1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306   }
307 
308   if (Subtarget.hasStdExtZbt()) {
309     setOperationAction(ISD::FSHL, XLenVT, Custom);
310     setOperationAction(ISD::FSHR, XLenVT, Custom);
311     setOperationAction(ISD::SELECT, XLenVT, Legal);
312 
313     if (Subtarget.is64Bit()) {
314       setOperationAction(ISD::FSHL, MVT::i32, Custom);
315       setOperationAction(ISD::FSHR, MVT::i32, Custom);
316     }
317   } else {
318     setOperationAction(ISD::SELECT, XLenVT, Custom);
319   }
320 
321   static const ISD::CondCode FPCCToExpand[] = {
322       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
323       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
324       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
325 
326   static const ISD::NodeType FPOpToExpand[] = {
327       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
328       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
329 
330   if (Subtarget.hasStdExtZfh())
331     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
332 
333   if (Subtarget.hasStdExtZfh()) {
334     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
335     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
336     setOperationAction(ISD::LRINT, MVT::f16, Legal);
337     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
338     setOperationAction(ISD::LROUND, MVT::f16, Legal);
339     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
345     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
346     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
349     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
350     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
352     setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal);
353     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal);
354     for (auto CC : FPCCToExpand)
355       setCondCodeAction(CC, MVT::f16, Expand);
356     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
357     setOperationAction(ISD::SELECT, MVT::f16, Custom);
358     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
359 
360     setOperationAction(ISD::FREM,       MVT::f16, Promote);
361     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
362     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
363     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
364     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
365     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
366     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
367     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
368     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
369     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
370     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
371     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
372     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
373     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
374     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
375     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
376     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
377     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
378 
379     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
380     // complete support for all operations in LegalizeDAG.
381 
382     // We need to custom promote this.
383     if (Subtarget.is64Bit())
384       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
385   }
386 
387   if (Subtarget.hasStdExtF()) {
388     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
389     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
390     setOperationAction(ISD::LRINT, MVT::f32, Legal);
391     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
392     setOperationAction(ISD::LROUND, MVT::f32, Legal);
393     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
395     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
396     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
397     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
398     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
399     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
400     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
401     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
402     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
404     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
405     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
406     for (auto CC : FPCCToExpand)
407       setCondCodeAction(CC, MVT::f32, Expand);
408     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
409     setOperationAction(ISD::SELECT, MVT::f32, Custom);
410     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f32, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
418     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
419 
420   if (Subtarget.hasStdExtD()) {
421     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
422     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
423     setOperationAction(ISD::LRINT, MVT::f64, Legal);
424     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
425     setOperationAction(ISD::LROUND, MVT::f64, Legal);
426     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
428     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
429     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
431     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
432     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
433     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
435     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
436     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
437     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
438     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
439     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
440     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
441     for (auto CC : FPCCToExpand)
442       setCondCodeAction(CC, MVT::f64, Expand);
443     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
444     setOperationAction(ISD::SELECT, MVT::f64, Custom);
445     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
446     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
447     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
448     for (auto Op : FPOpToExpand)
449       setOperationAction(Op, MVT::f64, Expand);
450     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
451     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
452   }
453 
454   if (Subtarget.is64Bit()) {
455     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
456     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
457     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
459   }
460 
461   if (Subtarget.hasStdExtF()) {
462     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
463     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
464 
465     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
466     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
467     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
468     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
469 
470     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
471     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
472   }
473 
474   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
475   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
476   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
477   setOperationAction(ISD::JumpTable, XLenVT, Custom);
478 
479   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
480 
481   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
482   // Unfortunately this can't be determined just from the ISA naming string.
483   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
484                      Subtarget.is64Bit() ? Legal : Custom);
485 
486   setOperationAction(ISD::TRAP, MVT::Other, Legal);
487   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
488   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
489   if (Subtarget.is64Bit())
490     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
491 
492   if (Subtarget.hasStdExtA()) {
493     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
494     setMinCmpXchgSizeInBits(32);
495   } else {
496     setMaxAtomicSizeInBitsSupported(0);
497   }
498 
499   setBooleanContents(ZeroOrOneBooleanContent);
500 
501   if (Subtarget.hasVInstructions()) {
502     setBooleanVectorContents(ZeroOrOneBooleanContent);
503 
504     setOperationAction(ISD::VSCALE, XLenVT, Custom);
505 
506     // RVV intrinsics may have illegal operands.
507     // We also need to custom legalize vmv.x.s.
508     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
509     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
510     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
511     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
512     if (Subtarget.is64Bit()) {
513       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
514     } else {
515       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
516       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
517     }
518 
519     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
520     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
521 
522     static const unsigned IntegerVPOps[] = {
523         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
524         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
525         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
526         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
527         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
528         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
529         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
530         ISD::VP_MERGE,       ISD::VP_SELECT};
531 
532     static const unsigned FloatingPointVPOps[] = {
533         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
534         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
535         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,
536         ISD::VP_SELECT};
537 
538     if (!Subtarget.is64Bit()) {
539       // We must custom-lower certain vXi64 operations on RV32 due to the vector
540       // element type being illegal.
541       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
542       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
543 
544       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
545       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
546       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
547       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
548       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
549       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
550       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
551       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
552 
553       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
554       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
555       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
556       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
557       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
558       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
559       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
560       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
561     }
562 
563     for (MVT VT : BoolVecVTs) {
564       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
565 
566       // Mask VTs are custom-expanded into a series of standard nodes
567       setOperationAction(ISD::TRUNCATE, VT, Custom);
568       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
569       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
570       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
571 
572       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
573       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
574 
575       setOperationAction(ISD::SELECT, VT, Custom);
576       setOperationAction(ISD::SELECT_CC, VT, Expand);
577       setOperationAction(ISD::VSELECT, VT, Expand);
578       setOperationAction(ISD::VP_MERGE, VT, Expand);
579       setOperationAction(ISD::VP_SELECT, VT, Expand);
580 
581       setOperationAction(ISD::VP_AND, VT, Custom);
582       setOperationAction(ISD::VP_OR, VT, Custom);
583       setOperationAction(ISD::VP_XOR, VT, Custom);
584 
585       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
586       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
587       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
588 
589       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
590       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
591       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
592 
593       // RVV has native int->float & float->int conversions where the
594       // element type sizes are within one power-of-two of each other. Any
595       // wider distances between type sizes have to be lowered as sequences
596       // which progressively narrow the gap in stages.
597       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
598       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
599       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
600       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
601 
602       // Expand all extending loads to types larger than this, and truncating
603       // stores from types larger than this.
604       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
605         setTruncStoreAction(OtherVT, VT, Expand);
606         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
607         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
608         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
609       }
610     }
611 
612     for (MVT VT : IntVecVTs) {
613       if (VT.getVectorElementType() == MVT::i64 &&
614           !Subtarget.hasVInstructionsI64())
615         continue;
616 
617       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
618       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
619 
620       // Vectors implement MULHS/MULHU.
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
623 
624       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
625       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
626         setOperationAction(ISD::MULHU, VT, Expand);
627         setOperationAction(ISD::MULHS, VT, Expand);
628       }
629 
630       setOperationAction(ISD::SMIN, VT, Legal);
631       setOperationAction(ISD::SMAX, VT, Legal);
632       setOperationAction(ISD::UMIN, VT, Legal);
633       setOperationAction(ISD::UMAX, VT, Legal);
634 
635       setOperationAction(ISD::ROTL, VT, Expand);
636       setOperationAction(ISD::ROTR, VT, Expand);
637 
638       setOperationAction(ISD::CTTZ, VT, Expand);
639       setOperationAction(ISD::CTLZ, VT, Expand);
640       setOperationAction(ISD::CTPOP, VT, Expand);
641 
642       setOperationAction(ISD::BSWAP, VT, Expand);
643 
644       // Custom-lower extensions and truncations from/to mask types.
645       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
646       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
647       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
648 
649       // RVV has native int->float & float->int conversions where the
650       // element type sizes are within one power-of-two of each other. Any
651       // wider distances between type sizes have to be lowered as sequences
652       // which progressively narrow the gap in stages.
653       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
654       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
655       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
656       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
657 
658       setOperationAction(ISD::SADDSAT, VT, Legal);
659       setOperationAction(ISD::UADDSAT, VT, Legal);
660       setOperationAction(ISD::SSUBSAT, VT, Legal);
661       setOperationAction(ISD::USUBSAT, VT, Legal);
662 
663       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
664       // nodes which truncate by one power of two at a time.
665       setOperationAction(ISD::TRUNCATE, VT, Custom);
666 
667       // Custom-lower insert/extract operations to simplify patterns.
668       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
669       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
670 
671       // Custom-lower reduction operations to set up the corresponding custom
672       // nodes' operands.
673       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
674       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
675       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
676       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
677       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
678       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
679       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
680       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
681 
682       for (unsigned VPOpc : IntegerVPOps)
683         setOperationAction(VPOpc, VT, Custom);
684 
685       setOperationAction(ISD::LOAD, VT, Custom);
686       setOperationAction(ISD::STORE, VT, Custom);
687 
688       setOperationAction(ISD::MLOAD, VT, Custom);
689       setOperationAction(ISD::MSTORE, VT, Custom);
690       setOperationAction(ISD::MGATHER, VT, Custom);
691       setOperationAction(ISD::MSCATTER, VT, Custom);
692 
693       setOperationAction(ISD::VP_LOAD, VT, Custom);
694       setOperationAction(ISD::VP_STORE, VT, Custom);
695       setOperationAction(ISD::VP_GATHER, VT, Custom);
696       setOperationAction(ISD::VP_SCATTER, VT, Custom);
697 
698       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
699       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
700       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
701 
702       setOperationAction(ISD::SELECT, VT, Custom);
703       setOperationAction(ISD::SELECT_CC, VT, Expand);
704 
705       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
706       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
707 
708       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
709         setTruncStoreAction(VT, OtherVT, Expand);
710         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
711         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
712         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
713       }
714 
715       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
716       // type that can represent the value exactly.
717       if (VT.getVectorElementType() != MVT::i64) {
718         MVT FloatEltVT =
719             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
720         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
721         if (isTypeLegal(FloatVT)) {
722           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
723           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
724         }
725       }
726     }
727 
728     // Expand various CCs to best match the RVV ISA, which natively supports UNE
729     // but no other unordered comparisons, and supports all ordered comparisons
730     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
731     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
732     // and we pattern-match those back to the "original", swapping operands once
733     // more. This way we catch both operations and both "vf" and "fv" forms with
734     // fewer patterns.
735     static const ISD::CondCode VFPCCToExpand[] = {
736         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
737         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
738         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
739     };
740 
741     // Sets common operation actions on RVV floating-point vector types.
742     const auto SetCommonVFPActions = [&](MVT VT) {
743       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
744       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
745       // sizes are within one power-of-two of each other. Therefore conversions
746       // between vXf16 and vXf64 must be lowered as sequences which convert via
747       // vXf32.
748       setOperationAction(ISD::FP_ROUND, VT, Custom);
749       setOperationAction(ISD::FP_EXTEND, VT, Custom);
750       // Custom-lower insert/extract operations to simplify patterns.
751       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
752       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
753       // Expand various condition codes (explained above).
754       for (auto CC : VFPCCToExpand)
755         setCondCodeAction(CC, VT, Expand);
756 
757       setOperationAction(ISD::FMINNUM, VT, Legal);
758       setOperationAction(ISD::FMAXNUM, VT, Legal);
759 
760       setOperationAction(ISD::FTRUNC, VT, Custom);
761       setOperationAction(ISD::FCEIL, VT, Custom);
762       setOperationAction(ISD::FFLOOR, VT, Custom);
763 
764       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
765       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
766       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
767       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
768 
769       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
770 
771       setOperationAction(ISD::LOAD, VT, Custom);
772       setOperationAction(ISD::STORE, VT, Custom);
773 
774       setOperationAction(ISD::MLOAD, VT, Custom);
775       setOperationAction(ISD::MSTORE, VT, Custom);
776       setOperationAction(ISD::MGATHER, VT, Custom);
777       setOperationAction(ISD::MSCATTER, VT, Custom);
778 
779       setOperationAction(ISD::VP_LOAD, VT, Custom);
780       setOperationAction(ISD::VP_STORE, VT, Custom);
781       setOperationAction(ISD::VP_GATHER, VT, Custom);
782       setOperationAction(ISD::VP_SCATTER, VT, Custom);
783 
784       setOperationAction(ISD::SELECT, VT, Custom);
785       setOperationAction(ISD::SELECT_CC, VT, Expand);
786 
787       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
788       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
789       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
790 
791       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
792 
793       for (unsigned VPOpc : FloatingPointVPOps)
794         setOperationAction(VPOpc, VT, Custom);
795     };
796 
797     // Sets common extload/truncstore actions on RVV floating-point vector
798     // types.
799     const auto SetCommonVFPExtLoadTruncStoreActions =
800         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
801           for (auto SmallVT : SmallerVTs) {
802             setTruncStoreAction(VT, SmallVT, Expand);
803             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
804           }
805         };
806 
807     if (Subtarget.hasVInstructionsF16())
808       for (MVT VT : F16VecVTs)
809         SetCommonVFPActions(VT);
810 
811     for (MVT VT : F32VecVTs) {
812       if (Subtarget.hasVInstructionsF32())
813         SetCommonVFPActions(VT);
814       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
815     }
816 
817     for (MVT VT : F64VecVTs) {
818       if (Subtarget.hasVInstructionsF64())
819         SetCommonVFPActions(VT);
820       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
821       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
822     }
823 
824     if (Subtarget.useRVVForFixedLengthVectors()) {
825       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
826         if (!useRVVForFixedLengthVectorVT(VT))
827           continue;
828 
829         // By default everything must be expanded.
830         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
831           setOperationAction(Op, VT, Expand);
832         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
833           setTruncStoreAction(VT, OtherVT, Expand);
834           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
835           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
836           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
837         }
838 
839         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
840         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
841         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
842 
843         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
844         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
845 
846         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
847         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
848 
849         setOperationAction(ISD::LOAD, VT, Custom);
850         setOperationAction(ISD::STORE, VT, Custom);
851 
852         setOperationAction(ISD::SETCC, VT, Custom);
853 
854         setOperationAction(ISD::SELECT, VT, Custom);
855 
856         setOperationAction(ISD::TRUNCATE, VT, Custom);
857 
858         setOperationAction(ISD::BITCAST, VT, Custom);
859 
860         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
861         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
862         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
863 
864         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
865         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
866         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
867 
868         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
869         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
870         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
871         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
872 
873         // Operations below are different for between masks and other vectors.
874         if (VT.getVectorElementType() == MVT::i1) {
875           setOperationAction(ISD::VP_AND, VT, Custom);
876           setOperationAction(ISD::VP_OR, VT, Custom);
877           setOperationAction(ISD::VP_XOR, VT, Custom);
878           setOperationAction(ISD::AND, VT, Custom);
879           setOperationAction(ISD::OR, VT, Custom);
880           setOperationAction(ISD::XOR, VT, Custom);
881           continue;
882         }
883 
884         // Use SPLAT_VECTOR to prevent type legalization from destroying the
885         // splats when type legalizing i64 scalar on RV32.
886         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
887         // improvements first.
888         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
889           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
890           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
891         }
892 
893         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
894         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
895 
896         setOperationAction(ISD::MLOAD, VT, Custom);
897         setOperationAction(ISD::MSTORE, VT, Custom);
898         setOperationAction(ISD::MGATHER, VT, Custom);
899         setOperationAction(ISD::MSCATTER, VT, Custom);
900 
901         setOperationAction(ISD::VP_LOAD, VT, Custom);
902         setOperationAction(ISD::VP_STORE, VT, Custom);
903         setOperationAction(ISD::VP_GATHER, VT, Custom);
904         setOperationAction(ISD::VP_SCATTER, VT, Custom);
905 
906         setOperationAction(ISD::ADD, VT, Custom);
907         setOperationAction(ISD::MUL, VT, Custom);
908         setOperationAction(ISD::SUB, VT, Custom);
909         setOperationAction(ISD::AND, VT, Custom);
910         setOperationAction(ISD::OR, VT, Custom);
911         setOperationAction(ISD::XOR, VT, Custom);
912         setOperationAction(ISD::SDIV, VT, Custom);
913         setOperationAction(ISD::SREM, VT, Custom);
914         setOperationAction(ISD::UDIV, VT, Custom);
915         setOperationAction(ISD::UREM, VT, Custom);
916         setOperationAction(ISD::SHL, VT, Custom);
917         setOperationAction(ISD::SRA, VT, Custom);
918         setOperationAction(ISD::SRL, VT, Custom);
919 
920         setOperationAction(ISD::SMIN, VT, Custom);
921         setOperationAction(ISD::SMAX, VT, Custom);
922         setOperationAction(ISD::UMIN, VT, Custom);
923         setOperationAction(ISD::UMAX, VT, Custom);
924         setOperationAction(ISD::ABS,  VT, Custom);
925 
926         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
927         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
928           setOperationAction(ISD::MULHS, VT, Custom);
929           setOperationAction(ISD::MULHU, VT, Custom);
930         }
931 
932         setOperationAction(ISD::SADDSAT, VT, Custom);
933         setOperationAction(ISD::UADDSAT, VT, Custom);
934         setOperationAction(ISD::SSUBSAT, VT, Custom);
935         setOperationAction(ISD::USUBSAT, VT, Custom);
936 
937         setOperationAction(ISD::VSELECT, VT, Custom);
938         setOperationAction(ISD::SELECT_CC, VT, Expand);
939 
940         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
941         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
942         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
943 
944         // Custom-lower reduction operations to set up the corresponding custom
945         // nodes' operands.
946         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
947         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
948         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
949         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
950         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
951 
952         for (unsigned VPOpc : IntegerVPOps)
953           setOperationAction(VPOpc, VT, Custom);
954 
955         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
956         // type that can represent the value exactly.
957         if (VT.getVectorElementType() != MVT::i64) {
958           MVT FloatEltVT =
959               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
960           EVT FloatVT =
961               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
962           if (isTypeLegal(FloatVT)) {
963             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
964             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
965           }
966         }
967       }
968 
969       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
970         if (!useRVVForFixedLengthVectorVT(VT))
971           continue;
972 
973         // By default everything must be expanded.
974         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
975           setOperationAction(Op, VT, Expand);
976         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
977           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
978           setTruncStoreAction(VT, OtherVT, Expand);
979         }
980 
981         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
982         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
983         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
984 
985         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
986         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
987         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
988         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
989         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
990 
991         setOperationAction(ISD::LOAD, VT, Custom);
992         setOperationAction(ISD::STORE, VT, Custom);
993         setOperationAction(ISD::MLOAD, VT, Custom);
994         setOperationAction(ISD::MSTORE, VT, Custom);
995         setOperationAction(ISD::MGATHER, VT, Custom);
996         setOperationAction(ISD::MSCATTER, VT, Custom);
997 
998         setOperationAction(ISD::VP_LOAD, VT, Custom);
999         setOperationAction(ISD::VP_STORE, VT, Custom);
1000         setOperationAction(ISD::VP_GATHER, VT, Custom);
1001         setOperationAction(ISD::VP_SCATTER, VT, Custom);
1002 
1003         setOperationAction(ISD::FADD, VT, Custom);
1004         setOperationAction(ISD::FSUB, VT, Custom);
1005         setOperationAction(ISD::FMUL, VT, Custom);
1006         setOperationAction(ISD::FDIV, VT, Custom);
1007         setOperationAction(ISD::FNEG, VT, Custom);
1008         setOperationAction(ISD::FABS, VT, Custom);
1009         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
1010         setOperationAction(ISD::FSQRT, VT, Custom);
1011         setOperationAction(ISD::FMA, VT, Custom);
1012         setOperationAction(ISD::FMINNUM, VT, Custom);
1013         setOperationAction(ISD::FMAXNUM, VT, Custom);
1014 
1015         setOperationAction(ISD::FP_ROUND, VT, Custom);
1016         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1017 
1018         setOperationAction(ISD::FTRUNC, VT, Custom);
1019         setOperationAction(ISD::FCEIL, VT, Custom);
1020         setOperationAction(ISD::FFLOOR, VT, Custom);
1021 
1022         for (auto CC : VFPCCToExpand)
1023           setCondCodeAction(CC, VT, Expand);
1024 
1025         setOperationAction(ISD::VSELECT, VT, Custom);
1026         setOperationAction(ISD::SELECT, VT, Custom);
1027         setOperationAction(ISD::SELECT_CC, VT, Expand);
1028 
1029         setOperationAction(ISD::BITCAST, VT, Custom);
1030 
1031         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1032         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1033         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1034         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1035 
1036         for (unsigned VPOpc : FloatingPointVPOps)
1037           setOperationAction(VPOpc, VT, Custom);
1038       }
1039 
1040       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1041       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1042       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1043       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1044       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1045       if (Subtarget.hasStdExtZfh())
1046         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1047       if (Subtarget.hasStdExtF())
1048         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1049       if (Subtarget.hasStdExtD())
1050         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1051     }
1052   }
1053 
1054   // Function alignments.
1055   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1056   setMinFunctionAlignment(FunctionAlignment);
1057   setPrefFunctionAlignment(FunctionAlignment);
1058 
1059   setMinimumJumpTableEntries(5);
1060 
1061   // Jumps are expensive, compared to logic
1062   setJumpIsExpensive();
1063 
1064   setTargetDAGCombine(ISD::ADD);
1065   setTargetDAGCombine(ISD::SUB);
1066   setTargetDAGCombine(ISD::AND);
1067   setTargetDAGCombine(ISD::OR);
1068   setTargetDAGCombine(ISD::XOR);
1069   setTargetDAGCombine(ISD::ANY_EXTEND);
1070   if (Subtarget.hasStdExtF()) {
1071     setTargetDAGCombine(ISD::ZERO_EXTEND);
1072     setTargetDAGCombine(ISD::FP_TO_SINT);
1073     setTargetDAGCombine(ISD::FP_TO_UINT);
1074     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1075     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1076   }
1077   if (Subtarget.hasVInstructions()) {
1078     setTargetDAGCombine(ISD::FCOPYSIGN);
1079     setTargetDAGCombine(ISD::MGATHER);
1080     setTargetDAGCombine(ISD::MSCATTER);
1081     setTargetDAGCombine(ISD::VP_GATHER);
1082     setTargetDAGCombine(ISD::VP_SCATTER);
1083     setTargetDAGCombine(ISD::SRA);
1084     setTargetDAGCombine(ISD::SRL);
1085     setTargetDAGCombine(ISD::SHL);
1086     setTargetDAGCombine(ISD::STORE);
1087   }
1088 
1089   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1090   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1091 }
1092 
1093 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1094                                             LLVMContext &Context,
1095                                             EVT VT) const {
1096   if (!VT.isVector())
1097     return getPointerTy(DL);
1098   if (Subtarget.hasVInstructions() &&
1099       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1100     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1101   return VT.changeVectorElementTypeToInteger();
1102 }
1103 
1104 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1105   return Subtarget.getXLenVT();
1106 }
1107 
1108 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1109                                              const CallInst &I,
1110                                              MachineFunction &MF,
1111                                              unsigned Intrinsic) const {
1112   auto &DL = I.getModule()->getDataLayout();
1113   switch (Intrinsic) {
1114   default:
1115     return false;
1116   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1117   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1118   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1119   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1120   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1121   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1122   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1123   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1124   case Intrinsic::riscv_masked_cmpxchg_i32:
1125     Info.opc = ISD::INTRINSIC_W_CHAIN;
1126     Info.memVT = MVT::i32;
1127     Info.ptrVal = I.getArgOperand(0);
1128     Info.offset = 0;
1129     Info.align = Align(4);
1130     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1131                  MachineMemOperand::MOVolatile;
1132     return true;
1133   case Intrinsic::riscv_masked_strided_load:
1134     Info.opc = ISD::INTRINSIC_W_CHAIN;
1135     Info.ptrVal = I.getArgOperand(1);
1136     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1137     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1138     Info.size = MemoryLocation::UnknownSize;
1139     Info.flags |= MachineMemOperand::MOLoad;
1140     return true;
1141   case Intrinsic::riscv_masked_strided_store:
1142     Info.opc = ISD::INTRINSIC_VOID;
1143     Info.ptrVal = I.getArgOperand(1);
1144     Info.memVT =
1145         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1146     Info.align = Align(
1147         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1148         8);
1149     Info.size = MemoryLocation::UnknownSize;
1150     Info.flags |= MachineMemOperand::MOStore;
1151     return true;
1152   }
1153 }
1154 
1155 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1156                                                 const AddrMode &AM, Type *Ty,
1157                                                 unsigned AS,
1158                                                 Instruction *I) const {
1159   // No global is ever allowed as a base.
1160   if (AM.BaseGV)
1161     return false;
1162 
1163   // Require a 12-bit signed offset.
1164   if (!isInt<12>(AM.BaseOffs))
1165     return false;
1166 
1167   switch (AM.Scale) {
1168   case 0: // "r+i" or just "i", depending on HasBaseReg.
1169     break;
1170   case 1:
1171     if (!AM.HasBaseReg) // allow "r+i".
1172       break;
1173     return false; // disallow "r+r" or "r+r+i".
1174   default:
1175     return false;
1176   }
1177 
1178   return true;
1179 }
1180 
1181 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1182   return isInt<12>(Imm);
1183 }
1184 
1185 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1186   return isInt<12>(Imm);
1187 }
1188 
1189 // On RV32, 64-bit integers are split into their high and low parts and held
1190 // in two different registers, so the trunc is free since the low register can
1191 // just be used.
1192 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1193   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1194     return false;
1195   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1196   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1197   return (SrcBits == 64 && DestBits == 32);
1198 }
1199 
1200 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1201   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1202       !SrcVT.isInteger() || !DstVT.isInteger())
1203     return false;
1204   unsigned SrcBits = SrcVT.getSizeInBits();
1205   unsigned DestBits = DstVT.getSizeInBits();
1206   return (SrcBits == 64 && DestBits == 32);
1207 }
1208 
1209 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1210   // Zexts are free if they can be combined with a load.
1211   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1212   // poorly with type legalization of compares preferring sext.
1213   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1214     EVT MemVT = LD->getMemoryVT();
1215     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1216         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1217          LD->getExtensionType() == ISD::ZEXTLOAD))
1218       return true;
1219   }
1220 
1221   return TargetLowering::isZExtFree(Val, VT2);
1222 }
1223 
1224 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1225   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1226 }
1227 
1228 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1229   return Subtarget.hasStdExtZbb();
1230 }
1231 
1232 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1233   return Subtarget.hasStdExtZbb();
1234 }
1235 
1236 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1237   EVT VT = Y.getValueType();
1238 
1239   // FIXME: Support vectors once we have tests.
1240   if (VT.isVector())
1241     return false;
1242 
1243   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1244           Subtarget.hasStdExtZbkb()) &&
1245          !isa<ConstantSDNode>(Y);
1246 }
1247 
1248 /// Check if sinking \p I's operands to I's basic block is profitable, because
1249 /// the operands can be folded into a target instruction, e.g.
1250 /// splats of scalars can fold into vector instructions.
1251 bool RISCVTargetLowering::shouldSinkOperands(
1252     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1253   using namespace llvm::PatternMatch;
1254 
1255   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1256     return false;
1257 
1258   auto IsSinker = [&](Instruction *I, int Operand) {
1259     switch (I->getOpcode()) {
1260     case Instruction::Add:
1261     case Instruction::Sub:
1262     case Instruction::Mul:
1263     case Instruction::And:
1264     case Instruction::Or:
1265     case Instruction::Xor:
1266     case Instruction::FAdd:
1267     case Instruction::FSub:
1268     case Instruction::FMul:
1269     case Instruction::FDiv:
1270     case Instruction::ICmp:
1271     case Instruction::FCmp:
1272       return true;
1273     case Instruction::Shl:
1274     case Instruction::LShr:
1275     case Instruction::AShr:
1276     case Instruction::UDiv:
1277     case Instruction::SDiv:
1278     case Instruction::URem:
1279     case Instruction::SRem:
1280       return Operand == 1;
1281     case Instruction::Call:
1282       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1283         switch (II->getIntrinsicID()) {
1284         case Intrinsic::fma:
1285           return Operand == 0 || Operand == 1;
1286         // FIXME: Our patterns can only match vx/vf instructions when the splat
1287         // it on the RHS, because TableGen doesn't recognize our VP operations
1288         // as commutative.
1289         case Intrinsic::vp_add:
1290         case Intrinsic::vp_mul:
1291         case Intrinsic::vp_and:
1292         case Intrinsic::vp_or:
1293         case Intrinsic::vp_xor:
1294         case Intrinsic::vp_fadd:
1295         case Intrinsic::vp_fmul:
1296         case Intrinsic::vp_shl:
1297         case Intrinsic::vp_lshr:
1298         case Intrinsic::vp_ashr:
1299         case Intrinsic::vp_udiv:
1300         case Intrinsic::vp_sdiv:
1301         case Intrinsic::vp_urem:
1302         case Intrinsic::vp_srem:
1303           return Operand == 1;
1304         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1305         // explicit patterns for both LHS and RHS (as 'vr' versions).
1306         case Intrinsic::vp_sub:
1307         case Intrinsic::vp_fsub:
1308         case Intrinsic::vp_fdiv:
1309           return Operand == 0 || Operand == 1;
1310         default:
1311           return false;
1312         }
1313       }
1314       return false;
1315     default:
1316       return false;
1317     }
1318   };
1319 
1320   for (auto OpIdx : enumerate(I->operands())) {
1321     if (!IsSinker(I, OpIdx.index()))
1322       continue;
1323 
1324     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1325     // Make sure we are not already sinking this operand
1326     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1327       continue;
1328 
1329     // We are looking for a splat that can be sunk.
1330     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1331                              m_Undef(), m_ZeroMask())))
1332       continue;
1333 
1334     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1335     // and vector registers
1336     for (Use &U : Op->uses()) {
1337       Instruction *Insn = cast<Instruction>(U.getUser());
1338       if (!IsSinker(Insn, U.getOperandNo()))
1339         return false;
1340     }
1341 
1342     Ops.push_back(&Op->getOperandUse(0));
1343     Ops.push_back(&OpIdx.value());
1344   }
1345   return true;
1346 }
1347 
1348 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1349                                        bool ForCodeSize) const {
1350   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1351   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1352     return false;
1353   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1354     return false;
1355   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1356     return false;
1357   return Imm.isZero();
1358 }
1359 
1360 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1361   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1362          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1363          (VT == MVT::f64 && Subtarget.hasStdExtD());
1364 }
1365 
1366 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1367                                                       CallingConv::ID CC,
1368                                                       EVT VT) const {
1369   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1370   // We might still end up using a GPR but that will be decided based on ABI.
1371   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1372   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1373     return MVT::f32;
1374 
1375   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1376 }
1377 
1378 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1379                                                            CallingConv::ID CC,
1380                                                            EVT VT) const {
1381   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1382   // We might still end up using a GPR but that will be decided based on ABI.
1383   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1384   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1385     return 1;
1386 
1387   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1388 }
1389 
1390 // Changes the condition code and swaps operands if necessary, so the SetCC
1391 // operation matches one of the comparisons supported directly by branches
1392 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1393 // with 1/-1.
1394 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1395                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1396   // Convert X > -1 to X >= 0.
1397   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1398     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1399     CC = ISD::SETGE;
1400     return;
1401   }
1402   // Convert X < 1 to 0 >= X.
1403   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1404     RHS = LHS;
1405     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1406     CC = ISD::SETGE;
1407     return;
1408   }
1409 
1410   switch (CC) {
1411   default:
1412     break;
1413   case ISD::SETGT:
1414   case ISD::SETLE:
1415   case ISD::SETUGT:
1416   case ISD::SETULE:
1417     CC = ISD::getSetCCSwappedOperands(CC);
1418     std::swap(LHS, RHS);
1419     break;
1420   }
1421 }
1422 
1423 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1424   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1425   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1426   if (VT.getVectorElementType() == MVT::i1)
1427     KnownSize *= 8;
1428 
1429   switch (KnownSize) {
1430   default:
1431     llvm_unreachable("Invalid LMUL.");
1432   case 8:
1433     return RISCVII::VLMUL::LMUL_F8;
1434   case 16:
1435     return RISCVII::VLMUL::LMUL_F4;
1436   case 32:
1437     return RISCVII::VLMUL::LMUL_F2;
1438   case 64:
1439     return RISCVII::VLMUL::LMUL_1;
1440   case 128:
1441     return RISCVII::VLMUL::LMUL_2;
1442   case 256:
1443     return RISCVII::VLMUL::LMUL_4;
1444   case 512:
1445     return RISCVII::VLMUL::LMUL_8;
1446   }
1447 }
1448 
1449 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1450   switch (LMul) {
1451   default:
1452     llvm_unreachable("Invalid LMUL.");
1453   case RISCVII::VLMUL::LMUL_F8:
1454   case RISCVII::VLMUL::LMUL_F4:
1455   case RISCVII::VLMUL::LMUL_F2:
1456   case RISCVII::VLMUL::LMUL_1:
1457     return RISCV::VRRegClassID;
1458   case RISCVII::VLMUL::LMUL_2:
1459     return RISCV::VRM2RegClassID;
1460   case RISCVII::VLMUL::LMUL_4:
1461     return RISCV::VRM4RegClassID;
1462   case RISCVII::VLMUL::LMUL_8:
1463     return RISCV::VRM8RegClassID;
1464   }
1465 }
1466 
1467 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1468   RISCVII::VLMUL LMUL = getLMUL(VT);
1469   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1470       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1471       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1472       LMUL == RISCVII::VLMUL::LMUL_1) {
1473     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1474                   "Unexpected subreg numbering");
1475     return RISCV::sub_vrm1_0 + Index;
1476   }
1477   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1478     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1479                   "Unexpected subreg numbering");
1480     return RISCV::sub_vrm2_0 + Index;
1481   }
1482   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1483     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1484                   "Unexpected subreg numbering");
1485     return RISCV::sub_vrm4_0 + Index;
1486   }
1487   llvm_unreachable("Invalid vector type.");
1488 }
1489 
1490 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1491   if (VT.getVectorElementType() == MVT::i1)
1492     return RISCV::VRRegClassID;
1493   return getRegClassIDForLMUL(getLMUL(VT));
1494 }
1495 
1496 // Attempt to decompose a subvector insert/extract between VecVT and
1497 // SubVecVT via subregister indices. Returns the subregister index that
1498 // can perform the subvector insert/extract with the given element index, as
1499 // well as the index corresponding to any leftover subvectors that must be
1500 // further inserted/extracted within the register class for SubVecVT.
1501 std::pair<unsigned, unsigned>
1502 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1503     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1504     const RISCVRegisterInfo *TRI) {
1505   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1506                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1507                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1508                 "Register classes not ordered");
1509   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1510   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1511   // Try to compose a subregister index that takes us from the incoming
1512   // LMUL>1 register class down to the outgoing one. At each step we half
1513   // the LMUL:
1514   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1515   // Note that this is not guaranteed to find a subregister index, such as
1516   // when we are extracting from one VR type to another.
1517   unsigned SubRegIdx = RISCV::NoSubRegister;
1518   for (const unsigned RCID :
1519        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1520     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1521       VecVT = VecVT.getHalfNumVectorElementsVT();
1522       bool IsHi =
1523           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1524       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1525                                             getSubregIndexByMVT(VecVT, IsHi));
1526       if (IsHi)
1527         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1528     }
1529   return {SubRegIdx, InsertExtractIdx};
1530 }
1531 
1532 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1533 // stores for those types.
1534 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1535   return !Subtarget.useRVVForFixedLengthVectors() ||
1536          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1537 }
1538 
1539 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1540   if (ScalarTy->isPointerTy())
1541     return true;
1542 
1543   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1544       ScalarTy->isIntegerTy(32))
1545     return true;
1546 
1547   if (ScalarTy->isIntegerTy(64))
1548     return Subtarget.hasVInstructionsI64();
1549 
1550   if (ScalarTy->isHalfTy())
1551     return Subtarget.hasVInstructionsF16();
1552   if (ScalarTy->isFloatTy())
1553     return Subtarget.hasVInstructionsF32();
1554   if (ScalarTy->isDoubleTy())
1555     return Subtarget.hasVInstructionsF64();
1556 
1557   return false;
1558 }
1559 
1560 static SDValue getVLOperand(SDValue Op) {
1561   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1562           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1563          "Unexpected opcode");
1564   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1565   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1566   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1567       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1568   if (!II)
1569     return SDValue();
1570   return Op.getOperand(II->VLOperand + 1 + HasChain);
1571 }
1572 
1573 static bool useRVVForFixedLengthVectorVT(MVT VT,
1574                                          const RISCVSubtarget &Subtarget) {
1575   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1576   if (!Subtarget.useRVVForFixedLengthVectors())
1577     return false;
1578 
1579   // We only support a set of vector types with a consistent maximum fixed size
1580   // across all supported vector element types to avoid legalization issues.
1581   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1582   // fixed-length vector type we support is 1024 bytes.
1583   if (VT.getFixedSizeInBits() > 1024 * 8)
1584     return false;
1585 
1586   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1587 
1588   MVT EltVT = VT.getVectorElementType();
1589 
1590   // Don't use RVV for vectors we cannot scalarize if required.
1591   switch (EltVT.SimpleTy) {
1592   // i1 is supported but has different rules.
1593   default:
1594     return false;
1595   case MVT::i1:
1596     // Masks can only use a single register.
1597     if (VT.getVectorNumElements() > MinVLen)
1598       return false;
1599     MinVLen /= 8;
1600     break;
1601   case MVT::i8:
1602   case MVT::i16:
1603   case MVT::i32:
1604     break;
1605   case MVT::i64:
1606     if (!Subtarget.hasVInstructionsI64())
1607       return false;
1608     break;
1609   case MVT::f16:
1610     if (!Subtarget.hasVInstructionsF16())
1611       return false;
1612     break;
1613   case MVT::f32:
1614     if (!Subtarget.hasVInstructionsF32())
1615       return false;
1616     break;
1617   case MVT::f64:
1618     if (!Subtarget.hasVInstructionsF64())
1619       return false;
1620     break;
1621   }
1622 
1623   // Reject elements larger than ELEN.
1624   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1625     return false;
1626 
1627   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1628   // Don't use RVV for types that don't fit.
1629   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1630     return false;
1631 
1632   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1633   // the base fixed length RVV support in place.
1634   if (!VT.isPow2VectorType())
1635     return false;
1636 
1637   return true;
1638 }
1639 
1640 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1641   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1642 }
1643 
1644 // Return the largest legal scalable vector type that matches VT's element type.
1645 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1646                                             const RISCVSubtarget &Subtarget) {
1647   // This may be called before legal types are setup.
1648   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1649           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1650          "Expected legal fixed length vector!");
1651 
1652   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1653   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1654 
1655   MVT EltVT = VT.getVectorElementType();
1656   switch (EltVT.SimpleTy) {
1657   default:
1658     llvm_unreachable("unexpected element type for RVV container");
1659   case MVT::i1:
1660   case MVT::i8:
1661   case MVT::i16:
1662   case MVT::i32:
1663   case MVT::i64:
1664   case MVT::f16:
1665   case MVT::f32:
1666   case MVT::f64: {
1667     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1668     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1669     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1670     unsigned NumElts =
1671         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1672     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1673     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1674     return MVT::getScalableVectorVT(EltVT, NumElts);
1675   }
1676   }
1677 }
1678 
1679 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1680                                             const RISCVSubtarget &Subtarget) {
1681   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1682                                           Subtarget);
1683 }
1684 
1685 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1686   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1687 }
1688 
1689 // Grow V to consume an entire RVV register.
1690 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1691                                        const RISCVSubtarget &Subtarget) {
1692   assert(VT.isScalableVector() &&
1693          "Expected to convert into a scalable vector!");
1694   assert(V.getValueType().isFixedLengthVector() &&
1695          "Expected a fixed length vector operand!");
1696   SDLoc DL(V);
1697   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1698   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1699 }
1700 
1701 // Shrink V so it's just big enough to maintain a VT's worth of data.
1702 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1703                                          const RISCVSubtarget &Subtarget) {
1704   assert(VT.isFixedLengthVector() &&
1705          "Expected to convert into a fixed length vector!");
1706   assert(V.getValueType().isScalableVector() &&
1707          "Expected a scalable vector operand!");
1708   SDLoc DL(V);
1709   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1710   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1711 }
1712 
1713 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1714 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1715 // the vector type that it is contained in.
1716 static std::pair<SDValue, SDValue>
1717 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1718                 const RISCVSubtarget &Subtarget) {
1719   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1720   MVT XLenVT = Subtarget.getXLenVT();
1721   SDValue VL = VecVT.isFixedLengthVector()
1722                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1723                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1724   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1725   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1726   return {Mask, VL};
1727 }
1728 
1729 // As above but assuming the given type is a scalable vector type.
1730 static std::pair<SDValue, SDValue>
1731 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1732                         const RISCVSubtarget &Subtarget) {
1733   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1734   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1735 }
1736 
1737 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1738 // of either is (currently) supported. This can get us into an infinite loop
1739 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1740 // as a ..., etc.
1741 // Until either (or both) of these can reliably lower any node, reporting that
1742 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1743 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1744 // which is not desirable.
1745 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1746     EVT VT, unsigned DefinedValues) const {
1747   return false;
1748 }
1749 
1750 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1751   // Only splats are currently supported.
1752   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1753     return true;
1754 
1755   return false;
1756 }
1757 
1758 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1759                                   const RISCVSubtarget &Subtarget) {
1760   // RISCV FP-to-int conversions saturate to the destination register size, but
1761   // don't produce 0 for nan. We can use a conversion instruction and fix the
1762   // nan case with a compare and a select.
1763   SDValue Src = Op.getOperand(0);
1764 
1765   EVT DstVT = Op.getValueType();
1766   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1767 
1768   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1769   unsigned Opc;
1770   if (SatVT == DstVT)
1771     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1772   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1773     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1774   else
1775     return SDValue();
1776   // FIXME: Support other SatVTs by clamping before or after the conversion.
1777 
1778   SDLoc DL(Op);
1779   SDValue FpToInt = DAG.getNode(
1780       Opc, DL, DstVT, Src,
1781       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1782 
1783   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1784   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1785 }
1786 
1787 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1788 // and back. Taking care to avoid converting values that are nan or already
1789 // correct.
1790 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1791 // have FRM dependencies modeled yet.
1792 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1793   MVT VT = Op.getSimpleValueType();
1794   assert(VT.isVector() && "Unexpected type");
1795 
1796   SDLoc DL(Op);
1797 
1798   // Freeze the source since we are increasing the number of uses.
1799   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1800 
1801   // Truncate to integer and convert back to FP.
1802   MVT IntVT = VT.changeVectorElementTypeToInteger();
1803   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1804   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1805 
1806   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1807 
1808   if (Op.getOpcode() == ISD::FCEIL) {
1809     // If the truncated value is the greater than or equal to the original
1810     // value, we've computed the ceil. Otherwise, we went the wrong way and
1811     // need to increase by 1.
1812     // FIXME: This should use a masked operation. Handle here or in isel?
1813     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1814                                  DAG.getConstantFP(1.0, DL, VT));
1815     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1816     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1817   } else if (Op.getOpcode() == ISD::FFLOOR) {
1818     // If the truncated value is the less than or equal to the original value,
1819     // we've computed the floor. Otherwise, we went the wrong way and need to
1820     // decrease by 1.
1821     // FIXME: This should use a masked operation. Handle here or in isel?
1822     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1823                                  DAG.getConstantFP(1.0, DL, VT));
1824     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1825     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1826   }
1827 
1828   // Restore the original sign so that -0.0 is preserved.
1829   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1830 
1831   // Determine the largest integer that can be represented exactly. This and
1832   // values larger than it don't have any fractional bits so don't need to
1833   // be converted.
1834   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1835   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1836   APFloat MaxVal = APFloat(FltSem);
1837   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1838                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1839   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1840 
1841   // If abs(Src) was larger than MaxVal or nan, keep it.
1842   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1843   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1844   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1845 }
1846 
1847 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1848                                  const RISCVSubtarget &Subtarget) {
1849   MVT VT = Op.getSimpleValueType();
1850   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1851 
1852   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1853 
1854   SDLoc DL(Op);
1855   SDValue Mask, VL;
1856   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1857 
1858   unsigned Opc =
1859       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1860   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1861   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1862 }
1863 
1864 struct VIDSequence {
1865   int64_t StepNumerator;
1866   unsigned StepDenominator;
1867   int64_t Addend;
1868 };
1869 
1870 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1871 // to the (non-zero) step S and start value X. This can be then lowered as the
1872 // RVV sequence (VID * S) + X, for example.
1873 // The step S is represented as an integer numerator divided by a positive
1874 // denominator. Note that the implementation currently only identifies
1875 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1876 // cannot detect 2/3, for example.
1877 // Note that this method will also match potentially unappealing index
1878 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1879 // determine whether this is worth generating code for.
1880 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1881   unsigned NumElts = Op.getNumOperands();
1882   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1883   if (!Op.getValueType().isInteger())
1884     return None;
1885 
1886   Optional<unsigned> SeqStepDenom;
1887   Optional<int64_t> SeqStepNum, SeqAddend;
1888   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1889   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1890   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1891     // Assume undef elements match the sequence; we just have to be careful
1892     // when interpolating across them.
1893     if (Op.getOperand(Idx).isUndef())
1894       continue;
1895     // The BUILD_VECTOR must be all constants.
1896     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1897       return None;
1898 
1899     uint64_t Val = Op.getConstantOperandVal(Idx) &
1900                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1901 
1902     if (PrevElt) {
1903       // Calculate the step since the last non-undef element, and ensure
1904       // it's consistent across the entire sequence.
1905       unsigned IdxDiff = Idx - PrevElt->second;
1906       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1907 
1908       // A zero-value value difference means that we're somewhere in the middle
1909       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1910       // step change before evaluating the sequence.
1911       if (ValDiff != 0) {
1912         int64_t Remainder = ValDiff % IdxDiff;
1913         // Normalize the step if it's greater than 1.
1914         if (Remainder != ValDiff) {
1915           // The difference must cleanly divide the element span.
1916           if (Remainder != 0)
1917             return None;
1918           ValDiff /= IdxDiff;
1919           IdxDiff = 1;
1920         }
1921 
1922         if (!SeqStepNum)
1923           SeqStepNum = ValDiff;
1924         else if (ValDiff != SeqStepNum)
1925           return None;
1926 
1927         if (!SeqStepDenom)
1928           SeqStepDenom = IdxDiff;
1929         else if (IdxDiff != *SeqStepDenom)
1930           return None;
1931       }
1932     }
1933 
1934     // Record and/or check any addend.
1935     if (SeqStepNum && SeqStepDenom) {
1936       uint64_t ExpectedVal =
1937           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1938       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1939       if (!SeqAddend)
1940         SeqAddend = Addend;
1941       else if (SeqAddend != Addend)
1942         return None;
1943     }
1944 
1945     // Record this non-undef element for later.
1946     if (!PrevElt || PrevElt->first != Val)
1947       PrevElt = std::make_pair(Val, Idx);
1948   }
1949   // We need to have logged both a step and an addend for this to count as
1950   // a legal index sequence.
1951   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1952     return None;
1953 
1954   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1955 }
1956 
1957 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1958                                  const RISCVSubtarget &Subtarget) {
1959   MVT VT = Op.getSimpleValueType();
1960   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1961 
1962   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1963 
1964   SDLoc DL(Op);
1965   SDValue Mask, VL;
1966   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1967 
1968   MVT XLenVT = Subtarget.getXLenVT();
1969   unsigned NumElts = Op.getNumOperands();
1970 
1971   if (VT.getVectorElementType() == MVT::i1) {
1972     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1973       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1974       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1975     }
1976 
1977     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1978       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1979       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1980     }
1981 
1982     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1983     // scalar integer chunks whose bit-width depends on the number of mask
1984     // bits and XLEN.
1985     // First, determine the most appropriate scalar integer type to use. This
1986     // is at most XLenVT, but may be shrunk to a smaller vector element type
1987     // according to the size of the final vector - use i8 chunks rather than
1988     // XLenVT if we're producing a v8i1. This results in more consistent
1989     // codegen across RV32 and RV64.
1990     unsigned NumViaIntegerBits =
1991         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1992     NumViaIntegerBits = std::min(NumViaIntegerBits,
1993                                  Subtarget.getMaxELENForFixedLengthVectors());
1994     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1995       // If we have to use more than one INSERT_VECTOR_ELT then this
1996       // optimization is likely to increase code size; avoid peforming it in
1997       // such a case. We can use a load from a constant pool in this case.
1998       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1999         return SDValue();
2000       // Now we can create our integer vector type. Note that it may be larger
2001       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2002       MVT IntegerViaVecVT =
2003           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2004                            divideCeil(NumElts, NumViaIntegerBits));
2005 
2006       uint64_t Bits = 0;
2007       unsigned BitPos = 0, IntegerEltIdx = 0;
2008       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2009 
2010       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2011         // Once we accumulate enough bits to fill our scalar type, insert into
2012         // our vector and clear our accumulated data.
2013         if (I != 0 && I % NumViaIntegerBits == 0) {
2014           if (NumViaIntegerBits <= 32)
2015             Bits = SignExtend64(Bits, 32);
2016           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2017           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2018                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2019           Bits = 0;
2020           BitPos = 0;
2021           IntegerEltIdx++;
2022         }
2023         SDValue V = Op.getOperand(I);
2024         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2025         Bits |= ((uint64_t)BitValue << BitPos);
2026       }
2027 
2028       // Insert the (remaining) scalar value into position in our integer
2029       // vector type.
2030       if (NumViaIntegerBits <= 32)
2031         Bits = SignExtend64(Bits, 32);
2032       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2033       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2034                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2035 
2036       if (NumElts < NumViaIntegerBits) {
2037         // If we're producing a smaller vector than our minimum legal integer
2038         // type, bitcast to the equivalent (known-legal) mask type, and extract
2039         // our final mask.
2040         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2041         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2042         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2043                           DAG.getConstant(0, DL, XLenVT));
2044       } else {
2045         // Else we must have produced an integer type with the same size as the
2046         // mask type; bitcast for the final result.
2047         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2048         Vec = DAG.getBitcast(VT, Vec);
2049       }
2050 
2051       return Vec;
2052     }
2053 
2054     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2055     // vector type, we have a legal equivalently-sized i8 type, so we can use
2056     // that.
2057     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2058     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2059 
2060     SDValue WideVec;
2061     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2062       // For a splat, perform a scalar truncate before creating the wider
2063       // vector.
2064       assert(Splat.getValueType() == XLenVT &&
2065              "Unexpected type for i1 splat value");
2066       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2067                           DAG.getConstant(1, DL, XLenVT));
2068       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2069     } else {
2070       SmallVector<SDValue, 8> Ops(Op->op_values());
2071       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2072       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2073       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2074     }
2075 
2076     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2077   }
2078 
2079   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2080     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2081                                         : RISCVISD::VMV_V_X_VL;
2082     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2083     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2084   }
2085 
2086   // Try and match index sequences, which we can lower to the vid instruction
2087   // with optional modifications. An all-undef vector is matched by
2088   // getSplatValue, above.
2089   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2090     int64_t StepNumerator = SimpleVID->StepNumerator;
2091     unsigned StepDenominator = SimpleVID->StepDenominator;
2092     int64_t Addend = SimpleVID->Addend;
2093 
2094     assert(StepNumerator != 0 && "Invalid step");
2095     bool Negate = false;
2096     int64_t SplatStepVal = StepNumerator;
2097     unsigned StepOpcode = ISD::MUL;
2098     if (StepNumerator != 1) {
2099       if (isPowerOf2_64(std::abs(StepNumerator))) {
2100         Negate = StepNumerator < 0;
2101         StepOpcode = ISD::SHL;
2102         SplatStepVal = Log2_64(std::abs(StepNumerator));
2103       }
2104     }
2105 
2106     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2107     // threshold since it's the immediate value many RVV instructions accept.
2108     // There is no vmul.vi instruction so ensure multiply constant can fit in
2109     // a single addi instruction.
2110     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2111          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2112         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2113       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2114       // Convert right out of the scalable type so we can use standard ISD
2115       // nodes for the rest of the computation. If we used scalable types with
2116       // these, we'd lose the fixed-length vector info and generate worse
2117       // vsetvli code.
2118       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2119       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2120           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2121         SDValue SplatStep = DAG.getSplatVector(
2122             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2123         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2124       }
2125       if (StepDenominator != 1) {
2126         SDValue SplatStep = DAG.getSplatVector(
2127             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2128         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2129       }
2130       if (Addend != 0 || Negate) {
2131         SDValue SplatAddend =
2132             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2133         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2134       }
2135       return VID;
2136     }
2137   }
2138 
2139   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2140   // when re-interpreted as a vector with a larger element type. For example,
2141   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2142   // could be instead splat as
2143   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2144   // TODO: This optimization could also work on non-constant splats, but it
2145   // would require bit-manipulation instructions to construct the splat value.
2146   SmallVector<SDValue> Sequence;
2147   unsigned EltBitSize = VT.getScalarSizeInBits();
2148   const auto *BV = cast<BuildVectorSDNode>(Op);
2149   if (VT.isInteger() && EltBitSize < 64 &&
2150       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2151       BV->getRepeatedSequence(Sequence) &&
2152       (Sequence.size() * EltBitSize) <= 64) {
2153     unsigned SeqLen = Sequence.size();
2154     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2155     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2156     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2157             ViaIntVT == MVT::i64) &&
2158            "Unexpected sequence type");
2159 
2160     unsigned EltIdx = 0;
2161     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2162     uint64_t SplatValue = 0;
2163     // Construct the amalgamated value which can be splatted as this larger
2164     // vector type.
2165     for (const auto &SeqV : Sequence) {
2166       if (!SeqV.isUndef())
2167         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2168                        << (EltIdx * EltBitSize));
2169       EltIdx++;
2170     }
2171 
2172     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2173     // achieve better constant materializion.
2174     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2175       SplatValue = SignExtend64(SplatValue, 32);
2176 
2177     // Since we can't introduce illegal i64 types at this stage, we can only
2178     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2179     // way we can use RVV instructions to splat.
2180     assert((ViaIntVT.bitsLE(XLenVT) ||
2181             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2182            "Unexpected bitcast sequence");
2183     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2184       SDValue ViaVL =
2185           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2186       MVT ViaContainerVT =
2187           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2188       SDValue Splat =
2189           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2190                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2191       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2192       return DAG.getBitcast(VT, Splat);
2193     }
2194   }
2195 
2196   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2197   // which constitute a large proportion of the elements. In such cases we can
2198   // splat a vector with the dominant element and make up the shortfall with
2199   // INSERT_VECTOR_ELTs.
2200   // Note that this includes vectors of 2 elements by association. The
2201   // upper-most element is the "dominant" one, allowing us to use a splat to
2202   // "insert" the upper element, and an insert of the lower element at position
2203   // 0, which improves codegen.
2204   SDValue DominantValue;
2205   unsigned MostCommonCount = 0;
2206   DenseMap<SDValue, unsigned> ValueCounts;
2207   unsigned NumUndefElts =
2208       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2209 
2210   // Track the number of scalar loads we know we'd be inserting, estimated as
2211   // any non-zero floating-point constant. Other kinds of element are either
2212   // already in registers or are materialized on demand. The threshold at which
2213   // a vector load is more desirable than several scalar materializion and
2214   // vector-insertion instructions is not known.
2215   unsigned NumScalarLoads = 0;
2216 
2217   for (SDValue V : Op->op_values()) {
2218     if (V.isUndef())
2219       continue;
2220 
2221     ValueCounts.insert(std::make_pair(V, 0));
2222     unsigned &Count = ValueCounts[V];
2223 
2224     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2225       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2226 
2227     // Is this value dominant? In case of a tie, prefer the highest element as
2228     // it's cheaper to insert near the beginning of a vector than it is at the
2229     // end.
2230     if (++Count >= MostCommonCount) {
2231       DominantValue = V;
2232       MostCommonCount = Count;
2233     }
2234   }
2235 
2236   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2237   unsigned NumDefElts = NumElts - NumUndefElts;
2238   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2239 
2240   // Don't perform this optimization when optimizing for size, since
2241   // materializing elements and inserting them tends to cause code bloat.
2242   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2243       ((MostCommonCount > DominantValueCountThreshold) ||
2244        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2245     // Start by splatting the most common element.
2246     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2247 
2248     DenseSet<SDValue> Processed{DominantValue};
2249     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2250     for (const auto &OpIdx : enumerate(Op->ops())) {
2251       const SDValue &V = OpIdx.value();
2252       if (V.isUndef() || !Processed.insert(V).second)
2253         continue;
2254       if (ValueCounts[V] == 1) {
2255         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2256                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2257       } else {
2258         // Blend in all instances of this value using a VSELECT, using a
2259         // mask where each bit signals whether that element is the one
2260         // we're after.
2261         SmallVector<SDValue> Ops;
2262         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2263           return DAG.getConstant(V == V1, DL, XLenVT);
2264         });
2265         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2266                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2267                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2268       }
2269     }
2270 
2271     return Vec;
2272   }
2273 
2274   return SDValue();
2275 }
2276 
2277 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2278                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2279   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2280     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2281     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2282     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2283     // node in order to try and match RVV vector/scalar instructions.
2284     if ((LoC >> 31) == HiC)
2285       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2286 
2287     // If vl is equal to VLMax and Hi constant is equal to Lo, we could use
2288     // vmv.v.x whose EEW = 32 to lower it.
2289     auto *Const = dyn_cast<ConstantSDNode>(VL);
2290     if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) {
2291       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2292       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2293       // access the subtarget here now.
2294       auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL);
2295       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2296     }
2297   }
2298 
2299   // Fall back to a stack store and stride x0 vector load.
2300   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2301 }
2302 
2303 // Called by type legalization to handle splat of i64 on RV32.
2304 // FIXME: We can optimize this when the type has sign or zero bits in one
2305 // of the halves.
2306 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2307                                    SDValue VL, SelectionDAG &DAG) {
2308   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2309   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2310                            DAG.getConstant(0, DL, MVT::i32));
2311   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2312                            DAG.getConstant(1, DL, MVT::i32));
2313   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2314 }
2315 
2316 // This function lowers a splat of a scalar operand Splat with the vector
2317 // length VL. It ensures the final sequence is type legal, which is useful when
2318 // lowering a splat after type legalization.
2319 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2320                                 SelectionDAG &DAG,
2321                                 const RISCVSubtarget &Subtarget) {
2322   if (VT.isFloatingPoint()) {
2323     // If VL is 1, we could use vfmv.s.f.
2324     if (isOneConstant(VL))
2325       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT),
2326                          Scalar, VL);
2327     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2328   }
2329 
2330   MVT XLenVT = Subtarget.getXLenVT();
2331 
2332   // Simplest case is that the operand needs to be promoted to XLenVT.
2333   if (Scalar.getValueType().bitsLE(XLenVT)) {
2334     // If the operand is a constant, sign extend to increase our chances
2335     // of being able to use a .vi instruction. ANY_EXTEND would become a
2336     // a zero extend and the simm5 check in isel would fail.
2337     // FIXME: Should we ignore the upper bits in isel instead?
2338     unsigned ExtOpc =
2339         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2340     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2341     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2342     // If VL is 1 and the scalar value won't benefit from immediate, we could
2343     // use vmv.s.x.
2344     if (isOneConstant(VL) &&
2345         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2346       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
2347                          VL);
2348     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2349   }
2350 
2351   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2352          "Unexpected scalar for splat lowering!");
2353 
2354   if (isOneConstant(VL) && isNullConstant(Scalar))
2355     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT),
2356                        DAG.getConstant(0, DL, XLenVT), VL);
2357 
2358   // Otherwise use the more complicated splatting algorithm.
2359   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2360 }
2361 
2362 // Is the mask a slidedown that shifts in undefs.
2363 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) {
2364   int Size = Mask.size();
2365 
2366   // Elements shifted in should be undef.
2367   auto CheckUndefs = [&](int Shift) {
2368     for (int i = Size - Shift; i != Size; ++i)
2369       if (Mask[i] >= 0)
2370         return false;
2371     return true;
2372   };
2373 
2374   // Elements should be shifted or undef.
2375   auto MatchShift = [&](int Shift) {
2376     for (int i = 0; i != Size - Shift; ++i)
2377        if (Mask[i] >= 0 && Mask[i] != Shift + i)
2378          return false;
2379     return true;
2380   };
2381 
2382   // Try all possible shifts.
2383   for (int Shift = 1; Shift != Size; ++Shift)
2384     if (CheckUndefs(Shift) && MatchShift(Shift))
2385       return Shift;
2386 
2387   // No match.
2388   return -1;
2389 }
2390 
2391 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2392                                 const RISCVSubtarget &Subtarget) {
2393   // We need to be able to widen elements to the next larger integer type.
2394   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2395     return false;
2396 
2397   int Size = Mask.size();
2398   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2399 
2400   int Srcs[] = {-1, -1};
2401   for (int i = 0; i != Size; ++i) {
2402     // Ignore undef elements.
2403     if (Mask[i] < 0)
2404       continue;
2405 
2406     // Is this an even or odd element.
2407     int Pol = i % 2;
2408 
2409     // Ensure we consistently use the same source for this element polarity.
2410     int Src = Mask[i] / Size;
2411     if (Srcs[Pol] < 0)
2412       Srcs[Pol] = Src;
2413     if (Srcs[Pol] != Src)
2414       return false;
2415 
2416     // Make sure the element within the source is appropriate for this element
2417     // in the destination.
2418     int Elt = Mask[i] % Size;
2419     if (Elt != i / 2)
2420       return false;
2421   }
2422 
2423   // We need to find a source for each polarity and they can't be the same.
2424   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2425     return false;
2426 
2427   // Swap the sources if the second source was in the even polarity.
2428   SwapSources = Srcs[0] > Srcs[1];
2429 
2430   return true;
2431 }
2432 
2433 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2434                                    const RISCVSubtarget &Subtarget) {
2435   SDValue V1 = Op.getOperand(0);
2436   SDValue V2 = Op.getOperand(1);
2437   SDLoc DL(Op);
2438   MVT XLenVT = Subtarget.getXLenVT();
2439   MVT VT = Op.getSimpleValueType();
2440   unsigned NumElts = VT.getVectorNumElements();
2441   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2442 
2443   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2444 
2445   SDValue TrueMask, VL;
2446   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2447 
2448   if (SVN->isSplat()) {
2449     const int Lane = SVN->getSplatIndex();
2450     if (Lane >= 0) {
2451       MVT SVT = VT.getVectorElementType();
2452 
2453       // Turn splatted vector load into a strided load with an X0 stride.
2454       SDValue V = V1;
2455       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2456       // with undef.
2457       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2458       int Offset = Lane;
2459       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2460         int OpElements =
2461             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2462         V = V.getOperand(Offset / OpElements);
2463         Offset %= OpElements;
2464       }
2465 
2466       // We need to ensure the load isn't atomic or volatile.
2467       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2468         auto *Ld = cast<LoadSDNode>(V);
2469         Offset *= SVT.getStoreSize();
2470         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2471                                                    TypeSize::Fixed(Offset), DL);
2472 
2473         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2474         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2475           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2476           SDValue IntID =
2477               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2478           SDValue Ops[] = {Ld->getChain(),
2479                            IntID,
2480                            DAG.getUNDEF(ContainerVT),
2481                            NewAddr,
2482                            DAG.getRegister(RISCV::X0, XLenVT),
2483                            VL};
2484           SDValue NewLoad = DAG.getMemIntrinsicNode(
2485               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2486               DAG.getMachineFunction().getMachineMemOperand(
2487                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2488           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2489           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2490         }
2491 
2492         // Otherwise use a scalar load and splat. This will give the best
2493         // opportunity to fold a splat into the operation. ISel can turn it into
2494         // the x0 strided load if we aren't able to fold away the select.
2495         if (SVT.isFloatingPoint())
2496           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2497                           Ld->getPointerInfo().getWithOffset(Offset),
2498                           Ld->getOriginalAlign(),
2499                           Ld->getMemOperand()->getFlags());
2500         else
2501           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2502                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2503                              Ld->getOriginalAlign(),
2504                              Ld->getMemOperand()->getFlags());
2505         DAG.makeEquivalentMemoryOrdering(Ld, V);
2506 
2507         unsigned Opc =
2508             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2509         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2510         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2511       }
2512 
2513       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2514       assert(Lane < (int)NumElts && "Unexpected lane!");
2515       SDValue Gather =
2516           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2517                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2518       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2519     }
2520   }
2521 
2522   ArrayRef<int> Mask = SVN->getMask();
2523 
2524   // Try to match as a slidedown.
2525   int SlideAmt = matchShuffleAsSlideDown(Mask);
2526   if (SlideAmt >= 0) {
2527     // TODO: Should we reduce the VL to account for the upper undef elements?
2528     // Requires additional vsetvlis, but might be faster to execute.
2529     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2530     SDValue SlideDown =
2531         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2532                     DAG.getUNDEF(ContainerVT), V1,
2533                     DAG.getConstant(SlideAmt, DL, XLenVT),
2534                     TrueMask, VL);
2535     return convertFromScalableVector(VT, SlideDown, DAG, Subtarget);
2536   }
2537 
2538   // Detect an interleave shuffle and lower to
2539   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2540   bool SwapSources;
2541   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2542     // Swap sources if needed.
2543     if (SwapSources)
2544       std::swap(V1, V2);
2545 
2546     // Extract the lower half of the vectors.
2547     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2548     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2549                      DAG.getConstant(0, DL, XLenVT));
2550     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2551                      DAG.getConstant(0, DL, XLenVT));
2552 
2553     // Double the element width and halve the number of elements in an int type.
2554     unsigned EltBits = VT.getScalarSizeInBits();
2555     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2556     MVT WideIntVT =
2557         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2558     // Convert this to a scalable vector. We need to base this on the
2559     // destination size to ensure there's always a type with a smaller LMUL.
2560     MVT WideIntContainerVT =
2561         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2562 
2563     // Convert sources to scalable vectors with the same element count as the
2564     // larger type.
2565     MVT HalfContainerVT = MVT::getVectorVT(
2566         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2567     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2568     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2569 
2570     // Cast sources to integer.
2571     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2572     MVT IntHalfVT =
2573         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2574     V1 = DAG.getBitcast(IntHalfVT, V1);
2575     V2 = DAG.getBitcast(IntHalfVT, V2);
2576 
2577     // Freeze V2 since we use it twice and we need to be sure that the add and
2578     // multiply see the same value.
2579     V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2);
2580 
2581     // Recreate TrueMask using the widened type's element count.
2582     MVT MaskVT =
2583         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2584     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2585 
2586     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2587     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2588                               V2, TrueMask, VL);
2589     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2590     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2591                                      DAG.getAllOnesConstant(DL, XLenVT));
2592     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2593                                    V2, Multiplier, TrueMask, VL);
2594     // Add the new copies to our previous addition giving us 2^eltbits copies of
2595     // V2. This is equivalent to shifting V2 left by eltbits. This should
2596     // combine with the vwmulu.vv above to form vwmaccu.vv.
2597     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2598                       TrueMask, VL);
2599     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2600     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2601     // vector VT.
2602     ContainerVT =
2603         MVT::getVectorVT(VT.getVectorElementType(),
2604                          WideIntContainerVT.getVectorElementCount() * 2);
2605     Add = DAG.getBitcast(ContainerVT, Add);
2606     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2607   }
2608 
2609   // Detect shuffles which can be re-expressed as vector selects; these are
2610   // shuffles in which each element in the destination is taken from an element
2611   // at the corresponding index in either source vectors.
2612   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2613     int MaskIndex = MaskIdx.value();
2614     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2615   });
2616 
2617   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2618 
2619   SmallVector<SDValue> MaskVals;
2620   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2621   // merged with a second vrgather.
2622   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2623 
2624   // By default we preserve the original operand order, and use a mask to
2625   // select LHS as true and RHS as false. However, since RVV vector selects may
2626   // feature splats but only on the LHS, we may choose to invert our mask and
2627   // instead select between RHS and LHS.
2628   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2629   bool InvertMask = IsSelect == SwapOps;
2630 
2631   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2632   // half.
2633   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2634 
2635   // Now construct the mask that will be used by the vselect or blended
2636   // vrgather operation. For vrgathers, construct the appropriate indices into
2637   // each vector.
2638   for (int MaskIndex : Mask) {
2639     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2640     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2641     if (!IsSelect) {
2642       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2643       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2644                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2645                                      : DAG.getUNDEF(XLenVT));
2646       GatherIndicesRHS.push_back(
2647           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2648                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2649       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2650         ++LHSIndexCounts[MaskIndex];
2651       if (!IsLHSOrUndefIndex)
2652         ++RHSIndexCounts[MaskIndex - NumElts];
2653     }
2654   }
2655 
2656   if (SwapOps) {
2657     std::swap(V1, V2);
2658     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2659   }
2660 
2661   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2662   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2663   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2664 
2665   if (IsSelect)
2666     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2667 
2668   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2669     // On such a large vector we're unable to use i8 as the index type.
2670     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2671     // may involve vector splitting if we're already at LMUL=8, or our
2672     // user-supplied maximum fixed-length LMUL.
2673     return SDValue();
2674   }
2675 
2676   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2677   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2678   MVT IndexVT = VT.changeTypeToInteger();
2679   // Since we can't introduce illegal index types at this stage, use i16 and
2680   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2681   // than XLenVT.
2682   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2683     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2684     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2685   }
2686 
2687   MVT IndexContainerVT =
2688       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2689 
2690   SDValue Gather;
2691   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2692   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2693   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2694     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2695   } else {
2696     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2697     // If only one index is used, we can use a "splat" vrgather.
2698     // TODO: We can splat the most-common index and fix-up any stragglers, if
2699     // that's beneficial.
2700     if (LHSIndexCounts.size() == 1) {
2701       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2702       Gather =
2703           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2704                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2705     } else {
2706       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2707       LHSIndices =
2708           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2709 
2710       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2711                            TrueMask, VL);
2712     }
2713   }
2714 
2715   // If a second vector operand is used by this shuffle, blend it in with an
2716   // additional vrgather.
2717   if (!V2.isUndef()) {
2718     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2719     // If only one index is used, we can use a "splat" vrgather.
2720     // TODO: We can splat the most-common index and fix-up any stragglers, if
2721     // that's beneficial.
2722     if (RHSIndexCounts.size() == 1) {
2723       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2724       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2725                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2726     } else {
2727       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2728       RHSIndices =
2729           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2730       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2731                        VL);
2732     }
2733 
2734     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2735     SelectMask =
2736         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2737 
2738     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2739                          Gather, VL);
2740   }
2741 
2742   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2743 }
2744 
2745 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2746                                      SDLoc DL, SelectionDAG &DAG,
2747                                      const RISCVSubtarget &Subtarget) {
2748   if (VT.isScalableVector())
2749     return DAG.getFPExtendOrRound(Op, DL, VT);
2750   assert(VT.isFixedLengthVector() &&
2751          "Unexpected value type for RVV FP extend/round lowering");
2752   SDValue Mask, VL;
2753   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2754   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2755                         ? RISCVISD::FP_EXTEND_VL
2756                         : RISCVISD::FP_ROUND_VL;
2757   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2758 }
2759 
2760 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2761 // the exponent.
2762 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2763   MVT VT = Op.getSimpleValueType();
2764   unsigned EltSize = VT.getScalarSizeInBits();
2765   SDValue Src = Op.getOperand(0);
2766   SDLoc DL(Op);
2767 
2768   // We need a FP type that can represent the value.
2769   // TODO: Use f16 for i8 when possible?
2770   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2771   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2772 
2773   // Legal types should have been checked in the RISCVTargetLowering
2774   // constructor.
2775   // TODO: Splitting may make sense in some cases.
2776   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2777          "Expected legal float type!");
2778 
2779   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2780   // The trailing zero count is equal to log2 of this single bit value.
2781   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2782     SDValue Neg =
2783         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2784     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2785   }
2786 
2787   // We have a legal FP type, convert to it.
2788   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2789   // Bitcast to integer and shift the exponent to the LSB.
2790   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2791   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2792   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2793   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2794                               DAG.getConstant(ShiftAmt, DL, IntVT));
2795   // Truncate back to original type to allow vnsrl.
2796   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2797   // The exponent contains log2 of the value in biased form.
2798   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2799 
2800   // For trailing zeros, we just need to subtract the bias.
2801   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2802     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2803                        DAG.getConstant(ExponentBias, DL, VT));
2804 
2805   // For leading zeros, we need to remove the bias and convert from log2 to
2806   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2807   unsigned Adjust = ExponentBias + (EltSize - 1);
2808   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2809 }
2810 
2811 // While RVV has alignment restrictions, we should always be able to load as a
2812 // legal equivalently-sized byte-typed vector instead. This method is
2813 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2814 // the load is already correctly-aligned, it returns SDValue().
2815 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2816                                                     SelectionDAG &DAG) const {
2817   auto *Load = cast<LoadSDNode>(Op);
2818   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2819 
2820   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2821                                      Load->getMemoryVT(),
2822                                      *Load->getMemOperand()))
2823     return SDValue();
2824 
2825   SDLoc DL(Op);
2826   MVT VT = Op.getSimpleValueType();
2827   unsigned EltSizeBits = VT.getScalarSizeInBits();
2828   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2829          "Unexpected unaligned RVV load type");
2830   MVT NewVT =
2831       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2832   assert(NewVT.isValid() &&
2833          "Expecting equally-sized RVV vector types to be legal");
2834   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2835                           Load->getPointerInfo(), Load->getOriginalAlign(),
2836                           Load->getMemOperand()->getFlags());
2837   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2838 }
2839 
2840 // While RVV has alignment restrictions, we should always be able to store as a
2841 // legal equivalently-sized byte-typed vector instead. This method is
2842 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2843 // returns SDValue() if the store is already correctly aligned.
2844 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2845                                                      SelectionDAG &DAG) const {
2846   auto *Store = cast<StoreSDNode>(Op);
2847   assert(Store && Store->getValue().getValueType().isVector() &&
2848          "Expected vector store");
2849 
2850   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2851                                      Store->getMemoryVT(),
2852                                      *Store->getMemOperand()))
2853     return SDValue();
2854 
2855   SDLoc DL(Op);
2856   SDValue StoredVal = Store->getValue();
2857   MVT VT = StoredVal.getSimpleValueType();
2858   unsigned EltSizeBits = VT.getScalarSizeInBits();
2859   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2860          "Unexpected unaligned RVV store type");
2861   MVT NewVT =
2862       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2863   assert(NewVT.isValid() &&
2864          "Expecting equally-sized RVV vector types to be legal");
2865   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2866   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2867                       Store->getPointerInfo(), Store->getOriginalAlign(),
2868                       Store->getMemOperand()->getFlags());
2869 }
2870 
2871 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2872                                             SelectionDAG &DAG) const {
2873   switch (Op.getOpcode()) {
2874   default:
2875     report_fatal_error("unimplemented operand");
2876   case ISD::GlobalAddress:
2877     return lowerGlobalAddress(Op, DAG);
2878   case ISD::BlockAddress:
2879     return lowerBlockAddress(Op, DAG);
2880   case ISD::ConstantPool:
2881     return lowerConstantPool(Op, DAG);
2882   case ISD::JumpTable:
2883     return lowerJumpTable(Op, DAG);
2884   case ISD::GlobalTLSAddress:
2885     return lowerGlobalTLSAddress(Op, DAG);
2886   case ISD::SELECT:
2887     return lowerSELECT(Op, DAG);
2888   case ISD::BRCOND:
2889     return lowerBRCOND(Op, DAG);
2890   case ISD::VASTART:
2891     return lowerVASTART(Op, DAG);
2892   case ISD::FRAMEADDR:
2893     return lowerFRAMEADDR(Op, DAG);
2894   case ISD::RETURNADDR:
2895     return lowerRETURNADDR(Op, DAG);
2896   case ISD::SHL_PARTS:
2897     return lowerShiftLeftParts(Op, DAG);
2898   case ISD::SRA_PARTS:
2899     return lowerShiftRightParts(Op, DAG, true);
2900   case ISD::SRL_PARTS:
2901     return lowerShiftRightParts(Op, DAG, false);
2902   case ISD::BITCAST: {
2903     SDLoc DL(Op);
2904     EVT VT = Op.getValueType();
2905     SDValue Op0 = Op.getOperand(0);
2906     EVT Op0VT = Op0.getValueType();
2907     MVT XLenVT = Subtarget.getXLenVT();
2908     if (VT.isFixedLengthVector()) {
2909       // We can handle fixed length vector bitcasts with a simple replacement
2910       // in isel.
2911       if (Op0VT.isFixedLengthVector())
2912         return Op;
2913       // When bitcasting from scalar to fixed-length vector, insert the scalar
2914       // into a one-element vector of the result type, and perform a vector
2915       // bitcast.
2916       if (!Op0VT.isVector()) {
2917         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2918         if (!isTypeLegal(BVT))
2919           return SDValue();
2920         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2921                                               DAG.getUNDEF(BVT), Op0,
2922                                               DAG.getConstant(0, DL, XLenVT)));
2923       }
2924       return SDValue();
2925     }
2926     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2927     // thus: bitcast the vector to a one-element vector type whose element type
2928     // is the same as the result type, and extract the first element.
2929     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2930       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2931       if (!isTypeLegal(BVT))
2932         return SDValue();
2933       SDValue BVec = DAG.getBitcast(BVT, Op0);
2934       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2935                          DAG.getConstant(0, DL, XLenVT));
2936     }
2937     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2938       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2939       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2940       return FPConv;
2941     }
2942     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2943         Subtarget.hasStdExtF()) {
2944       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2945       SDValue FPConv =
2946           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2947       return FPConv;
2948     }
2949     return SDValue();
2950   }
2951   case ISD::INTRINSIC_WO_CHAIN:
2952     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2953   case ISD::INTRINSIC_W_CHAIN:
2954     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2955   case ISD::INTRINSIC_VOID:
2956     return LowerINTRINSIC_VOID(Op, DAG);
2957   case ISD::BSWAP:
2958   case ISD::BITREVERSE: {
2959     MVT VT = Op.getSimpleValueType();
2960     SDLoc DL(Op);
2961     if (Subtarget.hasStdExtZbp()) {
2962       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2963       // Start with the maximum immediate value which is the bitwidth - 1.
2964       unsigned Imm = VT.getSizeInBits() - 1;
2965       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2966       if (Op.getOpcode() == ISD::BSWAP)
2967         Imm &= ~0x7U;
2968       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2969                          DAG.getConstant(Imm, DL, VT));
2970     }
2971     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
2972     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
2973     // Expand bitreverse to a bswap(rev8) followed by brev8.
2974     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
2975     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
2976     // as brev8 by an isel pattern.
2977     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
2978                        DAG.getConstant(7, DL, VT));
2979   }
2980   case ISD::FSHL:
2981   case ISD::FSHR: {
2982     MVT VT = Op.getSimpleValueType();
2983     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2984     SDLoc DL(Op);
2985     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2986     // use log(XLen) bits. Mask the shift amount accordingly to prevent
2987     // accidentally setting the extra bit.
2988     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2989     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2990                                 DAG.getConstant(ShAmtWidth, DL, VT));
2991     // fshl and fshr concatenate their operands in the same order. fsr and fsl
2992     // instruction use different orders. fshl will return its first operand for
2993     // shift of zero, fshr will return its second operand. fsl and fsr both
2994     // return rs1 so the ISD nodes need to have different operand orders.
2995     // Shift amount is in rs2.
2996     SDValue Op0 = Op.getOperand(0);
2997     SDValue Op1 = Op.getOperand(1);
2998     unsigned Opc = RISCVISD::FSL;
2999     if (Op.getOpcode() == ISD::FSHR) {
3000       std::swap(Op0, Op1);
3001       Opc = RISCVISD::FSR;
3002     }
3003     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3004   }
3005   case ISD::TRUNCATE: {
3006     SDLoc DL(Op);
3007     MVT VT = Op.getSimpleValueType();
3008     // Only custom-lower vector truncates
3009     if (!VT.isVector())
3010       return Op;
3011 
3012     // Truncates to mask types are handled differently
3013     if (VT.getVectorElementType() == MVT::i1)
3014       return lowerVectorMaskTrunc(Op, DAG);
3015 
3016     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3017     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3018     // truncate by one power of two at a time.
3019     MVT DstEltVT = VT.getVectorElementType();
3020 
3021     SDValue Src = Op.getOperand(0);
3022     MVT SrcVT = Src.getSimpleValueType();
3023     MVT SrcEltVT = SrcVT.getVectorElementType();
3024 
3025     assert(DstEltVT.bitsLT(SrcEltVT) &&
3026            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3027            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3028            "Unexpected vector truncate lowering");
3029 
3030     MVT ContainerVT = SrcVT;
3031     if (SrcVT.isFixedLengthVector()) {
3032       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3033       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3034     }
3035 
3036     SDValue Result = Src;
3037     SDValue Mask, VL;
3038     std::tie(Mask, VL) =
3039         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3040     LLVMContext &Context = *DAG.getContext();
3041     const ElementCount Count = ContainerVT.getVectorElementCount();
3042     do {
3043       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3044       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3045       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3046                            Mask, VL);
3047     } while (SrcEltVT != DstEltVT);
3048 
3049     if (SrcVT.isFixedLengthVector())
3050       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3051 
3052     return Result;
3053   }
3054   case ISD::ANY_EXTEND:
3055   case ISD::ZERO_EXTEND:
3056     if (Op.getOperand(0).getValueType().isVector() &&
3057         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3058       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3059     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3060   case ISD::SIGN_EXTEND:
3061     if (Op.getOperand(0).getValueType().isVector() &&
3062         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3063       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3064     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3065   case ISD::SPLAT_VECTOR_PARTS:
3066     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3067   case ISD::INSERT_VECTOR_ELT:
3068     return lowerINSERT_VECTOR_ELT(Op, DAG);
3069   case ISD::EXTRACT_VECTOR_ELT:
3070     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3071   case ISD::VSCALE: {
3072     MVT VT = Op.getSimpleValueType();
3073     SDLoc DL(Op);
3074     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3075     // We define our scalable vector types for lmul=1 to use a 64 bit known
3076     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3077     // vscale as VLENB / 8.
3078     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3079     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3080       // We assume VLENB is a multiple of 8. We manually choose the best shift
3081       // here because SimplifyDemandedBits isn't always able to simplify it.
3082       uint64_t Val = Op.getConstantOperandVal(0);
3083       if (isPowerOf2_64(Val)) {
3084         uint64_t Log2 = Log2_64(Val);
3085         if (Log2 < 3)
3086           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3087                              DAG.getConstant(3 - Log2, DL, VT));
3088         if (Log2 > 3)
3089           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3090                              DAG.getConstant(Log2 - 3, DL, VT));
3091         return VLENB;
3092       }
3093       // If the multiplier is a multiple of 8, scale it down to avoid needing
3094       // to shift the VLENB value.
3095       if ((Val % 8) == 0)
3096         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3097                            DAG.getConstant(Val / 8, DL, VT));
3098     }
3099 
3100     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3101                                  DAG.getConstant(3, DL, VT));
3102     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3103   }
3104   case ISD::FPOWI: {
3105     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3106     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3107     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3108         Op.getOperand(1).getValueType() == MVT::i32) {
3109       SDLoc DL(Op);
3110       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3111       SDValue Powi =
3112           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3113       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3114                          DAG.getIntPtrConstant(0, DL));
3115     }
3116     return SDValue();
3117   }
3118   case ISD::FP_EXTEND: {
3119     // RVV can only do fp_extend to types double the size as the source. We
3120     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3121     // via f32.
3122     SDLoc DL(Op);
3123     MVT VT = Op.getSimpleValueType();
3124     SDValue Src = Op.getOperand(0);
3125     MVT SrcVT = Src.getSimpleValueType();
3126 
3127     // Prepare any fixed-length vector operands.
3128     MVT ContainerVT = VT;
3129     if (SrcVT.isFixedLengthVector()) {
3130       ContainerVT = getContainerForFixedLengthVector(VT);
3131       MVT SrcContainerVT =
3132           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3133       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3134     }
3135 
3136     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3137         SrcVT.getVectorElementType() != MVT::f16) {
3138       // For scalable vectors, we only need to close the gap between
3139       // vXf16->vXf64.
3140       if (!VT.isFixedLengthVector())
3141         return Op;
3142       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3143       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3144       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3145     }
3146 
3147     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3148     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3149     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3150         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3151 
3152     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3153                                            DL, DAG, Subtarget);
3154     if (VT.isFixedLengthVector())
3155       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3156     return Extend;
3157   }
3158   case ISD::FP_ROUND: {
3159     // RVV can only do fp_round to types half the size as the source. We
3160     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3161     // conversion instruction.
3162     SDLoc DL(Op);
3163     MVT VT = Op.getSimpleValueType();
3164     SDValue Src = Op.getOperand(0);
3165     MVT SrcVT = Src.getSimpleValueType();
3166 
3167     // Prepare any fixed-length vector operands.
3168     MVT ContainerVT = VT;
3169     if (VT.isFixedLengthVector()) {
3170       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3171       ContainerVT =
3172           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3173       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3174     }
3175 
3176     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3177         SrcVT.getVectorElementType() != MVT::f64) {
3178       // For scalable vectors, we only need to close the gap between
3179       // vXf64<->vXf16.
3180       if (!VT.isFixedLengthVector())
3181         return Op;
3182       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3183       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3184       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3185     }
3186 
3187     SDValue Mask, VL;
3188     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3189 
3190     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3191     SDValue IntermediateRound =
3192         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3193     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3194                                           DL, DAG, Subtarget);
3195 
3196     if (VT.isFixedLengthVector())
3197       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3198     return Round;
3199   }
3200   case ISD::FP_TO_SINT:
3201   case ISD::FP_TO_UINT:
3202   case ISD::SINT_TO_FP:
3203   case ISD::UINT_TO_FP: {
3204     // RVV can only do fp<->int conversions to types half/double the size as
3205     // the source. We custom-lower any conversions that do two hops into
3206     // sequences.
3207     MVT VT = Op.getSimpleValueType();
3208     if (!VT.isVector())
3209       return Op;
3210     SDLoc DL(Op);
3211     SDValue Src = Op.getOperand(0);
3212     MVT EltVT = VT.getVectorElementType();
3213     MVT SrcVT = Src.getSimpleValueType();
3214     MVT SrcEltVT = SrcVT.getVectorElementType();
3215     unsigned EltSize = EltVT.getSizeInBits();
3216     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3217     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3218            "Unexpected vector element types");
3219 
3220     bool IsInt2FP = SrcEltVT.isInteger();
3221     // Widening conversions
3222     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3223       if (IsInt2FP) {
3224         // Do a regular integer sign/zero extension then convert to float.
3225         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3226                                       VT.getVectorElementCount());
3227         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3228                                  ? ISD::ZERO_EXTEND
3229                                  : ISD::SIGN_EXTEND;
3230         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3231         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3232       }
3233       // FP2Int
3234       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3235       // Do one doubling fp_extend then complete the operation by converting
3236       // to int.
3237       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3238       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3239       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3240     }
3241 
3242     // Narrowing conversions
3243     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3244       if (IsInt2FP) {
3245         // One narrowing int_to_fp, then an fp_round.
3246         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3247         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3248         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3249         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3250       }
3251       // FP2Int
3252       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3253       // representable by the integer, the result is poison.
3254       MVT IVecVT =
3255           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3256                            VT.getVectorElementCount());
3257       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3258       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3259     }
3260 
3261     // Scalable vectors can exit here. Patterns will handle equally-sized
3262     // conversions halving/doubling ones.
3263     if (!VT.isFixedLengthVector())
3264       return Op;
3265 
3266     // For fixed-length vectors we lower to a custom "VL" node.
3267     unsigned RVVOpc = 0;
3268     switch (Op.getOpcode()) {
3269     default:
3270       llvm_unreachable("Impossible opcode");
3271     case ISD::FP_TO_SINT:
3272       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3273       break;
3274     case ISD::FP_TO_UINT:
3275       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3276       break;
3277     case ISD::SINT_TO_FP:
3278       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3279       break;
3280     case ISD::UINT_TO_FP:
3281       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3282       break;
3283     }
3284 
3285     MVT ContainerVT, SrcContainerVT;
3286     // Derive the reference container type from the larger vector type.
3287     if (SrcEltSize > EltSize) {
3288       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3289       ContainerVT =
3290           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3291     } else {
3292       ContainerVT = getContainerForFixedLengthVector(VT);
3293       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3294     }
3295 
3296     SDValue Mask, VL;
3297     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3298 
3299     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3300     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3301     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3302   }
3303   case ISD::FP_TO_SINT_SAT:
3304   case ISD::FP_TO_UINT_SAT:
3305     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3306   case ISD::FTRUNC:
3307   case ISD::FCEIL:
3308   case ISD::FFLOOR:
3309     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3310   case ISD::VECREDUCE_ADD:
3311   case ISD::VECREDUCE_UMAX:
3312   case ISD::VECREDUCE_SMAX:
3313   case ISD::VECREDUCE_UMIN:
3314   case ISD::VECREDUCE_SMIN:
3315     return lowerVECREDUCE(Op, DAG);
3316   case ISD::VECREDUCE_AND:
3317   case ISD::VECREDUCE_OR:
3318   case ISD::VECREDUCE_XOR:
3319     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3320       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3321     return lowerVECREDUCE(Op, DAG);
3322   case ISD::VECREDUCE_FADD:
3323   case ISD::VECREDUCE_SEQ_FADD:
3324   case ISD::VECREDUCE_FMIN:
3325   case ISD::VECREDUCE_FMAX:
3326     return lowerFPVECREDUCE(Op, DAG);
3327   case ISD::VP_REDUCE_ADD:
3328   case ISD::VP_REDUCE_UMAX:
3329   case ISD::VP_REDUCE_SMAX:
3330   case ISD::VP_REDUCE_UMIN:
3331   case ISD::VP_REDUCE_SMIN:
3332   case ISD::VP_REDUCE_FADD:
3333   case ISD::VP_REDUCE_SEQ_FADD:
3334   case ISD::VP_REDUCE_FMIN:
3335   case ISD::VP_REDUCE_FMAX:
3336     return lowerVPREDUCE(Op, DAG);
3337   case ISD::VP_REDUCE_AND:
3338   case ISD::VP_REDUCE_OR:
3339   case ISD::VP_REDUCE_XOR:
3340     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3341       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3342     return lowerVPREDUCE(Op, DAG);
3343   case ISD::INSERT_SUBVECTOR:
3344     return lowerINSERT_SUBVECTOR(Op, DAG);
3345   case ISD::EXTRACT_SUBVECTOR:
3346     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3347   case ISD::STEP_VECTOR:
3348     return lowerSTEP_VECTOR(Op, DAG);
3349   case ISD::VECTOR_REVERSE:
3350     return lowerVECTOR_REVERSE(Op, DAG);
3351   case ISD::BUILD_VECTOR:
3352     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3353   case ISD::SPLAT_VECTOR:
3354     if (Op.getValueType().getVectorElementType() == MVT::i1)
3355       return lowerVectorMaskSplat(Op, DAG);
3356     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3357   case ISD::VECTOR_SHUFFLE:
3358     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3359   case ISD::CONCAT_VECTORS: {
3360     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3361     // better than going through the stack, as the default expansion does.
3362     SDLoc DL(Op);
3363     MVT VT = Op.getSimpleValueType();
3364     unsigned NumOpElts =
3365         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3366     SDValue Vec = DAG.getUNDEF(VT);
3367     for (const auto &OpIdx : enumerate(Op->ops())) {
3368       SDValue SubVec = OpIdx.value();
3369       // Don't insert undef subvectors.
3370       if (SubVec.isUndef())
3371         continue;
3372       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3373                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3374     }
3375     return Vec;
3376   }
3377   case ISD::LOAD:
3378     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3379       return V;
3380     if (Op.getValueType().isFixedLengthVector())
3381       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3382     return Op;
3383   case ISD::STORE:
3384     if (auto V = expandUnalignedRVVStore(Op, DAG))
3385       return V;
3386     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3387       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3388     return Op;
3389   case ISD::MLOAD:
3390   case ISD::VP_LOAD:
3391     return lowerMaskedLoad(Op, DAG);
3392   case ISD::MSTORE:
3393   case ISD::VP_STORE:
3394     return lowerMaskedStore(Op, DAG);
3395   case ISD::SETCC:
3396     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3397   case ISD::ADD:
3398     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3399   case ISD::SUB:
3400     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3401   case ISD::MUL:
3402     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3403   case ISD::MULHS:
3404     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3405   case ISD::MULHU:
3406     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3407   case ISD::AND:
3408     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3409                                               RISCVISD::AND_VL);
3410   case ISD::OR:
3411     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3412                                               RISCVISD::OR_VL);
3413   case ISD::XOR:
3414     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3415                                               RISCVISD::XOR_VL);
3416   case ISD::SDIV:
3417     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3418   case ISD::SREM:
3419     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3420   case ISD::UDIV:
3421     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3422   case ISD::UREM:
3423     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3424   case ISD::SHL:
3425   case ISD::SRA:
3426   case ISD::SRL:
3427     if (Op.getSimpleValueType().isFixedLengthVector())
3428       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3429     // This can be called for an i32 shift amount that needs to be promoted.
3430     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3431            "Unexpected custom legalisation");
3432     return SDValue();
3433   case ISD::SADDSAT:
3434     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3435   case ISD::UADDSAT:
3436     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3437   case ISD::SSUBSAT:
3438     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3439   case ISD::USUBSAT:
3440     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3441   case ISD::FADD:
3442     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3443   case ISD::FSUB:
3444     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3445   case ISD::FMUL:
3446     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3447   case ISD::FDIV:
3448     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3449   case ISD::FNEG:
3450     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3451   case ISD::FABS:
3452     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3453   case ISD::FSQRT:
3454     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3455   case ISD::FMA:
3456     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3457   case ISD::SMIN:
3458     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3459   case ISD::SMAX:
3460     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3461   case ISD::UMIN:
3462     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3463   case ISD::UMAX:
3464     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3465   case ISD::FMINNUM:
3466     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3467   case ISD::FMAXNUM:
3468     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3469   case ISD::ABS:
3470     return lowerABS(Op, DAG);
3471   case ISD::CTLZ_ZERO_UNDEF:
3472   case ISD::CTTZ_ZERO_UNDEF:
3473     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3474   case ISD::VSELECT:
3475     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3476   case ISD::FCOPYSIGN:
3477     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3478   case ISD::MGATHER:
3479   case ISD::VP_GATHER:
3480     return lowerMaskedGather(Op, DAG);
3481   case ISD::MSCATTER:
3482   case ISD::VP_SCATTER:
3483     return lowerMaskedScatter(Op, DAG);
3484   case ISD::FLT_ROUNDS_:
3485     return lowerGET_ROUNDING(Op, DAG);
3486   case ISD::SET_ROUNDING:
3487     return lowerSET_ROUNDING(Op, DAG);
3488   case ISD::VP_SELECT:
3489     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3490   case ISD::VP_MERGE:
3491     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3492   case ISD::VP_ADD:
3493     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3494   case ISD::VP_SUB:
3495     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3496   case ISD::VP_MUL:
3497     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3498   case ISD::VP_SDIV:
3499     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3500   case ISD::VP_UDIV:
3501     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3502   case ISD::VP_SREM:
3503     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3504   case ISD::VP_UREM:
3505     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3506   case ISD::VP_AND:
3507     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3508   case ISD::VP_OR:
3509     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3510   case ISD::VP_XOR:
3511     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3512   case ISD::VP_ASHR:
3513     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3514   case ISD::VP_LSHR:
3515     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3516   case ISD::VP_SHL:
3517     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3518   case ISD::VP_FADD:
3519     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3520   case ISD::VP_FSUB:
3521     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3522   case ISD::VP_FMUL:
3523     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3524   case ISD::VP_FDIV:
3525     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3526   }
3527 }
3528 
3529 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3530                              SelectionDAG &DAG, unsigned Flags) {
3531   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3532 }
3533 
3534 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3535                              SelectionDAG &DAG, unsigned Flags) {
3536   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3537                                    Flags);
3538 }
3539 
3540 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3541                              SelectionDAG &DAG, unsigned Flags) {
3542   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3543                                    N->getOffset(), Flags);
3544 }
3545 
3546 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3547                              SelectionDAG &DAG, unsigned Flags) {
3548   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3549 }
3550 
3551 template <class NodeTy>
3552 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3553                                      bool IsLocal) const {
3554   SDLoc DL(N);
3555   EVT Ty = getPointerTy(DAG.getDataLayout());
3556 
3557   if (isPositionIndependent()) {
3558     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3559     if (IsLocal)
3560       // Use PC-relative addressing to access the symbol. This generates the
3561       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3562       // %pcrel_lo(auipc)).
3563       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3564 
3565     // Use PC-relative addressing to access the GOT for this symbol, then load
3566     // the address from the GOT. This generates the pattern (PseudoLA sym),
3567     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3568     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3569   }
3570 
3571   switch (getTargetMachine().getCodeModel()) {
3572   default:
3573     report_fatal_error("Unsupported code model for lowering");
3574   case CodeModel::Small: {
3575     // Generate a sequence for accessing addresses within the first 2 GiB of
3576     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3577     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3578     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3579     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3580     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3581   }
3582   case CodeModel::Medium: {
3583     // Generate a sequence for accessing addresses within any 2GiB range within
3584     // the address space. This generates the pattern (PseudoLLA sym), which
3585     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3586     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3587     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3588   }
3589   }
3590 }
3591 
3592 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3593                                                 SelectionDAG &DAG) const {
3594   SDLoc DL(Op);
3595   EVT Ty = Op.getValueType();
3596   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3597   int64_t Offset = N->getOffset();
3598   MVT XLenVT = Subtarget.getXLenVT();
3599 
3600   const GlobalValue *GV = N->getGlobal();
3601   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3602   SDValue Addr = getAddr(N, DAG, IsLocal);
3603 
3604   // In order to maximise the opportunity for common subexpression elimination,
3605   // emit a separate ADD node for the global address offset instead of folding
3606   // it in the global address node. Later peephole optimisations may choose to
3607   // fold it back in when profitable.
3608   if (Offset != 0)
3609     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3610                        DAG.getConstant(Offset, DL, XLenVT));
3611   return Addr;
3612 }
3613 
3614 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3615                                                SelectionDAG &DAG) const {
3616   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3617 
3618   return getAddr(N, DAG);
3619 }
3620 
3621 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3622                                                SelectionDAG &DAG) const {
3623   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3624 
3625   return getAddr(N, DAG);
3626 }
3627 
3628 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3629                                             SelectionDAG &DAG) const {
3630   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3631 
3632   return getAddr(N, DAG);
3633 }
3634 
3635 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3636                                               SelectionDAG &DAG,
3637                                               bool UseGOT) const {
3638   SDLoc DL(N);
3639   EVT Ty = getPointerTy(DAG.getDataLayout());
3640   const GlobalValue *GV = N->getGlobal();
3641   MVT XLenVT = Subtarget.getXLenVT();
3642 
3643   if (UseGOT) {
3644     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3645     // load the address from the GOT and add the thread pointer. This generates
3646     // the pattern (PseudoLA_TLS_IE sym), which expands to
3647     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3648     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3649     SDValue Load =
3650         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3651 
3652     // Add the thread pointer.
3653     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3654     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3655   }
3656 
3657   // Generate a sequence for accessing the address relative to the thread
3658   // pointer, with the appropriate adjustment for the thread pointer offset.
3659   // This generates the pattern
3660   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3661   SDValue AddrHi =
3662       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3663   SDValue AddrAdd =
3664       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3665   SDValue AddrLo =
3666       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3667 
3668   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3669   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3670   SDValue MNAdd = SDValue(
3671       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3672       0);
3673   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3674 }
3675 
3676 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3677                                                SelectionDAG &DAG) const {
3678   SDLoc DL(N);
3679   EVT Ty = getPointerTy(DAG.getDataLayout());
3680   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3681   const GlobalValue *GV = N->getGlobal();
3682 
3683   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3684   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3685   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3686   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3687   SDValue Load =
3688       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3689 
3690   // Prepare argument list to generate call.
3691   ArgListTy Args;
3692   ArgListEntry Entry;
3693   Entry.Node = Load;
3694   Entry.Ty = CallTy;
3695   Args.push_back(Entry);
3696 
3697   // Setup call to __tls_get_addr.
3698   TargetLowering::CallLoweringInfo CLI(DAG);
3699   CLI.setDebugLoc(DL)
3700       .setChain(DAG.getEntryNode())
3701       .setLibCallee(CallingConv::C, CallTy,
3702                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3703                     std::move(Args));
3704 
3705   return LowerCallTo(CLI).first;
3706 }
3707 
3708 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3709                                                    SelectionDAG &DAG) const {
3710   SDLoc DL(Op);
3711   EVT Ty = Op.getValueType();
3712   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3713   int64_t Offset = N->getOffset();
3714   MVT XLenVT = Subtarget.getXLenVT();
3715 
3716   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3717 
3718   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3719       CallingConv::GHC)
3720     report_fatal_error("In GHC calling convention TLS is not supported");
3721 
3722   SDValue Addr;
3723   switch (Model) {
3724   case TLSModel::LocalExec:
3725     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3726     break;
3727   case TLSModel::InitialExec:
3728     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3729     break;
3730   case TLSModel::LocalDynamic:
3731   case TLSModel::GeneralDynamic:
3732     Addr = getDynamicTLSAddr(N, DAG);
3733     break;
3734   }
3735 
3736   // In order to maximise the opportunity for common subexpression elimination,
3737   // emit a separate ADD node for the global address offset instead of folding
3738   // it in the global address node. Later peephole optimisations may choose to
3739   // fold it back in when profitable.
3740   if (Offset != 0)
3741     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3742                        DAG.getConstant(Offset, DL, XLenVT));
3743   return Addr;
3744 }
3745 
3746 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3747   SDValue CondV = Op.getOperand(0);
3748   SDValue TrueV = Op.getOperand(1);
3749   SDValue FalseV = Op.getOperand(2);
3750   SDLoc DL(Op);
3751   MVT VT = Op.getSimpleValueType();
3752   MVT XLenVT = Subtarget.getXLenVT();
3753 
3754   // Lower vector SELECTs to VSELECTs by splatting the condition.
3755   if (VT.isVector()) {
3756     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3757     SDValue CondSplat = VT.isScalableVector()
3758                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3759                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3760     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3761   }
3762 
3763   // If the result type is XLenVT and CondV is the output of a SETCC node
3764   // which also operated on XLenVT inputs, then merge the SETCC node into the
3765   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3766   // compare+branch instructions. i.e.:
3767   // (select (setcc lhs, rhs, cc), truev, falsev)
3768   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3769   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3770       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3771     SDValue LHS = CondV.getOperand(0);
3772     SDValue RHS = CondV.getOperand(1);
3773     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3774     ISD::CondCode CCVal = CC->get();
3775 
3776     // Special case for a select of 2 constants that have a diffence of 1.
3777     // Normally this is done by DAGCombine, but if the select is introduced by
3778     // type legalization or op legalization, we miss it. Restricting to SETLT
3779     // case for now because that is what signed saturating add/sub need.
3780     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3781     // but we would probably want to swap the true/false values if the condition
3782     // is SETGE/SETLE to avoid an XORI.
3783     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3784         CCVal == ISD::SETLT) {
3785       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3786       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3787       if (TrueVal - 1 == FalseVal)
3788         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3789       if (TrueVal + 1 == FalseVal)
3790         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3791     }
3792 
3793     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3794 
3795     SDValue TargetCC = DAG.getCondCode(CCVal);
3796     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3797     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3798   }
3799 
3800   // Otherwise:
3801   // (select condv, truev, falsev)
3802   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3803   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3804   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3805 
3806   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3807 
3808   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3809 }
3810 
3811 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3812   SDValue CondV = Op.getOperand(1);
3813   SDLoc DL(Op);
3814   MVT XLenVT = Subtarget.getXLenVT();
3815 
3816   if (CondV.getOpcode() == ISD::SETCC &&
3817       CondV.getOperand(0).getValueType() == XLenVT) {
3818     SDValue LHS = CondV.getOperand(0);
3819     SDValue RHS = CondV.getOperand(1);
3820     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3821 
3822     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3823 
3824     SDValue TargetCC = DAG.getCondCode(CCVal);
3825     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3826                        LHS, RHS, TargetCC, Op.getOperand(2));
3827   }
3828 
3829   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3830                      CondV, DAG.getConstant(0, DL, XLenVT),
3831                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3832 }
3833 
3834 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3835   MachineFunction &MF = DAG.getMachineFunction();
3836   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3837 
3838   SDLoc DL(Op);
3839   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3840                                  getPointerTy(MF.getDataLayout()));
3841 
3842   // vastart just stores the address of the VarArgsFrameIndex slot into the
3843   // memory location argument.
3844   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3845   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3846                       MachinePointerInfo(SV));
3847 }
3848 
3849 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3850                                             SelectionDAG &DAG) const {
3851   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3852   MachineFunction &MF = DAG.getMachineFunction();
3853   MachineFrameInfo &MFI = MF.getFrameInfo();
3854   MFI.setFrameAddressIsTaken(true);
3855   Register FrameReg = RI.getFrameRegister(MF);
3856   int XLenInBytes = Subtarget.getXLen() / 8;
3857 
3858   EVT VT = Op.getValueType();
3859   SDLoc DL(Op);
3860   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3861   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3862   while (Depth--) {
3863     int Offset = -(XLenInBytes * 2);
3864     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3865                               DAG.getIntPtrConstant(Offset, DL));
3866     FrameAddr =
3867         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3868   }
3869   return FrameAddr;
3870 }
3871 
3872 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3873                                              SelectionDAG &DAG) const {
3874   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3875   MachineFunction &MF = DAG.getMachineFunction();
3876   MachineFrameInfo &MFI = MF.getFrameInfo();
3877   MFI.setReturnAddressIsTaken(true);
3878   MVT XLenVT = Subtarget.getXLenVT();
3879   int XLenInBytes = Subtarget.getXLen() / 8;
3880 
3881   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3882     return SDValue();
3883 
3884   EVT VT = Op.getValueType();
3885   SDLoc DL(Op);
3886   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3887   if (Depth) {
3888     int Off = -XLenInBytes;
3889     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3890     SDValue Offset = DAG.getConstant(Off, DL, VT);
3891     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3892                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3893                        MachinePointerInfo());
3894   }
3895 
3896   // Return the value of the return address register, marking it an implicit
3897   // live-in.
3898   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3899   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3900 }
3901 
3902 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3903                                                  SelectionDAG &DAG) const {
3904   SDLoc DL(Op);
3905   SDValue Lo = Op.getOperand(0);
3906   SDValue Hi = Op.getOperand(1);
3907   SDValue Shamt = Op.getOperand(2);
3908   EVT VT = Lo.getValueType();
3909 
3910   // if Shamt-XLEN < 0: // Shamt < XLEN
3911   //   Lo = Lo << Shamt
3912   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3913   // else:
3914   //   Lo = 0
3915   //   Hi = Lo << (Shamt-XLEN)
3916 
3917   SDValue Zero = DAG.getConstant(0, DL, VT);
3918   SDValue One = DAG.getConstant(1, DL, VT);
3919   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3920   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3921   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3922   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3923 
3924   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3925   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3926   SDValue ShiftRightLo =
3927       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3928   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3929   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3930   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3931 
3932   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3933 
3934   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3935   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3936 
3937   SDValue Parts[2] = {Lo, Hi};
3938   return DAG.getMergeValues(Parts, DL);
3939 }
3940 
3941 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3942                                                   bool IsSRA) const {
3943   SDLoc DL(Op);
3944   SDValue Lo = Op.getOperand(0);
3945   SDValue Hi = Op.getOperand(1);
3946   SDValue Shamt = Op.getOperand(2);
3947   EVT VT = Lo.getValueType();
3948 
3949   // SRA expansion:
3950   //   if Shamt-XLEN < 0: // Shamt < XLEN
3951   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3952   //     Hi = Hi >>s Shamt
3953   //   else:
3954   //     Lo = Hi >>s (Shamt-XLEN);
3955   //     Hi = Hi >>s (XLEN-1)
3956   //
3957   // SRL expansion:
3958   //   if Shamt-XLEN < 0: // Shamt < XLEN
3959   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3960   //     Hi = Hi >>u Shamt
3961   //   else:
3962   //     Lo = Hi >>u (Shamt-XLEN);
3963   //     Hi = 0;
3964 
3965   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3966 
3967   SDValue Zero = DAG.getConstant(0, DL, VT);
3968   SDValue One = DAG.getConstant(1, DL, VT);
3969   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3970   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3971   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3972   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3973 
3974   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3975   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3976   SDValue ShiftLeftHi =
3977       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3978   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3979   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3980   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3981   SDValue HiFalse =
3982       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3983 
3984   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3985 
3986   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3987   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3988 
3989   SDValue Parts[2] = {Lo, Hi};
3990   return DAG.getMergeValues(Parts, DL);
3991 }
3992 
3993 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3994 // legal equivalently-sized i8 type, so we can use that as a go-between.
3995 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3996                                                   SelectionDAG &DAG) const {
3997   SDLoc DL(Op);
3998   MVT VT = Op.getSimpleValueType();
3999   SDValue SplatVal = Op.getOperand(0);
4000   // All-zeros or all-ones splats are handled specially.
4001   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4002     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4003     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4004   }
4005   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4006     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4007     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4008   }
4009   MVT XLenVT = Subtarget.getXLenVT();
4010   assert(SplatVal.getValueType() == XLenVT &&
4011          "Unexpected type for i1 splat value");
4012   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4013   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4014                          DAG.getConstant(1, DL, XLenVT));
4015   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4016   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4017   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4018 }
4019 
4020 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4021 // illegal (currently only vXi64 RV32).
4022 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4023 // them to SPLAT_VECTOR_I64
4024 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4025                                                      SelectionDAG &DAG) const {
4026   SDLoc DL(Op);
4027   MVT VecVT = Op.getSimpleValueType();
4028   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4029          "Unexpected SPLAT_VECTOR_PARTS lowering");
4030 
4031   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4032   SDValue Lo = Op.getOperand(0);
4033   SDValue Hi = Op.getOperand(1);
4034 
4035   if (VecVT.isFixedLengthVector()) {
4036     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4037     SDLoc DL(Op);
4038     SDValue Mask, VL;
4039     std::tie(Mask, VL) =
4040         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4041 
4042     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
4043     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4044   }
4045 
4046   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4047     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4048     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4049     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4050     // node in order to try and match RVV vector/scalar instructions.
4051     if ((LoC >> 31) == HiC)
4052       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
4053   }
4054 
4055   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4056   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4057       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4058       Hi.getConstantOperandVal(1) == 31)
4059     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
4060 
4061   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4062   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
4063                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
4064 }
4065 
4066 // Custom-lower extensions from mask vectors by using a vselect either with 1
4067 // for zero/any-extension or -1 for sign-extension:
4068 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4069 // Note that any-extension is lowered identically to zero-extension.
4070 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4071                                                 int64_t ExtTrueVal) const {
4072   SDLoc DL(Op);
4073   MVT VecVT = Op.getSimpleValueType();
4074   SDValue Src = Op.getOperand(0);
4075   // Only custom-lower extensions from mask types
4076   assert(Src.getValueType().isVector() &&
4077          Src.getValueType().getVectorElementType() == MVT::i1);
4078 
4079   MVT XLenVT = Subtarget.getXLenVT();
4080   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4081   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4082 
4083   if (VecVT.isScalableVector()) {
4084     // Be careful not to introduce illegal scalar types at this stage, and be
4085     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4086     // illegal and must be expanded. Since we know that the constants are
4087     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
4088     bool IsRV32E64 =
4089         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4090 
4091     if (!IsRV32E64) {
4092       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4093       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4094     } else {
4095       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
4096       SplatTrueVal =
4097           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
4098     }
4099 
4100     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4101   }
4102 
4103   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4104   MVT I1ContainerVT =
4105       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4106 
4107   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4108 
4109   SDValue Mask, VL;
4110   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4111 
4112   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
4113   SplatTrueVal =
4114       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
4115   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4116                                SplatTrueVal, SplatZero, VL);
4117 
4118   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4119 }
4120 
4121 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4122     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4123   MVT ExtVT = Op.getSimpleValueType();
4124   // Only custom-lower extensions from fixed-length vector types.
4125   if (!ExtVT.isFixedLengthVector())
4126     return Op;
4127   MVT VT = Op.getOperand(0).getSimpleValueType();
4128   // Grab the canonical container type for the extended type. Infer the smaller
4129   // type from that to ensure the same number of vector elements, as we know
4130   // the LMUL will be sufficient to hold the smaller type.
4131   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4132   // Get the extended container type manually to ensure the same number of
4133   // vector elements between source and dest.
4134   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4135                                      ContainerExtVT.getVectorElementCount());
4136 
4137   SDValue Op1 =
4138       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4139 
4140   SDLoc DL(Op);
4141   SDValue Mask, VL;
4142   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4143 
4144   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4145 
4146   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4147 }
4148 
4149 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4150 // setcc operation:
4151 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4152 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4153                                                   SelectionDAG &DAG) const {
4154   SDLoc DL(Op);
4155   EVT MaskVT = Op.getValueType();
4156   // Only expect to custom-lower truncations to mask types
4157   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4158          "Unexpected type for vector mask lowering");
4159   SDValue Src = Op.getOperand(0);
4160   MVT VecVT = Src.getSimpleValueType();
4161 
4162   // If this is a fixed vector, we need to convert it to a scalable vector.
4163   MVT ContainerVT = VecVT;
4164   if (VecVT.isFixedLengthVector()) {
4165     ContainerVT = getContainerForFixedLengthVector(VecVT);
4166     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4167   }
4168 
4169   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4170   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4171 
4172   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
4173   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
4174 
4175   if (VecVT.isScalableVector()) {
4176     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4177     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4178   }
4179 
4180   SDValue Mask, VL;
4181   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4182 
4183   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4184   SDValue Trunc =
4185       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4186   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4187                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4188   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4189 }
4190 
4191 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4192 // first position of a vector, and that vector is slid up to the insert index.
4193 // By limiting the active vector length to index+1 and merging with the
4194 // original vector (with an undisturbed tail policy for elements >= VL), we
4195 // achieve the desired result of leaving all elements untouched except the one
4196 // at VL-1, which is replaced with the desired value.
4197 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4198                                                     SelectionDAG &DAG) const {
4199   SDLoc DL(Op);
4200   MVT VecVT = Op.getSimpleValueType();
4201   SDValue Vec = Op.getOperand(0);
4202   SDValue Val = Op.getOperand(1);
4203   SDValue Idx = Op.getOperand(2);
4204 
4205   if (VecVT.getVectorElementType() == MVT::i1) {
4206     // FIXME: For now we just promote to an i8 vector and insert into that,
4207     // but this is probably not optimal.
4208     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4209     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4210     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4211     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4212   }
4213 
4214   MVT ContainerVT = VecVT;
4215   // If the operand is a fixed-length vector, convert to a scalable one.
4216   if (VecVT.isFixedLengthVector()) {
4217     ContainerVT = getContainerForFixedLengthVector(VecVT);
4218     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4219   }
4220 
4221   MVT XLenVT = Subtarget.getXLenVT();
4222 
4223   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4224   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4225   // Even i64-element vectors on RV32 can be lowered without scalar
4226   // legalization if the most-significant 32 bits of the value are not affected
4227   // by the sign-extension of the lower 32 bits.
4228   // TODO: We could also catch sign extensions of a 32-bit value.
4229   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4230     const auto *CVal = cast<ConstantSDNode>(Val);
4231     if (isInt<32>(CVal->getSExtValue())) {
4232       IsLegalInsert = true;
4233       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4234     }
4235   }
4236 
4237   SDValue Mask, VL;
4238   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4239 
4240   SDValue ValInVec;
4241 
4242   if (IsLegalInsert) {
4243     unsigned Opc =
4244         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4245     if (isNullConstant(Idx)) {
4246       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4247       if (!VecVT.isFixedLengthVector())
4248         return Vec;
4249       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4250     }
4251     ValInVec =
4252         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4253   } else {
4254     // On RV32, i64-element vectors must be specially handled to place the
4255     // value at element 0, by using two vslide1up instructions in sequence on
4256     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4257     // this.
4258     SDValue One = DAG.getConstant(1, DL, XLenVT);
4259     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4260     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4261     MVT I32ContainerVT =
4262         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4263     SDValue I32Mask =
4264         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4265     // Limit the active VL to two.
4266     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4267     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4268     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4269     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
4270                            InsertI64VL);
4271     // First slide in the hi value, then the lo in underneath it.
4272     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4273                            ValHi, I32Mask, InsertI64VL);
4274     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
4275                            ValLo, I32Mask, InsertI64VL);
4276     // Bitcast back to the right container type.
4277     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4278   }
4279 
4280   // Now that the value is in a vector, slide it into position.
4281   SDValue InsertVL =
4282       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4283   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4284                                 ValInVec, Idx, Mask, InsertVL);
4285   if (!VecVT.isFixedLengthVector())
4286     return Slideup;
4287   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4288 }
4289 
4290 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4291 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4292 // types this is done using VMV_X_S to allow us to glean information about the
4293 // sign bits of the result.
4294 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4295                                                      SelectionDAG &DAG) const {
4296   SDLoc DL(Op);
4297   SDValue Idx = Op.getOperand(1);
4298   SDValue Vec = Op.getOperand(0);
4299   EVT EltVT = Op.getValueType();
4300   MVT VecVT = Vec.getSimpleValueType();
4301   MVT XLenVT = Subtarget.getXLenVT();
4302 
4303   if (VecVT.getVectorElementType() == MVT::i1) {
4304     if (VecVT.isFixedLengthVector()) {
4305       unsigned NumElts = VecVT.getVectorNumElements();
4306       if (NumElts >= 8) {
4307         MVT WideEltVT;
4308         unsigned WidenVecLen;
4309         SDValue ExtractElementIdx;
4310         SDValue ExtractBitIdx;
4311         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4312         MVT LargestEltVT = MVT::getIntegerVT(
4313             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4314         if (NumElts <= LargestEltVT.getSizeInBits()) {
4315           assert(isPowerOf2_32(NumElts) &&
4316                  "the number of elements should be power of 2");
4317           WideEltVT = MVT::getIntegerVT(NumElts);
4318           WidenVecLen = 1;
4319           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4320           ExtractBitIdx = Idx;
4321         } else {
4322           WideEltVT = LargestEltVT;
4323           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4324           // extract element index = index / element width
4325           ExtractElementIdx = DAG.getNode(
4326               ISD::SRL, DL, XLenVT, Idx,
4327               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4328           // mask bit index = index % element width
4329           ExtractBitIdx = DAG.getNode(
4330               ISD::AND, DL, XLenVT, Idx,
4331               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4332         }
4333         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4334         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4335         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4336                                          Vec, ExtractElementIdx);
4337         // Extract the bit from GPR.
4338         SDValue ShiftRight =
4339             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4340         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4341                            DAG.getConstant(1, DL, XLenVT));
4342       }
4343     }
4344     // Otherwise, promote to an i8 vector and extract from that.
4345     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4346     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4347     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4348   }
4349 
4350   // If this is a fixed vector, we need to convert it to a scalable vector.
4351   MVT ContainerVT = VecVT;
4352   if (VecVT.isFixedLengthVector()) {
4353     ContainerVT = getContainerForFixedLengthVector(VecVT);
4354     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4355   }
4356 
4357   // If the index is 0, the vector is already in the right position.
4358   if (!isNullConstant(Idx)) {
4359     // Use a VL of 1 to avoid processing more elements than we need.
4360     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4361     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4362     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4363     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4364                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4365   }
4366 
4367   if (!EltVT.isInteger()) {
4368     // Floating-point extracts are handled in TableGen.
4369     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4370                        DAG.getConstant(0, DL, XLenVT));
4371   }
4372 
4373   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4374   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4375 }
4376 
4377 // Some RVV intrinsics may claim that they want an integer operand to be
4378 // promoted or expanded.
4379 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4380                                           const RISCVSubtarget &Subtarget) {
4381   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4382           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4383          "Unexpected opcode");
4384 
4385   if (!Subtarget.hasVInstructions())
4386     return SDValue();
4387 
4388   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4389   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4390   SDLoc DL(Op);
4391 
4392   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4393       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4394   if (!II || !II->hasSplatOperand())
4395     return SDValue();
4396 
4397   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4398   assert(SplatOp < Op.getNumOperands());
4399 
4400   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4401   SDValue &ScalarOp = Operands[SplatOp];
4402   MVT OpVT = ScalarOp.getSimpleValueType();
4403   MVT XLenVT = Subtarget.getXLenVT();
4404 
4405   // If this isn't a scalar, or its type is XLenVT we're done.
4406   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4407     return SDValue();
4408 
4409   // Simplest case is that the operand needs to be promoted to XLenVT.
4410   if (OpVT.bitsLT(XLenVT)) {
4411     // If the operand is a constant, sign extend to increase our chances
4412     // of being able to use a .vi instruction. ANY_EXTEND would become a
4413     // a zero extend and the simm5 check in isel would fail.
4414     // FIXME: Should we ignore the upper bits in isel instead?
4415     unsigned ExtOpc =
4416         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4417     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4418     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4419   }
4420 
4421   // Use the previous operand to get the vXi64 VT. The result might be a mask
4422   // VT for compares. Using the previous operand assumes that the previous
4423   // operand will never have a smaller element size than a scalar operand and
4424   // that a widening operation never uses SEW=64.
4425   // NOTE: If this fails the below assert, we can probably just find the
4426   // element count from any operand or result and use it to construct the VT.
4427   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4428   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4429 
4430   // The more complex case is when the scalar is larger than XLenVT.
4431   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4432          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4433 
4434   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4435   // on the instruction to sign-extend since SEW>XLEN.
4436   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4437     if (isInt<32>(CVal->getSExtValue())) {
4438       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4439       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4440     }
4441   }
4442 
4443   // We need to convert the scalar to a splat vector.
4444   // FIXME: Can we implicitly truncate the scalar if it is known to
4445   // be sign extended?
4446   SDValue VL = getVLOperand(Op);
4447   assert(VL.getValueType() == XLenVT);
4448   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4449   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4450 }
4451 
4452 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4453                                                      SelectionDAG &DAG) const {
4454   unsigned IntNo = Op.getConstantOperandVal(0);
4455   SDLoc DL(Op);
4456   MVT XLenVT = Subtarget.getXLenVT();
4457 
4458   switch (IntNo) {
4459   default:
4460     break; // Don't custom lower most intrinsics.
4461   case Intrinsic::thread_pointer: {
4462     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4463     return DAG.getRegister(RISCV::X4, PtrVT);
4464   }
4465   case Intrinsic::riscv_orc_b:
4466   case Intrinsic::riscv_brev8: {
4467     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4468     unsigned Opc =
4469         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4470     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4471                        DAG.getConstant(7, DL, XLenVT));
4472   }
4473   case Intrinsic::riscv_grev:
4474   case Intrinsic::riscv_gorc: {
4475     unsigned Opc =
4476         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4477     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4478   }
4479   case Intrinsic::riscv_zip:
4480   case Intrinsic::riscv_unzip: {
4481     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4482     // For i32 the immdiate is 15. For i64 the immediate is 31.
4483     unsigned Opc =
4484         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4485     unsigned BitWidth = Op.getValueSizeInBits();
4486     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4487     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4488                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4489   }
4490   case Intrinsic::riscv_shfl:
4491   case Intrinsic::riscv_unshfl: {
4492     unsigned Opc =
4493         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4494     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4495   }
4496   case Intrinsic::riscv_bcompress:
4497   case Intrinsic::riscv_bdecompress: {
4498     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4499                                                        : RISCVISD::BDECOMPRESS;
4500     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4501   }
4502   case Intrinsic::riscv_bfp:
4503     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4504                        Op.getOperand(2));
4505   case Intrinsic::riscv_fsl:
4506     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4507                        Op.getOperand(2), Op.getOperand(3));
4508   case Intrinsic::riscv_fsr:
4509     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4510                        Op.getOperand(2), Op.getOperand(3));
4511   case Intrinsic::riscv_vmv_x_s:
4512     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4513     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4514                        Op.getOperand(1));
4515   case Intrinsic::riscv_vmv_v_x:
4516     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4517                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4518   case Intrinsic::riscv_vfmv_v_f:
4519     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4520                        Op.getOperand(1), Op.getOperand(2));
4521   case Intrinsic::riscv_vmv_s_x: {
4522     SDValue Scalar = Op.getOperand(2);
4523 
4524     if (Scalar.getValueType().bitsLE(XLenVT)) {
4525       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4526       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4527                          Op.getOperand(1), Scalar, Op.getOperand(3));
4528     }
4529 
4530     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4531 
4532     // This is an i64 value that lives in two scalar registers. We have to
4533     // insert this in a convoluted way. First we build vXi64 splat containing
4534     // the/ two values that we assemble using some bit math. Next we'll use
4535     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4536     // to merge element 0 from our splat into the source vector.
4537     // FIXME: This is probably not the best way to do this, but it is
4538     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4539     // point.
4540     //   sw lo, (a0)
4541     //   sw hi, 4(a0)
4542     //   vlse vX, (a0)
4543     //
4544     //   vid.v      vVid
4545     //   vmseq.vx   mMask, vVid, 0
4546     //   vmerge.vvm vDest, vSrc, vVal, mMask
4547     MVT VT = Op.getSimpleValueType();
4548     SDValue Vec = Op.getOperand(1);
4549     SDValue VL = getVLOperand(Op);
4550 
4551     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4552     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4553                                       DAG.getConstant(0, DL, MVT::i32), VL);
4554 
4555     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4556     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4557     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4558     SDValue SelectCond =
4559         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4560                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4561     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4562                        Vec, VL);
4563   }
4564   case Intrinsic::riscv_vslide1up:
4565   case Intrinsic::riscv_vslide1down:
4566   case Intrinsic::riscv_vslide1up_mask:
4567   case Intrinsic::riscv_vslide1down_mask: {
4568     // We need to special case these when the scalar is larger than XLen.
4569     unsigned NumOps = Op.getNumOperands();
4570     bool IsMasked = NumOps == 7;
4571     unsigned OpOffset = IsMasked ? 1 : 0;
4572     SDValue Scalar = Op.getOperand(2 + OpOffset);
4573     if (Scalar.getValueType().bitsLE(XLenVT))
4574       break;
4575 
4576     // Splatting a sign extended constant is fine.
4577     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4578       if (isInt<32>(CVal->getSExtValue()))
4579         break;
4580 
4581     MVT VT = Op.getSimpleValueType();
4582     assert(VT.getVectorElementType() == MVT::i64 &&
4583            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4584 
4585     // Convert the vector source to the equivalent nxvXi32 vector.
4586     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4587     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4588 
4589     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4590                                    DAG.getConstant(0, DL, XLenVT));
4591     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4592                                    DAG.getConstant(1, DL, XLenVT));
4593 
4594     // Double the VL since we halved SEW.
4595     SDValue VL = getVLOperand(Op);
4596     SDValue I32VL =
4597         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4598 
4599     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4600     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4601 
4602     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4603     // instructions.
4604     if (IntNo == Intrinsic::riscv_vslide1up ||
4605         IntNo == Intrinsic::riscv_vslide1up_mask) {
4606       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4607                         I32Mask, I32VL);
4608       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4609                         I32Mask, I32VL);
4610     } else {
4611       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4612                         I32Mask, I32VL);
4613       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4614                         I32Mask, I32VL);
4615     }
4616 
4617     // Convert back to nxvXi64.
4618     Vec = DAG.getBitcast(VT, Vec);
4619 
4620     if (!IsMasked)
4621       return Vec;
4622 
4623     // Apply mask after the operation.
4624     SDValue Mask = Op.getOperand(NumOps - 3);
4625     SDValue MaskedOff = Op.getOperand(1);
4626     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4627   }
4628   }
4629 
4630   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4631 }
4632 
4633 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4634                                                     SelectionDAG &DAG) const {
4635   unsigned IntNo = Op.getConstantOperandVal(1);
4636   switch (IntNo) {
4637   default:
4638     break;
4639   case Intrinsic::riscv_masked_strided_load: {
4640     SDLoc DL(Op);
4641     MVT XLenVT = Subtarget.getXLenVT();
4642 
4643     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4644     // the selection of the masked intrinsics doesn't do this for us.
4645     SDValue Mask = Op.getOperand(5);
4646     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4647 
4648     MVT VT = Op->getSimpleValueType(0);
4649     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4650 
4651     SDValue PassThru = Op.getOperand(2);
4652     if (!IsUnmasked) {
4653       MVT MaskVT =
4654           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4655       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4656       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4657     }
4658 
4659     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4660 
4661     SDValue IntID = DAG.getTargetConstant(
4662         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4663         XLenVT);
4664 
4665     auto *Load = cast<MemIntrinsicSDNode>(Op);
4666     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4667     if (IsUnmasked)
4668       Ops.push_back(DAG.getUNDEF(ContainerVT));
4669     else
4670       Ops.push_back(PassThru);
4671     Ops.push_back(Op.getOperand(3)); // Ptr
4672     Ops.push_back(Op.getOperand(4)); // Stride
4673     if (!IsUnmasked)
4674       Ops.push_back(Mask);
4675     Ops.push_back(VL);
4676     if (!IsUnmasked) {
4677       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4678       Ops.push_back(Policy);
4679     }
4680 
4681     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4682     SDValue Result =
4683         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4684                                 Load->getMemoryVT(), Load->getMemOperand());
4685     SDValue Chain = Result.getValue(1);
4686     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4687     return DAG.getMergeValues({Result, Chain}, DL);
4688   }
4689   }
4690 
4691   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4692 }
4693 
4694 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4695                                                  SelectionDAG &DAG) const {
4696   unsigned IntNo = Op.getConstantOperandVal(1);
4697   switch (IntNo) {
4698   default:
4699     break;
4700   case Intrinsic::riscv_masked_strided_store: {
4701     SDLoc DL(Op);
4702     MVT XLenVT = Subtarget.getXLenVT();
4703 
4704     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4705     // the selection of the masked intrinsics doesn't do this for us.
4706     SDValue Mask = Op.getOperand(5);
4707     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4708 
4709     SDValue Val = Op.getOperand(2);
4710     MVT VT = Val.getSimpleValueType();
4711     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4712 
4713     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4714     if (!IsUnmasked) {
4715       MVT MaskVT =
4716           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4717       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4718     }
4719 
4720     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4721 
4722     SDValue IntID = DAG.getTargetConstant(
4723         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4724         XLenVT);
4725 
4726     auto *Store = cast<MemIntrinsicSDNode>(Op);
4727     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4728     Ops.push_back(Val);
4729     Ops.push_back(Op.getOperand(3)); // Ptr
4730     Ops.push_back(Op.getOperand(4)); // Stride
4731     if (!IsUnmasked)
4732       Ops.push_back(Mask);
4733     Ops.push_back(VL);
4734 
4735     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4736                                    Ops, Store->getMemoryVT(),
4737                                    Store->getMemOperand());
4738   }
4739   }
4740 
4741   return SDValue();
4742 }
4743 
4744 static MVT getLMUL1VT(MVT VT) {
4745   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4746          "Unexpected vector MVT");
4747   return MVT::getScalableVectorVT(
4748       VT.getVectorElementType(),
4749       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4750 }
4751 
4752 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4753   switch (ISDOpcode) {
4754   default:
4755     llvm_unreachable("Unhandled reduction");
4756   case ISD::VECREDUCE_ADD:
4757     return RISCVISD::VECREDUCE_ADD_VL;
4758   case ISD::VECREDUCE_UMAX:
4759     return RISCVISD::VECREDUCE_UMAX_VL;
4760   case ISD::VECREDUCE_SMAX:
4761     return RISCVISD::VECREDUCE_SMAX_VL;
4762   case ISD::VECREDUCE_UMIN:
4763     return RISCVISD::VECREDUCE_UMIN_VL;
4764   case ISD::VECREDUCE_SMIN:
4765     return RISCVISD::VECREDUCE_SMIN_VL;
4766   case ISD::VECREDUCE_AND:
4767     return RISCVISD::VECREDUCE_AND_VL;
4768   case ISD::VECREDUCE_OR:
4769     return RISCVISD::VECREDUCE_OR_VL;
4770   case ISD::VECREDUCE_XOR:
4771     return RISCVISD::VECREDUCE_XOR_VL;
4772   }
4773 }
4774 
4775 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4776                                                          SelectionDAG &DAG,
4777                                                          bool IsVP) const {
4778   SDLoc DL(Op);
4779   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4780   MVT VecVT = Vec.getSimpleValueType();
4781   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4782           Op.getOpcode() == ISD::VECREDUCE_OR ||
4783           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4784           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4785           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4786           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4787          "Unexpected reduction lowering");
4788 
4789   MVT XLenVT = Subtarget.getXLenVT();
4790   assert(Op.getValueType() == XLenVT &&
4791          "Expected reduction output to be legalized to XLenVT");
4792 
4793   MVT ContainerVT = VecVT;
4794   if (VecVT.isFixedLengthVector()) {
4795     ContainerVT = getContainerForFixedLengthVector(VecVT);
4796     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4797   }
4798 
4799   SDValue Mask, VL;
4800   if (IsVP) {
4801     Mask = Op.getOperand(2);
4802     VL = Op.getOperand(3);
4803   } else {
4804     std::tie(Mask, VL) =
4805         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4806   }
4807 
4808   unsigned BaseOpc;
4809   ISD::CondCode CC;
4810   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4811 
4812   switch (Op.getOpcode()) {
4813   default:
4814     llvm_unreachable("Unhandled reduction");
4815   case ISD::VECREDUCE_AND:
4816   case ISD::VP_REDUCE_AND: {
4817     // vcpop ~x == 0
4818     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4819     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4820     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4821     CC = ISD::SETEQ;
4822     BaseOpc = ISD::AND;
4823     break;
4824   }
4825   case ISD::VECREDUCE_OR:
4826   case ISD::VP_REDUCE_OR:
4827     // vcpop x != 0
4828     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4829     CC = ISD::SETNE;
4830     BaseOpc = ISD::OR;
4831     break;
4832   case ISD::VECREDUCE_XOR:
4833   case ISD::VP_REDUCE_XOR: {
4834     // ((vcpop x) & 1) != 0
4835     SDValue One = DAG.getConstant(1, DL, XLenVT);
4836     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4837     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4838     CC = ISD::SETNE;
4839     BaseOpc = ISD::XOR;
4840     break;
4841   }
4842   }
4843 
4844   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4845 
4846   if (!IsVP)
4847     return SetCC;
4848 
4849   // Now include the start value in the operation.
4850   // Note that we must return the start value when no elements are operated
4851   // upon. The vcpop instructions we've emitted in each case above will return
4852   // 0 for an inactive vector, and so we've already received the neutral value:
4853   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4854   // can simply include the start value.
4855   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4856 }
4857 
4858 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4859                                             SelectionDAG &DAG) const {
4860   SDLoc DL(Op);
4861   SDValue Vec = Op.getOperand(0);
4862   EVT VecEVT = Vec.getValueType();
4863 
4864   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4865 
4866   // Due to ordering in legalize types we may have a vector type that needs to
4867   // be split. Do that manually so we can get down to a legal type.
4868   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4869          TargetLowering::TypeSplitVector) {
4870     SDValue Lo, Hi;
4871     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4872     VecEVT = Lo.getValueType();
4873     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4874   }
4875 
4876   // TODO: The type may need to be widened rather than split. Or widened before
4877   // it can be split.
4878   if (!isTypeLegal(VecEVT))
4879     return SDValue();
4880 
4881   MVT VecVT = VecEVT.getSimpleVT();
4882   MVT VecEltVT = VecVT.getVectorElementType();
4883   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4884 
4885   MVT ContainerVT = VecVT;
4886   if (VecVT.isFixedLengthVector()) {
4887     ContainerVT = getContainerForFixedLengthVector(VecVT);
4888     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4889   }
4890 
4891   MVT M1VT = getLMUL1VT(ContainerVT);
4892   MVT XLenVT = Subtarget.getXLenVT();
4893 
4894   SDValue Mask, VL;
4895   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4896 
4897   SDValue NeutralElem =
4898       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4899   SDValue IdentitySplat = lowerScalarSplat(
4900       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4901   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4902                                   IdentitySplat, Mask, VL);
4903   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4904                              DAG.getConstant(0, DL, XLenVT));
4905   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4906 }
4907 
4908 // Given a reduction op, this function returns the matching reduction opcode,
4909 // the vector SDValue and the scalar SDValue required to lower this to a
4910 // RISCVISD node.
4911 static std::tuple<unsigned, SDValue, SDValue>
4912 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4913   SDLoc DL(Op);
4914   auto Flags = Op->getFlags();
4915   unsigned Opcode = Op.getOpcode();
4916   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4917   switch (Opcode) {
4918   default:
4919     llvm_unreachable("Unhandled reduction");
4920   case ISD::VECREDUCE_FADD: {
4921     // Use positive zero if we can. It is cheaper to materialize.
4922     SDValue Zero =
4923         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4924     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4925   }
4926   case ISD::VECREDUCE_SEQ_FADD:
4927     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4928                            Op.getOperand(0));
4929   case ISD::VECREDUCE_FMIN:
4930     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4931                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4932   case ISD::VECREDUCE_FMAX:
4933     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4934                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4935   }
4936 }
4937 
4938 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4939                                               SelectionDAG &DAG) const {
4940   SDLoc DL(Op);
4941   MVT VecEltVT = Op.getSimpleValueType();
4942 
4943   unsigned RVVOpcode;
4944   SDValue VectorVal, ScalarVal;
4945   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4946       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4947   MVT VecVT = VectorVal.getSimpleValueType();
4948 
4949   MVT ContainerVT = VecVT;
4950   if (VecVT.isFixedLengthVector()) {
4951     ContainerVT = getContainerForFixedLengthVector(VecVT);
4952     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4953   }
4954 
4955   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4956   MVT XLenVT = Subtarget.getXLenVT();
4957 
4958   SDValue Mask, VL;
4959   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4960 
4961   SDValue ScalarSplat = lowerScalarSplat(
4962       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4963   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4964                                   VectorVal, ScalarSplat, Mask, VL);
4965   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4966                      DAG.getConstant(0, DL, XLenVT));
4967 }
4968 
4969 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4970   switch (ISDOpcode) {
4971   default:
4972     llvm_unreachable("Unhandled reduction");
4973   case ISD::VP_REDUCE_ADD:
4974     return RISCVISD::VECREDUCE_ADD_VL;
4975   case ISD::VP_REDUCE_UMAX:
4976     return RISCVISD::VECREDUCE_UMAX_VL;
4977   case ISD::VP_REDUCE_SMAX:
4978     return RISCVISD::VECREDUCE_SMAX_VL;
4979   case ISD::VP_REDUCE_UMIN:
4980     return RISCVISD::VECREDUCE_UMIN_VL;
4981   case ISD::VP_REDUCE_SMIN:
4982     return RISCVISD::VECREDUCE_SMIN_VL;
4983   case ISD::VP_REDUCE_AND:
4984     return RISCVISD::VECREDUCE_AND_VL;
4985   case ISD::VP_REDUCE_OR:
4986     return RISCVISD::VECREDUCE_OR_VL;
4987   case ISD::VP_REDUCE_XOR:
4988     return RISCVISD::VECREDUCE_XOR_VL;
4989   case ISD::VP_REDUCE_FADD:
4990     return RISCVISD::VECREDUCE_FADD_VL;
4991   case ISD::VP_REDUCE_SEQ_FADD:
4992     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4993   case ISD::VP_REDUCE_FMAX:
4994     return RISCVISD::VECREDUCE_FMAX_VL;
4995   case ISD::VP_REDUCE_FMIN:
4996     return RISCVISD::VECREDUCE_FMIN_VL;
4997   }
4998 }
4999 
5000 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5001                                            SelectionDAG &DAG) const {
5002   SDLoc DL(Op);
5003   SDValue Vec = Op.getOperand(1);
5004   EVT VecEVT = Vec.getValueType();
5005 
5006   // TODO: The type may need to be widened rather than split. Or widened before
5007   // it can be split.
5008   if (!isTypeLegal(VecEVT))
5009     return SDValue();
5010 
5011   MVT VecVT = VecEVT.getSimpleVT();
5012   MVT VecEltVT = VecVT.getVectorElementType();
5013   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5014 
5015   MVT ContainerVT = VecVT;
5016   if (VecVT.isFixedLengthVector()) {
5017     ContainerVT = getContainerForFixedLengthVector(VecVT);
5018     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5019   }
5020 
5021   SDValue VL = Op.getOperand(3);
5022   SDValue Mask = Op.getOperand(2);
5023 
5024   MVT M1VT = getLMUL1VT(ContainerVT);
5025   MVT XLenVT = Subtarget.getXLenVT();
5026   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5027 
5028   SDValue StartSplat =
5029       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
5030                        DL, DAG, Subtarget);
5031   SDValue Reduction =
5032       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5033   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5034                              DAG.getConstant(0, DL, XLenVT));
5035   if (!VecVT.isInteger())
5036     return Elt0;
5037   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5038 }
5039 
5040 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5041                                                    SelectionDAG &DAG) const {
5042   SDValue Vec = Op.getOperand(0);
5043   SDValue SubVec = Op.getOperand(1);
5044   MVT VecVT = Vec.getSimpleValueType();
5045   MVT SubVecVT = SubVec.getSimpleValueType();
5046 
5047   SDLoc DL(Op);
5048   MVT XLenVT = Subtarget.getXLenVT();
5049   unsigned OrigIdx = Op.getConstantOperandVal(2);
5050   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5051 
5052   // We don't have the ability to slide mask vectors up indexed by their i1
5053   // elements; the smallest we can do is i8. Often we are able to bitcast to
5054   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5055   // into a scalable one, we might not necessarily have enough scalable
5056   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5057   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5058       (OrigIdx != 0 || !Vec.isUndef())) {
5059     if (VecVT.getVectorMinNumElements() >= 8 &&
5060         SubVecVT.getVectorMinNumElements() >= 8) {
5061       assert(OrigIdx % 8 == 0 && "Invalid index");
5062       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5063              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5064              "Unexpected mask vector lowering");
5065       OrigIdx /= 8;
5066       SubVecVT =
5067           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5068                            SubVecVT.isScalableVector());
5069       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5070                                VecVT.isScalableVector());
5071       Vec = DAG.getBitcast(VecVT, Vec);
5072       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5073     } else {
5074       // We can't slide this mask vector up indexed by its i1 elements.
5075       // This poses a problem when we wish to insert a scalable vector which
5076       // can't be re-expressed as a larger type. Just choose the slow path and
5077       // extend to a larger type, then truncate back down.
5078       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5079       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5080       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5081       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5082       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5083                         Op.getOperand(2));
5084       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5085       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5086     }
5087   }
5088 
5089   // If the subvector vector is a fixed-length type, we cannot use subregister
5090   // manipulation to simplify the codegen; we don't know which register of a
5091   // LMUL group contains the specific subvector as we only know the minimum
5092   // register size. Therefore we must slide the vector group up the full
5093   // amount.
5094   if (SubVecVT.isFixedLengthVector()) {
5095     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5096       return Op;
5097     MVT ContainerVT = VecVT;
5098     if (VecVT.isFixedLengthVector()) {
5099       ContainerVT = getContainerForFixedLengthVector(VecVT);
5100       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5101     }
5102     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5103                          DAG.getUNDEF(ContainerVT), SubVec,
5104                          DAG.getConstant(0, DL, XLenVT));
5105     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5106       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5107       return DAG.getBitcast(Op.getValueType(), SubVec);
5108     }
5109     SDValue Mask =
5110         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5111     // Set the vector length to only the number of elements we care about. Note
5112     // that for slideup this includes the offset.
5113     SDValue VL =
5114         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5115     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5116     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5117                                   SubVec, SlideupAmt, Mask, VL);
5118     if (VecVT.isFixedLengthVector())
5119       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5120     return DAG.getBitcast(Op.getValueType(), Slideup);
5121   }
5122 
5123   unsigned SubRegIdx, RemIdx;
5124   std::tie(SubRegIdx, RemIdx) =
5125       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5126           VecVT, SubVecVT, OrigIdx, TRI);
5127 
5128   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5129   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5130                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5131                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5132 
5133   // 1. If the Idx has been completely eliminated and this subvector's size is
5134   // a vector register or a multiple thereof, or the surrounding elements are
5135   // undef, then this is a subvector insert which naturally aligns to a vector
5136   // register. These can easily be handled using subregister manipulation.
5137   // 2. If the subvector is smaller than a vector register, then the insertion
5138   // must preserve the undisturbed elements of the register. We do this by
5139   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5140   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5141   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5142   // LMUL=1 type back into the larger vector (resolving to another subregister
5143   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5144   // to avoid allocating a large register group to hold our subvector.
5145   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5146     return Op;
5147 
5148   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5149   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5150   // (in our case undisturbed). This means we can set up a subvector insertion
5151   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5152   // size of the subvector.
5153   MVT InterSubVT = VecVT;
5154   SDValue AlignedExtract = Vec;
5155   unsigned AlignedIdx = OrigIdx - RemIdx;
5156   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5157     InterSubVT = getLMUL1VT(VecVT);
5158     // Extract a subvector equal to the nearest full vector register type. This
5159     // should resolve to a EXTRACT_SUBREG instruction.
5160     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5161                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5162   }
5163 
5164   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5165   // For scalable vectors this must be further multiplied by vscale.
5166   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5167 
5168   SDValue Mask, VL;
5169   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5170 
5171   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5172   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5173   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5174   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5175 
5176   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5177                        DAG.getUNDEF(InterSubVT), SubVec,
5178                        DAG.getConstant(0, DL, XLenVT));
5179 
5180   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5181                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5182 
5183   // If required, insert this subvector back into the correct vector register.
5184   // This should resolve to an INSERT_SUBREG instruction.
5185   if (VecVT.bitsGT(InterSubVT))
5186     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5187                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5188 
5189   // We might have bitcast from a mask type: cast back to the original type if
5190   // required.
5191   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5192 }
5193 
5194 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5195                                                     SelectionDAG &DAG) const {
5196   SDValue Vec = Op.getOperand(0);
5197   MVT SubVecVT = Op.getSimpleValueType();
5198   MVT VecVT = Vec.getSimpleValueType();
5199 
5200   SDLoc DL(Op);
5201   MVT XLenVT = Subtarget.getXLenVT();
5202   unsigned OrigIdx = Op.getConstantOperandVal(1);
5203   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5204 
5205   // We don't have the ability to slide mask vectors down indexed by their i1
5206   // elements; the smallest we can do is i8. Often we are able to bitcast to
5207   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5208   // from a scalable one, we might not necessarily have enough scalable
5209   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5210   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5211     if (VecVT.getVectorMinNumElements() >= 8 &&
5212         SubVecVT.getVectorMinNumElements() >= 8) {
5213       assert(OrigIdx % 8 == 0 && "Invalid index");
5214       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5215              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5216              "Unexpected mask vector lowering");
5217       OrigIdx /= 8;
5218       SubVecVT =
5219           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5220                            SubVecVT.isScalableVector());
5221       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5222                                VecVT.isScalableVector());
5223       Vec = DAG.getBitcast(VecVT, Vec);
5224     } else {
5225       // We can't slide this mask vector down, indexed by its i1 elements.
5226       // This poses a problem when we wish to extract a scalable vector which
5227       // can't be re-expressed as a larger type. Just choose the slow path and
5228       // extend to a larger type, then truncate back down.
5229       // TODO: We could probably improve this when extracting certain fixed
5230       // from fixed, where we can extract as i8 and shift the correct element
5231       // right to reach the desired subvector?
5232       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5233       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5234       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5235       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5236                         Op.getOperand(1));
5237       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5238       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5239     }
5240   }
5241 
5242   // If the subvector vector is a fixed-length type, we cannot use subregister
5243   // manipulation to simplify the codegen; we don't know which register of a
5244   // LMUL group contains the specific subvector as we only know the minimum
5245   // register size. Therefore we must slide the vector group down the full
5246   // amount.
5247   if (SubVecVT.isFixedLengthVector()) {
5248     // With an index of 0 this is a cast-like subvector, which can be performed
5249     // with subregister operations.
5250     if (OrigIdx == 0)
5251       return Op;
5252     MVT ContainerVT = VecVT;
5253     if (VecVT.isFixedLengthVector()) {
5254       ContainerVT = getContainerForFixedLengthVector(VecVT);
5255       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5256     }
5257     SDValue Mask =
5258         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5259     // Set the vector length to only the number of elements we care about. This
5260     // avoids sliding down elements we're going to discard straight away.
5261     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5262     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5263     SDValue Slidedown =
5264         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5265                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5266     // Now we can use a cast-like subvector extract to get the result.
5267     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5268                             DAG.getConstant(0, DL, XLenVT));
5269     return DAG.getBitcast(Op.getValueType(), Slidedown);
5270   }
5271 
5272   unsigned SubRegIdx, RemIdx;
5273   std::tie(SubRegIdx, RemIdx) =
5274       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5275           VecVT, SubVecVT, OrigIdx, TRI);
5276 
5277   // If the Idx has been completely eliminated then this is a subvector extract
5278   // which naturally aligns to a vector register. These can easily be handled
5279   // using subregister manipulation.
5280   if (RemIdx == 0)
5281     return Op;
5282 
5283   // Else we must shift our vector register directly to extract the subvector.
5284   // Do this using VSLIDEDOWN.
5285 
5286   // If the vector type is an LMUL-group type, extract a subvector equal to the
5287   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5288   // instruction.
5289   MVT InterSubVT = VecVT;
5290   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5291     InterSubVT = getLMUL1VT(VecVT);
5292     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5293                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5294   }
5295 
5296   // Slide this vector register down by the desired number of elements in order
5297   // to place the desired subvector starting at element 0.
5298   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5299   // For scalable vectors this must be further multiplied by vscale.
5300   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5301 
5302   SDValue Mask, VL;
5303   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5304   SDValue Slidedown =
5305       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5306                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5307 
5308   // Now the vector is in the right position, extract our final subvector. This
5309   // should resolve to a COPY.
5310   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5311                           DAG.getConstant(0, DL, XLenVT));
5312 
5313   // We might have bitcast from a mask type: cast back to the original type if
5314   // required.
5315   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5316 }
5317 
5318 // Lower step_vector to the vid instruction. Any non-identity step value must
5319 // be accounted for my manual expansion.
5320 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5321                                               SelectionDAG &DAG) const {
5322   SDLoc DL(Op);
5323   MVT VT = Op.getSimpleValueType();
5324   MVT XLenVT = Subtarget.getXLenVT();
5325   SDValue Mask, VL;
5326   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5327   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5328   uint64_t StepValImm = Op.getConstantOperandVal(0);
5329   if (StepValImm != 1) {
5330     if (isPowerOf2_64(StepValImm)) {
5331       SDValue StepVal =
5332           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
5333                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5334       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5335     } else {
5336       SDValue StepVal = lowerScalarSplat(
5337           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
5338           DL, DAG, Subtarget);
5339       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5340     }
5341   }
5342   return StepVec;
5343 }
5344 
5345 // Implement vector_reverse using vrgather.vv with indices determined by
5346 // subtracting the id of each element from (VLMAX-1). This will convert
5347 // the indices like so:
5348 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5349 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5350 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5351                                                  SelectionDAG &DAG) const {
5352   SDLoc DL(Op);
5353   MVT VecVT = Op.getSimpleValueType();
5354   unsigned EltSize = VecVT.getScalarSizeInBits();
5355   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5356 
5357   unsigned MaxVLMAX = 0;
5358   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5359   if (VectorBitsMax != 0)
5360     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5361 
5362   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5363   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5364 
5365   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5366   // to use vrgatherei16.vv.
5367   // TODO: It's also possible to use vrgatherei16.vv for other types to
5368   // decrease register width for the index calculation.
5369   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5370     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5371     // Reverse each half, then reassemble them in reverse order.
5372     // NOTE: It's also possible that after splitting that VLMAX no longer
5373     // requires vrgatherei16.vv.
5374     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5375       SDValue Lo, Hi;
5376       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5377       EVT LoVT, HiVT;
5378       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5379       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5380       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5381       // Reassemble the low and high pieces reversed.
5382       // FIXME: This is a CONCAT_VECTORS.
5383       SDValue Res =
5384           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5385                       DAG.getIntPtrConstant(0, DL));
5386       return DAG.getNode(
5387           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5388           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5389     }
5390 
5391     // Just promote the int type to i16 which will double the LMUL.
5392     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5393     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5394   }
5395 
5396   MVT XLenVT = Subtarget.getXLenVT();
5397   SDValue Mask, VL;
5398   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5399 
5400   // Calculate VLMAX-1 for the desired SEW.
5401   unsigned MinElts = VecVT.getVectorMinNumElements();
5402   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5403                               DAG.getConstant(MinElts, DL, XLenVT));
5404   SDValue VLMinus1 =
5405       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5406 
5407   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5408   bool IsRV32E64 =
5409       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5410   SDValue SplatVL;
5411   if (!IsRV32E64)
5412     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5413   else
5414     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
5415 
5416   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5417   SDValue Indices =
5418       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5419 
5420   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5421 }
5422 
5423 SDValue
5424 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5425                                                      SelectionDAG &DAG) const {
5426   SDLoc DL(Op);
5427   auto *Load = cast<LoadSDNode>(Op);
5428 
5429   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5430                                         Load->getMemoryVT(),
5431                                         *Load->getMemOperand()) &&
5432          "Expecting a correctly-aligned load");
5433 
5434   MVT VT = Op.getSimpleValueType();
5435   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5436 
5437   SDValue VL =
5438       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5439 
5440   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5441   SDValue NewLoad = DAG.getMemIntrinsicNode(
5442       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5443       Load->getMemoryVT(), Load->getMemOperand());
5444 
5445   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5446   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5447 }
5448 
5449 SDValue
5450 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5451                                                       SelectionDAG &DAG) const {
5452   SDLoc DL(Op);
5453   auto *Store = cast<StoreSDNode>(Op);
5454 
5455   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5456                                         Store->getMemoryVT(),
5457                                         *Store->getMemOperand()) &&
5458          "Expecting a correctly-aligned store");
5459 
5460   SDValue StoreVal = Store->getValue();
5461   MVT VT = StoreVal.getSimpleValueType();
5462 
5463   // If the size less than a byte, we need to pad with zeros to make a byte.
5464   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5465     VT = MVT::v8i1;
5466     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5467                            DAG.getConstant(0, DL, VT), StoreVal,
5468                            DAG.getIntPtrConstant(0, DL));
5469   }
5470 
5471   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5472 
5473   SDValue VL =
5474       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5475 
5476   SDValue NewValue =
5477       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5478   return DAG.getMemIntrinsicNode(
5479       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5480       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5481       Store->getMemoryVT(), Store->getMemOperand());
5482 }
5483 
5484 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5485                                              SelectionDAG &DAG) const {
5486   SDLoc DL(Op);
5487   MVT VT = Op.getSimpleValueType();
5488 
5489   const auto *MemSD = cast<MemSDNode>(Op);
5490   EVT MemVT = MemSD->getMemoryVT();
5491   MachineMemOperand *MMO = MemSD->getMemOperand();
5492   SDValue Chain = MemSD->getChain();
5493   SDValue BasePtr = MemSD->getBasePtr();
5494 
5495   SDValue Mask, PassThru, VL;
5496   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5497     Mask = VPLoad->getMask();
5498     PassThru = DAG.getUNDEF(VT);
5499     VL = VPLoad->getVectorLength();
5500   } else {
5501     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5502     Mask = MLoad->getMask();
5503     PassThru = MLoad->getPassThru();
5504   }
5505 
5506   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5507 
5508   MVT XLenVT = Subtarget.getXLenVT();
5509 
5510   MVT ContainerVT = VT;
5511   if (VT.isFixedLengthVector()) {
5512     ContainerVT = getContainerForFixedLengthVector(VT);
5513     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5514     if (!IsUnmasked) {
5515       MVT MaskVT =
5516           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5517       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5518     }
5519   }
5520 
5521   if (!VL)
5522     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5523 
5524   unsigned IntID =
5525       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5526   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5527   if (IsUnmasked)
5528     Ops.push_back(DAG.getUNDEF(ContainerVT));
5529   else
5530     Ops.push_back(PassThru);
5531   Ops.push_back(BasePtr);
5532   if (!IsUnmasked)
5533     Ops.push_back(Mask);
5534   Ops.push_back(VL);
5535   if (!IsUnmasked)
5536     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5537 
5538   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5539 
5540   SDValue Result =
5541       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5542   Chain = Result.getValue(1);
5543 
5544   if (VT.isFixedLengthVector())
5545     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5546 
5547   return DAG.getMergeValues({Result, Chain}, DL);
5548 }
5549 
5550 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5551                                               SelectionDAG &DAG) const {
5552   SDLoc DL(Op);
5553 
5554   const auto *MemSD = cast<MemSDNode>(Op);
5555   EVT MemVT = MemSD->getMemoryVT();
5556   MachineMemOperand *MMO = MemSD->getMemOperand();
5557   SDValue Chain = MemSD->getChain();
5558   SDValue BasePtr = MemSD->getBasePtr();
5559   SDValue Val, Mask, VL;
5560 
5561   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5562     Val = VPStore->getValue();
5563     Mask = VPStore->getMask();
5564     VL = VPStore->getVectorLength();
5565   } else {
5566     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5567     Val = MStore->getValue();
5568     Mask = MStore->getMask();
5569   }
5570 
5571   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5572 
5573   MVT VT = Val.getSimpleValueType();
5574   MVT XLenVT = Subtarget.getXLenVT();
5575 
5576   MVT ContainerVT = VT;
5577   if (VT.isFixedLengthVector()) {
5578     ContainerVT = getContainerForFixedLengthVector(VT);
5579 
5580     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5581     if (!IsUnmasked) {
5582       MVT MaskVT =
5583           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5584       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5585     }
5586   }
5587 
5588   if (!VL)
5589     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5590 
5591   unsigned IntID =
5592       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5593   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5594   Ops.push_back(Val);
5595   Ops.push_back(BasePtr);
5596   if (!IsUnmasked)
5597     Ops.push_back(Mask);
5598   Ops.push_back(VL);
5599 
5600   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5601                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5602 }
5603 
5604 SDValue
5605 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5606                                                       SelectionDAG &DAG) const {
5607   MVT InVT = Op.getOperand(0).getSimpleValueType();
5608   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5609 
5610   MVT VT = Op.getSimpleValueType();
5611 
5612   SDValue Op1 =
5613       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5614   SDValue Op2 =
5615       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5616 
5617   SDLoc DL(Op);
5618   SDValue VL =
5619       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5620 
5621   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5622   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5623 
5624   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5625                             Op.getOperand(2), Mask, VL);
5626 
5627   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5628 }
5629 
5630 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5631     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5632   MVT VT = Op.getSimpleValueType();
5633 
5634   if (VT.getVectorElementType() == MVT::i1)
5635     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5636 
5637   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5638 }
5639 
5640 SDValue
5641 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5642                                                       SelectionDAG &DAG) const {
5643   unsigned Opc;
5644   switch (Op.getOpcode()) {
5645   default: llvm_unreachable("Unexpected opcode!");
5646   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5647   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5648   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5649   }
5650 
5651   return lowerToScalableOp(Op, DAG, Opc);
5652 }
5653 
5654 // Lower vector ABS to smax(X, sub(0, X)).
5655 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5656   SDLoc DL(Op);
5657   MVT VT = Op.getSimpleValueType();
5658   SDValue X = Op.getOperand(0);
5659 
5660   assert(VT.isFixedLengthVector() && "Unexpected type");
5661 
5662   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5663   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5664 
5665   SDValue Mask, VL;
5666   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5667 
5668   SDValue SplatZero =
5669       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5670                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5671   SDValue NegX =
5672       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5673   SDValue Max =
5674       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5675 
5676   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5677 }
5678 
5679 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5680     SDValue Op, SelectionDAG &DAG) const {
5681   SDLoc DL(Op);
5682   MVT VT = Op.getSimpleValueType();
5683   SDValue Mag = Op.getOperand(0);
5684   SDValue Sign = Op.getOperand(1);
5685   assert(Mag.getValueType() == Sign.getValueType() &&
5686          "Can only handle COPYSIGN with matching types.");
5687 
5688   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5689   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5690   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5691 
5692   SDValue Mask, VL;
5693   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5694 
5695   SDValue CopySign =
5696       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5697 
5698   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5699 }
5700 
5701 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5702     SDValue Op, SelectionDAG &DAG) const {
5703   MVT VT = Op.getSimpleValueType();
5704   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5705 
5706   MVT I1ContainerVT =
5707       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5708 
5709   SDValue CC =
5710       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5711   SDValue Op1 =
5712       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5713   SDValue Op2 =
5714       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5715 
5716   SDLoc DL(Op);
5717   SDValue Mask, VL;
5718   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5719 
5720   SDValue Select =
5721       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5722 
5723   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5724 }
5725 
5726 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5727                                                unsigned NewOpc,
5728                                                bool HasMask) const {
5729   MVT VT = Op.getSimpleValueType();
5730   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5731 
5732   // Create list of operands by converting existing ones to scalable types.
5733   SmallVector<SDValue, 6> Ops;
5734   for (const SDValue &V : Op->op_values()) {
5735     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5736 
5737     // Pass through non-vector operands.
5738     if (!V.getValueType().isVector()) {
5739       Ops.push_back(V);
5740       continue;
5741     }
5742 
5743     // "cast" fixed length vector to a scalable vector.
5744     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5745            "Only fixed length vectors are supported!");
5746     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5747   }
5748 
5749   SDLoc DL(Op);
5750   SDValue Mask, VL;
5751   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5752   if (HasMask)
5753     Ops.push_back(Mask);
5754   Ops.push_back(VL);
5755 
5756   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5757   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5758 }
5759 
5760 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5761 // * Operands of each node are assumed to be in the same order.
5762 // * The EVL operand is promoted from i32 to i64 on RV64.
5763 // * Fixed-length vectors are converted to their scalable-vector container
5764 //   types.
5765 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5766                                        unsigned RISCVISDOpc) const {
5767   SDLoc DL(Op);
5768   MVT VT = Op.getSimpleValueType();
5769   SmallVector<SDValue, 4> Ops;
5770 
5771   for (const auto &OpIdx : enumerate(Op->ops())) {
5772     SDValue V = OpIdx.value();
5773     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5774     // Pass through operands which aren't fixed-length vectors.
5775     if (!V.getValueType().isFixedLengthVector()) {
5776       Ops.push_back(V);
5777       continue;
5778     }
5779     // "cast" fixed length vector to a scalable vector.
5780     MVT OpVT = V.getSimpleValueType();
5781     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5782     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5783            "Only fixed length vectors are supported!");
5784     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5785   }
5786 
5787   if (!VT.isFixedLengthVector())
5788     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5789 
5790   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5791 
5792   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5793 
5794   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5795 }
5796 
5797 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5798                                             unsigned MaskOpc,
5799                                             unsigned VecOpc) const {
5800   MVT VT = Op.getSimpleValueType();
5801   if (VT.getVectorElementType() != MVT::i1)
5802     return lowerVPOp(Op, DAG, VecOpc);
5803 
5804   // It is safe to drop mask parameter as masked-off elements are undef.
5805   SDValue Op1 = Op->getOperand(0);
5806   SDValue Op2 = Op->getOperand(1);
5807   SDValue VL = Op->getOperand(3);
5808 
5809   MVT ContainerVT = VT;
5810   const bool IsFixed = VT.isFixedLengthVector();
5811   if (IsFixed) {
5812     ContainerVT = getContainerForFixedLengthVector(VT);
5813     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5814     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5815   }
5816 
5817   SDLoc DL(Op);
5818   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5819   if (!IsFixed)
5820     return Val;
5821   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5822 }
5823 
5824 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5825 // matched to a RVV indexed load. The RVV indexed load instructions only
5826 // support the "unsigned unscaled" addressing mode; indices are implicitly
5827 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5828 // signed or scaled indexing is extended to the XLEN value type and scaled
5829 // accordingly.
5830 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5831                                                SelectionDAG &DAG) const {
5832   SDLoc DL(Op);
5833   MVT VT = Op.getSimpleValueType();
5834 
5835   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5836   EVT MemVT = MemSD->getMemoryVT();
5837   MachineMemOperand *MMO = MemSD->getMemOperand();
5838   SDValue Chain = MemSD->getChain();
5839   SDValue BasePtr = MemSD->getBasePtr();
5840 
5841   ISD::LoadExtType LoadExtType;
5842   SDValue Index, Mask, PassThru, VL;
5843 
5844   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5845     Index = VPGN->getIndex();
5846     Mask = VPGN->getMask();
5847     PassThru = DAG.getUNDEF(VT);
5848     VL = VPGN->getVectorLength();
5849     // VP doesn't support extending loads.
5850     LoadExtType = ISD::NON_EXTLOAD;
5851   } else {
5852     // Else it must be a MGATHER.
5853     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5854     Index = MGN->getIndex();
5855     Mask = MGN->getMask();
5856     PassThru = MGN->getPassThru();
5857     LoadExtType = MGN->getExtensionType();
5858   }
5859 
5860   MVT IndexVT = Index.getSimpleValueType();
5861   MVT XLenVT = Subtarget.getXLenVT();
5862 
5863   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5864          "Unexpected VTs!");
5865   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5866   // Targets have to explicitly opt-in for extending vector loads.
5867   assert(LoadExtType == ISD::NON_EXTLOAD &&
5868          "Unexpected extending MGATHER/VP_GATHER");
5869   (void)LoadExtType;
5870 
5871   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5872   // the selection of the masked intrinsics doesn't do this for us.
5873   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5874 
5875   MVT ContainerVT = VT;
5876   if (VT.isFixedLengthVector()) {
5877     // We need to use the larger of the result and index type to determine the
5878     // scalable type to use so we don't increase LMUL for any operand/result.
5879     if (VT.bitsGE(IndexVT)) {
5880       ContainerVT = getContainerForFixedLengthVector(VT);
5881       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5882                                  ContainerVT.getVectorElementCount());
5883     } else {
5884       IndexVT = getContainerForFixedLengthVector(IndexVT);
5885       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5886                                      IndexVT.getVectorElementCount());
5887     }
5888 
5889     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5890 
5891     if (!IsUnmasked) {
5892       MVT MaskVT =
5893           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5894       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5895       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5896     }
5897   }
5898 
5899   if (!VL)
5900     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5901 
5902   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
5903     IndexVT = IndexVT.changeVectorElementType(XLenVT);
5904     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
5905                                    VL);
5906     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
5907                         TrueMask, VL);
5908   }
5909 
5910   unsigned IntID =
5911       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5912   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5913   if (IsUnmasked)
5914     Ops.push_back(DAG.getUNDEF(ContainerVT));
5915   else
5916     Ops.push_back(PassThru);
5917   Ops.push_back(BasePtr);
5918   Ops.push_back(Index);
5919   if (!IsUnmasked)
5920     Ops.push_back(Mask);
5921   Ops.push_back(VL);
5922   if (!IsUnmasked)
5923     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5924 
5925   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5926   SDValue Result =
5927       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5928   Chain = Result.getValue(1);
5929 
5930   if (VT.isFixedLengthVector())
5931     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5932 
5933   return DAG.getMergeValues({Result, Chain}, DL);
5934 }
5935 
5936 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5937 // matched to a RVV indexed store. The RVV indexed store instructions only
5938 // support the "unsigned unscaled" addressing mode; indices are implicitly
5939 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5940 // signed or scaled indexing is extended to the XLEN value type and scaled
5941 // accordingly.
5942 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5943                                                 SelectionDAG &DAG) const {
5944   SDLoc DL(Op);
5945   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5946   EVT MemVT = MemSD->getMemoryVT();
5947   MachineMemOperand *MMO = MemSD->getMemOperand();
5948   SDValue Chain = MemSD->getChain();
5949   SDValue BasePtr = MemSD->getBasePtr();
5950 
5951   bool IsTruncatingStore = false;
5952   SDValue Index, Mask, Val, VL;
5953 
5954   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5955     Index = VPSN->getIndex();
5956     Mask = VPSN->getMask();
5957     Val = VPSN->getValue();
5958     VL = VPSN->getVectorLength();
5959     // VP doesn't support truncating stores.
5960     IsTruncatingStore = false;
5961   } else {
5962     // Else it must be a MSCATTER.
5963     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5964     Index = MSN->getIndex();
5965     Mask = MSN->getMask();
5966     Val = MSN->getValue();
5967     IsTruncatingStore = MSN->isTruncatingStore();
5968   }
5969 
5970   MVT VT = Val.getSimpleValueType();
5971   MVT IndexVT = Index.getSimpleValueType();
5972   MVT XLenVT = Subtarget.getXLenVT();
5973 
5974   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5975          "Unexpected VTs!");
5976   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5977   // Targets have to explicitly opt-in for extending vector loads and
5978   // truncating vector stores.
5979   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5980   (void)IsTruncatingStore;
5981 
5982   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5983   // the selection of the masked intrinsics doesn't do this for us.
5984   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5985 
5986   MVT ContainerVT = VT;
5987   if (VT.isFixedLengthVector()) {
5988     // We need to use the larger of the value and index type to determine the
5989     // scalable type to use so we don't increase LMUL for any operand/result.
5990     if (VT.bitsGE(IndexVT)) {
5991       ContainerVT = getContainerForFixedLengthVector(VT);
5992       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5993                                  ContainerVT.getVectorElementCount());
5994     } else {
5995       IndexVT = getContainerForFixedLengthVector(IndexVT);
5996       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5997                                      IndexVT.getVectorElementCount());
5998     }
5999 
6000     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6001     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6002 
6003     if (!IsUnmasked) {
6004       MVT MaskVT =
6005           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6006       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6007     }
6008   }
6009 
6010   if (!VL)
6011     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6012 
6013   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6014     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6015     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6016                                    VL);
6017     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6018                         TrueMask, VL);
6019   }
6020 
6021   unsigned IntID =
6022       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6023   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6024   Ops.push_back(Val);
6025   Ops.push_back(BasePtr);
6026   Ops.push_back(Index);
6027   if (!IsUnmasked)
6028     Ops.push_back(Mask);
6029   Ops.push_back(VL);
6030 
6031   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6032                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6033 }
6034 
6035 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6036                                                SelectionDAG &DAG) const {
6037   const MVT XLenVT = Subtarget.getXLenVT();
6038   SDLoc DL(Op);
6039   SDValue Chain = Op->getOperand(0);
6040   SDValue SysRegNo = DAG.getTargetConstant(
6041       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6042   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6043   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6044 
6045   // Encoding used for rounding mode in RISCV differs from that used in
6046   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6047   // table, which consists of a sequence of 4-bit fields, each representing
6048   // corresponding FLT_ROUNDS mode.
6049   static const int Table =
6050       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6051       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6052       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6053       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6054       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6055 
6056   SDValue Shift =
6057       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6058   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6059                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6060   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6061                                DAG.getConstant(7, DL, XLenVT));
6062 
6063   return DAG.getMergeValues({Masked, Chain}, DL);
6064 }
6065 
6066 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6067                                                SelectionDAG &DAG) const {
6068   const MVT XLenVT = Subtarget.getXLenVT();
6069   SDLoc DL(Op);
6070   SDValue Chain = Op->getOperand(0);
6071   SDValue RMValue = Op->getOperand(1);
6072   SDValue SysRegNo = DAG.getTargetConstant(
6073       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6074 
6075   // Encoding used for rounding mode in RISCV differs from that used in
6076   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6077   // a table, which consists of a sequence of 4-bit fields, each representing
6078   // corresponding RISCV mode.
6079   static const unsigned Table =
6080       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6081       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6082       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6083       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6084       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6085 
6086   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6087                               DAG.getConstant(2, DL, XLenVT));
6088   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6089                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6090   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6091                         DAG.getConstant(0x7, DL, XLenVT));
6092   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6093                      RMValue);
6094 }
6095 
6096 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6097   switch (IntNo) {
6098   default:
6099     llvm_unreachable("Unexpected Intrinsic");
6100   case Intrinsic::riscv_grev:
6101     return RISCVISD::GREVW;
6102   case Intrinsic::riscv_gorc:
6103     return RISCVISD::GORCW;
6104   case Intrinsic::riscv_bcompress:
6105     return RISCVISD::BCOMPRESSW;
6106   case Intrinsic::riscv_bdecompress:
6107     return RISCVISD::BDECOMPRESSW;
6108   case Intrinsic::riscv_bfp:
6109     return RISCVISD::BFPW;
6110   case Intrinsic::riscv_fsl:
6111     return RISCVISD::FSLW;
6112   case Intrinsic::riscv_fsr:
6113     return RISCVISD::FSRW;
6114   }
6115 }
6116 
6117 // Converts the given intrinsic to a i64 operation with any extension.
6118 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6119                                          unsigned IntNo) {
6120   SDLoc DL(N);
6121   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6122   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6123   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6124   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6125   // ReplaceNodeResults requires we maintain the same type for the return value.
6126   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6127 }
6128 
6129 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6130 // form of the given Opcode.
6131 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6132   switch (Opcode) {
6133   default:
6134     llvm_unreachable("Unexpected opcode");
6135   case ISD::SHL:
6136     return RISCVISD::SLLW;
6137   case ISD::SRA:
6138     return RISCVISD::SRAW;
6139   case ISD::SRL:
6140     return RISCVISD::SRLW;
6141   case ISD::SDIV:
6142     return RISCVISD::DIVW;
6143   case ISD::UDIV:
6144     return RISCVISD::DIVUW;
6145   case ISD::UREM:
6146     return RISCVISD::REMUW;
6147   case ISD::ROTL:
6148     return RISCVISD::ROLW;
6149   case ISD::ROTR:
6150     return RISCVISD::RORW;
6151   case RISCVISD::GREV:
6152     return RISCVISD::GREVW;
6153   case RISCVISD::GORC:
6154     return RISCVISD::GORCW;
6155   }
6156 }
6157 
6158 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6159 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6160 // otherwise be promoted to i64, making it difficult to select the
6161 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6162 // type i8/i16/i32 is lost.
6163 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6164                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6165   SDLoc DL(N);
6166   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6167   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6168   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6169   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6170   // ReplaceNodeResults requires we maintain the same type for the return value.
6171   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6172 }
6173 
6174 // Converts the given 32-bit operation to a i64 operation with signed extension
6175 // semantic to reduce the signed extension instructions.
6176 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6177   SDLoc DL(N);
6178   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6179   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6180   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6181   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6182                                DAG.getValueType(MVT::i32));
6183   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6184 }
6185 
6186 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6187                                              SmallVectorImpl<SDValue> &Results,
6188                                              SelectionDAG &DAG) const {
6189   SDLoc DL(N);
6190   switch (N->getOpcode()) {
6191   default:
6192     llvm_unreachable("Don't know how to custom type legalize this operation!");
6193   case ISD::STRICT_FP_TO_SINT:
6194   case ISD::STRICT_FP_TO_UINT:
6195   case ISD::FP_TO_SINT:
6196   case ISD::FP_TO_UINT: {
6197     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6198            "Unexpected custom legalisation");
6199     bool IsStrict = N->isStrictFPOpcode();
6200     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6201                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6202     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6203     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6204         TargetLowering::TypeSoftenFloat) {
6205       if (!isTypeLegal(Op0.getValueType()))
6206         return;
6207       if (IsStrict) {
6208         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6209                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6210         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6211         SDValue Res = DAG.getNode(
6212             Opc, DL, VTs, N->getOperand(0), Op0,
6213             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6214         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6215         Results.push_back(Res.getValue(1));
6216         return;
6217       }
6218       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6219       SDValue Res =
6220           DAG.getNode(Opc, DL, MVT::i64, Op0,
6221                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6222       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6223       return;
6224     }
6225     // If the FP type needs to be softened, emit a library call using the 'si'
6226     // version. If we left it to default legalization we'd end up with 'di'. If
6227     // the FP type doesn't need to be softened just let generic type
6228     // legalization promote the result type.
6229     RTLIB::Libcall LC;
6230     if (IsSigned)
6231       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6232     else
6233       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6234     MakeLibCallOptions CallOptions;
6235     EVT OpVT = Op0.getValueType();
6236     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6237     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6238     SDValue Result;
6239     std::tie(Result, Chain) =
6240         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6241     Results.push_back(Result);
6242     if (IsStrict)
6243       Results.push_back(Chain);
6244     break;
6245   }
6246   case ISD::READCYCLECOUNTER: {
6247     assert(!Subtarget.is64Bit() &&
6248            "READCYCLECOUNTER only has custom type legalization on riscv32");
6249 
6250     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6251     SDValue RCW =
6252         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6253 
6254     Results.push_back(
6255         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6256     Results.push_back(RCW.getValue(2));
6257     break;
6258   }
6259   case ISD::MUL: {
6260     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6261     unsigned XLen = Subtarget.getXLen();
6262     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6263     if (Size > XLen) {
6264       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6265       SDValue LHS = N->getOperand(0);
6266       SDValue RHS = N->getOperand(1);
6267       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6268 
6269       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6270       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6271       // We need exactly one side to be unsigned.
6272       if (LHSIsU == RHSIsU)
6273         return;
6274 
6275       auto MakeMULPair = [&](SDValue S, SDValue U) {
6276         MVT XLenVT = Subtarget.getXLenVT();
6277         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6278         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6279         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6280         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6281         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6282       };
6283 
6284       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6285       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6286 
6287       // The other operand should be signed, but still prefer MULH when
6288       // possible.
6289       if (RHSIsU && LHSIsS && !RHSIsS)
6290         Results.push_back(MakeMULPair(LHS, RHS));
6291       else if (LHSIsU && RHSIsS && !LHSIsS)
6292         Results.push_back(MakeMULPair(RHS, LHS));
6293 
6294       return;
6295     }
6296     LLVM_FALLTHROUGH;
6297   }
6298   case ISD::ADD:
6299   case ISD::SUB:
6300     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6301            "Unexpected custom legalisation");
6302     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6303     break;
6304   case ISD::SHL:
6305   case ISD::SRA:
6306   case ISD::SRL:
6307     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6308            "Unexpected custom legalisation");
6309     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6310       Results.push_back(customLegalizeToWOp(N, DAG));
6311       break;
6312     }
6313 
6314     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6315     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6316     // shift amount.
6317     if (N->getOpcode() == ISD::SHL) {
6318       SDLoc DL(N);
6319       SDValue NewOp0 =
6320           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6321       SDValue NewOp1 =
6322           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6323       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6324       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6325                                    DAG.getValueType(MVT::i32));
6326       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6327     }
6328 
6329     break;
6330   case ISD::ROTL:
6331   case ISD::ROTR:
6332     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6333            "Unexpected custom legalisation");
6334     Results.push_back(customLegalizeToWOp(N, DAG));
6335     break;
6336   case ISD::CTTZ:
6337   case ISD::CTTZ_ZERO_UNDEF:
6338   case ISD::CTLZ:
6339   case ISD::CTLZ_ZERO_UNDEF: {
6340     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6341            "Unexpected custom legalisation");
6342 
6343     SDValue NewOp0 =
6344         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6345     bool IsCTZ =
6346         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6347     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6348     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6349     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6350     return;
6351   }
6352   case ISD::SDIV:
6353   case ISD::UDIV:
6354   case ISD::UREM: {
6355     MVT VT = N->getSimpleValueType(0);
6356     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6357            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6358            "Unexpected custom legalisation");
6359     // Don't promote division/remainder by constant since we should expand those
6360     // to multiply by magic constant.
6361     // FIXME: What if the expansion is disabled for minsize.
6362     if (N->getOperand(1).getOpcode() == ISD::Constant)
6363       return;
6364 
6365     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6366     // the upper 32 bits. For other types we need to sign or zero extend
6367     // based on the opcode.
6368     unsigned ExtOpc = ISD::ANY_EXTEND;
6369     if (VT != MVT::i32)
6370       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6371                                            : ISD::ZERO_EXTEND;
6372 
6373     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6374     break;
6375   }
6376   case ISD::UADDO:
6377   case ISD::USUBO: {
6378     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6379            "Unexpected custom legalisation");
6380     bool IsAdd = N->getOpcode() == ISD::UADDO;
6381     // Create an ADDW or SUBW.
6382     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6383     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6384     SDValue Res =
6385         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6386     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6387                       DAG.getValueType(MVT::i32));
6388 
6389     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6390     // Since the inputs are sign extended from i32, this is equivalent to
6391     // comparing the lower 32 bits.
6392     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6393     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6394                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6395 
6396     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6397     Results.push_back(Overflow);
6398     return;
6399   }
6400   case ISD::UADDSAT:
6401   case ISD::USUBSAT: {
6402     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6403            "Unexpected custom legalisation");
6404     if (Subtarget.hasStdExtZbb()) {
6405       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6406       // sign extend allows overflow of the lower 32 bits to be detected on
6407       // the promoted size.
6408       SDValue LHS =
6409           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6410       SDValue RHS =
6411           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6412       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6413       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6414       return;
6415     }
6416 
6417     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6418     // promotion for UADDO/USUBO.
6419     Results.push_back(expandAddSubSat(N, DAG));
6420     return;
6421   }
6422   case ISD::BITCAST: {
6423     EVT VT = N->getValueType(0);
6424     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6425     SDValue Op0 = N->getOperand(0);
6426     EVT Op0VT = Op0.getValueType();
6427     MVT XLenVT = Subtarget.getXLenVT();
6428     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6429       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6430       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6431     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6432                Subtarget.hasStdExtF()) {
6433       SDValue FPConv =
6434           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6435       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6436     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6437                isTypeLegal(Op0VT)) {
6438       // Custom-legalize bitcasts from fixed-length vector types to illegal
6439       // scalar types in order to improve codegen. Bitcast the vector to a
6440       // one-element vector type whose element type is the same as the result
6441       // type, and extract the first element.
6442       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6443       if (isTypeLegal(BVT)) {
6444         SDValue BVec = DAG.getBitcast(BVT, Op0);
6445         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6446                                       DAG.getConstant(0, DL, XLenVT)));
6447       }
6448     }
6449     break;
6450   }
6451   case RISCVISD::GREV:
6452   case RISCVISD::GORC: {
6453     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6454            "Unexpected custom legalisation");
6455     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6456     // This is similar to customLegalizeToWOp, except that we pass the second
6457     // operand (a TargetConstant) straight through: it is already of type
6458     // XLenVT.
6459     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6460     SDValue NewOp0 =
6461         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6462     SDValue NewOp1 =
6463         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6464     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6465     // ReplaceNodeResults requires we maintain the same type for the return
6466     // value.
6467     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6468     break;
6469   }
6470   case RISCVISD::SHFL: {
6471     // There is no SHFLIW instruction, but we can just promote the operation.
6472     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6473            "Unexpected custom legalisation");
6474     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6475     SDValue NewOp0 =
6476         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6477     SDValue NewOp1 =
6478         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6479     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6480     // ReplaceNodeResults requires we maintain the same type for the return
6481     // value.
6482     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6483     break;
6484   }
6485   case ISD::BSWAP:
6486   case ISD::BITREVERSE: {
6487     MVT VT = N->getSimpleValueType(0);
6488     MVT XLenVT = Subtarget.getXLenVT();
6489     assert((VT == MVT::i8 || VT == MVT::i16 ||
6490             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6491            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6492     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6493     unsigned Imm = VT.getSizeInBits() - 1;
6494     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6495     if (N->getOpcode() == ISD::BSWAP)
6496       Imm &= ~0x7U;
6497     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6498     SDValue GREVI =
6499         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6500     // ReplaceNodeResults requires we maintain the same type for the return
6501     // value.
6502     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6503     break;
6504   }
6505   case ISD::FSHL:
6506   case ISD::FSHR: {
6507     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6508            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6509     SDValue NewOp0 =
6510         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6511     SDValue NewOp1 =
6512         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6513     SDValue NewShAmt =
6514         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6515     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6516     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6517     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6518                            DAG.getConstant(0x1f, DL, MVT::i64));
6519     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6520     // instruction use different orders. fshl will return its first operand for
6521     // shift of zero, fshr will return its second operand. fsl and fsr both
6522     // return rs1 so the ISD nodes need to have different operand orders.
6523     // Shift amount is in rs2.
6524     unsigned Opc = RISCVISD::FSLW;
6525     if (N->getOpcode() == ISD::FSHR) {
6526       std::swap(NewOp0, NewOp1);
6527       Opc = RISCVISD::FSRW;
6528     }
6529     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6530     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6531     break;
6532   }
6533   case ISD::EXTRACT_VECTOR_ELT: {
6534     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6535     // type is illegal (currently only vXi64 RV32).
6536     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6537     // transferred to the destination register. We issue two of these from the
6538     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6539     // first element.
6540     SDValue Vec = N->getOperand(0);
6541     SDValue Idx = N->getOperand(1);
6542 
6543     // The vector type hasn't been legalized yet so we can't issue target
6544     // specific nodes if it needs legalization.
6545     // FIXME: We would manually legalize if it's important.
6546     if (!isTypeLegal(Vec.getValueType()))
6547       return;
6548 
6549     MVT VecVT = Vec.getSimpleValueType();
6550 
6551     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6552            VecVT.getVectorElementType() == MVT::i64 &&
6553            "Unexpected EXTRACT_VECTOR_ELT legalization");
6554 
6555     // If this is a fixed vector, we need to convert it to a scalable vector.
6556     MVT ContainerVT = VecVT;
6557     if (VecVT.isFixedLengthVector()) {
6558       ContainerVT = getContainerForFixedLengthVector(VecVT);
6559       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6560     }
6561 
6562     MVT XLenVT = Subtarget.getXLenVT();
6563 
6564     // Use a VL of 1 to avoid processing more elements than we need.
6565     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6566     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6567     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6568 
6569     // Unless the index is known to be 0, we must slide the vector down to get
6570     // the desired element into index 0.
6571     if (!isNullConstant(Idx)) {
6572       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6573                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6574     }
6575 
6576     // Extract the lower XLEN bits of the correct vector element.
6577     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6578 
6579     // To extract the upper XLEN bits of the vector element, shift the first
6580     // element right by 32 bits and re-extract the lower XLEN bits.
6581     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6582                                      DAG.getConstant(32, DL, XLenVT), VL);
6583     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6584                                  ThirtyTwoV, Mask, VL);
6585 
6586     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6587 
6588     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6589     break;
6590   }
6591   case ISD::INTRINSIC_WO_CHAIN: {
6592     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6593     switch (IntNo) {
6594     default:
6595       llvm_unreachable(
6596           "Don't know how to custom type legalize this intrinsic!");
6597     case Intrinsic::riscv_grev:
6598     case Intrinsic::riscv_gorc:
6599     case Intrinsic::riscv_bcompress:
6600     case Intrinsic::riscv_bdecompress:
6601     case Intrinsic::riscv_bfp: {
6602       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6603              "Unexpected custom legalisation");
6604       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6605       break;
6606     }
6607     case Intrinsic::riscv_fsl:
6608     case Intrinsic::riscv_fsr: {
6609       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6610              "Unexpected custom legalisation");
6611       SDValue NewOp1 =
6612           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6613       SDValue NewOp2 =
6614           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6615       SDValue NewOp3 =
6616           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6617       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6618       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6619       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6620       break;
6621     }
6622     case Intrinsic::riscv_orc_b: {
6623       // Lower to the GORCI encoding for orc.b with the operand extended.
6624       SDValue NewOp =
6625           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6626       // If Zbp is enabled, use GORCIW which will sign extend the result.
6627       unsigned Opc =
6628           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6629       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6630                                 DAG.getConstant(7, DL, MVT::i64));
6631       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6632       return;
6633     }
6634     case Intrinsic::riscv_shfl:
6635     case Intrinsic::riscv_unshfl: {
6636       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6637              "Unexpected custom legalisation");
6638       SDValue NewOp1 =
6639           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6640       SDValue NewOp2 =
6641           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6642       unsigned Opc =
6643           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6644       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6645       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6646       // will be shuffled the same way as the lower 32 bit half, but the two
6647       // halves won't cross.
6648       if (isa<ConstantSDNode>(NewOp2)) {
6649         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6650                              DAG.getConstant(0xf, DL, MVT::i64));
6651         Opc =
6652             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6653       }
6654       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6655       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6656       break;
6657     }
6658     case Intrinsic::riscv_vmv_x_s: {
6659       EVT VT = N->getValueType(0);
6660       MVT XLenVT = Subtarget.getXLenVT();
6661       if (VT.bitsLT(XLenVT)) {
6662         // Simple case just extract using vmv.x.s and truncate.
6663         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6664                                       Subtarget.getXLenVT(), N->getOperand(1));
6665         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6666         return;
6667       }
6668 
6669       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6670              "Unexpected custom legalization");
6671 
6672       // We need to do the move in two steps.
6673       SDValue Vec = N->getOperand(1);
6674       MVT VecVT = Vec.getSimpleValueType();
6675 
6676       // First extract the lower XLEN bits of the element.
6677       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6678 
6679       // To extract the upper XLEN bits of the vector element, shift the first
6680       // element right by 32 bits and re-extract the lower XLEN bits.
6681       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6682       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6683       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6684       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6685                                        DAG.getConstant(32, DL, XLenVT), VL);
6686       SDValue LShr32 =
6687           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6688       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6689 
6690       Results.push_back(
6691           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6692       break;
6693     }
6694     }
6695     break;
6696   }
6697   case ISD::VECREDUCE_ADD:
6698   case ISD::VECREDUCE_AND:
6699   case ISD::VECREDUCE_OR:
6700   case ISD::VECREDUCE_XOR:
6701   case ISD::VECREDUCE_SMAX:
6702   case ISD::VECREDUCE_UMAX:
6703   case ISD::VECREDUCE_SMIN:
6704   case ISD::VECREDUCE_UMIN:
6705     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6706       Results.push_back(V);
6707     break;
6708   case ISD::VP_REDUCE_ADD:
6709   case ISD::VP_REDUCE_AND:
6710   case ISD::VP_REDUCE_OR:
6711   case ISD::VP_REDUCE_XOR:
6712   case ISD::VP_REDUCE_SMAX:
6713   case ISD::VP_REDUCE_UMAX:
6714   case ISD::VP_REDUCE_SMIN:
6715   case ISD::VP_REDUCE_UMIN:
6716     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6717       Results.push_back(V);
6718     break;
6719   case ISD::FLT_ROUNDS_: {
6720     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6721     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6722     Results.push_back(Res.getValue(0));
6723     Results.push_back(Res.getValue(1));
6724     break;
6725   }
6726   }
6727 }
6728 
6729 // A structure to hold one of the bit-manipulation patterns below. Together, a
6730 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6731 //   (or (and (shl x, 1), 0xAAAAAAAA),
6732 //       (and (srl x, 1), 0x55555555))
6733 struct RISCVBitmanipPat {
6734   SDValue Op;
6735   unsigned ShAmt;
6736   bool IsSHL;
6737 
6738   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6739     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6740   }
6741 };
6742 
6743 // Matches patterns of the form
6744 //   (and (shl x, C2), (C1 << C2))
6745 //   (and (srl x, C2), C1)
6746 //   (shl (and x, C1), C2)
6747 //   (srl (and x, (C1 << C2)), C2)
6748 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6749 // The expected masks for each shift amount are specified in BitmanipMasks where
6750 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6751 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6752 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6753 // XLen is 64.
6754 static Optional<RISCVBitmanipPat>
6755 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6756   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6757          "Unexpected number of masks");
6758   Optional<uint64_t> Mask;
6759   // Optionally consume a mask around the shift operation.
6760   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6761     Mask = Op.getConstantOperandVal(1);
6762     Op = Op.getOperand(0);
6763   }
6764   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6765     return None;
6766   bool IsSHL = Op.getOpcode() == ISD::SHL;
6767 
6768   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6769     return None;
6770   uint64_t ShAmt = Op.getConstantOperandVal(1);
6771 
6772   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6773   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6774     return None;
6775   // If we don't have enough masks for 64 bit, then we must be trying to
6776   // match SHFL so we're only allowed to shift 1/4 of the width.
6777   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6778     return None;
6779 
6780   SDValue Src = Op.getOperand(0);
6781 
6782   // The expected mask is shifted left when the AND is found around SHL
6783   // patterns.
6784   //   ((x >> 1) & 0x55555555)
6785   //   ((x << 1) & 0xAAAAAAAA)
6786   bool SHLExpMask = IsSHL;
6787 
6788   if (!Mask) {
6789     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6790     // the mask is all ones: consume that now.
6791     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6792       Mask = Src.getConstantOperandVal(1);
6793       Src = Src.getOperand(0);
6794       // The expected mask is now in fact shifted left for SRL, so reverse the
6795       // decision.
6796       //   ((x & 0xAAAAAAAA) >> 1)
6797       //   ((x & 0x55555555) << 1)
6798       SHLExpMask = !SHLExpMask;
6799     } else {
6800       // Use a default shifted mask of all-ones if there's no AND, truncated
6801       // down to the expected width. This simplifies the logic later on.
6802       Mask = maskTrailingOnes<uint64_t>(Width);
6803       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6804     }
6805   }
6806 
6807   unsigned MaskIdx = Log2_32(ShAmt);
6808   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6809 
6810   if (SHLExpMask)
6811     ExpMask <<= ShAmt;
6812 
6813   if (Mask != ExpMask)
6814     return None;
6815 
6816   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6817 }
6818 
6819 // Matches any of the following bit-manipulation patterns:
6820 //   (and (shl x, 1), (0x55555555 << 1))
6821 //   (and (srl x, 1), 0x55555555)
6822 //   (shl (and x, 0x55555555), 1)
6823 //   (srl (and x, (0x55555555 << 1)), 1)
6824 // where the shift amount and mask may vary thus:
6825 //   [1]  = 0x55555555 / 0xAAAAAAAA
6826 //   [2]  = 0x33333333 / 0xCCCCCCCC
6827 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6828 //   [8]  = 0x00FF00FF / 0xFF00FF00
6829 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6830 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6831 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6832   // These are the unshifted masks which we use to match bit-manipulation
6833   // patterns. They may be shifted left in certain circumstances.
6834   static const uint64_t BitmanipMasks[] = {
6835       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6836       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6837 
6838   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6839 }
6840 
6841 // Match the following pattern as a GREVI(W) operation
6842 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6843 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6844                                const RISCVSubtarget &Subtarget) {
6845   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6846   EVT VT = Op.getValueType();
6847 
6848   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6849     auto LHS = matchGREVIPat(Op.getOperand(0));
6850     auto RHS = matchGREVIPat(Op.getOperand(1));
6851     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6852       SDLoc DL(Op);
6853       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6854                          DAG.getConstant(LHS->ShAmt, DL, VT));
6855     }
6856   }
6857   return SDValue();
6858 }
6859 
6860 // Matches any the following pattern as a GORCI(W) operation
6861 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6862 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6863 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6864 // Note that with the variant of 3.,
6865 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6866 // the inner pattern will first be matched as GREVI and then the outer
6867 // pattern will be matched to GORC via the first rule above.
6868 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6869 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6870                                const RISCVSubtarget &Subtarget) {
6871   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6872   EVT VT = Op.getValueType();
6873 
6874   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6875     SDLoc DL(Op);
6876     SDValue Op0 = Op.getOperand(0);
6877     SDValue Op1 = Op.getOperand(1);
6878 
6879     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6880       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6881           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6882           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6883         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6884       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6885       if ((Reverse.getOpcode() == ISD::ROTL ||
6886            Reverse.getOpcode() == ISD::ROTR) &&
6887           Reverse.getOperand(0) == X &&
6888           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6889         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6890         if (RotAmt == (VT.getSizeInBits() / 2))
6891           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6892                              DAG.getConstant(RotAmt, DL, VT));
6893       }
6894       return SDValue();
6895     };
6896 
6897     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6898     if (SDValue V = MatchOROfReverse(Op0, Op1))
6899       return V;
6900     if (SDValue V = MatchOROfReverse(Op1, Op0))
6901       return V;
6902 
6903     // OR is commutable so canonicalize its OR operand to the left
6904     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6905       std::swap(Op0, Op1);
6906     if (Op0.getOpcode() != ISD::OR)
6907       return SDValue();
6908     SDValue OrOp0 = Op0.getOperand(0);
6909     SDValue OrOp1 = Op0.getOperand(1);
6910     auto LHS = matchGREVIPat(OrOp0);
6911     // OR is commutable so swap the operands and try again: x might have been
6912     // on the left
6913     if (!LHS) {
6914       std::swap(OrOp0, OrOp1);
6915       LHS = matchGREVIPat(OrOp0);
6916     }
6917     auto RHS = matchGREVIPat(Op1);
6918     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6919       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6920                          DAG.getConstant(LHS->ShAmt, DL, VT));
6921     }
6922   }
6923   return SDValue();
6924 }
6925 
6926 // Matches any of the following bit-manipulation patterns:
6927 //   (and (shl x, 1), (0x22222222 << 1))
6928 //   (and (srl x, 1), 0x22222222)
6929 //   (shl (and x, 0x22222222), 1)
6930 //   (srl (and x, (0x22222222 << 1)), 1)
6931 // where the shift amount and mask may vary thus:
6932 //   [1]  = 0x22222222 / 0x44444444
6933 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6934 //   [4]  = 0x00F000F0 / 0x0F000F00
6935 //   [8]  = 0x0000FF00 / 0x00FF0000
6936 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6937 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6938   // These are the unshifted masks which we use to match bit-manipulation
6939   // patterns. They may be shifted left in certain circumstances.
6940   static const uint64_t BitmanipMasks[] = {
6941       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6942       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6943 
6944   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6945 }
6946 
6947 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6948 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6949                                const RISCVSubtarget &Subtarget) {
6950   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6951   EVT VT = Op.getValueType();
6952 
6953   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6954     return SDValue();
6955 
6956   SDValue Op0 = Op.getOperand(0);
6957   SDValue Op1 = Op.getOperand(1);
6958 
6959   // Or is commutable so canonicalize the second OR to the LHS.
6960   if (Op0.getOpcode() != ISD::OR)
6961     std::swap(Op0, Op1);
6962   if (Op0.getOpcode() != ISD::OR)
6963     return SDValue();
6964 
6965   // We found an inner OR, so our operands are the operands of the inner OR
6966   // and the other operand of the outer OR.
6967   SDValue A = Op0.getOperand(0);
6968   SDValue B = Op0.getOperand(1);
6969   SDValue C = Op1;
6970 
6971   auto Match1 = matchSHFLPat(A);
6972   auto Match2 = matchSHFLPat(B);
6973 
6974   // If neither matched, we failed.
6975   if (!Match1 && !Match2)
6976     return SDValue();
6977 
6978   // We had at least one match. if one failed, try the remaining C operand.
6979   if (!Match1) {
6980     std::swap(A, C);
6981     Match1 = matchSHFLPat(A);
6982     if (!Match1)
6983       return SDValue();
6984   } else if (!Match2) {
6985     std::swap(B, C);
6986     Match2 = matchSHFLPat(B);
6987     if (!Match2)
6988       return SDValue();
6989   }
6990   assert(Match1 && Match2);
6991 
6992   // Make sure our matches pair up.
6993   if (!Match1->formsPairWith(*Match2))
6994     return SDValue();
6995 
6996   // All the remains is to make sure C is an AND with the same input, that masks
6997   // out the bits that are being shuffled.
6998   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6999       C.getOperand(0) != Match1->Op)
7000     return SDValue();
7001 
7002   uint64_t Mask = C.getConstantOperandVal(1);
7003 
7004   static const uint64_t BitmanipMasks[] = {
7005       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7006       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7007   };
7008 
7009   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7010   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7011   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7012 
7013   if (Mask != ExpMask)
7014     return SDValue();
7015 
7016   SDLoc DL(Op);
7017   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7018                      DAG.getConstant(Match1->ShAmt, DL, VT));
7019 }
7020 
7021 // Optimize (add (shl x, c0), (shl y, c1)) ->
7022 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7023 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7024                                   const RISCVSubtarget &Subtarget) {
7025   // Perform this optimization only in the zba extension.
7026   if (!Subtarget.hasStdExtZba())
7027     return SDValue();
7028 
7029   // Skip for vector types and larger types.
7030   EVT VT = N->getValueType(0);
7031   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7032     return SDValue();
7033 
7034   // The two operand nodes must be SHL and have no other use.
7035   SDValue N0 = N->getOperand(0);
7036   SDValue N1 = N->getOperand(1);
7037   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7038       !N0->hasOneUse() || !N1->hasOneUse())
7039     return SDValue();
7040 
7041   // Check c0 and c1.
7042   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7043   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7044   if (!N0C || !N1C)
7045     return SDValue();
7046   int64_t C0 = N0C->getSExtValue();
7047   int64_t C1 = N1C->getSExtValue();
7048   if (C0 <= 0 || C1 <= 0)
7049     return SDValue();
7050 
7051   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7052   int64_t Bits = std::min(C0, C1);
7053   int64_t Diff = std::abs(C0 - C1);
7054   if (Diff != 1 && Diff != 2 && Diff != 3)
7055     return SDValue();
7056 
7057   // Build nodes.
7058   SDLoc DL(N);
7059   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7060   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7061   SDValue NA0 =
7062       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7063   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7064   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7065 }
7066 
7067 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7068 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7069 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7070 // not undo itself, but they are redundant.
7071 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7072   SDValue Src = N->getOperand(0);
7073 
7074   if (Src.getOpcode() != N->getOpcode())
7075     return SDValue();
7076 
7077   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7078       !isa<ConstantSDNode>(Src.getOperand(1)))
7079     return SDValue();
7080 
7081   unsigned ShAmt1 = N->getConstantOperandVal(1);
7082   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7083   Src = Src.getOperand(0);
7084 
7085   unsigned CombinedShAmt;
7086   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7087     CombinedShAmt = ShAmt1 | ShAmt2;
7088   else
7089     CombinedShAmt = ShAmt1 ^ ShAmt2;
7090 
7091   if (CombinedShAmt == 0)
7092     return Src;
7093 
7094   SDLoc DL(N);
7095   return DAG.getNode(
7096       N->getOpcode(), DL, N->getValueType(0), Src,
7097       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7098 }
7099 
7100 // Combine a constant select operand into its use:
7101 //
7102 // (and (select cond, -1, c), x)
7103 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7104 // (or  (select cond, 0, c), x)
7105 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7106 // (xor (select cond, 0, c), x)
7107 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7108 // (add (select cond, 0, c), x)
7109 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7110 // (sub x, (select cond, 0, c))
7111 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7112 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7113                                    SelectionDAG &DAG, bool AllOnes) {
7114   EVT VT = N->getValueType(0);
7115 
7116   // Skip vectors.
7117   if (VT.isVector())
7118     return SDValue();
7119 
7120   if ((Slct.getOpcode() != ISD::SELECT &&
7121        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7122       !Slct.hasOneUse())
7123     return SDValue();
7124 
7125   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7126     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7127   };
7128 
7129   bool SwapSelectOps;
7130   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7131   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7132   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7133   SDValue NonConstantVal;
7134   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7135     SwapSelectOps = false;
7136     NonConstantVal = FalseVal;
7137   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7138     SwapSelectOps = true;
7139     NonConstantVal = TrueVal;
7140   } else
7141     return SDValue();
7142 
7143   // Slct is now know to be the desired identity constant when CC is true.
7144   TrueVal = OtherOp;
7145   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7146   // Unless SwapSelectOps says the condition should be false.
7147   if (SwapSelectOps)
7148     std::swap(TrueVal, FalseVal);
7149 
7150   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7151     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7152                        {Slct.getOperand(0), Slct.getOperand(1),
7153                         Slct.getOperand(2), TrueVal, FalseVal});
7154 
7155   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7156                      {Slct.getOperand(0), TrueVal, FalseVal});
7157 }
7158 
7159 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7160 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7161                                               bool AllOnes) {
7162   SDValue N0 = N->getOperand(0);
7163   SDValue N1 = N->getOperand(1);
7164   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7165     return Result;
7166   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7167     return Result;
7168   return SDValue();
7169 }
7170 
7171 // Transform (add (mul x, c0), c1) ->
7172 //           (add (mul (add x, c1/c0), c0), c1%c0).
7173 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7174 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7175 // to an infinite loop in DAGCombine if transformed.
7176 // Or transform (add (mul x, c0), c1) ->
7177 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7178 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7179 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7180 // lead to an infinite loop in DAGCombine if transformed.
7181 // Or transform (add (mul x, c0), c1) ->
7182 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7183 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7184 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7185 // lead to an infinite loop in DAGCombine if transformed.
7186 // Or transform (add (mul x, c0), c1) ->
7187 //              (mul (add x, c1/c0), c0).
7188 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7189 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7190                                      const RISCVSubtarget &Subtarget) {
7191   // Skip for vector types and larger types.
7192   EVT VT = N->getValueType(0);
7193   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7194     return SDValue();
7195   // The first operand node must be a MUL and has no other use.
7196   SDValue N0 = N->getOperand(0);
7197   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7198     return SDValue();
7199   // Check if c0 and c1 match above conditions.
7200   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7201   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7202   if (!N0C || !N1C)
7203     return SDValue();
7204   int64_t C0 = N0C->getSExtValue();
7205   int64_t C1 = N1C->getSExtValue();
7206   int64_t CA, CB;
7207   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7208     return SDValue();
7209   // Search for proper CA (non-zero) and CB that both are simm12.
7210   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7211       !isInt<12>(C0 * (C1 / C0))) {
7212     CA = C1 / C0;
7213     CB = C1 % C0;
7214   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7215              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7216     CA = C1 / C0 + 1;
7217     CB = C1 % C0 - C0;
7218   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7219              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7220     CA = C1 / C0 - 1;
7221     CB = C1 % C0 + C0;
7222   } else
7223     return SDValue();
7224   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7225   SDLoc DL(N);
7226   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7227                              DAG.getConstant(CA, DL, VT));
7228   SDValue New1 =
7229       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7230   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7231 }
7232 
7233 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7234                                  const RISCVSubtarget &Subtarget) {
7235   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7236     return V;
7237   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7238     return V;
7239   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7240   //      (select lhs, rhs, cc, x, (add x, y))
7241   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7242 }
7243 
7244 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7245   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7246   //      (select lhs, rhs, cc, x, (sub x, y))
7247   SDValue N0 = N->getOperand(0);
7248   SDValue N1 = N->getOperand(1);
7249   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7250 }
7251 
7252 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7253   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7254   //      (select lhs, rhs, cc, x, (and x, y))
7255   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7256 }
7257 
7258 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7259                                 const RISCVSubtarget &Subtarget) {
7260   if (Subtarget.hasStdExtZbp()) {
7261     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7262       return GREV;
7263     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7264       return GORC;
7265     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7266       return SHFL;
7267   }
7268 
7269   // fold (or (select cond, 0, y), x) ->
7270   //      (select cond, x, (or x, y))
7271   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7272 }
7273 
7274 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7275   // fold (xor (select cond, 0, y), x) ->
7276   //      (select cond, x, (xor x, y))
7277   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7278 }
7279 
7280 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7281 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7282 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7283 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7284 // ADDW/SUBW/MULW.
7285 static SDValue performANY_EXTENDCombine(SDNode *N,
7286                                         TargetLowering::DAGCombinerInfo &DCI,
7287                                         const RISCVSubtarget &Subtarget) {
7288   if (!Subtarget.is64Bit())
7289     return SDValue();
7290 
7291   SelectionDAG &DAG = DCI.DAG;
7292 
7293   SDValue Src = N->getOperand(0);
7294   EVT VT = N->getValueType(0);
7295   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7296     return SDValue();
7297 
7298   // The opcode must be one that can implicitly sign_extend.
7299   // FIXME: Additional opcodes.
7300   switch (Src.getOpcode()) {
7301   default:
7302     return SDValue();
7303   case ISD::MUL:
7304     if (!Subtarget.hasStdExtM())
7305       return SDValue();
7306     LLVM_FALLTHROUGH;
7307   case ISD::ADD:
7308   case ISD::SUB:
7309     break;
7310   }
7311 
7312   // Only handle cases where the result is used by a CopyToReg. That likely
7313   // means the value is a liveout of the basic block. This helps prevent
7314   // infinite combine loops like PR51206.
7315   if (none_of(N->uses(),
7316               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7317     return SDValue();
7318 
7319   SmallVector<SDNode *, 4> SetCCs;
7320   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7321                             UE = Src.getNode()->use_end();
7322        UI != UE; ++UI) {
7323     SDNode *User = *UI;
7324     if (User == N)
7325       continue;
7326     if (UI.getUse().getResNo() != Src.getResNo())
7327       continue;
7328     // All i32 setccs are legalized by sign extending operands.
7329     if (User->getOpcode() == ISD::SETCC) {
7330       SetCCs.push_back(User);
7331       continue;
7332     }
7333     // We don't know if we can extend this user.
7334     break;
7335   }
7336 
7337   // If we don't have any SetCCs, this isn't worthwhile.
7338   if (SetCCs.empty())
7339     return SDValue();
7340 
7341   SDLoc DL(N);
7342   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7343   DCI.CombineTo(N, SExt);
7344 
7345   // Promote all the setccs.
7346   for (SDNode *SetCC : SetCCs) {
7347     SmallVector<SDValue, 4> Ops;
7348 
7349     for (unsigned j = 0; j != 2; ++j) {
7350       SDValue SOp = SetCC->getOperand(j);
7351       if (SOp == Src)
7352         Ops.push_back(SExt);
7353       else
7354         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7355     }
7356 
7357     Ops.push_back(SetCC->getOperand(2));
7358     DCI.CombineTo(SetCC,
7359                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7360   }
7361   return SDValue(N, 0);
7362 }
7363 
7364 // Try to form VWMUL, VWMULU or VWMULSU.
7365 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7366 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7367                                        bool Commute) {
7368   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7369   SDValue Op0 = N->getOperand(0);
7370   SDValue Op1 = N->getOperand(1);
7371   if (Commute)
7372     std::swap(Op0, Op1);
7373 
7374   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7375   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7376   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7377   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7378     return SDValue();
7379 
7380   SDValue Mask = N->getOperand(2);
7381   SDValue VL = N->getOperand(3);
7382 
7383   // Make sure the mask and VL match.
7384   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7385     return SDValue();
7386 
7387   MVT VT = N->getSimpleValueType(0);
7388 
7389   // Determine the narrow size for a widening multiply.
7390   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7391   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7392                                   VT.getVectorElementCount());
7393 
7394   SDLoc DL(N);
7395 
7396   // See if the other operand is the same opcode.
7397   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7398     if (!Op1.hasOneUse())
7399       return SDValue();
7400 
7401     // Make sure the mask and VL match.
7402     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7403       return SDValue();
7404 
7405     Op1 = Op1.getOperand(0);
7406   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7407     // The operand is a splat of a scalar.
7408 
7409     // The VL must be the same.
7410     if (Op1.getOperand(1) != VL)
7411       return SDValue();
7412 
7413     // Get the scalar value.
7414     Op1 = Op1.getOperand(0);
7415 
7416     // See if have enough sign bits or zero bits in the scalar to use a
7417     // widening multiply by splatting to smaller element size.
7418     unsigned EltBits = VT.getScalarSizeInBits();
7419     unsigned ScalarBits = Op1.getValueSizeInBits();
7420     // Make sure we're getting all element bits from the scalar register.
7421     // FIXME: Support implicit sign extension of vmv.v.x?
7422     if (ScalarBits < EltBits)
7423       return SDValue();
7424 
7425     if (IsSignExt) {
7426       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
7427         return SDValue();
7428     } else {
7429       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7430       if (!DAG.MaskedValueIsZero(Op1, Mask))
7431         return SDValue();
7432     }
7433 
7434     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7435   } else
7436     return SDValue();
7437 
7438   Op0 = Op0.getOperand(0);
7439 
7440   // Re-introduce narrower extends if needed.
7441   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7442   if (Op0.getValueType() != NarrowVT)
7443     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7444   if (Op1.getValueType() != NarrowVT)
7445     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7446 
7447   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7448   if (!IsVWMULSU)
7449     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7450   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7451 }
7452 
7453 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7454   switch (Op.getOpcode()) {
7455   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7456   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7457   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7458   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7459   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7460   }
7461 
7462   return RISCVFPRndMode::Invalid;
7463 }
7464 
7465 // Fold
7466 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7467 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7468 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7469 //   (fp_to_int (fceil X))      -> fcvt X, rup
7470 //   (fp_to_int (fround X))     -> fcvt X, rmm
7471 static SDValue performFP_TO_INTCombine(SDNode *N,
7472                                        TargetLowering::DAGCombinerInfo &DCI,
7473                                        const RISCVSubtarget &Subtarget) {
7474   SelectionDAG &DAG = DCI.DAG;
7475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7476   MVT XLenVT = Subtarget.getXLenVT();
7477 
7478   // Only handle XLen or i32 types. Other types narrower than XLen will
7479   // eventually be legalized to XLenVT.
7480   EVT VT = N->getValueType(0);
7481   if (VT != MVT::i32 && VT != XLenVT)
7482     return SDValue();
7483 
7484   SDValue Src = N->getOperand(0);
7485 
7486   // Ensure the FP type is also legal.
7487   if (!TLI.isTypeLegal(Src.getValueType()))
7488     return SDValue();
7489 
7490   // Don't do this for f16 with Zfhmin and not Zfh.
7491   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7492     return SDValue();
7493 
7494   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7495   if (FRM == RISCVFPRndMode::Invalid)
7496     return SDValue();
7497 
7498   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7499 
7500   unsigned Opc;
7501   if (VT == XLenVT)
7502     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7503   else
7504     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7505 
7506   SDLoc DL(N);
7507   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7508                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7509   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7510 }
7511 
7512 // Fold
7513 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
7514 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
7515 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
7516 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
7517 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
7518 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
7519                                        TargetLowering::DAGCombinerInfo &DCI,
7520                                        const RISCVSubtarget &Subtarget) {
7521   SelectionDAG &DAG = DCI.DAG;
7522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7523   MVT XLenVT = Subtarget.getXLenVT();
7524 
7525   // Only handle XLen types. Other types narrower than XLen will eventually be
7526   // legalized to XLenVT.
7527   EVT DstVT = N->getValueType(0);
7528   if (DstVT != XLenVT)
7529     return SDValue();
7530 
7531   SDValue Src = N->getOperand(0);
7532 
7533   // Ensure the FP type is also legal.
7534   if (!TLI.isTypeLegal(Src.getValueType()))
7535     return SDValue();
7536 
7537   // Don't do this for f16 with Zfhmin and not Zfh.
7538   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7539     return SDValue();
7540 
7541   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7542 
7543   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7544   if (FRM == RISCVFPRndMode::Invalid)
7545     return SDValue();
7546 
7547   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
7548 
7549   unsigned Opc;
7550   if (SatVT == DstVT)
7551     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7552   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
7553     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7554   else
7555     return SDValue();
7556   // FIXME: Support other SatVTs by clamping before or after the conversion.
7557 
7558   Src = Src.getOperand(0);
7559 
7560   SDLoc DL(N);
7561   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
7562                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7563 
7564   // RISCV FP-to-int conversions saturate to the destination register size, but
7565   // don't produce 0 for nan.
7566   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
7567   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
7568 }
7569 
7570 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7571                                                DAGCombinerInfo &DCI) const {
7572   SelectionDAG &DAG = DCI.DAG;
7573 
7574   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7575   // bits are demanded. N will be added to the Worklist if it was not deleted.
7576   // Caller should return SDValue(N, 0) if this returns true.
7577   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7578     SDValue Op = N->getOperand(OpNo);
7579     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7580     if (!SimplifyDemandedBits(Op, Mask, DCI))
7581       return false;
7582 
7583     if (N->getOpcode() != ISD::DELETED_NODE)
7584       DCI.AddToWorklist(N);
7585     return true;
7586   };
7587 
7588   switch (N->getOpcode()) {
7589   default:
7590     break;
7591   case RISCVISD::SplitF64: {
7592     SDValue Op0 = N->getOperand(0);
7593     // If the input to SplitF64 is just BuildPairF64 then the operation is
7594     // redundant. Instead, use BuildPairF64's operands directly.
7595     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7596       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7597 
7598     SDLoc DL(N);
7599 
7600     // It's cheaper to materialise two 32-bit integers than to load a double
7601     // from the constant pool and transfer it to integer registers through the
7602     // stack.
7603     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7604       APInt V = C->getValueAPF().bitcastToAPInt();
7605       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7606       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7607       return DCI.CombineTo(N, Lo, Hi);
7608     }
7609 
7610     // This is a target-specific version of a DAGCombine performed in
7611     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7612     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7613     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7614     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7615         !Op0.getNode()->hasOneUse())
7616       break;
7617     SDValue NewSplitF64 =
7618         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7619                     Op0.getOperand(0));
7620     SDValue Lo = NewSplitF64.getValue(0);
7621     SDValue Hi = NewSplitF64.getValue(1);
7622     APInt SignBit = APInt::getSignMask(32);
7623     if (Op0.getOpcode() == ISD::FNEG) {
7624       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7625                                   DAG.getConstant(SignBit, DL, MVT::i32));
7626       return DCI.CombineTo(N, Lo, NewHi);
7627     }
7628     assert(Op0.getOpcode() == ISD::FABS);
7629     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7630                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7631     return DCI.CombineTo(N, Lo, NewHi);
7632   }
7633   case RISCVISD::SLLW:
7634   case RISCVISD::SRAW:
7635   case RISCVISD::SRLW:
7636   case RISCVISD::ROLW:
7637   case RISCVISD::RORW: {
7638     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7639     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7640         SimplifyDemandedLowBitsHelper(1, 5))
7641       return SDValue(N, 0);
7642     break;
7643   }
7644   case RISCVISD::CLZW:
7645   case RISCVISD::CTZW: {
7646     // Only the lower 32 bits of the first operand are read
7647     if (SimplifyDemandedLowBitsHelper(0, 32))
7648       return SDValue(N, 0);
7649     break;
7650   }
7651   case RISCVISD::GREV:
7652   case RISCVISD::GORC: {
7653     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7654     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7655     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7656     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7657       return SDValue(N, 0);
7658 
7659     return combineGREVI_GORCI(N, DAG);
7660   }
7661   case RISCVISD::GREVW:
7662   case RISCVISD::GORCW: {
7663     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7664     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7665         SimplifyDemandedLowBitsHelper(1, 5))
7666       return SDValue(N, 0);
7667 
7668     return combineGREVI_GORCI(N, DAG);
7669   }
7670   case RISCVISD::SHFL:
7671   case RISCVISD::UNSHFL: {
7672     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7673     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7674     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7675     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7676       return SDValue(N, 0);
7677 
7678     break;
7679   }
7680   case RISCVISD::SHFLW:
7681   case RISCVISD::UNSHFLW: {
7682     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7683     SDValue LHS = N->getOperand(0);
7684     SDValue RHS = N->getOperand(1);
7685     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
7686     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
7687     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7688         SimplifyDemandedLowBitsHelper(1, 4))
7689       return SDValue(N, 0);
7690 
7691     break;
7692   }
7693   case RISCVISD::BCOMPRESSW:
7694   case RISCVISD::BDECOMPRESSW: {
7695     // Only the lower 32 bits of LHS and RHS are read.
7696     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7697         SimplifyDemandedLowBitsHelper(1, 32))
7698       return SDValue(N, 0);
7699 
7700     break;
7701   }
7702   case RISCVISD::FMV_X_ANYEXTH:
7703   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7704     SDLoc DL(N);
7705     SDValue Op0 = N->getOperand(0);
7706     MVT VT = N->getSimpleValueType(0);
7707     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7708     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7709     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7710     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7711          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7712         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7713          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7714       assert(Op0.getOperand(0).getValueType() == VT &&
7715              "Unexpected value type!");
7716       return Op0.getOperand(0);
7717     }
7718 
7719     // This is a target-specific version of a DAGCombine performed in
7720     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7721     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7722     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7723     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7724         !Op0.getNode()->hasOneUse())
7725       break;
7726     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7727     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7728     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7729     if (Op0.getOpcode() == ISD::FNEG)
7730       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7731                          DAG.getConstant(SignBit, DL, VT));
7732 
7733     assert(Op0.getOpcode() == ISD::FABS);
7734     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7735                        DAG.getConstant(~SignBit, DL, VT));
7736   }
7737   case ISD::ADD:
7738     return performADDCombine(N, DAG, Subtarget);
7739   case ISD::SUB:
7740     return performSUBCombine(N, DAG);
7741   case ISD::AND:
7742     return performANDCombine(N, DAG);
7743   case ISD::OR:
7744     return performORCombine(N, DAG, Subtarget);
7745   case ISD::XOR:
7746     return performXORCombine(N, DAG);
7747   case ISD::ANY_EXTEND:
7748     return performANY_EXTENDCombine(N, DCI, Subtarget);
7749   case ISD::ZERO_EXTEND:
7750     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7751     // type legalization. This is safe because fp_to_uint produces poison if
7752     // it overflows.
7753     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7754       SDValue Src = N->getOperand(0);
7755       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7756           isTypeLegal(Src.getOperand(0).getValueType()))
7757         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7758                            Src.getOperand(0));
7759       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7760           isTypeLegal(Src.getOperand(1).getValueType())) {
7761         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7762         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7763                                   Src.getOperand(0), Src.getOperand(1));
7764         DCI.CombineTo(N, Res);
7765         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7766         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7767         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7768       }
7769     }
7770     return SDValue();
7771   case RISCVISD::SELECT_CC: {
7772     // Transform
7773     SDValue LHS = N->getOperand(0);
7774     SDValue RHS = N->getOperand(1);
7775     SDValue TrueV = N->getOperand(3);
7776     SDValue FalseV = N->getOperand(4);
7777 
7778     // If the True and False values are the same, we don't need a select_cc.
7779     if (TrueV == FalseV)
7780       return TrueV;
7781 
7782     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7783     if (!ISD::isIntEqualitySetCC(CCVal))
7784       break;
7785 
7786     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7787     //      (select_cc X, Y, lt, trueV, falseV)
7788     // Sometimes the setcc is introduced after select_cc has been formed.
7789     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7790         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7791       // If we're looking for eq 0 instead of ne 0, we need to invert the
7792       // condition.
7793       bool Invert = CCVal == ISD::SETEQ;
7794       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7795       if (Invert)
7796         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7797 
7798       SDLoc DL(N);
7799       RHS = LHS.getOperand(1);
7800       LHS = LHS.getOperand(0);
7801       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7802 
7803       SDValue TargetCC = DAG.getCondCode(CCVal);
7804       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7805                          {LHS, RHS, TargetCC, TrueV, FalseV});
7806     }
7807 
7808     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7809     //      (select_cc X, Y, eq/ne, trueV, falseV)
7810     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7811       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7812                          {LHS.getOperand(0), LHS.getOperand(1),
7813                           N->getOperand(2), TrueV, FalseV});
7814     // (select_cc X, 1, setne, trueV, falseV) ->
7815     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7816     // This can occur when legalizing some floating point comparisons.
7817     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7818     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7819       SDLoc DL(N);
7820       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7821       SDValue TargetCC = DAG.getCondCode(CCVal);
7822       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7823       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7824                          {LHS, RHS, TargetCC, TrueV, FalseV});
7825     }
7826 
7827     break;
7828   }
7829   case RISCVISD::BR_CC: {
7830     SDValue LHS = N->getOperand(1);
7831     SDValue RHS = N->getOperand(2);
7832     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7833     if (!ISD::isIntEqualitySetCC(CCVal))
7834       break;
7835 
7836     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7837     //      (br_cc X, Y, lt, dest)
7838     // Sometimes the setcc is introduced after br_cc has been formed.
7839     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7840         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7841       // If we're looking for eq 0 instead of ne 0, we need to invert the
7842       // condition.
7843       bool Invert = CCVal == ISD::SETEQ;
7844       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7845       if (Invert)
7846         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7847 
7848       SDLoc DL(N);
7849       RHS = LHS.getOperand(1);
7850       LHS = LHS.getOperand(0);
7851       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7852 
7853       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7854                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7855                          N->getOperand(4));
7856     }
7857 
7858     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7859     //      (br_cc X, Y, eq/ne, trueV, falseV)
7860     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7861       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7862                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7863                          N->getOperand(3), N->getOperand(4));
7864 
7865     // (br_cc X, 1, setne, br_cc) ->
7866     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7867     // This can occur when legalizing some floating point comparisons.
7868     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7869     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7870       SDLoc DL(N);
7871       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7872       SDValue TargetCC = DAG.getCondCode(CCVal);
7873       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7874       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7875                          N->getOperand(0), LHS, RHS, TargetCC,
7876                          N->getOperand(4));
7877     }
7878     break;
7879   }
7880   case ISD::FP_TO_SINT:
7881   case ISD::FP_TO_UINT:
7882     return performFP_TO_INTCombine(N, DCI, Subtarget);
7883   case ISD::FP_TO_SINT_SAT:
7884   case ISD::FP_TO_UINT_SAT:
7885     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
7886   case ISD::FCOPYSIGN: {
7887     EVT VT = N->getValueType(0);
7888     if (!VT.isVector())
7889       break;
7890     // There is a form of VFSGNJ which injects the negated sign of its second
7891     // operand. Try and bubble any FNEG up after the extend/round to produce
7892     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7893     // TRUNC=1.
7894     SDValue In2 = N->getOperand(1);
7895     // Avoid cases where the extend/round has multiple uses, as duplicating
7896     // those is typically more expensive than removing a fneg.
7897     if (!In2.hasOneUse())
7898       break;
7899     if (In2.getOpcode() != ISD::FP_EXTEND &&
7900         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7901       break;
7902     In2 = In2.getOperand(0);
7903     if (In2.getOpcode() != ISD::FNEG)
7904       break;
7905     SDLoc DL(N);
7906     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7907     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7908                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7909   }
7910   case ISD::MGATHER:
7911   case ISD::MSCATTER:
7912   case ISD::VP_GATHER:
7913   case ISD::VP_SCATTER: {
7914     if (!DCI.isBeforeLegalize())
7915       break;
7916     SDValue Index, ScaleOp;
7917     bool IsIndexScaled = false;
7918     bool IsIndexSigned = false;
7919     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7920       Index = VPGSN->getIndex();
7921       ScaleOp = VPGSN->getScale();
7922       IsIndexScaled = VPGSN->isIndexScaled();
7923       IsIndexSigned = VPGSN->isIndexSigned();
7924     } else {
7925       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7926       Index = MGSN->getIndex();
7927       ScaleOp = MGSN->getScale();
7928       IsIndexScaled = MGSN->isIndexScaled();
7929       IsIndexSigned = MGSN->isIndexSigned();
7930     }
7931     EVT IndexVT = Index.getValueType();
7932     MVT XLenVT = Subtarget.getXLenVT();
7933     // RISCV indexed loads only support the "unsigned unscaled" addressing
7934     // mode, so anything else must be manually legalized.
7935     bool NeedsIdxLegalization =
7936         IsIndexScaled ||
7937         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7938     if (!NeedsIdxLegalization)
7939       break;
7940 
7941     SDLoc DL(N);
7942 
7943     // Any index legalization should first promote to XLenVT, so we don't lose
7944     // bits when scaling. This may create an illegal index type so we let
7945     // LLVM's legalization take care of the splitting.
7946     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7947     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7948       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7949       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7950                           DL, IndexVT, Index);
7951     }
7952 
7953     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7954     if (IsIndexScaled && Scale != 1) {
7955       // Manually scale the indices by the element size.
7956       // TODO: Sanitize the scale operand here?
7957       // TODO: For VP nodes, should we use VP_SHL here?
7958       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7959       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7960       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7961     }
7962 
7963     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7964     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7965       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7966                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7967                               VPGN->getScale(), VPGN->getMask(),
7968                               VPGN->getVectorLength()},
7969                              VPGN->getMemOperand(), NewIndexTy);
7970     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7971       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7972                               {VPSN->getChain(), VPSN->getValue(),
7973                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7974                                VPSN->getMask(), VPSN->getVectorLength()},
7975                               VPSN->getMemOperand(), NewIndexTy);
7976     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7977       return DAG.getMaskedGather(
7978           N->getVTList(), MGN->getMemoryVT(), DL,
7979           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7980            MGN->getBasePtr(), Index, MGN->getScale()},
7981           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7982     const auto *MSN = cast<MaskedScatterSDNode>(N);
7983     return DAG.getMaskedScatter(
7984         N->getVTList(), MSN->getMemoryVT(), DL,
7985         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7986          Index, MSN->getScale()},
7987         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7988   }
7989   case RISCVISD::SRA_VL:
7990   case RISCVISD::SRL_VL:
7991   case RISCVISD::SHL_VL: {
7992     SDValue ShAmt = N->getOperand(1);
7993     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7994       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7995       SDLoc DL(N);
7996       SDValue VL = N->getOperand(3);
7997       EVT VT = N->getValueType(0);
7998       ShAmt =
7999           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
8000       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8001                          N->getOperand(2), N->getOperand(3));
8002     }
8003     break;
8004   }
8005   case ISD::SRA:
8006   case ISD::SRL:
8007   case ISD::SHL: {
8008     SDValue ShAmt = N->getOperand(1);
8009     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8010       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8011       SDLoc DL(N);
8012       EVT VT = N->getValueType(0);
8013       ShAmt =
8014           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
8015       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8016     }
8017     break;
8018   }
8019   case RISCVISD::MUL_VL:
8020     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8021       return V;
8022     // Mul is commutative.
8023     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8024   case ISD::STORE: {
8025     auto *Store = cast<StoreSDNode>(N);
8026     SDValue Val = Store->getValue();
8027     // Combine store of vmv.x.s to vse with VL of 1.
8028     // FIXME: Support FP.
8029     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8030       SDValue Src = Val.getOperand(0);
8031       EVT VecVT = Src.getValueType();
8032       EVT MemVT = Store->getMemoryVT();
8033       // The memory VT and the element type must match.
8034       if (VecVT.getVectorElementType() == MemVT) {
8035         SDLoc DL(N);
8036         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8037         return DAG.getStoreVP(
8038             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8039             DAG.getConstant(1, DL, MaskVT),
8040             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8041             Store->getMemOperand(), Store->getAddressingMode(),
8042             Store->isTruncatingStore(), /*IsCompress*/ false);
8043       }
8044     }
8045 
8046     break;
8047   }
8048   }
8049 
8050   return SDValue();
8051 }
8052 
8053 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8054     const SDNode *N, CombineLevel Level) const {
8055   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8056   // materialised in fewer instructions than `(OP _, c1)`:
8057   //
8058   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8059   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8060   SDValue N0 = N->getOperand(0);
8061   EVT Ty = N0.getValueType();
8062   if (Ty.isScalarInteger() &&
8063       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8064     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8065     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8066     if (C1 && C2) {
8067       const APInt &C1Int = C1->getAPIntValue();
8068       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8069 
8070       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8071       // and the combine should happen, to potentially allow further combines
8072       // later.
8073       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8074           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8075         return true;
8076 
8077       // We can materialise `c1` in an add immediate, so it's "free", and the
8078       // combine should be prevented.
8079       if (C1Int.getMinSignedBits() <= 64 &&
8080           isLegalAddImmediate(C1Int.getSExtValue()))
8081         return false;
8082 
8083       // Neither constant will fit into an immediate, so find materialisation
8084       // costs.
8085       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8086                                               Subtarget.getFeatureBits(),
8087                                               /*CompressionCost*/true);
8088       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8089           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8090           /*CompressionCost*/true);
8091 
8092       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8093       // combine should be prevented.
8094       if (C1Cost < ShiftedC1Cost)
8095         return false;
8096     }
8097   }
8098   return true;
8099 }
8100 
8101 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8102     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8103     TargetLoweringOpt &TLO) const {
8104   // Delay this optimization as late as possible.
8105   if (!TLO.LegalOps)
8106     return false;
8107 
8108   EVT VT = Op.getValueType();
8109   if (VT.isVector())
8110     return false;
8111 
8112   // Only handle AND for now.
8113   if (Op.getOpcode() != ISD::AND)
8114     return false;
8115 
8116   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8117   if (!C)
8118     return false;
8119 
8120   const APInt &Mask = C->getAPIntValue();
8121 
8122   // Clear all non-demanded bits initially.
8123   APInt ShrunkMask = Mask & DemandedBits;
8124 
8125   // Try to make a smaller immediate by setting undemanded bits.
8126 
8127   APInt ExpandedMask = Mask | ~DemandedBits;
8128 
8129   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8130     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8131   };
8132   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8133     if (NewMask == Mask)
8134       return true;
8135     SDLoc DL(Op);
8136     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8137     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8138     return TLO.CombineTo(Op, NewOp);
8139   };
8140 
8141   // If the shrunk mask fits in sign extended 12 bits, let the target
8142   // independent code apply it.
8143   if (ShrunkMask.isSignedIntN(12))
8144     return false;
8145 
8146   // Preserve (and X, 0xffff) when zext.h is supported.
8147   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8148     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8149     if (IsLegalMask(NewMask))
8150       return UseMask(NewMask);
8151   }
8152 
8153   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8154   if (VT == MVT::i64) {
8155     APInt NewMask = APInt(64, 0xffffffff);
8156     if (IsLegalMask(NewMask))
8157       return UseMask(NewMask);
8158   }
8159 
8160   // For the remaining optimizations, we need to be able to make a negative
8161   // number through a combination of mask and undemanded bits.
8162   if (!ExpandedMask.isNegative())
8163     return false;
8164 
8165   // What is the fewest number of bits we need to represent the negative number.
8166   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8167 
8168   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8169   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8170   APInt NewMask = ShrunkMask;
8171   if (MinSignedBits <= 12)
8172     NewMask.setBitsFrom(11);
8173   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8174     NewMask.setBitsFrom(31);
8175   else
8176     return false;
8177 
8178   // Check that our new mask is a subset of the demanded mask.
8179   assert(IsLegalMask(NewMask));
8180   return UseMask(NewMask);
8181 }
8182 
8183 static void computeGREV(APInt &Src, unsigned ShAmt) {
8184   ShAmt &= Src.getBitWidth() - 1;
8185   uint64_t x = Src.getZExtValue();
8186   if (ShAmt & 1)
8187     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8188   if (ShAmt & 2)
8189     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8190   if (ShAmt & 4)
8191     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8192   if (ShAmt & 8)
8193     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8194   if (ShAmt & 16)
8195     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8196   if (ShAmt & 32)
8197     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8198   Src = x;
8199 }
8200 
8201 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8202                                                         KnownBits &Known,
8203                                                         const APInt &DemandedElts,
8204                                                         const SelectionDAG &DAG,
8205                                                         unsigned Depth) const {
8206   unsigned BitWidth = Known.getBitWidth();
8207   unsigned Opc = Op.getOpcode();
8208   assert((Opc >= ISD::BUILTIN_OP_END ||
8209           Opc == ISD::INTRINSIC_WO_CHAIN ||
8210           Opc == ISD::INTRINSIC_W_CHAIN ||
8211           Opc == ISD::INTRINSIC_VOID) &&
8212          "Should use MaskedValueIsZero if you don't know whether Op"
8213          " is a target node!");
8214 
8215   Known.resetAll();
8216   switch (Opc) {
8217   default: break;
8218   case RISCVISD::SELECT_CC: {
8219     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8220     // If we don't know any bits, early out.
8221     if (Known.isUnknown())
8222       break;
8223     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8224 
8225     // Only known if known in both the LHS and RHS.
8226     Known = KnownBits::commonBits(Known, Known2);
8227     break;
8228   }
8229   case RISCVISD::REMUW: {
8230     KnownBits Known2;
8231     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8232     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8233     // We only care about the lower 32 bits.
8234     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8235     // Restore the original width by sign extending.
8236     Known = Known.sext(BitWidth);
8237     break;
8238   }
8239   case RISCVISD::DIVUW: {
8240     KnownBits Known2;
8241     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8242     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8243     // We only care about the lower 32 bits.
8244     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8245     // Restore the original width by sign extending.
8246     Known = Known.sext(BitWidth);
8247     break;
8248   }
8249   case RISCVISD::CTZW: {
8250     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8251     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8252     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8253     Known.Zero.setBitsFrom(LowBits);
8254     break;
8255   }
8256   case RISCVISD::CLZW: {
8257     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8258     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8259     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8260     Known.Zero.setBitsFrom(LowBits);
8261     break;
8262   }
8263   case RISCVISD::GREV:
8264   case RISCVISD::GREVW: {
8265     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8266       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8267       if (Opc == RISCVISD::GREVW)
8268         Known = Known.trunc(32);
8269       unsigned ShAmt = C->getZExtValue();
8270       computeGREV(Known.Zero, ShAmt);
8271       computeGREV(Known.One, ShAmt);
8272       if (Opc == RISCVISD::GREVW)
8273         Known = Known.sext(BitWidth);
8274     }
8275     break;
8276   }
8277   case RISCVISD::READ_VLENB:
8278     // We assume VLENB is at least 16 bytes.
8279     Known.Zero.setLowBits(4);
8280     // We assume VLENB is no more than 65536 / 8 bytes.
8281     Known.Zero.setBitsFrom(14);
8282     break;
8283   case ISD::INTRINSIC_W_CHAIN:
8284   case ISD::INTRINSIC_WO_CHAIN: {
8285     unsigned IntNo =
8286         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8287     switch (IntNo) {
8288     default:
8289       // We can't do anything for most intrinsics.
8290       break;
8291     case Intrinsic::riscv_vsetvli:
8292     case Intrinsic::riscv_vsetvlimax:
8293     case Intrinsic::riscv_vsetvli_opt:
8294     case Intrinsic::riscv_vsetvlimax_opt:
8295       // Assume that VL output is positive and would fit in an int32_t.
8296       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8297       if (BitWidth >= 32)
8298         Known.Zero.setBitsFrom(31);
8299       break;
8300     }
8301     break;
8302   }
8303   }
8304 }
8305 
8306 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8307     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8308     unsigned Depth) const {
8309   switch (Op.getOpcode()) {
8310   default:
8311     break;
8312   case RISCVISD::SELECT_CC: {
8313     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8314     if (Tmp == 1) return 1;  // Early out.
8315     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8316     return std::min(Tmp, Tmp2);
8317   }
8318   case RISCVISD::SLLW:
8319   case RISCVISD::SRAW:
8320   case RISCVISD::SRLW:
8321   case RISCVISD::DIVW:
8322   case RISCVISD::DIVUW:
8323   case RISCVISD::REMUW:
8324   case RISCVISD::ROLW:
8325   case RISCVISD::RORW:
8326   case RISCVISD::GREVW:
8327   case RISCVISD::GORCW:
8328   case RISCVISD::FSLW:
8329   case RISCVISD::FSRW:
8330   case RISCVISD::SHFLW:
8331   case RISCVISD::UNSHFLW:
8332   case RISCVISD::BCOMPRESSW:
8333   case RISCVISD::BDECOMPRESSW:
8334   case RISCVISD::BFPW:
8335   case RISCVISD::FCVT_W_RV64:
8336   case RISCVISD::FCVT_WU_RV64:
8337   case RISCVISD::STRICT_FCVT_W_RV64:
8338   case RISCVISD::STRICT_FCVT_WU_RV64:
8339     // TODO: As the result is sign-extended, this is conservatively correct. A
8340     // more precise answer could be calculated for SRAW depending on known
8341     // bits in the shift amount.
8342     return 33;
8343   case RISCVISD::SHFL:
8344   case RISCVISD::UNSHFL: {
8345     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8346     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8347     // will stay within the upper 32 bits. If there were more than 32 sign bits
8348     // before there will be at least 33 sign bits after.
8349     if (Op.getValueType() == MVT::i64 &&
8350         isa<ConstantSDNode>(Op.getOperand(1)) &&
8351         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8352       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8353       if (Tmp > 32)
8354         return 33;
8355     }
8356     break;
8357   }
8358   case RISCVISD::VMV_X_S:
8359     // The number of sign bits of the scalar result is computed by obtaining the
8360     // element type of the input vector operand, subtracting its width from the
8361     // XLEN, and then adding one (sign bit within the element type). If the
8362     // element type is wider than XLen, the least-significant XLEN bits are
8363     // taken.
8364     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
8365       return 1;
8366     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
8367   }
8368 
8369   return 1;
8370 }
8371 
8372 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8373                                                   MachineBasicBlock *BB) {
8374   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8375 
8376   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8377   // Should the count have wrapped while it was being read, we need to try
8378   // again.
8379   // ...
8380   // read:
8381   // rdcycleh x3 # load high word of cycle
8382   // rdcycle  x2 # load low word of cycle
8383   // rdcycleh x4 # load high word of cycle
8384   // bne x3, x4, read # check if high word reads match, otherwise try again
8385   // ...
8386 
8387   MachineFunction &MF = *BB->getParent();
8388   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8389   MachineFunction::iterator It = ++BB->getIterator();
8390 
8391   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8392   MF.insert(It, LoopMBB);
8393 
8394   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8395   MF.insert(It, DoneMBB);
8396 
8397   // Transfer the remainder of BB and its successor edges to DoneMBB.
8398   DoneMBB->splice(DoneMBB->begin(), BB,
8399                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8400   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8401 
8402   BB->addSuccessor(LoopMBB);
8403 
8404   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8405   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8406   Register LoReg = MI.getOperand(0).getReg();
8407   Register HiReg = MI.getOperand(1).getReg();
8408   DebugLoc DL = MI.getDebugLoc();
8409 
8410   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8411   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8412       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8413       .addReg(RISCV::X0);
8414   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8415       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8416       .addReg(RISCV::X0);
8417   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8418       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8419       .addReg(RISCV::X0);
8420 
8421   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8422       .addReg(HiReg)
8423       .addReg(ReadAgainReg)
8424       .addMBB(LoopMBB);
8425 
8426   LoopMBB->addSuccessor(LoopMBB);
8427   LoopMBB->addSuccessor(DoneMBB);
8428 
8429   MI.eraseFromParent();
8430 
8431   return DoneMBB;
8432 }
8433 
8434 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8435                                              MachineBasicBlock *BB) {
8436   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8437 
8438   MachineFunction &MF = *BB->getParent();
8439   DebugLoc DL = MI.getDebugLoc();
8440   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8441   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8442   Register LoReg = MI.getOperand(0).getReg();
8443   Register HiReg = MI.getOperand(1).getReg();
8444   Register SrcReg = MI.getOperand(2).getReg();
8445   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8446   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8447 
8448   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8449                           RI);
8450   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8451   MachineMemOperand *MMOLo =
8452       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8453   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8454       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8455   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8456       .addFrameIndex(FI)
8457       .addImm(0)
8458       .addMemOperand(MMOLo);
8459   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8460       .addFrameIndex(FI)
8461       .addImm(4)
8462       .addMemOperand(MMOHi);
8463   MI.eraseFromParent(); // The pseudo instruction is gone now.
8464   return BB;
8465 }
8466 
8467 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8468                                                  MachineBasicBlock *BB) {
8469   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8470          "Unexpected instruction");
8471 
8472   MachineFunction &MF = *BB->getParent();
8473   DebugLoc DL = MI.getDebugLoc();
8474   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8475   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8476   Register DstReg = MI.getOperand(0).getReg();
8477   Register LoReg = MI.getOperand(1).getReg();
8478   Register HiReg = MI.getOperand(2).getReg();
8479   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8480   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8481 
8482   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8483   MachineMemOperand *MMOLo =
8484       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8485   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8486       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8487   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8488       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8489       .addFrameIndex(FI)
8490       .addImm(0)
8491       .addMemOperand(MMOLo);
8492   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8493       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8494       .addFrameIndex(FI)
8495       .addImm(4)
8496       .addMemOperand(MMOHi);
8497   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8498   MI.eraseFromParent(); // The pseudo instruction is gone now.
8499   return BB;
8500 }
8501 
8502 static bool isSelectPseudo(MachineInstr &MI) {
8503   switch (MI.getOpcode()) {
8504   default:
8505     return false;
8506   case RISCV::Select_GPR_Using_CC_GPR:
8507   case RISCV::Select_FPR16_Using_CC_GPR:
8508   case RISCV::Select_FPR32_Using_CC_GPR:
8509   case RISCV::Select_FPR64_Using_CC_GPR:
8510     return true;
8511   }
8512 }
8513 
8514 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8515                                         unsigned RelOpcode, unsigned EqOpcode,
8516                                         const RISCVSubtarget &Subtarget) {
8517   DebugLoc DL = MI.getDebugLoc();
8518   Register DstReg = MI.getOperand(0).getReg();
8519   Register Src1Reg = MI.getOperand(1).getReg();
8520   Register Src2Reg = MI.getOperand(2).getReg();
8521   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8522   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8523   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8524 
8525   // Save the current FFLAGS.
8526   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8527 
8528   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8529                  .addReg(Src1Reg)
8530                  .addReg(Src2Reg);
8531   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8532     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8533 
8534   // Restore the FFLAGS.
8535   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8536       .addReg(SavedFFlags, RegState::Kill);
8537 
8538   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8539   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8540                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8541                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8542   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8543     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8544 
8545   // Erase the pseudoinstruction.
8546   MI.eraseFromParent();
8547   return BB;
8548 }
8549 
8550 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8551                                            MachineBasicBlock *BB,
8552                                            const RISCVSubtarget &Subtarget) {
8553   // To "insert" Select_* instructions, we actually have to insert the triangle
8554   // control-flow pattern.  The incoming instructions know the destination vreg
8555   // to set, the condition code register to branch on, the true/false values to
8556   // select between, and the condcode to use to select the appropriate branch.
8557   //
8558   // We produce the following control flow:
8559   //     HeadMBB
8560   //     |  \
8561   //     |  IfFalseMBB
8562   //     | /
8563   //    TailMBB
8564   //
8565   // When we find a sequence of selects we attempt to optimize their emission
8566   // by sharing the control flow. Currently we only handle cases where we have
8567   // multiple selects with the exact same condition (same LHS, RHS and CC).
8568   // The selects may be interleaved with other instructions if the other
8569   // instructions meet some requirements we deem safe:
8570   // - They are debug instructions. Otherwise,
8571   // - They do not have side-effects, do not access memory and their inputs do
8572   //   not depend on the results of the select pseudo-instructions.
8573   // The TrueV/FalseV operands of the selects cannot depend on the result of
8574   // previous selects in the sequence.
8575   // These conditions could be further relaxed. See the X86 target for a
8576   // related approach and more information.
8577   Register LHS = MI.getOperand(1).getReg();
8578   Register RHS = MI.getOperand(2).getReg();
8579   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
8580 
8581   SmallVector<MachineInstr *, 4> SelectDebugValues;
8582   SmallSet<Register, 4> SelectDests;
8583   SelectDests.insert(MI.getOperand(0).getReg());
8584 
8585   MachineInstr *LastSelectPseudo = &MI;
8586 
8587   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
8588        SequenceMBBI != E; ++SequenceMBBI) {
8589     if (SequenceMBBI->isDebugInstr())
8590       continue;
8591     else if (isSelectPseudo(*SequenceMBBI)) {
8592       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8593           SequenceMBBI->getOperand(2).getReg() != RHS ||
8594           SequenceMBBI->getOperand(3).getImm() != CC ||
8595           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8596           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8597         break;
8598       LastSelectPseudo = &*SequenceMBBI;
8599       SequenceMBBI->collectDebugValues(SelectDebugValues);
8600       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8601     } else {
8602       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8603           SequenceMBBI->mayLoadOrStore())
8604         break;
8605       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8606             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8607           }))
8608         break;
8609     }
8610   }
8611 
8612   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8613   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8614   DebugLoc DL = MI.getDebugLoc();
8615   MachineFunction::iterator I = ++BB->getIterator();
8616 
8617   MachineBasicBlock *HeadMBB = BB;
8618   MachineFunction *F = BB->getParent();
8619   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8620   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8621 
8622   F->insert(I, IfFalseMBB);
8623   F->insert(I, TailMBB);
8624 
8625   // Transfer debug instructions associated with the selects to TailMBB.
8626   for (MachineInstr *DebugInstr : SelectDebugValues) {
8627     TailMBB->push_back(DebugInstr->removeFromParent());
8628   }
8629 
8630   // Move all instructions after the sequence to TailMBB.
8631   TailMBB->splice(TailMBB->end(), HeadMBB,
8632                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8633   // Update machine-CFG edges by transferring all successors of the current
8634   // block to the new block which will contain the Phi nodes for the selects.
8635   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8636   // Set the successors for HeadMBB.
8637   HeadMBB->addSuccessor(IfFalseMBB);
8638   HeadMBB->addSuccessor(TailMBB);
8639 
8640   // Insert appropriate branch.
8641   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8642     .addReg(LHS)
8643     .addReg(RHS)
8644     .addMBB(TailMBB);
8645 
8646   // IfFalseMBB just falls through to TailMBB.
8647   IfFalseMBB->addSuccessor(TailMBB);
8648 
8649   // Create PHIs for all of the select pseudo-instructions.
8650   auto SelectMBBI = MI.getIterator();
8651   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8652   auto InsertionPoint = TailMBB->begin();
8653   while (SelectMBBI != SelectEnd) {
8654     auto Next = std::next(SelectMBBI);
8655     if (isSelectPseudo(*SelectMBBI)) {
8656       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8657       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8658               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8659           .addReg(SelectMBBI->getOperand(4).getReg())
8660           .addMBB(HeadMBB)
8661           .addReg(SelectMBBI->getOperand(5).getReg())
8662           .addMBB(IfFalseMBB);
8663       SelectMBBI->eraseFromParent();
8664     }
8665     SelectMBBI = Next;
8666   }
8667 
8668   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8669   return TailMBB;
8670 }
8671 
8672 MachineBasicBlock *
8673 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8674                                                  MachineBasicBlock *BB) const {
8675   switch (MI.getOpcode()) {
8676   default:
8677     llvm_unreachable("Unexpected instr type to insert");
8678   case RISCV::ReadCycleWide:
8679     assert(!Subtarget.is64Bit() &&
8680            "ReadCycleWrite is only to be used on riscv32");
8681     return emitReadCycleWidePseudo(MI, BB);
8682   case RISCV::Select_GPR_Using_CC_GPR:
8683   case RISCV::Select_FPR16_Using_CC_GPR:
8684   case RISCV::Select_FPR32_Using_CC_GPR:
8685   case RISCV::Select_FPR64_Using_CC_GPR:
8686     return emitSelectPseudo(MI, BB, Subtarget);
8687   case RISCV::BuildPairF64Pseudo:
8688     return emitBuildPairF64Pseudo(MI, BB);
8689   case RISCV::SplitF64Pseudo:
8690     return emitSplitF64Pseudo(MI, BB);
8691   case RISCV::PseudoQuietFLE_H:
8692     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
8693   case RISCV::PseudoQuietFLT_H:
8694     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
8695   case RISCV::PseudoQuietFLE_S:
8696     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
8697   case RISCV::PseudoQuietFLT_S:
8698     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
8699   case RISCV::PseudoQuietFLE_D:
8700     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
8701   case RISCV::PseudoQuietFLT_D:
8702     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
8703   }
8704 }
8705 
8706 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8707                                                         SDNode *Node) const {
8708   // Add FRM dependency to any instructions with dynamic rounding mode.
8709   unsigned Opc = MI.getOpcode();
8710   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8711   if (Idx < 0)
8712     return;
8713   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8714     return;
8715   // If the instruction already reads FRM, don't add another read.
8716   if (MI.readsRegister(RISCV::FRM))
8717     return;
8718   MI.addOperand(
8719       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8720 }
8721 
8722 // Calling Convention Implementation.
8723 // The expectations for frontend ABI lowering vary from target to target.
8724 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8725 // details, but this is a longer term goal. For now, we simply try to keep the
8726 // role of the frontend as simple and well-defined as possible. The rules can
8727 // be summarised as:
8728 // * Never split up large scalar arguments. We handle them here.
8729 // * If a hardfloat calling convention is being used, and the struct may be
8730 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8731 // available, then pass as two separate arguments. If either the GPRs or FPRs
8732 // are exhausted, then pass according to the rule below.
8733 // * If a struct could never be passed in registers or directly in a stack
8734 // slot (as it is larger than 2*XLEN and the floating point rules don't
8735 // apply), then pass it using a pointer with the byval attribute.
8736 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8737 // word-sized array or a 2*XLEN scalar (depending on alignment).
8738 // * The frontend can determine whether a struct is returned by reference or
8739 // not based on its size and fields. If it will be returned by reference, the
8740 // frontend must modify the prototype so a pointer with the sret annotation is
8741 // passed as the first argument. This is not necessary for large scalar
8742 // returns.
8743 // * Struct return values and varargs should be coerced to structs containing
8744 // register-size fields in the same situations they would be for fixed
8745 // arguments.
8746 
8747 static const MCPhysReg ArgGPRs[] = {
8748   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8749   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8750 };
8751 static const MCPhysReg ArgFPR16s[] = {
8752   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8753   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8754 };
8755 static const MCPhysReg ArgFPR32s[] = {
8756   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8757   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8758 };
8759 static const MCPhysReg ArgFPR64s[] = {
8760   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8761   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8762 };
8763 // This is an interim calling convention and it may be changed in the future.
8764 static const MCPhysReg ArgVRs[] = {
8765     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8766     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8767     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8768 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8769                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8770                                      RISCV::V20M2, RISCV::V22M2};
8771 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8772                                      RISCV::V20M4};
8773 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8774 
8775 // Pass a 2*XLEN argument that has been split into two XLEN values through
8776 // registers or the stack as necessary.
8777 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8778                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8779                                 MVT ValVT2, MVT LocVT2,
8780                                 ISD::ArgFlagsTy ArgFlags2) {
8781   unsigned XLenInBytes = XLen / 8;
8782   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8783     // At least one half can be passed via register.
8784     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8785                                      VA1.getLocVT(), CCValAssign::Full));
8786   } else {
8787     // Both halves must be passed on the stack, with proper alignment.
8788     Align StackAlign =
8789         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8790     State.addLoc(
8791         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8792                             State.AllocateStack(XLenInBytes, StackAlign),
8793                             VA1.getLocVT(), CCValAssign::Full));
8794     State.addLoc(CCValAssign::getMem(
8795         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8796         LocVT2, CCValAssign::Full));
8797     return false;
8798   }
8799 
8800   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8801     // The second half can also be passed via register.
8802     State.addLoc(
8803         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8804   } else {
8805     // The second half is passed via the stack, without additional alignment.
8806     State.addLoc(CCValAssign::getMem(
8807         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8808         LocVT2, CCValAssign::Full));
8809   }
8810 
8811   return false;
8812 }
8813 
8814 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8815                                Optional<unsigned> FirstMaskArgument,
8816                                CCState &State, const RISCVTargetLowering &TLI) {
8817   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8818   if (RC == &RISCV::VRRegClass) {
8819     // Assign the first mask argument to V0.
8820     // This is an interim calling convention and it may be changed in the
8821     // future.
8822     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8823       return State.AllocateReg(RISCV::V0);
8824     return State.AllocateReg(ArgVRs);
8825   }
8826   if (RC == &RISCV::VRM2RegClass)
8827     return State.AllocateReg(ArgVRM2s);
8828   if (RC == &RISCV::VRM4RegClass)
8829     return State.AllocateReg(ArgVRM4s);
8830   if (RC == &RISCV::VRM8RegClass)
8831     return State.AllocateReg(ArgVRM8s);
8832   llvm_unreachable("Unhandled register class for ValueType");
8833 }
8834 
8835 // Implements the RISC-V calling convention. Returns true upon failure.
8836 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8837                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8838                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8839                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8840                      Optional<unsigned> FirstMaskArgument) {
8841   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8842   assert(XLen == 32 || XLen == 64);
8843   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8844 
8845   // Any return value split in to more than two values can't be returned
8846   // directly. Vectors are returned via the available vector registers.
8847   if (!LocVT.isVector() && IsRet && ValNo > 1)
8848     return true;
8849 
8850   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8851   // variadic argument, or if no F16/F32 argument registers are available.
8852   bool UseGPRForF16_F32 = true;
8853   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8854   // variadic argument, or if no F64 argument registers are available.
8855   bool UseGPRForF64 = true;
8856 
8857   switch (ABI) {
8858   default:
8859     llvm_unreachable("Unexpected ABI");
8860   case RISCVABI::ABI_ILP32:
8861   case RISCVABI::ABI_LP64:
8862     break;
8863   case RISCVABI::ABI_ILP32F:
8864   case RISCVABI::ABI_LP64F:
8865     UseGPRForF16_F32 = !IsFixed;
8866     break;
8867   case RISCVABI::ABI_ILP32D:
8868   case RISCVABI::ABI_LP64D:
8869     UseGPRForF16_F32 = !IsFixed;
8870     UseGPRForF64 = !IsFixed;
8871     break;
8872   }
8873 
8874   // FPR16, FPR32, and FPR64 alias each other.
8875   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8876     UseGPRForF16_F32 = true;
8877     UseGPRForF64 = true;
8878   }
8879 
8880   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8881   // similar local variables rather than directly checking against the target
8882   // ABI.
8883 
8884   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8885     LocVT = XLenVT;
8886     LocInfo = CCValAssign::BCvt;
8887   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8888     LocVT = MVT::i64;
8889     LocInfo = CCValAssign::BCvt;
8890   }
8891 
8892   // If this is a variadic argument, the RISC-V calling convention requires
8893   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8894   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8895   // be used regardless of whether the original argument was split during
8896   // legalisation or not. The argument will not be passed by registers if the
8897   // original type is larger than 2*XLEN, so the register alignment rule does
8898   // not apply.
8899   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8900   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8901       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8902     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8903     // Skip 'odd' register if necessary.
8904     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8905       State.AllocateReg(ArgGPRs);
8906   }
8907 
8908   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8909   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8910       State.getPendingArgFlags();
8911 
8912   assert(PendingLocs.size() == PendingArgFlags.size() &&
8913          "PendingLocs and PendingArgFlags out of sync");
8914 
8915   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8916   // registers are exhausted.
8917   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8918     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8919            "Can't lower f64 if it is split");
8920     // Depending on available argument GPRS, f64 may be passed in a pair of
8921     // GPRs, split between a GPR and the stack, or passed completely on the
8922     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8923     // cases.
8924     Register Reg = State.AllocateReg(ArgGPRs);
8925     LocVT = MVT::i32;
8926     if (!Reg) {
8927       unsigned StackOffset = State.AllocateStack(8, Align(8));
8928       State.addLoc(
8929           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8930       return false;
8931     }
8932     if (!State.AllocateReg(ArgGPRs))
8933       State.AllocateStack(4, Align(4));
8934     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8935     return false;
8936   }
8937 
8938   // Fixed-length vectors are located in the corresponding scalable-vector
8939   // container types.
8940   if (ValVT.isFixedLengthVector())
8941     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8942 
8943   // Split arguments might be passed indirectly, so keep track of the pending
8944   // values. Split vectors are passed via a mix of registers and indirectly, so
8945   // treat them as we would any other argument.
8946   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8947     LocVT = XLenVT;
8948     LocInfo = CCValAssign::Indirect;
8949     PendingLocs.push_back(
8950         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8951     PendingArgFlags.push_back(ArgFlags);
8952     if (!ArgFlags.isSplitEnd()) {
8953       return false;
8954     }
8955   }
8956 
8957   // If the split argument only had two elements, it should be passed directly
8958   // in registers or on the stack.
8959   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8960       PendingLocs.size() <= 2) {
8961     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8962     // Apply the normal calling convention rules to the first half of the
8963     // split argument.
8964     CCValAssign VA = PendingLocs[0];
8965     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8966     PendingLocs.clear();
8967     PendingArgFlags.clear();
8968     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8969                                ArgFlags);
8970   }
8971 
8972   // Allocate to a register if possible, or else a stack slot.
8973   Register Reg;
8974   unsigned StoreSizeBytes = XLen / 8;
8975   Align StackAlign = Align(XLen / 8);
8976 
8977   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8978     Reg = State.AllocateReg(ArgFPR16s);
8979   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8980     Reg = State.AllocateReg(ArgFPR32s);
8981   else if (ValVT == MVT::f64 && !UseGPRForF64)
8982     Reg = State.AllocateReg(ArgFPR64s);
8983   else if (ValVT.isVector()) {
8984     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8985     if (!Reg) {
8986       // For return values, the vector must be passed fully via registers or
8987       // via the stack.
8988       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8989       // but we're using all of them.
8990       if (IsRet)
8991         return true;
8992       // Try using a GPR to pass the address
8993       if ((Reg = State.AllocateReg(ArgGPRs))) {
8994         LocVT = XLenVT;
8995         LocInfo = CCValAssign::Indirect;
8996       } else if (ValVT.isScalableVector()) {
8997         LocVT = XLenVT;
8998         LocInfo = CCValAssign::Indirect;
8999       } else {
9000         // Pass fixed-length vectors on the stack.
9001         LocVT = ValVT;
9002         StoreSizeBytes = ValVT.getStoreSize();
9003         // Align vectors to their element sizes, being careful for vXi1
9004         // vectors.
9005         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9006       }
9007     }
9008   } else {
9009     Reg = State.AllocateReg(ArgGPRs);
9010   }
9011 
9012   unsigned StackOffset =
9013       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9014 
9015   // If we reach this point and PendingLocs is non-empty, we must be at the
9016   // end of a split argument that must be passed indirectly.
9017   if (!PendingLocs.empty()) {
9018     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9019     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9020 
9021     for (auto &It : PendingLocs) {
9022       if (Reg)
9023         It.convertToReg(Reg);
9024       else
9025         It.convertToMem(StackOffset);
9026       State.addLoc(It);
9027     }
9028     PendingLocs.clear();
9029     PendingArgFlags.clear();
9030     return false;
9031   }
9032 
9033   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9034           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9035          "Expected an XLenVT or vector types at this stage");
9036 
9037   if (Reg) {
9038     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9039     return false;
9040   }
9041 
9042   // When a floating-point value is passed on the stack, no bit-conversion is
9043   // needed.
9044   if (ValVT.isFloatingPoint()) {
9045     LocVT = ValVT;
9046     LocInfo = CCValAssign::Full;
9047   }
9048   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9049   return false;
9050 }
9051 
9052 template <typename ArgTy>
9053 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9054   for (const auto &ArgIdx : enumerate(Args)) {
9055     MVT ArgVT = ArgIdx.value().VT;
9056     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9057       return ArgIdx.index();
9058   }
9059   return None;
9060 }
9061 
9062 void RISCVTargetLowering::analyzeInputArgs(
9063     MachineFunction &MF, CCState &CCInfo,
9064     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9065     RISCVCCAssignFn Fn) const {
9066   unsigned NumArgs = Ins.size();
9067   FunctionType *FType = MF.getFunction().getFunctionType();
9068 
9069   Optional<unsigned> FirstMaskArgument;
9070   if (Subtarget.hasVInstructions())
9071     FirstMaskArgument = preAssignMask(Ins);
9072 
9073   for (unsigned i = 0; i != NumArgs; ++i) {
9074     MVT ArgVT = Ins[i].VT;
9075     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9076 
9077     Type *ArgTy = nullptr;
9078     if (IsRet)
9079       ArgTy = FType->getReturnType();
9080     else if (Ins[i].isOrigArg())
9081       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9082 
9083     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9084     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9085            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9086            FirstMaskArgument)) {
9087       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9088                         << EVT(ArgVT).getEVTString() << '\n');
9089       llvm_unreachable(nullptr);
9090     }
9091   }
9092 }
9093 
9094 void RISCVTargetLowering::analyzeOutputArgs(
9095     MachineFunction &MF, CCState &CCInfo,
9096     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9097     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9098   unsigned NumArgs = Outs.size();
9099 
9100   Optional<unsigned> FirstMaskArgument;
9101   if (Subtarget.hasVInstructions())
9102     FirstMaskArgument = preAssignMask(Outs);
9103 
9104   for (unsigned i = 0; i != NumArgs; i++) {
9105     MVT ArgVT = Outs[i].VT;
9106     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9107     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9108 
9109     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9110     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9111            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9112            FirstMaskArgument)) {
9113       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9114                         << EVT(ArgVT).getEVTString() << "\n");
9115       llvm_unreachable(nullptr);
9116     }
9117   }
9118 }
9119 
9120 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9121 // values.
9122 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9123                                    const CCValAssign &VA, const SDLoc &DL,
9124                                    const RISCVSubtarget &Subtarget) {
9125   switch (VA.getLocInfo()) {
9126   default:
9127     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9128   case CCValAssign::Full:
9129     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9130       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9131     break;
9132   case CCValAssign::BCvt:
9133     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9134       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9135     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9136       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9137     else
9138       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9139     break;
9140   }
9141   return Val;
9142 }
9143 
9144 // The caller is responsible for loading the full value if the argument is
9145 // passed with CCValAssign::Indirect.
9146 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9147                                 const CCValAssign &VA, const SDLoc &DL,
9148                                 const RISCVTargetLowering &TLI) {
9149   MachineFunction &MF = DAG.getMachineFunction();
9150   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9151   EVT LocVT = VA.getLocVT();
9152   SDValue Val;
9153   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9154   Register VReg = RegInfo.createVirtualRegister(RC);
9155   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9156   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9157 
9158   if (VA.getLocInfo() == CCValAssign::Indirect)
9159     return Val;
9160 
9161   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9162 }
9163 
9164 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9165                                    const CCValAssign &VA, const SDLoc &DL,
9166                                    const RISCVSubtarget &Subtarget) {
9167   EVT LocVT = VA.getLocVT();
9168 
9169   switch (VA.getLocInfo()) {
9170   default:
9171     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9172   case CCValAssign::Full:
9173     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9174       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9175     break;
9176   case CCValAssign::BCvt:
9177     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9178       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9179     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9180       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9181     else
9182       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9183     break;
9184   }
9185   return Val;
9186 }
9187 
9188 // The caller is responsible for loading the full value if the argument is
9189 // passed with CCValAssign::Indirect.
9190 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9191                                 const CCValAssign &VA, const SDLoc &DL) {
9192   MachineFunction &MF = DAG.getMachineFunction();
9193   MachineFrameInfo &MFI = MF.getFrameInfo();
9194   EVT LocVT = VA.getLocVT();
9195   EVT ValVT = VA.getValVT();
9196   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9197   if (ValVT.isScalableVector()) {
9198     // When the value is a scalable vector, we save the pointer which points to
9199     // the scalable vector value in the stack. The ValVT will be the pointer
9200     // type, instead of the scalable vector type.
9201     ValVT = LocVT;
9202   }
9203   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9204                                  /*IsImmutable=*/true);
9205   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9206   SDValue Val;
9207 
9208   ISD::LoadExtType ExtType;
9209   switch (VA.getLocInfo()) {
9210   default:
9211     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9212   case CCValAssign::Full:
9213   case CCValAssign::Indirect:
9214   case CCValAssign::BCvt:
9215     ExtType = ISD::NON_EXTLOAD;
9216     break;
9217   }
9218   Val = DAG.getExtLoad(
9219       ExtType, DL, LocVT, Chain, FIN,
9220       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9221   return Val;
9222 }
9223 
9224 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9225                                        const CCValAssign &VA, const SDLoc &DL) {
9226   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9227          "Unexpected VA");
9228   MachineFunction &MF = DAG.getMachineFunction();
9229   MachineFrameInfo &MFI = MF.getFrameInfo();
9230   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9231 
9232   if (VA.isMemLoc()) {
9233     // f64 is passed on the stack.
9234     int FI =
9235         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9236     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9237     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9238                        MachinePointerInfo::getFixedStack(MF, FI));
9239   }
9240 
9241   assert(VA.isRegLoc() && "Expected register VA assignment");
9242 
9243   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9244   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9245   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9246   SDValue Hi;
9247   if (VA.getLocReg() == RISCV::X17) {
9248     // Second half of f64 is passed on the stack.
9249     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9250     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9251     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9252                      MachinePointerInfo::getFixedStack(MF, FI));
9253   } else {
9254     // Second half of f64 is passed in another GPR.
9255     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9256     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9257     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9258   }
9259   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9260 }
9261 
9262 // FastCC has less than 1% performance improvement for some particular
9263 // benchmark. But theoretically, it may has benenfit for some cases.
9264 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9265                             unsigned ValNo, MVT ValVT, MVT LocVT,
9266                             CCValAssign::LocInfo LocInfo,
9267                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9268                             bool IsFixed, bool IsRet, Type *OrigTy,
9269                             const RISCVTargetLowering &TLI,
9270                             Optional<unsigned> FirstMaskArgument) {
9271 
9272   // X5 and X6 might be used for save-restore libcall.
9273   static const MCPhysReg GPRList[] = {
9274       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9275       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9276       RISCV::X29, RISCV::X30, RISCV::X31};
9277 
9278   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9279     if (unsigned Reg = State.AllocateReg(GPRList)) {
9280       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9281       return false;
9282     }
9283   }
9284 
9285   if (LocVT == MVT::f16) {
9286     static const MCPhysReg FPR16List[] = {
9287         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9288         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9289         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9290         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9291     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9292       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9293       return false;
9294     }
9295   }
9296 
9297   if (LocVT == MVT::f32) {
9298     static const MCPhysReg FPR32List[] = {
9299         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9300         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9301         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9302         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9303     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9304       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9305       return false;
9306     }
9307   }
9308 
9309   if (LocVT == MVT::f64) {
9310     static const MCPhysReg FPR64List[] = {
9311         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9312         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9313         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9314         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9315     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9316       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9317       return false;
9318     }
9319   }
9320 
9321   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9322     unsigned Offset4 = State.AllocateStack(4, Align(4));
9323     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9324     return false;
9325   }
9326 
9327   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9328     unsigned Offset5 = State.AllocateStack(8, Align(8));
9329     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9330     return false;
9331   }
9332 
9333   if (LocVT.isVector()) {
9334     if (unsigned Reg =
9335             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9336       // Fixed-length vectors are located in the corresponding scalable-vector
9337       // container types.
9338       if (ValVT.isFixedLengthVector())
9339         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9340       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9341     } else {
9342       // Try and pass the address via a "fast" GPR.
9343       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9344         LocInfo = CCValAssign::Indirect;
9345         LocVT = TLI.getSubtarget().getXLenVT();
9346         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9347       } else if (ValVT.isFixedLengthVector()) {
9348         auto StackAlign =
9349             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9350         unsigned StackOffset =
9351             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9352         State.addLoc(
9353             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9354       } else {
9355         // Can't pass scalable vectors on the stack.
9356         return true;
9357       }
9358     }
9359 
9360     return false;
9361   }
9362 
9363   return true; // CC didn't match.
9364 }
9365 
9366 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9367                          CCValAssign::LocInfo LocInfo,
9368                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9369 
9370   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9371     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9372     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9373     static const MCPhysReg GPRList[] = {
9374         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9375         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9376     if (unsigned Reg = State.AllocateReg(GPRList)) {
9377       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9378       return false;
9379     }
9380   }
9381 
9382   if (LocVT == MVT::f32) {
9383     // Pass in STG registers: F1, ..., F6
9384     //                        fs0 ... fs5
9385     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9386                                           RISCV::F18_F, RISCV::F19_F,
9387                                           RISCV::F20_F, RISCV::F21_F};
9388     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9389       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9390       return false;
9391     }
9392   }
9393 
9394   if (LocVT == MVT::f64) {
9395     // Pass in STG registers: D1, ..., D6
9396     //                        fs6 ... fs11
9397     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9398                                           RISCV::F24_D, RISCV::F25_D,
9399                                           RISCV::F26_D, RISCV::F27_D};
9400     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9401       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9402       return false;
9403     }
9404   }
9405 
9406   report_fatal_error("No registers left in GHC calling convention");
9407   return true;
9408 }
9409 
9410 // Transform physical registers into virtual registers.
9411 SDValue RISCVTargetLowering::LowerFormalArguments(
9412     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9413     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9414     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9415 
9416   MachineFunction &MF = DAG.getMachineFunction();
9417 
9418   switch (CallConv) {
9419   default:
9420     report_fatal_error("Unsupported calling convention");
9421   case CallingConv::C:
9422   case CallingConv::Fast:
9423     break;
9424   case CallingConv::GHC:
9425     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9426         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9427       report_fatal_error(
9428         "GHC calling convention requires the F and D instruction set extensions");
9429   }
9430 
9431   const Function &Func = MF.getFunction();
9432   if (Func.hasFnAttribute("interrupt")) {
9433     if (!Func.arg_empty())
9434       report_fatal_error(
9435         "Functions with the interrupt attribute cannot have arguments!");
9436 
9437     StringRef Kind =
9438       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9439 
9440     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9441       report_fatal_error(
9442         "Function interrupt attribute argument not supported!");
9443   }
9444 
9445   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9446   MVT XLenVT = Subtarget.getXLenVT();
9447   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9448   // Used with vargs to acumulate store chains.
9449   std::vector<SDValue> OutChains;
9450 
9451   // Assign locations to all of the incoming arguments.
9452   SmallVector<CCValAssign, 16> ArgLocs;
9453   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9454 
9455   if (CallConv == CallingConv::GHC)
9456     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9457   else
9458     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9459                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9460                                                    : CC_RISCV);
9461 
9462   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9463     CCValAssign &VA = ArgLocs[i];
9464     SDValue ArgValue;
9465     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9466     // case.
9467     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9468       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9469     else if (VA.isRegLoc())
9470       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9471     else
9472       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9473 
9474     if (VA.getLocInfo() == CCValAssign::Indirect) {
9475       // If the original argument was split and passed by reference (e.g. i128
9476       // on RV32), we need to load all parts of it here (using the same
9477       // address). Vectors may be partly split to registers and partly to the
9478       // stack, in which case the base address is partly offset and subsequent
9479       // stores are relative to that.
9480       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9481                                    MachinePointerInfo()));
9482       unsigned ArgIndex = Ins[i].OrigArgIndex;
9483       unsigned ArgPartOffset = Ins[i].PartOffset;
9484       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9485       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9486         CCValAssign &PartVA = ArgLocs[i + 1];
9487         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9488         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9489         if (PartVA.getValVT().isScalableVector())
9490           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9491         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9492         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9493                                      MachinePointerInfo()));
9494         ++i;
9495       }
9496       continue;
9497     }
9498     InVals.push_back(ArgValue);
9499   }
9500 
9501   if (IsVarArg) {
9502     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9503     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9504     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9505     MachineFrameInfo &MFI = MF.getFrameInfo();
9506     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9507     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9508 
9509     // Offset of the first variable argument from stack pointer, and size of
9510     // the vararg save area. For now, the varargs save area is either zero or
9511     // large enough to hold a0-a7.
9512     int VaArgOffset, VarArgsSaveSize;
9513 
9514     // If all registers are allocated, then all varargs must be passed on the
9515     // stack and we don't need to save any argregs.
9516     if (ArgRegs.size() == Idx) {
9517       VaArgOffset = CCInfo.getNextStackOffset();
9518       VarArgsSaveSize = 0;
9519     } else {
9520       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9521       VaArgOffset = -VarArgsSaveSize;
9522     }
9523 
9524     // Record the frame index of the first variable argument
9525     // which is a value necessary to VASTART.
9526     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9527     RVFI->setVarArgsFrameIndex(FI);
9528 
9529     // If saving an odd number of registers then create an extra stack slot to
9530     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9531     // offsets to even-numbered registered remain 2*XLEN-aligned.
9532     if (Idx % 2) {
9533       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9534       VarArgsSaveSize += XLenInBytes;
9535     }
9536 
9537     // Copy the integer registers that may have been used for passing varargs
9538     // to the vararg save area.
9539     for (unsigned I = Idx; I < ArgRegs.size();
9540          ++I, VaArgOffset += XLenInBytes) {
9541       const Register Reg = RegInfo.createVirtualRegister(RC);
9542       RegInfo.addLiveIn(ArgRegs[I], Reg);
9543       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9544       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9545       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9546       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9547                                    MachinePointerInfo::getFixedStack(MF, FI));
9548       cast<StoreSDNode>(Store.getNode())
9549           ->getMemOperand()
9550           ->setValue((Value *)nullptr);
9551       OutChains.push_back(Store);
9552     }
9553     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9554   }
9555 
9556   // All stores are grouped in one node to allow the matching between
9557   // the size of Ins and InVals. This only happens for vararg functions.
9558   if (!OutChains.empty()) {
9559     OutChains.push_back(Chain);
9560     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
9561   }
9562 
9563   return Chain;
9564 }
9565 
9566 /// isEligibleForTailCallOptimization - Check whether the call is eligible
9567 /// for tail call optimization.
9568 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
9569 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
9570     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
9571     const SmallVector<CCValAssign, 16> &ArgLocs) const {
9572 
9573   auto &Callee = CLI.Callee;
9574   auto CalleeCC = CLI.CallConv;
9575   auto &Outs = CLI.Outs;
9576   auto &Caller = MF.getFunction();
9577   auto CallerCC = Caller.getCallingConv();
9578 
9579   // Exception-handling functions need a special set of instructions to
9580   // indicate a return to the hardware. Tail-calling another function would
9581   // probably break this.
9582   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
9583   // should be expanded as new function attributes are introduced.
9584   if (Caller.hasFnAttribute("interrupt"))
9585     return false;
9586 
9587   // Do not tail call opt if the stack is used to pass parameters.
9588   if (CCInfo.getNextStackOffset() != 0)
9589     return false;
9590 
9591   // Do not tail call opt if any parameters need to be passed indirectly.
9592   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
9593   // passed indirectly. So the address of the value will be passed in a
9594   // register, or if not available, then the address is put on the stack. In
9595   // order to pass indirectly, space on the stack often needs to be allocated
9596   // in order to store the value. In this case the CCInfo.getNextStackOffset()
9597   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
9598   // are passed CCValAssign::Indirect.
9599   for (auto &VA : ArgLocs)
9600     if (VA.getLocInfo() == CCValAssign::Indirect)
9601       return false;
9602 
9603   // Do not tail call opt if either caller or callee uses struct return
9604   // semantics.
9605   auto IsCallerStructRet = Caller.hasStructRetAttr();
9606   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
9607   if (IsCallerStructRet || IsCalleeStructRet)
9608     return false;
9609 
9610   // Externally-defined functions with weak linkage should not be
9611   // tail-called. The behaviour of branch instructions in this situation (as
9612   // used for tail calls) is implementation-defined, so we cannot rely on the
9613   // linker replacing the tail call with a return.
9614   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9615     const GlobalValue *GV = G->getGlobal();
9616     if (GV->hasExternalWeakLinkage())
9617       return false;
9618   }
9619 
9620   // The callee has to preserve all registers the caller needs to preserve.
9621   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9622   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9623   if (CalleeCC != CallerCC) {
9624     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9625     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9626       return false;
9627   }
9628 
9629   // Byval parameters hand the function a pointer directly into the stack area
9630   // we want to reuse during a tail call. Working around this *is* possible
9631   // but less efficient and uglier in LowerCall.
9632   for (auto &Arg : Outs)
9633     if (Arg.Flags.isByVal())
9634       return false;
9635 
9636   return true;
9637 }
9638 
9639 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9640   return DAG.getDataLayout().getPrefTypeAlign(
9641       VT.getTypeForEVT(*DAG.getContext()));
9642 }
9643 
9644 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9645 // and output parameter nodes.
9646 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9647                                        SmallVectorImpl<SDValue> &InVals) const {
9648   SelectionDAG &DAG = CLI.DAG;
9649   SDLoc &DL = CLI.DL;
9650   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9651   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9652   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9653   SDValue Chain = CLI.Chain;
9654   SDValue Callee = CLI.Callee;
9655   bool &IsTailCall = CLI.IsTailCall;
9656   CallingConv::ID CallConv = CLI.CallConv;
9657   bool IsVarArg = CLI.IsVarArg;
9658   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9659   MVT XLenVT = Subtarget.getXLenVT();
9660 
9661   MachineFunction &MF = DAG.getMachineFunction();
9662 
9663   // Analyze the operands of the call, assigning locations to each operand.
9664   SmallVector<CCValAssign, 16> ArgLocs;
9665   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9666 
9667   if (CallConv == CallingConv::GHC)
9668     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9669   else
9670     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9671                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9672                                                     : CC_RISCV);
9673 
9674   // Check if it's really possible to do a tail call.
9675   if (IsTailCall)
9676     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9677 
9678   if (IsTailCall)
9679     ++NumTailCalls;
9680   else if (CLI.CB && CLI.CB->isMustTailCall())
9681     report_fatal_error("failed to perform tail call elimination on a call "
9682                        "site marked musttail");
9683 
9684   // Get a count of how many bytes are to be pushed on the stack.
9685   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9686 
9687   // Create local copies for byval args
9688   SmallVector<SDValue, 8> ByValArgs;
9689   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9690     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9691     if (!Flags.isByVal())
9692       continue;
9693 
9694     SDValue Arg = OutVals[i];
9695     unsigned Size = Flags.getByValSize();
9696     Align Alignment = Flags.getNonZeroByValAlign();
9697 
9698     int FI =
9699         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9700     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9701     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9702 
9703     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9704                           /*IsVolatile=*/false,
9705                           /*AlwaysInline=*/false, IsTailCall,
9706                           MachinePointerInfo(), MachinePointerInfo());
9707     ByValArgs.push_back(FIPtr);
9708   }
9709 
9710   if (!IsTailCall)
9711     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9712 
9713   // Copy argument values to their designated locations.
9714   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9715   SmallVector<SDValue, 8> MemOpChains;
9716   SDValue StackPtr;
9717   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9718     CCValAssign &VA = ArgLocs[i];
9719     SDValue ArgValue = OutVals[i];
9720     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9721 
9722     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9723     bool IsF64OnRV32DSoftABI =
9724         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9725     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9726       SDValue SplitF64 = DAG.getNode(
9727           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9728       SDValue Lo = SplitF64.getValue(0);
9729       SDValue Hi = SplitF64.getValue(1);
9730 
9731       Register RegLo = VA.getLocReg();
9732       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9733 
9734       if (RegLo == RISCV::X17) {
9735         // Second half of f64 is passed on the stack.
9736         // Work out the address of the stack slot.
9737         if (!StackPtr.getNode())
9738           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9739         // Emit the store.
9740         MemOpChains.push_back(
9741             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9742       } else {
9743         // Second half of f64 is passed in another GPR.
9744         assert(RegLo < RISCV::X31 && "Invalid register pair");
9745         Register RegHigh = RegLo + 1;
9746         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9747       }
9748       continue;
9749     }
9750 
9751     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9752     // as any other MemLoc.
9753 
9754     // Promote the value if needed.
9755     // For now, only handle fully promoted and indirect arguments.
9756     if (VA.getLocInfo() == CCValAssign::Indirect) {
9757       // Store the argument in a stack slot and pass its address.
9758       Align StackAlign =
9759           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9760                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9761       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9762       // If the original argument was split (e.g. i128), we need
9763       // to store the required parts of it here (and pass just one address).
9764       // Vectors may be partly split to registers and partly to the stack, in
9765       // which case the base address is partly offset and subsequent stores are
9766       // relative to that.
9767       unsigned ArgIndex = Outs[i].OrigArgIndex;
9768       unsigned ArgPartOffset = Outs[i].PartOffset;
9769       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9770       // Calculate the total size to store. We don't have access to what we're
9771       // actually storing other than performing the loop and collecting the
9772       // info.
9773       SmallVector<std::pair<SDValue, SDValue>> Parts;
9774       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9775         SDValue PartValue = OutVals[i + 1];
9776         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9777         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9778         EVT PartVT = PartValue.getValueType();
9779         if (PartVT.isScalableVector())
9780           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9781         StoredSize += PartVT.getStoreSize();
9782         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9783         Parts.push_back(std::make_pair(PartValue, Offset));
9784         ++i;
9785       }
9786       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9787       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9788       MemOpChains.push_back(
9789           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9790                        MachinePointerInfo::getFixedStack(MF, FI)));
9791       for (const auto &Part : Parts) {
9792         SDValue PartValue = Part.first;
9793         SDValue PartOffset = Part.second;
9794         SDValue Address =
9795             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9796         MemOpChains.push_back(
9797             DAG.getStore(Chain, DL, PartValue, Address,
9798                          MachinePointerInfo::getFixedStack(MF, FI)));
9799       }
9800       ArgValue = SpillSlot;
9801     } else {
9802       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9803     }
9804 
9805     // Use local copy if it is a byval arg.
9806     if (Flags.isByVal())
9807       ArgValue = ByValArgs[j++];
9808 
9809     if (VA.isRegLoc()) {
9810       // Queue up the argument copies and emit them at the end.
9811       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9812     } else {
9813       assert(VA.isMemLoc() && "Argument not register or memory");
9814       assert(!IsTailCall && "Tail call not allowed if stack is used "
9815                             "for passing parameters");
9816 
9817       // Work out the address of the stack slot.
9818       if (!StackPtr.getNode())
9819         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9820       SDValue Address =
9821           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9822                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9823 
9824       // Emit the store.
9825       MemOpChains.push_back(
9826           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9827     }
9828   }
9829 
9830   // Join the stores, which are independent of one another.
9831   if (!MemOpChains.empty())
9832     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9833 
9834   SDValue Glue;
9835 
9836   // Build a sequence of copy-to-reg nodes, chained and glued together.
9837   for (auto &Reg : RegsToPass) {
9838     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9839     Glue = Chain.getValue(1);
9840   }
9841 
9842   // Validate that none of the argument registers have been marked as
9843   // reserved, if so report an error. Do the same for the return address if this
9844   // is not a tailcall.
9845   validateCCReservedRegs(RegsToPass, MF);
9846   if (!IsTailCall &&
9847       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9848     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9849         MF.getFunction(),
9850         "Return address register required, but has been reserved."});
9851 
9852   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9853   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9854   // split it and then direct call can be matched by PseudoCALL.
9855   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9856     const GlobalValue *GV = S->getGlobal();
9857 
9858     unsigned OpFlags = RISCVII::MO_CALL;
9859     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9860       OpFlags = RISCVII::MO_PLT;
9861 
9862     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9863   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9864     unsigned OpFlags = RISCVII::MO_CALL;
9865 
9866     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9867                                                  nullptr))
9868       OpFlags = RISCVII::MO_PLT;
9869 
9870     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9871   }
9872 
9873   // The first call operand is the chain and the second is the target address.
9874   SmallVector<SDValue, 8> Ops;
9875   Ops.push_back(Chain);
9876   Ops.push_back(Callee);
9877 
9878   // Add argument registers to the end of the list so that they are
9879   // known live into the call.
9880   for (auto &Reg : RegsToPass)
9881     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9882 
9883   if (!IsTailCall) {
9884     // Add a register mask operand representing the call-preserved registers.
9885     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9886     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9887     assert(Mask && "Missing call preserved mask for calling convention");
9888     Ops.push_back(DAG.getRegisterMask(Mask));
9889   }
9890 
9891   // Glue the call to the argument copies, if any.
9892   if (Glue.getNode())
9893     Ops.push_back(Glue);
9894 
9895   // Emit the call.
9896   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9897 
9898   if (IsTailCall) {
9899     MF.getFrameInfo().setHasTailCall();
9900     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9901   }
9902 
9903   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9904   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9905   Glue = Chain.getValue(1);
9906 
9907   // Mark the end of the call, which is glued to the call itself.
9908   Chain = DAG.getCALLSEQ_END(Chain,
9909                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9910                              DAG.getConstant(0, DL, PtrVT, true),
9911                              Glue, DL);
9912   Glue = Chain.getValue(1);
9913 
9914   // Assign locations to each value returned by this call.
9915   SmallVector<CCValAssign, 16> RVLocs;
9916   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9917   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9918 
9919   // Copy all of the result registers out of their specified physreg.
9920   for (auto &VA : RVLocs) {
9921     // Copy the value out
9922     SDValue RetValue =
9923         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9924     // Glue the RetValue to the end of the call sequence
9925     Chain = RetValue.getValue(1);
9926     Glue = RetValue.getValue(2);
9927 
9928     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9929       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9930       SDValue RetValue2 =
9931           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9932       Chain = RetValue2.getValue(1);
9933       Glue = RetValue2.getValue(2);
9934       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9935                              RetValue2);
9936     }
9937 
9938     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9939 
9940     InVals.push_back(RetValue);
9941   }
9942 
9943   return Chain;
9944 }
9945 
9946 bool RISCVTargetLowering::CanLowerReturn(
9947     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9948     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9949   SmallVector<CCValAssign, 16> RVLocs;
9950   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9951 
9952   Optional<unsigned> FirstMaskArgument;
9953   if (Subtarget.hasVInstructions())
9954     FirstMaskArgument = preAssignMask(Outs);
9955 
9956   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9957     MVT VT = Outs[i].VT;
9958     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9959     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9960     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9961                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9962                  *this, FirstMaskArgument))
9963       return false;
9964   }
9965   return true;
9966 }
9967 
9968 SDValue
9969 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9970                                  bool IsVarArg,
9971                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9972                                  const SmallVectorImpl<SDValue> &OutVals,
9973                                  const SDLoc &DL, SelectionDAG &DAG) const {
9974   const MachineFunction &MF = DAG.getMachineFunction();
9975   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9976 
9977   // Stores the assignment of the return value to a location.
9978   SmallVector<CCValAssign, 16> RVLocs;
9979 
9980   // Info about the registers and stack slot.
9981   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9982                  *DAG.getContext());
9983 
9984   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9985                     nullptr, CC_RISCV);
9986 
9987   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9988     report_fatal_error("GHC functions return void only");
9989 
9990   SDValue Glue;
9991   SmallVector<SDValue, 4> RetOps(1, Chain);
9992 
9993   // Copy the result values into the output registers.
9994   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9995     SDValue Val = OutVals[i];
9996     CCValAssign &VA = RVLocs[i];
9997     assert(VA.isRegLoc() && "Can only return in registers!");
9998 
9999     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10000       // Handle returning f64 on RV32D with a soft float ABI.
10001       assert(VA.isRegLoc() && "Expected return via registers");
10002       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10003                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10004       SDValue Lo = SplitF64.getValue(0);
10005       SDValue Hi = SplitF64.getValue(1);
10006       Register RegLo = VA.getLocReg();
10007       assert(RegLo < RISCV::X31 && "Invalid register pair");
10008       Register RegHi = RegLo + 1;
10009 
10010       if (STI.isRegisterReservedByUser(RegLo) ||
10011           STI.isRegisterReservedByUser(RegHi))
10012         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10013             MF.getFunction(),
10014             "Return value register required, but has been reserved."});
10015 
10016       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10017       Glue = Chain.getValue(1);
10018       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10019       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10020       Glue = Chain.getValue(1);
10021       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10022     } else {
10023       // Handle a 'normal' return.
10024       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10025       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10026 
10027       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10028         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10029             MF.getFunction(),
10030             "Return value register required, but has been reserved."});
10031 
10032       // Guarantee that all emitted copies are stuck together.
10033       Glue = Chain.getValue(1);
10034       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10035     }
10036   }
10037 
10038   RetOps[0] = Chain; // Update chain.
10039 
10040   // Add the glue node if we have it.
10041   if (Glue.getNode()) {
10042     RetOps.push_back(Glue);
10043   }
10044 
10045   unsigned RetOpc = RISCVISD::RET_FLAG;
10046   // Interrupt service routines use different return instructions.
10047   const Function &Func = DAG.getMachineFunction().getFunction();
10048   if (Func.hasFnAttribute("interrupt")) {
10049     if (!Func.getReturnType()->isVoidTy())
10050       report_fatal_error(
10051           "Functions with the interrupt attribute must have void return type!");
10052 
10053     MachineFunction &MF = DAG.getMachineFunction();
10054     StringRef Kind =
10055       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10056 
10057     if (Kind == "user")
10058       RetOpc = RISCVISD::URET_FLAG;
10059     else if (Kind == "supervisor")
10060       RetOpc = RISCVISD::SRET_FLAG;
10061     else
10062       RetOpc = RISCVISD::MRET_FLAG;
10063   }
10064 
10065   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10066 }
10067 
10068 void RISCVTargetLowering::validateCCReservedRegs(
10069     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10070     MachineFunction &MF) const {
10071   const Function &F = MF.getFunction();
10072   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10073 
10074   if (llvm::any_of(Regs, [&STI](auto Reg) {
10075         return STI.isRegisterReservedByUser(Reg.first);
10076       }))
10077     F.getContext().diagnose(DiagnosticInfoUnsupported{
10078         F, "Argument register required, but has been reserved."});
10079 }
10080 
10081 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10082   return CI->isTailCall();
10083 }
10084 
10085 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10086 #define NODE_NAME_CASE(NODE)                                                   \
10087   case RISCVISD::NODE:                                                         \
10088     return "RISCVISD::" #NODE;
10089   // clang-format off
10090   switch ((RISCVISD::NodeType)Opcode) {
10091   case RISCVISD::FIRST_NUMBER:
10092     break;
10093   NODE_NAME_CASE(RET_FLAG)
10094   NODE_NAME_CASE(URET_FLAG)
10095   NODE_NAME_CASE(SRET_FLAG)
10096   NODE_NAME_CASE(MRET_FLAG)
10097   NODE_NAME_CASE(CALL)
10098   NODE_NAME_CASE(SELECT_CC)
10099   NODE_NAME_CASE(BR_CC)
10100   NODE_NAME_CASE(BuildPairF64)
10101   NODE_NAME_CASE(SplitF64)
10102   NODE_NAME_CASE(TAIL)
10103   NODE_NAME_CASE(MULHSU)
10104   NODE_NAME_CASE(SLLW)
10105   NODE_NAME_CASE(SRAW)
10106   NODE_NAME_CASE(SRLW)
10107   NODE_NAME_CASE(DIVW)
10108   NODE_NAME_CASE(DIVUW)
10109   NODE_NAME_CASE(REMUW)
10110   NODE_NAME_CASE(ROLW)
10111   NODE_NAME_CASE(RORW)
10112   NODE_NAME_CASE(CLZW)
10113   NODE_NAME_CASE(CTZW)
10114   NODE_NAME_CASE(FSLW)
10115   NODE_NAME_CASE(FSRW)
10116   NODE_NAME_CASE(FSL)
10117   NODE_NAME_CASE(FSR)
10118   NODE_NAME_CASE(FMV_H_X)
10119   NODE_NAME_CASE(FMV_X_ANYEXTH)
10120   NODE_NAME_CASE(FMV_W_X_RV64)
10121   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10122   NODE_NAME_CASE(FCVT_X)
10123   NODE_NAME_CASE(FCVT_XU)
10124   NODE_NAME_CASE(FCVT_W_RV64)
10125   NODE_NAME_CASE(FCVT_WU_RV64)
10126   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10127   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10128   NODE_NAME_CASE(READ_CYCLE_WIDE)
10129   NODE_NAME_CASE(GREV)
10130   NODE_NAME_CASE(GREVW)
10131   NODE_NAME_CASE(GORC)
10132   NODE_NAME_CASE(GORCW)
10133   NODE_NAME_CASE(SHFL)
10134   NODE_NAME_CASE(SHFLW)
10135   NODE_NAME_CASE(UNSHFL)
10136   NODE_NAME_CASE(UNSHFLW)
10137   NODE_NAME_CASE(BFP)
10138   NODE_NAME_CASE(BFPW)
10139   NODE_NAME_CASE(BCOMPRESS)
10140   NODE_NAME_CASE(BCOMPRESSW)
10141   NODE_NAME_CASE(BDECOMPRESS)
10142   NODE_NAME_CASE(BDECOMPRESSW)
10143   NODE_NAME_CASE(VMV_V_X_VL)
10144   NODE_NAME_CASE(VFMV_V_F_VL)
10145   NODE_NAME_CASE(VMV_X_S)
10146   NODE_NAME_CASE(VMV_S_X_VL)
10147   NODE_NAME_CASE(VFMV_S_F_VL)
10148   NODE_NAME_CASE(SPLAT_VECTOR_I64)
10149   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10150   NODE_NAME_CASE(READ_VLENB)
10151   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10152   NODE_NAME_CASE(VSLIDEUP_VL)
10153   NODE_NAME_CASE(VSLIDE1UP_VL)
10154   NODE_NAME_CASE(VSLIDEDOWN_VL)
10155   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10156   NODE_NAME_CASE(VID_VL)
10157   NODE_NAME_CASE(VFNCVT_ROD_VL)
10158   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10159   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10160   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10161   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10162   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10163   NODE_NAME_CASE(VECREDUCE_AND_VL)
10164   NODE_NAME_CASE(VECREDUCE_OR_VL)
10165   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10166   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10167   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10168   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10169   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10170   NODE_NAME_CASE(ADD_VL)
10171   NODE_NAME_CASE(AND_VL)
10172   NODE_NAME_CASE(MUL_VL)
10173   NODE_NAME_CASE(OR_VL)
10174   NODE_NAME_CASE(SDIV_VL)
10175   NODE_NAME_CASE(SHL_VL)
10176   NODE_NAME_CASE(SREM_VL)
10177   NODE_NAME_CASE(SRA_VL)
10178   NODE_NAME_CASE(SRL_VL)
10179   NODE_NAME_CASE(SUB_VL)
10180   NODE_NAME_CASE(UDIV_VL)
10181   NODE_NAME_CASE(UREM_VL)
10182   NODE_NAME_CASE(XOR_VL)
10183   NODE_NAME_CASE(SADDSAT_VL)
10184   NODE_NAME_CASE(UADDSAT_VL)
10185   NODE_NAME_CASE(SSUBSAT_VL)
10186   NODE_NAME_CASE(USUBSAT_VL)
10187   NODE_NAME_CASE(FADD_VL)
10188   NODE_NAME_CASE(FSUB_VL)
10189   NODE_NAME_CASE(FMUL_VL)
10190   NODE_NAME_CASE(FDIV_VL)
10191   NODE_NAME_CASE(FNEG_VL)
10192   NODE_NAME_CASE(FABS_VL)
10193   NODE_NAME_CASE(FSQRT_VL)
10194   NODE_NAME_CASE(FMA_VL)
10195   NODE_NAME_CASE(FCOPYSIGN_VL)
10196   NODE_NAME_CASE(SMIN_VL)
10197   NODE_NAME_CASE(SMAX_VL)
10198   NODE_NAME_CASE(UMIN_VL)
10199   NODE_NAME_CASE(UMAX_VL)
10200   NODE_NAME_CASE(FMINNUM_VL)
10201   NODE_NAME_CASE(FMAXNUM_VL)
10202   NODE_NAME_CASE(MULHS_VL)
10203   NODE_NAME_CASE(MULHU_VL)
10204   NODE_NAME_CASE(FP_TO_SINT_VL)
10205   NODE_NAME_CASE(FP_TO_UINT_VL)
10206   NODE_NAME_CASE(SINT_TO_FP_VL)
10207   NODE_NAME_CASE(UINT_TO_FP_VL)
10208   NODE_NAME_CASE(FP_EXTEND_VL)
10209   NODE_NAME_CASE(FP_ROUND_VL)
10210   NODE_NAME_CASE(VWMUL_VL)
10211   NODE_NAME_CASE(VWMULU_VL)
10212   NODE_NAME_CASE(VWMULSU_VL)
10213   NODE_NAME_CASE(VWADDU_VL)
10214   NODE_NAME_CASE(SETCC_VL)
10215   NODE_NAME_CASE(VSELECT_VL)
10216   NODE_NAME_CASE(VP_MERGE_VL)
10217   NODE_NAME_CASE(VMAND_VL)
10218   NODE_NAME_CASE(VMOR_VL)
10219   NODE_NAME_CASE(VMXOR_VL)
10220   NODE_NAME_CASE(VMCLR_VL)
10221   NODE_NAME_CASE(VMSET_VL)
10222   NODE_NAME_CASE(VRGATHER_VX_VL)
10223   NODE_NAME_CASE(VRGATHER_VV_VL)
10224   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10225   NODE_NAME_CASE(VSEXT_VL)
10226   NODE_NAME_CASE(VZEXT_VL)
10227   NODE_NAME_CASE(VCPOP_VL)
10228   NODE_NAME_CASE(VLE_VL)
10229   NODE_NAME_CASE(VSE_VL)
10230   NODE_NAME_CASE(READ_CSR)
10231   NODE_NAME_CASE(WRITE_CSR)
10232   NODE_NAME_CASE(SWAP_CSR)
10233   }
10234   // clang-format on
10235   return nullptr;
10236 #undef NODE_NAME_CASE
10237 }
10238 
10239 /// getConstraintType - Given a constraint letter, return the type of
10240 /// constraint it is for this target.
10241 RISCVTargetLowering::ConstraintType
10242 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10243   if (Constraint.size() == 1) {
10244     switch (Constraint[0]) {
10245     default:
10246       break;
10247     case 'f':
10248       return C_RegisterClass;
10249     case 'I':
10250     case 'J':
10251     case 'K':
10252       return C_Immediate;
10253     case 'A':
10254       return C_Memory;
10255     case 'S': // A symbolic address
10256       return C_Other;
10257     }
10258   } else {
10259     if (Constraint == "vr" || Constraint == "vm")
10260       return C_RegisterClass;
10261   }
10262   return TargetLowering::getConstraintType(Constraint);
10263 }
10264 
10265 std::pair<unsigned, const TargetRegisterClass *>
10266 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10267                                                   StringRef Constraint,
10268                                                   MVT VT) const {
10269   // First, see if this is a constraint that directly corresponds to a
10270   // RISCV register class.
10271   if (Constraint.size() == 1) {
10272     switch (Constraint[0]) {
10273     case 'r':
10274       // TODO: Support fixed vectors up to XLen for P extension?
10275       if (VT.isVector())
10276         break;
10277       return std::make_pair(0U, &RISCV::GPRRegClass);
10278     case 'f':
10279       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10280         return std::make_pair(0U, &RISCV::FPR16RegClass);
10281       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10282         return std::make_pair(0U, &RISCV::FPR32RegClass);
10283       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10284         return std::make_pair(0U, &RISCV::FPR64RegClass);
10285       break;
10286     default:
10287       break;
10288     }
10289   } else if (Constraint == "vr") {
10290     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10291                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10292       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10293         return std::make_pair(0U, RC);
10294     }
10295   } else if (Constraint == "vm") {
10296     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10297       return std::make_pair(0U, &RISCV::VMV0RegClass);
10298   }
10299 
10300   // Clang will correctly decode the usage of register name aliases into their
10301   // official names. However, other frontends like `rustc` do not. This allows
10302   // users of these frontends to use the ABI names for registers in LLVM-style
10303   // register constraints.
10304   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10305                                .Case("{zero}", RISCV::X0)
10306                                .Case("{ra}", RISCV::X1)
10307                                .Case("{sp}", RISCV::X2)
10308                                .Case("{gp}", RISCV::X3)
10309                                .Case("{tp}", RISCV::X4)
10310                                .Case("{t0}", RISCV::X5)
10311                                .Case("{t1}", RISCV::X6)
10312                                .Case("{t2}", RISCV::X7)
10313                                .Cases("{s0}", "{fp}", RISCV::X8)
10314                                .Case("{s1}", RISCV::X9)
10315                                .Case("{a0}", RISCV::X10)
10316                                .Case("{a1}", RISCV::X11)
10317                                .Case("{a2}", RISCV::X12)
10318                                .Case("{a3}", RISCV::X13)
10319                                .Case("{a4}", RISCV::X14)
10320                                .Case("{a5}", RISCV::X15)
10321                                .Case("{a6}", RISCV::X16)
10322                                .Case("{a7}", RISCV::X17)
10323                                .Case("{s2}", RISCV::X18)
10324                                .Case("{s3}", RISCV::X19)
10325                                .Case("{s4}", RISCV::X20)
10326                                .Case("{s5}", RISCV::X21)
10327                                .Case("{s6}", RISCV::X22)
10328                                .Case("{s7}", RISCV::X23)
10329                                .Case("{s8}", RISCV::X24)
10330                                .Case("{s9}", RISCV::X25)
10331                                .Case("{s10}", RISCV::X26)
10332                                .Case("{s11}", RISCV::X27)
10333                                .Case("{t3}", RISCV::X28)
10334                                .Case("{t4}", RISCV::X29)
10335                                .Case("{t5}", RISCV::X30)
10336                                .Case("{t6}", RISCV::X31)
10337                                .Default(RISCV::NoRegister);
10338   if (XRegFromAlias != RISCV::NoRegister)
10339     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10340 
10341   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10342   // TableGen record rather than the AsmName to choose registers for InlineAsm
10343   // constraints, plus we want to match those names to the widest floating point
10344   // register type available, manually select floating point registers here.
10345   //
10346   // The second case is the ABI name of the register, so that frontends can also
10347   // use the ABI names in register constraint lists.
10348   if (Subtarget.hasStdExtF()) {
10349     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10350                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10351                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10352                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10353                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10354                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10355                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10356                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10357                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10358                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10359                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10360                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10361                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10362                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10363                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10364                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10365                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10366                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10367                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10368                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10369                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10370                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10371                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10372                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10373                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10374                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10375                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10376                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10377                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10378                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10379                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10380                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10381                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10382                         .Default(RISCV::NoRegister);
10383     if (FReg != RISCV::NoRegister) {
10384       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10385       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10386         unsigned RegNo = FReg - RISCV::F0_F;
10387         unsigned DReg = RISCV::F0_D + RegNo;
10388         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10389       }
10390       if (VT == MVT::f32 || VT == MVT::Other)
10391         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10392       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10393         unsigned RegNo = FReg - RISCV::F0_F;
10394         unsigned HReg = RISCV::F0_H + RegNo;
10395         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10396       }
10397     }
10398   }
10399 
10400   if (Subtarget.hasVInstructions()) {
10401     Register VReg = StringSwitch<Register>(Constraint.lower())
10402                         .Case("{v0}", RISCV::V0)
10403                         .Case("{v1}", RISCV::V1)
10404                         .Case("{v2}", RISCV::V2)
10405                         .Case("{v3}", RISCV::V3)
10406                         .Case("{v4}", RISCV::V4)
10407                         .Case("{v5}", RISCV::V5)
10408                         .Case("{v6}", RISCV::V6)
10409                         .Case("{v7}", RISCV::V7)
10410                         .Case("{v8}", RISCV::V8)
10411                         .Case("{v9}", RISCV::V9)
10412                         .Case("{v10}", RISCV::V10)
10413                         .Case("{v11}", RISCV::V11)
10414                         .Case("{v12}", RISCV::V12)
10415                         .Case("{v13}", RISCV::V13)
10416                         .Case("{v14}", RISCV::V14)
10417                         .Case("{v15}", RISCV::V15)
10418                         .Case("{v16}", RISCV::V16)
10419                         .Case("{v17}", RISCV::V17)
10420                         .Case("{v18}", RISCV::V18)
10421                         .Case("{v19}", RISCV::V19)
10422                         .Case("{v20}", RISCV::V20)
10423                         .Case("{v21}", RISCV::V21)
10424                         .Case("{v22}", RISCV::V22)
10425                         .Case("{v23}", RISCV::V23)
10426                         .Case("{v24}", RISCV::V24)
10427                         .Case("{v25}", RISCV::V25)
10428                         .Case("{v26}", RISCV::V26)
10429                         .Case("{v27}", RISCV::V27)
10430                         .Case("{v28}", RISCV::V28)
10431                         .Case("{v29}", RISCV::V29)
10432                         .Case("{v30}", RISCV::V30)
10433                         .Case("{v31}", RISCV::V31)
10434                         .Default(RISCV::NoRegister);
10435     if (VReg != RISCV::NoRegister) {
10436       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10437         return std::make_pair(VReg, &RISCV::VMRegClass);
10438       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10439         return std::make_pair(VReg, &RISCV::VRRegClass);
10440       for (const auto *RC :
10441            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10442         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10443           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10444           return std::make_pair(VReg, RC);
10445         }
10446       }
10447     }
10448   }
10449 
10450   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10451 }
10452 
10453 unsigned
10454 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10455   // Currently only support length 1 constraints.
10456   if (ConstraintCode.size() == 1) {
10457     switch (ConstraintCode[0]) {
10458     case 'A':
10459       return InlineAsm::Constraint_A;
10460     default:
10461       break;
10462     }
10463   }
10464 
10465   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10466 }
10467 
10468 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10469     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10470     SelectionDAG &DAG) const {
10471   // Currently only support length 1 constraints.
10472   if (Constraint.length() == 1) {
10473     switch (Constraint[0]) {
10474     case 'I':
10475       // Validate & create a 12-bit signed immediate operand.
10476       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10477         uint64_t CVal = C->getSExtValue();
10478         if (isInt<12>(CVal))
10479           Ops.push_back(
10480               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10481       }
10482       return;
10483     case 'J':
10484       // Validate & create an integer zero operand.
10485       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10486         if (C->getZExtValue() == 0)
10487           Ops.push_back(
10488               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10489       return;
10490     case 'K':
10491       // Validate & create a 5-bit unsigned immediate operand.
10492       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10493         uint64_t CVal = C->getZExtValue();
10494         if (isUInt<5>(CVal))
10495           Ops.push_back(
10496               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10497       }
10498       return;
10499     case 'S':
10500       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10501         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10502                                                  GA->getValueType(0)));
10503       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10504         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10505                                                 BA->getValueType(0)));
10506       }
10507       return;
10508     default:
10509       break;
10510     }
10511   }
10512   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10513 }
10514 
10515 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10516                                                    Instruction *Inst,
10517                                                    AtomicOrdering Ord) const {
10518   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10519     return Builder.CreateFence(Ord);
10520   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10521     return Builder.CreateFence(AtomicOrdering::Release);
10522   return nullptr;
10523 }
10524 
10525 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10526                                                     Instruction *Inst,
10527                                                     AtomicOrdering Ord) const {
10528   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10529     return Builder.CreateFence(AtomicOrdering::Acquire);
10530   return nullptr;
10531 }
10532 
10533 TargetLowering::AtomicExpansionKind
10534 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10535   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10536   // point operations can't be used in an lr/sc sequence without breaking the
10537   // forward-progress guarantee.
10538   if (AI->isFloatingPointOperation())
10539     return AtomicExpansionKind::CmpXChg;
10540 
10541   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10542   if (Size == 8 || Size == 16)
10543     return AtomicExpansionKind::MaskedIntrinsic;
10544   return AtomicExpansionKind::None;
10545 }
10546 
10547 static Intrinsic::ID
10548 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10549   if (XLen == 32) {
10550     switch (BinOp) {
10551     default:
10552       llvm_unreachable("Unexpected AtomicRMW BinOp");
10553     case AtomicRMWInst::Xchg:
10554       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
10555     case AtomicRMWInst::Add:
10556       return Intrinsic::riscv_masked_atomicrmw_add_i32;
10557     case AtomicRMWInst::Sub:
10558       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
10559     case AtomicRMWInst::Nand:
10560       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
10561     case AtomicRMWInst::Max:
10562       return Intrinsic::riscv_masked_atomicrmw_max_i32;
10563     case AtomicRMWInst::Min:
10564       return Intrinsic::riscv_masked_atomicrmw_min_i32;
10565     case AtomicRMWInst::UMax:
10566       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
10567     case AtomicRMWInst::UMin:
10568       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
10569     }
10570   }
10571 
10572   if (XLen == 64) {
10573     switch (BinOp) {
10574     default:
10575       llvm_unreachable("Unexpected AtomicRMW BinOp");
10576     case AtomicRMWInst::Xchg:
10577       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
10578     case AtomicRMWInst::Add:
10579       return Intrinsic::riscv_masked_atomicrmw_add_i64;
10580     case AtomicRMWInst::Sub:
10581       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
10582     case AtomicRMWInst::Nand:
10583       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
10584     case AtomicRMWInst::Max:
10585       return Intrinsic::riscv_masked_atomicrmw_max_i64;
10586     case AtomicRMWInst::Min:
10587       return Intrinsic::riscv_masked_atomicrmw_min_i64;
10588     case AtomicRMWInst::UMax:
10589       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
10590     case AtomicRMWInst::UMin:
10591       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
10592     }
10593   }
10594 
10595   llvm_unreachable("Unexpected XLen\n");
10596 }
10597 
10598 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
10599     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
10600     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
10601   unsigned XLen = Subtarget.getXLen();
10602   Value *Ordering =
10603       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
10604   Type *Tys[] = {AlignedAddr->getType()};
10605   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
10606       AI->getModule(),
10607       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
10608 
10609   if (XLen == 64) {
10610     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
10611     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10612     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
10613   }
10614 
10615   Value *Result;
10616 
10617   // Must pass the shift amount needed to sign extend the loaded value prior
10618   // to performing a signed comparison for min/max. ShiftAmt is the number of
10619   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10620   // is the number of bits to left+right shift the value in order to
10621   // sign-extend.
10622   if (AI->getOperation() == AtomicRMWInst::Min ||
10623       AI->getOperation() == AtomicRMWInst::Max) {
10624     const DataLayout &DL = AI->getModule()->getDataLayout();
10625     unsigned ValWidth =
10626         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10627     Value *SextShamt =
10628         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10629     Result = Builder.CreateCall(LrwOpScwLoop,
10630                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10631   } else {
10632     Result =
10633         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10634   }
10635 
10636   if (XLen == 64)
10637     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10638   return Result;
10639 }
10640 
10641 TargetLowering::AtomicExpansionKind
10642 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10643     AtomicCmpXchgInst *CI) const {
10644   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10645   if (Size == 8 || Size == 16)
10646     return AtomicExpansionKind::MaskedIntrinsic;
10647   return AtomicExpansionKind::None;
10648 }
10649 
10650 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10651     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10652     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10653   unsigned XLen = Subtarget.getXLen();
10654   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10655   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10656   if (XLen == 64) {
10657     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10658     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10659     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10660     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10661   }
10662   Type *Tys[] = {AlignedAddr->getType()};
10663   Function *MaskedCmpXchg =
10664       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10665   Value *Result = Builder.CreateCall(
10666       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10667   if (XLen == 64)
10668     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10669   return Result;
10670 }
10671 
10672 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10673   return false;
10674 }
10675 
10676 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10677                                                EVT VT) const {
10678   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10679     return false;
10680 
10681   switch (FPVT.getSimpleVT().SimpleTy) {
10682   case MVT::f16:
10683     return Subtarget.hasStdExtZfh();
10684   case MVT::f32:
10685     return Subtarget.hasStdExtF();
10686   case MVT::f64:
10687     return Subtarget.hasStdExtD();
10688   default:
10689     return false;
10690   }
10691 }
10692 
10693 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
10694   // If we are using the small code model, we can reduce size of jump table
10695   // entry to 4 bytes.
10696   if (Subtarget.is64Bit() && !isPositionIndependent() &&
10697       getTargetMachine().getCodeModel() == CodeModel::Small) {
10698     return MachineJumpTableInfo::EK_Custom32;
10699   }
10700   return TargetLowering::getJumpTableEncoding();
10701 }
10702 
10703 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
10704     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
10705     unsigned uid, MCContext &Ctx) const {
10706   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
10707          getTargetMachine().getCodeModel() == CodeModel::Small);
10708   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
10709 }
10710 
10711 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10712                                                      EVT VT) const {
10713   VT = VT.getScalarType();
10714 
10715   if (!VT.isSimple())
10716     return false;
10717 
10718   switch (VT.getSimpleVT().SimpleTy) {
10719   case MVT::f16:
10720     return Subtarget.hasStdExtZfh();
10721   case MVT::f32:
10722     return Subtarget.hasStdExtF();
10723   case MVT::f64:
10724     return Subtarget.hasStdExtD();
10725   default:
10726     break;
10727   }
10728 
10729   return false;
10730 }
10731 
10732 Register RISCVTargetLowering::getExceptionPointerRegister(
10733     const Constant *PersonalityFn) const {
10734   return RISCV::X10;
10735 }
10736 
10737 Register RISCVTargetLowering::getExceptionSelectorRegister(
10738     const Constant *PersonalityFn) const {
10739   return RISCV::X11;
10740 }
10741 
10742 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10743   // Return false to suppress the unnecessary extensions if the LibCall
10744   // arguments or return value is f32 type for LP64 ABI.
10745   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10746   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10747     return false;
10748 
10749   return true;
10750 }
10751 
10752 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10753   if (Subtarget.is64Bit() && Type == MVT::i32)
10754     return true;
10755 
10756   return IsSigned;
10757 }
10758 
10759 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10760                                                  SDValue C) const {
10761   // Check integral scalar types.
10762   if (VT.isScalarInteger()) {
10763     // Omit the optimization if the sub target has the M extension and the data
10764     // size exceeds XLen.
10765     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10766       return false;
10767     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10768       // Break the MUL to a SLLI and an ADD/SUB.
10769       const APInt &Imm = ConstNode->getAPIntValue();
10770       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10771           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10772         return true;
10773       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10774       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10775           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10776            (Imm - 8).isPowerOf2()))
10777         return true;
10778       // Omit the following optimization if the sub target has the M extension
10779       // and the data size >= XLen.
10780       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10781         return false;
10782       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10783       // a pair of LUI/ADDI.
10784       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10785         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10786         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10787             (1 - ImmS).isPowerOf2())
10788         return true;
10789       }
10790     }
10791   }
10792 
10793   return false;
10794 }
10795 
10796 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10797     const SDValue &AddNode, const SDValue &ConstNode) const {
10798   // Let the DAGCombiner decide for vectors.
10799   EVT VT = AddNode.getValueType();
10800   if (VT.isVector())
10801     return true;
10802 
10803   // Let the DAGCombiner decide for larger types.
10804   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10805     return true;
10806 
10807   // It is worse if c1 is simm12 while c1*c2 is not.
10808   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10809   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10810   const APInt &C1 = C1Node->getAPIntValue();
10811   const APInt &C2 = C2Node->getAPIntValue();
10812   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10813     return false;
10814 
10815   // Default to true and let the DAGCombiner decide.
10816   return true;
10817 }
10818 
10819 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10820     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10821     bool *Fast) const {
10822   if (!VT.isVector())
10823     return false;
10824 
10825   EVT ElemVT = VT.getVectorElementType();
10826   if (Alignment >= ElemVT.getStoreSize()) {
10827     if (Fast)
10828       *Fast = true;
10829     return true;
10830   }
10831 
10832   return false;
10833 }
10834 
10835 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10836     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10837     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10838   bool IsABIRegCopy = CC.hasValue();
10839   EVT ValueVT = Val.getValueType();
10840   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10841     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
10842     // and cast to f32.
10843     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
10844     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
10845     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
10846                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
10847     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
10848     Parts[0] = Val;
10849     return true;
10850   }
10851 
10852   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10853     LLVMContext &Context = *DAG.getContext();
10854     EVT ValueEltVT = ValueVT.getVectorElementType();
10855     EVT PartEltVT = PartVT.getVectorElementType();
10856     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10857     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10858     if (PartVTBitSize % ValueVTBitSize == 0) {
10859       assert(PartVTBitSize >= ValueVTBitSize);
10860       // If the element types are different, bitcast to the same element type of
10861       // PartVT first.
10862       // Give an example here, we want copy a <vscale x 1 x i8> value to
10863       // <vscale x 4 x i16>.
10864       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
10865       // subvector, then we can bitcast to <vscale x 4 x i16>.
10866       if (ValueEltVT != PartEltVT) {
10867         if (PartVTBitSize > ValueVTBitSize) {
10868           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10869           assert(Count != 0 && "The number of element should not be zero.");
10870           EVT SameEltTypeVT =
10871               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10872           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
10873                             DAG.getUNDEF(SameEltTypeVT), Val,
10874                             DAG.getVectorIdxConstant(0, DL));
10875         }
10876         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
10877       } else {
10878         Val =
10879             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
10880                         Val, DAG.getVectorIdxConstant(0, DL));
10881       }
10882       Parts[0] = Val;
10883       return true;
10884     }
10885   }
10886   return false;
10887 }
10888 
10889 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10890     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10891     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10892   bool IsABIRegCopy = CC.hasValue();
10893   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10894     SDValue Val = Parts[0];
10895 
10896     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10897     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10898     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10899     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10900     return Val;
10901   }
10902 
10903   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10904     LLVMContext &Context = *DAG.getContext();
10905     SDValue Val = Parts[0];
10906     EVT ValueEltVT = ValueVT.getVectorElementType();
10907     EVT PartEltVT = PartVT.getVectorElementType();
10908     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10909     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10910     if (PartVTBitSize % ValueVTBitSize == 0) {
10911       assert(PartVTBitSize >= ValueVTBitSize);
10912       EVT SameEltTypeVT = ValueVT;
10913       // If the element types are different, convert it to the same element type
10914       // of PartVT.
10915       // Give an example here, we want copy a <vscale x 1 x i8> value from
10916       // <vscale x 4 x i16>.
10917       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
10918       // then we can extract <vscale x 1 x i8>.
10919       if (ValueEltVT != PartEltVT) {
10920         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10921         assert(Count != 0 && "The number of element should not be zero.");
10922         SameEltTypeVT =
10923             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10924         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
10925       }
10926       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
10927                         DAG.getVectorIdxConstant(0, DL));
10928       return Val;
10929     }
10930   }
10931   return SDValue();
10932 }
10933 
10934 SDValue
10935 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10936                                    SelectionDAG &DAG,
10937                                    SmallVectorImpl<SDNode *> &Created) const {
10938   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
10939   if (isIntDivCheap(N->getValueType(0), Attr))
10940     return SDValue(N, 0); // Lower SDIV as SDIV
10941 
10942   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
10943          "Unexpected divisor!");
10944 
10945   // Conditional move is needed, so do the transformation iff Zbt is enabled.
10946   if (!Subtarget.hasStdExtZbt())
10947     return SDValue();
10948 
10949   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
10950   // Besides, more critical path instructions will be generated when dividing
10951   // by 2. So we keep using the original DAGs for these cases.
10952   unsigned Lg2 = Divisor.countTrailingZeros();
10953   if (Lg2 == 1 || Lg2 >= 12)
10954     return SDValue();
10955 
10956   // fold (sdiv X, pow2)
10957   EVT VT = N->getValueType(0);
10958   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
10959     return SDValue();
10960 
10961   SDLoc DL(N);
10962   SDValue N0 = N->getOperand(0);
10963   SDValue Zero = DAG.getConstant(0, DL, VT);
10964   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
10965 
10966   // Add (N0 < 0) ? Pow2 - 1 : 0;
10967   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
10968   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
10969   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
10970 
10971   Created.push_back(Cmp.getNode());
10972   Created.push_back(Add.getNode());
10973   Created.push_back(Sel.getNode());
10974 
10975   // Divide by pow2.
10976   SDValue SRA =
10977       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
10978 
10979   // If we're dividing by a positive value, we're done.  Otherwise, we must
10980   // negate the result.
10981   if (Divisor.isNonNegative())
10982     return SRA;
10983 
10984   Created.push_back(SRA.getNode());
10985   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
10986 }
10987 
10988 #define GET_REGISTER_MATCHER
10989 #include "RISCVGenAsmMatcher.inc"
10990 
10991 Register
10992 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10993                                        const MachineFunction &MF) const {
10994   Register Reg = MatchRegisterAltName(RegName);
10995   if (Reg == RISCV::NoRegister)
10996     Reg = MatchRegisterName(RegName);
10997   if (Reg == RISCV::NoRegister)
10998     report_fatal_error(
10999         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11000   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11001   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11002     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11003                              StringRef(RegName) + "\"."));
11004   return Reg;
11005 }
11006 
11007 namespace llvm {
11008 namespace RISCVVIntrinsicsTable {
11009 
11010 #define GET_RISCVVIntrinsicsTable_IMPL
11011 #include "RISCVGenSearchableTables.inc"
11012 
11013 } // namespace RISCVVIntrinsicsTable
11014 
11015 } // namespace llvm
11016