1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       // Disable the smallest fractional LMUL types if ELEN is less than
116       // RVVBitsPerBlock.
117       unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
118       if (VT.getVectorMinNumElements() < MinElts)
119         return;
120 
121       unsigned Size = VT.getSizeInBits().getKnownMinValue();
122       const TargetRegisterClass *RC;
123       if (Size <= RISCV::RVVBitsPerBlock)
124         RC = &RISCV::VRRegClass;
125       else if (Size == 2 * RISCV::RVVBitsPerBlock)
126         RC = &RISCV::VRM2RegClass;
127       else if (Size == 4 * RISCV::RVVBitsPerBlock)
128         RC = &RISCV::VRM4RegClass;
129       else if (Size == 8 * RISCV::RVVBitsPerBlock)
130         RC = &RISCV::VRM8RegClass;
131       else
132         llvm_unreachable("Unexpected size");
133 
134       addRegisterClass(VT, RC);
135     };
136 
137     for (MVT VT : BoolVecVTs)
138       addRegClassForRVV(VT);
139     for (MVT VT : IntVecVTs) {
140       if (VT.getVectorElementType() == MVT::i64 &&
141           !Subtarget.hasVInstructionsI64())
142         continue;
143       addRegClassForRVV(VT);
144     }
145 
146     if (Subtarget.hasVInstructionsF16())
147       for (MVT VT : F16VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.hasVInstructionsF32())
151       for (MVT VT : F32VecVTs)
152         addRegClassForRVV(VT);
153 
154     if (Subtarget.hasVInstructionsF64())
155       for (MVT VT : F64VecVTs)
156         addRegClassForRVV(VT);
157 
158     if (Subtarget.useRVVForFixedLengthVectors()) {
159       auto addRegClassForFixedVectors = [this](MVT VT) {
160         MVT ContainerVT = getContainerForFixedLengthVector(VT);
161         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
162         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
163         addRegisterClass(VT, TRI.getRegClass(RCID));
164       };
165       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
166         if (useRVVForFixedLengthVectorVT(VT))
167           addRegClassForFixedVectors(VT);
168 
169       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
170         if (useRVVForFixedLengthVectorVT(VT))
171           addRegClassForFixedVectors(VT);
172     }
173   }
174 
175   // Compute derived properties from the register classes.
176   computeRegisterProperties(STI.getRegisterInfo());
177 
178   setStackPointerRegisterToSaveRestore(RISCV::X2);
179 
180   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
181                    MVT::i1, Promote);
182 
183   // TODO: add all necessary setOperationAction calls.
184   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
185 
186   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
187   setOperationAction(ISD::BR_CC, XLenVT, Expand);
188   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
189   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
190 
191   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
192 
193   setOperationAction(ISD::VASTART, MVT::Other, Custom);
194   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
195 
196   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197 
198   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
199 
200   if (!Subtarget.hasStdExtZbb())
201     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
202 
203   if (Subtarget.is64Bit()) {
204     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
205 
206     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
207                        MVT::i32, Custom);
208 
209     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
210                        MVT::i32, Custom);
211   } else {
212     setLibcallName(
213         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
214         nullptr);
215     setLibcallName(RTLIB::MULO_I64, nullptr);
216   }
217 
218   if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) {
219     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
220   } else {
221     if (Subtarget.is64Bit()) {
222       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
223     } else {
224       setOperationAction(ISD::MUL, MVT::i64, Custom);
225     }
226   }
227 
228   if (!Subtarget.hasStdExtM()) {
229     setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
230                        XLenVT, Expand);
231   } else {
232     if (Subtarget.is64Bit()) {
233       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
234                           {MVT::i8, MVT::i16, MVT::i32}, Custom);
235     }
236   }
237 
238   setOperationAction(
239       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
240       Expand);
241 
242   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
243                      Custom);
244 
245   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
246       Subtarget.hasStdExtZbkb()) {
247     if (Subtarget.is64Bit())
248       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
249   } else {
250     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
251   }
252 
253   if (Subtarget.hasStdExtZbp()) {
254     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
255     // more combining.
256     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
257 
258     // BSWAP i8 doesn't exist.
259     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
260 
261     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
262 
263     if (Subtarget.is64Bit())
264       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
265   } else {
266     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
267     // pattern match it directly in isel.
268     setOperationAction(ISD::BSWAP, XLenVT,
269                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
270                            ? Legal
271                            : Expand);
272     // Zbkb can use rev8+brev8 to implement bitreverse.
273     setOperationAction(ISD::BITREVERSE, XLenVT,
274                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
275   }
276 
277   if (Subtarget.hasStdExtZbb()) {
278     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
279                        Legal);
280 
281     if (Subtarget.is64Bit())
282       setOperationAction(
283           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
284           MVT::i32, Custom);
285   } else {
286     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
287 
288     if (Subtarget.is64Bit())
289       setOperationAction(ISD::ABS, MVT::i32, Custom);
290   }
291 
292   if (Subtarget.hasStdExtZbt()) {
293     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
294     setOperationAction(ISD::SELECT, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit())
297       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   static const unsigned FPLegalNodeTypes[] = {
303       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
304       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
305       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
306       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
307       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
308       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
309 
310   static const ISD::CondCode FPCCToExpand[] = {
311       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
312       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
313       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
314 
315   static const unsigned FPOpToExpand[] = {
316       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
317       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
318 
319   if (Subtarget.hasStdExtZfh())
320     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
321 
322   if (Subtarget.hasStdExtZfh()) {
323     setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
324     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
325     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
326     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
327     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
328     setOperationAction(ISD::SELECT, MVT::f16, Custom);
329     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
330 
331     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
332                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
333                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
334                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
335                         ISD::FLOG2, ISD::FLOG10},
336                        MVT::f16, Promote);
337 
338     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
339     // complete support for all operations in LegalizeDAG.
340 
341     // We need to custom promote this.
342     if (Subtarget.is64Bit())
343       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
344   }
345 
346   if (Subtarget.hasStdExtF()) {
347     setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
348     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
349     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f32, Custom);
351     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
352     setOperationAction(FPOpToExpand, MVT::f32, Expand);
353     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
354     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
355   }
356 
357   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
358     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
359 
360   if (Subtarget.hasStdExtD()) {
361     setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
362     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
364     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
365     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
366     setOperationAction(ISD::SELECT, MVT::f64, Custom);
367     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
368     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
369     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
370     setOperationAction(FPOpToExpand, MVT::f64, Expand);
371     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
372     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
373   }
374 
375   if (Subtarget.is64Bit())
376     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
377                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
378                        MVT::i32, Custom);
379 
380   if (Subtarget.hasStdExtF()) {
381     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
382                        Custom);
383 
384     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
385                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
386                        XLenVT, Legal);
387 
388     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
389     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
390   }
391 
392   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
393                       ISD::JumpTable},
394                      XLenVT, Custom);
395 
396   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
397 
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::Constant, MVT::i64, Custom);
400 
401   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402   // Unfortunately this can't be determined just from the ISA naming string.
403   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404                      Subtarget.is64Bit() ? Legal : Custom);
405 
406   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
407   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408   if (Subtarget.is64Bit())
409     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
410 
411   if (Subtarget.hasStdExtA()) {
412     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
413     setMinCmpXchgSizeInBits(32);
414   } else {
415     setMaxAtomicSizeInBitsSupported(0);
416   }
417 
418   setBooleanContents(ZeroOrOneBooleanContent);
419 
420   if (Subtarget.hasVInstructions()) {
421     setBooleanVectorContents(ZeroOrOneBooleanContent);
422 
423     setOperationAction(ISD::VSCALE, XLenVT, Custom);
424 
425     // RVV intrinsics may have illegal operands.
426     // We also need to custom legalize vmv.x.s.
427     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
428                        {MVT::i8, MVT::i16}, Custom);
429     if (Subtarget.is64Bit())
430       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
431     else
432       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
433                          MVT::i64, Custom);
434 
435     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
436                        MVT::Other, Custom);
437 
438     static const unsigned IntegerVPOps[] = {
439         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
440         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
441         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
442         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
443         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
444         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
445         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
446         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
447         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
448         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
449 
450     static const unsigned FloatingPointVPOps[] = {
451         ISD::VP_FADD,        ISD::VP_FSUB,
452         ISD::VP_FMUL,        ISD::VP_FDIV,
453         ISD::VP_FNEG,        ISD::VP_FMA,
454         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
455         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
456         ISD::VP_MERGE,       ISD::VP_SELECT,
457         ISD::VP_SITOFP,      ISD::VP_UITOFP,
458         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
459         ISD::VP_FP_EXTEND};
460 
461     static const unsigned IntegerVecReduceOps[] = {
462         ISD::VECREDUCE_ADD,  ISD::VECREDUCE_AND,  ISD::VECREDUCE_OR,
463         ISD::VECREDUCE_XOR,  ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
464         ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
465 
466     static const unsigned FloatingPointVecReduceOps[] = {
467         ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
468         ISD::VECREDUCE_FMAX};
469 
470     if (!Subtarget.is64Bit()) {
471       // We must custom-lower certain vXi64 operations on RV32 due to the vector
472       // element type being illegal.
473       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
474                          MVT::i64, Custom);
475 
476       setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
477 
478       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
479                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
480                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
481                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
482                          MVT::i64, Custom);
483     }
484 
485     for (MVT VT : BoolVecVTs) {
486       if (!isTypeLegal(VT))
487         continue;
488 
489       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
490 
491       // Mask VTs are custom-expanded into a series of standard nodes
492       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
493                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
494                          VT, Custom);
495 
496       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
497                          Custom);
498 
499       setOperationAction(ISD::SELECT, VT, Custom);
500       setOperationAction(
501           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
502           Expand);
503 
504       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
505 
506       setOperationAction(
507           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
508           Custom);
509 
510       setOperationAction(
511           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
512           Custom);
513 
514       // RVV has native int->float & float->int conversions where the
515       // element type sizes are within one power-of-two of each other. Any
516       // wider distances between type sizes have to be lowered as sequences
517       // which progressively narrow the gap in stages.
518       setOperationAction(
519           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
520           VT, Custom);
521 
522       // Expand all extending loads to types larger than this, and truncating
523       // stores from types larger than this.
524       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
525         setTruncStoreAction(OtherVT, VT, Expand);
526         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
527                          VT, Expand);
528       }
529 
530       setOperationAction(
531           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
532           Custom);
533       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
534 
535       setOperationPromotedToType(
536           ISD::VECTOR_SPLICE, VT,
537           MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
538     }
539 
540     for (MVT VT : IntVecVTs) {
541       if (!isTypeLegal(VT))
542         continue;
543 
544       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
545       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
546 
547       // Vectors implement MULHS/MULHU.
548       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
549 
550       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
551       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
552         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
553 
554       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
555                          Legal);
556 
557       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
558 
559       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
560                          Expand);
561 
562       setOperationAction(ISD::BSWAP, VT, Expand);
563 
564       // Custom-lower extensions and truncations from/to mask types.
565       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
566                          VT, Custom);
567 
568       // RVV has native int->float & float->int conversions where the
569       // element type sizes are within one power-of-two of each other. Any
570       // wider distances between type sizes have to be lowered as sequences
571       // which progressively narrow the gap in stages.
572       setOperationAction(
573           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
574           VT, Custom);
575 
576       setOperationAction(
577           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
578 
579       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
580       // nodes which truncate by one power of two at a time.
581       setOperationAction(ISD::TRUNCATE, VT, Custom);
582 
583       // Custom-lower insert/extract operations to simplify patterns.
584       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
585                          Custom);
586 
587       // Custom-lower reduction operations to set up the corresponding custom
588       // nodes' operands.
589       setOperationAction(IntegerVecReduceOps, VT, Custom);
590 
591       setOperationAction(IntegerVPOps, VT, Custom);
592 
593       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
594 
595       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
596                          VT, Custom);
597 
598       setOperationAction(
599           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
600           Custom);
601 
602       setOperationAction(
603           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
604           VT, Custom);
605 
606       setOperationAction(ISD::SELECT, VT, Custom);
607       setOperationAction(ISD::SELECT_CC, VT, Expand);
608 
609       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
610 
611       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
612         setTruncStoreAction(VT, OtherVT, Expand);
613         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
614                          VT, Expand);
615       }
616 
617       // Splice
618       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
619 
620       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
621       // type that can represent the value exactly.
622       if (VT.getVectorElementType() != MVT::i64) {
623         MVT FloatEltVT =
624             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
625         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
626         if (isTypeLegal(FloatVT)) {
627           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
628                              Custom);
629         }
630       }
631     }
632 
633     // Expand various CCs to best match the RVV ISA, which natively supports UNE
634     // but no other unordered comparisons, and supports all ordered comparisons
635     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
636     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
637     // and we pattern-match those back to the "original", swapping operands once
638     // more. This way we catch both operations and both "vf" and "fv" forms with
639     // fewer patterns.
640     static const ISD::CondCode VFPCCToExpand[] = {
641         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
642         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
643         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
644     };
645 
646     // Sets common operation actions on RVV floating-point vector types.
647     const auto SetCommonVFPActions = [&](MVT VT) {
648       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
649       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
650       // sizes are within one power-of-two of each other. Therefore conversions
651       // between vXf16 and vXf64 must be lowered as sequences which convert via
652       // vXf32.
653       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
654       // Custom-lower insert/extract operations to simplify patterns.
655       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
656                          Custom);
657       // Expand various condition codes (explained above).
658       setCondCodeAction(VFPCCToExpand, VT, Expand);
659 
660       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
661 
662       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
663                          VT, Custom);
664 
665       setOperationAction(FloatingPointVecReduceOps, VT, Custom);
666 
667       // Expand FP operations that need libcalls.
668       setOperationAction(ISD::FREM, VT, Expand);
669       setOperationAction(ISD::FPOW, VT, Expand);
670       setOperationAction(ISD::FCOS, VT, Expand);
671       setOperationAction(ISD::FSIN, VT, Expand);
672       setOperationAction(ISD::FSINCOS, VT, Expand);
673       setOperationAction(ISD::FEXP, VT, Expand);
674       setOperationAction(ISD::FEXP2, VT, Expand);
675       setOperationAction(ISD::FLOG, VT, Expand);
676       setOperationAction(ISD::FLOG2, VT, Expand);
677       setOperationAction(ISD::FLOG10, VT, Expand);
678       setOperationAction(ISD::FRINT, VT, Expand);
679       setOperationAction(ISD::FNEARBYINT, VT, Expand);
680 
681       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
682       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
683       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
684       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
685 
686       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
687 
688       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
689 
690       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
691                          VT, Custom);
692 
693       setOperationAction(
694           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
695           Custom);
696 
697       setOperationAction(ISD::SELECT, VT, Custom);
698       setOperationAction(ISD::SELECT_CC, VT, Expand);
699 
700       setOperationAction(
701           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
702           VT, Custom);
703 
704       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
705 
706       setOperationAction(FloatingPointVPOps, VT, Custom);
707     };
708 
709     // Sets common extload/truncstore actions on RVV floating-point vector
710     // types.
711     const auto SetCommonVFPExtLoadTruncStoreActions =
712         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
713           for (auto SmallVT : SmallerVTs) {
714             setTruncStoreAction(VT, SmallVT, Expand);
715             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
716           }
717         };
718 
719     if (Subtarget.hasVInstructionsF16()) {
720       for (MVT VT : F16VecVTs) {
721         if (!isTypeLegal(VT))
722           continue;
723         SetCommonVFPActions(VT);
724       }
725     }
726 
727     if (Subtarget.hasVInstructionsF32()) {
728       for (MVT VT : F32VecVTs) {
729         if (!isTypeLegal(VT))
730           continue;
731         SetCommonVFPActions(VT);
732         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
733       }
734     }
735 
736     if (Subtarget.hasVInstructionsF64()) {
737       for (MVT VT : F64VecVTs) {
738         if (!isTypeLegal(VT))
739           continue;
740         SetCommonVFPActions(VT);
741         SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
742         SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
743       }
744     }
745 
746     if (Subtarget.useRVVForFixedLengthVectors()) {
747       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
748         if (!useRVVForFixedLengthVectorVT(VT))
749           continue;
750 
751         // By default everything must be expanded.
752         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
753           setOperationAction(Op, VT, Expand);
754         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
755           setTruncStoreAction(VT, OtherVT, Expand);
756           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
757                            OtherVT, VT, Expand);
758         }
759 
760         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
761         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
762                            Custom);
763 
764         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
765                            Custom);
766 
767         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
768                            VT, Custom);
769 
770         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
771 
772         setOperationAction(ISD::SETCC, VT, Custom);
773 
774         setOperationAction(ISD::SELECT, VT, Custom);
775 
776         setOperationAction(ISD::TRUNCATE, VT, Custom);
777 
778         setOperationAction(ISD::BITCAST, VT, Custom);
779 
780         setOperationAction(
781             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
782             Custom);
783 
784         setOperationAction(
785             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
786             Custom);
787 
788         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
789                             ISD::FP_TO_UINT},
790                            VT, Custom);
791 
792         // Operations below are different for between masks and other vectors.
793         if (VT.getVectorElementType() == MVT::i1) {
794           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
795                               ISD::OR, ISD::XOR},
796                              VT, Custom);
797 
798           setOperationAction(
799               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
800               VT, Custom);
801           continue;
802         }
803 
804         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
805         // it before type legalization for i64 vectors on RV32. It will then be
806         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
807         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
808         // improvements first.
809         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
810           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
811           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
812         }
813 
814         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
815         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(
818             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
819 
820         setOperationAction(
821             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
822             Custom);
823 
824         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
825                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
826                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
827                            VT, Custom);
828 
829         setOperationAction(
830             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
831 
832         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
833         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
834           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
835 
836         setOperationAction(
837             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
838             Custom);
839 
840         setOperationAction(ISD::VSELECT, VT, Custom);
841         setOperationAction(ISD::SELECT_CC, VT, Expand);
842 
843         setOperationAction(
844             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
845 
846         // Custom-lower reduction operations to set up the corresponding custom
847         // nodes' operands.
848         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
849                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
850                             ISD::VECREDUCE_UMIN},
851                            VT, Custom);
852 
853         setOperationAction(IntegerVPOps, VT, Custom);
854 
855         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
856         // type that can represent the value exactly.
857         if (VT.getVectorElementType() != MVT::i64) {
858           MVT FloatEltVT =
859               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
860           EVT FloatVT =
861               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
862           if (isTypeLegal(FloatVT))
863             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
864                                Custom);
865         }
866       }
867 
868       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
869         if (!useRVVForFixedLengthVectorVT(VT))
870           continue;
871 
872         // By default everything must be expanded.
873         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
874           setOperationAction(Op, VT, Expand);
875         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
876           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
877           setTruncStoreAction(VT, OtherVT, Expand);
878         }
879 
880         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
881         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
882                            Custom);
883 
884         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
885                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
886                             ISD::EXTRACT_VECTOR_ELT},
887                            VT, Custom);
888 
889         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
890                             ISD::MGATHER, ISD::MSCATTER},
891                            VT, Custom);
892 
893         setOperationAction(
894             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
895             Custom);
896 
897         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
898                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
899                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
900                            VT, Custom);
901 
902         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
903 
904         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
905                            VT, Custom);
906 
907         setCondCodeAction(VFPCCToExpand, VT, Expand);
908 
909         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
910         setOperationAction(ISD::SELECT_CC, VT, Expand);
911 
912         setOperationAction(ISD::BITCAST, VT, Custom);
913 
914         setOperationAction(FloatingPointVecReduceOps, VT, Custom);
915 
916         setOperationAction(FloatingPointVPOps, VT, Custom);
917       }
918 
919       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
920       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
921                          Custom);
922       if (Subtarget.hasStdExtZfh())
923         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
924       if (Subtarget.hasStdExtF())
925         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
926       if (Subtarget.hasStdExtD())
927         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
928     }
929   }
930 
931   // Function alignments.
932   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
933   setMinFunctionAlignment(FunctionAlignment);
934   setPrefFunctionAlignment(FunctionAlignment);
935 
936   setMinimumJumpTableEntries(5);
937 
938   // Jumps are expensive, compared to logic
939   setJumpIsExpensive();
940 
941   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
942                        ISD::OR, ISD::XOR, ISD::SETCC});
943   if (Subtarget.is64Bit())
944     setTargetDAGCombine(ISD::SRA);
945 
946   if (Subtarget.hasStdExtF())
947     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
948 
949   if (Subtarget.hasStdExtZbp())
950     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
951 
952   if (Subtarget.hasStdExtZbb())
953     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
954 
955   if (Subtarget.hasStdExtZbkb())
956     setTargetDAGCombine(ISD::BITREVERSE);
957   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
958     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
959   if (Subtarget.hasStdExtF())
960     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
961                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
962   if (Subtarget.hasVInstructions())
963     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
964                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
965                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
966   if (Subtarget.useRVVForFixedLengthVectors())
967     setTargetDAGCombine(ISD::BITCAST);
968 
969   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
970   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
971 }
972 
973 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
974                                             LLVMContext &Context,
975                                             EVT VT) const {
976   if (!VT.isVector())
977     return getPointerTy(DL);
978   if (Subtarget.hasVInstructions() &&
979       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
980     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
981   return VT.changeVectorElementTypeToInteger();
982 }
983 
984 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
985   return Subtarget.getXLenVT();
986 }
987 
988 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
989                                              const CallInst &I,
990                                              MachineFunction &MF,
991                                              unsigned Intrinsic) const {
992   auto &DL = I.getModule()->getDataLayout();
993   switch (Intrinsic) {
994   default:
995     return false;
996   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
997   case Intrinsic::riscv_masked_atomicrmw_add_i32:
998   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
999   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1000   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1001   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1002   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1003   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1004   case Intrinsic::riscv_masked_cmpxchg_i32:
1005     Info.opc = ISD::INTRINSIC_W_CHAIN;
1006     Info.memVT = MVT::i32;
1007     Info.ptrVal = I.getArgOperand(0);
1008     Info.offset = 0;
1009     Info.align = Align(4);
1010     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1011                  MachineMemOperand::MOVolatile;
1012     return true;
1013   case Intrinsic::riscv_masked_strided_load:
1014     Info.opc = ISD::INTRINSIC_W_CHAIN;
1015     Info.ptrVal = I.getArgOperand(1);
1016     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1017     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1018     Info.size = MemoryLocation::UnknownSize;
1019     Info.flags |= MachineMemOperand::MOLoad;
1020     return true;
1021   case Intrinsic::riscv_masked_strided_store:
1022     Info.opc = ISD::INTRINSIC_VOID;
1023     Info.ptrVal = I.getArgOperand(1);
1024     Info.memVT =
1025         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1026     Info.align = Align(
1027         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1028         8);
1029     Info.size = MemoryLocation::UnknownSize;
1030     Info.flags |= MachineMemOperand::MOStore;
1031     return true;
1032   case Intrinsic::riscv_seg2_load:
1033   case Intrinsic::riscv_seg3_load:
1034   case Intrinsic::riscv_seg4_load:
1035   case Intrinsic::riscv_seg5_load:
1036   case Intrinsic::riscv_seg6_load:
1037   case Intrinsic::riscv_seg7_load:
1038   case Intrinsic::riscv_seg8_load:
1039     Info.opc = ISD::INTRINSIC_W_CHAIN;
1040     Info.ptrVal = I.getArgOperand(0);
1041     Info.memVT =
1042         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1043     Info.align =
1044         Align(DL.getTypeSizeInBits(
1045                   I.getType()->getStructElementType(0)->getScalarType()) /
1046               8);
1047     Info.size = MemoryLocation::UnknownSize;
1048     Info.flags |= MachineMemOperand::MOLoad;
1049     return true;
1050   }
1051 }
1052 
1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1054                                                 const AddrMode &AM, Type *Ty,
1055                                                 unsigned AS,
1056                                                 Instruction *I) const {
1057   // No global is ever allowed as a base.
1058   if (AM.BaseGV)
1059     return false;
1060 
1061   // RVV instructions only support register addressing.
1062   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1063     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1064 
1065   // Require a 12-bit signed offset.
1066   if (!isInt<12>(AM.BaseOffs))
1067     return false;
1068 
1069   switch (AM.Scale) {
1070   case 0: // "r+i" or just "i", depending on HasBaseReg.
1071     break;
1072   case 1:
1073     if (!AM.HasBaseReg) // allow "r+i".
1074       break;
1075     return false; // disallow "r+r" or "r+r+i".
1076   default:
1077     return false;
1078   }
1079 
1080   return true;
1081 }
1082 
1083 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1084   return isInt<12>(Imm);
1085 }
1086 
1087 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1088   return isInt<12>(Imm);
1089 }
1090 
1091 // On RV32, 64-bit integers are split into their high and low parts and held
1092 // in two different registers, so the trunc is free since the low register can
1093 // just be used.
1094 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1095   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1096     return false;
1097   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1098   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1099   return (SrcBits == 64 && DestBits == 32);
1100 }
1101 
1102 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1103   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1104       !SrcVT.isInteger() || !DstVT.isInteger())
1105     return false;
1106   unsigned SrcBits = SrcVT.getSizeInBits();
1107   unsigned DestBits = DstVT.getSizeInBits();
1108   return (SrcBits == 64 && DestBits == 32);
1109 }
1110 
1111 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1112   // Zexts are free if they can be combined with a load.
1113   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1114   // poorly with type legalization of compares preferring sext.
1115   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1116     EVT MemVT = LD->getMemoryVT();
1117     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1118         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1119          LD->getExtensionType() == ISD::ZEXTLOAD))
1120       return true;
1121   }
1122 
1123   return TargetLowering::isZExtFree(Val, VT2);
1124 }
1125 
1126 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1127   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1128 }
1129 
1130 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1131   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1132 }
1133 
1134 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1135   return Subtarget.hasStdExtZbb();
1136 }
1137 
1138 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1139   return Subtarget.hasStdExtZbb();
1140 }
1141 
1142 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1143   EVT VT = Y.getValueType();
1144 
1145   // FIXME: Support vectors once we have tests.
1146   if (VT.isVector())
1147     return false;
1148 
1149   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1150           Subtarget.hasStdExtZbkb()) &&
1151          !isa<ConstantSDNode>(Y);
1152 }
1153 
1154 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1155   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1156   auto *C = dyn_cast<ConstantSDNode>(Y);
1157   return C && C->getAPIntValue().ule(10);
1158 }
1159 
1160 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1161                                                             Type *Ty) const {
1162   assert(Ty->isIntegerTy());
1163 
1164   unsigned BitSize = Ty->getIntegerBitWidth();
1165   if (BitSize > Subtarget.getXLen())
1166     return false;
1167 
1168   // Fast path, assume 32-bit immediates are cheap.
1169   int64_t Val = Imm.getSExtValue();
1170   if (isInt<32>(Val))
1171     return true;
1172 
1173   // A constant pool entry may be more aligned thant he load we're trying to
1174   // replace. If we don't support unaligned scalar mem, prefer the constant
1175   // pool.
1176   // TODO: Can the caller pass down the alignment?
1177   if (!Subtarget.enableUnalignedScalarMem())
1178     return true;
1179 
1180   // Prefer to keep the load if it would require many instructions.
1181   // This uses the same threshold we use for constant pools but doesn't
1182   // check useConstantPoolForLargeInts.
1183   // TODO: Should we keep the load only when we're definitely going to emit a
1184   // constant pool?
1185 
1186   RISCVMatInt::InstSeq Seq =
1187       RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
1188   return Seq.size() <= Subtarget.getMaxBuildIntsCost();
1189 }
1190 
1191 bool RISCVTargetLowering::
1192     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1193         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1194         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1195         SelectionDAG &DAG) const {
1196   // One interesting pattern that we'd want to form is 'bit extract':
1197   //   ((1 >> Y) & 1) ==/!= 0
1198   // But we also need to be careful not to try to reverse that fold.
1199 
1200   // Is this '((1 >> Y) & 1)'?
1201   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1202     return false; // Keep the 'bit extract' pattern.
1203 
1204   // Will this be '((1 >> Y) & 1)' after the transform?
1205   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1206     return true; // Do form the 'bit extract' pattern.
1207 
1208   // If 'X' is a constant, and we transform, then we will immediately
1209   // try to undo the fold, thus causing endless combine loop.
1210   // So only do the transform if X is not a constant. This matches the default
1211   // implementation of this function.
1212   return !XC;
1213 }
1214 
1215 /// Check if sinking \p I's operands to I's basic block is profitable, because
1216 /// the operands can be folded into a target instruction, e.g.
1217 /// splats of scalars can fold into vector instructions.
1218 bool RISCVTargetLowering::shouldSinkOperands(
1219     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1220   using namespace llvm::PatternMatch;
1221 
1222   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1223     return false;
1224 
1225   auto IsSinker = [&](Instruction *I, int Operand) {
1226     switch (I->getOpcode()) {
1227     case Instruction::Add:
1228     case Instruction::Sub:
1229     case Instruction::Mul:
1230     case Instruction::And:
1231     case Instruction::Or:
1232     case Instruction::Xor:
1233     case Instruction::FAdd:
1234     case Instruction::FSub:
1235     case Instruction::FMul:
1236     case Instruction::FDiv:
1237     case Instruction::ICmp:
1238     case Instruction::FCmp:
1239       return true;
1240     case Instruction::Shl:
1241     case Instruction::LShr:
1242     case Instruction::AShr:
1243     case Instruction::UDiv:
1244     case Instruction::SDiv:
1245     case Instruction::URem:
1246     case Instruction::SRem:
1247       return Operand == 1;
1248     case Instruction::Call:
1249       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1250         switch (II->getIntrinsicID()) {
1251         case Intrinsic::fma:
1252         case Intrinsic::vp_fma:
1253           return Operand == 0 || Operand == 1;
1254         // FIXME: Our patterns can only match vx/vf instructions when the splat
1255         // it on the RHS, because TableGen doesn't recognize our VP operations
1256         // as commutative.
1257         case Intrinsic::vp_add:
1258         case Intrinsic::vp_mul:
1259         case Intrinsic::vp_and:
1260         case Intrinsic::vp_or:
1261         case Intrinsic::vp_xor:
1262         case Intrinsic::vp_fadd:
1263         case Intrinsic::vp_fmul:
1264         case Intrinsic::vp_shl:
1265         case Intrinsic::vp_lshr:
1266         case Intrinsic::vp_ashr:
1267         case Intrinsic::vp_udiv:
1268         case Intrinsic::vp_sdiv:
1269         case Intrinsic::vp_urem:
1270         case Intrinsic::vp_srem:
1271           return Operand == 1;
1272         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1273         // explicit patterns for both LHS and RHS (as 'vr' versions).
1274         case Intrinsic::vp_sub:
1275         case Intrinsic::vp_fsub:
1276         case Intrinsic::vp_fdiv:
1277           return Operand == 0 || Operand == 1;
1278         default:
1279           return false;
1280         }
1281       }
1282       return false;
1283     default:
1284       return false;
1285     }
1286   };
1287 
1288   for (auto OpIdx : enumerate(I->operands())) {
1289     if (!IsSinker(I, OpIdx.index()))
1290       continue;
1291 
1292     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1293     // Make sure we are not already sinking this operand
1294     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1295       continue;
1296 
1297     // We are looking for a splat that can be sunk.
1298     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1299                              m_Undef(), m_ZeroMask())))
1300       continue;
1301 
1302     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1303     // and vector registers
1304     for (Use &U : Op->uses()) {
1305       Instruction *Insn = cast<Instruction>(U.getUser());
1306       if (!IsSinker(Insn, U.getOperandNo()))
1307         return false;
1308     }
1309 
1310     Ops.push_back(&Op->getOperandUse(0));
1311     Ops.push_back(&OpIdx.value());
1312   }
1313   return true;
1314 }
1315 
1316 bool RISCVTargetLowering::isOffsetFoldingLegal(
1317     const GlobalAddressSDNode *GA) const {
1318   // In order to maximise the opportunity for common subexpression elimination,
1319   // keep a separate ADD node for the global address offset instead of folding
1320   // it in the global address node. Later peephole optimisations may choose to
1321   // fold it back in when profitable.
1322   return false;
1323 }
1324 
1325 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1326                                        bool ForCodeSize) const {
1327   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1328   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1329     return false;
1330   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1331     return false;
1332   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1333     return false;
1334   return Imm.isZero();
1335 }
1336 
1337 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1338   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1339          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1340          (VT == MVT::f64 && Subtarget.hasStdExtD());
1341 }
1342 
1343 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1344                                                       CallingConv::ID CC,
1345                                                       EVT VT) const {
1346   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1347   // We might still end up using a GPR but that will be decided based on ABI.
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1350     return MVT::f32;
1351 
1352   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1353 }
1354 
1355 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1356                                                            CallingConv::ID CC,
1357                                                            EVT VT) const {
1358   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1359   // We might still end up using a GPR but that will be decided based on ABI.
1360   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1361   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1362     return 1;
1363 
1364   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1365 }
1366 
1367 // Changes the condition code and swaps operands if necessary, so the SetCC
1368 // operation matches one of the comparisons supported directly by branches
1369 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1370 // with 1/-1.
1371 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1372                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1373   // If this is a single bit test that can't be handled by ANDI, shift the
1374   // bit to be tested to the MSB and perform a signed compare with 0.
1375   if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
1376       LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
1377       isa<ConstantSDNode>(LHS.getOperand(1))) {
1378     uint64_t Mask = LHS.getConstantOperandVal(1);
1379     if (isPowerOf2_64(Mask) && !isInt<12>(Mask)) {
1380       CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
1381       unsigned ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
1382       LHS = LHS.getOperand(0);
1383       if (ShAmt != 0)
1384         LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
1385                           DAG.getConstant(ShAmt, DL, LHS.getValueType()));
1386       return;
1387     }
1388   }
1389 
1390   // Convert X > -1 to X >= 0.
1391   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1392     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1393     CC = ISD::SETGE;
1394     return;
1395   }
1396   // Convert X < 1 to 0 >= X.
1397   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1398     RHS = LHS;
1399     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1400     CC = ISD::SETGE;
1401     return;
1402   }
1403 
1404   switch (CC) {
1405   default:
1406     break;
1407   case ISD::SETGT:
1408   case ISD::SETLE:
1409   case ISD::SETUGT:
1410   case ISD::SETULE:
1411     CC = ISD::getSetCCSwappedOperands(CC);
1412     std::swap(LHS, RHS);
1413     break;
1414   }
1415 }
1416 
1417 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1418   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1419   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1420   if (VT.getVectorElementType() == MVT::i1)
1421     KnownSize *= 8;
1422 
1423   switch (KnownSize) {
1424   default:
1425     llvm_unreachable("Invalid LMUL.");
1426   case 8:
1427     return RISCVII::VLMUL::LMUL_F8;
1428   case 16:
1429     return RISCVII::VLMUL::LMUL_F4;
1430   case 32:
1431     return RISCVII::VLMUL::LMUL_F2;
1432   case 64:
1433     return RISCVII::VLMUL::LMUL_1;
1434   case 128:
1435     return RISCVII::VLMUL::LMUL_2;
1436   case 256:
1437     return RISCVII::VLMUL::LMUL_4;
1438   case 512:
1439     return RISCVII::VLMUL::LMUL_8;
1440   }
1441 }
1442 
1443 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1444   switch (LMul) {
1445   default:
1446     llvm_unreachable("Invalid LMUL.");
1447   case RISCVII::VLMUL::LMUL_F8:
1448   case RISCVII::VLMUL::LMUL_F4:
1449   case RISCVII::VLMUL::LMUL_F2:
1450   case RISCVII::VLMUL::LMUL_1:
1451     return RISCV::VRRegClassID;
1452   case RISCVII::VLMUL::LMUL_2:
1453     return RISCV::VRM2RegClassID;
1454   case RISCVII::VLMUL::LMUL_4:
1455     return RISCV::VRM4RegClassID;
1456   case RISCVII::VLMUL::LMUL_8:
1457     return RISCV::VRM8RegClassID;
1458   }
1459 }
1460 
1461 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1462   RISCVII::VLMUL LMUL = getLMUL(VT);
1463   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1464       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1465       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1466       LMUL == RISCVII::VLMUL::LMUL_1) {
1467     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1468                   "Unexpected subreg numbering");
1469     return RISCV::sub_vrm1_0 + Index;
1470   }
1471   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1472     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1473                   "Unexpected subreg numbering");
1474     return RISCV::sub_vrm2_0 + Index;
1475   }
1476   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1477     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1478                   "Unexpected subreg numbering");
1479     return RISCV::sub_vrm4_0 + Index;
1480   }
1481   llvm_unreachable("Invalid vector type.");
1482 }
1483 
1484 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1485   if (VT.getVectorElementType() == MVT::i1)
1486     return RISCV::VRRegClassID;
1487   return getRegClassIDForLMUL(getLMUL(VT));
1488 }
1489 
1490 // Attempt to decompose a subvector insert/extract between VecVT and
1491 // SubVecVT via subregister indices. Returns the subregister index that
1492 // can perform the subvector insert/extract with the given element index, as
1493 // well as the index corresponding to any leftover subvectors that must be
1494 // further inserted/extracted within the register class for SubVecVT.
1495 std::pair<unsigned, unsigned>
1496 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1497     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1498     const RISCVRegisterInfo *TRI) {
1499   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1500                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1501                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1502                 "Register classes not ordered");
1503   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1504   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1505   // Try to compose a subregister index that takes us from the incoming
1506   // LMUL>1 register class down to the outgoing one. At each step we half
1507   // the LMUL:
1508   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1509   // Note that this is not guaranteed to find a subregister index, such as
1510   // when we are extracting from one VR type to another.
1511   unsigned SubRegIdx = RISCV::NoSubRegister;
1512   for (const unsigned RCID :
1513        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1514     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1515       VecVT = VecVT.getHalfNumVectorElementsVT();
1516       bool IsHi =
1517           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1518       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1519                                             getSubregIndexByMVT(VecVT, IsHi));
1520       if (IsHi)
1521         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1522     }
1523   return {SubRegIdx, InsertExtractIdx};
1524 }
1525 
1526 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1527 // stores for those types.
1528 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1529   return !Subtarget.useRVVForFixedLengthVectors() ||
1530          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1531 }
1532 
1533 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1534   if (ScalarTy->isPointerTy())
1535     return true;
1536 
1537   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1538       ScalarTy->isIntegerTy(32))
1539     return true;
1540 
1541   if (ScalarTy->isIntegerTy(64))
1542     return Subtarget.hasVInstructionsI64();
1543 
1544   if (ScalarTy->isHalfTy())
1545     return Subtarget.hasVInstructionsF16();
1546   if (ScalarTy->isFloatTy())
1547     return Subtarget.hasVInstructionsF32();
1548   if (ScalarTy->isDoubleTy())
1549     return Subtarget.hasVInstructionsF64();
1550 
1551   return false;
1552 }
1553 
1554 static SDValue getVLOperand(SDValue Op) {
1555   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1556           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1557          "Unexpected opcode");
1558   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1559   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1560   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1561       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1562   if (!II)
1563     return SDValue();
1564   return Op.getOperand(II->VLOperand + 1 + HasChain);
1565 }
1566 
1567 static bool useRVVForFixedLengthVectorVT(MVT VT,
1568                                          const RISCVSubtarget &Subtarget) {
1569   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1570   if (!Subtarget.useRVVForFixedLengthVectors())
1571     return false;
1572 
1573   // We only support a set of vector types with a consistent maximum fixed size
1574   // across all supported vector element types to avoid legalization issues.
1575   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1576   // fixed-length vector type we support is 1024 bytes.
1577   if (VT.getFixedSizeInBits() > 1024 * 8)
1578     return false;
1579 
1580   unsigned MinVLen = Subtarget.getRealMinVLen();
1581 
1582   MVT EltVT = VT.getVectorElementType();
1583 
1584   // Don't use RVV for vectors we cannot scalarize if required.
1585   switch (EltVT.SimpleTy) {
1586   // i1 is supported but has different rules.
1587   default:
1588     return false;
1589   case MVT::i1:
1590     // Masks can only use a single register.
1591     if (VT.getVectorNumElements() > MinVLen)
1592       return false;
1593     MinVLen /= 8;
1594     break;
1595   case MVT::i8:
1596   case MVT::i16:
1597   case MVT::i32:
1598     break;
1599   case MVT::i64:
1600     if (!Subtarget.hasVInstructionsI64())
1601       return false;
1602     break;
1603   case MVT::f16:
1604     if (!Subtarget.hasVInstructionsF16())
1605       return false;
1606     break;
1607   case MVT::f32:
1608     if (!Subtarget.hasVInstructionsF32())
1609       return false;
1610     break;
1611   case MVT::f64:
1612     if (!Subtarget.hasVInstructionsF64())
1613       return false;
1614     break;
1615   }
1616 
1617   // Reject elements larger than ELEN.
1618   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1619     return false;
1620 
1621   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1622   // Don't use RVV for types that don't fit.
1623   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1624     return false;
1625 
1626   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1627   // the base fixed length RVV support in place.
1628   if (!VT.isPow2VectorType())
1629     return false;
1630 
1631   return true;
1632 }
1633 
1634 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1635   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1636 }
1637 
1638 // Return the largest legal scalable vector type that matches VT's element type.
1639 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1640                                             const RISCVSubtarget &Subtarget) {
1641   // This may be called before legal types are setup.
1642   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1643           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1644          "Expected legal fixed length vector!");
1645 
1646   unsigned MinVLen = Subtarget.getRealMinVLen();
1647   unsigned MaxELen = Subtarget.getELEN();
1648 
1649   MVT EltVT = VT.getVectorElementType();
1650   switch (EltVT.SimpleTy) {
1651   default:
1652     llvm_unreachable("unexpected element type for RVV container");
1653   case MVT::i1:
1654   case MVT::i8:
1655   case MVT::i16:
1656   case MVT::i32:
1657   case MVT::i64:
1658   case MVT::f16:
1659   case MVT::f32:
1660   case MVT::f64: {
1661     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1662     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1663     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1664     unsigned NumElts =
1665         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1666     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1667     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1668     return MVT::getScalableVectorVT(EltVT, NumElts);
1669   }
1670   }
1671 }
1672 
1673 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1674                                             const RISCVSubtarget &Subtarget) {
1675   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1676                                           Subtarget);
1677 }
1678 
1679 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1680   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1681 }
1682 
1683 // Grow V to consume an entire RVV register.
1684 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1685                                        const RISCVSubtarget &Subtarget) {
1686   assert(VT.isScalableVector() &&
1687          "Expected to convert into a scalable vector!");
1688   assert(V.getValueType().isFixedLengthVector() &&
1689          "Expected a fixed length vector operand!");
1690   SDLoc DL(V);
1691   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1692   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1693 }
1694 
1695 // Shrink V so it's just big enough to maintain a VT's worth of data.
1696 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1697                                          const RISCVSubtarget &Subtarget) {
1698   assert(VT.isFixedLengthVector() &&
1699          "Expected to convert into a fixed length vector!");
1700   assert(V.getValueType().isScalableVector() &&
1701          "Expected a scalable vector operand!");
1702   SDLoc DL(V);
1703   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1704   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1705 }
1706 
1707 /// Return the type of the mask type suitable for masking the provided
1708 /// vector type.  This is simply an i1 element type vector of the same
1709 /// (possibly scalable) length.
1710 static MVT getMaskTypeFor(MVT VecVT) {
1711   assert(VecVT.isVector());
1712   ElementCount EC = VecVT.getVectorElementCount();
1713   return MVT::getVectorVT(MVT::i1, EC);
1714 }
1715 
1716 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1717 /// vector length VL.  .
1718 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1719                               SelectionDAG &DAG) {
1720   MVT MaskVT = getMaskTypeFor(VecVT);
1721   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1722 }
1723 
1724 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1725 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1726 // the vector type that it is contained in.
1727 static std::pair<SDValue, SDValue>
1728 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1729                 const RISCVSubtarget &Subtarget) {
1730   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1731   MVT XLenVT = Subtarget.getXLenVT();
1732   SDValue VL = VecVT.isFixedLengthVector()
1733                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1734                    : DAG.getRegister(RISCV::X0, XLenVT);
1735   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1736   return {Mask, VL};
1737 }
1738 
1739 // As above but assuming the given type is a scalable vector type.
1740 static std::pair<SDValue, SDValue>
1741 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1742                         const RISCVSubtarget &Subtarget) {
1743   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1744   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1745 }
1746 
1747 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1748 // of either is (currently) supported. This can get us into an infinite loop
1749 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1750 // as a ..., etc.
1751 // Until either (or both) of these can reliably lower any node, reporting that
1752 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1753 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1754 // which is not desirable.
1755 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1756     EVT VT, unsigned DefinedValues) const {
1757   return false;
1758 }
1759 
1760 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1761                                   const RISCVSubtarget &Subtarget) {
1762   // RISCV FP-to-int conversions saturate to the destination register size, but
1763   // don't produce 0 for nan. We can use a conversion instruction and fix the
1764   // nan case with a compare and a select.
1765   SDValue Src = Op.getOperand(0);
1766 
1767   EVT DstVT = Op.getValueType();
1768   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1769 
1770   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1771   unsigned Opc;
1772   if (SatVT == DstVT)
1773     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1774   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1775     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1776   else
1777     return SDValue();
1778   // FIXME: Support other SatVTs by clamping before or after the conversion.
1779 
1780   SDLoc DL(Op);
1781   SDValue FpToInt = DAG.getNode(
1782       Opc, DL, DstVT, Src,
1783       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1784 
1785   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1786   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1787 }
1788 
1789 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1790 // and back. Taking care to avoid converting values that are nan or already
1791 // correct.
1792 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1793 // have FRM dependencies modeled yet.
1794 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1795   MVT VT = Op.getSimpleValueType();
1796   assert(VT.isVector() && "Unexpected type");
1797 
1798   SDLoc DL(Op);
1799 
1800   // Freeze the source since we are increasing the number of uses.
1801   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1802 
1803   // Truncate to integer and convert back to FP.
1804   MVT IntVT = VT.changeVectorElementTypeToInteger();
1805   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1806   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1807 
1808   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1809 
1810   if (Op.getOpcode() == ISD::FCEIL) {
1811     // If the truncated value is the greater than or equal to the original
1812     // value, we've computed the ceil. Otherwise, we went the wrong way and
1813     // need to increase by 1.
1814     // FIXME: This should use a masked operation. Handle here or in isel?
1815     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1816                                  DAG.getConstantFP(1.0, DL, VT));
1817     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1818     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1819   } else if (Op.getOpcode() == ISD::FFLOOR) {
1820     // If the truncated value is the less than or equal to the original value,
1821     // we've computed the floor. Otherwise, we went the wrong way and need to
1822     // decrease by 1.
1823     // FIXME: This should use a masked operation. Handle here or in isel?
1824     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1825                                  DAG.getConstantFP(1.0, DL, VT));
1826     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1827     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1828   }
1829 
1830   // Restore the original sign so that -0.0 is preserved.
1831   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1832 
1833   // Determine the largest integer that can be represented exactly. This and
1834   // values larger than it don't have any fractional bits so don't need to
1835   // be converted.
1836   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1837   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1838   APFloat MaxVal = APFloat(FltSem);
1839   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1840                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1841   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1842 
1843   // If abs(Src) was larger than MaxVal or nan, keep it.
1844   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1845   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1846   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1847 }
1848 
1849 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1850 // This mode isn't supported in vector hardware on RISCV. But as long as we
1851 // aren't compiling with trapping math, we can emulate this with
1852 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1853 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1854 // dependencies modeled yet.
1855 // FIXME: Use masked operations to avoid final merge.
1856 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1857   MVT VT = Op.getSimpleValueType();
1858   assert(VT.isVector() && "Unexpected type");
1859 
1860   SDLoc DL(Op);
1861 
1862   // Freeze the source since we are increasing the number of uses.
1863   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1864 
1865   // We do the conversion on the absolute value and fix the sign at the end.
1866   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1867 
1868   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1869   bool Ignored;
1870   APFloat Point5Pred = APFloat(0.5f);
1871   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1872   Point5Pred.next(/*nextDown*/ true);
1873 
1874   // Add the adjustment.
1875   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1876                                DAG.getConstantFP(Point5Pred, DL, VT));
1877 
1878   // Truncate to integer and convert back to fp.
1879   MVT IntVT = VT.changeVectorElementTypeToInteger();
1880   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1881   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1882 
1883   // Restore the original sign.
1884   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1885 
1886   // Determine the largest integer that can be represented exactly. This and
1887   // values larger than it don't have any fractional bits so don't need to
1888   // be converted.
1889   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1890   APFloat MaxVal = APFloat(FltSem);
1891   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1892                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1893   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1894 
1895   // If abs(Src) was larger than MaxVal or nan, keep it.
1896   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1897   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1898   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1899 }
1900 
1901 struct VIDSequence {
1902   int64_t StepNumerator;
1903   unsigned StepDenominator;
1904   int64_t Addend;
1905 };
1906 
1907 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1908 // to the (non-zero) step S and start value X. This can be then lowered as the
1909 // RVV sequence (VID * S) + X, for example.
1910 // The step S is represented as an integer numerator divided by a positive
1911 // denominator. Note that the implementation currently only identifies
1912 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1913 // cannot detect 2/3, for example.
1914 // Note that this method will also match potentially unappealing index
1915 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1916 // determine whether this is worth generating code for.
1917 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1918   unsigned NumElts = Op.getNumOperands();
1919   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1920   if (!Op.getValueType().isInteger())
1921     return None;
1922 
1923   Optional<unsigned> SeqStepDenom;
1924   Optional<int64_t> SeqStepNum, SeqAddend;
1925   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1926   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1927   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1928     // Assume undef elements match the sequence; we just have to be careful
1929     // when interpolating across them.
1930     if (Op.getOperand(Idx).isUndef())
1931       continue;
1932     // The BUILD_VECTOR must be all constants.
1933     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1934       return None;
1935 
1936     uint64_t Val = Op.getConstantOperandVal(Idx) &
1937                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1938 
1939     if (PrevElt) {
1940       // Calculate the step since the last non-undef element, and ensure
1941       // it's consistent across the entire sequence.
1942       unsigned IdxDiff = Idx - PrevElt->second;
1943       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1944 
1945       // A zero-value value difference means that we're somewhere in the middle
1946       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1947       // step change before evaluating the sequence.
1948       if (ValDiff == 0)
1949         continue;
1950 
1951       int64_t Remainder = ValDiff % IdxDiff;
1952       // Normalize the step if it's greater than 1.
1953       if (Remainder != ValDiff) {
1954         // The difference must cleanly divide the element span.
1955         if (Remainder != 0)
1956           return None;
1957         ValDiff /= IdxDiff;
1958         IdxDiff = 1;
1959       }
1960 
1961       if (!SeqStepNum)
1962         SeqStepNum = ValDiff;
1963       else if (ValDiff != SeqStepNum)
1964         return None;
1965 
1966       if (!SeqStepDenom)
1967         SeqStepDenom = IdxDiff;
1968       else if (IdxDiff != *SeqStepDenom)
1969         return None;
1970     }
1971 
1972     // Record this non-undef element for later.
1973     if (!PrevElt || PrevElt->first != Val)
1974       PrevElt = std::make_pair(Val, Idx);
1975   }
1976 
1977   // We need to have logged a step for this to count as a legal index sequence.
1978   if (!SeqStepNum || !SeqStepDenom)
1979     return None;
1980 
1981   // Loop back through the sequence and validate elements we might have skipped
1982   // while waiting for a valid step. While doing this, log any sequence addend.
1983   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1984     if (Op.getOperand(Idx).isUndef())
1985       continue;
1986     uint64_t Val = Op.getConstantOperandVal(Idx) &
1987                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1988     uint64_t ExpectedVal =
1989         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1990     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1991     if (!SeqAddend)
1992       SeqAddend = Addend;
1993     else if (Addend != SeqAddend)
1994       return None;
1995   }
1996 
1997   assert(SeqAddend && "Must have an addend if we have a step");
1998 
1999   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
2000 }
2001 
2002 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
2003 // and lower it as a VRGATHER_VX_VL from the source vector.
2004 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
2005                                   SelectionDAG &DAG,
2006                                   const RISCVSubtarget &Subtarget) {
2007   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2008     return SDValue();
2009   SDValue Vec = SplatVal.getOperand(0);
2010   // Only perform this optimization on vectors of the same size for simplicity.
2011   // Don't perform this optimization for i1 vectors.
2012   // FIXME: Support i1 vectors, maybe by promoting to i8?
2013   if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
2014     return SDValue();
2015   SDValue Idx = SplatVal.getOperand(1);
2016   // The index must be a legal type.
2017   if (Idx.getValueType() != Subtarget.getXLenVT())
2018     return SDValue();
2019 
2020   MVT ContainerVT = VT;
2021   if (VT.isFixedLengthVector()) {
2022     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2023     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2024   }
2025 
2026   SDValue Mask, VL;
2027   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2028 
2029   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2030                                Idx, Mask, DAG.getUNDEF(ContainerVT), VL);
2031 
2032   if (!VT.isFixedLengthVector())
2033     return Gather;
2034 
2035   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2036 }
2037 
2038 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2039                                  const RISCVSubtarget &Subtarget) {
2040   MVT VT = Op.getSimpleValueType();
2041   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2042 
2043   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2044 
2045   SDLoc DL(Op);
2046   SDValue Mask, VL;
2047   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2048 
2049   MVT XLenVT = Subtarget.getXLenVT();
2050   unsigned NumElts = Op.getNumOperands();
2051 
2052   if (VT.getVectorElementType() == MVT::i1) {
2053     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2054       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2055       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2056     }
2057 
2058     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2059       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2060       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2061     }
2062 
2063     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2064     // scalar integer chunks whose bit-width depends on the number of mask
2065     // bits and XLEN.
2066     // First, determine the most appropriate scalar integer type to use. This
2067     // is at most XLenVT, but may be shrunk to a smaller vector element type
2068     // according to the size of the final vector - use i8 chunks rather than
2069     // XLenVT if we're producing a v8i1. This results in more consistent
2070     // codegen across RV32 and RV64.
2071     unsigned NumViaIntegerBits =
2072         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2073     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2074     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2075       // If we have to use more than one INSERT_VECTOR_ELT then this
2076       // optimization is likely to increase code size; avoid peforming it in
2077       // such a case. We can use a load from a constant pool in this case.
2078       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2079         return SDValue();
2080       // Now we can create our integer vector type. Note that it may be larger
2081       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2082       MVT IntegerViaVecVT =
2083           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2084                            divideCeil(NumElts, NumViaIntegerBits));
2085 
2086       uint64_t Bits = 0;
2087       unsigned BitPos = 0, IntegerEltIdx = 0;
2088       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2089 
2090       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2091         // Once we accumulate enough bits to fill our scalar type, insert into
2092         // our vector and clear our accumulated data.
2093         if (I != 0 && I % NumViaIntegerBits == 0) {
2094           if (NumViaIntegerBits <= 32)
2095             Bits = SignExtend64<32>(Bits);
2096           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2097           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2098                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2099           Bits = 0;
2100           BitPos = 0;
2101           IntegerEltIdx++;
2102         }
2103         SDValue V = Op.getOperand(I);
2104         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2105         Bits |= ((uint64_t)BitValue << BitPos);
2106       }
2107 
2108       // Insert the (remaining) scalar value into position in our integer
2109       // vector type.
2110       if (NumViaIntegerBits <= 32)
2111         Bits = SignExtend64<32>(Bits);
2112       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2113       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2114                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2115 
2116       if (NumElts < NumViaIntegerBits) {
2117         // If we're producing a smaller vector than our minimum legal integer
2118         // type, bitcast to the equivalent (known-legal) mask type, and extract
2119         // our final mask.
2120         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2121         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2122         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2123                           DAG.getConstant(0, DL, XLenVT));
2124       } else {
2125         // Else we must have produced an integer type with the same size as the
2126         // mask type; bitcast for the final result.
2127         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2128         Vec = DAG.getBitcast(VT, Vec);
2129       }
2130 
2131       return Vec;
2132     }
2133 
2134     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2135     // vector type, we have a legal equivalently-sized i8 type, so we can use
2136     // that.
2137     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2138     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2139 
2140     SDValue WideVec;
2141     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2142       // For a splat, perform a scalar truncate before creating the wider
2143       // vector.
2144       assert(Splat.getValueType() == XLenVT &&
2145              "Unexpected type for i1 splat value");
2146       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2147                           DAG.getConstant(1, DL, XLenVT));
2148       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2149     } else {
2150       SmallVector<SDValue, 8> Ops(Op->op_values());
2151       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2152       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2153       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2154     }
2155 
2156     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2157   }
2158 
2159   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2160     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2161       return Gather;
2162     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2163                                         : RISCVISD::VMV_V_X_VL;
2164     Splat =
2165         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2166     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2167   }
2168 
2169   // Try and match index sequences, which we can lower to the vid instruction
2170   // with optional modifications. An all-undef vector is matched by
2171   // getSplatValue, above.
2172   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2173     int64_t StepNumerator = SimpleVID->StepNumerator;
2174     unsigned StepDenominator = SimpleVID->StepDenominator;
2175     int64_t Addend = SimpleVID->Addend;
2176 
2177     assert(StepNumerator != 0 && "Invalid step");
2178     bool Negate = false;
2179     int64_t SplatStepVal = StepNumerator;
2180     unsigned StepOpcode = ISD::MUL;
2181     if (StepNumerator != 1) {
2182       if (isPowerOf2_64(std::abs(StepNumerator))) {
2183         Negate = StepNumerator < 0;
2184         StepOpcode = ISD::SHL;
2185         SplatStepVal = Log2_64(std::abs(StepNumerator));
2186       }
2187     }
2188 
2189     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2190     // threshold since it's the immediate value many RVV instructions accept.
2191     // There is no vmul.vi instruction so ensure multiply constant can fit in
2192     // a single addi instruction.
2193     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2194          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2195         isPowerOf2_32(StepDenominator) &&
2196         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2197       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2198       // Convert right out of the scalable type so we can use standard ISD
2199       // nodes for the rest of the computation. If we used scalable types with
2200       // these, we'd lose the fixed-length vector info and generate worse
2201       // vsetvli code.
2202       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2203       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2204           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2205         SDValue SplatStep = DAG.getSplatBuildVector(
2206             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2207         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2208       }
2209       if (StepDenominator != 1) {
2210         SDValue SplatStep = DAG.getSplatBuildVector(
2211             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2212         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2213       }
2214       if (Addend != 0 || Negate) {
2215         SDValue SplatAddend = DAG.getSplatBuildVector(
2216             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2217         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2218       }
2219       return VID;
2220     }
2221   }
2222 
2223   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2224   // when re-interpreted as a vector with a larger element type. For example,
2225   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2226   // could be instead splat as
2227   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2228   // TODO: This optimization could also work on non-constant splats, but it
2229   // would require bit-manipulation instructions to construct the splat value.
2230   SmallVector<SDValue> Sequence;
2231   unsigned EltBitSize = VT.getScalarSizeInBits();
2232   const auto *BV = cast<BuildVectorSDNode>(Op);
2233   if (VT.isInteger() && EltBitSize < 64 &&
2234       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2235       BV->getRepeatedSequence(Sequence) &&
2236       (Sequence.size() * EltBitSize) <= 64) {
2237     unsigned SeqLen = Sequence.size();
2238     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2239     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2240     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2241             ViaIntVT == MVT::i64) &&
2242            "Unexpected sequence type");
2243 
2244     unsigned EltIdx = 0;
2245     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2246     uint64_t SplatValue = 0;
2247     // Construct the amalgamated value which can be splatted as this larger
2248     // vector type.
2249     for (const auto &SeqV : Sequence) {
2250       if (!SeqV.isUndef())
2251         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2252                        << (EltIdx * EltBitSize));
2253       EltIdx++;
2254     }
2255 
2256     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2257     // achieve better constant materializion.
2258     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2259       SplatValue = SignExtend64<32>(SplatValue);
2260 
2261     // Since we can't introduce illegal i64 types at this stage, we can only
2262     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2263     // way we can use RVV instructions to splat.
2264     assert((ViaIntVT.bitsLE(XLenVT) ||
2265             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2266            "Unexpected bitcast sequence");
2267     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2268       SDValue ViaVL =
2269           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2270       MVT ViaContainerVT =
2271           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2272       SDValue Splat =
2273           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2274                       DAG.getUNDEF(ViaContainerVT),
2275                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2276       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2277       return DAG.getBitcast(VT, Splat);
2278     }
2279   }
2280 
2281   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2282   // which constitute a large proportion of the elements. In such cases we can
2283   // splat a vector with the dominant element and make up the shortfall with
2284   // INSERT_VECTOR_ELTs.
2285   // Note that this includes vectors of 2 elements by association. The
2286   // upper-most element is the "dominant" one, allowing us to use a splat to
2287   // "insert" the upper element, and an insert of the lower element at position
2288   // 0, which improves codegen.
2289   SDValue DominantValue;
2290   unsigned MostCommonCount = 0;
2291   DenseMap<SDValue, unsigned> ValueCounts;
2292   unsigned NumUndefElts =
2293       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2294 
2295   // Track the number of scalar loads we know we'd be inserting, estimated as
2296   // any non-zero floating-point constant. Other kinds of element are either
2297   // already in registers or are materialized on demand. The threshold at which
2298   // a vector load is more desirable than several scalar materializion and
2299   // vector-insertion instructions is not known.
2300   unsigned NumScalarLoads = 0;
2301 
2302   for (SDValue V : Op->op_values()) {
2303     if (V.isUndef())
2304       continue;
2305 
2306     ValueCounts.insert(std::make_pair(V, 0));
2307     unsigned &Count = ValueCounts[V];
2308 
2309     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2310       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2311 
2312     // Is this value dominant? In case of a tie, prefer the highest element as
2313     // it's cheaper to insert near the beginning of a vector than it is at the
2314     // end.
2315     if (++Count >= MostCommonCount) {
2316       DominantValue = V;
2317       MostCommonCount = Count;
2318     }
2319   }
2320 
2321   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2322   unsigned NumDefElts = NumElts - NumUndefElts;
2323   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2324 
2325   // Don't perform this optimization when optimizing for size, since
2326   // materializing elements and inserting them tends to cause code bloat.
2327   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2328       ((MostCommonCount > DominantValueCountThreshold) ||
2329        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2330     // Start by splatting the most common element.
2331     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2332 
2333     DenseSet<SDValue> Processed{DominantValue};
2334     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2335     for (const auto &OpIdx : enumerate(Op->ops())) {
2336       const SDValue &V = OpIdx.value();
2337       if (V.isUndef() || !Processed.insert(V).second)
2338         continue;
2339       if (ValueCounts[V] == 1) {
2340         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2341                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2342       } else {
2343         // Blend in all instances of this value using a VSELECT, using a
2344         // mask where each bit signals whether that element is the one
2345         // we're after.
2346         SmallVector<SDValue> Ops;
2347         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2348           return DAG.getConstant(V == V1, DL, XLenVT);
2349         });
2350         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2351                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2352                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2353       }
2354     }
2355 
2356     return Vec;
2357   }
2358 
2359   return SDValue();
2360 }
2361 
2362 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2363                                    SDValue Lo, SDValue Hi, SDValue VL,
2364                                    SelectionDAG &DAG) {
2365   if (!Passthru)
2366     Passthru = DAG.getUNDEF(VT);
2367   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2368     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2369     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2370     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2371     // node in order to try and match RVV vector/scalar instructions.
2372     if ((LoC >> 31) == HiC)
2373       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2374 
2375     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2376     // vmv.v.x whose EEW = 32 to lower it.
2377     auto *Const = dyn_cast<ConstantSDNode>(VL);
2378     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2379       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2380       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2381       // access the subtarget here now.
2382       auto InterVec = DAG.getNode(
2383           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2384                                   DAG.getRegister(RISCV::X0, MVT::i32));
2385       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2386     }
2387   }
2388 
2389   // Fall back to a stack store and stride x0 vector load.
2390   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2391                      Hi, VL);
2392 }
2393 
2394 // Called by type legalization to handle splat of i64 on RV32.
2395 // FIXME: We can optimize this when the type has sign or zero bits in one
2396 // of the halves.
2397 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2398                                    SDValue Scalar, SDValue VL,
2399                                    SelectionDAG &DAG) {
2400   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2401   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2402                            DAG.getConstant(0, DL, MVT::i32));
2403   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2404                            DAG.getConstant(1, DL, MVT::i32));
2405   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2406 }
2407 
2408 // This function lowers a splat of a scalar operand Splat with the vector
2409 // length VL. It ensures the final sequence is type legal, which is useful when
2410 // lowering a splat after type legalization.
2411 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2412                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2413                                 const RISCVSubtarget &Subtarget) {
2414   bool HasPassthru = Passthru && !Passthru.isUndef();
2415   if (!HasPassthru && !Passthru)
2416     Passthru = DAG.getUNDEF(VT);
2417   if (VT.isFloatingPoint()) {
2418     // If VL is 1, we could use vfmv.s.f.
2419     if (isOneConstant(VL))
2420       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2421     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2422   }
2423 
2424   MVT XLenVT = Subtarget.getXLenVT();
2425 
2426   // Simplest case is that the operand needs to be promoted to XLenVT.
2427   if (Scalar.getValueType().bitsLE(XLenVT)) {
2428     // If the operand is a constant, sign extend to increase our chances
2429     // of being able to use a .vi instruction. ANY_EXTEND would become a
2430     // a zero extend and the simm5 check in isel would fail.
2431     // FIXME: Should we ignore the upper bits in isel instead?
2432     unsigned ExtOpc =
2433         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2434     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2435     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2436     // If VL is 1 and the scalar value won't benefit from immediate, we could
2437     // use vmv.s.x.
2438     if (isOneConstant(VL) &&
2439         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2440       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2441     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2442   }
2443 
2444   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2445          "Unexpected scalar for splat lowering!");
2446 
2447   if (isOneConstant(VL) && isNullConstant(Scalar))
2448     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2449                        DAG.getConstant(0, DL, XLenVT), VL);
2450 
2451   // Otherwise use the more complicated splatting algorithm.
2452   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2453 }
2454 
2455 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2456                                 const RISCVSubtarget &Subtarget) {
2457   // We need to be able to widen elements to the next larger integer type.
2458   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2459     return false;
2460 
2461   int Size = Mask.size();
2462   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2463 
2464   int Srcs[] = {-1, -1};
2465   for (int i = 0; i != Size; ++i) {
2466     // Ignore undef elements.
2467     if (Mask[i] < 0)
2468       continue;
2469 
2470     // Is this an even or odd element.
2471     int Pol = i % 2;
2472 
2473     // Ensure we consistently use the same source for this element polarity.
2474     int Src = Mask[i] / Size;
2475     if (Srcs[Pol] < 0)
2476       Srcs[Pol] = Src;
2477     if (Srcs[Pol] != Src)
2478       return false;
2479 
2480     // Make sure the element within the source is appropriate for this element
2481     // in the destination.
2482     int Elt = Mask[i] % Size;
2483     if (Elt != i / 2)
2484       return false;
2485   }
2486 
2487   // We need to find a source for each polarity and they can't be the same.
2488   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2489     return false;
2490 
2491   // Swap the sources if the second source was in the even polarity.
2492   SwapSources = Srcs[0] > Srcs[1];
2493 
2494   return true;
2495 }
2496 
2497 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2498 /// and then extract the original number of elements from the rotated result.
2499 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2500 /// returned rotation amount is for a rotate right, where elements move from
2501 /// higher elements to lower elements. \p LoSrc indicates the first source
2502 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2503 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2504 /// 0 or 1 if a rotation is found.
2505 ///
2506 /// NOTE: We talk about rotate to the right which matches how bit shift and
2507 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2508 /// and the table below write vectors with the lowest elements on the left.
2509 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2510   int Size = Mask.size();
2511 
2512   // We need to detect various ways of spelling a rotation:
2513   //   [11, 12, 13, 14, 15,  0,  1,  2]
2514   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2515   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2516   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2517   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2518   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2519   int Rotation = 0;
2520   LoSrc = -1;
2521   HiSrc = -1;
2522   for (int i = 0; i != Size; ++i) {
2523     int M = Mask[i];
2524     if (M < 0)
2525       continue;
2526 
2527     // Determine where a rotate vector would have started.
2528     int StartIdx = i - (M % Size);
2529     // The identity rotation isn't interesting, stop.
2530     if (StartIdx == 0)
2531       return -1;
2532 
2533     // If we found the tail of a vector the rotation must be the missing
2534     // front. If we found the head of a vector, it must be how much of the
2535     // head.
2536     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2537 
2538     if (Rotation == 0)
2539       Rotation = CandidateRotation;
2540     else if (Rotation != CandidateRotation)
2541       // The rotations don't match, so we can't match this mask.
2542       return -1;
2543 
2544     // Compute which value this mask is pointing at.
2545     int MaskSrc = M < Size ? 0 : 1;
2546 
2547     // Compute which of the two target values this index should be assigned to.
2548     // This reflects whether the high elements are remaining or the low elemnts
2549     // are remaining.
2550     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2551 
2552     // Either set up this value if we've not encountered it before, or check
2553     // that it remains consistent.
2554     if (TargetSrc < 0)
2555       TargetSrc = MaskSrc;
2556     else if (TargetSrc != MaskSrc)
2557       // This may be a rotation, but it pulls from the inputs in some
2558       // unsupported interleaving.
2559       return -1;
2560   }
2561 
2562   // Check that we successfully analyzed the mask, and normalize the results.
2563   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2564   assert((LoSrc >= 0 || HiSrc >= 0) &&
2565          "Failed to find a rotated input vector!");
2566 
2567   return Rotation;
2568 }
2569 
2570 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2571                                    const RISCVSubtarget &Subtarget) {
2572   SDValue V1 = Op.getOperand(0);
2573   SDValue V2 = Op.getOperand(1);
2574   SDLoc DL(Op);
2575   MVT XLenVT = Subtarget.getXLenVT();
2576   MVT VT = Op.getSimpleValueType();
2577   unsigned NumElts = VT.getVectorNumElements();
2578   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2579 
2580   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2581 
2582   SDValue TrueMask, VL;
2583   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2584 
2585   if (SVN->isSplat()) {
2586     const int Lane = SVN->getSplatIndex();
2587     if (Lane >= 0) {
2588       MVT SVT = VT.getVectorElementType();
2589 
2590       // Turn splatted vector load into a strided load with an X0 stride.
2591       SDValue V = V1;
2592       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2593       // with undef.
2594       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2595       int Offset = Lane;
2596       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2597         int OpElements =
2598             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2599         V = V.getOperand(Offset / OpElements);
2600         Offset %= OpElements;
2601       }
2602 
2603       // We need to ensure the load isn't atomic or volatile.
2604       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2605         auto *Ld = cast<LoadSDNode>(V);
2606         Offset *= SVT.getStoreSize();
2607         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2608                                                    TypeSize::Fixed(Offset), DL);
2609 
2610         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2611         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2612           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2613           SDValue IntID =
2614               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2615           SDValue Ops[] = {Ld->getChain(),
2616                            IntID,
2617                            DAG.getUNDEF(ContainerVT),
2618                            NewAddr,
2619                            DAG.getRegister(RISCV::X0, XLenVT),
2620                            VL};
2621           SDValue NewLoad = DAG.getMemIntrinsicNode(
2622               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2623               DAG.getMachineFunction().getMachineMemOperand(
2624                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2625           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2626           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2627         }
2628 
2629         // Otherwise use a scalar load and splat. This will give the best
2630         // opportunity to fold a splat into the operation. ISel can turn it into
2631         // the x0 strided load if we aren't able to fold away the select.
2632         if (SVT.isFloatingPoint())
2633           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2634                           Ld->getPointerInfo().getWithOffset(Offset),
2635                           Ld->getOriginalAlign(),
2636                           Ld->getMemOperand()->getFlags());
2637         else
2638           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2639                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2640                              Ld->getOriginalAlign(),
2641                              Ld->getMemOperand()->getFlags());
2642         DAG.makeEquivalentMemoryOrdering(Ld, V);
2643 
2644         unsigned Opc =
2645             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2646         SDValue Splat =
2647             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2648         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2649       }
2650 
2651       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2652       assert(Lane < (int)NumElts && "Unexpected lane!");
2653       SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
2654                                    V1, DAG.getConstant(Lane, DL, XLenVT),
2655                                    TrueMask, DAG.getUNDEF(ContainerVT), VL);
2656       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2657     }
2658   }
2659 
2660   ArrayRef<int> Mask = SVN->getMask();
2661 
2662   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2663   // be undef which can be handled with a single SLIDEDOWN/UP.
2664   int LoSrc, HiSrc;
2665   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2666   if (Rotation > 0) {
2667     SDValue LoV, HiV;
2668     if (LoSrc >= 0) {
2669       LoV = LoSrc == 0 ? V1 : V2;
2670       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2671     }
2672     if (HiSrc >= 0) {
2673       HiV = HiSrc == 0 ? V1 : V2;
2674       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2675     }
2676 
2677     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2678     // to slide LoV up by (NumElts - Rotation).
2679     unsigned InvRotate = NumElts - Rotation;
2680 
2681     SDValue Res = DAG.getUNDEF(ContainerVT);
2682     if (HiV) {
2683       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2684       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2685       // causes multiple vsetvlis in some test cases such as lowering
2686       // reduce.mul
2687       SDValue DownVL = VL;
2688       if (LoV)
2689         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2690       Res =
2691           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2692                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2693     }
2694     if (LoV)
2695       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2696                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2697 
2698     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2699   }
2700 
2701   // Detect an interleave shuffle and lower to
2702   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2703   bool SwapSources;
2704   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2705     // Swap sources if needed.
2706     if (SwapSources)
2707       std::swap(V1, V2);
2708 
2709     // Extract the lower half of the vectors.
2710     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2711     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2712                      DAG.getConstant(0, DL, XLenVT));
2713     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2714                      DAG.getConstant(0, DL, XLenVT));
2715 
2716     // Double the element width and halve the number of elements in an int type.
2717     unsigned EltBits = VT.getScalarSizeInBits();
2718     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2719     MVT WideIntVT =
2720         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2721     // Convert this to a scalable vector. We need to base this on the
2722     // destination size to ensure there's always a type with a smaller LMUL.
2723     MVT WideIntContainerVT =
2724         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2725 
2726     // Convert sources to scalable vectors with the same element count as the
2727     // larger type.
2728     MVT HalfContainerVT = MVT::getVectorVT(
2729         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2730     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2731     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2732 
2733     // Cast sources to integer.
2734     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2735     MVT IntHalfVT =
2736         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2737     V1 = DAG.getBitcast(IntHalfVT, V1);
2738     V2 = DAG.getBitcast(IntHalfVT, V2);
2739 
2740     // Freeze V2 since we use it twice and we need to be sure that the add and
2741     // multiply see the same value.
2742     V2 = DAG.getFreeze(V2);
2743 
2744     // Recreate TrueMask using the widened type's element count.
2745     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2746 
2747     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2748     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2749                               V2, TrueMask, VL);
2750     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2751     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2752                                      DAG.getUNDEF(IntHalfVT),
2753                                      DAG.getAllOnesConstant(DL, XLenVT));
2754     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2755                                    V2, Multiplier, TrueMask, VL);
2756     // Add the new copies to our previous addition giving us 2^eltbits copies of
2757     // V2. This is equivalent to shifting V2 left by eltbits. This should
2758     // combine with the vwmulu.vv above to form vwmaccu.vv.
2759     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2760                       TrueMask, VL);
2761     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2762     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2763     // vector VT.
2764     ContainerVT =
2765         MVT::getVectorVT(VT.getVectorElementType(),
2766                          WideIntContainerVT.getVectorElementCount() * 2);
2767     Add = DAG.getBitcast(ContainerVT, Add);
2768     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2769   }
2770 
2771   // Detect shuffles which can be re-expressed as vector selects; these are
2772   // shuffles in which each element in the destination is taken from an element
2773   // at the corresponding index in either source vectors.
2774   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2775     int MaskIndex = MaskIdx.value();
2776     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2777   });
2778 
2779   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2780 
2781   SmallVector<SDValue> MaskVals;
2782   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2783   // merged with a second vrgather.
2784   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2785 
2786   // By default we preserve the original operand order, and use a mask to
2787   // select LHS as true and RHS as false. However, since RVV vector selects may
2788   // feature splats but only on the LHS, we may choose to invert our mask and
2789   // instead select between RHS and LHS.
2790   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2791   bool InvertMask = IsSelect == SwapOps;
2792 
2793   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2794   // half.
2795   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2796 
2797   // Now construct the mask that will be used by the vselect or blended
2798   // vrgather operation. For vrgathers, construct the appropriate indices into
2799   // each vector.
2800   for (int MaskIndex : Mask) {
2801     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2802     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2803     if (!IsSelect) {
2804       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2805       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2806                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2807                                      : DAG.getUNDEF(XLenVT));
2808       GatherIndicesRHS.push_back(
2809           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2810                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2811       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2812         ++LHSIndexCounts[MaskIndex];
2813       if (!IsLHSOrUndefIndex)
2814         ++RHSIndexCounts[MaskIndex - NumElts];
2815     }
2816   }
2817 
2818   if (SwapOps) {
2819     std::swap(V1, V2);
2820     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2821   }
2822 
2823   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2824   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2825   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2826 
2827   if (IsSelect)
2828     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2829 
2830   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2831     // On such a large vector we're unable to use i8 as the index type.
2832     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2833     // may involve vector splitting if we're already at LMUL=8, or our
2834     // user-supplied maximum fixed-length LMUL.
2835     return SDValue();
2836   }
2837 
2838   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2839   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2840   MVT IndexVT = VT.changeTypeToInteger();
2841   // Since we can't introduce illegal index types at this stage, use i16 and
2842   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2843   // than XLenVT.
2844   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2845     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2846     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2847   }
2848 
2849   MVT IndexContainerVT =
2850       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2851 
2852   SDValue Gather;
2853   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2854   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2855   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2856     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2857                               Subtarget);
2858   } else {
2859     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2860     // If only one index is used, we can use a "splat" vrgather.
2861     // TODO: We can splat the most-common index and fix-up any stragglers, if
2862     // that's beneficial.
2863     if (LHSIndexCounts.size() == 1) {
2864       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2865       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2866                            DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask,
2867                            DAG.getUNDEF(ContainerVT), VL);
2868     } else {
2869       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2870       LHSIndices =
2871           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2872 
2873       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2874                            TrueMask, DAG.getUNDEF(ContainerVT), VL);
2875     }
2876   }
2877 
2878   // If a second vector operand is used by this shuffle, blend it in with an
2879   // additional vrgather.
2880   if (!V2.isUndef()) {
2881     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2882 
2883     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2884     SelectMask =
2885         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2886 
2887     // If only one index is used, we can use a "splat" vrgather.
2888     // TODO: We can splat the most-common index and fix-up any stragglers, if
2889     // that's beneficial.
2890     if (RHSIndexCounts.size() == 1) {
2891       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2892       Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2893                            DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask,
2894                            Gather, VL);
2895     } else {
2896       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2897       RHSIndices =
2898           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2899       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices,
2900                            SelectMask, Gather, VL);
2901     }
2902   }
2903 
2904   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2905 }
2906 
2907 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2908   // Support splats for any type. These should type legalize well.
2909   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2910     return true;
2911 
2912   // Only support legal VTs for other shuffles for now.
2913   if (!isTypeLegal(VT))
2914     return false;
2915 
2916   MVT SVT = VT.getSimpleVT();
2917 
2918   bool SwapSources;
2919   int LoSrc, HiSrc;
2920   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2921          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2922 }
2923 
2924 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2925 // the exponent.
2926 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2927   MVT VT = Op.getSimpleValueType();
2928   unsigned EltSize = VT.getScalarSizeInBits();
2929   SDValue Src = Op.getOperand(0);
2930   SDLoc DL(Op);
2931 
2932   // We need a FP type that can represent the value.
2933   // TODO: Use f16 for i8 when possible?
2934   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2935   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2936 
2937   // Legal types should have been checked in the RISCVTargetLowering
2938   // constructor.
2939   // TODO: Splitting may make sense in some cases.
2940   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2941          "Expected legal float type!");
2942 
2943   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2944   // The trailing zero count is equal to log2 of this single bit value.
2945   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2946     SDValue Neg =
2947         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2948     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2949   }
2950 
2951   // We have a legal FP type, convert to it.
2952   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2953   // Bitcast to integer and shift the exponent to the LSB.
2954   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2955   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2956   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2957   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2958                               DAG.getConstant(ShiftAmt, DL, IntVT));
2959   // Truncate back to original type to allow vnsrl.
2960   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2961   // The exponent contains log2 of the value in biased form.
2962   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2963 
2964   // For trailing zeros, we just need to subtract the bias.
2965   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2966     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2967                        DAG.getConstant(ExponentBias, DL, VT));
2968 
2969   // For leading zeros, we need to remove the bias and convert from log2 to
2970   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2971   unsigned Adjust = ExponentBias + (EltSize - 1);
2972   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2973 }
2974 
2975 // While RVV has alignment restrictions, we should always be able to load as a
2976 // legal equivalently-sized byte-typed vector instead. This method is
2977 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2978 // the load is already correctly-aligned, it returns SDValue().
2979 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2980                                                     SelectionDAG &DAG) const {
2981   auto *Load = cast<LoadSDNode>(Op);
2982   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2983 
2984   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2985                                      Load->getMemoryVT(),
2986                                      *Load->getMemOperand()))
2987     return SDValue();
2988 
2989   SDLoc DL(Op);
2990   MVT VT = Op.getSimpleValueType();
2991   unsigned EltSizeBits = VT.getScalarSizeInBits();
2992   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2993          "Unexpected unaligned RVV load type");
2994   MVT NewVT =
2995       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2996   assert(NewVT.isValid() &&
2997          "Expecting equally-sized RVV vector types to be legal");
2998   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2999                           Load->getPointerInfo(), Load->getOriginalAlign(),
3000                           Load->getMemOperand()->getFlags());
3001   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
3002 }
3003 
3004 // While RVV has alignment restrictions, we should always be able to store as a
3005 // legal equivalently-sized byte-typed vector instead. This method is
3006 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3007 // returns SDValue() if the store is already correctly aligned.
3008 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3009                                                      SelectionDAG &DAG) const {
3010   auto *Store = cast<StoreSDNode>(Op);
3011   assert(Store && Store->getValue().getValueType().isVector() &&
3012          "Expected vector store");
3013 
3014   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3015                                      Store->getMemoryVT(),
3016                                      *Store->getMemOperand()))
3017     return SDValue();
3018 
3019   SDLoc DL(Op);
3020   SDValue StoredVal = Store->getValue();
3021   MVT VT = StoredVal.getSimpleValueType();
3022   unsigned EltSizeBits = VT.getScalarSizeInBits();
3023   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3024          "Unexpected unaligned RVV store type");
3025   MVT NewVT =
3026       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3027   assert(NewVT.isValid() &&
3028          "Expecting equally-sized RVV vector types to be legal");
3029   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3030   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3031                       Store->getPointerInfo(), Store->getOriginalAlign(),
3032                       Store->getMemOperand()->getFlags());
3033 }
3034 
3035 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
3036                              const RISCVSubtarget &Subtarget) {
3037   assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
3038 
3039   int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
3040 
3041   // All simm32 constants should be handled by isel.
3042   // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
3043   // this check redundant, but small immediates are common so this check
3044   // should have better compile time.
3045   if (isInt<32>(Imm))
3046     return Op;
3047 
3048   // We only need to cost the immediate, if constant pool lowering is enabled.
3049   if (!Subtarget.useConstantPoolForLargeInts())
3050     return Op;
3051 
3052   RISCVMatInt::InstSeq Seq =
3053       RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3054   if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3055     return Op;
3056 
3057   // Expand to a constant pool using the default expansion code.
3058   return SDValue();
3059 }
3060 
3061 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3062                                             SelectionDAG &DAG) const {
3063   switch (Op.getOpcode()) {
3064   default:
3065     report_fatal_error("unimplemented operand");
3066   case ISD::GlobalAddress:
3067     return lowerGlobalAddress(Op, DAG);
3068   case ISD::BlockAddress:
3069     return lowerBlockAddress(Op, DAG);
3070   case ISD::ConstantPool:
3071     return lowerConstantPool(Op, DAG);
3072   case ISD::JumpTable:
3073     return lowerJumpTable(Op, DAG);
3074   case ISD::GlobalTLSAddress:
3075     return lowerGlobalTLSAddress(Op, DAG);
3076   case ISD::Constant:
3077     return lowerConstant(Op, DAG, Subtarget);
3078   case ISD::SELECT:
3079     return lowerSELECT(Op, DAG);
3080   case ISD::BRCOND:
3081     return lowerBRCOND(Op, DAG);
3082   case ISD::VASTART:
3083     return lowerVASTART(Op, DAG);
3084   case ISD::FRAMEADDR:
3085     return lowerFRAMEADDR(Op, DAG);
3086   case ISD::RETURNADDR:
3087     return lowerRETURNADDR(Op, DAG);
3088   case ISD::SHL_PARTS:
3089     return lowerShiftLeftParts(Op, DAG);
3090   case ISD::SRA_PARTS:
3091     return lowerShiftRightParts(Op, DAG, true);
3092   case ISD::SRL_PARTS:
3093     return lowerShiftRightParts(Op, DAG, false);
3094   case ISD::BITCAST: {
3095     SDLoc DL(Op);
3096     EVT VT = Op.getValueType();
3097     SDValue Op0 = Op.getOperand(0);
3098     EVT Op0VT = Op0.getValueType();
3099     MVT XLenVT = Subtarget.getXLenVT();
3100     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3101       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3102       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3103       return FPConv;
3104     }
3105     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3106         Subtarget.hasStdExtF()) {
3107       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3108       SDValue FPConv =
3109           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3110       return FPConv;
3111     }
3112 
3113     // Consider other scalar<->scalar casts as legal if the types are legal.
3114     // Otherwise expand them.
3115     if (!VT.isVector() && !Op0VT.isVector()) {
3116       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3117         return Op;
3118       return SDValue();
3119     }
3120 
3121     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3122            "Unexpected types");
3123 
3124     if (VT.isFixedLengthVector()) {
3125       // We can handle fixed length vector bitcasts with a simple replacement
3126       // in isel.
3127       if (Op0VT.isFixedLengthVector())
3128         return Op;
3129       // When bitcasting from scalar to fixed-length vector, insert the scalar
3130       // into a one-element vector of the result type, and perform a vector
3131       // bitcast.
3132       if (!Op0VT.isVector()) {
3133         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3134         if (!isTypeLegal(BVT))
3135           return SDValue();
3136         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3137                                               DAG.getUNDEF(BVT), Op0,
3138                                               DAG.getConstant(0, DL, XLenVT)));
3139       }
3140       return SDValue();
3141     }
3142     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3143     // thus: bitcast the vector to a one-element vector type whose element type
3144     // is the same as the result type, and extract the first element.
3145     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3146       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3147       if (!isTypeLegal(BVT))
3148         return SDValue();
3149       SDValue BVec = DAG.getBitcast(BVT, Op0);
3150       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3151                          DAG.getConstant(0, DL, XLenVT));
3152     }
3153     return SDValue();
3154   }
3155   case ISD::INTRINSIC_WO_CHAIN:
3156     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3157   case ISD::INTRINSIC_W_CHAIN:
3158     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3159   case ISD::INTRINSIC_VOID:
3160     return LowerINTRINSIC_VOID(Op, DAG);
3161   case ISD::BSWAP:
3162   case ISD::BITREVERSE: {
3163     MVT VT = Op.getSimpleValueType();
3164     SDLoc DL(Op);
3165     if (Subtarget.hasStdExtZbp()) {
3166       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3167       // Start with the maximum immediate value which is the bitwidth - 1.
3168       unsigned Imm = VT.getSizeInBits() - 1;
3169       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3170       if (Op.getOpcode() == ISD::BSWAP)
3171         Imm &= ~0x7U;
3172       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3173                          DAG.getConstant(Imm, DL, VT));
3174     }
3175     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3176     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3177     // Expand bitreverse to a bswap(rev8) followed by brev8.
3178     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3179     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3180     // as brev8 by an isel pattern.
3181     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3182                        DAG.getConstant(7, DL, VT));
3183   }
3184   case ISD::FSHL:
3185   case ISD::FSHR: {
3186     MVT VT = Op.getSimpleValueType();
3187     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3188     SDLoc DL(Op);
3189     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3190     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3191     // accidentally setting the extra bit.
3192     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3193     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3194                                 DAG.getConstant(ShAmtWidth, DL, VT));
3195     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3196     // instruction use different orders. fshl will return its first operand for
3197     // shift of zero, fshr will return its second operand. fsl and fsr both
3198     // return rs1 so the ISD nodes need to have different operand orders.
3199     // Shift amount is in rs2.
3200     SDValue Op0 = Op.getOperand(0);
3201     SDValue Op1 = Op.getOperand(1);
3202     unsigned Opc = RISCVISD::FSL;
3203     if (Op.getOpcode() == ISD::FSHR) {
3204       std::swap(Op0, Op1);
3205       Opc = RISCVISD::FSR;
3206     }
3207     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3208   }
3209   case ISD::TRUNCATE:
3210     // Only custom-lower vector truncates
3211     if (!Op.getSimpleValueType().isVector())
3212       return Op;
3213     return lowerVectorTruncLike(Op, DAG);
3214   case ISD::ANY_EXTEND:
3215   case ISD::ZERO_EXTEND:
3216     if (Op.getOperand(0).getValueType().isVector() &&
3217         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3218       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3219     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3220   case ISD::SIGN_EXTEND:
3221     if (Op.getOperand(0).getValueType().isVector() &&
3222         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3223       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3224     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3225   case ISD::SPLAT_VECTOR_PARTS:
3226     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3227   case ISD::INSERT_VECTOR_ELT:
3228     return lowerINSERT_VECTOR_ELT(Op, DAG);
3229   case ISD::EXTRACT_VECTOR_ELT:
3230     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3231   case ISD::VSCALE: {
3232     MVT VT = Op.getSimpleValueType();
3233     SDLoc DL(Op);
3234     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3235     // We define our scalable vector types for lmul=1 to use a 64 bit known
3236     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3237     // vscale as VLENB / 8.
3238     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3239     if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3240       report_fatal_error("Support for VLEN==32 is incomplete.");
3241     // We assume VLENB is a multiple of 8. We manually choose the best shift
3242     // here because SimplifyDemandedBits isn't always able to simplify it.
3243     uint64_t Val = Op.getConstantOperandVal(0);
3244     if (isPowerOf2_64(Val)) {
3245       uint64_t Log2 = Log2_64(Val);
3246       if (Log2 < 3)
3247         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3248                            DAG.getConstant(3 - Log2, DL, VT));
3249       if (Log2 > 3)
3250         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3251                            DAG.getConstant(Log2 - 3, DL, VT));
3252       return VLENB;
3253     }
3254     // If the multiplier is a multiple of 8, scale it down to avoid needing
3255     // to shift the VLENB value.
3256     if ((Val % 8) == 0)
3257       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3258                          DAG.getConstant(Val / 8, DL, VT));
3259 
3260     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3261                                  DAG.getConstant(3, DL, VT));
3262     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3263   }
3264   case ISD::FPOWI: {
3265     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3266     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3267     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3268         Op.getOperand(1).getValueType() == MVT::i32) {
3269       SDLoc DL(Op);
3270       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3271       SDValue Powi =
3272           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3273       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3274                          DAG.getIntPtrConstant(0, DL));
3275     }
3276     return SDValue();
3277   }
3278   case ISD::FP_EXTEND:
3279   case ISD::FP_ROUND:
3280     if (!Op.getValueType().isVector())
3281       return Op;
3282     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3283   case ISD::FP_TO_SINT:
3284   case ISD::FP_TO_UINT:
3285   case ISD::SINT_TO_FP:
3286   case ISD::UINT_TO_FP: {
3287     // RVV can only do fp<->int conversions to types half/double the size as
3288     // the source. We custom-lower any conversions that do two hops into
3289     // sequences.
3290     MVT VT = Op.getSimpleValueType();
3291     if (!VT.isVector())
3292       return Op;
3293     SDLoc DL(Op);
3294     SDValue Src = Op.getOperand(0);
3295     MVT EltVT = VT.getVectorElementType();
3296     MVT SrcVT = Src.getSimpleValueType();
3297     MVT SrcEltVT = SrcVT.getVectorElementType();
3298     unsigned EltSize = EltVT.getSizeInBits();
3299     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3300     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3301            "Unexpected vector element types");
3302 
3303     bool IsInt2FP = SrcEltVT.isInteger();
3304     // Widening conversions
3305     if (EltSize > (2 * SrcEltSize)) {
3306       if (IsInt2FP) {
3307         // Do a regular integer sign/zero extension then convert to float.
3308         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3309                                       VT.getVectorElementCount());
3310         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3311                                  ? ISD::ZERO_EXTEND
3312                                  : ISD::SIGN_EXTEND;
3313         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3314         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3315       }
3316       // FP2Int
3317       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3318       // Do one doubling fp_extend then complete the operation by converting
3319       // to int.
3320       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3321       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3322       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3323     }
3324 
3325     // Narrowing conversions
3326     if (SrcEltSize > (2 * EltSize)) {
3327       if (IsInt2FP) {
3328         // One narrowing int_to_fp, then an fp_round.
3329         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3330         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3331         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3332         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3333       }
3334       // FP2Int
3335       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3336       // representable by the integer, the result is poison.
3337       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3338                                     VT.getVectorElementCount());
3339       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3340       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3341     }
3342 
3343     // Scalable vectors can exit here. Patterns will handle equally-sized
3344     // conversions halving/doubling ones.
3345     if (!VT.isFixedLengthVector())
3346       return Op;
3347 
3348     // For fixed-length vectors we lower to a custom "VL" node.
3349     unsigned RVVOpc = 0;
3350     switch (Op.getOpcode()) {
3351     default:
3352       llvm_unreachable("Impossible opcode");
3353     case ISD::FP_TO_SINT:
3354       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3355       break;
3356     case ISD::FP_TO_UINT:
3357       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3358       break;
3359     case ISD::SINT_TO_FP:
3360       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3361       break;
3362     case ISD::UINT_TO_FP:
3363       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3364       break;
3365     }
3366 
3367     MVT ContainerVT, SrcContainerVT;
3368     // Derive the reference container type from the larger vector type.
3369     if (SrcEltSize > EltSize) {
3370       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3371       ContainerVT =
3372           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3373     } else {
3374       ContainerVT = getContainerForFixedLengthVector(VT);
3375       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3376     }
3377 
3378     SDValue Mask, VL;
3379     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3380 
3381     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3382     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3383     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3384   }
3385   case ISD::FP_TO_SINT_SAT:
3386   case ISD::FP_TO_UINT_SAT:
3387     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3388   case ISD::FTRUNC:
3389   case ISD::FCEIL:
3390   case ISD::FFLOOR:
3391     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3392   case ISD::FROUND:
3393     return lowerFROUND(Op, DAG);
3394   case ISD::VECREDUCE_ADD:
3395   case ISD::VECREDUCE_UMAX:
3396   case ISD::VECREDUCE_SMAX:
3397   case ISD::VECREDUCE_UMIN:
3398   case ISD::VECREDUCE_SMIN:
3399     return lowerVECREDUCE(Op, DAG);
3400   case ISD::VECREDUCE_AND:
3401   case ISD::VECREDUCE_OR:
3402   case ISD::VECREDUCE_XOR:
3403     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3404       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3405     return lowerVECREDUCE(Op, DAG);
3406   case ISD::VECREDUCE_FADD:
3407   case ISD::VECREDUCE_SEQ_FADD:
3408   case ISD::VECREDUCE_FMIN:
3409   case ISD::VECREDUCE_FMAX:
3410     return lowerFPVECREDUCE(Op, DAG);
3411   case ISD::VP_REDUCE_ADD:
3412   case ISD::VP_REDUCE_UMAX:
3413   case ISD::VP_REDUCE_SMAX:
3414   case ISD::VP_REDUCE_UMIN:
3415   case ISD::VP_REDUCE_SMIN:
3416   case ISD::VP_REDUCE_FADD:
3417   case ISD::VP_REDUCE_SEQ_FADD:
3418   case ISD::VP_REDUCE_FMIN:
3419   case ISD::VP_REDUCE_FMAX:
3420     return lowerVPREDUCE(Op, DAG);
3421   case ISD::VP_REDUCE_AND:
3422   case ISD::VP_REDUCE_OR:
3423   case ISD::VP_REDUCE_XOR:
3424     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3425       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3426     return lowerVPREDUCE(Op, DAG);
3427   case ISD::INSERT_SUBVECTOR:
3428     return lowerINSERT_SUBVECTOR(Op, DAG);
3429   case ISD::EXTRACT_SUBVECTOR:
3430     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3431   case ISD::STEP_VECTOR:
3432     return lowerSTEP_VECTOR(Op, DAG);
3433   case ISD::VECTOR_REVERSE:
3434     return lowerVECTOR_REVERSE(Op, DAG);
3435   case ISD::VECTOR_SPLICE:
3436     return lowerVECTOR_SPLICE(Op, DAG);
3437   case ISD::BUILD_VECTOR:
3438     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3439   case ISD::SPLAT_VECTOR:
3440     if (Op.getValueType().getVectorElementType() == MVT::i1)
3441       return lowerVectorMaskSplat(Op, DAG);
3442     return SDValue();
3443   case ISD::VECTOR_SHUFFLE:
3444     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3445   case ISD::CONCAT_VECTORS: {
3446     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3447     // better than going through the stack, as the default expansion does.
3448     SDLoc DL(Op);
3449     MVT VT = Op.getSimpleValueType();
3450     unsigned NumOpElts =
3451         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3452     SDValue Vec = DAG.getUNDEF(VT);
3453     for (const auto &OpIdx : enumerate(Op->ops())) {
3454       SDValue SubVec = OpIdx.value();
3455       // Don't insert undef subvectors.
3456       if (SubVec.isUndef())
3457         continue;
3458       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3459                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3460     }
3461     return Vec;
3462   }
3463   case ISD::LOAD:
3464     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3465       return V;
3466     if (Op.getValueType().isFixedLengthVector())
3467       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3468     return Op;
3469   case ISD::STORE:
3470     if (auto V = expandUnalignedRVVStore(Op, DAG))
3471       return V;
3472     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3473       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3474     return Op;
3475   case ISD::MLOAD:
3476   case ISD::VP_LOAD:
3477     return lowerMaskedLoad(Op, DAG);
3478   case ISD::MSTORE:
3479   case ISD::VP_STORE:
3480     return lowerMaskedStore(Op, DAG);
3481   case ISD::SETCC:
3482     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3483   case ISD::ADD:
3484     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3485   case ISD::SUB:
3486     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3487   case ISD::MUL:
3488     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3489   case ISD::MULHS:
3490     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3491   case ISD::MULHU:
3492     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3493   case ISD::AND:
3494     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3495                                               RISCVISD::AND_VL);
3496   case ISD::OR:
3497     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3498                                               RISCVISD::OR_VL);
3499   case ISD::XOR:
3500     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3501                                               RISCVISD::XOR_VL);
3502   case ISD::SDIV:
3503     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3504   case ISD::SREM:
3505     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3506   case ISD::UDIV:
3507     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3508   case ISD::UREM:
3509     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3510   case ISD::SHL:
3511   case ISD::SRA:
3512   case ISD::SRL:
3513     if (Op.getSimpleValueType().isFixedLengthVector())
3514       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3515     // This can be called for an i32 shift amount that needs to be promoted.
3516     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3517            "Unexpected custom legalisation");
3518     return SDValue();
3519   case ISD::SADDSAT:
3520     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3521   case ISD::UADDSAT:
3522     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3523   case ISD::SSUBSAT:
3524     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3525   case ISD::USUBSAT:
3526     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3527   case ISD::FADD:
3528     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3529   case ISD::FSUB:
3530     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3531   case ISD::FMUL:
3532     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3533   case ISD::FDIV:
3534     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3535   case ISD::FNEG:
3536     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3537   case ISD::FABS:
3538     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3539   case ISD::FSQRT:
3540     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3541   case ISD::FMA:
3542     return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
3543   case ISD::SMIN:
3544     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3545   case ISD::SMAX:
3546     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3547   case ISD::UMIN:
3548     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3549   case ISD::UMAX:
3550     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3551   case ISD::FMINNUM:
3552     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3553   case ISD::FMAXNUM:
3554     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3555   case ISD::ABS:
3556     return lowerABS(Op, DAG);
3557   case ISD::CTLZ_ZERO_UNDEF:
3558   case ISD::CTTZ_ZERO_UNDEF:
3559     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3560   case ISD::VSELECT:
3561     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3562   case ISD::FCOPYSIGN:
3563     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3564   case ISD::MGATHER:
3565   case ISD::VP_GATHER:
3566     return lowerMaskedGather(Op, DAG);
3567   case ISD::MSCATTER:
3568   case ISD::VP_SCATTER:
3569     return lowerMaskedScatter(Op, DAG);
3570   case ISD::FLT_ROUNDS_:
3571     return lowerGET_ROUNDING(Op, DAG);
3572   case ISD::SET_ROUNDING:
3573     return lowerSET_ROUNDING(Op, DAG);
3574   case ISD::EH_DWARF_CFA:
3575     return lowerEH_DWARF_CFA(Op, DAG);
3576   case ISD::VP_SELECT:
3577     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3578   case ISD::VP_MERGE:
3579     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3580   case ISD::VP_ADD:
3581     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3582   case ISD::VP_SUB:
3583     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3584   case ISD::VP_MUL:
3585     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3586   case ISD::VP_SDIV:
3587     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3588   case ISD::VP_UDIV:
3589     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3590   case ISD::VP_SREM:
3591     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3592   case ISD::VP_UREM:
3593     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3594   case ISD::VP_AND:
3595     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3596   case ISD::VP_OR:
3597     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3598   case ISD::VP_XOR:
3599     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3600   case ISD::VP_ASHR:
3601     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3602   case ISD::VP_LSHR:
3603     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3604   case ISD::VP_SHL:
3605     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3606   case ISD::VP_FADD:
3607     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3608   case ISD::VP_FSUB:
3609     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3610   case ISD::VP_FMUL:
3611     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3612   case ISD::VP_FDIV:
3613     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3614   case ISD::VP_FNEG:
3615     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3616   case ISD::VP_FMA:
3617     return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
3618   case ISD::VP_SIGN_EXTEND:
3619   case ISD::VP_ZERO_EXTEND:
3620     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3621       return lowerVPExtMaskOp(Op, DAG);
3622     return lowerVPOp(Op, DAG,
3623                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3624                          ? RISCVISD::VSEXT_VL
3625                          : RISCVISD::VZEXT_VL);
3626   case ISD::VP_TRUNCATE:
3627     return lowerVectorTruncLike(Op, DAG);
3628   case ISD::VP_FP_EXTEND:
3629   case ISD::VP_FP_ROUND:
3630     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3631   case ISD::VP_FPTOSI:
3632     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3633   case ISD::VP_FPTOUI:
3634     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3635   case ISD::VP_SITOFP:
3636     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3637   case ISD::VP_UITOFP:
3638     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3639   case ISD::VP_SETCC:
3640     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3641       return lowerVPSetCCMaskOp(Op, DAG);
3642     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3643   }
3644 }
3645 
3646 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3647                              SelectionDAG &DAG, unsigned Flags) {
3648   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3649 }
3650 
3651 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3652                              SelectionDAG &DAG, unsigned Flags) {
3653   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3654                                    Flags);
3655 }
3656 
3657 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3658                              SelectionDAG &DAG, unsigned Flags) {
3659   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3660                                    N->getOffset(), Flags);
3661 }
3662 
3663 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3664                              SelectionDAG &DAG, unsigned Flags) {
3665   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3666 }
3667 
3668 template <class NodeTy>
3669 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3670                                      bool IsLocal) const {
3671   SDLoc DL(N);
3672   EVT Ty = getPointerTy(DAG.getDataLayout());
3673 
3674   if (isPositionIndependent()) {
3675     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3676     if (IsLocal)
3677       // Use PC-relative addressing to access the symbol. This generates the
3678       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3679       // %pcrel_lo(auipc)).
3680       return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3681 
3682     // Use PC-relative addressing to access the GOT for this symbol, then load
3683     // the address from the GOT. This generates the pattern (PseudoLA sym),
3684     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3685     MachineFunction &MF = DAG.getMachineFunction();
3686     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3687         MachinePointerInfo::getGOT(MF),
3688         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3689             MachineMemOperand::MOInvariant,
3690         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3691     SDValue Load =
3692         DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
3693                                 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3694     return Load;
3695   }
3696 
3697   switch (getTargetMachine().getCodeModel()) {
3698   default:
3699     report_fatal_error("Unsupported code model for lowering");
3700   case CodeModel::Small: {
3701     // Generate a sequence for accessing addresses within the first 2 GiB of
3702     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3703     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3704     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3705     SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3706     return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
3707   }
3708   case CodeModel::Medium: {
3709     // Generate a sequence for accessing addresses within any 2GiB range within
3710     // the address space. This generates the pattern (PseudoLLA sym), which
3711     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3712     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3713     return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3714   }
3715   }
3716 }
3717 
3718 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3719                                                 SelectionDAG &DAG) const {
3720   SDLoc DL(Op);
3721   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3722   assert(N->getOffset() == 0 && "unexpected offset in global node");
3723   return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
3724 }
3725 
3726 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3727                                                SelectionDAG &DAG) const {
3728   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3729 
3730   return getAddr(N, DAG);
3731 }
3732 
3733 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3734                                                SelectionDAG &DAG) const {
3735   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3736 
3737   return getAddr(N, DAG);
3738 }
3739 
3740 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3741                                             SelectionDAG &DAG) const {
3742   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3743 
3744   return getAddr(N, DAG);
3745 }
3746 
3747 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3748                                               SelectionDAG &DAG,
3749                                               bool UseGOT) const {
3750   SDLoc DL(N);
3751   EVT Ty = getPointerTy(DAG.getDataLayout());
3752   const GlobalValue *GV = N->getGlobal();
3753   MVT XLenVT = Subtarget.getXLenVT();
3754 
3755   if (UseGOT) {
3756     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3757     // load the address from the GOT and add the thread pointer. This generates
3758     // the pattern (PseudoLA_TLS_IE sym), which expands to
3759     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3760     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3761     MachineFunction &MF = DAG.getMachineFunction();
3762     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3763         MachinePointerInfo::getGOT(MF),
3764         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3765             MachineMemOperand::MOInvariant,
3766         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3767     SDValue Load = DAG.getMemIntrinsicNode(
3768         RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
3769         {DAG.getEntryNode(), Addr}, Ty, MemOp);
3770 
3771     // Add the thread pointer.
3772     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3773     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3774   }
3775 
3776   // Generate a sequence for accessing the address relative to the thread
3777   // pointer, with the appropriate adjustment for the thread pointer offset.
3778   // This generates the pattern
3779   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3780   SDValue AddrHi =
3781       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3782   SDValue AddrAdd =
3783       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3784   SDValue AddrLo =
3785       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3786 
3787   SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3788   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3789   SDValue MNAdd =
3790       DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
3791   return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
3792 }
3793 
3794 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3795                                                SelectionDAG &DAG) const {
3796   SDLoc DL(N);
3797   EVT Ty = getPointerTy(DAG.getDataLayout());
3798   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3799   const GlobalValue *GV = N->getGlobal();
3800 
3801   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3802   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3803   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3804   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3805   SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
3806 
3807   // Prepare argument list to generate call.
3808   ArgListTy Args;
3809   ArgListEntry Entry;
3810   Entry.Node = Load;
3811   Entry.Ty = CallTy;
3812   Args.push_back(Entry);
3813 
3814   // Setup call to __tls_get_addr.
3815   TargetLowering::CallLoweringInfo CLI(DAG);
3816   CLI.setDebugLoc(DL)
3817       .setChain(DAG.getEntryNode())
3818       .setLibCallee(CallingConv::C, CallTy,
3819                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3820                     std::move(Args));
3821 
3822   return LowerCallTo(CLI).first;
3823 }
3824 
3825 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3826                                                    SelectionDAG &DAG) const {
3827   SDLoc DL(Op);
3828   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3829   assert(N->getOffset() == 0 && "unexpected offset in global node");
3830 
3831   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3832 
3833   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3834       CallingConv::GHC)
3835     report_fatal_error("In GHC calling convention TLS is not supported");
3836 
3837   SDValue Addr;
3838   switch (Model) {
3839   case TLSModel::LocalExec:
3840     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3841     break;
3842   case TLSModel::InitialExec:
3843     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3844     break;
3845   case TLSModel::LocalDynamic:
3846   case TLSModel::GeneralDynamic:
3847     Addr = getDynamicTLSAddr(N, DAG);
3848     break;
3849   }
3850 
3851   return Addr;
3852 }
3853 
3854 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3855   SDValue CondV = Op.getOperand(0);
3856   SDValue TrueV = Op.getOperand(1);
3857   SDValue FalseV = Op.getOperand(2);
3858   SDLoc DL(Op);
3859   MVT VT = Op.getSimpleValueType();
3860   MVT XLenVT = Subtarget.getXLenVT();
3861 
3862   // Lower vector SELECTs to VSELECTs by splatting the condition.
3863   if (VT.isVector()) {
3864     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3865     SDValue CondSplat = VT.isScalableVector()
3866                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3867                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3868     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3869   }
3870 
3871   // If the result type is XLenVT and CondV is the output of a SETCC node
3872   // which also operated on XLenVT inputs, then merge the SETCC node into the
3873   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3874   // compare+branch instructions. i.e.:
3875   // (select (setcc lhs, rhs, cc), truev, falsev)
3876   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3877   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3878       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3879     SDValue LHS = CondV.getOperand(0);
3880     SDValue RHS = CondV.getOperand(1);
3881     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3882     ISD::CondCode CCVal = CC->get();
3883 
3884     // Special case for a select of 2 constants that have a diffence of 1.
3885     // Normally this is done by DAGCombine, but if the select is introduced by
3886     // type legalization or op legalization, we miss it. Restricting to SETLT
3887     // case for now because that is what signed saturating add/sub need.
3888     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3889     // but we would probably want to swap the true/false values if the condition
3890     // is SETGE/SETLE to avoid an XORI.
3891     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3892         CCVal == ISD::SETLT) {
3893       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3894       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3895       if (TrueVal - 1 == FalseVal)
3896         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3897       if (TrueVal + 1 == FalseVal)
3898         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3899     }
3900 
3901     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3902 
3903     SDValue TargetCC = DAG.getCondCode(CCVal);
3904     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3905     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3906   }
3907 
3908   // Otherwise:
3909   // (select condv, truev, falsev)
3910   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3911   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3912   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3913 
3914   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3915 
3916   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3917 }
3918 
3919 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3920   SDValue CondV = Op.getOperand(1);
3921   SDLoc DL(Op);
3922   MVT XLenVT = Subtarget.getXLenVT();
3923 
3924   if (CondV.getOpcode() == ISD::SETCC &&
3925       CondV.getOperand(0).getValueType() == XLenVT) {
3926     SDValue LHS = CondV.getOperand(0);
3927     SDValue RHS = CondV.getOperand(1);
3928     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3929 
3930     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3931 
3932     SDValue TargetCC = DAG.getCondCode(CCVal);
3933     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3934                        LHS, RHS, TargetCC, Op.getOperand(2));
3935   }
3936 
3937   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3938                      CondV, DAG.getConstant(0, DL, XLenVT),
3939                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3940 }
3941 
3942 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3943   MachineFunction &MF = DAG.getMachineFunction();
3944   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3945 
3946   SDLoc DL(Op);
3947   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3948                                  getPointerTy(MF.getDataLayout()));
3949 
3950   // vastart just stores the address of the VarArgsFrameIndex slot into the
3951   // memory location argument.
3952   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3953   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3954                       MachinePointerInfo(SV));
3955 }
3956 
3957 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3958                                             SelectionDAG &DAG) const {
3959   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3960   MachineFunction &MF = DAG.getMachineFunction();
3961   MachineFrameInfo &MFI = MF.getFrameInfo();
3962   MFI.setFrameAddressIsTaken(true);
3963   Register FrameReg = RI.getFrameRegister(MF);
3964   int XLenInBytes = Subtarget.getXLen() / 8;
3965 
3966   EVT VT = Op.getValueType();
3967   SDLoc DL(Op);
3968   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3969   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3970   while (Depth--) {
3971     int Offset = -(XLenInBytes * 2);
3972     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3973                               DAG.getIntPtrConstant(Offset, DL));
3974     FrameAddr =
3975         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3976   }
3977   return FrameAddr;
3978 }
3979 
3980 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3981                                              SelectionDAG &DAG) const {
3982   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3983   MachineFunction &MF = DAG.getMachineFunction();
3984   MachineFrameInfo &MFI = MF.getFrameInfo();
3985   MFI.setReturnAddressIsTaken(true);
3986   MVT XLenVT = Subtarget.getXLenVT();
3987   int XLenInBytes = Subtarget.getXLen() / 8;
3988 
3989   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3990     return SDValue();
3991 
3992   EVT VT = Op.getValueType();
3993   SDLoc DL(Op);
3994   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3995   if (Depth) {
3996     int Off = -XLenInBytes;
3997     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3998     SDValue Offset = DAG.getConstant(Off, DL, VT);
3999     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4000                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4001                        MachinePointerInfo());
4002   }
4003 
4004   // Return the value of the return address register, marking it an implicit
4005   // live-in.
4006   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4007   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4008 }
4009 
4010 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4011                                                  SelectionDAG &DAG) const {
4012   SDLoc DL(Op);
4013   SDValue Lo = Op.getOperand(0);
4014   SDValue Hi = Op.getOperand(1);
4015   SDValue Shamt = Op.getOperand(2);
4016   EVT VT = Lo.getValueType();
4017 
4018   // if Shamt-XLEN < 0: // Shamt < XLEN
4019   //   Lo = Lo << Shamt
4020   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4021   // else:
4022   //   Lo = 0
4023   //   Hi = Lo << (Shamt-XLEN)
4024 
4025   SDValue Zero = DAG.getConstant(0, DL, VT);
4026   SDValue One = DAG.getConstant(1, DL, VT);
4027   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4028   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4029   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4030   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4031 
4032   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4033   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4034   SDValue ShiftRightLo =
4035       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4036   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4037   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4038   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4039 
4040   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4041 
4042   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4043   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4044 
4045   SDValue Parts[2] = {Lo, Hi};
4046   return DAG.getMergeValues(Parts, DL);
4047 }
4048 
4049 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4050                                                   bool IsSRA) const {
4051   SDLoc DL(Op);
4052   SDValue Lo = Op.getOperand(0);
4053   SDValue Hi = Op.getOperand(1);
4054   SDValue Shamt = Op.getOperand(2);
4055   EVT VT = Lo.getValueType();
4056 
4057   // SRA expansion:
4058   //   if Shamt-XLEN < 0: // Shamt < XLEN
4059   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4060   //     Hi = Hi >>s Shamt
4061   //   else:
4062   //     Lo = Hi >>s (Shamt-XLEN);
4063   //     Hi = Hi >>s (XLEN-1)
4064   //
4065   // SRL expansion:
4066   //   if Shamt-XLEN < 0: // Shamt < XLEN
4067   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4068   //     Hi = Hi >>u Shamt
4069   //   else:
4070   //     Lo = Hi >>u (Shamt-XLEN);
4071   //     Hi = 0;
4072 
4073   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4074 
4075   SDValue Zero = DAG.getConstant(0, DL, VT);
4076   SDValue One = DAG.getConstant(1, DL, VT);
4077   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4078   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4079   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4080   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4081 
4082   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4083   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4084   SDValue ShiftLeftHi =
4085       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4086   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4087   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4088   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4089   SDValue HiFalse =
4090       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4091 
4092   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4093 
4094   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4095   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4096 
4097   SDValue Parts[2] = {Lo, Hi};
4098   return DAG.getMergeValues(Parts, DL);
4099 }
4100 
4101 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4102 // legal equivalently-sized i8 type, so we can use that as a go-between.
4103 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4104                                                   SelectionDAG &DAG) const {
4105   SDLoc DL(Op);
4106   MVT VT = Op.getSimpleValueType();
4107   SDValue SplatVal = Op.getOperand(0);
4108   // All-zeros or all-ones splats are handled specially.
4109   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4110     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4111     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4112   }
4113   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4114     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4115     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4116   }
4117   MVT XLenVT = Subtarget.getXLenVT();
4118   assert(SplatVal.getValueType() == XLenVT &&
4119          "Unexpected type for i1 splat value");
4120   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4121   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4122                          DAG.getConstant(1, DL, XLenVT));
4123   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4124   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4125   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4126 }
4127 
4128 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4129 // illegal (currently only vXi64 RV32).
4130 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4131 // them to VMV_V_X_VL.
4132 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4133                                                      SelectionDAG &DAG) const {
4134   SDLoc DL(Op);
4135   MVT VecVT = Op.getSimpleValueType();
4136   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4137          "Unexpected SPLAT_VECTOR_PARTS lowering");
4138 
4139   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4140   SDValue Lo = Op.getOperand(0);
4141   SDValue Hi = Op.getOperand(1);
4142 
4143   if (VecVT.isFixedLengthVector()) {
4144     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4145     SDLoc DL(Op);
4146     SDValue Mask, VL;
4147     std::tie(Mask, VL) =
4148         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4149 
4150     SDValue Res =
4151         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4152     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4153   }
4154 
4155   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4156     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4157     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4158     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4159     // node in order to try and match RVV vector/scalar instructions.
4160     if ((LoC >> 31) == HiC)
4161       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4162                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4163   }
4164 
4165   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4166   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4167       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4168       Hi.getConstantOperandVal(1) == 31)
4169     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4170                        DAG.getRegister(RISCV::X0, MVT::i32));
4171 
4172   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4173   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4174                      DAG.getUNDEF(VecVT), Lo, Hi,
4175                      DAG.getRegister(RISCV::X0, MVT::i32));
4176 }
4177 
4178 // Custom-lower extensions from mask vectors by using a vselect either with 1
4179 // for zero/any-extension or -1 for sign-extension:
4180 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4181 // Note that any-extension is lowered identically to zero-extension.
4182 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4183                                                 int64_t ExtTrueVal) const {
4184   SDLoc DL(Op);
4185   MVT VecVT = Op.getSimpleValueType();
4186   SDValue Src = Op.getOperand(0);
4187   // Only custom-lower extensions from mask types
4188   assert(Src.getValueType().isVector() &&
4189          Src.getValueType().getVectorElementType() == MVT::i1);
4190 
4191   if (VecVT.isScalableVector()) {
4192     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4193     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4194     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4195   }
4196 
4197   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4198   MVT I1ContainerVT =
4199       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4200 
4201   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4202 
4203   SDValue Mask, VL;
4204   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4205 
4206   MVT XLenVT = Subtarget.getXLenVT();
4207   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4208   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4209 
4210   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4211                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4212   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4213                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4214   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4215                                SplatTrueVal, SplatZero, VL);
4216 
4217   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4218 }
4219 
4220 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4221     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4222   MVT ExtVT = Op.getSimpleValueType();
4223   // Only custom-lower extensions from fixed-length vector types.
4224   if (!ExtVT.isFixedLengthVector())
4225     return Op;
4226   MVT VT = Op.getOperand(0).getSimpleValueType();
4227   // Grab the canonical container type for the extended type. Infer the smaller
4228   // type from that to ensure the same number of vector elements, as we know
4229   // the LMUL will be sufficient to hold the smaller type.
4230   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4231   // Get the extended container type manually to ensure the same number of
4232   // vector elements between source and dest.
4233   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4234                                      ContainerExtVT.getVectorElementCount());
4235 
4236   SDValue Op1 =
4237       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4238 
4239   SDLoc DL(Op);
4240   SDValue Mask, VL;
4241   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4242 
4243   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4244 
4245   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4246 }
4247 
4248 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4249 // setcc operation:
4250 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4251 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4252                                                       SelectionDAG &DAG) const {
4253   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4254   SDLoc DL(Op);
4255   EVT MaskVT = Op.getValueType();
4256   // Only expect to custom-lower truncations to mask types
4257   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4258          "Unexpected type for vector mask lowering");
4259   SDValue Src = Op.getOperand(0);
4260   MVT VecVT = Src.getSimpleValueType();
4261   SDValue Mask, VL;
4262   if (IsVPTrunc) {
4263     Mask = Op.getOperand(1);
4264     VL = Op.getOperand(2);
4265   }
4266   // If this is a fixed vector, we need to convert it to a scalable vector.
4267   MVT ContainerVT = VecVT;
4268 
4269   if (VecVT.isFixedLengthVector()) {
4270     ContainerVT = getContainerForFixedLengthVector(VecVT);
4271     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4272     if (IsVPTrunc) {
4273       MVT MaskContainerVT =
4274           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4275       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4276     }
4277   }
4278 
4279   if (!IsVPTrunc) {
4280     std::tie(Mask, VL) =
4281         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4282   }
4283 
4284   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4285   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4286 
4287   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4288                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4289   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4290                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4291 
4292   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4293   SDValue Trunc =
4294       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4295   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4296                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4297   if (MaskVT.isFixedLengthVector())
4298     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4299   return Trunc;
4300 }
4301 
4302 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4303                                                   SelectionDAG &DAG) const {
4304   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4305   SDLoc DL(Op);
4306 
4307   MVT VT = Op.getSimpleValueType();
4308   // Only custom-lower vector truncates
4309   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4310 
4311   // Truncates to mask types are handled differently
4312   if (VT.getVectorElementType() == MVT::i1)
4313     return lowerVectorMaskTruncLike(Op, DAG);
4314 
4315   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4316   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4317   // truncate by one power of two at a time.
4318   MVT DstEltVT = VT.getVectorElementType();
4319 
4320   SDValue Src = Op.getOperand(0);
4321   MVT SrcVT = Src.getSimpleValueType();
4322   MVT SrcEltVT = SrcVT.getVectorElementType();
4323 
4324   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4325          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4326          "Unexpected vector truncate lowering");
4327 
4328   MVT ContainerVT = SrcVT;
4329   SDValue Mask, VL;
4330   if (IsVPTrunc) {
4331     Mask = Op.getOperand(1);
4332     VL = Op.getOperand(2);
4333   }
4334   if (SrcVT.isFixedLengthVector()) {
4335     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4336     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4337     if (IsVPTrunc) {
4338       MVT MaskVT = getMaskTypeFor(ContainerVT);
4339       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4340     }
4341   }
4342 
4343   SDValue Result = Src;
4344   if (!IsVPTrunc) {
4345     std::tie(Mask, VL) =
4346         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4347   }
4348 
4349   LLVMContext &Context = *DAG.getContext();
4350   const ElementCount Count = ContainerVT.getVectorElementCount();
4351   do {
4352     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4353     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4354     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4355                          Mask, VL);
4356   } while (SrcEltVT != DstEltVT);
4357 
4358   if (SrcVT.isFixedLengthVector())
4359     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4360 
4361   return Result;
4362 }
4363 
4364 SDValue
4365 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4366                                                     SelectionDAG &DAG) const {
4367   bool IsVP =
4368       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4369   bool IsExtend =
4370       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4371   // RVV can only do truncate fp to types half the size as the source. We
4372   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4373   // conversion instruction.
4374   SDLoc DL(Op);
4375   MVT VT = Op.getSimpleValueType();
4376 
4377   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4378 
4379   SDValue Src = Op.getOperand(0);
4380   MVT SrcVT = Src.getSimpleValueType();
4381 
4382   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4383                                      SrcVT.getVectorElementType() != MVT::f16);
4384   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4385                                      SrcVT.getVectorElementType() != MVT::f64);
4386 
4387   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4388 
4389   // Prepare any fixed-length vector operands.
4390   MVT ContainerVT = VT;
4391   SDValue Mask, VL;
4392   if (IsVP) {
4393     Mask = Op.getOperand(1);
4394     VL = Op.getOperand(2);
4395   }
4396   if (VT.isFixedLengthVector()) {
4397     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4398     ContainerVT =
4399         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4400     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4401     if (IsVP) {
4402       MVT MaskVT = getMaskTypeFor(ContainerVT);
4403       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4404     }
4405   }
4406 
4407   if (!IsVP)
4408     std::tie(Mask, VL) =
4409         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4410 
4411   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4412 
4413   if (IsDirectConv) {
4414     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4415     if (VT.isFixedLengthVector())
4416       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4417     return Src;
4418   }
4419 
4420   unsigned InterConvOpc =
4421       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4422 
4423   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4424   SDValue IntermediateConv =
4425       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4426   SDValue Result =
4427       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4428   if (VT.isFixedLengthVector())
4429     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4430   return Result;
4431 }
4432 
4433 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4434 // first position of a vector, and that vector is slid up to the insert index.
4435 // By limiting the active vector length to index+1 and merging with the
4436 // original vector (with an undisturbed tail policy for elements >= VL), we
4437 // achieve the desired result of leaving all elements untouched except the one
4438 // at VL-1, which is replaced with the desired value.
4439 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4440                                                     SelectionDAG &DAG) const {
4441   SDLoc DL(Op);
4442   MVT VecVT = Op.getSimpleValueType();
4443   SDValue Vec = Op.getOperand(0);
4444   SDValue Val = Op.getOperand(1);
4445   SDValue Idx = Op.getOperand(2);
4446 
4447   if (VecVT.getVectorElementType() == MVT::i1) {
4448     // FIXME: For now we just promote to an i8 vector and insert into that,
4449     // but this is probably not optimal.
4450     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4451     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4452     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4453     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4454   }
4455 
4456   MVT ContainerVT = VecVT;
4457   // If the operand is a fixed-length vector, convert to a scalable one.
4458   if (VecVT.isFixedLengthVector()) {
4459     ContainerVT = getContainerForFixedLengthVector(VecVT);
4460     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4461   }
4462 
4463   MVT XLenVT = Subtarget.getXLenVT();
4464 
4465   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4466   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4467   // Even i64-element vectors on RV32 can be lowered without scalar
4468   // legalization if the most-significant 32 bits of the value are not affected
4469   // by the sign-extension of the lower 32 bits.
4470   // TODO: We could also catch sign extensions of a 32-bit value.
4471   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4472     const auto *CVal = cast<ConstantSDNode>(Val);
4473     if (isInt<32>(CVal->getSExtValue())) {
4474       IsLegalInsert = true;
4475       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4476     }
4477   }
4478 
4479   SDValue Mask, VL;
4480   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4481 
4482   SDValue ValInVec;
4483 
4484   if (IsLegalInsert) {
4485     unsigned Opc =
4486         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4487     if (isNullConstant(Idx)) {
4488       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4489       if (!VecVT.isFixedLengthVector())
4490         return Vec;
4491       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4492     }
4493     ValInVec =
4494         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4495   } else {
4496     // On RV32, i64-element vectors must be specially handled to place the
4497     // value at element 0, by using two vslide1up instructions in sequence on
4498     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4499     // this.
4500     SDValue One = DAG.getConstant(1, DL, XLenVT);
4501     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4502     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4503     MVT I32ContainerVT =
4504         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4505     SDValue I32Mask =
4506         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4507     // Limit the active VL to two.
4508     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4509     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4510     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4511     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4512                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4513     // First slide in the hi value, then the lo in underneath it.
4514     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4515                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4516                            I32Mask, InsertI64VL);
4517     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4518                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4519                            I32Mask, InsertI64VL);
4520     // Bitcast back to the right container type.
4521     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4522   }
4523 
4524   // Now that the value is in a vector, slide it into position.
4525   SDValue InsertVL =
4526       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4527   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4528                                 ValInVec, Idx, Mask, InsertVL);
4529   if (!VecVT.isFixedLengthVector())
4530     return Slideup;
4531   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4532 }
4533 
4534 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4535 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4536 // types this is done using VMV_X_S to allow us to glean information about the
4537 // sign bits of the result.
4538 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4539                                                      SelectionDAG &DAG) const {
4540   SDLoc DL(Op);
4541   SDValue Idx = Op.getOperand(1);
4542   SDValue Vec = Op.getOperand(0);
4543   EVT EltVT = Op.getValueType();
4544   MVT VecVT = Vec.getSimpleValueType();
4545   MVT XLenVT = Subtarget.getXLenVT();
4546 
4547   if (VecVT.getVectorElementType() == MVT::i1) {
4548     if (VecVT.isFixedLengthVector()) {
4549       unsigned NumElts = VecVT.getVectorNumElements();
4550       if (NumElts >= 8) {
4551         MVT WideEltVT;
4552         unsigned WidenVecLen;
4553         SDValue ExtractElementIdx;
4554         SDValue ExtractBitIdx;
4555         unsigned MaxEEW = Subtarget.getELEN();
4556         MVT LargestEltVT = MVT::getIntegerVT(
4557             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4558         if (NumElts <= LargestEltVT.getSizeInBits()) {
4559           assert(isPowerOf2_32(NumElts) &&
4560                  "the number of elements should be power of 2");
4561           WideEltVT = MVT::getIntegerVT(NumElts);
4562           WidenVecLen = 1;
4563           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4564           ExtractBitIdx = Idx;
4565         } else {
4566           WideEltVT = LargestEltVT;
4567           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4568           // extract element index = index / element width
4569           ExtractElementIdx = DAG.getNode(
4570               ISD::SRL, DL, XLenVT, Idx,
4571               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4572           // mask bit index = index % element width
4573           ExtractBitIdx = DAG.getNode(
4574               ISD::AND, DL, XLenVT, Idx,
4575               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4576         }
4577         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4578         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4579         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4580                                          Vec, ExtractElementIdx);
4581         // Extract the bit from GPR.
4582         SDValue ShiftRight =
4583             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4584         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4585                            DAG.getConstant(1, DL, XLenVT));
4586       }
4587     }
4588     // Otherwise, promote to an i8 vector and extract from that.
4589     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4590     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4591     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4592   }
4593 
4594   // If this is a fixed vector, we need to convert it to a scalable vector.
4595   MVT ContainerVT = VecVT;
4596   if (VecVT.isFixedLengthVector()) {
4597     ContainerVT = getContainerForFixedLengthVector(VecVT);
4598     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4599   }
4600 
4601   // If the index is 0, the vector is already in the right position.
4602   if (!isNullConstant(Idx)) {
4603     // Use a VL of 1 to avoid processing more elements than we need.
4604     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4605     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4606     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4607                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4608   }
4609 
4610   if (!EltVT.isInteger()) {
4611     // Floating-point extracts are handled in TableGen.
4612     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4613                        DAG.getConstant(0, DL, XLenVT));
4614   }
4615 
4616   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4617   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4618 }
4619 
4620 // Some RVV intrinsics may claim that they want an integer operand to be
4621 // promoted or expanded.
4622 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4623                                            const RISCVSubtarget &Subtarget) {
4624   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4625           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4626          "Unexpected opcode");
4627 
4628   if (!Subtarget.hasVInstructions())
4629     return SDValue();
4630 
4631   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4632   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4633   SDLoc DL(Op);
4634 
4635   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4636       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4637   if (!II || !II->hasScalarOperand())
4638     return SDValue();
4639 
4640   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4641   assert(SplatOp < Op.getNumOperands());
4642 
4643   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4644   SDValue &ScalarOp = Operands[SplatOp];
4645   MVT OpVT = ScalarOp.getSimpleValueType();
4646   MVT XLenVT = Subtarget.getXLenVT();
4647 
4648   // If this isn't a scalar, or its type is XLenVT we're done.
4649   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4650     return SDValue();
4651 
4652   // Simplest case is that the operand needs to be promoted to XLenVT.
4653   if (OpVT.bitsLT(XLenVT)) {
4654     // If the operand is a constant, sign extend to increase our chances
4655     // of being able to use a .vi instruction. ANY_EXTEND would become a
4656     // a zero extend and the simm5 check in isel would fail.
4657     // FIXME: Should we ignore the upper bits in isel instead?
4658     unsigned ExtOpc =
4659         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4660     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4661     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4662   }
4663 
4664   // Use the previous operand to get the vXi64 VT. The result might be a mask
4665   // VT for compares. Using the previous operand assumes that the previous
4666   // operand will never have a smaller element size than a scalar operand and
4667   // that a widening operation never uses SEW=64.
4668   // NOTE: If this fails the below assert, we can probably just find the
4669   // element count from any operand or result and use it to construct the VT.
4670   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4671   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4672 
4673   // The more complex case is when the scalar is larger than XLenVT.
4674   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4675          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4676 
4677   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4678   // instruction to sign-extend since SEW>XLEN.
4679   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4680     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4681     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4682   }
4683 
4684   switch (IntNo) {
4685   case Intrinsic::riscv_vslide1up:
4686   case Intrinsic::riscv_vslide1down:
4687   case Intrinsic::riscv_vslide1up_mask:
4688   case Intrinsic::riscv_vslide1down_mask: {
4689     // We need to special case these when the scalar is larger than XLen.
4690     unsigned NumOps = Op.getNumOperands();
4691     bool IsMasked = NumOps == 7;
4692 
4693     // Convert the vector source to the equivalent nxvXi32 vector.
4694     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4695     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4696 
4697     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4698                                    DAG.getConstant(0, DL, XLenVT));
4699     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4700                                    DAG.getConstant(1, DL, XLenVT));
4701 
4702     // Double the VL since we halved SEW.
4703     SDValue AVL = getVLOperand(Op);
4704     SDValue I32VL;
4705 
4706     // Optimize for constant AVL
4707     if (isa<ConstantSDNode>(AVL)) {
4708       unsigned EltSize = VT.getScalarSizeInBits();
4709       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4710 
4711       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4712       unsigned MaxVLMAX =
4713           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4714 
4715       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4716       unsigned MinVLMAX =
4717           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4718 
4719       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4720       if (AVLInt <= MinVLMAX) {
4721         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4722       } else if (AVLInt >= 2 * MaxVLMAX) {
4723         // Just set vl to VLMAX in this situation
4724         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4725         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4726         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4727         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4728         SDValue SETVLMAX = DAG.getTargetConstant(
4729             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4730         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4731                             LMUL);
4732       } else {
4733         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4734         // is related to the hardware implementation.
4735         // So let the following code handle
4736       }
4737     }
4738     if (!I32VL) {
4739       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4740       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4741       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4742       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4743       SDValue SETVL =
4744           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4745       // Using vsetvli instruction to get actually used length which related to
4746       // the hardware implementation
4747       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4748                                SEW, LMUL);
4749       I32VL =
4750           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4751     }
4752 
4753     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4754 
4755     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4756     // instructions.
4757     SDValue Passthru;
4758     if (IsMasked)
4759       Passthru = DAG.getUNDEF(I32VT);
4760     else
4761       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4762 
4763     if (IntNo == Intrinsic::riscv_vslide1up ||
4764         IntNo == Intrinsic::riscv_vslide1up_mask) {
4765       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4766                         ScalarHi, I32Mask, I32VL);
4767       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4768                         ScalarLo, I32Mask, I32VL);
4769     } else {
4770       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4771                         ScalarLo, I32Mask, I32VL);
4772       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4773                         ScalarHi, I32Mask, I32VL);
4774     }
4775 
4776     // Convert back to nxvXi64.
4777     Vec = DAG.getBitcast(VT, Vec);
4778 
4779     if (!IsMasked)
4780       return Vec;
4781     // Apply mask after the operation.
4782     SDValue Mask = Operands[NumOps - 3];
4783     SDValue MaskedOff = Operands[1];
4784     // Assume Policy operand is the last operand.
4785     uint64_t Policy =
4786         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4787     // We don't need to select maskedoff if it's undef.
4788     if (MaskedOff.isUndef())
4789       return Vec;
4790     // TAMU
4791     if (Policy == RISCVII::TAIL_AGNOSTIC)
4792       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4793                          AVL);
4794     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4795     // It's fine because vmerge does not care mask policy.
4796     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4797                        AVL);
4798   }
4799   }
4800 
4801   // We need to convert the scalar to a splat vector.
4802   SDValue VL = getVLOperand(Op);
4803   assert(VL.getValueType() == XLenVT);
4804   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4805   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4806 }
4807 
4808 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4809                                                      SelectionDAG &DAG) const {
4810   unsigned IntNo = Op.getConstantOperandVal(0);
4811   SDLoc DL(Op);
4812   MVT XLenVT = Subtarget.getXLenVT();
4813 
4814   switch (IntNo) {
4815   default:
4816     break; // Don't custom lower most intrinsics.
4817   case Intrinsic::thread_pointer: {
4818     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4819     return DAG.getRegister(RISCV::X4, PtrVT);
4820   }
4821   case Intrinsic::riscv_orc_b:
4822   case Intrinsic::riscv_brev8: {
4823     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4824     unsigned Opc =
4825         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4826     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4827                        DAG.getConstant(7, DL, XLenVT));
4828   }
4829   case Intrinsic::riscv_grev:
4830   case Intrinsic::riscv_gorc: {
4831     unsigned Opc =
4832         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4833     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4834   }
4835   case Intrinsic::riscv_zip:
4836   case Intrinsic::riscv_unzip: {
4837     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4838     // For i32 the immediate is 15. For i64 the immediate is 31.
4839     unsigned Opc =
4840         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4841     unsigned BitWidth = Op.getValueSizeInBits();
4842     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4843     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4844                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4845   }
4846   case Intrinsic::riscv_shfl:
4847   case Intrinsic::riscv_unshfl: {
4848     unsigned Opc =
4849         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4850     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4851   }
4852   case Intrinsic::riscv_bcompress:
4853   case Intrinsic::riscv_bdecompress: {
4854     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4855                                                        : RISCVISD::BDECOMPRESS;
4856     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4857   }
4858   case Intrinsic::riscv_bfp:
4859     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4860                        Op.getOperand(2));
4861   case Intrinsic::riscv_fsl:
4862     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4863                        Op.getOperand(2), Op.getOperand(3));
4864   case Intrinsic::riscv_fsr:
4865     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4866                        Op.getOperand(2), Op.getOperand(3));
4867   case Intrinsic::riscv_vmv_x_s:
4868     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4869     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4870                        Op.getOperand(1));
4871   case Intrinsic::riscv_vmv_v_x:
4872     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4873                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4874                             Subtarget);
4875   case Intrinsic::riscv_vfmv_v_f:
4876     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4877                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4878   case Intrinsic::riscv_vmv_s_x: {
4879     SDValue Scalar = Op.getOperand(2);
4880 
4881     if (Scalar.getValueType().bitsLE(XLenVT)) {
4882       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4883       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4884                          Op.getOperand(1), Scalar, Op.getOperand(3));
4885     }
4886 
4887     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4888 
4889     // This is an i64 value that lives in two scalar registers. We have to
4890     // insert this in a convoluted way. First we build vXi64 splat containing
4891     // the two values that we assemble using some bit math. Next we'll use
4892     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4893     // to merge element 0 from our splat into the source vector.
4894     // FIXME: This is probably not the best way to do this, but it is
4895     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4896     // point.
4897     //   sw lo, (a0)
4898     //   sw hi, 4(a0)
4899     //   vlse vX, (a0)
4900     //
4901     //   vid.v      vVid
4902     //   vmseq.vx   mMask, vVid, 0
4903     //   vmerge.vvm vDest, vSrc, vVal, mMask
4904     MVT VT = Op.getSimpleValueType();
4905     SDValue Vec = Op.getOperand(1);
4906     SDValue VL = getVLOperand(Op);
4907 
4908     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4909     if (Op.getOperand(1).isUndef())
4910       return SplattedVal;
4911     SDValue SplattedIdx =
4912         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4913                     DAG.getConstant(0, DL, MVT::i32), VL);
4914 
4915     MVT MaskVT = getMaskTypeFor(VT);
4916     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4917     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4918     SDValue SelectCond =
4919         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4920                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4921     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4922                        Vec, VL);
4923   }
4924   }
4925 
4926   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4927 }
4928 
4929 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4930                                                     SelectionDAG &DAG) const {
4931   unsigned IntNo = Op.getConstantOperandVal(1);
4932   switch (IntNo) {
4933   default:
4934     break;
4935   case Intrinsic::riscv_masked_strided_load: {
4936     SDLoc DL(Op);
4937     MVT XLenVT = Subtarget.getXLenVT();
4938 
4939     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4940     // the selection of the masked intrinsics doesn't do this for us.
4941     SDValue Mask = Op.getOperand(5);
4942     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4943 
4944     MVT VT = Op->getSimpleValueType(0);
4945     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4946 
4947     SDValue PassThru = Op.getOperand(2);
4948     if (!IsUnmasked) {
4949       MVT MaskVT = getMaskTypeFor(ContainerVT);
4950       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4951       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4952     }
4953 
4954     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4955 
4956     SDValue IntID = DAG.getTargetConstant(
4957         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4958         XLenVT);
4959 
4960     auto *Load = cast<MemIntrinsicSDNode>(Op);
4961     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4962     if (IsUnmasked)
4963       Ops.push_back(DAG.getUNDEF(ContainerVT));
4964     else
4965       Ops.push_back(PassThru);
4966     Ops.push_back(Op.getOperand(3)); // Ptr
4967     Ops.push_back(Op.getOperand(4)); // Stride
4968     if (!IsUnmasked)
4969       Ops.push_back(Mask);
4970     Ops.push_back(VL);
4971     if (!IsUnmasked) {
4972       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4973       Ops.push_back(Policy);
4974     }
4975 
4976     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4977     SDValue Result =
4978         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4979                                 Load->getMemoryVT(), Load->getMemOperand());
4980     SDValue Chain = Result.getValue(1);
4981     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4982     return DAG.getMergeValues({Result, Chain}, DL);
4983   }
4984   case Intrinsic::riscv_seg2_load:
4985   case Intrinsic::riscv_seg3_load:
4986   case Intrinsic::riscv_seg4_load:
4987   case Intrinsic::riscv_seg5_load:
4988   case Intrinsic::riscv_seg6_load:
4989   case Intrinsic::riscv_seg7_load:
4990   case Intrinsic::riscv_seg8_load: {
4991     SDLoc DL(Op);
4992     static const Intrinsic::ID VlsegInts[7] = {
4993         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4994         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4995         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4996         Intrinsic::riscv_vlseg8};
4997     unsigned NF = Op->getNumValues() - 1;
4998     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4999     MVT XLenVT = Subtarget.getXLenVT();
5000     MVT VT = Op->getSimpleValueType(0);
5001     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5002 
5003     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5004     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
5005     auto *Load = cast<MemIntrinsicSDNode>(Op);
5006     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
5007     ContainerVTs.push_back(MVT::Other);
5008     SDVTList VTs = DAG.getVTList(ContainerVTs);
5009     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
5010     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
5011     Ops.push_back(Op.getOperand(2));
5012     Ops.push_back(VL);
5013     SDValue Result =
5014         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5015                                 Load->getMemoryVT(), Load->getMemOperand());
5016     SmallVector<SDValue, 9> Results;
5017     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5018       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5019                                                   DAG, Subtarget));
5020     Results.push_back(Result.getValue(NF));
5021     return DAG.getMergeValues(Results, DL);
5022   }
5023   }
5024 
5025   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5026 }
5027 
5028 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5029                                                  SelectionDAG &DAG) const {
5030   unsigned IntNo = Op.getConstantOperandVal(1);
5031   switch (IntNo) {
5032   default:
5033     break;
5034   case Intrinsic::riscv_masked_strided_store: {
5035     SDLoc DL(Op);
5036     MVT XLenVT = Subtarget.getXLenVT();
5037 
5038     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5039     // the selection of the masked intrinsics doesn't do this for us.
5040     SDValue Mask = Op.getOperand(5);
5041     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5042 
5043     SDValue Val = Op.getOperand(2);
5044     MVT VT = Val.getSimpleValueType();
5045     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5046 
5047     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5048     if (!IsUnmasked) {
5049       MVT MaskVT = getMaskTypeFor(ContainerVT);
5050       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5051     }
5052 
5053     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5054 
5055     SDValue IntID = DAG.getTargetConstant(
5056         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5057         XLenVT);
5058 
5059     auto *Store = cast<MemIntrinsicSDNode>(Op);
5060     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5061     Ops.push_back(Val);
5062     Ops.push_back(Op.getOperand(3)); // Ptr
5063     Ops.push_back(Op.getOperand(4)); // Stride
5064     if (!IsUnmasked)
5065       Ops.push_back(Mask);
5066     Ops.push_back(VL);
5067 
5068     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5069                                    Ops, Store->getMemoryVT(),
5070                                    Store->getMemOperand());
5071   }
5072   }
5073 
5074   return SDValue();
5075 }
5076 
5077 static MVT getLMUL1VT(MVT VT) {
5078   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5079          "Unexpected vector MVT");
5080   return MVT::getScalableVectorVT(
5081       VT.getVectorElementType(),
5082       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5083 }
5084 
5085 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5086   switch (ISDOpcode) {
5087   default:
5088     llvm_unreachable("Unhandled reduction");
5089   case ISD::VECREDUCE_ADD:
5090     return RISCVISD::VECREDUCE_ADD_VL;
5091   case ISD::VECREDUCE_UMAX:
5092     return RISCVISD::VECREDUCE_UMAX_VL;
5093   case ISD::VECREDUCE_SMAX:
5094     return RISCVISD::VECREDUCE_SMAX_VL;
5095   case ISD::VECREDUCE_UMIN:
5096     return RISCVISD::VECREDUCE_UMIN_VL;
5097   case ISD::VECREDUCE_SMIN:
5098     return RISCVISD::VECREDUCE_SMIN_VL;
5099   case ISD::VECREDUCE_AND:
5100     return RISCVISD::VECREDUCE_AND_VL;
5101   case ISD::VECREDUCE_OR:
5102     return RISCVISD::VECREDUCE_OR_VL;
5103   case ISD::VECREDUCE_XOR:
5104     return RISCVISD::VECREDUCE_XOR_VL;
5105   }
5106 }
5107 
5108 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5109                                                          SelectionDAG &DAG,
5110                                                          bool IsVP) const {
5111   SDLoc DL(Op);
5112   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5113   MVT VecVT = Vec.getSimpleValueType();
5114   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5115           Op.getOpcode() == ISD::VECREDUCE_OR ||
5116           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5117           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5118           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5119           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5120          "Unexpected reduction lowering");
5121 
5122   MVT XLenVT = Subtarget.getXLenVT();
5123   assert(Op.getValueType() == XLenVT &&
5124          "Expected reduction output to be legalized to XLenVT");
5125 
5126   MVT ContainerVT = VecVT;
5127   if (VecVT.isFixedLengthVector()) {
5128     ContainerVT = getContainerForFixedLengthVector(VecVT);
5129     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5130   }
5131 
5132   SDValue Mask, VL;
5133   if (IsVP) {
5134     Mask = Op.getOperand(2);
5135     VL = Op.getOperand(3);
5136   } else {
5137     std::tie(Mask, VL) =
5138         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5139   }
5140 
5141   unsigned BaseOpc;
5142   ISD::CondCode CC;
5143   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5144 
5145   switch (Op.getOpcode()) {
5146   default:
5147     llvm_unreachable("Unhandled reduction");
5148   case ISD::VECREDUCE_AND:
5149   case ISD::VP_REDUCE_AND: {
5150     // vcpop ~x == 0
5151     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5152     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5153     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5154     CC = ISD::SETEQ;
5155     BaseOpc = ISD::AND;
5156     break;
5157   }
5158   case ISD::VECREDUCE_OR:
5159   case ISD::VP_REDUCE_OR:
5160     // vcpop x != 0
5161     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5162     CC = ISD::SETNE;
5163     BaseOpc = ISD::OR;
5164     break;
5165   case ISD::VECREDUCE_XOR:
5166   case ISD::VP_REDUCE_XOR: {
5167     // ((vcpop x) & 1) != 0
5168     SDValue One = DAG.getConstant(1, DL, XLenVT);
5169     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5170     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5171     CC = ISD::SETNE;
5172     BaseOpc = ISD::XOR;
5173     break;
5174   }
5175   }
5176 
5177   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5178 
5179   if (!IsVP)
5180     return SetCC;
5181 
5182   // Now include the start value in the operation.
5183   // Note that we must return the start value when no elements are operated
5184   // upon. The vcpop instructions we've emitted in each case above will return
5185   // 0 for an inactive vector, and so we've already received the neutral value:
5186   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5187   // can simply include the start value.
5188   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5189 }
5190 
5191 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5192                                             SelectionDAG &DAG) const {
5193   SDLoc DL(Op);
5194   SDValue Vec = Op.getOperand(0);
5195   EVT VecEVT = Vec.getValueType();
5196 
5197   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5198 
5199   // Due to ordering in legalize types we may have a vector type that needs to
5200   // be split. Do that manually so we can get down to a legal type.
5201   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5202          TargetLowering::TypeSplitVector) {
5203     SDValue Lo, Hi;
5204     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5205     VecEVT = Lo.getValueType();
5206     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5207   }
5208 
5209   // TODO: The type may need to be widened rather than split. Or widened before
5210   // it can be split.
5211   if (!isTypeLegal(VecEVT))
5212     return SDValue();
5213 
5214   MVT VecVT = VecEVT.getSimpleVT();
5215   MVT VecEltVT = VecVT.getVectorElementType();
5216   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5217 
5218   MVT ContainerVT = VecVT;
5219   if (VecVT.isFixedLengthVector()) {
5220     ContainerVT = getContainerForFixedLengthVector(VecVT);
5221     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5222   }
5223 
5224   MVT M1VT = getLMUL1VT(ContainerVT);
5225   MVT XLenVT = Subtarget.getXLenVT();
5226 
5227   SDValue Mask, VL;
5228   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5229 
5230   SDValue NeutralElem =
5231       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5232   SDValue IdentitySplat =
5233       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5234                        M1VT, DL, DAG, Subtarget);
5235   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5236                                   IdentitySplat, Mask, VL);
5237   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5238                              DAG.getConstant(0, DL, XLenVT));
5239   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5240 }
5241 
5242 // Given a reduction op, this function returns the matching reduction opcode,
5243 // the vector SDValue and the scalar SDValue required to lower this to a
5244 // RISCVISD node.
5245 static std::tuple<unsigned, SDValue, SDValue>
5246 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5247   SDLoc DL(Op);
5248   auto Flags = Op->getFlags();
5249   unsigned Opcode = Op.getOpcode();
5250   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5251   switch (Opcode) {
5252   default:
5253     llvm_unreachable("Unhandled reduction");
5254   case ISD::VECREDUCE_FADD: {
5255     // Use positive zero if we can. It is cheaper to materialize.
5256     SDValue Zero =
5257         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5258     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5259   }
5260   case ISD::VECREDUCE_SEQ_FADD:
5261     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5262                            Op.getOperand(0));
5263   case ISD::VECREDUCE_FMIN:
5264     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5265                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5266   case ISD::VECREDUCE_FMAX:
5267     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5268                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5269   }
5270 }
5271 
5272 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5273                                               SelectionDAG &DAG) const {
5274   SDLoc DL(Op);
5275   MVT VecEltVT = Op.getSimpleValueType();
5276 
5277   unsigned RVVOpcode;
5278   SDValue VectorVal, ScalarVal;
5279   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5280       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5281   MVT VecVT = VectorVal.getSimpleValueType();
5282 
5283   MVT ContainerVT = VecVT;
5284   if (VecVT.isFixedLengthVector()) {
5285     ContainerVT = getContainerForFixedLengthVector(VecVT);
5286     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5287   }
5288 
5289   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5290   MVT XLenVT = Subtarget.getXLenVT();
5291 
5292   SDValue Mask, VL;
5293   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5294 
5295   SDValue ScalarSplat =
5296       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5297                        M1VT, DL, DAG, Subtarget);
5298   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5299                                   VectorVal, ScalarSplat, Mask, VL);
5300   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5301                      DAG.getConstant(0, DL, XLenVT));
5302 }
5303 
5304 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5305   switch (ISDOpcode) {
5306   default:
5307     llvm_unreachable("Unhandled reduction");
5308   case ISD::VP_REDUCE_ADD:
5309     return RISCVISD::VECREDUCE_ADD_VL;
5310   case ISD::VP_REDUCE_UMAX:
5311     return RISCVISD::VECREDUCE_UMAX_VL;
5312   case ISD::VP_REDUCE_SMAX:
5313     return RISCVISD::VECREDUCE_SMAX_VL;
5314   case ISD::VP_REDUCE_UMIN:
5315     return RISCVISD::VECREDUCE_UMIN_VL;
5316   case ISD::VP_REDUCE_SMIN:
5317     return RISCVISD::VECREDUCE_SMIN_VL;
5318   case ISD::VP_REDUCE_AND:
5319     return RISCVISD::VECREDUCE_AND_VL;
5320   case ISD::VP_REDUCE_OR:
5321     return RISCVISD::VECREDUCE_OR_VL;
5322   case ISD::VP_REDUCE_XOR:
5323     return RISCVISD::VECREDUCE_XOR_VL;
5324   case ISD::VP_REDUCE_FADD:
5325     return RISCVISD::VECREDUCE_FADD_VL;
5326   case ISD::VP_REDUCE_SEQ_FADD:
5327     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5328   case ISD::VP_REDUCE_FMAX:
5329     return RISCVISD::VECREDUCE_FMAX_VL;
5330   case ISD::VP_REDUCE_FMIN:
5331     return RISCVISD::VECREDUCE_FMIN_VL;
5332   }
5333 }
5334 
5335 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5336                                            SelectionDAG &DAG) const {
5337   SDLoc DL(Op);
5338   SDValue Vec = Op.getOperand(1);
5339   EVT VecEVT = Vec.getValueType();
5340 
5341   // TODO: The type may need to be widened rather than split. Or widened before
5342   // it can be split.
5343   if (!isTypeLegal(VecEVT))
5344     return SDValue();
5345 
5346   MVT VecVT = VecEVT.getSimpleVT();
5347   MVT VecEltVT = VecVT.getVectorElementType();
5348   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5349 
5350   MVT ContainerVT = VecVT;
5351   if (VecVT.isFixedLengthVector()) {
5352     ContainerVT = getContainerForFixedLengthVector(VecVT);
5353     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5354   }
5355 
5356   SDValue VL = Op.getOperand(3);
5357   SDValue Mask = Op.getOperand(2);
5358 
5359   MVT M1VT = getLMUL1VT(ContainerVT);
5360   MVT XLenVT = Subtarget.getXLenVT();
5361   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5362 
5363   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5364                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5365                                         DL, DAG, Subtarget);
5366   SDValue Reduction =
5367       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5368   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5369                              DAG.getConstant(0, DL, XLenVT));
5370   if (!VecVT.isInteger())
5371     return Elt0;
5372   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5373 }
5374 
5375 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5376                                                    SelectionDAG &DAG) const {
5377   SDValue Vec = Op.getOperand(0);
5378   SDValue SubVec = Op.getOperand(1);
5379   MVT VecVT = Vec.getSimpleValueType();
5380   MVT SubVecVT = SubVec.getSimpleValueType();
5381 
5382   SDLoc DL(Op);
5383   MVT XLenVT = Subtarget.getXLenVT();
5384   unsigned OrigIdx = Op.getConstantOperandVal(2);
5385   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5386 
5387   // We don't have the ability to slide mask vectors up indexed by their i1
5388   // elements; the smallest we can do is i8. Often we are able to bitcast to
5389   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5390   // into a scalable one, we might not necessarily have enough scalable
5391   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5392   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5393       (OrigIdx != 0 || !Vec.isUndef())) {
5394     if (VecVT.getVectorMinNumElements() >= 8 &&
5395         SubVecVT.getVectorMinNumElements() >= 8) {
5396       assert(OrigIdx % 8 == 0 && "Invalid index");
5397       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5398              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5399              "Unexpected mask vector lowering");
5400       OrigIdx /= 8;
5401       SubVecVT =
5402           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5403                            SubVecVT.isScalableVector());
5404       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5405                                VecVT.isScalableVector());
5406       Vec = DAG.getBitcast(VecVT, Vec);
5407       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5408     } else {
5409       // We can't slide this mask vector up indexed by its i1 elements.
5410       // This poses a problem when we wish to insert a scalable vector which
5411       // can't be re-expressed as a larger type. Just choose the slow path and
5412       // extend to a larger type, then truncate back down.
5413       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5414       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5415       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5416       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5417       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5418                         Op.getOperand(2));
5419       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5420       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5421     }
5422   }
5423 
5424   // If the subvector vector is a fixed-length type, we cannot use subregister
5425   // manipulation to simplify the codegen; we don't know which register of a
5426   // LMUL group contains the specific subvector as we only know the minimum
5427   // register size. Therefore we must slide the vector group up the full
5428   // amount.
5429   if (SubVecVT.isFixedLengthVector()) {
5430     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5431       return Op;
5432     MVT ContainerVT = VecVT;
5433     if (VecVT.isFixedLengthVector()) {
5434       ContainerVT = getContainerForFixedLengthVector(VecVT);
5435       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5436     }
5437     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5438                          DAG.getUNDEF(ContainerVT), SubVec,
5439                          DAG.getConstant(0, DL, XLenVT));
5440     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5441       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5442       return DAG.getBitcast(Op.getValueType(), SubVec);
5443     }
5444     SDValue Mask =
5445         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5446     // Set the vector length to only the number of elements we care about. Note
5447     // that for slideup this includes the offset.
5448     SDValue VL =
5449         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5450     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5451     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5452                                   SubVec, SlideupAmt, Mask, VL);
5453     if (VecVT.isFixedLengthVector())
5454       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5455     return DAG.getBitcast(Op.getValueType(), Slideup);
5456   }
5457 
5458   unsigned SubRegIdx, RemIdx;
5459   std::tie(SubRegIdx, RemIdx) =
5460       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5461           VecVT, SubVecVT, OrigIdx, TRI);
5462 
5463   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5464   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5465                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5466                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5467 
5468   // 1. If the Idx has been completely eliminated and this subvector's size is
5469   // a vector register or a multiple thereof, or the surrounding elements are
5470   // undef, then this is a subvector insert which naturally aligns to a vector
5471   // register. These can easily be handled using subregister manipulation.
5472   // 2. If the subvector is smaller than a vector register, then the insertion
5473   // must preserve the undisturbed elements of the register. We do this by
5474   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5475   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5476   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5477   // LMUL=1 type back into the larger vector (resolving to another subregister
5478   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5479   // to avoid allocating a large register group to hold our subvector.
5480   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5481     return Op;
5482 
5483   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5484   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5485   // (in our case undisturbed). This means we can set up a subvector insertion
5486   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5487   // size of the subvector.
5488   MVT InterSubVT = VecVT;
5489   SDValue AlignedExtract = Vec;
5490   unsigned AlignedIdx = OrigIdx - RemIdx;
5491   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5492     InterSubVT = getLMUL1VT(VecVT);
5493     // Extract a subvector equal to the nearest full vector register type. This
5494     // should resolve to a EXTRACT_SUBREG instruction.
5495     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5496                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5497   }
5498 
5499   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5500   // For scalable vectors this must be further multiplied by vscale.
5501   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5502 
5503   SDValue Mask, VL;
5504   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5505 
5506   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5507   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5508   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5509   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5510 
5511   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5512                        DAG.getUNDEF(InterSubVT), SubVec,
5513                        DAG.getConstant(0, DL, XLenVT));
5514 
5515   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5516                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5517 
5518   // If required, insert this subvector back into the correct vector register.
5519   // This should resolve to an INSERT_SUBREG instruction.
5520   if (VecVT.bitsGT(InterSubVT))
5521     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5522                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5523 
5524   // We might have bitcast from a mask type: cast back to the original type if
5525   // required.
5526   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5527 }
5528 
5529 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5530                                                     SelectionDAG &DAG) const {
5531   SDValue Vec = Op.getOperand(0);
5532   MVT SubVecVT = Op.getSimpleValueType();
5533   MVT VecVT = Vec.getSimpleValueType();
5534 
5535   SDLoc DL(Op);
5536   MVT XLenVT = Subtarget.getXLenVT();
5537   unsigned OrigIdx = Op.getConstantOperandVal(1);
5538   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5539 
5540   // We don't have the ability to slide mask vectors down indexed by their i1
5541   // elements; the smallest we can do is i8. Often we are able to bitcast to
5542   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5543   // from a scalable one, we might not necessarily have enough scalable
5544   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5545   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5546     if (VecVT.getVectorMinNumElements() >= 8 &&
5547         SubVecVT.getVectorMinNumElements() >= 8) {
5548       assert(OrigIdx % 8 == 0 && "Invalid index");
5549       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5550              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5551              "Unexpected mask vector lowering");
5552       OrigIdx /= 8;
5553       SubVecVT =
5554           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5555                            SubVecVT.isScalableVector());
5556       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5557                                VecVT.isScalableVector());
5558       Vec = DAG.getBitcast(VecVT, Vec);
5559     } else {
5560       // We can't slide this mask vector down, indexed by its i1 elements.
5561       // This poses a problem when we wish to extract a scalable vector which
5562       // can't be re-expressed as a larger type. Just choose the slow path and
5563       // extend to a larger type, then truncate back down.
5564       // TODO: We could probably improve this when extracting certain fixed
5565       // from fixed, where we can extract as i8 and shift the correct element
5566       // right to reach the desired subvector?
5567       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5568       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5569       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5570       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5571                         Op.getOperand(1));
5572       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5573       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5574     }
5575   }
5576 
5577   // If the subvector vector is a fixed-length type, we cannot use subregister
5578   // manipulation to simplify the codegen; we don't know which register of a
5579   // LMUL group contains the specific subvector as we only know the minimum
5580   // register size. Therefore we must slide the vector group down the full
5581   // amount.
5582   if (SubVecVT.isFixedLengthVector()) {
5583     // With an index of 0 this is a cast-like subvector, which can be performed
5584     // with subregister operations.
5585     if (OrigIdx == 0)
5586       return Op;
5587     MVT ContainerVT = VecVT;
5588     if (VecVT.isFixedLengthVector()) {
5589       ContainerVT = getContainerForFixedLengthVector(VecVT);
5590       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5591     }
5592     SDValue Mask =
5593         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5594     // Set the vector length to only the number of elements we care about. This
5595     // avoids sliding down elements we're going to discard straight away.
5596     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5597     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5598     SDValue Slidedown =
5599         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5600                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5601     // Now we can use a cast-like subvector extract to get the result.
5602     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5603                             DAG.getConstant(0, DL, XLenVT));
5604     return DAG.getBitcast(Op.getValueType(), Slidedown);
5605   }
5606 
5607   unsigned SubRegIdx, RemIdx;
5608   std::tie(SubRegIdx, RemIdx) =
5609       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5610           VecVT, SubVecVT, OrigIdx, TRI);
5611 
5612   // If the Idx has been completely eliminated then this is a subvector extract
5613   // which naturally aligns to a vector register. These can easily be handled
5614   // using subregister manipulation.
5615   if (RemIdx == 0)
5616     return Op;
5617 
5618   // Else we must shift our vector register directly to extract the subvector.
5619   // Do this using VSLIDEDOWN.
5620 
5621   // If the vector type is an LMUL-group type, extract a subvector equal to the
5622   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5623   // instruction.
5624   MVT InterSubVT = VecVT;
5625   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5626     InterSubVT = getLMUL1VT(VecVT);
5627     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5628                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5629   }
5630 
5631   // Slide this vector register down by the desired number of elements in order
5632   // to place the desired subvector starting at element 0.
5633   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5634   // For scalable vectors this must be further multiplied by vscale.
5635   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5636 
5637   SDValue Mask, VL;
5638   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5639   SDValue Slidedown =
5640       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5641                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5642 
5643   // Now the vector is in the right position, extract our final subvector. This
5644   // should resolve to a COPY.
5645   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5646                           DAG.getConstant(0, DL, XLenVT));
5647 
5648   // We might have bitcast from a mask type: cast back to the original type if
5649   // required.
5650   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5651 }
5652 
5653 // Lower step_vector to the vid instruction. Any non-identity step value must
5654 // be accounted for my manual expansion.
5655 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5656                                               SelectionDAG &DAG) const {
5657   SDLoc DL(Op);
5658   MVT VT = Op.getSimpleValueType();
5659   MVT XLenVT = Subtarget.getXLenVT();
5660   SDValue Mask, VL;
5661   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5662   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5663   uint64_t StepValImm = Op.getConstantOperandVal(0);
5664   if (StepValImm != 1) {
5665     if (isPowerOf2_64(StepValImm)) {
5666       SDValue StepVal =
5667           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5668                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5669       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5670     } else {
5671       SDValue StepVal = lowerScalarSplat(
5672           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5673           VL, VT, DL, DAG, Subtarget);
5674       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5675     }
5676   }
5677   return StepVec;
5678 }
5679 
5680 // Implement vector_reverse using vrgather.vv with indices determined by
5681 // subtracting the id of each element from (VLMAX-1). This will convert
5682 // the indices like so:
5683 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5684 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5685 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5686                                                  SelectionDAG &DAG) const {
5687   SDLoc DL(Op);
5688   MVT VecVT = Op.getSimpleValueType();
5689   if (VecVT.getVectorElementType() == MVT::i1) {
5690     MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5691     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
5692     SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
5693     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
5694   }
5695   unsigned EltSize = VecVT.getScalarSizeInBits();
5696   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5697   unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5698   unsigned MaxVLMAX =
5699     RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5700 
5701   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5702   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5703 
5704   // If this is SEW=8 and VLMAX is potentially more than 256, we need
5705   // to use vrgatherei16.vv.
5706   // TODO: It's also possible to use vrgatherei16.vv for other types to
5707   // decrease register width for the index calculation.
5708   if (MaxVLMAX > 256 && EltSize == 8) {
5709     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5710     // Reverse each half, then reassemble them in reverse order.
5711     // NOTE: It's also possible that after splitting that VLMAX no longer
5712     // requires vrgatherei16.vv.
5713     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5714       SDValue Lo, Hi;
5715       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5716       EVT LoVT, HiVT;
5717       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5718       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5719       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5720       // Reassemble the low and high pieces reversed.
5721       // FIXME: This is a CONCAT_VECTORS.
5722       SDValue Res =
5723           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5724                       DAG.getIntPtrConstant(0, DL));
5725       return DAG.getNode(
5726           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5727           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5728     }
5729 
5730     // Just promote the int type to i16 which will double the LMUL.
5731     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5732     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5733   }
5734 
5735   MVT XLenVT = Subtarget.getXLenVT();
5736   SDValue Mask, VL;
5737   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5738 
5739   // Calculate VLMAX-1 for the desired SEW.
5740   unsigned MinElts = VecVT.getVectorMinNumElements();
5741   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5742                               DAG.getConstant(MinElts, DL, XLenVT));
5743   SDValue VLMinus1 =
5744       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5745 
5746   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5747   bool IsRV32E64 =
5748       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5749   SDValue SplatVL;
5750   if (!IsRV32E64)
5751     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5752   else
5753     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5754                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5755 
5756   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5757   SDValue Indices =
5758       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5759 
5760   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask,
5761                      DAG.getUNDEF(VecVT), VL);
5762 }
5763 
5764 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5765                                                 SelectionDAG &DAG) const {
5766   SDLoc DL(Op);
5767   SDValue V1 = Op.getOperand(0);
5768   SDValue V2 = Op.getOperand(1);
5769   MVT XLenVT = Subtarget.getXLenVT();
5770   MVT VecVT = Op.getSimpleValueType();
5771 
5772   unsigned MinElts = VecVT.getVectorMinNumElements();
5773   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5774                               DAG.getConstant(MinElts, DL, XLenVT));
5775 
5776   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5777   SDValue DownOffset, UpOffset;
5778   if (ImmValue >= 0) {
5779     // The operand is a TargetConstant, we need to rebuild it as a regular
5780     // constant.
5781     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5782     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5783   } else {
5784     // The operand is a TargetConstant, we need to rebuild it as a regular
5785     // constant rather than negating the original operand.
5786     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5787     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5788   }
5789 
5790   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5791 
5792   SDValue SlideDown =
5793       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5794                   DownOffset, TrueMask, UpOffset);
5795   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5796                      TrueMask, DAG.getRegister(RISCV::X0, XLenVT));
5797 }
5798 
5799 SDValue
5800 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5801                                                      SelectionDAG &DAG) const {
5802   SDLoc DL(Op);
5803   auto *Load = cast<LoadSDNode>(Op);
5804 
5805   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5806                                         Load->getMemoryVT(),
5807                                         *Load->getMemOperand()) &&
5808          "Expecting a correctly-aligned load");
5809 
5810   MVT VT = Op.getSimpleValueType();
5811   MVT XLenVT = Subtarget.getXLenVT();
5812   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5813 
5814   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5815 
5816   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5817   SDValue IntID = DAG.getTargetConstant(
5818       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5819   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5820   if (!IsMaskOp)
5821     Ops.push_back(DAG.getUNDEF(ContainerVT));
5822   Ops.push_back(Load->getBasePtr());
5823   Ops.push_back(VL);
5824   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5825   SDValue NewLoad =
5826       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5827                               Load->getMemoryVT(), Load->getMemOperand());
5828 
5829   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5830   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5831 }
5832 
5833 SDValue
5834 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5835                                                       SelectionDAG &DAG) const {
5836   SDLoc DL(Op);
5837   auto *Store = cast<StoreSDNode>(Op);
5838 
5839   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5840                                         Store->getMemoryVT(),
5841                                         *Store->getMemOperand()) &&
5842          "Expecting a correctly-aligned store");
5843 
5844   SDValue StoreVal = Store->getValue();
5845   MVT VT = StoreVal.getSimpleValueType();
5846   MVT XLenVT = Subtarget.getXLenVT();
5847 
5848   // If the size less than a byte, we need to pad with zeros to make a byte.
5849   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5850     VT = MVT::v8i1;
5851     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5852                            DAG.getConstant(0, DL, VT), StoreVal,
5853                            DAG.getIntPtrConstant(0, DL));
5854   }
5855 
5856   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5857 
5858   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5859 
5860   SDValue NewValue =
5861       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5862 
5863   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5864   SDValue IntID = DAG.getTargetConstant(
5865       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5866   return DAG.getMemIntrinsicNode(
5867       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5868       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5869       Store->getMemoryVT(), Store->getMemOperand());
5870 }
5871 
5872 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5873                                              SelectionDAG &DAG) const {
5874   SDLoc DL(Op);
5875   MVT VT = Op.getSimpleValueType();
5876 
5877   const auto *MemSD = cast<MemSDNode>(Op);
5878   EVT MemVT = MemSD->getMemoryVT();
5879   MachineMemOperand *MMO = MemSD->getMemOperand();
5880   SDValue Chain = MemSD->getChain();
5881   SDValue BasePtr = MemSD->getBasePtr();
5882 
5883   SDValue Mask, PassThru, VL;
5884   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5885     Mask = VPLoad->getMask();
5886     PassThru = DAG.getUNDEF(VT);
5887     VL = VPLoad->getVectorLength();
5888   } else {
5889     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5890     Mask = MLoad->getMask();
5891     PassThru = MLoad->getPassThru();
5892   }
5893 
5894   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5895 
5896   MVT XLenVT = Subtarget.getXLenVT();
5897 
5898   MVT ContainerVT = VT;
5899   if (VT.isFixedLengthVector()) {
5900     ContainerVT = getContainerForFixedLengthVector(VT);
5901     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5902     if (!IsUnmasked) {
5903       MVT MaskVT = getMaskTypeFor(ContainerVT);
5904       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5905     }
5906   }
5907 
5908   if (!VL)
5909     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5910 
5911   unsigned IntID =
5912       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5913   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5914   if (IsUnmasked)
5915     Ops.push_back(DAG.getUNDEF(ContainerVT));
5916   else
5917     Ops.push_back(PassThru);
5918   Ops.push_back(BasePtr);
5919   if (!IsUnmasked)
5920     Ops.push_back(Mask);
5921   Ops.push_back(VL);
5922   if (!IsUnmasked)
5923     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5924 
5925   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5926 
5927   SDValue Result =
5928       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5929   Chain = Result.getValue(1);
5930 
5931   if (VT.isFixedLengthVector())
5932     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5933 
5934   return DAG.getMergeValues({Result, Chain}, DL);
5935 }
5936 
5937 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5938                                               SelectionDAG &DAG) const {
5939   SDLoc DL(Op);
5940 
5941   const auto *MemSD = cast<MemSDNode>(Op);
5942   EVT MemVT = MemSD->getMemoryVT();
5943   MachineMemOperand *MMO = MemSD->getMemOperand();
5944   SDValue Chain = MemSD->getChain();
5945   SDValue BasePtr = MemSD->getBasePtr();
5946   SDValue Val, Mask, VL;
5947 
5948   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5949     Val = VPStore->getValue();
5950     Mask = VPStore->getMask();
5951     VL = VPStore->getVectorLength();
5952   } else {
5953     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5954     Val = MStore->getValue();
5955     Mask = MStore->getMask();
5956   }
5957 
5958   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5959 
5960   MVT VT = Val.getSimpleValueType();
5961   MVT XLenVT = Subtarget.getXLenVT();
5962 
5963   MVT ContainerVT = VT;
5964   if (VT.isFixedLengthVector()) {
5965     ContainerVT = getContainerForFixedLengthVector(VT);
5966 
5967     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5968     if (!IsUnmasked) {
5969       MVT MaskVT = getMaskTypeFor(ContainerVT);
5970       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5971     }
5972   }
5973 
5974   if (!VL)
5975     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5976 
5977   unsigned IntID =
5978       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5979   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5980   Ops.push_back(Val);
5981   Ops.push_back(BasePtr);
5982   if (!IsUnmasked)
5983     Ops.push_back(Mask);
5984   Ops.push_back(VL);
5985 
5986   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5987                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5988 }
5989 
5990 SDValue
5991 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5992                                                       SelectionDAG &DAG) const {
5993   MVT InVT = Op.getOperand(0).getSimpleValueType();
5994   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5995 
5996   MVT VT = Op.getSimpleValueType();
5997 
5998   SDValue Op1 =
5999       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
6000   SDValue Op2 =
6001       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6002 
6003   SDLoc DL(Op);
6004   SDValue VL =
6005       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
6006 
6007   MVT MaskVT = getMaskTypeFor(ContainerVT);
6008   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
6009 
6010   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
6011                             Op.getOperand(2), Mask, VL);
6012 
6013   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
6014 }
6015 
6016 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6017     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6018   MVT VT = Op.getSimpleValueType();
6019 
6020   if (VT.getVectorElementType() == MVT::i1)
6021     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
6022 
6023   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
6024 }
6025 
6026 SDValue
6027 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6028                                                       SelectionDAG &DAG) const {
6029   unsigned Opc;
6030   switch (Op.getOpcode()) {
6031   default: llvm_unreachable("Unexpected opcode!");
6032   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6033   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6034   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6035   }
6036 
6037   return lowerToScalableOp(Op, DAG, Opc);
6038 }
6039 
6040 // Lower vector ABS to smax(X, sub(0, X)).
6041 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6042   SDLoc DL(Op);
6043   MVT VT = Op.getSimpleValueType();
6044   SDValue X = Op.getOperand(0);
6045 
6046   assert(VT.isFixedLengthVector() && "Unexpected type");
6047 
6048   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6049   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6050 
6051   SDValue Mask, VL;
6052   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6053 
6054   SDValue SplatZero = DAG.getNode(
6055       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6056       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6057   SDValue NegX =
6058       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6059   SDValue Max =
6060       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6061 
6062   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6063 }
6064 
6065 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6066     SDValue Op, SelectionDAG &DAG) const {
6067   SDLoc DL(Op);
6068   MVT VT = Op.getSimpleValueType();
6069   SDValue Mag = Op.getOperand(0);
6070   SDValue Sign = Op.getOperand(1);
6071   assert(Mag.getValueType() == Sign.getValueType() &&
6072          "Can only handle COPYSIGN with matching types.");
6073 
6074   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6075   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6076   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6077 
6078   SDValue Mask, VL;
6079   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6080 
6081   SDValue CopySign =
6082       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6083 
6084   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6085 }
6086 
6087 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6088     SDValue Op, SelectionDAG &DAG) const {
6089   MVT VT = Op.getSimpleValueType();
6090   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6091 
6092   MVT I1ContainerVT =
6093       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6094 
6095   SDValue CC =
6096       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6097   SDValue Op1 =
6098       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6099   SDValue Op2 =
6100       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6101 
6102   SDLoc DL(Op);
6103   SDValue Mask, VL;
6104   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6105 
6106   SDValue Select =
6107       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6108 
6109   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6110 }
6111 
6112 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6113                                                unsigned NewOpc,
6114                                                bool HasMask) const {
6115   MVT VT = Op.getSimpleValueType();
6116   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6117 
6118   // Create list of operands by converting existing ones to scalable types.
6119   SmallVector<SDValue, 6> Ops;
6120   for (const SDValue &V : Op->op_values()) {
6121     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6122 
6123     // Pass through non-vector operands.
6124     if (!V.getValueType().isVector()) {
6125       Ops.push_back(V);
6126       continue;
6127     }
6128 
6129     // "cast" fixed length vector to a scalable vector.
6130     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6131            "Only fixed length vectors are supported!");
6132     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6133   }
6134 
6135   SDLoc DL(Op);
6136   SDValue Mask, VL;
6137   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6138   if (HasMask)
6139     Ops.push_back(Mask);
6140   Ops.push_back(VL);
6141 
6142   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6143   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6144 }
6145 
6146 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6147 // * Operands of each node are assumed to be in the same order.
6148 // * The EVL operand is promoted from i32 to i64 on RV64.
6149 // * Fixed-length vectors are converted to their scalable-vector container
6150 //   types.
6151 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6152                                        unsigned RISCVISDOpc) const {
6153   SDLoc DL(Op);
6154   MVT VT = Op.getSimpleValueType();
6155   SmallVector<SDValue, 4> Ops;
6156 
6157   for (const auto &OpIdx : enumerate(Op->ops())) {
6158     SDValue V = OpIdx.value();
6159     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6160     // Pass through operands which aren't fixed-length vectors.
6161     if (!V.getValueType().isFixedLengthVector()) {
6162       Ops.push_back(V);
6163       continue;
6164     }
6165     // "cast" fixed length vector to a scalable vector.
6166     MVT OpVT = V.getSimpleValueType();
6167     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6168     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6169            "Only fixed length vectors are supported!");
6170     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6171   }
6172 
6173   if (!VT.isFixedLengthVector())
6174     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6175 
6176   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6177 
6178   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6179 
6180   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6181 }
6182 
6183 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6184                                               SelectionDAG &DAG) const {
6185   SDLoc DL(Op);
6186   MVT VT = Op.getSimpleValueType();
6187 
6188   SDValue Src = Op.getOperand(0);
6189   // NOTE: Mask is dropped.
6190   SDValue VL = Op.getOperand(2);
6191 
6192   MVT ContainerVT = VT;
6193   if (VT.isFixedLengthVector()) {
6194     ContainerVT = getContainerForFixedLengthVector(VT);
6195     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6196     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6197   }
6198 
6199   MVT XLenVT = Subtarget.getXLenVT();
6200   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6201   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6202                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6203 
6204   SDValue SplatValue = DAG.getConstant(
6205       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6206   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6207                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6208 
6209   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6210                                Splat, ZeroSplat, VL);
6211   if (!VT.isFixedLengthVector())
6212     return Result;
6213   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6214 }
6215 
6216 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6217                                                 SelectionDAG &DAG) const {
6218   SDLoc DL(Op);
6219   MVT VT = Op.getSimpleValueType();
6220 
6221   SDValue Op1 = Op.getOperand(0);
6222   SDValue Op2 = Op.getOperand(1);
6223   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6224   // NOTE: Mask is dropped.
6225   SDValue VL = Op.getOperand(4);
6226 
6227   MVT ContainerVT = VT;
6228   if (VT.isFixedLengthVector()) {
6229     ContainerVT = getContainerForFixedLengthVector(VT);
6230     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6231     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6232   }
6233 
6234   SDValue Result;
6235   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6236 
6237   switch (Condition) {
6238   default:
6239     break;
6240   // X != Y  --> (X^Y)
6241   case ISD::SETNE:
6242     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6243     break;
6244   // X == Y  --> ~(X^Y)
6245   case ISD::SETEQ: {
6246     SDValue Temp =
6247         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6248     Result =
6249         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6250     break;
6251   }
6252   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6253   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6254   case ISD::SETGT:
6255   case ISD::SETULT: {
6256     SDValue Temp =
6257         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6258     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6259     break;
6260   }
6261   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6262   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6263   case ISD::SETLT:
6264   case ISD::SETUGT: {
6265     SDValue Temp =
6266         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6267     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6268     break;
6269   }
6270   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6271   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6272   case ISD::SETGE:
6273   case ISD::SETULE: {
6274     SDValue Temp =
6275         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6276     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6277     break;
6278   }
6279   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6280   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6281   case ISD::SETLE:
6282   case ISD::SETUGE: {
6283     SDValue Temp =
6284         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6285     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6286     break;
6287   }
6288   }
6289 
6290   if (!VT.isFixedLengthVector())
6291     return Result;
6292   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6293 }
6294 
6295 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6296 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6297                                                 unsigned RISCVISDOpc) const {
6298   SDLoc DL(Op);
6299 
6300   SDValue Src = Op.getOperand(0);
6301   SDValue Mask = Op.getOperand(1);
6302   SDValue VL = Op.getOperand(2);
6303 
6304   MVT DstVT = Op.getSimpleValueType();
6305   MVT SrcVT = Src.getSimpleValueType();
6306   if (DstVT.isFixedLengthVector()) {
6307     DstVT = getContainerForFixedLengthVector(DstVT);
6308     SrcVT = getContainerForFixedLengthVector(SrcVT);
6309     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6310     MVT MaskVT = getMaskTypeFor(DstVT);
6311     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6312   }
6313 
6314   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6315                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6316                                 ? RISCVISD::VSEXT_VL
6317                                 : RISCVISD::VZEXT_VL;
6318 
6319   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6320   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6321 
6322   SDValue Result;
6323   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6324     if (SrcVT.isInteger()) {
6325       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6326 
6327       // Do we need to do any pre-widening before converting?
6328       if (SrcEltSize == 1) {
6329         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6330         MVT XLenVT = Subtarget.getXLenVT();
6331         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6332         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6333                                         DAG.getUNDEF(IntVT), Zero, VL);
6334         SDValue One = DAG.getConstant(
6335             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6336         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6337                                        DAG.getUNDEF(IntVT), One, VL);
6338         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6339                           ZeroSplat, VL);
6340       } else if (DstEltSize > (2 * SrcEltSize)) {
6341         // Widen before converting.
6342         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6343                                      DstVT.getVectorElementCount());
6344         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6345       }
6346 
6347       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6348     } else {
6349       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6350              "Wrong input/output vector types");
6351 
6352       // Convert f16 to f32 then convert f32 to i64.
6353       if (DstEltSize > (2 * SrcEltSize)) {
6354         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6355         MVT InterimFVT =
6356             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6357         Src =
6358             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6359       }
6360 
6361       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6362     }
6363   } else { // Narrowing + Conversion
6364     if (SrcVT.isInteger()) {
6365       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6366       // First do a narrowing convert to an FP type half the size, then round
6367       // the FP type to a small FP type if needed.
6368 
6369       MVT InterimFVT = DstVT;
6370       if (SrcEltSize > (2 * DstEltSize)) {
6371         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6372         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6373         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6374       }
6375 
6376       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6377 
6378       if (InterimFVT != DstVT) {
6379         Src = Result;
6380         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6381       }
6382     } else {
6383       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6384              "Wrong input/output vector types");
6385       // First do a narrowing conversion to an integer half the size, then
6386       // truncate if needed.
6387 
6388       if (DstEltSize == 1) {
6389         // First convert to the same size integer, then convert to mask using
6390         // setcc.
6391         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6392         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6393                                           DstVT.getVectorElementCount());
6394         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6395 
6396         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6397         // otherwise the conversion was undefined.
6398         MVT XLenVT = Subtarget.getXLenVT();
6399         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6400         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6401                                 DAG.getUNDEF(InterimIVT), SplatZero);
6402         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6403                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6404       } else {
6405         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6406                                           DstVT.getVectorElementCount());
6407 
6408         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6409 
6410         while (InterimIVT != DstVT) {
6411           SrcEltSize /= 2;
6412           Src = Result;
6413           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6414                                         DstVT.getVectorElementCount());
6415           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6416                                Src, Mask, VL);
6417         }
6418       }
6419     }
6420   }
6421 
6422   MVT VT = Op.getSimpleValueType();
6423   if (!VT.isFixedLengthVector())
6424     return Result;
6425   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6426 }
6427 
6428 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6429                                             unsigned MaskOpc,
6430                                             unsigned VecOpc) const {
6431   MVT VT = Op.getSimpleValueType();
6432   if (VT.getVectorElementType() != MVT::i1)
6433     return lowerVPOp(Op, DAG, VecOpc);
6434 
6435   // It is safe to drop mask parameter as masked-off elements are undef.
6436   SDValue Op1 = Op->getOperand(0);
6437   SDValue Op2 = Op->getOperand(1);
6438   SDValue VL = Op->getOperand(3);
6439 
6440   MVT ContainerVT = VT;
6441   const bool IsFixed = VT.isFixedLengthVector();
6442   if (IsFixed) {
6443     ContainerVT = getContainerForFixedLengthVector(VT);
6444     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6445     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6446   }
6447 
6448   SDLoc DL(Op);
6449   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6450   if (!IsFixed)
6451     return Val;
6452   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6453 }
6454 
6455 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6456 // matched to a RVV indexed load. The RVV indexed load instructions only
6457 // support the "unsigned unscaled" addressing mode; indices are implicitly
6458 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6459 // signed or scaled indexing is extended to the XLEN value type and scaled
6460 // accordingly.
6461 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6462                                                SelectionDAG &DAG) const {
6463   SDLoc DL(Op);
6464   MVT VT = Op.getSimpleValueType();
6465 
6466   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6467   EVT MemVT = MemSD->getMemoryVT();
6468   MachineMemOperand *MMO = MemSD->getMemOperand();
6469   SDValue Chain = MemSD->getChain();
6470   SDValue BasePtr = MemSD->getBasePtr();
6471 
6472   ISD::LoadExtType LoadExtType;
6473   SDValue Index, Mask, PassThru, VL;
6474 
6475   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6476     Index = VPGN->getIndex();
6477     Mask = VPGN->getMask();
6478     PassThru = DAG.getUNDEF(VT);
6479     VL = VPGN->getVectorLength();
6480     // VP doesn't support extending loads.
6481     LoadExtType = ISD::NON_EXTLOAD;
6482   } else {
6483     // Else it must be a MGATHER.
6484     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6485     Index = MGN->getIndex();
6486     Mask = MGN->getMask();
6487     PassThru = MGN->getPassThru();
6488     LoadExtType = MGN->getExtensionType();
6489   }
6490 
6491   MVT IndexVT = Index.getSimpleValueType();
6492   MVT XLenVT = Subtarget.getXLenVT();
6493 
6494   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6495          "Unexpected VTs!");
6496   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6497   // Targets have to explicitly opt-in for extending vector loads.
6498   assert(LoadExtType == ISD::NON_EXTLOAD &&
6499          "Unexpected extending MGATHER/VP_GATHER");
6500   (void)LoadExtType;
6501 
6502   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6503   // the selection of the masked intrinsics doesn't do this for us.
6504   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6505 
6506   MVT ContainerVT = VT;
6507   if (VT.isFixedLengthVector()) {
6508     ContainerVT = getContainerForFixedLengthVector(VT);
6509     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6510                                ContainerVT.getVectorElementCount());
6511 
6512     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6513 
6514     if (!IsUnmasked) {
6515       MVT MaskVT = getMaskTypeFor(ContainerVT);
6516       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6517       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6518     }
6519   }
6520 
6521   if (!VL)
6522     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6523 
6524   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6525     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6526     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6527                                    VL);
6528     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6529                         TrueMask, VL);
6530   }
6531 
6532   unsigned IntID =
6533       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6534   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6535   if (IsUnmasked)
6536     Ops.push_back(DAG.getUNDEF(ContainerVT));
6537   else
6538     Ops.push_back(PassThru);
6539   Ops.push_back(BasePtr);
6540   Ops.push_back(Index);
6541   if (!IsUnmasked)
6542     Ops.push_back(Mask);
6543   Ops.push_back(VL);
6544   if (!IsUnmasked)
6545     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6546 
6547   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6548   SDValue Result =
6549       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6550   Chain = Result.getValue(1);
6551 
6552   if (VT.isFixedLengthVector())
6553     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6554 
6555   return DAG.getMergeValues({Result, Chain}, DL);
6556 }
6557 
6558 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6559 // matched to a RVV indexed store. The RVV indexed store instructions only
6560 // support the "unsigned unscaled" addressing mode; indices are implicitly
6561 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6562 // signed or scaled indexing is extended to the XLEN value type and scaled
6563 // accordingly.
6564 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6565                                                 SelectionDAG &DAG) const {
6566   SDLoc DL(Op);
6567   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6568   EVT MemVT = MemSD->getMemoryVT();
6569   MachineMemOperand *MMO = MemSD->getMemOperand();
6570   SDValue Chain = MemSD->getChain();
6571   SDValue BasePtr = MemSD->getBasePtr();
6572 
6573   bool IsTruncatingStore = false;
6574   SDValue Index, Mask, Val, VL;
6575 
6576   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6577     Index = VPSN->getIndex();
6578     Mask = VPSN->getMask();
6579     Val = VPSN->getValue();
6580     VL = VPSN->getVectorLength();
6581     // VP doesn't support truncating stores.
6582     IsTruncatingStore = false;
6583   } else {
6584     // Else it must be a MSCATTER.
6585     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6586     Index = MSN->getIndex();
6587     Mask = MSN->getMask();
6588     Val = MSN->getValue();
6589     IsTruncatingStore = MSN->isTruncatingStore();
6590   }
6591 
6592   MVT VT = Val.getSimpleValueType();
6593   MVT IndexVT = Index.getSimpleValueType();
6594   MVT XLenVT = Subtarget.getXLenVT();
6595 
6596   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6597          "Unexpected VTs!");
6598   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6599   // Targets have to explicitly opt-in for extending vector loads and
6600   // truncating vector stores.
6601   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6602   (void)IsTruncatingStore;
6603 
6604   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6605   // the selection of the masked intrinsics doesn't do this for us.
6606   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6607 
6608   MVT ContainerVT = VT;
6609   if (VT.isFixedLengthVector()) {
6610     ContainerVT = getContainerForFixedLengthVector(VT);
6611     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6612                                ContainerVT.getVectorElementCount());
6613 
6614     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6615     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6616 
6617     if (!IsUnmasked) {
6618       MVT MaskVT = getMaskTypeFor(ContainerVT);
6619       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6620     }
6621   }
6622 
6623   if (!VL)
6624     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6625 
6626   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6627     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6628     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6629                                    VL);
6630     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6631                         TrueMask, VL);
6632   }
6633 
6634   unsigned IntID =
6635       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6636   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6637   Ops.push_back(Val);
6638   Ops.push_back(BasePtr);
6639   Ops.push_back(Index);
6640   if (!IsUnmasked)
6641     Ops.push_back(Mask);
6642   Ops.push_back(VL);
6643 
6644   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6645                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6646 }
6647 
6648 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6649                                                SelectionDAG &DAG) const {
6650   const MVT XLenVT = Subtarget.getXLenVT();
6651   SDLoc DL(Op);
6652   SDValue Chain = Op->getOperand(0);
6653   SDValue SysRegNo = DAG.getTargetConstant(
6654       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6655   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6656   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6657 
6658   // Encoding used for rounding mode in RISCV differs from that used in
6659   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6660   // table, which consists of a sequence of 4-bit fields, each representing
6661   // corresponding FLT_ROUNDS mode.
6662   static const int Table =
6663       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6664       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6665       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6666       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6667       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6668 
6669   SDValue Shift =
6670       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6671   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6672                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6673   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6674                                DAG.getConstant(7, DL, XLenVT));
6675 
6676   return DAG.getMergeValues({Masked, Chain}, DL);
6677 }
6678 
6679 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6680                                                SelectionDAG &DAG) const {
6681   const MVT XLenVT = Subtarget.getXLenVT();
6682   SDLoc DL(Op);
6683   SDValue Chain = Op->getOperand(0);
6684   SDValue RMValue = Op->getOperand(1);
6685   SDValue SysRegNo = DAG.getTargetConstant(
6686       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6687 
6688   // Encoding used for rounding mode in RISCV differs from that used in
6689   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6690   // a table, which consists of a sequence of 4-bit fields, each representing
6691   // corresponding RISCV mode.
6692   static const unsigned Table =
6693       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6694       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6695       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6696       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6697       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6698 
6699   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6700                               DAG.getConstant(2, DL, XLenVT));
6701   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6702                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6703   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6704                         DAG.getConstant(0x7, DL, XLenVT));
6705   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6706                      RMValue);
6707 }
6708 
6709 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6710                                                SelectionDAG &DAG) const {
6711   MachineFunction &MF = DAG.getMachineFunction();
6712 
6713   bool isRISCV64 = Subtarget.is64Bit();
6714   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6715 
6716   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6717   return DAG.getFrameIndex(FI, PtrVT);
6718 }
6719 
6720 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6721   switch (IntNo) {
6722   default:
6723     llvm_unreachable("Unexpected Intrinsic");
6724   case Intrinsic::riscv_bcompress:
6725     return RISCVISD::BCOMPRESSW;
6726   case Intrinsic::riscv_bdecompress:
6727     return RISCVISD::BDECOMPRESSW;
6728   case Intrinsic::riscv_bfp:
6729     return RISCVISD::BFPW;
6730   case Intrinsic::riscv_fsl:
6731     return RISCVISD::FSLW;
6732   case Intrinsic::riscv_fsr:
6733     return RISCVISD::FSRW;
6734   }
6735 }
6736 
6737 // Converts the given intrinsic to a i64 operation with any extension.
6738 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6739                                          unsigned IntNo) {
6740   SDLoc DL(N);
6741   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6742   // Deal with the Instruction Operands
6743   SmallVector<SDValue, 3> NewOps;
6744   for (SDValue Op : drop_begin(N->ops()))
6745     // Promote the operand to i64 type
6746     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6747   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6748   // ReplaceNodeResults requires we maintain the same type for the return value.
6749   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6750 }
6751 
6752 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6753 // form of the given Opcode.
6754 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6755   switch (Opcode) {
6756   default:
6757     llvm_unreachable("Unexpected opcode");
6758   case ISD::SHL:
6759     return RISCVISD::SLLW;
6760   case ISD::SRA:
6761     return RISCVISD::SRAW;
6762   case ISD::SRL:
6763     return RISCVISD::SRLW;
6764   case ISD::SDIV:
6765     return RISCVISD::DIVW;
6766   case ISD::UDIV:
6767     return RISCVISD::DIVUW;
6768   case ISD::UREM:
6769     return RISCVISD::REMUW;
6770   case ISD::ROTL:
6771     return RISCVISD::ROLW;
6772   case ISD::ROTR:
6773     return RISCVISD::RORW;
6774   }
6775 }
6776 
6777 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6778 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6779 // otherwise be promoted to i64, making it difficult to select the
6780 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6781 // type i8/i16/i32 is lost.
6782 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6783                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6784   SDLoc DL(N);
6785   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6786   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6787   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6788   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6789   // ReplaceNodeResults requires we maintain the same type for the return value.
6790   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6791 }
6792 
6793 // Converts the given 32-bit operation to a i64 operation with signed extension
6794 // semantic to reduce the signed extension instructions.
6795 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6796   SDLoc DL(N);
6797   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6798   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6799   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6800   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6801                                DAG.getValueType(MVT::i32));
6802   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6803 }
6804 
6805 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6806                                              SmallVectorImpl<SDValue> &Results,
6807                                              SelectionDAG &DAG) const {
6808   SDLoc DL(N);
6809   switch (N->getOpcode()) {
6810   default:
6811     llvm_unreachable("Don't know how to custom type legalize this operation!");
6812   case ISD::STRICT_FP_TO_SINT:
6813   case ISD::STRICT_FP_TO_UINT:
6814   case ISD::FP_TO_SINT:
6815   case ISD::FP_TO_UINT: {
6816     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6817            "Unexpected custom legalisation");
6818     bool IsStrict = N->isStrictFPOpcode();
6819     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6820                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6821     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6822     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6823         TargetLowering::TypeSoftenFloat) {
6824       if (!isTypeLegal(Op0.getValueType()))
6825         return;
6826       if (IsStrict) {
6827         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6828                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6829         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6830         SDValue Res = DAG.getNode(
6831             Opc, DL, VTs, N->getOperand(0), Op0,
6832             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6833         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6834         Results.push_back(Res.getValue(1));
6835         return;
6836       }
6837       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6838       SDValue Res =
6839           DAG.getNode(Opc, DL, MVT::i64, Op0,
6840                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6841       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6842       return;
6843     }
6844     // If the FP type needs to be softened, emit a library call using the 'si'
6845     // version. If we left it to default legalization we'd end up with 'di'. If
6846     // the FP type doesn't need to be softened just let generic type
6847     // legalization promote the result type.
6848     RTLIB::Libcall LC;
6849     if (IsSigned)
6850       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6851     else
6852       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6853     MakeLibCallOptions CallOptions;
6854     EVT OpVT = Op0.getValueType();
6855     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6856     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6857     SDValue Result;
6858     std::tie(Result, Chain) =
6859         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6860     Results.push_back(Result);
6861     if (IsStrict)
6862       Results.push_back(Chain);
6863     break;
6864   }
6865   case ISD::READCYCLECOUNTER: {
6866     assert(!Subtarget.is64Bit() &&
6867            "READCYCLECOUNTER only has custom type legalization on riscv32");
6868 
6869     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6870     SDValue RCW =
6871         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6872 
6873     Results.push_back(
6874         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6875     Results.push_back(RCW.getValue(2));
6876     break;
6877   }
6878   case ISD::MUL: {
6879     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6880     unsigned XLen = Subtarget.getXLen();
6881     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6882     if (Size > XLen) {
6883       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6884       SDValue LHS = N->getOperand(0);
6885       SDValue RHS = N->getOperand(1);
6886       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6887 
6888       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6889       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6890       // We need exactly one side to be unsigned.
6891       if (LHSIsU == RHSIsU)
6892         return;
6893 
6894       auto MakeMULPair = [&](SDValue S, SDValue U) {
6895         MVT XLenVT = Subtarget.getXLenVT();
6896         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6897         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6898         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6899         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6900         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6901       };
6902 
6903       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6904       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6905 
6906       // The other operand should be signed, but still prefer MULH when
6907       // possible.
6908       if (RHSIsU && LHSIsS && !RHSIsS)
6909         Results.push_back(MakeMULPair(LHS, RHS));
6910       else if (LHSIsU && RHSIsS && !LHSIsS)
6911         Results.push_back(MakeMULPair(RHS, LHS));
6912 
6913       return;
6914     }
6915     LLVM_FALLTHROUGH;
6916   }
6917   case ISD::ADD:
6918   case ISD::SUB:
6919     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6920            "Unexpected custom legalisation");
6921     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6922     break;
6923   case ISD::SHL:
6924   case ISD::SRA:
6925   case ISD::SRL:
6926     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6927            "Unexpected custom legalisation");
6928     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6929       // If we can use a BSET instruction, allow default promotion to apply.
6930       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6931           isOneConstant(N->getOperand(0)))
6932         break;
6933       Results.push_back(customLegalizeToWOp(N, DAG));
6934       break;
6935     }
6936 
6937     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6938     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6939     // shift amount.
6940     if (N->getOpcode() == ISD::SHL) {
6941       SDLoc DL(N);
6942       SDValue NewOp0 =
6943           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6944       SDValue NewOp1 =
6945           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6946       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6947       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6948                                    DAG.getValueType(MVT::i32));
6949       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6950     }
6951 
6952     break;
6953   case ISD::ROTL:
6954   case ISD::ROTR:
6955     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6956            "Unexpected custom legalisation");
6957     Results.push_back(customLegalizeToWOp(N, DAG));
6958     break;
6959   case ISD::CTTZ:
6960   case ISD::CTTZ_ZERO_UNDEF:
6961   case ISD::CTLZ:
6962   case ISD::CTLZ_ZERO_UNDEF: {
6963     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6964            "Unexpected custom legalisation");
6965 
6966     SDValue NewOp0 =
6967         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6968     bool IsCTZ =
6969         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6970     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6971     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6972     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6973     return;
6974   }
6975   case ISD::SDIV:
6976   case ISD::UDIV:
6977   case ISD::UREM: {
6978     MVT VT = N->getSimpleValueType(0);
6979     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6980            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6981            "Unexpected custom legalisation");
6982     // Don't promote division/remainder by constant since we should expand those
6983     // to multiply by magic constant.
6984     // FIXME: What if the expansion is disabled for minsize.
6985     if (N->getOperand(1).getOpcode() == ISD::Constant)
6986       return;
6987 
6988     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6989     // the upper 32 bits. For other types we need to sign or zero extend
6990     // based on the opcode.
6991     unsigned ExtOpc = ISD::ANY_EXTEND;
6992     if (VT != MVT::i32)
6993       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6994                                            : ISD::ZERO_EXTEND;
6995 
6996     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6997     break;
6998   }
6999   case ISD::UADDO:
7000   case ISD::USUBO: {
7001     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7002            "Unexpected custom legalisation");
7003     bool IsAdd = N->getOpcode() == ISD::UADDO;
7004     // Create an ADDW or SUBW.
7005     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7006     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7007     SDValue Res =
7008         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
7009     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
7010                       DAG.getValueType(MVT::i32));
7011 
7012     SDValue Overflow;
7013     if (IsAdd && isOneConstant(RHS)) {
7014       // Special case uaddo X, 1 overflowed if the addition result is 0.
7015       // The general case (X + C) < C is not necessarily beneficial. Although we
7016       // reduce the live range of X, we may introduce the materialization of
7017       // constant C, especially when the setcc result is used by branch. We have
7018       // no compare with constant and branch instructions.
7019       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
7020                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
7021     } else {
7022       // Sign extend the LHS and perform an unsigned compare with the ADDW
7023       // result. Since the inputs are sign extended from i32, this is equivalent
7024       // to comparing the lower 32 bits.
7025       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7026       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
7027                               IsAdd ? ISD::SETULT : ISD::SETUGT);
7028     }
7029 
7030     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7031     Results.push_back(Overflow);
7032     return;
7033   }
7034   case ISD::UADDSAT:
7035   case ISD::USUBSAT: {
7036     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7037            "Unexpected custom legalisation");
7038     if (Subtarget.hasStdExtZbb()) {
7039       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
7040       // sign extend allows overflow of the lower 32 bits to be detected on
7041       // the promoted size.
7042       SDValue LHS =
7043           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7044       SDValue RHS =
7045           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7046       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7047       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7048       return;
7049     }
7050 
7051     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7052     // promotion for UADDO/USUBO.
7053     Results.push_back(expandAddSubSat(N, DAG));
7054     return;
7055   }
7056   case ISD::ABS: {
7057     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7058            "Unexpected custom legalisation");
7059 
7060     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7061 
7062     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7063 
7064     // Freeze the source so we can increase it's use count.
7065     Src = DAG.getFreeze(Src);
7066 
7067     // Copy sign bit to all bits using the sraiw pattern.
7068     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7069                                    DAG.getValueType(MVT::i32));
7070     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7071                            DAG.getConstant(31, DL, MVT::i64));
7072 
7073     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7074     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7075 
7076     // NOTE: The result is only required to be anyextended, but sext is
7077     // consistent with type legalization of sub.
7078     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7079                          DAG.getValueType(MVT::i32));
7080     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7081     return;
7082   }
7083   case ISD::BITCAST: {
7084     EVT VT = N->getValueType(0);
7085     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7086     SDValue Op0 = N->getOperand(0);
7087     EVT Op0VT = Op0.getValueType();
7088     MVT XLenVT = Subtarget.getXLenVT();
7089     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7090       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7091       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7092     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7093                Subtarget.hasStdExtF()) {
7094       SDValue FPConv =
7095           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7096       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7097     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7098                isTypeLegal(Op0VT)) {
7099       // Custom-legalize bitcasts from fixed-length vector types to illegal
7100       // scalar types in order to improve codegen. Bitcast the vector to a
7101       // one-element vector type whose element type is the same as the result
7102       // type, and extract the first element.
7103       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7104       if (isTypeLegal(BVT)) {
7105         SDValue BVec = DAG.getBitcast(BVT, Op0);
7106         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7107                                       DAG.getConstant(0, DL, XLenVT)));
7108       }
7109     }
7110     break;
7111   }
7112   case RISCVISD::GREV:
7113   case RISCVISD::GORC:
7114   case RISCVISD::SHFL: {
7115     MVT VT = N->getSimpleValueType(0);
7116     MVT XLenVT = Subtarget.getXLenVT();
7117     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7118            "Unexpected custom legalisation");
7119     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7120     assert((Subtarget.hasStdExtZbp() ||
7121             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7122              N->getConstantOperandVal(1) == 7)) &&
7123            "Unexpected extension");
7124     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7125     SDValue NewOp1 =
7126         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7127     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7128     // ReplaceNodeResults requires we maintain the same type for the return
7129     // value.
7130     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7131     break;
7132   }
7133   case ISD::BSWAP:
7134   case ISD::BITREVERSE: {
7135     MVT VT = N->getSimpleValueType(0);
7136     MVT XLenVT = Subtarget.getXLenVT();
7137     assert((VT == MVT::i8 || VT == MVT::i16 ||
7138             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7139            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7140     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7141     unsigned Imm = VT.getSizeInBits() - 1;
7142     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7143     if (N->getOpcode() == ISD::BSWAP)
7144       Imm &= ~0x7U;
7145     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7146                                 DAG.getConstant(Imm, DL, XLenVT));
7147     // ReplaceNodeResults requires we maintain the same type for the return
7148     // value.
7149     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7150     break;
7151   }
7152   case ISD::FSHL:
7153   case ISD::FSHR: {
7154     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7155            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7156     SDValue NewOp0 =
7157         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7158     SDValue NewOp1 =
7159         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7160     SDValue NewShAmt =
7161         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7162     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7163     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7164     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7165                            DAG.getConstant(0x1f, DL, MVT::i64));
7166     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7167     // instruction use different orders. fshl will return its first operand for
7168     // shift of zero, fshr will return its second operand. fsl and fsr both
7169     // return rs1 so the ISD nodes need to have different operand orders.
7170     // Shift amount is in rs2.
7171     unsigned Opc = RISCVISD::FSLW;
7172     if (N->getOpcode() == ISD::FSHR) {
7173       std::swap(NewOp0, NewOp1);
7174       Opc = RISCVISD::FSRW;
7175     }
7176     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7177     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7178     break;
7179   }
7180   case ISD::EXTRACT_VECTOR_ELT: {
7181     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7182     // type is illegal (currently only vXi64 RV32).
7183     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7184     // transferred to the destination register. We issue two of these from the
7185     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7186     // first element.
7187     SDValue Vec = N->getOperand(0);
7188     SDValue Idx = N->getOperand(1);
7189 
7190     // The vector type hasn't been legalized yet so we can't issue target
7191     // specific nodes if it needs legalization.
7192     // FIXME: We would manually legalize if it's important.
7193     if (!isTypeLegal(Vec.getValueType()))
7194       return;
7195 
7196     MVT VecVT = Vec.getSimpleValueType();
7197 
7198     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7199            VecVT.getVectorElementType() == MVT::i64 &&
7200            "Unexpected EXTRACT_VECTOR_ELT legalization");
7201 
7202     // If this is a fixed vector, we need to convert it to a scalable vector.
7203     MVT ContainerVT = VecVT;
7204     if (VecVT.isFixedLengthVector()) {
7205       ContainerVT = getContainerForFixedLengthVector(VecVT);
7206       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7207     }
7208 
7209     MVT XLenVT = Subtarget.getXLenVT();
7210 
7211     // Use a VL of 1 to avoid processing more elements than we need.
7212     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7213     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7214 
7215     // Unless the index is known to be 0, we must slide the vector down to get
7216     // the desired element into index 0.
7217     if (!isNullConstant(Idx)) {
7218       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7219                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7220     }
7221 
7222     // Extract the lower XLEN bits of the correct vector element.
7223     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7224 
7225     // To extract the upper XLEN bits of the vector element, shift the first
7226     // element right by 32 bits and re-extract the lower XLEN bits.
7227     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7228                                      DAG.getUNDEF(ContainerVT),
7229                                      DAG.getConstant(32, DL, XLenVT), VL);
7230     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7231                                  ThirtyTwoV, Mask, VL);
7232 
7233     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7234 
7235     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7236     break;
7237   }
7238   case ISD::INTRINSIC_WO_CHAIN: {
7239     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7240     switch (IntNo) {
7241     default:
7242       llvm_unreachable(
7243           "Don't know how to custom type legalize this intrinsic!");
7244     case Intrinsic::riscv_grev:
7245     case Intrinsic::riscv_gorc: {
7246       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7247              "Unexpected custom legalisation");
7248       SDValue NewOp1 =
7249           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7250       SDValue NewOp2 =
7251           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7252       unsigned Opc =
7253           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7254       // If the control is a constant, promote the node by clearing any extra
7255       // bits bits in the control. isel will form greviw/gorciw if the result is
7256       // sign extended.
7257       if (isa<ConstantSDNode>(NewOp2)) {
7258         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7259                              DAG.getConstant(0x1f, DL, MVT::i64));
7260         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7261       }
7262       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7263       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7264       break;
7265     }
7266     case Intrinsic::riscv_bcompress:
7267     case Intrinsic::riscv_bdecompress:
7268     case Intrinsic::riscv_bfp:
7269     case Intrinsic::riscv_fsl:
7270     case Intrinsic::riscv_fsr: {
7271       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7272              "Unexpected custom legalisation");
7273       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7274       break;
7275     }
7276     case Intrinsic::riscv_orc_b: {
7277       // Lower to the GORCI encoding for orc.b with the operand extended.
7278       SDValue NewOp =
7279           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7280       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7281                                 DAG.getConstant(7, DL, MVT::i64));
7282       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7283       return;
7284     }
7285     case Intrinsic::riscv_shfl:
7286     case Intrinsic::riscv_unshfl: {
7287       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7288              "Unexpected custom legalisation");
7289       SDValue NewOp1 =
7290           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7291       SDValue NewOp2 =
7292           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7293       unsigned Opc =
7294           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7295       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7296       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7297       // will be shuffled the same way as the lower 32 bit half, but the two
7298       // halves won't cross.
7299       if (isa<ConstantSDNode>(NewOp2)) {
7300         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7301                              DAG.getConstant(0xf, DL, MVT::i64));
7302         Opc =
7303             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7304       }
7305       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7306       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7307       break;
7308     }
7309     case Intrinsic::riscv_vmv_x_s: {
7310       EVT VT = N->getValueType(0);
7311       MVT XLenVT = Subtarget.getXLenVT();
7312       if (VT.bitsLT(XLenVT)) {
7313         // Simple case just extract using vmv.x.s and truncate.
7314         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7315                                       Subtarget.getXLenVT(), N->getOperand(1));
7316         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7317         return;
7318       }
7319 
7320       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7321              "Unexpected custom legalization");
7322 
7323       // We need to do the move in two steps.
7324       SDValue Vec = N->getOperand(1);
7325       MVT VecVT = Vec.getSimpleValueType();
7326 
7327       // First extract the lower XLEN bits of the element.
7328       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7329 
7330       // To extract the upper XLEN bits of the vector element, shift the first
7331       // element right by 32 bits and re-extract the lower XLEN bits.
7332       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7333       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7334 
7335       SDValue ThirtyTwoV =
7336           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7337                       DAG.getConstant(32, DL, XLenVT), VL);
7338       SDValue LShr32 =
7339           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7340       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7341 
7342       Results.push_back(
7343           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7344       break;
7345     }
7346     }
7347     break;
7348   }
7349   case ISD::VECREDUCE_ADD:
7350   case ISD::VECREDUCE_AND:
7351   case ISD::VECREDUCE_OR:
7352   case ISD::VECREDUCE_XOR:
7353   case ISD::VECREDUCE_SMAX:
7354   case ISD::VECREDUCE_UMAX:
7355   case ISD::VECREDUCE_SMIN:
7356   case ISD::VECREDUCE_UMIN:
7357     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7358       Results.push_back(V);
7359     break;
7360   case ISD::VP_REDUCE_ADD:
7361   case ISD::VP_REDUCE_AND:
7362   case ISD::VP_REDUCE_OR:
7363   case ISD::VP_REDUCE_XOR:
7364   case ISD::VP_REDUCE_SMAX:
7365   case ISD::VP_REDUCE_UMAX:
7366   case ISD::VP_REDUCE_SMIN:
7367   case ISD::VP_REDUCE_UMIN:
7368     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7369       Results.push_back(V);
7370     break;
7371   case ISD::FLT_ROUNDS_: {
7372     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7373     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7374     Results.push_back(Res.getValue(0));
7375     Results.push_back(Res.getValue(1));
7376     break;
7377   }
7378   }
7379 }
7380 
7381 // A structure to hold one of the bit-manipulation patterns below. Together, a
7382 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7383 //   (or (and (shl x, 1), 0xAAAAAAAA),
7384 //       (and (srl x, 1), 0x55555555))
7385 struct RISCVBitmanipPat {
7386   SDValue Op;
7387   unsigned ShAmt;
7388   bool IsSHL;
7389 
7390   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7391     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7392   }
7393 };
7394 
7395 // Matches patterns of the form
7396 //   (and (shl x, C2), (C1 << C2))
7397 //   (and (srl x, C2), C1)
7398 //   (shl (and x, C1), C2)
7399 //   (srl (and x, (C1 << C2)), C2)
7400 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7401 // The expected masks for each shift amount are specified in BitmanipMasks where
7402 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7403 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7404 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7405 // XLen is 64.
7406 static Optional<RISCVBitmanipPat>
7407 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7408   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7409          "Unexpected number of masks");
7410   Optional<uint64_t> Mask;
7411   // Optionally consume a mask around the shift operation.
7412   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7413     Mask = Op.getConstantOperandVal(1);
7414     Op = Op.getOperand(0);
7415   }
7416   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7417     return None;
7418   bool IsSHL = Op.getOpcode() == ISD::SHL;
7419 
7420   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7421     return None;
7422   uint64_t ShAmt = Op.getConstantOperandVal(1);
7423 
7424   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7425   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7426     return None;
7427   // If we don't have enough masks for 64 bit, then we must be trying to
7428   // match SHFL so we're only allowed to shift 1/4 of the width.
7429   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7430     return None;
7431 
7432   SDValue Src = Op.getOperand(0);
7433 
7434   // The expected mask is shifted left when the AND is found around SHL
7435   // patterns.
7436   //   ((x >> 1) & 0x55555555)
7437   //   ((x << 1) & 0xAAAAAAAA)
7438   bool SHLExpMask = IsSHL;
7439 
7440   if (!Mask) {
7441     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7442     // the mask is all ones: consume that now.
7443     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7444       Mask = Src.getConstantOperandVal(1);
7445       Src = Src.getOperand(0);
7446       // The expected mask is now in fact shifted left for SRL, so reverse the
7447       // decision.
7448       //   ((x & 0xAAAAAAAA) >> 1)
7449       //   ((x & 0x55555555) << 1)
7450       SHLExpMask = !SHLExpMask;
7451     } else {
7452       // Use a default shifted mask of all-ones if there's no AND, truncated
7453       // down to the expected width. This simplifies the logic later on.
7454       Mask = maskTrailingOnes<uint64_t>(Width);
7455       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7456     }
7457   }
7458 
7459   unsigned MaskIdx = Log2_32(ShAmt);
7460   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7461 
7462   if (SHLExpMask)
7463     ExpMask <<= ShAmt;
7464 
7465   if (Mask != ExpMask)
7466     return None;
7467 
7468   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7469 }
7470 
7471 // Matches any of the following bit-manipulation patterns:
7472 //   (and (shl x, 1), (0x55555555 << 1))
7473 //   (and (srl x, 1), 0x55555555)
7474 //   (shl (and x, 0x55555555), 1)
7475 //   (srl (and x, (0x55555555 << 1)), 1)
7476 // where the shift amount and mask may vary thus:
7477 //   [1]  = 0x55555555 / 0xAAAAAAAA
7478 //   [2]  = 0x33333333 / 0xCCCCCCCC
7479 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7480 //   [8]  = 0x00FF00FF / 0xFF00FF00
7481 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7482 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7483 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7484   // These are the unshifted masks which we use to match bit-manipulation
7485   // patterns. They may be shifted left in certain circumstances.
7486   static const uint64_t BitmanipMasks[] = {
7487       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7488       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7489 
7490   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7491 }
7492 
7493 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7494 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7495   auto BinOpToRVVReduce = [](unsigned Opc) {
7496     switch (Opc) {
7497     default:
7498       llvm_unreachable("Unhandled binary to transfrom reduction");
7499     case ISD::ADD:
7500       return RISCVISD::VECREDUCE_ADD_VL;
7501     case ISD::UMAX:
7502       return RISCVISD::VECREDUCE_UMAX_VL;
7503     case ISD::SMAX:
7504       return RISCVISD::VECREDUCE_SMAX_VL;
7505     case ISD::UMIN:
7506       return RISCVISD::VECREDUCE_UMIN_VL;
7507     case ISD::SMIN:
7508       return RISCVISD::VECREDUCE_SMIN_VL;
7509     case ISD::AND:
7510       return RISCVISD::VECREDUCE_AND_VL;
7511     case ISD::OR:
7512       return RISCVISD::VECREDUCE_OR_VL;
7513     case ISD::XOR:
7514       return RISCVISD::VECREDUCE_XOR_VL;
7515     case ISD::FADD:
7516       return RISCVISD::VECREDUCE_FADD_VL;
7517     case ISD::FMAXNUM:
7518       return RISCVISD::VECREDUCE_FMAX_VL;
7519     case ISD::FMINNUM:
7520       return RISCVISD::VECREDUCE_FMIN_VL;
7521     }
7522   };
7523 
7524   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7525     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7526            isNullConstant(V.getOperand(1)) &&
7527            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7528   };
7529 
7530   unsigned Opc = N->getOpcode();
7531   unsigned ReduceIdx;
7532   if (IsReduction(N->getOperand(0), Opc))
7533     ReduceIdx = 0;
7534   else if (IsReduction(N->getOperand(1), Opc))
7535     ReduceIdx = 1;
7536   else
7537     return SDValue();
7538 
7539   // Skip if FADD disallows reassociation but the combiner needs.
7540   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7541     return SDValue();
7542 
7543   SDValue Extract = N->getOperand(ReduceIdx);
7544   SDValue Reduce = Extract.getOperand(0);
7545   if (!Reduce.hasOneUse())
7546     return SDValue();
7547 
7548   SDValue ScalarV = Reduce.getOperand(2);
7549 
7550   // Make sure that ScalarV is a splat with VL=1.
7551   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7552       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7553       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7554     return SDValue();
7555 
7556   if (!isOneConstant(ScalarV.getOperand(2)))
7557     return SDValue();
7558 
7559   // TODO: Deal with value other than neutral element.
7560   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7561     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7562         isNullFPConstant(V))
7563       return true;
7564     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7565                                  N->getFlags()) == V;
7566   };
7567 
7568   // Check the scalar of ScalarV is neutral element
7569   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7570     return SDValue();
7571 
7572   if (!ScalarV.hasOneUse())
7573     return SDValue();
7574 
7575   EVT SplatVT = ScalarV.getValueType();
7576   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7577   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7578   if (SplatVT.isInteger()) {
7579     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7580     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7581       SplatOpc = RISCVISD::VMV_S_X_VL;
7582     else
7583       SplatOpc = RISCVISD::VMV_V_X_VL;
7584   }
7585 
7586   SDValue NewScalarV =
7587       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7588                   ScalarV.getOperand(2));
7589   SDValue NewReduce =
7590       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7591                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7592                   Reduce.getOperand(3), Reduce.getOperand(4));
7593   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7594                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7595 }
7596 
7597 // Match the following pattern as a GREVI(W) operation
7598 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7599 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7600                                const RISCVSubtarget &Subtarget) {
7601   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7602   EVT VT = Op.getValueType();
7603 
7604   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7605     auto LHS = matchGREVIPat(Op.getOperand(0));
7606     auto RHS = matchGREVIPat(Op.getOperand(1));
7607     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7608       SDLoc DL(Op);
7609       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7610                          DAG.getConstant(LHS->ShAmt, DL, VT));
7611     }
7612   }
7613   return SDValue();
7614 }
7615 
7616 // Matches any the following pattern as a GORCI(W) operation
7617 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7618 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7619 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7620 // Note that with the variant of 3.,
7621 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7622 // the inner pattern will first be matched as GREVI and then the outer
7623 // pattern will be matched to GORC via the first rule above.
7624 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7625 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7626                                const RISCVSubtarget &Subtarget) {
7627   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7628   EVT VT = Op.getValueType();
7629 
7630   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7631     SDLoc DL(Op);
7632     SDValue Op0 = Op.getOperand(0);
7633     SDValue Op1 = Op.getOperand(1);
7634 
7635     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7636       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7637           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7638           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7639         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7640       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7641       if ((Reverse.getOpcode() == ISD::ROTL ||
7642            Reverse.getOpcode() == ISD::ROTR) &&
7643           Reverse.getOperand(0) == X &&
7644           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7645         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7646         if (RotAmt == (VT.getSizeInBits() / 2))
7647           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7648                              DAG.getConstant(RotAmt, DL, VT));
7649       }
7650       return SDValue();
7651     };
7652 
7653     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7654     if (SDValue V = MatchOROfReverse(Op0, Op1))
7655       return V;
7656     if (SDValue V = MatchOROfReverse(Op1, Op0))
7657       return V;
7658 
7659     // OR is commutable so canonicalize its OR operand to the left
7660     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7661       std::swap(Op0, Op1);
7662     if (Op0.getOpcode() != ISD::OR)
7663       return SDValue();
7664     SDValue OrOp0 = Op0.getOperand(0);
7665     SDValue OrOp1 = Op0.getOperand(1);
7666     auto LHS = matchGREVIPat(OrOp0);
7667     // OR is commutable so swap the operands and try again: x might have been
7668     // on the left
7669     if (!LHS) {
7670       std::swap(OrOp0, OrOp1);
7671       LHS = matchGREVIPat(OrOp0);
7672     }
7673     auto RHS = matchGREVIPat(Op1);
7674     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7675       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7676                          DAG.getConstant(LHS->ShAmt, DL, VT));
7677     }
7678   }
7679   return SDValue();
7680 }
7681 
7682 // Matches any of the following bit-manipulation patterns:
7683 //   (and (shl x, 1), (0x22222222 << 1))
7684 //   (and (srl x, 1), 0x22222222)
7685 //   (shl (and x, 0x22222222), 1)
7686 //   (srl (and x, (0x22222222 << 1)), 1)
7687 // where the shift amount and mask may vary thus:
7688 //   [1]  = 0x22222222 / 0x44444444
7689 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7690 //   [4]  = 0x00F000F0 / 0x0F000F00
7691 //   [8]  = 0x0000FF00 / 0x00FF0000
7692 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7693 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7694   // These are the unshifted masks which we use to match bit-manipulation
7695   // patterns. They may be shifted left in certain circumstances.
7696   static const uint64_t BitmanipMasks[] = {
7697       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7698       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7699 
7700   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7701 }
7702 
7703 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7704 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7705                                const RISCVSubtarget &Subtarget) {
7706   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7707   EVT VT = Op.getValueType();
7708 
7709   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7710     return SDValue();
7711 
7712   SDValue Op0 = Op.getOperand(0);
7713   SDValue Op1 = Op.getOperand(1);
7714 
7715   // Or is commutable so canonicalize the second OR to the LHS.
7716   if (Op0.getOpcode() != ISD::OR)
7717     std::swap(Op0, Op1);
7718   if (Op0.getOpcode() != ISD::OR)
7719     return SDValue();
7720 
7721   // We found an inner OR, so our operands are the operands of the inner OR
7722   // and the other operand of the outer OR.
7723   SDValue A = Op0.getOperand(0);
7724   SDValue B = Op0.getOperand(1);
7725   SDValue C = Op1;
7726 
7727   auto Match1 = matchSHFLPat(A);
7728   auto Match2 = matchSHFLPat(B);
7729 
7730   // If neither matched, we failed.
7731   if (!Match1 && !Match2)
7732     return SDValue();
7733 
7734   // We had at least one match. if one failed, try the remaining C operand.
7735   if (!Match1) {
7736     std::swap(A, C);
7737     Match1 = matchSHFLPat(A);
7738     if (!Match1)
7739       return SDValue();
7740   } else if (!Match2) {
7741     std::swap(B, C);
7742     Match2 = matchSHFLPat(B);
7743     if (!Match2)
7744       return SDValue();
7745   }
7746   assert(Match1 && Match2);
7747 
7748   // Make sure our matches pair up.
7749   if (!Match1->formsPairWith(*Match2))
7750     return SDValue();
7751 
7752   // All the remains is to make sure C is an AND with the same input, that masks
7753   // out the bits that are being shuffled.
7754   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7755       C.getOperand(0) != Match1->Op)
7756     return SDValue();
7757 
7758   uint64_t Mask = C.getConstantOperandVal(1);
7759 
7760   static const uint64_t BitmanipMasks[] = {
7761       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7762       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7763   };
7764 
7765   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7766   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7767   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7768 
7769   if (Mask != ExpMask)
7770     return SDValue();
7771 
7772   SDLoc DL(Op);
7773   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7774                      DAG.getConstant(Match1->ShAmt, DL, VT));
7775 }
7776 
7777 // Optimize (add (shl x, c0), (shl y, c1)) ->
7778 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7779 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7780                                   const RISCVSubtarget &Subtarget) {
7781   // Perform this optimization only in the zba extension.
7782   if (!Subtarget.hasStdExtZba())
7783     return SDValue();
7784 
7785   // Skip for vector types and larger types.
7786   EVT VT = N->getValueType(0);
7787   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7788     return SDValue();
7789 
7790   // The two operand nodes must be SHL and have no other use.
7791   SDValue N0 = N->getOperand(0);
7792   SDValue N1 = N->getOperand(1);
7793   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7794       !N0->hasOneUse() || !N1->hasOneUse())
7795     return SDValue();
7796 
7797   // Check c0 and c1.
7798   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7799   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7800   if (!N0C || !N1C)
7801     return SDValue();
7802   int64_t C0 = N0C->getSExtValue();
7803   int64_t C1 = N1C->getSExtValue();
7804   if (C0 <= 0 || C1 <= 0)
7805     return SDValue();
7806 
7807   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7808   int64_t Bits = std::min(C0, C1);
7809   int64_t Diff = std::abs(C0 - C1);
7810   if (Diff != 1 && Diff != 2 && Diff != 3)
7811     return SDValue();
7812 
7813   // Build nodes.
7814   SDLoc DL(N);
7815   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7816   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7817   SDValue NA0 =
7818       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7819   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7820   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7821 }
7822 
7823 // Combine
7824 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7825 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7826 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7827 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7828 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7829 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7830 // The grev patterns represents BSWAP.
7831 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7832 // off the grev.
7833 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7834                                           const RISCVSubtarget &Subtarget) {
7835   bool IsWInstruction =
7836       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7837   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7838           IsWInstruction) &&
7839          "Unexpected opcode!");
7840   SDValue Src = N->getOperand(0);
7841   EVT VT = N->getValueType(0);
7842   SDLoc DL(N);
7843 
7844   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7845     return SDValue();
7846 
7847   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7848       !isa<ConstantSDNode>(Src.getOperand(1)))
7849     return SDValue();
7850 
7851   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7852   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7853 
7854   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7855   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7856   unsigned ShAmt1 = N->getConstantOperandVal(1);
7857   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7858   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7859     return SDValue();
7860 
7861   Src = Src.getOperand(0);
7862 
7863   // Toggle bit the MSB of the shift.
7864   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7865   if (CombinedShAmt == 0)
7866     return Src;
7867 
7868   SDValue Res = DAG.getNode(
7869       RISCVISD::GREV, DL, VT, Src,
7870       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7871   if (!IsWInstruction)
7872     return Res;
7873 
7874   // Sign extend the result to match the behavior of the rotate. This will be
7875   // selected to GREVIW in isel.
7876   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7877                      DAG.getValueType(MVT::i32));
7878 }
7879 
7880 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7881 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7882 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7883 // not undo itself, but they are redundant.
7884 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7885   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7886   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7887   SDValue Src = N->getOperand(0);
7888 
7889   if (Src.getOpcode() != N->getOpcode())
7890     return SDValue();
7891 
7892   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7893       !isa<ConstantSDNode>(Src.getOperand(1)))
7894     return SDValue();
7895 
7896   unsigned ShAmt1 = N->getConstantOperandVal(1);
7897   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7898   Src = Src.getOperand(0);
7899 
7900   unsigned CombinedShAmt;
7901   if (IsGORC)
7902     CombinedShAmt = ShAmt1 | ShAmt2;
7903   else
7904     CombinedShAmt = ShAmt1 ^ ShAmt2;
7905 
7906   if (CombinedShAmt == 0)
7907     return Src;
7908 
7909   SDLoc DL(N);
7910   return DAG.getNode(
7911       N->getOpcode(), DL, N->getValueType(0), Src,
7912       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7913 }
7914 
7915 // Combine a constant select operand into its use:
7916 //
7917 // (and (select cond, -1, c), x)
7918 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7919 // (or  (select cond, 0, c), x)
7920 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7921 // (xor (select cond, 0, c), x)
7922 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7923 // (add (select cond, 0, c), x)
7924 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7925 // (sub x, (select cond, 0, c))
7926 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7927 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7928                                    SelectionDAG &DAG, bool AllOnes) {
7929   EVT VT = N->getValueType(0);
7930 
7931   // Skip vectors.
7932   if (VT.isVector())
7933     return SDValue();
7934 
7935   if ((Slct.getOpcode() != ISD::SELECT &&
7936        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7937       !Slct.hasOneUse())
7938     return SDValue();
7939 
7940   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7941     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7942   };
7943 
7944   bool SwapSelectOps;
7945   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7946   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7947   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7948   SDValue NonConstantVal;
7949   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7950     SwapSelectOps = false;
7951     NonConstantVal = FalseVal;
7952   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7953     SwapSelectOps = true;
7954     NonConstantVal = TrueVal;
7955   } else
7956     return SDValue();
7957 
7958   // Slct is now know to be the desired identity constant when CC is true.
7959   TrueVal = OtherOp;
7960   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7961   // Unless SwapSelectOps says the condition should be false.
7962   if (SwapSelectOps)
7963     std::swap(TrueVal, FalseVal);
7964 
7965   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7966     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7967                        {Slct.getOperand(0), Slct.getOperand(1),
7968                         Slct.getOperand(2), TrueVal, FalseVal});
7969 
7970   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7971                      {Slct.getOperand(0), TrueVal, FalseVal});
7972 }
7973 
7974 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7975 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7976                                               bool AllOnes) {
7977   SDValue N0 = N->getOperand(0);
7978   SDValue N1 = N->getOperand(1);
7979   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7980     return Result;
7981   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7982     return Result;
7983   return SDValue();
7984 }
7985 
7986 // Transform (add (mul x, c0), c1) ->
7987 //           (add (mul (add x, c1/c0), c0), c1%c0).
7988 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7989 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7990 // to an infinite loop in DAGCombine if transformed.
7991 // Or transform (add (mul x, c0), c1) ->
7992 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7993 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7994 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7995 // lead to an infinite loop in DAGCombine if transformed.
7996 // Or transform (add (mul x, c0), c1) ->
7997 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7998 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7999 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
8000 // lead to an infinite loop in DAGCombine if transformed.
8001 // Or transform (add (mul x, c0), c1) ->
8002 //              (mul (add x, c1/c0), c0).
8003 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
8004 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
8005                                      const RISCVSubtarget &Subtarget) {
8006   // Skip for vector types and larger types.
8007   EVT VT = N->getValueType(0);
8008   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
8009     return SDValue();
8010   // The first operand node must be a MUL and has no other use.
8011   SDValue N0 = N->getOperand(0);
8012   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
8013     return SDValue();
8014   // Check if c0 and c1 match above conditions.
8015   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8016   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8017   if (!N0C || !N1C)
8018     return SDValue();
8019   // If N0C has multiple uses it's possible one of the cases in
8020   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
8021   // in an infinite loop.
8022   if (!N0C->hasOneUse())
8023     return SDValue();
8024   int64_t C0 = N0C->getSExtValue();
8025   int64_t C1 = N1C->getSExtValue();
8026   int64_t CA, CB;
8027   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
8028     return SDValue();
8029   // Search for proper CA (non-zero) and CB that both are simm12.
8030   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
8031       !isInt<12>(C0 * (C1 / C0))) {
8032     CA = C1 / C0;
8033     CB = C1 % C0;
8034   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
8035              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
8036     CA = C1 / C0 + 1;
8037     CB = C1 % C0 - C0;
8038   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
8039              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
8040     CA = C1 / C0 - 1;
8041     CB = C1 % C0 + C0;
8042   } else
8043     return SDValue();
8044   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8045   SDLoc DL(N);
8046   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8047                              DAG.getConstant(CA, DL, VT));
8048   SDValue New1 =
8049       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8050   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8051 }
8052 
8053 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8054                                  const RISCVSubtarget &Subtarget) {
8055   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8056     return V;
8057   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8058     return V;
8059   if (SDValue V = combineBinOpToReduce(N, DAG))
8060     return V;
8061   // fold (add (select lhs, rhs, cc, 0, y), x) ->
8062   //      (select lhs, rhs, cc, x, (add x, y))
8063   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8064 }
8065 
8066 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
8067   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8068   //      (select lhs, rhs, cc, x, (sub x, y))
8069   SDValue N0 = N->getOperand(0);
8070   SDValue N1 = N->getOperand(1);
8071   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8072 }
8073 
8074 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8075                                  const RISCVSubtarget &Subtarget) {
8076   SDValue N0 = N->getOperand(0);
8077   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8078   // extending X. This is safe since we only need the LSB after the shift and
8079   // shift amounts larger than 31 would produce poison. If we wait until
8080   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8081   // to use a BEXT instruction.
8082   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8083       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8084       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8085       N0.hasOneUse()) {
8086     SDLoc DL(N);
8087     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8088     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8089     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8090     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8091                               DAG.getConstant(1, DL, MVT::i64));
8092     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8093   }
8094 
8095   if (SDValue V = combineBinOpToReduce(N, DAG))
8096     return V;
8097 
8098   // fold (and (select lhs, rhs, cc, -1, y), x) ->
8099   //      (select lhs, rhs, cc, x, (and x, y))
8100   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8101 }
8102 
8103 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8104                                 const RISCVSubtarget &Subtarget) {
8105   if (Subtarget.hasStdExtZbp()) {
8106     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8107       return GREV;
8108     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8109       return GORC;
8110     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8111       return SHFL;
8112   }
8113 
8114   if (SDValue V = combineBinOpToReduce(N, DAG))
8115     return V;
8116   // fold (or (select cond, 0, y), x) ->
8117   //      (select cond, x, (or x, y))
8118   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8119 }
8120 
8121 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8122   SDValue N0 = N->getOperand(0);
8123   SDValue N1 = N->getOperand(1);
8124 
8125   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8126   // NOTE: Assumes ROL being legal means ROLW is legal.
8127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8128   if (N0.getOpcode() == RISCVISD::SLLW &&
8129       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8130       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8131     SDLoc DL(N);
8132     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8133                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8134   }
8135 
8136   if (SDValue V = combineBinOpToReduce(N, DAG))
8137     return V;
8138   // fold (xor (select cond, 0, y), x) ->
8139   //      (select cond, x, (xor x, y))
8140   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8141 }
8142 
8143 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with
8144 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
8145 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
8146 // can become a sext.w instead of a shift pair.
8147 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
8148                                    const RISCVSubtarget &Subtarget) {
8149   SDValue N0 = N->getOperand(0);
8150   SDValue N1 = N->getOperand(1);
8151   EVT VT = N->getValueType(0);
8152   EVT OpVT = N0.getValueType();
8153 
8154   if (OpVT != MVT::i64 || !Subtarget.is64Bit())
8155     return SDValue();
8156 
8157   // RHS needs to be a constant.
8158   auto *N1C = dyn_cast<ConstantSDNode>(N1);
8159   if (!N1C)
8160     return SDValue();
8161 
8162   // LHS needs to be (and X, 0xffffffff).
8163   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
8164       !isa<ConstantSDNode>(N0.getOperand(1)) ||
8165       N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
8166     return SDValue();
8167 
8168   // Looking for an equality compare.
8169   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
8170   if (!isIntEqualitySetCC(Cond))
8171     return SDValue();
8172 
8173   const APInt &C1 = cast<ConstantSDNode>(N1)->getAPIntValue();
8174 
8175   SDLoc dl(N);
8176   // If the constant is larger than 2^32 - 1 it is impossible for both sides
8177   // to be equal.
8178   if (C1.getActiveBits() > 32)
8179     return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
8180 
8181   SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
8182                                N0.getOperand(0), DAG.getValueType(MVT::i32));
8183   return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
8184                                                       dl, OpVT), Cond);
8185 }
8186 
8187 static SDValue
8188 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8189                                 const RISCVSubtarget &Subtarget) {
8190   SDValue Src = N->getOperand(0);
8191   EVT VT = N->getValueType(0);
8192 
8193   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8194   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8195       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8196     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8197                        Src.getOperand(0));
8198 
8199   // Fold (i64 (sext_inreg (abs X), i32)) ->
8200   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8201   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8202   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8203   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8204   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8205   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8206   // may get combined into an earlier operation so we need to use
8207   // ComputeNumSignBits.
8208   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8209   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8210   // we can't assume that X has 33 sign bits. We must check.
8211   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8212       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8213       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8214       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8215     SDLoc DL(N);
8216     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8217     SDValue Neg =
8218         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8219     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8220                       DAG.getValueType(MVT::i32));
8221     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8222   }
8223 
8224   return SDValue();
8225 }
8226 
8227 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8228 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8229 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8230                                              bool Commute = false) {
8231   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8232           N->getOpcode() == RISCVISD::SUB_VL) &&
8233          "Unexpected opcode");
8234   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8235   SDValue Op0 = N->getOperand(0);
8236   SDValue Op1 = N->getOperand(1);
8237   if (Commute)
8238     std::swap(Op0, Op1);
8239 
8240   MVT VT = N->getSimpleValueType(0);
8241 
8242   // Determine the narrow size for a widening add/sub.
8243   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8244   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8245                                   VT.getVectorElementCount());
8246 
8247   SDValue Mask = N->getOperand(2);
8248   SDValue VL = N->getOperand(3);
8249 
8250   SDLoc DL(N);
8251 
8252   // If the RHS is a sext or zext, we can form a widening op.
8253   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8254        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8255       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8256     unsigned ExtOpc = Op1.getOpcode();
8257     Op1 = Op1.getOperand(0);
8258     // Re-introduce narrower extends if needed.
8259     if (Op1.getValueType() != NarrowVT)
8260       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8261 
8262     unsigned WOpc;
8263     if (ExtOpc == RISCVISD::VSEXT_VL)
8264       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8265     else
8266       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8267 
8268     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8269   }
8270 
8271   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8272   // sext/zext?
8273 
8274   return SDValue();
8275 }
8276 
8277 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8278 // vwsub(u).vv/vx.
8279 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8280   SDValue Op0 = N->getOperand(0);
8281   SDValue Op1 = N->getOperand(1);
8282   SDValue Mask = N->getOperand(2);
8283   SDValue VL = N->getOperand(3);
8284 
8285   MVT VT = N->getSimpleValueType(0);
8286   MVT NarrowVT = Op1.getSimpleValueType();
8287   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8288 
8289   unsigned VOpc;
8290   switch (N->getOpcode()) {
8291   default: llvm_unreachable("Unexpected opcode");
8292   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8293   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8294   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8295   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8296   }
8297 
8298   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8299                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8300 
8301   SDLoc DL(N);
8302 
8303   // If the LHS is a sext or zext, we can narrow this op to the same size as
8304   // the RHS.
8305   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8306        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8307       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8308     unsigned ExtOpc = Op0.getOpcode();
8309     Op0 = Op0.getOperand(0);
8310     // Re-introduce narrower extends if needed.
8311     if (Op0.getValueType() != NarrowVT)
8312       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8313     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8314   }
8315 
8316   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8317                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8318 
8319   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8320   // to commute and use a vwadd(u).vx instead.
8321   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8322       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8323     Op0 = Op0.getOperand(1);
8324 
8325     // See if have enough sign bits or zero bits in the scalar to use a
8326     // widening add/sub by splatting to smaller element size.
8327     unsigned EltBits = VT.getScalarSizeInBits();
8328     unsigned ScalarBits = Op0.getValueSizeInBits();
8329     // Make sure we're getting all element bits from the scalar register.
8330     // FIXME: Support implicit sign extension of vmv.v.x?
8331     if (ScalarBits < EltBits)
8332       return SDValue();
8333 
8334     if (IsSigned) {
8335       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8336         return SDValue();
8337     } else {
8338       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8339       if (!DAG.MaskedValueIsZero(Op0, Mask))
8340         return SDValue();
8341     }
8342 
8343     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8344                       DAG.getUNDEF(NarrowVT), Op0, VL);
8345     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8346   }
8347 
8348   return SDValue();
8349 }
8350 
8351 // Try to form VWMUL, VWMULU or VWMULSU.
8352 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8353 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8354                                        bool Commute) {
8355   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8356   SDValue Op0 = N->getOperand(0);
8357   SDValue Op1 = N->getOperand(1);
8358   if (Commute)
8359     std::swap(Op0, Op1);
8360 
8361   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8362   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8363   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8364   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8365     return SDValue();
8366 
8367   SDValue Mask = N->getOperand(2);
8368   SDValue VL = N->getOperand(3);
8369 
8370   // Make sure the mask and VL match.
8371   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8372     return SDValue();
8373 
8374   MVT VT = N->getSimpleValueType(0);
8375 
8376   // Determine the narrow size for a widening multiply.
8377   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8378   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8379                                   VT.getVectorElementCount());
8380 
8381   SDLoc DL(N);
8382 
8383   // See if the other operand is the same opcode.
8384   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8385     if (!Op1.hasOneUse())
8386       return SDValue();
8387 
8388     // Make sure the mask and VL match.
8389     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8390       return SDValue();
8391 
8392     Op1 = Op1.getOperand(0);
8393   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8394     // The operand is a splat of a scalar.
8395 
8396     // The pasthru must be undef for tail agnostic
8397     if (!Op1.getOperand(0).isUndef())
8398       return SDValue();
8399     // The VL must be the same.
8400     if (Op1.getOperand(2) != VL)
8401       return SDValue();
8402 
8403     // Get the scalar value.
8404     Op1 = Op1.getOperand(1);
8405 
8406     // See if have enough sign bits or zero bits in the scalar to use a
8407     // widening multiply by splatting to smaller element size.
8408     unsigned EltBits = VT.getScalarSizeInBits();
8409     unsigned ScalarBits = Op1.getValueSizeInBits();
8410     // Make sure we're getting all element bits from the scalar register.
8411     // FIXME: Support implicit sign extension of vmv.v.x?
8412     if (ScalarBits < EltBits)
8413       return SDValue();
8414 
8415     // If the LHS is a sign extend, try to use vwmul.
8416     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8417       // Can use vwmul.
8418     } else {
8419       // Otherwise try to use vwmulu or vwmulsu.
8420       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8421       if (DAG.MaskedValueIsZero(Op1, Mask))
8422         IsVWMULSU = IsSignExt;
8423       else
8424         return SDValue();
8425     }
8426 
8427     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8428                       DAG.getUNDEF(NarrowVT), Op1, VL);
8429   } else
8430     return SDValue();
8431 
8432   Op0 = Op0.getOperand(0);
8433 
8434   // Re-introduce narrower extends if needed.
8435   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8436   if (Op0.getValueType() != NarrowVT)
8437     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8438   // vwmulsu requires second operand to be zero extended.
8439   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8440   if (Op1.getValueType() != NarrowVT)
8441     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8442 
8443   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8444   if (!IsVWMULSU)
8445     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8446   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8447 }
8448 
8449 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8450   switch (Op.getOpcode()) {
8451   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8452   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8453   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8454   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8455   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8456   }
8457 
8458   return RISCVFPRndMode::Invalid;
8459 }
8460 
8461 // Fold
8462 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8463 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8464 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8465 //   (fp_to_int (fceil X))      -> fcvt X, rup
8466 //   (fp_to_int (fround X))     -> fcvt X, rmm
8467 static SDValue performFP_TO_INTCombine(SDNode *N,
8468                                        TargetLowering::DAGCombinerInfo &DCI,
8469                                        const RISCVSubtarget &Subtarget) {
8470   SelectionDAG &DAG = DCI.DAG;
8471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8472   MVT XLenVT = Subtarget.getXLenVT();
8473 
8474   // Only handle XLen or i32 types. Other types narrower than XLen will
8475   // eventually be legalized to XLenVT.
8476   EVT VT = N->getValueType(0);
8477   if (VT != MVT::i32 && VT != XLenVT)
8478     return SDValue();
8479 
8480   SDValue Src = N->getOperand(0);
8481 
8482   // Ensure the FP type is also legal.
8483   if (!TLI.isTypeLegal(Src.getValueType()))
8484     return SDValue();
8485 
8486   // Don't do this for f16 with Zfhmin and not Zfh.
8487   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8488     return SDValue();
8489 
8490   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8491   if (FRM == RISCVFPRndMode::Invalid)
8492     return SDValue();
8493 
8494   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8495 
8496   unsigned Opc;
8497   if (VT == XLenVT)
8498     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8499   else
8500     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8501 
8502   SDLoc DL(N);
8503   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8504                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8505   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8506 }
8507 
8508 // Fold
8509 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8510 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8511 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8512 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8513 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8514 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8515                                        TargetLowering::DAGCombinerInfo &DCI,
8516                                        const RISCVSubtarget &Subtarget) {
8517   SelectionDAG &DAG = DCI.DAG;
8518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8519   MVT XLenVT = Subtarget.getXLenVT();
8520 
8521   // Only handle XLen types. Other types narrower than XLen will eventually be
8522   // legalized to XLenVT.
8523   EVT DstVT = N->getValueType(0);
8524   if (DstVT != XLenVT)
8525     return SDValue();
8526 
8527   SDValue Src = N->getOperand(0);
8528 
8529   // Ensure the FP type is also legal.
8530   if (!TLI.isTypeLegal(Src.getValueType()))
8531     return SDValue();
8532 
8533   // Don't do this for f16 with Zfhmin and not Zfh.
8534   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8535     return SDValue();
8536 
8537   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8538 
8539   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8540   if (FRM == RISCVFPRndMode::Invalid)
8541     return SDValue();
8542 
8543   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8544 
8545   unsigned Opc;
8546   if (SatVT == DstVT)
8547     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8548   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8549     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8550   else
8551     return SDValue();
8552   // FIXME: Support other SatVTs by clamping before or after the conversion.
8553 
8554   Src = Src.getOperand(0);
8555 
8556   SDLoc DL(N);
8557   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8558                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8559 
8560   // RISCV FP-to-int conversions saturate to the destination register size, but
8561   // don't produce 0 for nan.
8562   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8563   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8564 }
8565 
8566 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8567 // smaller than XLenVT.
8568 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8569                                         const RISCVSubtarget &Subtarget) {
8570   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8571 
8572   SDValue Src = N->getOperand(0);
8573   if (Src.getOpcode() != ISD::BSWAP)
8574     return SDValue();
8575 
8576   EVT VT = N->getValueType(0);
8577   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8578       !isPowerOf2_32(VT.getSizeInBits()))
8579     return SDValue();
8580 
8581   SDLoc DL(N);
8582   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8583                      DAG.getConstant(7, DL, VT));
8584 }
8585 
8586 // Convert from one FMA opcode to another based on whether we are negating the
8587 // multiply result and/or the accumulator.
8588 // NOTE: Only supports RVV operations with VL.
8589 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
8590   assert((NegMul || NegAcc) && "Not negating anything?");
8591 
8592   // Negating the multiply result changes ADD<->SUB and toggles 'N'.
8593   if (NegMul) {
8594     // clang-format off
8595     switch (Opcode) {
8596     default: llvm_unreachable("Unexpected opcode");
8597     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFNMSUB_VL; break;
8598     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL;  break;
8599     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL;  break;
8600     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFNMADD_VL; break;
8601     }
8602     // clang-format on
8603   }
8604 
8605   // Negating the accumulator changes ADD<->SUB.
8606   if (NegAcc) {
8607     // clang-format off
8608     switch (Opcode) {
8609     default: llvm_unreachable("Unexpected opcode");
8610     case RISCVISD::VFMADD_VL:  Opcode = RISCVISD::VFMSUB_VL;  break;
8611     case RISCVISD::VFMSUB_VL:  Opcode = RISCVISD::VFMADD_VL;  break;
8612     case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8613     case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8614     }
8615     // clang-format on
8616   }
8617 
8618   return Opcode;
8619 }
8620 
8621 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
8622                                  const RISCVSubtarget &Subtarget) {
8623   assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
8624 
8625   if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
8626     return SDValue();
8627 
8628   if (!isa<ConstantSDNode>(N->getOperand(1)))
8629     return SDValue();
8630   uint64_t ShAmt = N->getConstantOperandVal(1);
8631   if (ShAmt > 32)
8632     return SDValue();
8633 
8634   SDValue N0 = N->getOperand(0);
8635 
8636   // Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
8637   // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
8638   // SLLIW+SRAIW. SLLI+SRAI have compressed forms.
8639   if (ShAmt < 32 &&
8640       N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
8641       cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
8642       N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
8643       isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
8644     uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
8645     if (LShAmt < 32) {
8646       SDLoc ShlDL(N0.getOperand(0));
8647       SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
8648                                 N0.getOperand(0).getOperand(0),
8649                                 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
8650       SDLoc DL(N);
8651       return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
8652                          DAG.getConstant(ShAmt + 32, DL, MVT::i64));
8653     }
8654   }
8655 
8656   // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
8657   // FIXME: Should this be a generic combine? There's a similar combine on X86.
8658   //
8659   // Also try these folds where an add or sub is in the middle.
8660   // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
8661   // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
8662   SDValue Shl;
8663   ConstantSDNode *AddC = nullptr;
8664 
8665   // We might have an ADD or SUB between the SRA and SHL.
8666   bool IsAdd = N0.getOpcode() == ISD::ADD;
8667   if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
8668     if (!N0.hasOneUse())
8669       return SDValue();
8670     // Other operand needs to be a constant we can modify.
8671     AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
8672     if (!AddC)
8673       return SDValue();
8674 
8675     // AddC needs to have at least 32 trailing zeros.
8676     if (AddC->getAPIntValue().countTrailingZeros() < 32)
8677       return SDValue();
8678 
8679     Shl = N0.getOperand(IsAdd ? 0 : 1);
8680   } else {
8681     // Not an ADD or SUB.
8682     Shl = N0;
8683   }
8684 
8685   // Look for a shift left by 32.
8686   if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() ||
8687       !isa<ConstantSDNode>(Shl.getOperand(1)) ||
8688       Shl.getConstantOperandVal(1) != 32)
8689     return SDValue();
8690 
8691   SDLoc DL(N);
8692   SDValue In = Shl.getOperand(0);
8693 
8694   // If we looked through an ADD or SUB, we need to rebuild it with the shifted
8695   // constant.
8696   if (AddC) {
8697     SDValue ShiftedAddC =
8698         DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
8699     if (IsAdd)
8700       In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
8701     else
8702       In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
8703   }
8704 
8705   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
8706                              DAG.getValueType(MVT::i32));
8707   if (ShAmt == 32)
8708     return SExt;
8709 
8710   return DAG.getNode(
8711       ISD::SHL, DL, MVT::i64, SExt,
8712       DAG.getConstant(32 - ShAmt, DL, MVT::i64));
8713 }
8714 
8715 // Perform common combines for BR_CC and SELECT_CC condtions.
8716 static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
8717                        SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
8718   ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
8719   if (!ISD::isIntEqualitySetCC(CCVal))
8720     return false;
8721 
8722   // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
8723   // Sometimes the setcc is introduced after br_cc/select_cc has been formed.
8724   if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8725       LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8726     // If we're looking for eq 0 instead of ne 0, we need to invert the
8727     // condition.
8728     bool Invert = CCVal == ISD::SETEQ;
8729     CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8730     if (Invert)
8731       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8732 
8733     RHS = LHS.getOperand(1);
8734     LHS = LHS.getOperand(0);
8735     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8736 
8737     CC = DAG.getCondCode(CCVal);
8738     return true;
8739   }
8740 
8741   // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
8742   if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) {
8743     RHS = LHS.getOperand(1);
8744     LHS = LHS.getOperand(0);
8745     return true;
8746   }
8747 
8748   // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
8749   if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
8750       LHS.getOperand(1).getOpcode() == ISD::Constant) {
8751     SDValue LHS0 = LHS.getOperand(0);
8752     if (LHS0.getOpcode() == ISD::AND &&
8753         LHS0.getOperand(1).getOpcode() == ISD::Constant) {
8754       uint64_t Mask = LHS0.getConstantOperandVal(1);
8755       uint64_t ShAmt = LHS.getConstantOperandVal(1);
8756       if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
8757         CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
8758         CC = DAG.getCondCode(CCVal);
8759 
8760         ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
8761         LHS = LHS0.getOperand(0);
8762         if (ShAmt != 0)
8763           LHS =
8764               DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
8765                           DAG.getConstant(ShAmt, DL, LHS.getValueType()));
8766         return true;
8767       }
8768     }
8769   }
8770 
8771   // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
8772   // This can occur when legalizing some floating point comparisons.
8773   APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8774   if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8775     CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8776     CC = DAG.getCondCode(CCVal);
8777     RHS = DAG.getConstant(0, DL, LHS.getValueType());
8778     return true;
8779   }
8780 
8781   return false;
8782 }
8783 
8784 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8785                                                DAGCombinerInfo &DCI) const {
8786   SelectionDAG &DAG = DCI.DAG;
8787 
8788   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8789   // bits are demanded. N will be added to the Worklist if it was not deleted.
8790   // Caller should return SDValue(N, 0) if this returns true.
8791   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8792     SDValue Op = N->getOperand(OpNo);
8793     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8794     if (!SimplifyDemandedBits(Op, Mask, DCI))
8795       return false;
8796 
8797     if (N->getOpcode() != ISD::DELETED_NODE)
8798       DCI.AddToWorklist(N);
8799     return true;
8800   };
8801 
8802   switch (N->getOpcode()) {
8803   default:
8804     break;
8805   case RISCVISD::SplitF64: {
8806     SDValue Op0 = N->getOperand(0);
8807     // If the input to SplitF64 is just BuildPairF64 then the operation is
8808     // redundant. Instead, use BuildPairF64's operands directly.
8809     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8810       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8811 
8812     if (Op0->isUndef()) {
8813       SDValue Lo = DAG.getUNDEF(MVT::i32);
8814       SDValue Hi = DAG.getUNDEF(MVT::i32);
8815       return DCI.CombineTo(N, Lo, Hi);
8816     }
8817 
8818     SDLoc DL(N);
8819 
8820     // It's cheaper to materialise two 32-bit integers than to load a double
8821     // from the constant pool and transfer it to integer registers through the
8822     // stack.
8823     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8824       APInt V = C->getValueAPF().bitcastToAPInt();
8825       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8826       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8827       return DCI.CombineTo(N, Lo, Hi);
8828     }
8829 
8830     // This is a target-specific version of a DAGCombine performed in
8831     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8832     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8833     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8834     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8835         !Op0.getNode()->hasOneUse())
8836       break;
8837     SDValue NewSplitF64 =
8838         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8839                     Op0.getOperand(0));
8840     SDValue Lo = NewSplitF64.getValue(0);
8841     SDValue Hi = NewSplitF64.getValue(1);
8842     APInt SignBit = APInt::getSignMask(32);
8843     if (Op0.getOpcode() == ISD::FNEG) {
8844       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8845                                   DAG.getConstant(SignBit, DL, MVT::i32));
8846       return DCI.CombineTo(N, Lo, NewHi);
8847     }
8848     assert(Op0.getOpcode() == ISD::FABS);
8849     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8850                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8851     return DCI.CombineTo(N, Lo, NewHi);
8852   }
8853   case RISCVISD::SLLW:
8854   case RISCVISD::SRAW:
8855   case RISCVISD::SRLW: {
8856     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8857     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8858         SimplifyDemandedLowBitsHelper(1, 5))
8859       return SDValue(N, 0);
8860 
8861     break;
8862   }
8863   case ISD::ROTR:
8864   case ISD::ROTL:
8865   case RISCVISD::RORW:
8866   case RISCVISD::ROLW: {
8867     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8868       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8869       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8870           SimplifyDemandedLowBitsHelper(1, 5))
8871         return SDValue(N, 0);
8872     }
8873 
8874     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8875   }
8876   case RISCVISD::CLZW:
8877   case RISCVISD::CTZW: {
8878     // Only the lower 32 bits of the first operand are read
8879     if (SimplifyDemandedLowBitsHelper(0, 32))
8880       return SDValue(N, 0);
8881     break;
8882   }
8883   case RISCVISD::GREV:
8884   case RISCVISD::GORC: {
8885     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8886     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8887     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8888     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8889       return SDValue(N, 0);
8890 
8891     return combineGREVI_GORCI(N, DAG);
8892   }
8893   case RISCVISD::GREVW:
8894   case RISCVISD::GORCW: {
8895     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8896     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8897         SimplifyDemandedLowBitsHelper(1, 5))
8898       return SDValue(N, 0);
8899 
8900     break;
8901   }
8902   case RISCVISD::SHFL:
8903   case RISCVISD::UNSHFL: {
8904     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8905     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8906     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8907     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8908       return SDValue(N, 0);
8909 
8910     break;
8911   }
8912   case RISCVISD::SHFLW:
8913   case RISCVISD::UNSHFLW: {
8914     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8915     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8916         SimplifyDemandedLowBitsHelper(1, 4))
8917       return SDValue(N, 0);
8918 
8919     break;
8920   }
8921   case RISCVISD::BCOMPRESSW:
8922   case RISCVISD::BDECOMPRESSW: {
8923     // Only the lower 32 bits of LHS and RHS are read.
8924     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8925         SimplifyDemandedLowBitsHelper(1, 32))
8926       return SDValue(N, 0);
8927 
8928     break;
8929   }
8930   case RISCVISD::FSR:
8931   case RISCVISD::FSL:
8932   case RISCVISD::FSRW:
8933   case RISCVISD::FSLW: {
8934     bool IsWInstruction =
8935         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8936     unsigned BitWidth =
8937         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8938     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8939     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8940     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8941       return SDValue(N, 0);
8942 
8943     break;
8944   }
8945   case RISCVISD::FMV_X_ANYEXTH:
8946   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8947     SDLoc DL(N);
8948     SDValue Op0 = N->getOperand(0);
8949     MVT VT = N->getSimpleValueType(0);
8950     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8951     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8952     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8953     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8954          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8955         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8956          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8957       assert(Op0.getOperand(0).getValueType() == VT &&
8958              "Unexpected value type!");
8959       return Op0.getOperand(0);
8960     }
8961 
8962     // This is a target-specific version of a DAGCombine performed in
8963     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8964     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8965     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8966     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8967         !Op0.getNode()->hasOneUse())
8968       break;
8969     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8970     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8971     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8972     if (Op0.getOpcode() == ISD::FNEG)
8973       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8974                          DAG.getConstant(SignBit, DL, VT));
8975 
8976     assert(Op0.getOpcode() == ISD::FABS);
8977     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8978                        DAG.getConstant(~SignBit, DL, VT));
8979   }
8980   case ISD::ADD:
8981     return performADDCombine(N, DAG, Subtarget);
8982   case ISD::SUB:
8983     return performSUBCombine(N, DAG);
8984   case ISD::AND:
8985     return performANDCombine(N, DAG, Subtarget);
8986   case ISD::OR:
8987     return performORCombine(N, DAG, Subtarget);
8988   case ISD::XOR:
8989     return performXORCombine(N, DAG);
8990   case ISD::FADD:
8991   case ISD::UMAX:
8992   case ISD::UMIN:
8993   case ISD::SMAX:
8994   case ISD::SMIN:
8995   case ISD::FMAXNUM:
8996   case ISD::FMINNUM:
8997     return combineBinOpToReduce(N, DAG);
8998   case ISD::SETCC:
8999     return performSETCCCombine(N, DAG, Subtarget);
9000   case ISD::SIGN_EXTEND_INREG:
9001     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
9002   case ISD::ZERO_EXTEND:
9003     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
9004     // type legalization. This is safe because fp_to_uint produces poison if
9005     // it overflows.
9006     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
9007       SDValue Src = N->getOperand(0);
9008       if (Src.getOpcode() == ISD::FP_TO_UINT &&
9009           isTypeLegal(Src.getOperand(0).getValueType()))
9010         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
9011                            Src.getOperand(0));
9012       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
9013           isTypeLegal(Src.getOperand(1).getValueType())) {
9014         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
9015         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
9016                                   Src.getOperand(0), Src.getOperand(1));
9017         DCI.CombineTo(N, Res);
9018         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
9019         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
9020         return SDValue(N, 0); // Return N so it doesn't get rechecked.
9021       }
9022     }
9023     return SDValue();
9024   case RISCVISD::SELECT_CC: {
9025     // Transform
9026     SDValue LHS = N->getOperand(0);
9027     SDValue RHS = N->getOperand(1);
9028     SDValue CC = N->getOperand(2);
9029     SDValue TrueV = N->getOperand(3);
9030     SDValue FalseV = N->getOperand(4);
9031     SDLoc DL(N);
9032 
9033     // If the True and False values are the same, we don't need a select_cc.
9034     if (TrueV == FalseV)
9035       return TrueV;
9036 
9037     if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
9038       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
9039                          {LHS, RHS, CC, TrueV, FalseV});
9040 
9041     return SDValue();
9042   }
9043   case RISCVISD::BR_CC: {
9044     SDValue LHS = N->getOperand(1);
9045     SDValue RHS = N->getOperand(2);
9046     SDValue CC = N->getOperand(3);
9047     SDLoc DL(N);
9048 
9049     if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
9050       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
9051                          N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
9052 
9053     return SDValue();
9054   }
9055   case ISD::BITREVERSE:
9056     return performBITREVERSECombine(N, DAG, Subtarget);
9057   case ISD::FP_TO_SINT:
9058   case ISD::FP_TO_UINT:
9059     return performFP_TO_INTCombine(N, DCI, Subtarget);
9060   case ISD::FP_TO_SINT_SAT:
9061   case ISD::FP_TO_UINT_SAT:
9062     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
9063   case ISD::FCOPYSIGN: {
9064     EVT VT = N->getValueType(0);
9065     if (!VT.isVector())
9066       break;
9067     // There is a form of VFSGNJ which injects the negated sign of its second
9068     // operand. Try and bubble any FNEG up after the extend/round to produce
9069     // this optimized pattern. Avoid modifying cases where FP_ROUND and
9070     // TRUNC=1.
9071     SDValue In2 = N->getOperand(1);
9072     // Avoid cases where the extend/round has multiple uses, as duplicating
9073     // those is typically more expensive than removing a fneg.
9074     if (!In2.hasOneUse())
9075       break;
9076     if (In2.getOpcode() != ISD::FP_EXTEND &&
9077         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
9078       break;
9079     In2 = In2.getOperand(0);
9080     if (In2.getOpcode() != ISD::FNEG)
9081       break;
9082     SDLoc DL(N);
9083     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
9084     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
9085                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
9086   }
9087   case ISD::MGATHER:
9088   case ISD::MSCATTER:
9089   case ISD::VP_GATHER:
9090   case ISD::VP_SCATTER: {
9091     if (!DCI.isBeforeLegalize())
9092       break;
9093     SDValue Index, ScaleOp;
9094     bool IsIndexScaled = false;
9095     bool IsIndexSigned = false;
9096     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
9097       Index = VPGSN->getIndex();
9098       ScaleOp = VPGSN->getScale();
9099       IsIndexScaled = VPGSN->isIndexScaled();
9100       IsIndexSigned = VPGSN->isIndexSigned();
9101     } else {
9102       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
9103       Index = MGSN->getIndex();
9104       ScaleOp = MGSN->getScale();
9105       IsIndexScaled = MGSN->isIndexScaled();
9106       IsIndexSigned = MGSN->isIndexSigned();
9107     }
9108     EVT IndexVT = Index.getValueType();
9109     MVT XLenVT = Subtarget.getXLenVT();
9110     // RISCV indexed loads only support the "unsigned unscaled" addressing
9111     // mode, so anything else must be manually legalized.
9112     bool NeedsIdxLegalization =
9113         IsIndexScaled ||
9114         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
9115     if (!NeedsIdxLegalization)
9116       break;
9117 
9118     SDLoc DL(N);
9119 
9120     // Any index legalization should first promote to XLenVT, so we don't lose
9121     // bits when scaling. This may create an illegal index type so we let
9122     // LLVM's legalization take care of the splitting.
9123     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
9124     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
9125       IndexVT = IndexVT.changeVectorElementType(XLenVT);
9126       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9127                           DL, IndexVT, Index);
9128     }
9129 
9130     if (IsIndexScaled) {
9131       // Manually scale the indices.
9132       // TODO: Sanitize the scale operand here?
9133       // TODO: For VP nodes, should we use VP_SHL here?
9134       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
9135       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
9136       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
9137       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
9138       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
9139     }
9140 
9141     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
9142     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
9143       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
9144                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
9145                               ScaleOp, VPGN->getMask(),
9146                               VPGN->getVectorLength()},
9147                              VPGN->getMemOperand(), NewIndexTy);
9148     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
9149       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
9150                               {VPSN->getChain(), VPSN->getValue(),
9151                                VPSN->getBasePtr(), Index, ScaleOp,
9152                                VPSN->getMask(), VPSN->getVectorLength()},
9153                               VPSN->getMemOperand(), NewIndexTy);
9154     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
9155       return DAG.getMaskedGather(
9156           N->getVTList(), MGN->getMemoryVT(), DL,
9157           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
9158            MGN->getBasePtr(), Index, ScaleOp},
9159           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
9160     const auto *MSN = cast<MaskedScatterSDNode>(N);
9161     return DAG.getMaskedScatter(
9162         N->getVTList(), MSN->getMemoryVT(), DL,
9163         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
9164          Index, ScaleOp},
9165         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
9166   }
9167   case RISCVISD::SRA_VL:
9168   case RISCVISD::SRL_VL:
9169   case RISCVISD::SHL_VL: {
9170     SDValue ShAmt = N->getOperand(1);
9171     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9172       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9173       SDLoc DL(N);
9174       SDValue VL = N->getOperand(3);
9175       EVT VT = N->getValueType(0);
9176       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9177                           ShAmt.getOperand(1), VL);
9178       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
9179                          N->getOperand(2), N->getOperand(3));
9180     }
9181     break;
9182   }
9183   case ISD::SRA:
9184     if (SDValue V = performSRACombine(N, DAG, Subtarget))
9185       return V;
9186     LLVM_FALLTHROUGH;
9187   case ISD::SRL:
9188   case ISD::SHL: {
9189     SDValue ShAmt = N->getOperand(1);
9190     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9191       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9192       SDLoc DL(N);
9193       EVT VT = N->getValueType(0);
9194       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9195                           ShAmt.getOperand(1),
9196                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
9197       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
9198     }
9199     break;
9200   }
9201   case RISCVISD::ADD_VL:
9202     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
9203       return V;
9204     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
9205   case RISCVISD::SUB_VL:
9206     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
9207   case RISCVISD::VWADD_W_VL:
9208   case RISCVISD::VWADDU_W_VL:
9209   case RISCVISD::VWSUB_W_VL:
9210   case RISCVISD::VWSUBU_W_VL:
9211     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
9212   case RISCVISD::MUL_VL:
9213     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
9214       return V;
9215     // Mul is commutative.
9216     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
9217   case RISCVISD::VFMADD_VL:
9218   case RISCVISD::VFNMADD_VL:
9219   case RISCVISD::VFMSUB_VL:
9220   case RISCVISD::VFNMSUB_VL: {
9221     // Fold FNEG_VL into FMA opcodes.
9222     SDValue A = N->getOperand(0);
9223     SDValue B = N->getOperand(1);
9224     SDValue C = N->getOperand(2);
9225     SDValue Mask = N->getOperand(3);
9226     SDValue VL = N->getOperand(4);
9227 
9228     auto invertIfNegative = [&Mask, &VL](SDValue &V) {
9229       if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
9230           V.getOperand(2) == VL) {
9231         // Return the negated input.
9232         V = V.getOperand(0);
9233         return true;
9234       }
9235 
9236       return false;
9237     };
9238 
9239     bool NegA = invertIfNegative(A);
9240     bool NegB = invertIfNegative(B);
9241     bool NegC = invertIfNegative(C);
9242 
9243     // If no operands are negated, we're done.
9244     if (!NegA && !NegB && !NegC)
9245       return SDValue();
9246 
9247     unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
9248     return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
9249                        VL);
9250   }
9251   case ISD::STORE: {
9252     auto *Store = cast<StoreSDNode>(N);
9253     SDValue Val = Store->getValue();
9254     // Combine store of vmv.x.s to vse with VL of 1.
9255     // FIXME: Support FP.
9256     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
9257       SDValue Src = Val.getOperand(0);
9258       MVT VecVT = Src.getSimpleValueType();
9259       EVT MemVT = Store->getMemoryVT();
9260       // The memory VT and the element type must match.
9261       if (MemVT == VecVT.getVectorElementType()) {
9262         SDLoc DL(N);
9263         MVT MaskVT = getMaskTypeFor(VecVT);
9264         return DAG.getStoreVP(
9265             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
9266             DAG.getConstant(1, DL, MaskVT),
9267             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
9268             Store->getMemOperand(), Store->getAddressingMode(),
9269             Store->isTruncatingStore(), /*IsCompress*/ false);
9270       }
9271     }
9272 
9273     break;
9274   }
9275   case ISD::SPLAT_VECTOR: {
9276     EVT VT = N->getValueType(0);
9277     // Only perform this combine on legal MVT types.
9278     if (!isTypeLegal(VT))
9279       break;
9280     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9281                                          DAG, Subtarget))
9282       return Gather;
9283     break;
9284   }
9285   case RISCVISD::VMV_V_X_VL: {
9286     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9287     // scalar input.
9288     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9289     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9290     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9291       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9292         return SDValue(N, 0);
9293 
9294     break;
9295   }
9296   case ISD::INTRINSIC_WO_CHAIN: {
9297     unsigned IntNo = N->getConstantOperandVal(0);
9298     switch (IntNo) {
9299       // By default we do not combine any intrinsic.
9300     default:
9301       return SDValue();
9302     case Intrinsic::riscv_vcpop:
9303     case Intrinsic::riscv_vcpop_mask:
9304     case Intrinsic::riscv_vfirst:
9305     case Intrinsic::riscv_vfirst_mask: {
9306       SDValue VL = N->getOperand(2);
9307       if (IntNo == Intrinsic::riscv_vcpop_mask ||
9308           IntNo == Intrinsic::riscv_vfirst_mask)
9309         VL = N->getOperand(3);
9310       if (!isNullConstant(VL))
9311         return SDValue();
9312       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9313       SDLoc DL(N);
9314       EVT VT = N->getValueType(0);
9315       if (IntNo == Intrinsic::riscv_vfirst ||
9316           IntNo == Intrinsic::riscv_vfirst_mask)
9317         return DAG.getConstant(-1, DL, VT);
9318       return DAG.getConstant(0, DL, VT);
9319     }
9320     }
9321   }
9322   case ISD::BITCAST: {
9323     assert(Subtarget.useRVVForFixedLengthVectors());
9324     SDValue N0 = N->getOperand(0);
9325     EVT VT = N->getValueType(0);
9326     EVT SrcVT = N0.getValueType();
9327     // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
9328     // type, widen both sides to avoid a trip through memory.
9329     if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
9330         VT.isScalarInteger()) {
9331       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
9332       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
9333       Ops[0] = N0;
9334       SDLoc DL(N);
9335       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
9336       N0 = DAG.getBitcast(MVT::i8, N0);
9337       return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
9338     }
9339 
9340     return SDValue();
9341   }
9342   }
9343 
9344   return SDValue();
9345 }
9346 
9347 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9348     const SDNode *N, CombineLevel Level) const {
9349   assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
9350           N->getOpcode() == ISD::SRL) &&
9351          "Expected shift op");
9352 
9353   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9354   // materialised in fewer instructions than `(OP _, c1)`:
9355   //
9356   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9357   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9358   SDValue N0 = N->getOperand(0);
9359   EVT Ty = N0.getValueType();
9360   if (Ty.isScalarInteger() &&
9361       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9362     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9363     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9364     if (C1 && C2) {
9365       const APInt &C1Int = C1->getAPIntValue();
9366       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9367 
9368       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9369       // and the combine should happen, to potentially allow further combines
9370       // later.
9371       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9372           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9373         return true;
9374 
9375       // We can materialise `c1` in an add immediate, so it's "free", and the
9376       // combine should be prevented.
9377       if (C1Int.getMinSignedBits() <= 64 &&
9378           isLegalAddImmediate(C1Int.getSExtValue()))
9379         return false;
9380 
9381       // Neither constant will fit into an immediate, so find materialisation
9382       // costs.
9383       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9384                                               Subtarget.getFeatureBits(),
9385                                               /*CompressionCost*/true);
9386       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9387           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9388           /*CompressionCost*/true);
9389 
9390       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9391       // combine should be prevented.
9392       if (C1Cost < ShiftedC1Cost)
9393         return false;
9394     }
9395   }
9396   return true;
9397 }
9398 
9399 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9400     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9401     TargetLoweringOpt &TLO) const {
9402   // Delay this optimization as late as possible.
9403   if (!TLO.LegalOps)
9404     return false;
9405 
9406   EVT VT = Op.getValueType();
9407   if (VT.isVector())
9408     return false;
9409 
9410   // Only handle AND for now.
9411   unsigned Opcode = Op.getOpcode();
9412   if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
9413     return false;
9414 
9415   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9416   if (!C)
9417     return false;
9418 
9419   const APInt &Mask = C->getAPIntValue();
9420 
9421   // Clear all non-demanded bits initially.
9422   APInt ShrunkMask = Mask & DemandedBits;
9423 
9424   // Try to make a smaller immediate by setting undemanded bits.
9425 
9426   APInt ExpandedMask = Mask | ~DemandedBits;
9427 
9428   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9429     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9430   };
9431   auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
9432     if (NewMask == Mask)
9433       return true;
9434     SDLoc DL(Op);
9435     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
9436     SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
9437                                     Op.getOperand(0), NewC);
9438     return TLO.CombineTo(Op, NewOp);
9439   };
9440 
9441   // If the shrunk mask fits in sign extended 12 bits, let the target
9442   // independent code apply it.
9443   if (ShrunkMask.isSignedIntN(12))
9444     return false;
9445 
9446   // And has a few special cases for zext.
9447   if (Opcode == ISD::AND) {
9448     // Preserve (and X, 0xffff) when zext.h is supported.
9449     if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9450       APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9451       if (IsLegalMask(NewMask))
9452         return UseMask(NewMask);
9453     }
9454 
9455     // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9456     if (VT == MVT::i64) {
9457       APInt NewMask = APInt(64, 0xffffffff);
9458       if (IsLegalMask(NewMask))
9459         return UseMask(NewMask);
9460     }
9461   }
9462 
9463   // For the remaining optimizations, we need to be able to make a negative
9464   // number through a combination of mask and undemanded bits.
9465   if (!ExpandedMask.isNegative())
9466     return false;
9467 
9468   // What is the fewest number of bits we need to represent the negative number.
9469   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9470 
9471   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9472   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9473   // If we can't create a simm12, we shouldn't change opaque constants.
9474   APInt NewMask = ShrunkMask;
9475   if (MinSignedBits <= 12)
9476     NewMask.setBitsFrom(11);
9477   else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9478     NewMask.setBitsFrom(31);
9479   else
9480     return false;
9481 
9482   // Check that our new mask is a subset of the demanded mask.
9483   assert(IsLegalMask(NewMask));
9484   return UseMask(NewMask);
9485 }
9486 
9487 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9488   static const uint64_t GREVMasks[] = {
9489       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9490       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9491 
9492   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9493     unsigned Shift = 1 << Stage;
9494     if (ShAmt & Shift) {
9495       uint64_t Mask = GREVMasks[Stage];
9496       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9497       if (IsGORC)
9498         Res |= x;
9499       x = Res;
9500     }
9501   }
9502 
9503   return x;
9504 }
9505 
9506 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9507                                                         KnownBits &Known,
9508                                                         const APInt &DemandedElts,
9509                                                         const SelectionDAG &DAG,
9510                                                         unsigned Depth) const {
9511   unsigned BitWidth = Known.getBitWidth();
9512   unsigned Opc = Op.getOpcode();
9513   assert((Opc >= ISD::BUILTIN_OP_END ||
9514           Opc == ISD::INTRINSIC_WO_CHAIN ||
9515           Opc == ISD::INTRINSIC_W_CHAIN ||
9516           Opc == ISD::INTRINSIC_VOID) &&
9517          "Should use MaskedValueIsZero if you don't know whether Op"
9518          " is a target node!");
9519 
9520   Known.resetAll();
9521   switch (Opc) {
9522   default: break;
9523   case RISCVISD::SELECT_CC: {
9524     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9525     // If we don't know any bits, early out.
9526     if (Known.isUnknown())
9527       break;
9528     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9529 
9530     // Only known if known in both the LHS and RHS.
9531     Known = KnownBits::commonBits(Known, Known2);
9532     break;
9533   }
9534   case RISCVISD::REMUW: {
9535     KnownBits Known2;
9536     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9537     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9538     // We only care about the lower 32 bits.
9539     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9540     // Restore the original width by sign extending.
9541     Known = Known.sext(BitWidth);
9542     break;
9543   }
9544   case RISCVISD::DIVUW: {
9545     KnownBits Known2;
9546     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9547     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9548     // We only care about the lower 32 bits.
9549     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9550     // Restore the original width by sign extending.
9551     Known = Known.sext(BitWidth);
9552     break;
9553   }
9554   case RISCVISD::CTZW: {
9555     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9556     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9557     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9558     Known.Zero.setBitsFrom(LowBits);
9559     break;
9560   }
9561   case RISCVISD::CLZW: {
9562     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9563     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9564     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9565     Known.Zero.setBitsFrom(LowBits);
9566     break;
9567   }
9568   case RISCVISD::GREV:
9569   case RISCVISD::GORC: {
9570     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9571       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9572       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9573       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9574       // To compute zeros, we need to invert the value and invert it back after.
9575       Known.Zero =
9576           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9577       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9578     }
9579     break;
9580   }
9581   case RISCVISD::READ_VLENB: {
9582     // We can use the minimum and maximum VLEN values to bound VLENB.  We
9583     // know VLEN must be a power of two.
9584     const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
9585     const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
9586     assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
9587     Known.Zero.setLowBits(Log2_32(MinVLenB));
9588     Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
9589     if (MaxVLenB == MinVLenB)
9590       Known.One.setBit(Log2_32(MinVLenB));
9591     break;
9592   }
9593   case ISD::INTRINSIC_W_CHAIN:
9594   case ISD::INTRINSIC_WO_CHAIN: {
9595     unsigned IntNo =
9596         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9597     switch (IntNo) {
9598     default:
9599       // We can't do anything for most intrinsics.
9600       break;
9601     case Intrinsic::riscv_vsetvli:
9602     case Intrinsic::riscv_vsetvlimax:
9603     case Intrinsic::riscv_vsetvli_opt:
9604     case Intrinsic::riscv_vsetvlimax_opt:
9605       // Assume that VL output is positive and would fit in an int32_t.
9606       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9607       if (BitWidth >= 32)
9608         Known.Zero.setBitsFrom(31);
9609       break;
9610     }
9611     break;
9612   }
9613   }
9614 }
9615 
9616 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9617     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9618     unsigned Depth) const {
9619   switch (Op.getOpcode()) {
9620   default:
9621     break;
9622   case RISCVISD::SELECT_CC: {
9623     unsigned Tmp =
9624         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9625     if (Tmp == 1) return 1;  // Early out.
9626     unsigned Tmp2 =
9627         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9628     return std::min(Tmp, Tmp2);
9629   }
9630   case RISCVISD::SLLW:
9631   case RISCVISD::SRAW:
9632   case RISCVISD::SRLW:
9633   case RISCVISD::DIVW:
9634   case RISCVISD::DIVUW:
9635   case RISCVISD::REMUW:
9636   case RISCVISD::ROLW:
9637   case RISCVISD::RORW:
9638   case RISCVISD::GREVW:
9639   case RISCVISD::GORCW:
9640   case RISCVISD::FSLW:
9641   case RISCVISD::FSRW:
9642   case RISCVISD::SHFLW:
9643   case RISCVISD::UNSHFLW:
9644   case RISCVISD::BCOMPRESSW:
9645   case RISCVISD::BDECOMPRESSW:
9646   case RISCVISD::BFPW:
9647   case RISCVISD::FCVT_W_RV64:
9648   case RISCVISD::FCVT_WU_RV64:
9649   case RISCVISD::STRICT_FCVT_W_RV64:
9650   case RISCVISD::STRICT_FCVT_WU_RV64:
9651     // TODO: As the result is sign-extended, this is conservatively correct. A
9652     // more precise answer could be calculated for SRAW depending on known
9653     // bits in the shift amount.
9654     return 33;
9655   case RISCVISD::SHFL:
9656   case RISCVISD::UNSHFL: {
9657     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9658     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9659     // will stay within the upper 32 bits. If there were more than 32 sign bits
9660     // before there will be at least 33 sign bits after.
9661     if (Op.getValueType() == MVT::i64 &&
9662         isa<ConstantSDNode>(Op.getOperand(1)) &&
9663         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9664       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9665       if (Tmp > 32)
9666         return 33;
9667     }
9668     break;
9669   }
9670   case RISCVISD::VMV_X_S: {
9671     // The number of sign bits of the scalar result is computed by obtaining the
9672     // element type of the input vector operand, subtracting its width from the
9673     // XLEN, and then adding one (sign bit within the element type). If the
9674     // element type is wider than XLen, the least-significant XLEN bits are
9675     // taken.
9676     unsigned XLen = Subtarget.getXLen();
9677     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9678     if (EltBits <= XLen)
9679       return XLen - EltBits + 1;
9680     break;
9681   }
9682   }
9683 
9684   return 1;
9685 }
9686 
9687 const Constant *
9688 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
9689   assert(Ld && "Unexpected null LoadSDNode");
9690   if (!ISD::isNormalLoad(Ld))
9691     return nullptr;
9692 
9693   SDValue Ptr = Ld->getBasePtr();
9694 
9695   // Only constant pools with no offset are supported.
9696   auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
9697     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
9698     if (!CNode || CNode->isMachineConstantPoolEntry() ||
9699         CNode->getOffset() != 0)
9700       return nullptr;
9701 
9702     return CNode;
9703   };
9704 
9705   // Simple case, LLA.
9706   if (Ptr.getOpcode() == RISCVISD::LLA) {
9707     auto *CNode = GetSupportedConstantPool(Ptr);
9708     if (!CNode || CNode->getTargetFlags() != 0)
9709       return nullptr;
9710 
9711     return CNode->getConstVal();
9712   }
9713 
9714   // Look for a HI and ADD_LO pair.
9715   if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
9716       Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
9717     return nullptr;
9718 
9719   auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
9720   auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
9721 
9722   if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
9723       !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
9724     return nullptr;
9725 
9726   if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
9727     return nullptr;
9728 
9729   return CNodeLo->getConstVal();
9730 }
9731 
9732 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9733                                                   MachineBasicBlock *BB) {
9734   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9735 
9736   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9737   // Should the count have wrapped while it was being read, we need to try
9738   // again.
9739   // ...
9740   // read:
9741   // rdcycleh x3 # load high word of cycle
9742   // rdcycle  x2 # load low word of cycle
9743   // rdcycleh x4 # load high word of cycle
9744   // bne x3, x4, read # check if high word reads match, otherwise try again
9745   // ...
9746 
9747   MachineFunction &MF = *BB->getParent();
9748   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9749   MachineFunction::iterator It = ++BB->getIterator();
9750 
9751   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9752   MF.insert(It, LoopMBB);
9753 
9754   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9755   MF.insert(It, DoneMBB);
9756 
9757   // Transfer the remainder of BB and its successor edges to DoneMBB.
9758   DoneMBB->splice(DoneMBB->begin(), BB,
9759                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9760   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9761 
9762   BB->addSuccessor(LoopMBB);
9763 
9764   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9765   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9766   Register LoReg = MI.getOperand(0).getReg();
9767   Register HiReg = MI.getOperand(1).getReg();
9768   DebugLoc DL = MI.getDebugLoc();
9769 
9770   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9771   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9772       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9773       .addReg(RISCV::X0);
9774   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9775       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9776       .addReg(RISCV::X0);
9777   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9778       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9779       .addReg(RISCV::X0);
9780 
9781   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9782       .addReg(HiReg)
9783       .addReg(ReadAgainReg)
9784       .addMBB(LoopMBB);
9785 
9786   LoopMBB->addSuccessor(LoopMBB);
9787   LoopMBB->addSuccessor(DoneMBB);
9788 
9789   MI.eraseFromParent();
9790 
9791   return DoneMBB;
9792 }
9793 
9794 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9795                                              MachineBasicBlock *BB) {
9796   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9797 
9798   MachineFunction &MF = *BB->getParent();
9799   DebugLoc DL = MI.getDebugLoc();
9800   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9801   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9802   Register LoReg = MI.getOperand(0).getReg();
9803   Register HiReg = MI.getOperand(1).getReg();
9804   Register SrcReg = MI.getOperand(2).getReg();
9805   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9806   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9807 
9808   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9809                           RI);
9810   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9811   MachineMemOperand *MMOLo =
9812       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9813   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9814       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9815   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9816       .addFrameIndex(FI)
9817       .addImm(0)
9818       .addMemOperand(MMOLo);
9819   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9820       .addFrameIndex(FI)
9821       .addImm(4)
9822       .addMemOperand(MMOHi);
9823   MI.eraseFromParent(); // The pseudo instruction is gone now.
9824   return BB;
9825 }
9826 
9827 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9828                                                  MachineBasicBlock *BB) {
9829   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9830          "Unexpected instruction");
9831 
9832   MachineFunction &MF = *BB->getParent();
9833   DebugLoc DL = MI.getDebugLoc();
9834   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9835   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9836   Register DstReg = MI.getOperand(0).getReg();
9837   Register LoReg = MI.getOperand(1).getReg();
9838   Register HiReg = MI.getOperand(2).getReg();
9839   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9840   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9841 
9842   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9843   MachineMemOperand *MMOLo =
9844       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9845   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9846       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9847   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9848       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9849       .addFrameIndex(FI)
9850       .addImm(0)
9851       .addMemOperand(MMOLo);
9852   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9853       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9854       .addFrameIndex(FI)
9855       .addImm(4)
9856       .addMemOperand(MMOHi);
9857   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9858   MI.eraseFromParent(); // The pseudo instruction is gone now.
9859   return BB;
9860 }
9861 
9862 static bool isSelectPseudo(MachineInstr &MI) {
9863   switch (MI.getOpcode()) {
9864   default:
9865     return false;
9866   case RISCV::Select_GPR_Using_CC_GPR:
9867   case RISCV::Select_FPR16_Using_CC_GPR:
9868   case RISCV::Select_FPR32_Using_CC_GPR:
9869   case RISCV::Select_FPR64_Using_CC_GPR:
9870     return true;
9871   }
9872 }
9873 
9874 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9875                                         unsigned RelOpcode, unsigned EqOpcode,
9876                                         const RISCVSubtarget &Subtarget) {
9877   DebugLoc DL = MI.getDebugLoc();
9878   Register DstReg = MI.getOperand(0).getReg();
9879   Register Src1Reg = MI.getOperand(1).getReg();
9880   Register Src2Reg = MI.getOperand(2).getReg();
9881   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9882   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9883   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9884 
9885   // Save the current FFLAGS.
9886   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9887 
9888   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9889                  .addReg(Src1Reg)
9890                  .addReg(Src2Reg);
9891   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9892     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9893 
9894   // Restore the FFLAGS.
9895   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9896       .addReg(SavedFFlags, RegState::Kill);
9897 
9898   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9899   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9900                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9901                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9902   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9903     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9904 
9905   // Erase the pseudoinstruction.
9906   MI.eraseFromParent();
9907   return BB;
9908 }
9909 
9910 static MachineBasicBlock *
9911 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
9912                           MachineBasicBlock *ThisMBB,
9913                           const RISCVSubtarget &Subtarget) {
9914   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
9915   // Without this, custom-inserter would have generated:
9916   //
9917   //   A
9918   //   | \
9919   //   |  B
9920   //   | /
9921   //   C
9922   //   | \
9923   //   |  D
9924   //   | /
9925   //   E
9926   //
9927   // A: X = ...; Y = ...
9928   // B: empty
9929   // C: Z = PHI [X, A], [Y, B]
9930   // D: empty
9931   // E: PHI [X, C], [Z, D]
9932   //
9933   // If we lower both Select_FPRX_ in a single step, we can instead generate:
9934   //
9935   //   A
9936   //   | \
9937   //   |  C
9938   //   | /|
9939   //   |/ |
9940   //   |  |
9941   //   |  D
9942   //   | /
9943   //   E
9944   //
9945   // A: X = ...; Y = ...
9946   // D: empty
9947   // E: PHI [X, A], [X, C], [Y, D]
9948 
9949   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9950   const DebugLoc &DL = First.getDebugLoc();
9951   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
9952   MachineFunction *F = ThisMBB->getParent();
9953   MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
9954   MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
9955   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9956   MachineFunction::iterator It = ++ThisMBB->getIterator();
9957   F->insert(It, FirstMBB);
9958   F->insert(It, SecondMBB);
9959   F->insert(It, SinkMBB);
9960 
9961   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
9962   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
9963                   std::next(MachineBasicBlock::iterator(First)),
9964                   ThisMBB->end());
9965   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
9966 
9967   // Fallthrough block for ThisMBB.
9968   ThisMBB->addSuccessor(FirstMBB);
9969   // Fallthrough block for FirstMBB.
9970   FirstMBB->addSuccessor(SecondMBB);
9971   ThisMBB->addSuccessor(SinkMBB);
9972   FirstMBB->addSuccessor(SinkMBB);
9973   // This is fallthrough.
9974   SecondMBB->addSuccessor(SinkMBB);
9975 
9976   auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
9977   Register FLHS = First.getOperand(1).getReg();
9978   Register FRHS = First.getOperand(2).getReg();
9979   // Insert appropriate branch.
9980   BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
9981       .addReg(FLHS)
9982       .addReg(FRHS)
9983       .addMBB(SinkMBB);
9984 
9985   Register SLHS = Second.getOperand(1).getReg();
9986   Register SRHS = Second.getOperand(2).getReg();
9987   Register Op1Reg4 = First.getOperand(4).getReg();
9988   Register Op1Reg5 = First.getOperand(5).getReg();
9989 
9990   auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
9991   // Insert appropriate branch.
9992   BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
9993       .addReg(SLHS)
9994       .addReg(SRHS)
9995       .addMBB(SinkMBB);
9996 
9997   Register DestReg = Second.getOperand(0).getReg();
9998   Register Op2Reg4 = Second.getOperand(4).getReg();
9999   BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
10000       .addReg(Op2Reg4)
10001       .addMBB(ThisMBB)
10002       .addReg(Op1Reg4)
10003       .addMBB(FirstMBB)
10004       .addReg(Op1Reg5)
10005       .addMBB(SecondMBB);
10006 
10007   // Now remove the Select_FPRX_s.
10008   First.eraseFromParent();
10009   Second.eraseFromParent();
10010   return SinkMBB;
10011 }
10012 
10013 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
10014                                            MachineBasicBlock *BB,
10015                                            const RISCVSubtarget &Subtarget) {
10016   // To "insert" Select_* instructions, we actually have to insert the triangle
10017   // control-flow pattern.  The incoming instructions know the destination vreg
10018   // to set, the condition code register to branch on, the true/false values to
10019   // select between, and the condcode to use to select the appropriate branch.
10020   //
10021   // We produce the following control flow:
10022   //     HeadMBB
10023   //     |  \
10024   //     |  IfFalseMBB
10025   //     | /
10026   //    TailMBB
10027   //
10028   // When we find a sequence of selects we attempt to optimize their emission
10029   // by sharing the control flow. Currently we only handle cases where we have
10030   // multiple selects with the exact same condition (same LHS, RHS and CC).
10031   // The selects may be interleaved with other instructions if the other
10032   // instructions meet some requirements we deem safe:
10033   // - They are debug instructions. Otherwise,
10034   // - They do not have side-effects, do not access memory and their inputs do
10035   //   not depend on the results of the select pseudo-instructions.
10036   // The TrueV/FalseV operands of the selects cannot depend on the result of
10037   // previous selects in the sequence.
10038   // These conditions could be further relaxed. See the X86 target for a
10039   // related approach and more information.
10040   //
10041   // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
10042   // is checked here and handled by a separate function -
10043   // EmitLoweredCascadedSelect.
10044   Register LHS = MI.getOperand(1).getReg();
10045   Register RHS = MI.getOperand(2).getReg();
10046   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
10047 
10048   SmallVector<MachineInstr *, 4> SelectDebugValues;
10049   SmallSet<Register, 4> SelectDests;
10050   SelectDests.insert(MI.getOperand(0).getReg());
10051 
10052   MachineInstr *LastSelectPseudo = &MI;
10053   auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
10054   if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() &&
10055       Next->getOpcode() == MI.getOpcode() &&
10056       Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
10057       Next->getOperand(5).isKill()) {
10058     return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
10059   }
10060 
10061   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
10062        SequenceMBBI != E; ++SequenceMBBI) {
10063     if (SequenceMBBI->isDebugInstr())
10064       continue;
10065     if (isSelectPseudo(*SequenceMBBI)) {
10066       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
10067           SequenceMBBI->getOperand(2).getReg() != RHS ||
10068           SequenceMBBI->getOperand(3).getImm() != CC ||
10069           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
10070           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
10071         break;
10072       LastSelectPseudo = &*SequenceMBBI;
10073       SequenceMBBI->collectDebugValues(SelectDebugValues);
10074       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
10075       continue;
10076     }
10077     if (SequenceMBBI->hasUnmodeledSideEffects() ||
10078         SequenceMBBI->mayLoadOrStore())
10079       break;
10080     if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
10081           return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
10082         }))
10083       break;
10084   }
10085 
10086   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
10087   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10088   DebugLoc DL = MI.getDebugLoc();
10089   MachineFunction::iterator I = ++BB->getIterator();
10090 
10091   MachineBasicBlock *HeadMBB = BB;
10092   MachineFunction *F = BB->getParent();
10093   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
10094   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
10095 
10096   F->insert(I, IfFalseMBB);
10097   F->insert(I, TailMBB);
10098 
10099   // Transfer debug instructions associated with the selects to TailMBB.
10100   for (MachineInstr *DebugInstr : SelectDebugValues) {
10101     TailMBB->push_back(DebugInstr->removeFromParent());
10102   }
10103 
10104   // Move all instructions after the sequence to TailMBB.
10105   TailMBB->splice(TailMBB->end(), HeadMBB,
10106                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
10107   // Update machine-CFG edges by transferring all successors of the current
10108   // block to the new block which will contain the Phi nodes for the selects.
10109   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
10110   // Set the successors for HeadMBB.
10111   HeadMBB->addSuccessor(IfFalseMBB);
10112   HeadMBB->addSuccessor(TailMBB);
10113 
10114   // Insert appropriate branch.
10115   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
10116     .addReg(LHS)
10117     .addReg(RHS)
10118     .addMBB(TailMBB);
10119 
10120   // IfFalseMBB just falls through to TailMBB.
10121   IfFalseMBB->addSuccessor(TailMBB);
10122 
10123   // Create PHIs for all of the select pseudo-instructions.
10124   auto SelectMBBI = MI.getIterator();
10125   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
10126   auto InsertionPoint = TailMBB->begin();
10127   while (SelectMBBI != SelectEnd) {
10128     auto Next = std::next(SelectMBBI);
10129     if (isSelectPseudo(*SelectMBBI)) {
10130       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
10131       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
10132               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
10133           .addReg(SelectMBBI->getOperand(4).getReg())
10134           .addMBB(HeadMBB)
10135           .addReg(SelectMBBI->getOperand(5).getReg())
10136           .addMBB(IfFalseMBB);
10137       SelectMBBI->eraseFromParent();
10138     }
10139     SelectMBBI = Next;
10140   }
10141 
10142   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
10143   return TailMBB;
10144 }
10145 
10146 MachineBasicBlock *
10147 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10148                                                  MachineBasicBlock *BB) const {
10149   switch (MI.getOpcode()) {
10150   default:
10151     llvm_unreachable("Unexpected instr type to insert");
10152   case RISCV::ReadCycleWide:
10153     assert(!Subtarget.is64Bit() &&
10154            "ReadCycleWrite is only to be used on riscv32");
10155     return emitReadCycleWidePseudo(MI, BB);
10156   case RISCV::Select_GPR_Using_CC_GPR:
10157   case RISCV::Select_FPR16_Using_CC_GPR:
10158   case RISCV::Select_FPR32_Using_CC_GPR:
10159   case RISCV::Select_FPR64_Using_CC_GPR:
10160     return emitSelectPseudo(MI, BB, Subtarget);
10161   case RISCV::BuildPairF64Pseudo:
10162     return emitBuildPairF64Pseudo(MI, BB);
10163   case RISCV::SplitF64Pseudo:
10164     return emitSplitF64Pseudo(MI, BB);
10165   case RISCV::PseudoQuietFLE_H:
10166     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
10167   case RISCV::PseudoQuietFLT_H:
10168     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
10169   case RISCV::PseudoQuietFLE_S:
10170     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
10171   case RISCV::PseudoQuietFLT_S:
10172     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
10173   case RISCV::PseudoQuietFLE_D:
10174     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
10175   case RISCV::PseudoQuietFLT_D:
10176     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
10177   }
10178 }
10179 
10180 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10181                                                         SDNode *Node) const {
10182   // Add FRM dependency to any instructions with dynamic rounding mode.
10183   unsigned Opc = MI.getOpcode();
10184   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
10185   if (Idx < 0)
10186     return;
10187   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
10188     return;
10189   // If the instruction already reads FRM, don't add another read.
10190   if (MI.readsRegister(RISCV::FRM))
10191     return;
10192   MI.addOperand(
10193       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
10194 }
10195 
10196 // Calling Convention Implementation.
10197 // The expectations for frontend ABI lowering vary from target to target.
10198 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
10199 // details, but this is a longer term goal. For now, we simply try to keep the
10200 // role of the frontend as simple and well-defined as possible. The rules can
10201 // be summarised as:
10202 // * Never split up large scalar arguments. We handle them here.
10203 // * If a hardfloat calling convention is being used, and the struct may be
10204 // passed in a pair of registers (fp+fp, int+fp), and both registers are
10205 // available, then pass as two separate arguments. If either the GPRs or FPRs
10206 // are exhausted, then pass according to the rule below.
10207 // * If a struct could never be passed in registers or directly in a stack
10208 // slot (as it is larger than 2*XLEN and the floating point rules don't
10209 // apply), then pass it using a pointer with the byval attribute.
10210 // * If a struct is less than 2*XLEN, then coerce to either a two-element
10211 // word-sized array or a 2*XLEN scalar (depending on alignment).
10212 // * The frontend can determine whether a struct is returned by reference or
10213 // not based on its size and fields. If it will be returned by reference, the
10214 // frontend must modify the prototype so a pointer with the sret annotation is
10215 // passed as the first argument. This is not necessary for large scalar
10216 // returns.
10217 // * Struct return values and varargs should be coerced to structs containing
10218 // register-size fields in the same situations they would be for fixed
10219 // arguments.
10220 
10221 static const MCPhysReg ArgGPRs[] = {
10222   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
10223   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
10224 };
10225 static const MCPhysReg ArgFPR16s[] = {
10226   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
10227   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
10228 };
10229 static const MCPhysReg ArgFPR32s[] = {
10230   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
10231   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
10232 };
10233 static const MCPhysReg ArgFPR64s[] = {
10234   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
10235   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
10236 };
10237 // This is an interim calling convention and it may be changed in the future.
10238 static const MCPhysReg ArgVRs[] = {
10239     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
10240     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
10241     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
10242 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
10243                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
10244                                      RISCV::V20M2, RISCV::V22M2};
10245 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
10246                                      RISCV::V20M4};
10247 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
10248 
10249 // Pass a 2*XLEN argument that has been split into two XLEN values through
10250 // registers or the stack as necessary.
10251 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
10252                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
10253                                 MVT ValVT2, MVT LocVT2,
10254                                 ISD::ArgFlagsTy ArgFlags2) {
10255   unsigned XLenInBytes = XLen / 8;
10256   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10257     // At least one half can be passed via register.
10258     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
10259                                      VA1.getLocVT(), CCValAssign::Full));
10260   } else {
10261     // Both halves must be passed on the stack, with proper alignment.
10262     Align StackAlign =
10263         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
10264     State.addLoc(
10265         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
10266                             State.AllocateStack(XLenInBytes, StackAlign),
10267                             VA1.getLocVT(), CCValAssign::Full));
10268     State.addLoc(CCValAssign::getMem(
10269         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10270         LocVT2, CCValAssign::Full));
10271     return false;
10272   }
10273 
10274   if (Register Reg = State.AllocateReg(ArgGPRs)) {
10275     // The second half can also be passed via register.
10276     State.addLoc(
10277         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
10278   } else {
10279     // The second half is passed via the stack, without additional alignment.
10280     State.addLoc(CCValAssign::getMem(
10281         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10282         LocVT2, CCValAssign::Full));
10283   }
10284 
10285   return false;
10286 }
10287 
10288 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
10289                                Optional<unsigned> FirstMaskArgument,
10290                                CCState &State, const RISCVTargetLowering &TLI) {
10291   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
10292   if (RC == &RISCV::VRRegClass) {
10293     // Assign the first mask argument to V0.
10294     // This is an interim calling convention and it may be changed in the
10295     // future.
10296     if (FirstMaskArgument && ValNo == *FirstMaskArgument)
10297       return State.AllocateReg(RISCV::V0);
10298     return State.AllocateReg(ArgVRs);
10299   }
10300   if (RC == &RISCV::VRM2RegClass)
10301     return State.AllocateReg(ArgVRM2s);
10302   if (RC == &RISCV::VRM4RegClass)
10303     return State.AllocateReg(ArgVRM4s);
10304   if (RC == &RISCV::VRM8RegClass)
10305     return State.AllocateReg(ArgVRM8s);
10306   llvm_unreachable("Unhandled register class for ValueType");
10307 }
10308 
10309 // Implements the RISC-V calling convention. Returns true upon failure.
10310 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
10311                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
10312                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
10313                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
10314                      Optional<unsigned> FirstMaskArgument) {
10315   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
10316   assert(XLen == 32 || XLen == 64);
10317   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
10318 
10319   // Any return value split in to more than two values can't be returned
10320   // directly. Vectors are returned via the available vector registers.
10321   if (!LocVT.isVector() && IsRet && ValNo > 1)
10322     return true;
10323 
10324   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
10325   // variadic argument, or if no F16/F32 argument registers are available.
10326   bool UseGPRForF16_F32 = true;
10327   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
10328   // variadic argument, or if no F64 argument registers are available.
10329   bool UseGPRForF64 = true;
10330 
10331   switch (ABI) {
10332   default:
10333     llvm_unreachable("Unexpected ABI");
10334   case RISCVABI::ABI_ILP32:
10335   case RISCVABI::ABI_LP64:
10336     break;
10337   case RISCVABI::ABI_ILP32F:
10338   case RISCVABI::ABI_LP64F:
10339     UseGPRForF16_F32 = !IsFixed;
10340     break;
10341   case RISCVABI::ABI_ILP32D:
10342   case RISCVABI::ABI_LP64D:
10343     UseGPRForF16_F32 = !IsFixed;
10344     UseGPRForF64 = !IsFixed;
10345     break;
10346   }
10347 
10348   // FPR16, FPR32, and FPR64 alias each other.
10349   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
10350     UseGPRForF16_F32 = true;
10351     UseGPRForF64 = true;
10352   }
10353 
10354   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
10355   // similar local variables rather than directly checking against the target
10356   // ABI.
10357 
10358   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
10359     LocVT = XLenVT;
10360     LocInfo = CCValAssign::BCvt;
10361   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
10362     LocVT = MVT::i64;
10363     LocInfo = CCValAssign::BCvt;
10364   }
10365 
10366   // If this is a variadic argument, the RISC-V calling convention requires
10367   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
10368   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
10369   // be used regardless of whether the original argument was split during
10370   // legalisation or not. The argument will not be passed by registers if the
10371   // original type is larger than 2*XLEN, so the register alignment rule does
10372   // not apply.
10373   unsigned TwoXLenInBytes = (2 * XLen) / 8;
10374   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
10375       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
10376     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
10377     // Skip 'odd' register if necessary.
10378     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
10379       State.AllocateReg(ArgGPRs);
10380   }
10381 
10382   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
10383   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
10384       State.getPendingArgFlags();
10385 
10386   assert(PendingLocs.size() == PendingArgFlags.size() &&
10387          "PendingLocs and PendingArgFlags out of sync");
10388 
10389   // Handle passing f64 on RV32D with a soft float ABI or when floating point
10390   // registers are exhausted.
10391   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
10392     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
10393            "Can't lower f64 if it is split");
10394     // Depending on available argument GPRS, f64 may be passed in a pair of
10395     // GPRs, split between a GPR and the stack, or passed completely on the
10396     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
10397     // cases.
10398     Register Reg = State.AllocateReg(ArgGPRs);
10399     LocVT = MVT::i32;
10400     if (!Reg) {
10401       unsigned StackOffset = State.AllocateStack(8, Align(8));
10402       State.addLoc(
10403           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10404       return false;
10405     }
10406     if (!State.AllocateReg(ArgGPRs))
10407       State.AllocateStack(4, Align(4));
10408     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10409     return false;
10410   }
10411 
10412   // Fixed-length vectors are located in the corresponding scalable-vector
10413   // container types.
10414   if (ValVT.isFixedLengthVector())
10415     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10416 
10417   // Split arguments might be passed indirectly, so keep track of the pending
10418   // values. Split vectors are passed via a mix of registers and indirectly, so
10419   // treat them as we would any other argument.
10420   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
10421     LocVT = XLenVT;
10422     LocInfo = CCValAssign::Indirect;
10423     PendingLocs.push_back(
10424         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
10425     PendingArgFlags.push_back(ArgFlags);
10426     if (!ArgFlags.isSplitEnd()) {
10427       return false;
10428     }
10429   }
10430 
10431   // If the split argument only had two elements, it should be passed directly
10432   // in registers or on the stack.
10433   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
10434       PendingLocs.size() <= 2) {
10435     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
10436     // Apply the normal calling convention rules to the first half of the
10437     // split argument.
10438     CCValAssign VA = PendingLocs[0];
10439     ISD::ArgFlagsTy AF = PendingArgFlags[0];
10440     PendingLocs.clear();
10441     PendingArgFlags.clear();
10442     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
10443                                ArgFlags);
10444   }
10445 
10446   // Allocate to a register if possible, or else a stack slot.
10447   Register Reg;
10448   unsigned StoreSizeBytes = XLen / 8;
10449   Align StackAlign = Align(XLen / 8);
10450 
10451   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
10452     Reg = State.AllocateReg(ArgFPR16s);
10453   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
10454     Reg = State.AllocateReg(ArgFPR32s);
10455   else if (ValVT == MVT::f64 && !UseGPRForF64)
10456     Reg = State.AllocateReg(ArgFPR64s);
10457   else if (ValVT.isVector()) {
10458     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
10459     if (!Reg) {
10460       // For return values, the vector must be passed fully via registers or
10461       // via the stack.
10462       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10463       // but we're using all of them.
10464       if (IsRet)
10465         return true;
10466       // Try using a GPR to pass the address
10467       if ((Reg = State.AllocateReg(ArgGPRs))) {
10468         LocVT = XLenVT;
10469         LocInfo = CCValAssign::Indirect;
10470       } else if (ValVT.isScalableVector()) {
10471         LocVT = XLenVT;
10472         LocInfo = CCValAssign::Indirect;
10473       } else {
10474         // Pass fixed-length vectors on the stack.
10475         LocVT = ValVT;
10476         StoreSizeBytes = ValVT.getStoreSize();
10477         // Align vectors to their element sizes, being careful for vXi1
10478         // vectors.
10479         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10480       }
10481     }
10482   } else {
10483     Reg = State.AllocateReg(ArgGPRs);
10484   }
10485 
10486   unsigned StackOffset =
10487       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10488 
10489   // If we reach this point and PendingLocs is non-empty, we must be at the
10490   // end of a split argument that must be passed indirectly.
10491   if (!PendingLocs.empty()) {
10492     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10493     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10494 
10495     for (auto &It : PendingLocs) {
10496       if (Reg)
10497         It.convertToReg(Reg);
10498       else
10499         It.convertToMem(StackOffset);
10500       State.addLoc(It);
10501     }
10502     PendingLocs.clear();
10503     PendingArgFlags.clear();
10504     return false;
10505   }
10506 
10507   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10508           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10509          "Expected an XLenVT or vector types at this stage");
10510 
10511   if (Reg) {
10512     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10513     return false;
10514   }
10515 
10516   // When a floating-point value is passed on the stack, no bit-conversion is
10517   // needed.
10518   if (ValVT.isFloatingPoint()) {
10519     LocVT = ValVT;
10520     LocInfo = CCValAssign::Full;
10521   }
10522   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10523   return false;
10524 }
10525 
10526 template <typename ArgTy>
10527 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10528   for (const auto &ArgIdx : enumerate(Args)) {
10529     MVT ArgVT = ArgIdx.value().VT;
10530     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10531       return ArgIdx.index();
10532   }
10533   return None;
10534 }
10535 
10536 void RISCVTargetLowering::analyzeInputArgs(
10537     MachineFunction &MF, CCState &CCInfo,
10538     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10539     RISCVCCAssignFn Fn) const {
10540   unsigned NumArgs = Ins.size();
10541   FunctionType *FType = MF.getFunction().getFunctionType();
10542 
10543   Optional<unsigned> FirstMaskArgument;
10544   if (Subtarget.hasVInstructions())
10545     FirstMaskArgument = preAssignMask(Ins);
10546 
10547   for (unsigned i = 0; i != NumArgs; ++i) {
10548     MVT ArgVT = Ins[i].VT;
10549     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10550 
10551     Type *ArgTy = nullptr;
10552     if (IsRet)
10553       ArgTy = FType->getReturnType();
10554     else if (Ins[i].isOrigArg())
10555       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10556 
10557     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10558     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10559            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10560            FirstMaskArgument)) {
10561       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10562                         << EVT(ArgVT).getEVTString() << '\n');
10563       llvm_unreachable(nullptr);
10564     }
10565   }
10566 }
10567 
10568 void RISCVTargetLowering::analyzeOutputArgs(
10569     MachineFunction &MF, CCState &CCInfo,
10570     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10571     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10572   unsigned NumArgs = Outs.size();
10573 
10574   Optional<unsigned> FirstMaskArgument;
10575   if (Subtarget.hasVInstructions())
10576     FirstMaskArgument = preAssignMask(Outs);
10577 
10578   for (unsigned i = 0; i != NumArgs; i++) {
10579     MVT ArgVT = Outs[i].VT;
10580     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10581     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10582 
10583     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10584     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10585            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10586            FirstMaskArgument)) {
10587       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10588                         << EVT(ArgVT).getEVTString() << "\n");
10589       llvm_unreachable(nullptr);
10590     }
10591   }
10592 }
10593 
10594 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10595 // values.
10596 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10597                                    const CCValAssign &VA, const SDLoc &DL,
10598                                    const RISCVSubtarget &Subtarget) {
10599   switch (VA.getLocInfo()) {
10600   default:
10601     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10602   case CCValAssign::Full:
10603     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10604       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10605     break;
10606   case CCValAssign::BCvt:
10607     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10608       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10609     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10610       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10611     else
10612       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10613     break;
10614   }
10615   return Val;
10616 }
10617 
10618 // The caller is responsible for loading the full value if the argument is
10619 // passed with CCValAssign::Indirect.
10620 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10621                                 const CCValAssign &VA, const SDLoc &DL,
10622                                 const RISCVTargetLowering &TLI) {
10623   MachineFunction &MF = DAG.getMachineFunction();
10624   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10625   EVT LocVT = VA.getLocVT();
10626   SDValue Val;
10627   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10628   Register VReg = RegInfo.createVirtualRegister(RC);
10629   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10630   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10631 
10632   if (VA.getLocInfo() == CCValAssign::Indirect)
10633     return Val;
10634 
10635   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10636 }
10637 
10638 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10639                                    const CCValAssign &VA, const SDLoc &DL,
10640                                    const RISCVSubtarget &Subtarget) {
10641   EVT LocVT = VA.getLocVT();
10642 
10643   switch (VA.getLocInfo()) {
10644   default:
10645     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10646   case CCValAssign::Full:
10647     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10648       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10649     break;
10650   case CCValAssign::BCvt:
10651     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10652       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10653     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10654       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10655     else
10656       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10657     break;
10658   }
10659   return Val;
10660 }
10661 
10662 // The caller is responsible for loading the full value if the argument is
10663 // passed with CCValAssign::Indirect.
10664 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10665                                 const CCValAssign &VA, const SDLoc &DL) {
10666   MachineFunction &MF = DAG.getMachineFunction();
10667   MachineFrameInfo &MFI = MF.getFrameInfo();
10668   EVT LocVT = VA.getLocVT();
10669   EVT ValVT = VA.getValVT();
10670   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10671   if (ValVT.isScalableVector()) {
10672     // When the value is a scalable vector, we save the pointer which points to
10673     // the scalable vector value in the stack. The ValVT will be the pointer
10674     // type, instead of the scalable vector type.
10675     ValVT = LocVT;
10676   }
10677   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10678                                  /*IsImmutable=*/true);
10679   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10680   SDValue Val;
10681 
10682   ISD::LoadExtType ExtType;
10683   switch (VA.getLocInfo()) {
10684   default:
10685     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10686   case CCValAssign::Full:
10687   case CCValAssign::Indirect:
10688   case CCValAssign::BCvt:
10689     ExtType = ISD::NON_EXTLOAD;
10690     break;
10691   }
10692   Val = DAG.getExtLoad(
10693       ExtType, DL, LocVT, Chain, FIN,
10694       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10695   return Val;
10696 }
10697 
10698 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10699                                        const CCValAssign &VA, const SDLoc &DL) {
10700   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10701          "Unexpected VA");
10702   MachineFunction &MF = DAG.getMachineFunction();
10703   MachineFrameInfo &MFI = MF.getFrameInfo();
10704   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10705 
10706   if (VA.isMemLoc()) {
10707     // f64 is passed on the stack.
10708     int FI =
10709         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10710     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10711     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10712                        MachinePointerInfo::getFixedStack(MF, FI));
10713   }
10714 
10715   assert(VA.isRegLoc() && "Expected register VA assignment");
10716 
10717   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10718   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10719   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10720   SDValue Hi;
10721   if (VA.getLocReg() == RISCV::X17) {
10722     // Second half of f64 is passed on the stack.
10723     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10724     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10725     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10726                      MachinePointerInfo::getFixedStack(MF, FI));
10727   } else {
10728     // Second half of f64 is passed in another GPR.
10729     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10730     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10731     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10732   }
10733   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10734 }
10735 
10736 // FastCC has less than 1% performance improvement for some particular
10737 // benchmark. But theoretically, it may has benenfit for some cases.
10738 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10739                             unsigned ValNo, MVT ValVT, MVT LocVT,
10740                             CCValAssign::LocInfo LocInfo,
10741                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10742                             bool IsFixed, bool IsRet, Type *OrigTy,
10743                             const RISCVTargetLowering &TLI,
10744                             Optional<unsigned> FirstMaskArgument) {
10745 
10746   // X5 and X6 might be used for save-restore libcall.
10747   static const MCPhysReg GPRList[] = {
10748       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10749       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10750       RISCV::X29, RISCV::X30, RISCV::X31};
10751 
10752   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10753     if (unsigned Reg = State.AllocateReg(GPRList)) {
10754       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10755       return false;
10756     }
10757   }
10758 
10759   if (LocVT == MVT::f16) {
10760     static const MCPhysReg FPR16List[] = {
10761         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10762         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10763         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10764         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10765     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10766       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10767       return false;
10768     }
10769   }
10770 
10771   if (LocVT == MVT::f32) {
10772     static const MCPhysReg FPR32List[] = {
10773         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10774         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10775         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10776         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10777     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10778       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10779       return false;
10780     }
10781   }
10782 
10783   if (LocVT == MVT::f64) {
10784     static const MCPhysReg FPR64List[] = {
10785         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10786         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10787         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10788         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10789     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10790       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10791       return false;
10792     }
10793   }
10794 
10795   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10796     unsigned Offset4 = State.AllocateStack(4, Align(4));
10797     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10798     return false;
10799   }
10800 
10801   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10802     unsigned Offset5 = State.AllocateStack(8, Align(8));
10803     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10804     return false;
10805   }
10806 
10807   if (LocVT.isVector()) {
10808     if (unsigned Reg =
10809             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10810       // Fixed-length vectors are located in the corresponding scalable-vector
10811       // container types.
10812       if (ValVT.isFixedLengthVector())
10813         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10814       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10815     } else {
10816       // Try and pass the address via a "fast" GPR.
10817       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10818         LocInfo = CCValAssign::Indirect;
10819         LocVT = TLI.getSubtarget().getXLenVT();
10820         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10821       } else if (ValVT.isFixedLengthVector()) {
10822         auto StackAlign =
10823             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10824         unsigned StackOffset =
10825             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10826         State.addLoc(
10827             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10828       } else {
10829         // Can't pass scalable vectors on the stack.
10830         return true;
10831       }
10832     }
10833 
10834     return false;
10835   }
10836 
10837   return true; // CC didn't match.
10838 }
10839 
10840 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10841                          CCValAssign::LocInfo LocInfo,
10842                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10843 
10844   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10845     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10846     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10847     static const MCPhysReg GPRList[] = {
10848         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10849         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10850     if (unsigned Reg = State.AllocateReg(GPRList)) {
10851       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10852       return false;
10853     }
10854   }
10855 
10856   if (LocVT == MVT::f32) {
10857     // Pass in STG registers: F1, ..., F6
10858     //                        fs0 ... fs5
10859     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10860                                           RISCV::F18_F, RISCV::F19_F,
10861                                           RISCV::F20_F, RISCV::F21_F};
10862     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10863       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10864       return false;
10865     }
10866   }
10867 
10868   if (LocVT == MVT::f64) {
10869     // Pass in STG registers: D1, ..., D6
10870     //                        fs6 ... fs11
10871     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10872                                           RISCV::F24_D, RISCV::F25_D,
10873                                           RISCV::F26_D, RISCV::F27_D};
10874     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10875       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10876       return false;
10877     }
10878   }
10879 
10880   report_fatal_error("No registers left in GHC calling convention");
10881   return true;
10882 }
10883 
10884 // Transform physical registers into virtual registers.
10885 SDValue RISCVTargetLowering::LowerFormalArguments(
10886     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10887     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10888     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10889 
10890   MachineFunction &MF = DAG.getMachineFunction();
10891 
10892   switch (CallConv) {
10893   default:
10894     report_fatal_error("Unsupported calling convention");
10895   case CallingConv::C:
10896   case CallingConv::Fast:
10897     break;
10898   case CallingConv::GHC:
10899     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10900         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10901       report_fatal_error(
10902         "GHC calling convention requires the F and D instruction set extensions");
10903   }
10904 
10905   const Function &Func = MF.getFunction();
10906   if (Func.hasFnAttribute("interrupt")) {
10907     if (!Func.arg_empty())
10908       report_fatal_error(
10909         "Functions with the interrupt attribute cannot have arguments!");
10910 
10911     StringRef Kind =
10912       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10913 
10914     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10915       report_fatal_error(
10916         "Function interrupt attribute argument not supported!");
10917   }
10918 
10919   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10920   MVT XLenVT = Subtarget.getXLenVT();
10921   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10922   // Used with vargs to acumulate store chains.
10923   std::vector<SDValue> OutChains;
10924 
10925   // Assign locations to all of the incoming arguments.
10926   SmallVector<CCValAssign, 16> ArgLocs;
10927   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10928 
10929   if (CallConv == CallingConv::GHC)
10930     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10931   else
10932     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10933                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10934                                                    : CC_RISCV);
10935 
10936   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10937     CCValAssign &VA = ArgLocs[i];
10938     SDValue ArgValue;
10939     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10940     // case.
10941     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10942       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10943     else if (VA.isRegLoc())
10944       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10945     else
10946       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10947 
10948     if (VA.getLocInfo() == CCValAssign::Indirect) {
10949       // If the original argument was split and passed by reference (e.g. i128
10950       // on RV32), we need to load all parts of it here (using the same
10951       // address). Vectors may be partly split to registers and partly to the
10952       // stack, in which case the base address is partly offset and subsequent
10953       // stores are relative to that.
10954       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10955                                    MachinePointerInfo()));
10956       unsigned ArgIndex = Ins[i].OrigArgIndex;
10957       unsigned ArgPartOffset = Ins[i].PartOffset;
10958       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10959       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10960         CCValAssign &PartVA = ArgLocs[i + 1];
10961         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10962         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10963         if (PartVA.getValVT().isScalableVector())
10964           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10965         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10966         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10967                                      MachinePointerInfo()));
10968         ++i;
10969       }
10970       continue;
10971     }
10972     InVals.push_back(ArgValue);
10973   }
10974 
10975   if (IsVarArg) {
10976     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10977     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10978     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10979     MachineFrameInfo &MFI = MF.getFrameInfo();
10980     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10981     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10982 
10983     // Offset of the first variable argument from stack pointer, and size of
10984     // the vararg save area. For now, the varargs save area is either zero or
10985     // large enough to hold a0-a7.
10986     int VaArgOffset, VarArgsSaveSize;
10987 
10988     // If all registers are allocated, then all varargs must be passed on the
10989     // stack and we don't need to save any argregs.
10990     if (ArgRegs.size() == Idx) {
10991       VaArgOffset = CCInfo.getNextStackOffset();
10992       VarArgsSaveSize = 0;
10993     } else {
10994       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10995       VaArgOffset = -VarArgsSaveSize;
10996     }
10997 
10998     // Record the frame index of the first variable argument
10999     // which is a value necessary to VASTART.
11000     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11001     RVFI->setVarArgsFrameIndex(FI);
11002 
11003     // If saving an odd number of registers then create an extra stack slot to
11004     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
11005     // offsets to even-numbered registered remain 2*XLEN-aligned.
11006     if (Idx % 2) {
11007       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
11008       VarArgsSaveSize += XLenInBytes;
11009     }
11010 
11011     // Copy the integer registers that may have been used for passing varargs
11012     // to the vararg save area.
11013     for (unsigned I = Idx; I < ArgRegs.size();
11014          ++I, VaArgOffset += XLenInBytes) {
11015       const Register Reg = RegInfo.createVirtualRegister(RC);
11016       RegInfo.addLiveIn(ArgRegs[I], Reg);
11017       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
11018       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11019       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11020       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
11021                                    MachinePointerInfo::getFixedStack(MF, FI));
11022       cast<StoreSDNode>(Store.getNode())
11023           ->getMemOperand()
11024           ->setValue((Value *)nullptr);
11025       OutChains.push_back(Store);
11026     }
11027     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
11028   }
11029 
11030   // All stores are grouped in one node to allow the matching between
11031   // the size of Ins and InVals. This only happens for vararg functions.
11032   if (!OutChains.empty()) {
11033     OutChains.push_back(Chain);
11034     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
11035   }
11036 
11037   return Chain;
11038 }
11039 
11040 /// isEligibleForTailCallOptimization - Check whether the call is eligible
11041 /// for tail call optimization.
11042 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
11043 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
11044     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
11045     const SmallVector<CCValAssign, 16> &ArgLocs) const {
11046 
11047   auto &Callee = CLI.Callee;
11048   auto CalleeCC = CLI.CallConv;
11049   auto &Outs = CLI.Outs;
11050   auto &Caller = MF.getFunction();
11051   auto CallerCC = Caller.getCallingConv();
11052 
11053   // Exception-handling functions need a special set of instructions to
11054   // indicate a return to the hardware. Tail-calling another function would
11055   // probably break this.
11056   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
11057   // should be expanded as new function attributes are introduced.
11058   if (Caller.hasFnAttribute("interrupt"))
11059     return false;
11060 
11061   // Do not tail call opt if the stack is used to pass parameters.
11062   if (CCInfo.getNextStackOffset() != 0)
11063     return false;
11064 
11065   // Do not tail call opt if any parameters need to be passed indirectly.
11066   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
11067   // passed indirectly. So the address of the value will be passed in a
11068   // register, or if not available, then the address is put on the stack. In
11069   // order to pass indirectly, space on the stack often needs to be allocated
11070   // in order to store the value. In this case the CCInfo.getNextStackOffset()
11071   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
11072   // are passed CCValAssign::Indirect.
11073   for (auto &VA : ArgLocs)
11074     if (VA.getLocInfo() == CCValAssign::Indirect)
11075       return false;
11076 
11077   // Do not tail call opt if either caller or callee uses struct return
11078   // semantics.
11079   auto IsCallerStructRet = Caller.hasStructRetAttr();
11080   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
11081   if (IsCallerStructRet || IsCalleeStructRet)
11082     return false;
11083 
11084   // Externally-defined functions with weak linkage should not be
11085   // tail-called. The behaviour of branch instructions in this situation (as
11086   // used for tail calls) is implementation-defined, so we cannot rely on the
11087   // linker replacing the tail call with a return.
11088   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
11089     const GlobalValue *GV = G->getGlobal();
11090     if (GV->hasExternalWeakLinkage())
11091       return false;
11092   }
11093 
11094   // The callee has to preserve all registers the caller needs to preserve.
11095   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
11096   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
11097   if (CalleeCC != CallerCC) {
11098     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
11099     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
11100       return false;
11101   }
11102 
11103   // Byval parameters hand the function a pointer directly into the stack area
11104   // we want to reuse during a tail call. Working around this *is* possible
11105   // but less efficient and uglier in LowerCall.
11106   for (auto &Arg : Outs)
11107     if (Arg.Flags.isByVal())
11108       return false;
11109 
11110   return true;
11111 }
11112 
11113 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
11114   return DAG.getDataLayout().getPrefTypeAlign(
11115       VT.getTypeForEVT(*DAG.getContext()));
11116 }
11117 
11118 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
11119 // and output parameter nodes.
11120 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
11121                                        SmallVectorImpl<SDValue> &InVals) const {
11122   SelectionDAG &DAG = CLI.DAG;
11123   SDLoc &DL = CLI.DL;
11124   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
11125   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
11126   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
11127   SDValue Chain = CLI.Chain;
11128   SDValue Callee = CLI.Callee;
11129   bool &IsTailCall = CLI.IsTailCall;
11130   CallingConv::ID CallConv = CLI.CallConv;
11131   bool IsVarArg = CLI.IsVarArg;
11132   EVT PtrVT = getPointerTy(DAG.getDataLayout());
11133   MVT XLenVT = Subtarget.getXLenVT();
11134 
11135   MachineFunction &MF = DAG.getMachineFunction();
11136 
11137   // Analyze the operands of the call, assigning locations to each operand.
11138   SmallVector<CCValAssign, 16> ArgLocs;
11139   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
11140 
11141   if (CallConv == CallingConv::GHC)
11142     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
11143   else
11144     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
11145                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
11146                                                     : CC_RISCV);
11147 
11148   // Check if it's really possible to do a tail call.
11149   if (IsTailCall)
11150     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
11151 
11152   if (IsTailCall)
11153     ++NumTailCalls;
11154   else if (CLI.CB && CLI.CB->isMustTailCall())
11155     report_fatal_error("failed to perform tail call elimination on a call "
11156                        "site marked musttail");
11157 
11158   // Get a count of how many bytes are to be pushed on the stack.
11159   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
11160 
11161   // Create local copies for byval args
11162   SmallVector<SDValue, 8> ByValArgs;
11163   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11164     ISD::ArgFlagsTy Flags = Outs[i].Flags;
11165     if (!Flags.isByVal())
11166       continue;
11167 
11168     SDValue Arg = OutVals[i];
11169     unsigned Size = Flags.getByValSize();
11170     Align Alignment = Flags.getNonZeroByValAlign();
11171 
11172     int FI =
11173         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
11174     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11175     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
11176 
11177     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
11178                           /*IsVolatile=*/false,
11179                           /*AlwaysInline=*/false, IsTailCall,
11180                           MachinePointerInfo(), MachinePointerInfo());
11181     ByValArgs.push_back(FIPtr);
11182   }
11183 
11184   if (!IsTailCall)
11185     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
11186 
11187   // Copy argument values to their designated locations.
11188   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
11189   SmallVector<SDValue, 8> MemOpChains;
11190   SDValue StackPtr;
11191   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
11192     CCValAssign &VA = ArgLocs[i];
11193     SDValue ArgValue = OutVals[i];
11194     ISD::ArgFlagsTy Flags = Outs[i].Flags;
11195 
11196     // Handle passing f64 on RV32D with a soft float ABI as a special case.
11197     bool IsF64OnRV32DSoftABI =
11198         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
11199     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
11200       SDValue SplitF64 = DAG.getNode(
11201           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
11202       SDValue Lo = SplitF64.getValue(0);
11203       SDValue Hi = SplitF64.getValue(1);
11204 
11205       Register RegLo = VA.getLocReg();
11206       RegsToPass.push_back(std::make_pair(RegLo, Lo));
11207 
11208       if (RegLo == RISCV::X17) {
11209         // Second half of f64 is passed on the stack.
11210         // Work out the address of the stack slot.
11211         if (!StackPtr.getNode())
11212           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11213         // Emit the store.
11214         MemOpChains.push_back(
11215             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
11216       } else {
11217         // Second half of f64 is passed in another GPR.
11218         assert(RegLo < RISCV::X31 && "Invalid register pair");
11219         Register RegHigh = RegLo + 1;
11220         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
11221       }
11222       continue;
11223     }
11224 
11225     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
11226     // as any other MemLoc.
11227 
11228     // Promote the value if needed.
11229     // For now, only handle fully promoted and indirect arguments.
11230     if (VA.getLocInfo() == CCValAssign::Indirect) {
11231       // Store the argument in a stack slot and pass its address.
11232       Align StackAlign =
11233           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
11234                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
11235       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
11236       // If the original argument was split (e.g. i128), we need
11237       // to store the required parts of it here (and pass just one address).
11238       // Vectors may be partly split to registers and partly to the stack, in
11239       // which case the base address is partly offset and subsequent stores are
11240       // relative to that.
11241       unsigned ArgIndex = Outs[i].OrigArgIndex;
11242       unsigned ArgPartOffset = Outs[i].PartOffset;
11243       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
11244       // Calculate the total size to store. We don't have access to what we're
11245       // actually storing other than performing the loop and collecting the
11246       // info.
11247       SmallVector<std::pair<SDValue, SDValue>> Parts;
11248       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
11249         SDValue PartValue = OutVals[i + 1];
11250         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
11251         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
11252         EVT PartVT = PartValue.getValueType();
11253         if (PartVT.isScalableVector())
11254           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11255         StoredSize += PartVT.getStoreSize();
11256         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
11257         Parts.push_back(std::make_pair(PartValue, Offset));
11258         ++i;
11259       }
11260       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
11261       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
11262       MemOpChains.push_back(
11263           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
11264                        MachinePointerInfo::getFixedStack(MF, FI)));
11265       for (const auto &Part : Parts) {
11266         SDValue PartValue = Part.first;
11267         SDValue PartOffset = Part.second;
11268         SDValue Address =
11269             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
11270         MemOpChains.push_back(
11271             DAG.getStore(Chain, DL, PartValue, Address,
11272                          MachinePointerInfo::getFixedStack(MF, FI)));
11273       }
11274       ArgValue = SpillSlot;
11275     } else {
11276       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
11277     }
11278 
11279     // Use local copy if it is a byval arg.
11280     if (Flags.isByVal())
11281       ArgValue = ByValArgs[j++];
11282 
11283     if (VA.isRegLoc()) {
11284       // Queue up the argument copies and emit them at the end.
11285       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
11286     } else {
11287       assert(VA.isMemLoc() && "Argument not register or memory");
11288       assert(!IsTailCall && "Tail call not allowed if stack is used "
11289                             "for passing parameters");
11290 
11291       // Work out the address of the stack slot.
11292       if (!StackPtr.getNode())
11293         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11294       SDValue Address =
11295           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
11296                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
11297 
11298       // Emit the store.
11299       MemOpChains.push_back(
11300           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
11301     }
11302   }
11303 
11304   // Join the stores, which are independent of one another.
11305   if (!MemOpChains.empty())
11306     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
11307 
11308   SDValue Glue;
11309 
11310   // Build a sequence of copy-to-reg nodes, chained and glued together.
11311   for (auto &Reg : RegsToPass) {
11312     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
11313     Glue = Chain.getValue(1);
11314   }
11315 
11316   // Validate that none of the argument registers have been marked as
11317   // reserved, if so report an error. Do the same for the return address if this
11318   // is not a tailcall.
11319   validateCCReservedRegs(RegsToPass, MF);
11320   if (!IsTailCall &&
11321       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
11322     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11323         MF.getFunction(),
11324         "Return address register required, but has been reserved."});
11325 
11326   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
11327   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
11328   // split it and then direct call can be matched by PseudoCALL.
11329   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
11330     const GlobalValue *GV = S->getGlobal();
11331 
11332     unsigned OpFlags = RISCVII::MO_CALL;
11333     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
11334       OpFlags = RISCVII::MO_PLT;
11335 
11336     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
11337   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
11338     unsigned OpFlags = RISCVII::MO_CALL;
11339 
11340     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
11341                                                  nullptr))
11342       OpFlags = RISCVII::MO_PLT;
11343 
11344     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
11345   }
11346 
11347   // The first call operand is the chain and the second is the target address.
11348   SmallVector<SDValue, 8> Ops;
11349   Ops.push_back(Chain);
11350   Ops.push_back(Callee);
11351 
11352   // Add argument registers to the end of the list so that they are
11353   // known live into the call.
11354   for (auto &Reg : RegsToPass)
11355     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
11356 
11357   if (!IsTailCall) {
11358     // Add a register mask operand representing the call-preserved registers.
11359     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
11360     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
11361     assert(Mask && "Missing call preserved mask for calling convention");
11362     Ops.push_back(DAG.getRegisterMask(Mask));
11363   }
11364 
11365   // Glue the call to the argument copies, if any.
11366   if (Glue.getNode())
11367     Ops.push_back(Glue);
11368 
11369   // Emit the call.
11370   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11371 
11372   if (IsTailCall) {
11373     MF.getFrameInfo().setHasTailCall();
11374     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
11375   }
11376 
11377   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
11378   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
11379   Glue = Chain.getValue(1);
11380 
11381   // Mark the end of the call, which is glued to the call itself.
11382   Chain = DAG.getCALLSEQ_END(Chain,
11383                              DAG.getConstant(NumBytes, DL, PtrVT, true),
11384                              DAG.getConstant(0, DL, PtrVT, true),
11385                              Glue, DL);
11386   Glue = Chain.getValue(1);
11387 
11388   // Assign locations to each value returned by this call.
11389   SmallVector<CCValAssign, 16> RVLocs;
11390   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
11391   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
11392 
11393   // Copy all of the result registers out of their specified physreg.
11394   for (auto &VA : RVLocs) {
11395     // Copy the value out
11396     SDValue RetValue =
11397         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
11398     // Glue the RetValue to the end of the call sequence
11399     Chain = RetValue.getValue(1);
11400     Glue = RetValue.getValue(2);
11401 
11402     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11403       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
11404       SDValue RetValue2 =
11405           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
11406       Chain = RetValue2.getValue(1);
11407       Glue = RetValue2.getValue(2);
11408       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
11409                              RetValue2);
11410     }
11411 
11412     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
11413 
11414     InVals.push_back(RetValue);
11415   }
11416 
11417   return Chain;
11418 }
11419 
11420 bool RISCVTargetLowering::CanLowerReturn(
11421     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
11422     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
11423   SmallVector<CCValAssign, 16> RVLocs;
11424   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
11425 
11426   Optional<unsigned> FirstMaskArgument;
11427   if (Subtarget.hasVInstructions())
11428     FirstMaskArgument = preAssignMask(Outs);
11429 
11430   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11431     MVT VT = Outs[i].VT;
11432     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
11433     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
11434     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
11435                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
11436                  *this, FirstMaskArgument))
11437       return false;
11438   }
11439   return true;
11440 }
11441 
11442 SDValue
11443 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
11444                                  bool IsVarArg,
11445                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
11446                                  const SmallVectorImpl<SDValue> &OutVals,
11447                                  const SDLoc &DL, SelectionDAG &DAG) const {
11448   const MachineFunction &MF = DAG.getMachineFunction();
11449   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11450 
11451   // Stores the assignment of the return value to a location.
11452   SmallVector<CCValAssign, 16> RVLocs;
11453 
11454   // Info about the registers and stack slot.
11455   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
11456                  *DAG.getContext());
11457 
11458   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
11459                     nullptr, CC_RISCV);
11460 
11461   if (CallConv == CallingConv::GHC && !RVLocs.empty())
11462     report_fatal_error("GHC functions return void only");
11463 
11464   SDValue Glue;
11465   SmallVector<SDValue, 4> RetOps(1, Chain);
11466 
11467   // Copy the result values into the output registers.
11468   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11469     SDValue Val = OutVals[i];
11470     CCValAssign &VA = RVLocs[i];
11471     assert(VA.isRegLoc() && "Can only return in registers!");
11472 
11473     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11474       // Handle returning f64 on RV32D with a soft float ABI.
11475       assert(VA.isRegLoc() && "Expected return via registers");
11476       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11477                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
11478       SDValue Lo = SplitF64.getValue(0);
11479       SDValue Hi = SplitF64.getValue(1);
11480       Register RegLo = VA.getLocReg();
11481       assert(RegLo < RISCV::X31 && "Invalid register pair");
11482       Register RegHi = RegLo + 1;
11483 
11484       if (STI.isRegisterReservedByUser(RegLo) ||
11485           STI.isRegisterReservedByUser(RegHi))
11486         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11487             MF.getFunction(),
11488             "Return value register required, but has been reserved."});
11489 
11490       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11491       Glue = Chain.getValue(1);
11492       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11493       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11494       Glue = Chain.getValue(1);
11495       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11496     } else {
11497       // Handle a 'normal' return.
11498       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11499       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11500 
11501       if (STI.isRegisterReservedByUser(VA.getLocReg()))
11502         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11503             MF.getFunction(),
11504             "Return value register required, but has been reserved."});
11505 
11506       // Guarantee that all emitted copies are stuck together.
11507       Glue = Chain.getValue(1);
11508       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11509     }
11510   }
11511 
11512   RetOps[0] = Chain; // Update chain.
11513 
11514   // Add the glue node if we have it.
11515   if (Glue.getNode()) {
11516     RetOps.push_back(Glue);
11517   }
11518 
11519   unsigned RetOpc = RISCVISD::RET_FLAG;
11520   // Interrupt service routines use different return instructions.
11521   const Function &Func = DAG.getMachineFunction().getFunction();
11522   if (Func.hasFnAttribute("interrupt")) {
11523     if (!Func.getReturnType()->isVoidTy())
11524       report_fatal_error(
11525           "Functions with the interrupt attribute must have void return type!");
11526 
11527     MachineFunction &MF = DAG.getMachineFunction();
11528     StringRef Kind =
11529       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11530 
11531     if (Kind == "user")
11532       RetOpc = RISCVISD::URET_FLAG;
11533     else if (Kind == "supervisor")
11534       RetOpc = RISCVISD::SRET_FLAG;
11535     else
11536       RetOpc = RISCVISD::MRET_FLAG;
11537   }
11538 
11539   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11540 }
11541 
11542 void RISCVTargetLowering::validateCCReservedRegs(
11543     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11544     MachineFunction &MF) const {
11545   const Function &F = MF.getFunction();
11546   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11547 
11548   if (llvm::any_of(Regs, [&STI](auto Reg) {
11549         return STI.isRegisterReservedByUser(Reg.first);
11550       }))
11551     F.getContext().diagnose(DiagnosticInfoUnsupported{
11552         F, "Argument register required, but has been reserved."});
11553 }
11554 
11555 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11556   return CI->isTailCall();
11557 }
11558 
11559 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11560 #define NODE_NAME_CASE(NODE)                                                   \
11561   case RISCVISD::NODE:                                                         \
11562     return "RISCVISD::" #NODE;
11563   // clang-format off
11564   switch ((RISCVISD::NodeType)Opcode) {
11565   case RISCVISD::FIRST_NUMBER:
11566     break;
11567   NODE_NAME_CASE(RET_FLAG)
11568   NODE_NAME_CASE(URET_FLAG)
11569   NODE_NAME_CASE(SRET_FLAG)
11570   NODE_NAME_CASE(MRET_FLAG)
11571   NODE_NAME_CASE(CALL)
11572   NODE_NAME_CASE(SELECT_CC)
11573   NODE_NAME_CASE(BR_CC)
11574   NODE_NAME_CASE(BuildPairF64)
11575   NODE_NAME_CASE(SplitF64)
11576   NODE_NAME_CASE(TAIL)
11577   NODE_NAME_CASE(ADD_LO)
11578   NODE_NAME_CASE(HI)
11579   NODE_NAME_CASE(LLA)
11580   NODE_NAME_CASE(ADD_TPREL)
11581   NODE_NAME_CASE(LA)
11582   NODE_NAME_CASE(LA_TLS_IE)
11583   NODE_NAME_CASE(LA_TLS_GD)
11584   NODE_NAME_CASE(MULHSU)
11585   NODE_NAME_CASE(SLLW)
11586   NODE_NAME_CASE(SRAW)
11587   NODE_NAME_CASE(SRLW)
11588   NODE_NAME_CASE(DIVW)
11589   NODE_NAME_CASE(DIVUW)
11590   NODE_NAME_CASE(REMUW)
11591   NODE_NAME_CASE(ROLW)
11592   NODE_NAME_CASE(RORW)
11593   NODE_NAME_CASE(CLZW)
11594   NODE_NAME_CASE(CTZW)
11595   NODE_NAME_CASE(FSLW)
11596   NODE_NAME_CASE(FSRW)
11597   NODE_NAME_CASE(FSL)
11598   NODE_NAME_CASE(FSR)
11599   NODE_NAME_CASE(FMV_H_X)
11600   NODE_NAME_CASE(FMV_X_ANYEXTH)
11601   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11602   NODE_NAME_CASE(FMV_W_X_RV64)
11603   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11604   NODE_NAME_CASE(FCVT_X)
11605   NODE_NAME_CASE(FCVT_XU)
11606   NODE_NAME_CASE(FCVT_W_RV64)
11607   NODE_NAME_CASE(FCVT_WU_RV64)
11608   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11609   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11610   NODE_NAME_CASE(READ_CYCLE_WIDE)
11611   NODE_NAME_CASE(GREV)
11612   NODE_NAME_CASE(GREVW)
11613   NODE_NAME_CASE(GORC)
11614   NODE_NAME_CASE(GORCW)
11615   NODE_NAME_CASE(SHFL)
11616   NODE_NAME_CASE(SHFLW)
11617   NODE_NAME_CASE(UNSHFL)
11618   NODE_NAME_CASE(UNSHFLW)
11619   NODE_NAME_CASE(BFP)
11620   NODE_NAME_CASE(BFPW)
11621   NODE_NAME_CASE(BCOMPRESS)
11622   NODE_NAME_CASE(BCOMPRESSW)
11623   NODE_NAME_CASE(BDECOMPRESS)
11624   NODE_NAME_CASE(BDECOMPRESSW)
11625   NODE_NAME_CASE(VMV_V_X_VL)
11626   NODE_NAME_CASE(VFMV_V_F_VL)
11627   NODE_NAME_CASE(VMV_X_S)
11628   NODE_NAME_CASE(VMV_S_X_VL)
11629   NODE_NAME_CASE(VFMV_S_F_VL)
11630   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11631   NODE_NAME_CASE(READ_VLENB)
11632   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11633   NODE_NAME_CASE(VSLIDEUP_VL)
11634   NODE_NAME_CASE(VSLIDE1UP_VL)
11635   NODE_NAME_CASE(VSLIDEDOWN_VL)
11636   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11637   NODE_NAME_CASE(VID_VL)
11638   NODE_NAME_CASE(VFNCVT_ROD_VL)
11639   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11640   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11641   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11642   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11643   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11644   NODE_NAME_CASE(VECREDUCE_AND_VL)
11645   NODE_NAME_CASE(VECREDUCE_OR_VL)
11646   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11647   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11648   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11649   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11650   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11651   NODE_NAME_CASE(ADD_VL)
11652   NODE_NAME_CASE(AND_VL)
11653   NODE_NAME_CASE(MUL_VL)
11654   NODE_NAME_CASE(OR_VL)
11655   NODE_NAME_CASE(SDIV_VL)
11656   NODE_NAME_CASE(SHL_VL)
11657   NODE_NAME_CASE(SREM_VL)
11658   NODE_NAME_CASE(SRA_VL)
11659   NODE_NAME_CASE(SRL_VL)
11660   NODE_NAME_CASE(SUB_VL)
11661   NODE_NAME_CASE(UDIV_VL)
11662   NODE_NAME_CASE(UREM_VL)
11663   NODE_NAME_CASE(XOR_VL)
11664   NODE_NAME_CASE(SADDSAT_VL)
11665   NODE_NAME_CASE(UADDSAT_VL)
11666   NODE_NAME_CASE(SSUBSAT_VL)
11667   NODE_NAME_CASE(USUBSAT_VL)
11668   NODE_NAME_CASE(FADD_VL)
11669   NODE_NAME_CASE(FSUB_VL)
11670   NODE_NAME_CASE(FMUL_VL)
11671   NODE_NAME_CASE(FDIV_VL)
11672   NODE_NAME_CASE(FNEG_VL)
11673   NODE_NAME_CASE(FABS_VL)
11674   NODE_NAME_CASE(FSQRT_VL)
11675   NODE_NAME_CASE(VFMADD_VL)
11676   NODE_NAME_CASE(VFNMADD_VL)
11677   NODE_NAME_CASE(VFMSUB_VL)
11678   NODE_NAME_CASE(VFNMSUB_VL)
11679   NODE_NAME_CASE(FCOPYSIGN_VL)
11680   NODE_NAME_CASE(SMIN_VL)
11681   NODE_NAME_CASE(SMAX_VL)
11682   NODE_NAME_CASE(UMIN_VL)
11683   NODE_NAME_CASE(UMAX_VL)
11684   NODE_NAME_CASE(FMINNUM_VL)
11685   NODE_NAME_CASE(FMAXNUM_VL)
11686   NODE_NAME_CASE(MULHS_VL)
11687   NODE_NAME_CASE(MULHU_VL)
11688   NODE_NAME_CASE(FP_TO_SINT_VL)
11689   NODE_NAME_CASE(FP_TO_UINT_VL)
11690   NODE_NAME_CASE(SINT_TO_FP_VL)
11691   NODE_NAME_CASE(UINT_TO_FP_VL)
11692   NODE_NAME_CASE(FP_EXTEND_VL)
11693   NODE_NAME_CASE(FP_ROUND_VL)
11694   NODE_NAME_CASE(VWMUL_VL)
11695   NODE_NAME_CASE(VWMULU_VL)
11696   NODE_NAME_CASE(VWMULSU_VL)
11697   NODE_NAME_CASE(VWADD_VL)
11698   NODE_NAME_CASE(VWADDU_VL)
11699   NODE_NAME_CASE(VWSUB_VL)
11700   NODE_NAME_CASE(VWSUBU_VL)
11701   NODE_NAME_CASE(VWADD_W_VL)
11702   NODE_NAME_CASE(VWADDU_W_VL)
11703   NODE_NAME_CASE(VWSUB_W_VL)
11704   NODE_NAME_CASE(VWSUBU_W_VL)
11705   NODE_NAME_CASE(SETCC_VL)
11706   NODE_NAME_CASE(VSELECT_VL)
11707   NODE_NAME_CASE(VP_MERGE_VL)
11708   NODE_NAME_CASE(VMAND_VL)
11709   NODE_NAME_CASE(VMOR_VL)
11710   NODE_NAME_CASE(VMXOR_VL)
11711   NODE_NAME_CASE(VMCLR_VL)
11712   NODE_NAME_CASE(VMSET_VL)
11713   NODE_NAME_CASE(VRGATHER_VX_VL)
11714   NODE_NAME_CASE(VRGATHER_VV_VL)
11715   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11716   NODE_NAME_CASE(VSEXT_VL)
11717   NODE_NAME_CASE(VZEXT_VL)
11718   NODE_NAME_CASE(VCPOP_VL)
11719   NODE_NAME_CASE(READ_CSR)
11720   NODE_NAME_CASE(WRITE_CSR)
11721   NODE_NAME_CASE(SWAP_CSR)
11722   }
11723   // clang-format on
11724   return nullptr;
11725 #undef NODE_NAME_CASE
11726 }
11727 
11728 /// getConstraintType - Given a constraint letter, return the type of
11729 /// constraint it is for this target.
11730 RISCVTargetLowering::ConstraintType
11731 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11732   if (Constraint.size() == 1) {
11733     switch (Constraint[0]) {
11734     default:
11735       break;
11736     case 'f':
11737       return C_RegisterClass;
11738     case 'I':
11739     case 'J':
11740     case 'K':
11741       return C_Immediate;
11742     case 'A':
11743       return C_Memory;
11744     case 'S': // A symbolic address
11745       return C_Other;
11746     }
11747   } else {
11748     if (Constraint == "vr" || Constraint == "vm")
11749       return C_RegisterClass;
11750   }
11751   return TargetLowering::getConstraintType(Constraint);
11752 }
11753 
11754 std::pair<unsigned, const TargetRegisterClass *>
11755 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11756                                                   StringRef Constraint,
11757                                                   MVT VT) const {
11758   // First, see if this is a constraint that directly corresponds to a
11759   // RISCV register class.
11760   if (Constraint.size() == 1) {
11761     switch (Constraint[0]) {
11762     case 'r':
11763       // TODO: Support fixed vectors up to XLen for P extension?
11764       if (VT.isVector())
11765         break;
11766       return std::make_pair(0U, &RISCV::GPRRegClass);
11767     case 'f':
11768       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11769         return std::make_pair(0U, &RISCV::FPR16RegClass);
11770       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11771         return std::make_pair(0U, &RISCV::FPR32RegClass);
11772       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11773         return std::make_pair(0U, &RISCV::FPR64RegClass);
11774       break;
11775     default:
11776       break;
11777     }
11778   } else if (Constraint == "vr") {
11779     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11780                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11781       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11782         return std::make_pair(0U, RC);
11783     }
11784   } else if (Constraint == "vm") {
11785     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11786       return std::make_pair(0U, &RISCV::VMV0RegClass);
11787   }
11788 
11789   // Clang will correctly decode the usage of register name aliases into their
11790   // official names. However, other frontends like `rustc` do not. This allows
11791   // users of these frontends to use the ABI names for registers in LLVM-style
11792   // register constraints.
11793   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11794                                .Case("{zero}", RISCV::X0)
11795                                .Case("{ra}", RISCV::X1)
11796                                .Case("{sp}", RISCV::X2)
11797                                .Case("{gp}", RISCV::X3)
11798                                .Case("{tp}", RISCV::X4)
11799                                .Case("{t0}", RISCV::X5)
11800                                .Case("{t1}", RISCV::X6)
11801                                .Case("{t2}", RISCV::X7)
11802                                .Cases("{s0}", "{fp}", RISCV::X8)
11803                                .Case("{s1}", RISCV::X9)
11804                                .Case("{a0}", RISCV::X10)
11805                                .Case("{a1}", RISCV::X11)
11806                                .Case("{a2}", RISCV::X12)
11807                                .Case("{a3}", RISCV::X13)
11808                                .Case("{a4}", RISCV::X14)
11809                                .Case("{a5}", RISCV::X15)
11810                                .Case("{a6}", RISCV::X16)
11811                                .Case("{a7}", RISCV::X17)
11812                                .Case("{s2}", RISCV::X18)
11813                                .Case("{s3}", RISCV::X19)
11814                                .Case("{s4}", RISCV::X20)
11815                                .Case("{s5}", RISCV::X21)
11816                                .Case("{s6}", RISCV::X22)
11817                                .Case("{s7}", RISCV::X23)
11818                                .Case("{s8}", RISCV::X24)
11819                                .Case("{s9}", RISCV::X25)
11820                                .Case("{s10}", RISCV::X26)
11821                                .Case("{s11}", RISCV::X27)
11822                                .Case("{t3}", RISCV::X28)
11823                                .Case("{t4}", RISCV::X29)
11824                                .Case("{t5}", RISCV::X30)
11825                                .Case("{t6}", RISCV::X31)
11826                                .Default(RISCV::NoRegister);
11827   if (XRegFromAlias != RISCV::NoRegister)
11828     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11829 
11830   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11831   // TableGen record rather than the AsmName to choose registers for InlineAsm
11832   // constraints, plus we want to match those names to the widest floating point
11833   // register type available, manually select floating point registers here.
11834   //
11835   // The second case is the ABI name of the register, so that frontends can also
11836   // use the ABI names in register constraint lists.
11837   if (Subtarget.hasStdExtF()) {
11838     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11839                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11840                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11841                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11842                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11843                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11844                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11845                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11846                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11847                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11848                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11849                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11850                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11851                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11852                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11853                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11854                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11855                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11856                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11857                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11858                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11859                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11860                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11861                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11862                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11863                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11864                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11865                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11866                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11867                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11868                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11869                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11870                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11871                         .Default(RISCV::NoRegister);
11872     if (FReg != RISCV::NoRegister) {
11873       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11874       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11875         unsigned RegNo = FReg - RISCV::F0_F;
11876         unsigned DReg = RISCV::F0_D + RegNo;
11877         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11878       }
11879       if (VT == MVT::f32 || VT == MVT::Other)
11880         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11881       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11882         unsigned RegNo = FReg - RISCV::F0_F;
11883         unsigned HReg = RISCV::F0_H + RegNo;
11884         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11885       }
11886     }
11887   }
11888 
11889   if (Subtarget.hasVInstructions()) {
11890     Register VReg = StringSwitch<Register>(Constraint.lower())
11891                         .Case("{v0}", RISCV::V0)
11892                         .Case("{v1}", RISCV::V1)
11893                         .Case("{v2}", RISCV::V2)
11894                         .Case("{v3}", RISCV::V3)
11895                         .Case("{v4}", RISCV::V4)
11896                         .Case("{v5}", RISCV::V5)
11897                         .Case("{v6}", RISCV::V6)
11898                         .Case("{v7}", RISCV::V7)
11899                         .Case("{v8}", RISCV::V8)
11900                         .Case("{v9}", RISCV::V9)
11901                         .Case("{v10}", RISCV::V10)
11902                         .Case("{v11}", RISCV::V11)
11903                         .Case("{v12}", RISCV::V12)
11904                         .Case("{v13}", RISCV::V13)
11905                         .Case("{v14}", RISCV::V14)
11906                         .Case("{v15}", RISCV::V15)
11907                         .Case("{v16}", RISCV::V16)
11908                         .Case("{v17}", RISCV::V17)
11909                         .Case("{v18}", RISCV::V18)
11910                         .Case("{v19}", RISCV::V19)
11911                         .Case("{v20}", RISCV::V20)
11912                         .Case("{v21}", RISCV::V21)
11913                         .Case("{v22}", RISCV::V22)
11914                         .Case("{v23}", RISCV::V23)
11915                         .Case("{v24}", RISCV::V24)
11916                         .Case("{v25}", RISCV::V25)
11917                         .Case("{v26}", RISCV::V26)
11918                         .Case("{v27}", RISCV::V27)
11919                         .Case("{v28}", RISCV::V28)
11920                         .Case("{v29}", RISCV::V29)
11921                         .Case("{v30}", RISCV::V30)
11922                         .Case("{v31}", RISCV::V31)
11923                         .Default(RISCV::NoRegister);
11924     if (VReg != RISCV::NoRegister) {
11925       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11926         return std::make_pair(VReg, &RISCV::VMRegClass);
11927       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11928         return std::make_pair(VReg, &RISCV::VRRegClass);
11929       for (const auto *RC :
11930            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11931         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11932           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11933           return std::make_pair(VReg, RC);
11934         }
11935       }
11936     }
11937   }
11938 
11939   std::pair<Register, const TargetRegisterClass *> Res =
11940       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11941 
11942   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11943   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11944   // Subtarget into account.
11945   if (Res.second == &RISCV::GPRF16RegClass ||
11946       Res.second == &RISCV::GPRF32RegClass ||
11947       Res.second == &RISCV::GPRF64RegClass)
11948     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11949 
11950   return Res;
11951 }
11952 
11953 unsigned
11954 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11955   // Currently only support length 1 constraints.
11956   if (ConstraintCode.size() == 1) {
11957     switch (ConstraintCode[0]) {
11958     case 'A':
11959       return InlineAsm::Constraint_A;
11960     default:
11961       break;
11962     }
11963   }
11964 
11965   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11966 }
11967 
11968 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11969     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11970     SelectionDAG &DAG) const {
11971   // Currently only support length 1 constraints.
11972   if (Constraint.length() == 1) {
11973     switch (Constraint[0]) {
11974     case 'I':
11975       // Validate & create a 12-bit signed immediate operand.
11976       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11977         uint64_t CVal = C->getSExtValue();
11978         if (isInt<12>(CVal))
11979           Ops.push_back(
11980               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11981       }
11982       return;
11983     case 'J':
11984       // Validate & create an integer zero operand.
11985       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11986         if (C->getZExtValue() == 0)
11987           Ops.push_back(
11988               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11989       return;
11990     case 'K':
11991       // Validate & create a 5-bit unsigned immediate operand.
11992       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11993         uint64_t CVal = C->getZExtValue();
11994         if (isUInt<5>(CVal))
11995           Ops.push_back(
11996               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11997       }
11998       return;
11999     case 'S':
12000       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
12001         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
12002                                                  GA->getValueType(0)));
12003       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
12004         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
12005                                                 BA->getValueType(0)));
12006       }
12007       return;
12008     default:
12009       break;
12010     }
12011   }
12012   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12013 }
12014 
12015 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
12016                                                    Instruction *Inst,
12017                                                    AtomicOrdering Ord) const {
12018   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
12019     return Builder.CreateFence(Ord);
12020   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
12021     return Builder.CreateFence(AtomicOrdering::Release);
12022   return nullptr;
12023 }
12024 
12025 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
12026                                                     Instruction *Inst,
12027                                                     AtomicOrdering Ord) const {
12028   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
12029     return Builder.CreateFence(AtomicOrdering::Acquire);
12030   return nullptr;
12031 }
12032 
12033 TargetLowering::AtomicExpansionKind
12034 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12035   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
12036   // point operations can't be used in an lr/sc sequence without breaking the
12037   // forward-progress guarantee.
12038   if (AI->isFloatingPointOperation())
12039     return AtomicExpansionKind::CmpXChg;
12040 
12041   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12042   if (Size == 8 || Size == 16)
12043     return AtomicExpansionKind::MaskedIntrinsic;
12044   return AtomicExpansionKind::None;
12045 }
12046 
12047 static Intrinsic::ID
12048 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
12049   if (XLen == 32) {
12050     switch (BinOp) {
12051     default:
12052       llvm_unreachable("Unexpected AtomicRMW BinOp");
12053     case AtomicRMWInst::Xchg:
12054       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
12055     case AtomicRMWInst::Add:
12056       return Intrinsic::riscv_masked_atomicrmw_add_i32;
12057     case AtomicRMWInst::Sub:
12058       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
12059     case AtomicRMWInst::Nand:
12060       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
12061     case AtomicRMWInst::Max:
12062       return Intrinsic::riscv_masked_atomicrmw_max_i32;
12063     case AtomicRMWInst::Min:
12064       return Intrinsic::riscv_masked_atomicrmw_min_i32;
12065     case AtomicRMWInst::UMax:
12066       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
12067     case AtomicRMWInst::UMin:
12068       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
12069     }
12070   }
12071 
12072   if (XLen == 64) {
12073     switch (BinOp) {
12074     default:
12075       llvm_unreachable("Unexpected AtomicRMW BinOp");
12076     case AtomicRMWInst::Xchg:
12077       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
12078     case AtomicRMWInst::Add:
12079       return Intrinsic::riscv_masked_atomicrmw_add_i64;
12080     case AtomicRMWInst::Sub:
12081       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
12082     case AtomicRMWInst::Nand:
12083       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
12084     case AtomicRMWInst::Max:
12085       return Intrinsic::riscv_masked_atomicrmw_max_i64;
12086     case AtomicRMWInst::Min:
12087       return Intrinsic::riscv_masked_atomicrmw_min_i64;
12088     case AtomicRMWInst::UMax:
12089       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
12090     case AtomicRMWInst::UMin:
12091       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
12092     }
12093   }
12094 
12095   llvm_unreachable("Unexpected XLen\n");
12096 }
12097 
12098 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
12099     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
12100     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
12101   unsigned XLen = Subtarget.getXLen();
12102   Value *Ordering =
12103       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
12104   Type *Tys[] = {AlignedAddr->getType()};
12105   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
12106       AI->getModule(),
12107       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
12108 
12109   if (XLen == 64) {
12110     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
12111     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12112     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
12113   }
12114 
12115   Value *Result;
12116 
12117   // Must pass the shift amount needed to sign extend the loaded value prior
12118   // to performing a signed comparison for min/max. ShiftAmt is the number of
12119   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
12120   // is the number of bits to left+right shift the value in order to
12121   // sign-extend.
12122   if (AI->getOperation() == AtomicRMWInst::Min ||
12123       AI->getOperation() == AtomicRMWInst::Max) {
12124     const DataLayout &DL = AI->getModule()->getDataLayout();
12125     unsigned ValWidth =
12126         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
12127     Value *SextShamt =
12128         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
12129     Result = Builder.CreateCall(LrwOpScwLoop,
12130                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
12131   } else {
12132     Result =
12133         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
12134   }
12135 
12136   if (XLen == 64)
12137     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12138   return Result;
12139 }
12140 
12141 TargetLowering::AtomicExpansionKind
12142 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
12143     AtomicCmpXchgInst *CI) const {
12144   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
12145   if (Size == 8 || Size == 16)
12146     return AtomicExpansionKind::MaskedIntrinsic;
12147   return AtomicExpansionKind::None;
12148 }
12149 
12150 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
12151     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
12152     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
12153   unsigned XLen = Subtarget.getXLen();
12154   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
12155   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
12156   if (XLen == 64) {
12157     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
12158     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
12159     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12160     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
12161   }
12162   Type *Tys[] = {AlignedAddr->getType()};
12163   Function *MaskedCmpXchg =
12164       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
12165   Value *Result = Builder.CreateCall(
12166       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
12167   if (XLen == 64)
12168     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12169   return Result;
12170 }
12171 
12172 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
12173                                                         EVT DataVT) const {
12174   return false;
12175 }
12176 
12177 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
12178                                                EVT VT) const {
12179   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
12180     return false;
12181 
12182   switch (FPVT.getSimpleVT().SimpleTy) {
12183   case MVT::f16:
12184     return Subtarget.hasStdExtZfh();
12185   case MVT::f32:
12186     return Subtarget.hasStdExtF();
12187   case MVT::f64:
12188     return Subtarget.hasStdExtD();
12189   default:
12190     return false;
12191   }
12192 }
12193 
12194 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
12195   // If we are using the small code model, we can reduce size of jump table
12196   // entry to 4 bytes.
12197   if (Subtarget.is64Bit() && !isPositionIndependent() &&
12198       getTargetMachine().getCodeModel() == CodeModel::Small) {
12199     return MachineJumpTableInfo::EK_Custom32;
12200   }
12201   return TargetLowering::getJumpTableEncoding();
12202 }
12203 
12204 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
12205     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
12206     unsigned uid, MCContext &Ctx) const {
12207   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
12208          getTargetMachine().getCodeModel() == CodeModel::Small);
12209   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
12210 }
12211 
12212 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
12213   // We define vscale to be VLEN/RVVBitsPerBlock.  VLEN is always a power
12214   // of two >= 64, and RVVBitsPerBlock is 64.  Thus, vscale must be
12215   // a power of two as well.
12216   // FIXME: This doesn't work for zve32, but that's already broken
12217   // elsewhere for the same reason.
12218   assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
12219   static_assert(RISCV::RVVBitsPerBlock == 64,
12220                 "RVVBitsPerBlock changed, audit needed");
12221   return true;
12222 }
12223 
12224 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
12225                                                      EVT VT) const {
12226   VT = VT.getScalarType();
12227 
12228   if (!VT.isSimple())
12229     return false;
12230 
12231   switch (VT.getSimpleVT().SimpleTy) {
12232   case MVT::f16:
12233     return Subtarget.hasStdExtZfh();
12234   case MVT::f32:
12235     return Subtarget.hasStdExtF();
12236   case MVT::f64:
12237     return Subtarget.hasStdExtD();
12238   default:
12239     break;
12240   }
12241 
12242   return false;
12243 }
12244 
12245 Register RISCVTargetLowering::getExceptionPointerRegister(
12246     const Constant *PersonalityFn) const {
12247   return RISCV::X10;
12248 }
12249 
12250 Register RISCVTargetLowering::getExceptionSelectorRegister(
12251     const Constant *PersonalityFn) const {
12252   return RISCV::X11;
12253 }
12254 
12255 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
12256   // Return false to suppress the unnecessary extensions if the LibCall
12257   // arguments or return value is f32 type for LP64 ABI.
12258   RISCVABI::ABI ABI = Subtarget.getTargetABI();
12259   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
12260     return false;
12261 
12262   return true;
12263 }
12264 
12265 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
12266   if (Subtarget.is64Bit() && Type == MVT::i32)
12267     return true;
12268 
12269   return IsSigned;
12270 }
12271 
12272 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
12273                                                  SDValue C) const {
12274   // Check integral scalar types.
12275   const bool HasExtMOrZmmul =
12276       Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul();
12277   if (VT.isScalarInteger()) {
12278     // Omit the optimization if the sub target has the M extension and the data
12279     // size exceeds XLen.
12280     if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen())
12281       return false;
12282     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
12283       // Break the MUL to a SLLI and an ADD/SUB.
12284       const APInt &Imm = ConstNode->getAPIntValue();
12285       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
12286           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
12287         return true;
12288       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
12289       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
12290           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
12291            (Imm - 8).isPowerOf2()))
12292         return true;
12293       // Omit the following optimization if the sub target has the M extension
12294       // and the data size >= XLen.
12295       if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen())
12296         return false;
12297       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
12298       // a pair of LUI/ADDI.
12299       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
12300         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
12301         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
12302             (1 - ImmS).isPowerOf2())
12303           return true;
12304       }
12305     }
12306   }
12307 
12308   return false;
12309 }
12310 
12311 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
12312                                                       SDValue ConstNode) const {
12313   // Let the DAGCombiner decide for vectors.
12314   EVT VT = AddNode.getValueType();
12315   if (VT.isVector())
12316     return true;
12317 
12318   // Let the DAGCombiner decide for larger types.
12319   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
12320     return true;
12321 
12322   // It is worse if c1 is simm12 while c1*c2 is not.
12323   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
12324   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
12325   const APInt &C1 = C1Node->getAPIntValue();
12326   const APInt &C2 = C2Node->getAPIntValue();
12327   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
12328     return false;
12329 
12330   // Default to true and let the DAGCombiner decide.
12331   return true;
12332 }
12333 
12334 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
12335     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
12336     bool *Fast) const {
12337   if (!VT.isVector()) {
12338     if (Fast)
12339       *Fast = false;
12340     return Subtarget.enableUnalignedScalarMem();
12341   }
12342 
12343   // All vector implementations must support element alignment
12344   EVT ElemVT = VT.getVectorElementType();
12345   if (Alignment >= ElemVT.getStoreSize()) {
12346     if (Fast)
12347       *Fast = true;
12348     return true;
12349   }
12350 
12351   return false;
12352 }
12353 
12354 bool RISCVTargetLowering::splitValueIntoRegisterParts(
12355     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
12356     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
12357   bool IsABIRegCopy = CC.has_value();
12358   EVT ValueVT = Val.getValueType();
12359   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12360     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
12361     // and cast to f32.
12362     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
12363     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
12364     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
12365                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
12366     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
12367     Parts[0] = Val;
12368     return true;
12369   }
12370 
12371   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12372     LLVMContext &Context = *DAG.getContext();
12373     EVT ValueEltVT = ValueVT.getVectorElementType();
12374     EVT PartEltVT = PartVT.getVectorElementType();
12375     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12376     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12377     if (PartVTBitSize % ValueVTBitSize == 0) {
12378       assert(PartVTBitSize >= ValueVTBitSize);
12379       // If the element types are different, bitcast to the same element type of
12380       // PartVT first.
12381       // Give an example here, we want copy a <vscale x 1 x i8> value to
12382       // <vscale x 4 x i16>.
12383       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
12384       // subvector, then we can bitcast to <vscale x 4 x i16>.
12385       if (ValueEltVT != PartEltVT) {
12386         if (PartVTBitSize > ValueVTBitSize) {
12387           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12388           assert(Count != 0 && "The number of element should not be zero.");
12389           EVT SameEltTypeVT =
12390               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12391           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
12392                             DAG.getUNDEF(SameEltTypeVT), Val,
12393                             DAG.getVectorIdxConstant(0, DL));
12394         }
12395         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
12396       } else {
12397         Val =
12398             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
12399                         Val, DAG.getVectorIdxConstant(0, DL));
12400       }
12401       Parts[0] = Val;
12402       return true;
12403     }
12404   }
12405   return false;
12406 }
12407 
12408 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
12409     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
12410     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
12411   bool IsABIRegCopy = CC.has_value();
12412   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12413     SDValue Val = Parts[0];
12414 
12415     // Cast the f32 to i32, truncate to i16, and cast back to f16.
12416     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
12417     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
12418     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
12419     return Val;
12420   }
12421 
12422   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12423     LLVMContext &Context = *DAG.getContext();
12424     SDValue Val = Parts[0];
12425     EVT ValueEltVT = ValueVT.getVectorElementType();
12426     EVT PartEltVT = PartVT.getVectorElementType();
12427     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12428     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12429     if (PartVTBitSize % ValueVTBitSize == 0) {
12430       assert(PartVTBitSize >= ValueVTBitSize);
12431       EVT SameEltTypeVT = ValueVT;
12432       // If the element types are different, convert it to the same element type
12433       // of PartVT.
12434       // Give an example here, we want copy a <vscale x 1 x i8> value from
12435       // <vscale x 4 x i16>.
12436       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
12437       // then we can extract <vscale x 1 x i8>.
12438       if (ValueEltVT != PartEltVT) {
12439         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12440         assert(Count != 0 && "The number of element should not be zero.");
12441         SameEltTypeVT =
12442             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12443         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
12444       }
12445       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
12446                         DAG.getVectorIdxConstant(0, DL));
12447       return Val;
12448     }
12449   }
12450   return SDValue();
12451 }
12452 
12453 SDValue
12454 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12455                                    SelectionDAG &DAG,
12456                                    SmallVectorImpl<SDNode *> &Created) const {
12457   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12458   if (isIntDivCheap(N->getValueType(0), Attr))
12459     return SDValue(N, 0); // Lower SDIV as SDIV
12460 
12461   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
12462          "Unexpected divisor!");
12463 
12464   // Conditional move is needed, so do the transformation iff Zbt is enabled.
12465   if (!Subtarget.hasStdExtZbt())
12466     return SDValue();
12467 
12468   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
12469   // Besides, more critical path instructions will be generated when dividing
12470   // by 2. So we keep using the original DAGs for these cases.
12471   unsigned Lg2 = Divisor.countTrailingZeros();
12472   if (Lg2 == 1 || Lg2 >= 12)
12473     return SDValue();
12474 
12475   // fold (sdiv X, pow2)
12476   EVT VT = N->getValueType(0);
12477   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
12478     return SDValue();
12479 
12480   SDLoc DL(N);
12481   SDValue N0 = N->getOperand(0);
12482   SDValue Zero = DAG.getConstant(0, DL, VT);
12483   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12484 
12485   // Add (N0 < 0) ? Pow2 - 1 : 0;
12486   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12487   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12488   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12489 
12490   Created.push_back(Cmp.getNode());
12491   Created.push_back(Add.getNode());
12492   Created.push_back(Sel.getNode());
12493 
12494   // Divide by pow2.
12495   SDValue SRA =
12496       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12497 
12498   // If we're dividing by a positive value, we're done.  Otherwise, we must
12499   // negate the result.
12500   if (Divisor.isNonNegative())
12501     return SRA;
12502 
12503   Created.push_back(SRA.getNode());
12504   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12505 }
12506 
12507 #define GET_REGISTER_MATCHER
12508 #include "RISCVGenAsmMatcher.inc"
12509 
12510 Register
12511 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12512                                        const MachineFunction &MF) const {
12513   Register Reg = MatchRegisterAltName(RegName);
12514   if (Reg == RISCV::NoRegister)
12515     Reg = MatchRegisterName(RegName);
12516   if (Reg == RISCV::NoRegister)
12517     report_fatal_error(
12518         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12519   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12520   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12521     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12522                              StringRef(RegName) + "\"."));
12523   return Reg;
12524 }
12525 
12526 namespace llvm {
12527 namespace RISCVVIntrinsicsTable {
12528 
12529 #define GET_RISCVVIntrinsicsTable_IMPL
12530 #include "RISCVGenSearchableTables.inc"
12531 
12532 } // namespace RISCVVIntrinsicsTable
12533 
12534 } // namespace llvm
12535