsTailCall) 2057 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2058 2059 // Copy argument values to their designated locations. 2060 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2061 SmallVector<SDValue, 8> MemOpChains; 2062 SDValue StackPtr; 2063 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2064 CCValAssign &VA = ArgLocs[i]; 2065 SDValue ArgValue = OutVals[i]; 2066 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2067 2068 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2069 bool IsF64OnRV32DSoftABI = 2070 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2071 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2072 SDValue SplitF64 = DAG.getNode( 2073 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2074 SDValue Lo = SplitF64.getValue(0); 2075 SDValue Hi = SplitF64.getValue(1); 2076 2077 unsigned RegLo = VA.getLocReg(); 2078 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2079 2080 if (RegLo == RISCV::X17) { 2081 // Second half of f64 is passed on the stack. 2082 // Work out the address of the stack slot. 2083 if (!StackPtr.getNode()) 2084 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2085 // Emit the store. 2086 MemOpChains.push_back( 2087 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2088 } else { 2089 // Second half of f64 is passed in another GPR. 2090 unsigned RegHigh = RegLo + 1; 2091 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2092 } 2093 continue; 2094 } 2095 2096 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2097 // as any other MemLoc. 2098 2099 // Promote the value if needed. 2100 // For now, only handle fully promoted and indirect arguments. 2101 if (VA.getLocInfo() == CCValAssign::Indirect) { 2102 // Store the argument in a stack slot and pass its address. 2103 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2104 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2105 MemOpChains.push_back( 2106 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2107 MachinePointerInfo::getFixedStack(MF, FI))); 2108 // If the original argument was split (e.g. i128), we need 2109 // to store all parts of it here (and pass just one address). 2110 unsigned ArgIndex = Outs[i].OrigArgIndex; 2111 assert(Outs[i].PartOffset == 0); 2112 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2113 SDValue PartValue = OutVals[i + 1]; 2114 unsigned PartOffset = Outs[i + 1].PartOffset; 2115 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2116 DAG.getIntPtrConstant(PartOffset, DL)); 2117 MemOpChains.push_back( 2118 DAG.getStore(Chain, DL, PartValue, Address, 2119 MachinePointerInfo::getFixedStack(MF, FI))); 2120 ++i; 2121 } 2122 ArgValue = SpillSlot; 2123 } else { 2124 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2125 } 2126 2127 // Use local copy if it is a byval arg. 2128 if (Flags.isByVal()) 2129 ArgValue = ByValArgs[j++]; 2130 2131 if (VA.isRegLoc()) { 2132 // Queue up the argument copies and emit them at the end. 2133 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2134 } else { 2135 assert(VA.isMemLoc() && "Argument not register or memory"); 2136 assert(!IsTailCall && "Tail call not allowed if stack is used " 2137 "for passing parameters"); 2138 2139 // Work out the address of the stack slot. 2140 if (!StackPtr.getNode()) 2141 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2142 SDValue Address = 2143 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2144 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2145 2146 // Emit the store. 2147 MemOpChains.push_back( 2148 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2149 } 2150 } 2151 2152 // Join the stores, which are independent of one another. 2153 if (!MemOpChains.empty()) 2154 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2155 2156 SDValue Glue; 2157 2158 // Build a sequence of copy-to-reg nodes, chained and glued together. 2159 for (auto &Reg : RegsToPass) { 2160 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2161 Glue = Chain.getValue(1); 2162 } 2163 2164 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2165 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2166 // split it and then direct call can be matched by PseudoCALL. 2167 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2168 const GlobalValue *GV = S->getGlobal(); 2169 2170 unsigned OpFlags = RISCVII::MO_CALL; 2171 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2172 OpFlags = RISCVII::MO_PLT; 2173 2174 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2175 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2176 unsigned OpFlags = RISCVII::MO_CALL; 2177 2178 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2179 nullptr)) 2180 OpFlags = RISCVII::MO_PLT; 2181 2182 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2183 } 2184 2185 // The first call operand is the chain and the second is the target address. 2186 SmallVector<SDValue, 8> Ops; 2187 Ops.push_back(Chain); 2188 Ops.push_back(Callee); 2189 2190 // Add argument registers to the end of the list so that they are 2191 // known live into the call. 2192 for (auto &Reg : RegsToPass) 2193 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2194 2195 if (!IsTailCall) { 2196 // Add a register mask operand representing the call-preserved registers. 2197 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2198 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2199 assert(Mask && "Missing call preserved mask for calling convention"); 2200 Ops.push_back(DAG.getRegisterMask(Mask)); 2201 } 2202 2203 // Glue the call to the argument copies, if any. 2204 if (Glue.getNode()) 2205 Ops.push_back(Glue); 2206 2207 // Emit the call. 2208 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2209 2210 if (IsTailCall) { 2211 MF.getFrameInfo().setHasTailCall(); 2212 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2213 } 2214 2215 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2216 Glue = Chain.getValue(1); 2217 2218 // Mark the end of the call, which is glued to the call itself. 2219 Chain = DAG.getCALLSEQ_END(Chain, 2220 DAG.getConstant(NumBytes, DL, PtrVT, true), 2221 DAG.getConstant(0, DL, PtrVT, true), 2222 Glue, DL); 2223 Glue = Chain.getValue(1); 2224 2225 // Assign locations to each value returned by this call. 2226 SmallVector<CCValAssign, 16> RVLocs; 2227 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2228 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2229 2230 // Copy all of the result registers out of their specified physreg. 2231 for (auto &VA : RVLocs) { 2232 // Copy the value out 2233 SDValue RetValue = 2234 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2235 // Glue the RetValue to the end of the call sequence 2236 Chain = RetValue.getValue(1); 2237 Glue = RetValue.getValue(2); 2238 2239 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2240 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2241 SDValue RetValue2 = 2242 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2243 Chain = RetValue2.getValue(1); 2244 Glue = RetValue2.getValue(2); 2245 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2246 RetValue2); 2247 } 2248 2249 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2250 2251 InVals.push_back(RetValue); 2252 } 2253 2254 return Chain; 2255 } 2256 2257 bool RISCVTargetLowering::CanLowerReturn( 2258 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2259 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2260 SmallVector<CCValAssign, 16> RVLocs; 2261 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2262 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2263 MVT VT = Outs[i].VT; 2264 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2265 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2266 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2267 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2268 return false; 2269 } 2270 return true; 2271 } 2272 2273 SDValue 2274 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2275 bool IsVarArg, 2276 const SmallVectorImpl<ISD::OutputArg> &Outs, 2277 const SmallVectorImpl<SDValue> &OutVals, 2278 const SDLoc &DL, SelectionDAG &DAG) const { 2279 // Stores the assignment of the return value to a location. 2280 SmallVector<CCValAssign, 16> RVLocs; 2281 2282 // Info about the registers and stack slot. 2283 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2284 *DAG.getContext()); 2285 2286 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2287 nullptr); 2288 2289 SDValue Glue; 2290 SmallVector<SDValue, 4> RetOps(1, Chain); 2291 2292 // Copy the result values into the output registers. 2293 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2294 SDValue Val = OutVals[i]; 2295 CCValAssign &VA = RVLocs[i]; 2296 assert(VA.isRegLoc() && "Can only return in registers!"); 2297 2298 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2299 // Handle returning f64 on RV32D with a soft float ABI. 2300 assert(VA.isRegLoc() && "Expected return via registers"); 2301 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2302 DAG.getVTList(MVT::i32, MVT::i32), Val); 2303 SDValue Lo = SplitF64.getValue(0); 2304 SDValue Hi = SplitF64.getValue(1); 2305 unsigned RegLo = VA.getLocReg(); 2306 unsigned RegHi = RegLo + 1; 2307 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2308 Glue = Chain.getValue(1); 2309 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2310 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2311 Glue = Chain.getValue(1); 2312 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2313 } else { 2314 // Handle a 'normal' return. 2315 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2316 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2317 2318 // Guarantee that all emitted copies are stuck together. 2319 Glue = Chain.getValue(1); 2320 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2321 } 2322 } 2323 2324 RetOps[0] = Chain; // Update chain. 2325 2326 // Add the glue node if we have it. 2327 if (Glue.getNode()) { 2328 RetOps.push_back(Glue); 2329 } 2330 2331 // Interrupt service routines use different return instructions. 2332 const Function &Func = DAG.getMachineFunction().getFunction(); 2333 if (Func.hasFnAttribute("interrupt")) { 2334 if (!Func.getReturnType()->isVoidTy()) 2335 report_fatal_error( 2336 "Functions with the interrupt attribute must have void return type!"); 2337 2338 MachineFunction &MF = DAG.getMachineFunction(); 2339 StringRef Kind = 2340 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2341 2342 unsigned RetOpc; 2343 if (Kind == "user") 2344 RetOpc = RISCVISD::URET_FLAG; 2345 else if (Kind == "supervisor") 2346 RetOpc = RISCVISD::SRET_FLAG; 2347 else 2348 RetOpc = RISCVISD::MRET_FLAG; 2349 2350 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2351 } 2352 2353 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2354 } 2355 2356 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2357 switch ((RISCVISD::NodeType)Opcode) { 2358 case RISCVISD::FIRST_NUMBER: 2359 break; 2360 case RISCVISD::RET_FLAG: 2361 return "RISCVISD::RET_FLAG"; 2362 case RISCVISD::URET_FLAG: 2363 return "RISCVISD::URET_FLAG"; 2364 case RISCVISD::SRET_FLAG: 2365 return "RISCVISD::SRET_FLAG"; 2366 case RISCVISD::MRET_FLAG: 2367 return "RISCVISD::MRET_FLAG"; 2368 case RISCVISD::CALL: 2369 return "RISCVISD::CALL"; 2370 case RISCVISD::SELECT_CC: 2371 return "RISCVISD::SELECT_CC"; 2372 case RISCVISD::BuildPairF64: 2373 return "RISCVISD::BuildPairF64"; 2374 case RISCVISD::SplitF64: 2375 return "RISCVISD::SplitF64"; 2376 case RISCVISD::TAIL: 2377 return "RISCVISD::TAIL"; 2378 case RISCVISD::SLLW: 2379 return "RISCVISD::SLLW"; 2380 case RISCVISD::SRAW: 2381 return "RISCVISD::SRAW"; 2382 case RISCVISD::SRLW: 2383 return "RISCVISD::SRLW"; 2384 case RISCVISD::DIVW: 2385 return "RISCVISD::DIVW"; 2386 case RISCVISD::DIVUW: 2387 return "RISCVISD::DIVUW"; 2388 case RISCVISD::REMUW: 2389 return "RISCVISD::REMUW"; 2390 case RISCVISD::FMV_W_X_RV64: 2391 return "RISCVISD::FMV_W_X_RV64"; 2392 case RISCVISD::FMV_X_ANYEXTW_RV64: 2393 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2394 case RISCVISD::READ_CYCLE_WIDE: 2395 return "RISCVISD::READ_CYCLE_WIDE"; 2396 } 2397 return nullptr; 2398 } 2399 2400 /// getConstraintType - Given a constraint letter, return the type of 2401 /// constraint it is for this target. 2402 RISCVTargetLowering::ConstraintType 2403 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2404 if (Constraint.size() == 1) { 2405 switch (Constraint[0]) { 2406 default: 2407 break; 2408 case 'f': 2409 return C_RegisterClass; 2410 } 2411 } 2412 return TargetLowering::getConstraintType(Constraint); 2413 } 2414 2415 std::pair<unsigned, const TargetRegisterClass *> 2416 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2417 StringRef Constraint, 2418 MVT VT) const { 2419 // First, see if this is a constraint that directly corresponds to a 2420 // RISCV register class. 2421 if (Constraint.size() == 1) { 2422 switch (Constraint[0]) { 2423 case 'r': 2424 return std::make_pair(0U, &RISCV::GPRRegClass); 2425 case 'f': 2426 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2427 return std::make_pair(0U, &RISCV::FPR32RegClass); 2428 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2429 return std::make_pair(0U, &RISCV::FPR64RegClass); 2430 break; 2431 default: 2432 break; 2433 } 2434 } 2435 2436 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2437 // TableGen record rather than the AsmName to choose registers for InlineAsm 2438 // constraints, plus we want to match those names to the widest floating point 2439 // register type available, manually select floating point registers here. 2440 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2441 std::pair<unsigned, unsigned> FReg = 2442 StringSwitch<std::pair<unsigned, unsigned>>(Constraint.lower()) 2443 .Case("{f0}", {RISCV::F0_32, RISCV::F0_64}) 2444 .Case("{f1}", {RISCV::F1_32, RISCV::F1_64}) 2445 .Case("{f2}", {RISCV::F2_32, RISCV::F2_64}) 2446 .Case("{f3}", {RISCV::F3_32, RISCV::F3_64}) 2447 .Case("{f4}", {RISCV::F4_32, RISCV::F4_64}) 2448 .Case("{f5}", {RISCV::F5_32, RISCV::F5_64}) 2449 .Case("{f6}", {RISCV::F6_32, RISCV::F6_64}) 2450 .Case("{f7}", {RISCV::F7_32, RISCV::F7_64}) 2451 .Case("{f8}", {RISCV::F8_32, RISCV::F8_64}) 2452 .Case("{f9}", {RISCV::F9_32, RISCV::F9_64}) 2453 .Case("{f10}", {RISCV::F10_32, RISCV::F10_64}) 2454 .Case("{f11}", {RISCV::F11_32, RISCV::F11_64}) 2455 .Case("{f12}", {RISCV::F12_32, RISCV::F12_64}) 2456 .Case("{f13}", {RISCV::F13_32, RISCV::F13_64}) 2457 .Case("{f14}", {RISCV::F14_32, RISCV::F14_64}) 2458 .Case("{f15}", {RISCV::F15_32, RISCV::F15_64}) 2459 .Case("{f16}", {RISCV::F16_32, RISCV::F16_64}) 2460 .Case("{f17}", {RISCV::F17_32, RISCV::F17_64}) 2461 .Case("{f18}", {RISCV::F18_32, RISCV::F18_64}) 2462 .Case("{f19}", {RISCV::F19_32, RISCV::F19_64}) 2463 .Case("{f20}", {RISCV::F20_32, RISCV::F20_64}) 2464 .Case("{f21}", {RISCV::F21_32, RISCV::F21_64}) 2465 .Case("{f22}", {RISCV::F22_32, RISCV::F22_64}) 2466 .Case("{f23}", {RISCV::F23_32, RISCV::F23_64}) 2467 .Case("{f24}", {RISCV::F24_32, RISCV::F24_64}) 2468 .Case("{f25}", {RISCV::F25_32, RISCV::F25_64}) 2469 .Case("{f26}", {RISCV::F26_32, RISCV::F26_64}) 2470 .Case("{f27}", {RISCV::F27_32, RISCV::F27_64}) 2471 .Case("{f28}", {RISCV::F28_32, RISCV::F28_64}) 2472 .Case("{f29}", {RISCV::F29_32, RISCV::F29_64}) 2473 .Case("{f30}", {RISCV::F30_32, RISCV::F30_64}) 2474 .Case("{f31}", {RISCV::F31_32, RISCV::F31_64}) 2475 .Default({-1U, -1U}); 2476 if (FReg.first != -1U) 2477 return Subtarget.hasStdExtD() 2478 ? std::make_pair(FReg.second, &RISCV::FPR64RegClass) 2479 : std::make_pair(FReg.first, &RISCV::FPR32RegClass); 2480 } 2481 2482 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2483 } 2484 2485 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2486 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2487 SelectionDAG &DAG) const { 2488 // Currently only support length 1 constraints. 2489 if (Constraint.length() == 1) { 2490 switch (Constraint[0]) { 2491 case 'I': 2492 // Validate & create a 12-bit signed immediate operand. 2493 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2494 uint64_t CVal = C->getSExtValue(); 2495 if (isInt<12>(CVal)) 2496 Ops.push_back( 2497 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2498 } 2499 return; 2500 case 'J': 2501 // Validate & create an integer zero operand. 2502 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2503 if (C->getZExtValue() == 0) 2504 Ops.push_back( 2505 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2506 return; 2507 case 'K': 2508 // Validate & create a 5-bit unsigned immediate operand. 2509 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2510 uint64_t CVal = C->getZExtValue(); 2511 if (isUInt<5>(CVal)) 2512 Ops.push_back( 2513 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2514 } 2515 return; 2516 default: 2517 break; 2518 } 2519 } 2520 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2521 } 2522 2523 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2524 Instruction *Inst, 2525 AtomicOrdering Ord) const { 2526 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2527 return Builder.CreateFence(Ord); 2528 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2529 return Builder.CreateFence(AtomicOrdering::Release); 2530 return nullptr; 2531 } 2532 2533 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2534 Instruction *Inst, 2535 AtomicOrdering Ord) const { 2536 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2537 return Builder.CreateFence(AtomicOrdering::Acquire); 2538 return nullptr; 2539 } 2540 2541 TargetLowering::AtomicExpansionKind 2542 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2543 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2544 // point operations can't be used in an lr/sc sequence without breaking the 2545 // forward-progress guarantee. 2546 if (AI->isFloatingPointOperation()) 2547 return AtomicExpansionKind::CmpXChg; 2548 2549 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2550 if (Size == 8 || Size == 16) 2551 return AtomicExpansionKind::MaskedIntrinsic; 2552 return AtomicExpansionKind::None; 2553 } 2554 2555 static Intrinsic::ID 2556 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2557 if (XLen == 32) { 2558 switch (BinOp) { 2559 default: 2560 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2561 case AtomicRMWInst::Xchg: 2562 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2563 case AtomicRMWInst::Add: 2564 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2565 case AtomicRMWInst::Sub: 2566 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2567 case AtomicRMWInst::Nand: 2568 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2569 case AtomicRMWInst::Max: 2570 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2571 case AtomicRMWInst::Min: 2572 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2573 case AtomicRMWInst::UMax: 2574 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2575 case AtomicRMWInst::UMin: 2576 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2577 } 2578 } 2579 2580 if (XLen == 64) { 2581 switch (BinOp) { 2582 default: 2583 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2584 case AtomicRMWInst::Xchg: 2585 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2586 case AtomicRMWInst::Add: 2587 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2588 case AtomicRMWInst::Sub: 2589 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2590 case AtomicRMWInst::Nand: 2591 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2592 case AtomicRMWInst::Max: 2593 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2594 case AtomicRMWInst::Min: 2595 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2596 case AtomicRMWInst::UMax: 2597 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2598 case AtomicRMWInst::UMin: 2599 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2600 } 2601 } 2602 2603 llvm_unreachable("Unexpected XLen\n"); 2604 } 2605 2606 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2607 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2608 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2609 unsigned XLen = Subtarget.getXLen(); 2610 Value *Ordering = 2611 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2612 Type *Tys[] = {AlignedAddr->getType()}; 2613 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2614 AI->getModule(), 2615 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2616 2617 if (XLen == 64) { 2618 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2619 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2620 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2621 } 2622 2623 Value *Result; 2624 2625 // Must pass the shift amount needed to sign extend the loaded value prior 2626 // to performing a signed comparison for min/max. ShiftAmt is the number of 2627 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2628 // is the number of bits to left+right shift the value in order to 2629 // sign-extend. 2630 if (AI->getOperation() == AtomicRMWInst::Min || 2631 AI->getOperation() == AtomicRMWInst::Max) { 2632 const DataLayout &DL = AI->getModule()->getDataLayout(); 2633 unsigned ValWidth = 2634 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2635 Value *SextShamt = 2636 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2637 Result = Builder.CreateCall(LrwOpScwLoop, 2638 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2639 } else { 2640 Result = 2641 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2642 } 2643 2644 if (XLen == 64) 2645 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2646 return Result; 2647 } 2648 2649 TargetLowering::AtomicExpansionKind 2650 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2651 AtomicCmpXchgInst *CI) const { 2652 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2653 if (Size == 8 || Size == 16) 2654 return AtomicExpansionKind::MaskedIntrinsic; 2655 return AtomicExpansionKind::None; 2656 } 2657 2658 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2659 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2660 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2661 unsigned XLen = Subtarget.getXLen(); 2662 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2663 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2664 if (XLen == 64) { 2665 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2666 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2667 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2668 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2669 } 2670 Type *Tys[] = {AlignedAddr->getType()}; 2671 Function *MaskedCmpXchg = 2672 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2673 Value *Result = Builder.CreateCall( 2674 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2675 if (XLen == 64) 2676 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2677 return Result; 2678 } 2679 2680 unsigned RISCVTargetLowering::getExceptionPointerRegister( 2681 const Constant *PersonalityFn) const { 2682 return RISCV::X10; 2683 } 2684 2685 unsigned RISCVTargetLowering::getExceptionSelectorRegister( 2686 const Constant *PersonalityFn) const { 2687 return RISCV::X11; 2688 } 2689