1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_MERGE, ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 530 ISD::VP_SELECT}; 531 532 if (!Subtarget.is64Bit()) { 533 // We must custom-lower certain vXi64 operations on RV32 due to the vector 534 // element type being illegal. 535 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 537 538 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 546 547 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 555 } 556 557 for (MVT VT : BoolVecVTs) { 558 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 559 560 // Mask VTs are custom-expanded into a series of standard nodes 561 setOperationAction(ISD::TRUNCATE, VT, Custom); 562 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 563 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 564 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 565 566 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 567 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 568 569 setOperationAction(ISD::SELECT, VT, Custom); 570 setOperationAction(ISD::SELECT_CC, VT, Expand); 571 setOperationAction(ISD::VSELECT, VT, Expand); 572 setOperationAction(ISD::VP_SELECT, VT, Expand); 573 574 setOperationAction(ISD::VP_AND, VT, Custom); 575 setOperationAction(ISD::VP_OR, VT, Custom); 576 setOperationAction(ISD::VP_XOR, VT, Custom); 577 578 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 580 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 581 582 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 584 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 585 586 // RVV has native int->float & float->int conversions where the 587 // element type sizes are within one power-of-two of each other. Any 588 // wider distances between type sizes have to be lowered as sequences 589 // which progressively narrow the gap in stages. 590 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 592 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 593 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 594 595 // Expand all extending loads to types larger than this, and truncating 596 // stores from types larger than this. 597 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 598 setTruncStoreAction(OtherVT, VT, Expand); 599 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 601 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 602 } 603 } 604 605 for (MVT VT : IntVecVTs) { 606 if (VT.getVectorElementType() == MVT::i64 && 607 !Subtarget.hasVInstructionsI64()) 608 continue; 609 610 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 611 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 612 613 // Vectors implement MULHS/MULHU. 614 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 615 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 616 617 setOperationAction(ISD::SMIN, VT, Legal); 618 setOperationAction(ISD::SMAX, VT, Legal); 619 setOperationAction(ISD::UMIN, VT, Legal); 620 setOperationAction(ISD::UMAX, VT, Legal); 621 622 setOperationAction(ISD::ROTL, VT, Expand); 623 setOperationAction(ISD::ROTR, VT, Expand); 624 625 setOperationAction(ISD::CTTZ, VT, Expand); 626 setOperationAction(ISD::CTLZ, VT, Expand); 627 setOperationAction(ISD::CTPOP, VT, Expand); 628 629 setOperationAction(ISD::BSWAP, VT, Expand); 630 631 // Custom-lower extensions and truncations from/to mask types. 632 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 633 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 634 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 635 636 // RVV has native int->float & float->int conversions where the 637 // element type sizes are within one power-of-two of each other. Any 638 // wider distances between type sizes have to be lowered as sequences 639 // which progressively narrow the gap in stages. 640 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 641 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 642 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 643 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 644 645 setOperationAction(ISD::SADDSAT, VT, Legal); 646 setOperationAction(ISD::UADDSAT, VT, Legal); 647 setOperationAction(ISD::SSUBSAT, VT, Legal); 648 setOperationAction(ISD::USUBSAT, VT, Legal); 649 650 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 651 // nodes which truncate by one power of two at a time. 652 setOperationAction(ISD::TRUNCATE, VT, Custom); 653 654 // Custom-lower insert/extract operations to simplify patterns. 655 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 656 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 657 658 // Custom-lower reduction operations to set up the corresponding custom 659 // nodes' operands. 660 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 662 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 663 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 664 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 665 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 666 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 667 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 668 669 for (unsigned VPOpc : IntegerVPOps) 670 setOperationAction(VPOpc, VT, Custom); 671 672 setOperationAction(ISD::LOAD, VT, Custom); 673 setOperationAction(ISD::STORE, VT, Custom); 674 675 setOperationAction(ISD::MLOAD, VT, Custom); 676 setOperationAction(ISD::MSTORE, VT, Custom); 677 setOperationAction(ISD::MGATHER, VT, Custom); 678 setOperationAction(ISD::MSCATTER, VT, Custom); 679 680 setOperationAction(ISD::VP_LOAD, VT, Custom); 681 setOperationAction(ISD::VP_STORE, VT, Custom); 682 setOperationAction(ISD::VP_GATHER, VT, Custom); 683 setOperationAction(ISD::VP_SCATTER, VT, Custom); 684 685 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 686 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 687 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 688 689 setOperationAction(ISD::SELECT, VT, Custom); 690 setOperationAction(ISD::SELECT_CC, VT, Expand); 691 692 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 693 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 694 695 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 696 setTruncStoreAction(VT, OtherVT, Expand); 697 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 698 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 699 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 700 } 701 702 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 703 // type that can represent the value exactly. 704 if (VT.getVectorElementType() != MVT::i64) { 705 MVT FloatEltVT = 706 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 707 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 708 if (isTypeLegal(FloatVT)) { 709 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 710 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 711 } 712 } 713 } 714 715 // Expand various CCs to best match the RVV ISA, which natively supports UNE 716 // but no other unordered comparisons, and supports all ordered comparisons 717 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 718 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 719 // and we pattern-match those back to the "original", swapping operands once 720 // more. This way we catch both operations and both "vf" and "fv" forms with 721 // fewer patterns. 722 static const ISD::CondCode VFPCCToExpand[] = { 723 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 724 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 725 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 726 }; 727 728 // Sets common operation actions on RVV floating-point vector types. 729 const auto SetCommonVFPActions = [&](MVT VT) { 730 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 731 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 732 // sizes are within one power-of-two of each other. Therefore conversions 733 // between vXf16 and vXf64 must be lowered as sequences which convert via 734 // vXf32. 735 setOperationAction(ISD::FP_ROUND, VT, Custom); 736 setOperationAction(ISD::FP_EXTEND, VT, Custom); 737 // Custom-lower insert/extract operations to simplify patterns. 738 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 740 // Expand various condition codes (explained above). 741 for (auto CC : VFPCCToExpand) 742 setCondCodeAction(CC, VT, Expand); 743 744 setOperationAction(ISD::FMINNUM, VT, Legal); 745 setOperationAction(ISD::FMAXNUM, VT, Legal); 746 747 setOperationAction(ISD::FTRUNC, VT, Custom); 748 setOperationAction(ISD::FCEIL, VT, Custom); 749 setOperationAction(ISD::FFLOOR, VT, Custom); 750 751 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 753 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 754 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 755 756 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 757 758 setOperationAction(ISD::LOAD, VT, Custom); 759 setOperationAction(ISD::STORE, VT, Custom); 760 761 setOperationAction(ISD::MLOAD, VT, Custom); 762 setOperationAction(ISD::MSTORE, VT, Custom); 763 setOperationAction(ISD::MGATHER, VT, Custom); 764 setOperationAction(ISD::MSCATTER, VT, Custom); 765 766 setOperationAction(ISD::VP_LOAD, VT, Custom); 767 setOperationAction(ISD::VP_STORE, VT, Custom); 768 setOperationAction(ISD::VP_GATHER, VT, Custom); 769 setOperationAction(ISD::VP_SCATTER, VT, Custom); 770 771 setOperationAction(ISD::SELECT, VT, Custom); 772 setOperationAction(ISD::SELECT_CC, VT, Expand); 773 774 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 775 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 776 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 777 778 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 779 780 for (unsigned VPOpc : FloatingPointVPOps) 781 setOperationAction(VPOpc, VT, Custom); 782 }; 783 784 // Sets common extload/truncstore actions on RVV floating-point vector 785 // types. 786 const auto SetCommonVFPExtLoadTruncStoreActions = 787 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 788 for (auto SmallVT : SmallerVTs) { 789 setTruncStoreAction(VT, SmallVT, Expand); 790 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 791 } 792 }; 793 794 if (Subtarget.hasVInstructionsF16()) 795 for (MVT VT : F16VecVTs) 796 SetCommonVFPActions(VT); 797 798 for (MVT VT : F32VecVTs) { 799 if (Subtarget.hasVInstructionsF32()) 800 SetCommonVFPActions(VT); 801 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 802 } 803 804 for (MVT VT : F64VecVTs) { 805 if (Subtarget.hasVInstructionsF64()) 806 SetCommonVFPActions(VT); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 808 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 809 } 810 811 if (Subtarget.useRVVForFixedLengthVectors()) { 812 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 813 if (!useRVVForFixedLengthVectorVT(VT)) 814 continue; 815 816 // By default everything must be expanded. 817 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 818 setOperationAction(Op, VT, Expand); 819 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 820 setTruncStoreAction(VT, OtherVT, Expand); 821 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 822 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 823 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 824 } 825 826 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 827 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 828 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 829 830 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 831 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 832 833 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 834 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 835 836 setOperationAction(ISD::LOAD, VT, Custom); 837 setOperationAction(ISD::STORE, VT, Custom); 838 839 setOperationAction(ISD::SETCC, VT, Custom); 840 841 setOperationAction(ISD::SELECT, VT, Custom); 842 843 setOperationAction(ISD::TRUNCATE, VT, Custom); 844 845 setOperationAction(ISD::BITCAST, VT, Custom); 846 847 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 848 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 849 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 850 851 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 852 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 853 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 854 855 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 856 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 857 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 858 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 859 860 // Operations below are different for between masks and other vectors. 861 if (VT.getVectorElementType() == MVT::i1) { 862 setOperationAction(ISD::VP_AND, VT, Custom); 863 setOperationAction(ISD::VP_OR, VT, Custom); 864 setOperationAction(ISD::VP_XOR, VT, Custom); 865 setOperationAction(ISD::AND, VT, Custom); 866 setOperationAction(ISD::OR, VT, Custom); 867 setOperationAction(ISD::XOR, VT, Custom); 868 continue; 869 } 870 871 // Use SPLAT_VECTOR to prevent type legalization from destroying the 872 // splats when type legalizing i64 scalar on RV32. 873 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 874 // improvements first. 875 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 876 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 877 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 878 } 879 880 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 881 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 882 883 setOperationAction(ISD::MLOAD, VT, Custom); 884 setOperationAction(ISD::MSTORE, VT, Custom); 885 setOperationAction(ISD::MGATHER, VT, Custom); 886 setOperationAction(ISD::MSCATTER, VT, Custom); 887 888 setOperationAction(ISD::VP_LOAD, VT, Custom); 889 setOperationAction(ISD::VP_STORE, VT, Custom); 890 setOperationAction(ISD::VP_GATHER, VT, Custom); 891 setOperationAction(ISD::VP_SCATTER, VT, Custom); 892 893 setOperationAction(ISD::ADD, VT, Custom); 894 setOperationAction(ISD::MUL, VT, Custom); 895 setOperationAction(ISD::SUB, VT, Custom); 896 setOperationAction(ISD::AND, VT, Custom); 897 setOperationAction(ISD::OR, VT, Custom); 898 setOperationAction(ISD::XOR, VT, Custom); 899 setOperationAction(ISD::SDIV, VT, Custom); 900 setOperationAction(ISD::SREM, VT, Custom); 901 setOperationAction(ISD::UDIV, VT, Custom); 902 setOperationAction(ISD::UREM, VT, Custom); 903 setOperationAction(ISD::SHL, VT, Custom); 904 setOperationAction(ISD::SRA, VT, Custom); 905 setOperationAction(ISD::SRL, VT, Custom); 906 907 setOperationAction(ISD::SMIN, VT, Custom); 908 setOperationAction(ISD::SMAX, VT, Custom); 909 setOperationAction(ISD::UMIN, VT, Custom); 910 setOperationAction(ISD::UMAX, VT, Custom); 911 setOperationAction(ISD::ABS, VT, Custom); 912 913 setOperationAction(ISD::MULHS, VT, Custom); 914 setOperationAction(ISD::MULHU, VT, Custom); 915 916 setOperationAction(ISD::SADDSAT, VT, Custom); 917 setOperationAction(ISD::UADDSAT, VT, Custom); 918 setOperationAction(ISD::SSUBSAT, VT, Custom); 919 setOperationAction(ISD::USUBSAT, VT, Custom); 920 921 setOperationAction(ISD::VSELECT, VT, Custom); 922 setOperationAction(ISD::SELECT_CC, VT, Expand); 923 924 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 925 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 926 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 927 928 // Custom-lower reduction operations to set up the corresponding custom 929 // nodes' operands. 930 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 934 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 935 936 for (unsigned VPOpc : IntegerVPOps) 937 setOperationAction(VPOpc, VT, Custom); 938 939 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 940 // type that can represent the value exactly. 941 if (VT.getVectorElementType() != MVT::i64) { 942 MVT FloatEltVT = 943 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 944 EVT FloatVT = 945 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 946 if (isTypeLegal(FloatVT)) { 947 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 948 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 949 } 950 } 951 } 952 953 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 954 if (!useRVVForFixedLengthVectorVT(VT)) 955 continue; 956 957 // By default everything must be expanded. 958 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 959 setOperationAction(Op, VT, Expand); 960 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 961 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 962 setTruncStoreAction(VT, OtherVT, Expand); 963 } 964 965 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 966 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 967 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 968 969 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 970 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 971 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 972 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 973 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 974 975 setOperationAction(ISD::LOAD, VT, Custom); 976 setOperationAction(ISD::STORE, VT, Custom); 977 setOperationAction(ISD::MLOAD, VT, Custom); 978 setOperationAction(ISD::MSTORE, VT, Custom); 979 setOperationAction(ISD::MGATHER, VT, Custom); 980 setOperationAction(ISD::MSCATTER, VT, Custom); 981 982 setOperationAction(ISD::VP_LOAD, VT, Custom); 983 setOperationAction(ISD::VP_STORE, VT, Custom); 984 setOperationAction(ISD::VP_GATHER, VT, Custom); 985 setOperationAction(ISD::VP_SCATTER, VT, Custom); 986 987 setOperationAction(ISD::FADD, VT, Custom); 988 setOperationAction(ISD::FSUB, VT, Custom); 989 setOperationAction(ISD::FMUL, VT, Custom); 990 setOperationAction(ISD::FDIV, VT, Custom); 991 setOperationAction(ISD::FNEG, VT, Custom); 992 setOperationAction(ISD::FABS, VT, Custom); 993 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 994 setOperationAction(ISD::FSQRT, VT, Custom); 995 setOperationAction(ISD::FMA, VT, Custom); 996 setOperationAction(ISD::FMINNUM, VT, Custom); 997 setOperationAction(ISD::FMAXNUM, VT, Custom); 998 999 setOperationAction(ISD::FP_ROUND, VT, Custom); 1000 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1001 1002 setOperationAction(ISD::FTRUNC, VT, Custom); 1003 setOperationAction(ISD::FCEIL, VT, Custom); 1004 setOperationAction(ISD::FFLOOR, VT, Custom); 1005 1006 for (auto CC : VFPCCToExpand) 1007 setCondCodeAction(CC, VT, Expand); 1008 1009 setOperationAction(ISD::VSELECT, VT, Custom); 1010 setOperationAction(ISD::SELECT, VT, Custom); 1011 setOperationAction(ISD::SELECT_CC, VT, Expand); 1012 1013 setOperationAction(ISD::BITCAST, VT, Custom); 1014 1015 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1016 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1018 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1019 1020 for (unsigned VPOpc : FloatingPointVPOps) 1021 setOperationAction(VPOpc, VT, Custom); 1022 } 1023 1024 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1025 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1026 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1028 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1029 if (Subtarget.hasStdExtZfh()) 1030 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1031 if (Subtarget.hasStdExtF()) 1032 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1033 if (Subtarget.hasStdExtD()) 1034 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1035 } 1036 } 1037 1038 // Function alignments. 1039 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1040 setMinFunctionAlignment(FunctionAlignment); 1041 setPrefFunctionAlignment(FunctionAlignment); 1042 1043 setMinimumJumpTableEntries(5); 1044 1045 // Jumps are expensive, compared to logic 1046 setJumpIsExpensive(); 1047 1048 setTargetDAGCombine(ISD::ADD); 1049 setTargetDAGCombine(ISD::SUB); 1050 setTargetDAGCombine(ISD::AND); 1051 setTargetDAGCombine(ISD::OR); 1052 setTargetDAGCombine(ISD::XOR); 1053 setTargetDAGCombine(ISD::ANY_EXTEND); 1054 if (Subtarget.hasStdExtF()) { 1055 setTargetDAGCombine(ISD::ZERO_EXTEND); 1056 setTargetDAGCombine(ISD::FP_TO_SINT); 1057 setTargetDAGCombine(ISD::FP_TO_UINT); 1058 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1059 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1060 } 1061 if (Subtarget.hasVInstructions()) { 1062 setTargetDAGCombine(ISD::FCOPYSIGN); 1063 setTargetDAGCombine(ISD::MGATHER); 1064 setTargetDAGCombine(ISD::MSCATTER); 1065 setTargetDAGCombine(ISD::VP_GATHER); 1066 setTargetDAGCombine(ISD::VP_SCATTER); 1067 setTargetDAGCombine(ISD::SRA); 1068 setTargetDAGCombine(ISD::SRL); 1069 setTargetDAGCombine(ISD::SHL); 1070 setTargetDAGCombine(ISD::STORE); 1071 } 1072 } 1073 1074 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1075 LLVMContext &Context, 1076 EVT VT) const { 1077 if (!VT.isVector()) 1078 return getPointerTy(DL); 1079 if (Subtarget.hasVInstructions() && 1080 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1081 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1082 return VT.changeVectorElementTypeToInteger(); 1083 } 1084 1085 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1086 return Subtarget.getXLenVT(); 1087 } 1088 1089 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1090 const CallInst &I, 1091 MachineFunction &MF, 1092 unsigned Intrinsic) const { 1093 auto &DL = I.getModule()->getDataLayout(); 1094 switch (Intrinsic) { 1095 default: 1096 return false; 1097 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1101 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1102 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1103 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1104 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1105 case Intrinsic::riscv_masked_cmpxchg_i32: { 1106 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1107 Info.opc = ISD::INTRINSIC_W_CHAIN; 1108 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1109 Info.ptrVal = I.getArgOperand(0); 1110 Info.offset = 0; 1111 Info.align = Align(4); 1112 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1113 MachineMemOperand::MOVolatile; 1114 return true; 1115 } 1116 case Intrinsic::riscv_masked_strided_load: 1117 Info.opc = ISD::INTRINSIC_W_CHAIN; 1118 Info.ptrVal = I.getArgOperand(1); 1119 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1120 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1121 Info.size = MemoryLocation::UnknownSize; 1122 Info.flags |= MachineMemOperand::MOLoad; 1123 return true; 1124 case Intrinsic::riscv_masked_strided_store: 1125 Info.opc = ISD::INTRINSIC_VOID; 1126 Info.ptrVal = I.getArgOperand(1); 1127 Info.memVT = 1128 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1129 Info.align = Align( 1130 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1131 8); 1132 Info.size = MemoryLocation::UnknownSize; 1133 Info.flags |= MachineMemOperand::MOStore; 1134 return true; 1135 } 1136 } 1137 1138 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1139 const AddrMode &AM, Type *Ty, 1140 unsigned AS, 1141 Instruction *I) const { 1142 // No global is ever allowed as a base. 1143 if (AM.BaseGV) 1144 return false; 1145 1146 // Require a 12-bit signed offset. 1147 if (!isInt<12>(AM.BaseOffs)) 1148 return false; 1149 1150 switch (AM.Scale) { 1151 case 0: // "r+i" or just "i", depending on HasBaseReg. 1152 break; 1153 case 1: 1154 if (!AM.HasBaseReg) // allow "r+i". 1155 break; 1156 return false; // disallow "r+r" or "r+r+i". 1157 default: 1158 return false; 1159 } 1160 1161 return true; 1162 } 1163 1164 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1165 return isInt<12>(Imm); 1166 } 1167 1168 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1169 return isInt<12>(Imm); 1170 } 1171 1172 // On RV32, 64-bit integers are split into their high and low parts and held 1173 // in two different registers, so the trunc is free since the low register can 1174 // just be used. 1175 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1176 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1177 return false; 1178 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1179 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1180 return (SrcBits == 64 && DestBits == 32); 1181 } 1182 1183 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1184 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1185 !SrcVT.isInteger() || !DstVT.isInteger()) 1186 return false; 1187 unsigned SrcBits = SrcVT.getSizeInBits(); 1188 unsigned DestBits = DstVT.getSizeInBits(); 1189 return (SrcBits == 64 && DestBits == 32); 1190 } 1191 1192 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1193 // Zexts are free if they can be combined with a load. 1194 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1195 // poorly with type legalization of compares preferring sext. 1196 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1197 EVT MemVT = LD->getMemoryVT(); 1198 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1199 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1200 LD->getExtensionType() == ISD::ZEXTLOAD)) 1201 return true; 1202 } 1203 1204 return TargetLowering::isZExtFree(Val, VT2); 1205 } 1206 1207 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1208 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1209 } 1210 1211 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1212 return Subtarget.hasStdExtZbb(); 1213 } 1214 1215 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1216 return Subtarget.hasStdExtZbb(); 1217 } 1218 1219 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1220 EVT VT = Y.getValueType(); 1221 1222 // FIXME: Support vectors once we have tests. 1223 if (VT.isVector()) 1224 return false; 1225 1226 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1227 } 1228 1229 /// Check if sinking \p I's operands to I's basic block is profitable, because 1230 /// the operands can be folded into a target instruction, e.g. 1231 /// splats of scalars can fold into vector instructions. 1232 bool RISCVTargetLowering::shouldSinkOperands( 1233 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1234 using namespace llvm::PatternMatch; 1235 1236 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1237 return false; 1238 1239 auto IsSinker = [&](Instruction *I, int Operand) { 1240 switch (I->getOpcode()) { 1241 case Instruction::Add: 1242 case Instruction::Sub: 1243 case Instruction::Mul: 1244 case Instruction::And: 1245 case Instruction::Or: 1246 case Instruction::Xor: 1247 case Instruction::FAdd: 1248 case Instruction::FSub: 1249 case Instruction::FMul: 1250 case Instruction::FDiv: 1251 case Instruction::ICmp: 1252 case Instruction::FCmp: 1253 return true; 1254 case Instruction::Shl: 1255 case Instruction::LShr: 1256 case Instruction::AShr: 1257 case Instruction::UDiv: 1258 case Instruction::SDiv: 1259 case Instruction::URem: 1260 case Instruction::SRem: 1261 return Operand == 1; 1262 case Instruction::Call: 1263 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1264 switch (II->getIntrinsicID()) { 1265 case Intrinsic::fma: 1266 return Operand == 0 || Operand == 1; 1267 // FIXME: Our patterns can only match vx/vf instructions when the splat 1268 // it on the RHS, because TableGen doesn't recognize our VP operations 1269 // as commutative. 1270 case Intrinsic::vp_add: 1271 case Intrinsic::vp_mul: 1272 case Intrinsic::vp_and: 1273 case Intrinsic::vp_or: 1274 case Intrinsic::vp_xor: 1275 case Intrinsic::vp_fadd: 1276 case Intrinsic::vp_fmul: 1277 case Intrinsic::vp_shl: 1278 case Intrinsic::vp_lshr: 1279 case Intrinsic::vp_ashr: 1280 case Intrinsic::vp_udiv: 1281 case Intrinsic::vp_sdiv: 1282 case Intrinsic::vp_urem: 1283 case Intrinsic::vp_srem: 1284 return Operand == 1; 1285 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1286 // explicit patterns for both LHS and RHS (as 'vr' versions). 1287 case Intrinsic::vp_sub: 1288 case Intrinsic::vp_fsub: 1289 case Intrinsic::vp_fdiv: 1290 return Operand == 0 || Operand == 1; 1291 default: 1292 return false; 1293 } 1294 } 1295 return false; 1296 default: 1297 return false; 1298 } 1299 }; 1300 1301 for (auto OpIdx : enumerate(I->operands())) { 1302 if (!IsSinker(I, OpIdx.index())) 1303 continue; 1304 1305 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1306 // Make sure we are not already sinking this operand 1307 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1308 continue; 1309 1310 // We are looking for a splat that can be sunk. 1311 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1312 m_Undef(), m_ZeroMask()))) 1313 continue; 1314 1315 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1316 // and vector registers 1317 for (Use &U : Op->uses()) { 1318 Instruction *Insn = cast<Instruction>(U.getUser()); 1319 if (!IsSinker(Insn, U.getOperandNo())) 1320 return false; 1321 } 1322 1323 Ops.push_back(&Op->getOperandUse(0)); 1324 Ops.push_back(&OpIdx.value()); 1325 } 1326 return true; 1327 } 1328 1329 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1330 bool ForCodeSize) const { 1331 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1332 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1333 return false; 1334 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1335 return false; 1336 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1337 return false; 1338 return Imm.isZero(); 1339 } 1340 1341 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1342 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1343 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1344 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1345 } 1346 1347 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1348 CallingConv::ID CC, 1349 EVT VT) const { 1350 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1351 // We might still end up using a GPR but that will be decided based on ABI. 1352 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1353 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1354 return MVT::f32; 1355 1356 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1357 } 1358 1359 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1360 CallingConv::ID CC, 1361 EVT VT) const { 1362 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1363 // We might still end up using a GPR but that will be decided based on ABI. 1364 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1365 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1366 return 1; 1367 1368 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1369 } 1370 1371 // Changes the condition code and swaps operands if necessary, so the SetCC 1372 // operation matches one of the comparisons supported directly by branches 1373 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1374 // with 1/-1. 1375 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1376 ISD::CondCode &CC, SelectionDAG &DAG) { 1377 // Convert X > -1 to X >= 0. 1378 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1379 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1380 CC = ISD::SETGE; 1381 return; 1382 } 1383 // Convert X < 1 to 0 >= X. 1384 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1385 RHS = LHS; 1386 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1387 CC = ISD::SETGE; 1388 return; 1389 } 1390 1391 switch (CC) { 1392 default: 1393 break; 1394 case ISD::SETGT: 1395 case ISD::SETLE: 1396 case ISD::SETUGT: 1397 case ISD::SETULE: 1398 CC = ISD::getSetCCSwappedOperands(CC); 1399 std::swap(LHS, RHS); 1400 break; 1401 } 1402 } 1403 1404 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1405 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1406 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1407 if (VT.getVectorElementType() == MVT::i1) 1408 KnownSize *= 8; 1409 1410 switch (KnownSize) { 1411 default: 1412 llvm_unreachable("Invalid LMUL."); 1413 case 8: 1414 return RISCVII::VLMUL::LMUL_F8; 1415 case 16: 1416 return RISCVII::VLMUL::LMUL_F4; 1417 case 32: 1418 return RISCVII::VLMUL::LMUL_F2; 1419 case 64: 1420 return RISCVII::VLMUL::LMUL_1; 1421 case 128: 1422 return RISCVII::VLMUL::LMUL_2; 1423 case 256: 1424 return RISCVII::VLMUL::LMUL_4; 1425 case 512: 1426 return RISCVII::VLMUL::LMUL_8; 1427 } 1428 } 1429 1430 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1431 switch (LMul) { 1432 default: 1433 llvm_unreachable("Invalid LMUL."); 1434 case RISCVII::VLMUL::LMUL_F8: 1435 case RISCVII::VLMUL::LMUL_F4: 1436 case RISCVII::VLMUL::LMUL_F2: 1437 case RISCVII::VLMUL::LMUL_1: 1438 return RISCV::VRRegClassID; 1439 case RISCVII::VLMUL::LMUL_2: 1440 return RISCV::VRM2RegClassID; 1441 case RISCVII::VLMUL::LMUL_4: 1442 return RISCV::VRM4RegClassID; 1443 case RISCVII::VLMUL::LMUL_8: 1444 return RISCV::VRM8RegClassID; 1445 } 1446 } 1447 1448 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1449 RISCVII::VLMUL LMUL = getLMUL(VT); 1450 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1451 LMUL == RISCVII::VLMUL::LMUL_F4 || 1452 LMUL == RISCVII::VLMUL::LMUL_F2 || 1453 LMUL == RISCVII::VLMUL::LMUL_1) { 1454 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1455 "Unexpected subreg numbering"); 1456 return RISCV::sub_vrm1_0 + Index; 1457 } 1458 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1459 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1460 "Unexpected subreg numbering"); 1461 return RISCV::sub_vrm2_0 + Index; 1462 } 1463 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1464 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1465 "Unexpected subreg numbering"); 1466 return RISCV::sub_vrm4_0 + Index; 1467 } 1468 llvm_unreachable("Invalid vector type."); 1469 } 1470 1471 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1472 if (VT.getVectorElementType() == MVT::i1) 1473 return RISCV::VRRegClassID; 1474 return getRegClassIDForLMUL(getLMUL(VT)); 1475 } 1476 1477 // Attempt to decompose a subvector insert/extract between VecVT and 1478 // SubVecVT via subregister indices. Returns the subregister index that 1479 // can perform the subvector insert/extract with the given element index, as 1480 // well as the index corresponding to any leftover subvectors that must be 1481 // further inserted/extracted within the register class for SubVecVT. 1482 std::pair<unsigned, unsigned> 1483 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1484 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1485 const RISCVRegisterInfo *TRI) { 1486 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1487 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1488 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1489 "Register classes not ordered"); 1490 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1491 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1492 // Try to compose a subregister index that takes us from the incoming 1493 // LMUL>1 register class down to the outgoing one. At each step we half 1494 // the LMUL: 1495 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1496 // Note that this is not guaranteed to find a subregister index, such as 1497 // when we are extracting from one VR type to another. 1498 unsigned SubRegIdx = RISCV::NoSubRegister; 1499 for (const unsigned RCID : 1500 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1501 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1502 VecVT = VecVT.getHalfNumVectorElementsVT(); 1503 bool IsHi = 1504 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1505 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1506 getSubregIndexByMVT(VecVT, IsHi)); 1507 if (IsHi) 1508 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1509 } 1510 return {SubRegIdx, InsertExtractIdx}; 1511 } 1512 1513 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1514 // stores for those types. 1515 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1516 return !Subtarget.useRVVForFixedLengthVectors() || 1517 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1518 } 1519 1520 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1521 if (ScalarTy->isPointerTy()) 1522 return true; 1523 1524 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1525 ScalarTy->isIntegerTy(32)) 1526 return true; 1527 1528 if (ScalarTy->isIntegerTy(64)) 1529 return Subtarget.hasVInstructionsI64(); 1530 1531 if (ScalarTy->isHalfTy()) 1532 return Subtarget.hasVInstructionsF16(); 1533 if (ScalarTy->isFloatTy()) 1534 return Subtarget.hasVInstructionsF32(); 1535 if (ScalarTy->isDoubleTy()) 1536 return Subtarget.hasVInstructionsF64(); 1537 1538 return false; 1539 } 1540 1541 static bool useRVVForFixedLengthVectorVT(MVT VT, 1542 const RISCVSubtarget &Subtarget) { 1543 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1544 if (!Subtarget.useRVVForFixedLengthVectors()) 1545 return false; 1546 1547 // We only support a set of vector types with a consistent maximum fixed size 1548 // across all supported vector element types to avoid legalization issues. 1549 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1550 // fixed-length vector type we support is 1024 bytes. 1551 if (VT.getFixedSizeInBits() > 1024 * 8) 1552 return false; 1553 1554 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1555 1556 MVT EltVT = VT.getVectorElementType(); 1557 1558 // Don't use RVV for vectors we cannot scalarize if required. 1559 switch (EltVT.SimpleTy) { 1560 // i1 is supported but has different rules. 1561 default: 1562 return false; 1563 case MVT::i1: 1564 // Masks can only use a single register. 1565 if (VT.getVectorNumElements() > MinVLen) 1566 return false; 1567 MinVLen /= 8; 1568 break; 1569 case MVT::i8: 1570 case MVT::i16: 1571 case MVT::i32: 1572 break; 1573 case MVT::i64: 1574 if (!Subtarget.hasVInstructionsI64()) 1575 return false; 1576 break; 1577 case MVT::f16: 1578 if (!Subtarget.hasVInstructionsF16()) 1579 return false; 1580 break; 1581 case MVT::f32: 1582 if (!Subtarget.hasVInstructionsF32()) 1583 return false; 1584 break; 1585 case MVT::f64: 1586 if (!Subtarget.hasVInstructionsF64()) 1587 return false; 1588 break; 1589 } 1590 1591 // Reject elements larger than ELEN. 1592 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1593 return false; 1594 1595 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1596 // Don't use RVV for types that don't fit. 1597 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1598 return false; 1599 1600 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1601 // the base fixed length RVV support in place. 1602 if (!VT.isPow2VectorType()) 1603 return false; 1604 1605 return true; 1606 } 1607 1608 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1609 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1610 } 1611 1612 // Return the largest legal scalable vector type that matches VT's element type. 1613 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1614 const RISCVSubtarget &Subtarget) { 1615 // This may be called before legal types are setup. 1616 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1617 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1618 "Expected legal fixed length vector!"); 1619 1620 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1621 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1622 1623 MVT EltVT = VT.getVectorElementType(); 1624 switch (EltVT.SimpleTy) { 1625 default: 1626 llvm_unreachable("unexpected element type for RVV container"); 1627 case MVT::i1: 1628 case MVT::i8: 1629 case MVT::i16: 1630 case MVT::i32: 1631 case MVT::i64: 1632 case MVT::f16: 1633 case MVT::f32: 1634 case MVT::f64: { 1635 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1636 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1637 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1638 unsigned NumElts = 1639 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1640 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1641 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1642 return MVT::getScalableVectorVT(EltVT, NumElts); 1643 } 1644 } 1645 } 1646 1647 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1648 const RISCVSubtarget &Subtarget) { 1649 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1650 Subtarget); 1651 } 1652 1653 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1654 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1655 } 1656 1657 // Grow V to consume an entire RVV register. 1658 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1659 const RISCVSubtarget &Subtarget) { 1660 assert(VT.isScalableVector() && 1661 "Expected to convert into a scalable vector!"); 1662 assert(V.getValueType().isFixedLengthVector() && 1663 "Expected a fixed length vector operand!"); 1664 SDLoc DL(V); 1665 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1666 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1667 } 1668 1669 // Shrink V so it's just big enough to maintain a VT's worth of data. 1670 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1671 const RISCVSubtarget &Subtarget) { 1672 assert(VT.isFixedLengthVector() && 1673 "Expected to convert into a fixed length vector!"); 1674 assert(V.getValueType().isScalableVector() && 1675 "Expected a scalable vector operand!"); 1676 SDLoc DL(V); 1677 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1678 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1679 } 1680 1681 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1682 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1683 // the vector type that it is contained in. 1684 static std::pair<SDValue, SDValue> 1685 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1686 const RISCVSubtarget &Subtarget) { 1687 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1688 MVT XLenVT = Subtarget.getXLenVT(); 1689 SDValue VL = VecVT.isFixedLengthVector() 1690 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1691 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1692 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1693 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1694 return {Mask, VL}; 1695 } 1696 1697 // As above but assuming the given type is a scalable vector type. 1698 static std::pair<SDValue, SDValue> 1699 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1700 const RISCVSubtarget &Subtarget) { 1701 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1702 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1703 } 1704 1705 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1706 // of either is (currently) supported. This can get us into an infinite loop 1707 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1708 // as a ..., etc. 1709 // Until either (or both) of these can reliably lower any node, reporting that 1710 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1711 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1712 // which is not desirable. 1713 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1714 EVT VT, unsigned DefinedValues) const { 1715 return false; 1716 } 1717 1718 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1719 // Only splats are currently supported. 1720 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1721 return true; 1722 1723 return false; 1724 } 1725 1726 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1727 const RISCVSubtarget &Subtarget) { 1728 // RISCV FP-to-int conversions saturate to the destination register size, but 1729 // don't produce 0 for nan. We can use a conversion instruction and fix the 1730 // nan case with a compare and a select. 1731 SDValue Src = Op.getOperand(0); 1732 1733 EVT DstVT = Op.getValueType(); 1734 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1735 1736 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1737 unsigned Opc; 1738 if (SatVT == DstVT) 1739 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1740 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1741 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1742 else 1743 return SDValue(); 1744 // FIXME: Support other SatVTs by clamping before or after the conversion. 1745 1746 SDLoc DL(Op); 1747 SDValue FpToInt = DAG.getNode( 1748 Opc, DL, DstVT, Src, 1749 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1750 1751 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1752 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1753 } 1754 1755 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1756 // and back. Taking care to avoid converting values that are nan or already 1757 // correct. 1758 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1759 // have FRM dependencies modeled yet. 1760 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1761 MVT VT = Op.getSimpleValueType(); 1762 assert(VT.isVector() && "Unexpected type"); 1763 1764 SDLoc DL(Op); 1765 1766 // Freeze the source since we are increasing the number of uses. 1767 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1768 1769 // Truncate to integer and convert back to FP. 1770 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1771 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1772 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1773 1774 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1775 1776 if (Op.getOpcode() == ISD::FCEIL) { 1777 // If the truncated value is the greater than or equal to the original 1778 // value, we've computed the ceil. Otherwise, we went the wrong way and 1779 // need to increase by 1. 1780 // FIXME: This should use a masked operation. Handle here or in isel? 1781 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1782 DAG.getConstantFP(1.0, DL, VT)); 1783 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1784 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1785 } else if (Op.getOpcode() == ISD::FFLOOR) { 1786 // If the truncated value is the less than or equal to the original value, 1787 // we've computed the floor. Otherwise, we went the wrong way and need to 1788 // decrease by 1. 1789 // FIXME: This should use a masked operation. Handle here or in isel? 1790 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1791 DAG.getConstantFP(1.0, DL, VT)); 1792 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1793 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1794 } 1795 1796 // Restore the original sign so that -0.0 is preserved. 1797 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1798 1799 // Determine the largest integer that can be represented exactly. This and 1800 // values larger than it don't have any fractional bits so don't need to 1801 // be converted. 1802 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1803 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1804 APFloat MaxVal = APFloat(FltSem); 1805 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1806 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1807 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1808 1809 // If abs(Src) was larger than MaxVal or nan, keep it. 1810 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1811 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1812 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1813 } 1814 1815 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1816 const RISCVSubtarget &Subtarget) { 1817 MVT VT = Op.getSimpleValueType(); 1818 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1819 1820 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1821 1822 SDLoc DL(Op); 1823 SDValue Mask, VL; 1824 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1825 1826 unsigned Opc = 1827 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1828 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1829 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1830 } 1831 1832 struct VIDSequence { 1833 int64_t StepNumerator; 1834 unsigned StepDenominator; 1835 int64_t Addend; 1836 }; 1837 1838 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1839 // to the (non-zero) step S and start value X. This can be then lowered as the 1840 // RVV sequence (VID * S) + X, for example. 1841 // The step S is represented as an integer numerator divided by a positive 1842 // denominator. Note that the implementation currently only identifies 1843 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1844 // cannot detect 2/3, for example. 1845 // Note that this method will also match potentially unappealing index 1846 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1847 // determine whether this is worth generating code for. 1848 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1849 unsigned NumElts = Op.getNumOperands(); 1850 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1851 if (!Op.getValueType().isInteger()) 1852 return None; 1853 1854 Optional<unsigned> SeqStepDenom; 1855 Optional<int64_t> SeqStepNum, SeqAddend; 1856 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1857 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1858 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1859 // Assume undef elements match the sequence; we just have to be careful 1860 // when interpolating across them. 1861 if (Op.getOperand(Idx).isUndef()) 1862 continue; 1863 // The BUILD_VECTOR must be all constants. 1864 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1865 return None; 1866 1867 uint64_t Val = Op.getConstantOperandVal(Idx) & 1868 maskTrailingOnes<uint64_t>(EltSizeInBits); 1869 1870 if (PrevElt) { 1871 // Calculate the step since the last non-undef element, and ensure 1872 // it's consistent across the entire sequence. 1873 unsigned IdxDiff = Idx - PrevElt->second; 1874 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1875 1876 // A zero-value value difference means that we're somewhere in the middle 1877 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1878 // step change before evaluating the sequence. 1879 if (ValDiff != 0) { 1880 int64_t Remainder = ValDiff % IdxDiff; 1881 // Normalize the step if it's greater than 1. 1882 if (Remainder != ValDiff) { 1883 // The difference must cleanly divide the element span. 1884 if (Remainder != 0) 1885 return None; 1886 ValDiff /= IdxDiff; 1887 IdxDiff = 1; 1888 } 1889 1890 if (!SeqStepNum) 1891 SeqStepNum = ValDiff; 1892 else if (ValDiff != SeqStepNum) 1893 return None; 1894 1895 if (!SeqStepDenom) 1896 SeqStepDenom = IdxDiff; 1897 else if (IdxDiff != *SeqStepDenom) 1898 return None; 1899 } 1900 } 1901 1902 // Record and/or check any addend. 1903 if (SeqStepNum && SeqStepDenom) { 1904 uint64_t ExpectedVal = 1905 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1906 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1907 if (!SeqAddend) 1908 SeqAddend = Addend; 1909 else if (SeqAddend != Addend) 1910 return None; 1911 } 1912 1913 // Record this non-undef element for later. 1914 if (!PrevElt || PrevElt->first != Val) 1915 PrevElt = std::make_pair(Val, Idx); 1916 } 1917 // We need to have logged both a step and an addend for this to count as 1918 // a legal index sequence. 1919 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1920 return None; 1921 1922 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1923 } 1924 1925 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1926 const RISCVSubtarget &Subtarget) { 1927 MVT VT = Op.getSimpleValueType(); 1928 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1929 1930 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1931 1932 SDLoc DL(Op); 1933 SDValue Mask, VL; 1934 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1935 1936 MVT XLenVT = Subtarget.getXLenVT(); 1937 unsigned NumElts = Op.getNumOperands(); 1938 1939 if (VT.getVectorElementType() == MVT::i1) { 1940 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1941 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1942 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1943 } 1944 1945 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1946 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1947 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1948 } 1949 1950 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1951 // scalar integer chunks whose bit-width depends on the number of mask 1952 // bits and XLEN. 1953 // First, determine the most appropriate scalar integer type to use. This 1954 // is at most XLenVT, but may be shrunk to a smaller vector element type 1955 // according to the size of the final vector - use i8 chunks rather than 1956 // XLenVT if we're producing a v8i1. This results in more consistent 1957 // codegen across RV32 and RV64. 1958 unsigned NumViaIntegerBits = 1959 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1960 NumViaIntegerBits = std::min(NumViaIntegerBits, 1961 Subtarget.getMaxELENForFixedLengthVectors()); 1962 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1963 // If we have to use more than one INSERT_VECTOR_ELT then this 1964 // optimization is likely to increase code size; avoid peforming it in 1965 // such a case. We can use a load from a constant pool in this case. 1966 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1967 return SDValue(); 1968 // Now we can create our integer vector type. Note that it may be larger 1969 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1970 MVT IntegerViaVecVT = 1971 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1972 divideCeil(NumElts, NumViaIntegerBits)); 1973 1974 uint64_t Bits = 0; 1975 unsigned BitPos = 0, IntegerEltIdx = 0; 1976 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1977 1978 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1979 // Once we accumulate enough bits to fill our scalar type, insert into 1980 // our vector and clear our accumulated data. 1981 if (I != 0 && I % NumViaIntegerBits == 0) { 1982 if (NumViaIntegerBits <= 32) 1983 Bits = SignExtend64(Bits, 32); 1984 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1985 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1986 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1987 Bits = 0; 1988 BitPos = 0; 1989 IntegerEltIdx++; 1990 } 1991 SDValue V = Op.getOperand(I); 1992 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1993 Bits |= ((uint64_t)BitValue << BitPos); 1994 } 1995 1996 // Insert the (remaining) scalar value into position in our integer 1997 // vector type. 1998 if (NumViaIntegerBits <= 32) 1999 Bits = SignExtend64(Bits, 32); 2000 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2001 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2002 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2003 2004 if (NumElts < NumViaIntegerBits) { 2005 // If we're producing a smaller vector than our minimum legal integer 2006 // type, bitcast to the equivalent (known-legal) mask type, and extract 2007 // our final mask. 2008 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2009 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2010 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2011 DAG.getConstant(0, DL, XLenVT)); 2012 } else { 2013 // Else we must have produced an integer type with the same size as the 2014 // mask type; bitcast for the final result. 2015 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2016 Vec = DAG.getBitcast(VT, Vec); 2017 } 2018 2019 return Vec; 2020 } 2021 2022 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2023 // vector type, we have a legal equivalently-sized i8 type, so we can use 2024 // that. 2025 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2026 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2027 2028 SDValue WideVec; 2029 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2030 // For a splat, perform a scalar truncate before creating the wider 2031 // vector. 2032 assert(Splat.getValueType() == XLenVT && 2033 "Unexpected type for i1 splat value"); 2034 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2035 DAG.getConstant(1, DL, XLenVT)); 2036 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2037 } else { 2038 SmallVector<SDValue, 8> Ops(Op->op_values()); 2039 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2040 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2041 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2042 } 2043 2044 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2045 } 2046 2047 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2048 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2049 : RISCVISD::VMV_V_X_VL; 2050 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2051 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2052 } 2053 2054 // Try and match index sequences, which we can lower to the vid instruction 2055 // with optional modifications. An all-undef vector is matched by 2056 // getSplatValue, above. 2057 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2058 int64_t StepNumerator = SimpleVID->StepNumerator; 2059 unsigned StepDenominator = SimpleVID->StepDenominator; 2060 int64_t Addend = SimpleVID->Addend; 2061 2062 assert(StepNumerator != 0 && "Invalid step"); 2063 bool Negate = false; 2064 int64_t SplatStepVal = StepNumerator; 2065 unsigned StepOpcode = ISD::MUL; 2066 if (StepNumerator != 1) { 2067 if (isPowerOf2_64(std::abs(StepNumerator))) { 2068 Negate = StepNumerator < 0; 2069 StepOpcode = ISD::SHL; 2070 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2071 } 2072 } 2073 2074 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2075 // threshold since it's the immediate value many RVV instructions accept. 2076 // There is no vmul.vi instruction so ensure multiply constant can fit in 2077 // a single addi instruction. 2078 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2079 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2080 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2081 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2082 // Convert right out of the scalable type so we can use standard ISD 2083 // nodes for the rest of the computation. If we used scalable types with 2084 // these, we'd lose the fixed-length vector info and generate worse 2085 // vsetvli code. 2086 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2087 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2088 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2089 SDValue SplatStep = DAG.getSplatVector( 2090 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2091 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2092 } 2093 if (StepDenominator != 1) { 2094 SDValue SplatStep = DAG.getSplatVector( 2095 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2096 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2097 } 2098 if (Addend != 0 || Negate) { 2099 SDValue SplatAddend = 2100 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2101 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2102 } 2103 return VID; 2104 } 2105 } 2106 2107 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2108 // when re-interpreted as a vector with a larger element type. For example, 2109 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2110 // could be instead splat as 2111 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2112 // TODO: This optimization could also work on non-constant splats, but it 2113 // would require bit-manipulation instructions to construct the splat value. 2114 SmallVector<SDValue> Sequence; 2115 unsigned EltBitSize = VT.getScalarSizeInBits(); 2116 const auto *BV = cast<BuildVectorSDNode>(Op); 2117 if (VT.isInteger() && EltBitSize < 64 && 2118 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2119 BV->getRepeatedSequence(Sequence) && 2120 (Sequence.size() * EltBitSize) <= 64) { 2121 unsigned SeqLen = Sequence.size(); 2122 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2123 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2124 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2125 ViaIntVT == MVT::i64) && 2126 "Unexpected sequence type"); 2127 2128 unsigned EltIdx = 0; 2129 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2130 uint64_t SplatValue = 0; 2131 // Construct the amalgamated value which can be splatted as this larger 2132 // vector type. 2133 for (const auto &SeqV : Sequence) { 2134 if (!SeqV.isUndef()) 2135 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2136 << (EltIdx * EltBitSize)); 2137 EltIdx++; 2138 } 2139 2140 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2141 // achieve better constant materializion. 2142 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2143 SplatValue = SignExtend64(SplatValue, 32); 2144 2145 // Since we can't introduce illegal i64 types at this stage, we can only 2146 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2147 // way we can use RVV instructions to splat. 2148 assert((ViaIntVT.bitsLE(XLenVT) || 2149 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2150 "Unexpected bitcast sequence"); 2151 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2152 SDValue ViaVL = 2153 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2154 MVT ViaContainerVT = 2155 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2156 SDValue Splat = 2157 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2158 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2159 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2160 return DAG.getBitcast(VT, Splat); 2161 } 2162 } 2163 2164 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2165 // which constitute a large proportion of the elements. In such cases we can 2166 // splat a vector with the dominant element and make up the shortfall with 2167 // INSERT_VECTOR_ELTs. 2168 // Note that this includes vectors of 2 elements by association. The 2169 // upper-most element is the "dominant" one, allowing us to use a splat to 2170 // "insert" the upper element, and an insert of the lower element at position 2171 // 0, which improves codegen. 2172 SDValue DominantValue; 2173 unsigned MostCommonCount = 0; 2174 DenseMap<SDValue, unsigned> ValueCounts; 2175 unsigned NumUndefElts = 2176 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2177 2178 // Track the number of scalar loads we know we'd be inserting, estimated as 2179 // any non-zero floating-point constant. Other kinds of element are either 2180 // already in registers or are materialized on demand. The threshold at which 2181 // a vector load is more desirable than several scalar materializion and 2182 // vector-insertion instructions is not known. 2183 unsigned NumScalarLoads = 0; 2184 2185 for (SDValue V : Op->op_values()) { 2186 if (V.isUndef()) 2187 continue; 2188 2189 ValueCounts.insert(std::make_pair(V, 0)); 2190 unsigned &Count = ValueCounts[V]; 2191 2192 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2193 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2194 2195 // Is this value dominant? In case of a tie, prefer the highest element as 2196 // it's cheaper to insert near the beginning of a vector than it is at the 2197 // end. 2198 if (++Count >= MostCommonCount) { 2199 DominantValue = V; 2200 MostCommonCount = Count; 2201 } 2202 } 2203 2204 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2205 unsigned NumDefElts = NumElts - NumUndefElts; 2206 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2207 2208 // Don't perform this optimization when optimizing for size, since 2209 // materializing elements and inserting them tends to cause code bloat. 2210 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2211 ((MostCommonCount > DominantValueCountThreshold) || 2212 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2213 // Start by splatting the most common element. 2214 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2215 2216 DenseSet<SDValue> Processed{DominantValue}; 2217 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2218 for (const auto &OpIdx : enumerate(Op->ops())) { 2219 const SDValue &V = OpIdx.value(); 2220 if (V.isUndef() || !Processed.insert(V).second) 2221 continue; 2222 if (ValueCounts[V] == 1) { 2223 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2224 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2225 } else { 2226 // Blend in all instances of this value using a VSELECT, using a 2227 // mask where each bit signals whether that element is the one 2228 // we're after. 2229 SmallVector<SDValue> Ops; 2230 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2231 return DAG.getConstant(V == V1, DL, XLenVT); 2232 }); 2233 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2234 DAG.getBuildVector(SelMaskTy, DL, Ops), 2235 DAG.getSplatBuildVector(VT, DL, V), Vec); 2236 } 2237 } 2238 2239 return Vec; 2240 } 2241 2242 return SDValue(); 2243 } 2244 2245 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2246 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2247 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2248 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2249 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2250 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2251 // node in order to try and match RVV vector/scalar instructions. 2252 if ((LoC >> 31) == HiC) 2253 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2254 2255 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2256 // vmv.v.x whose EEW = 32 to lower it. 2257 auto *Const = dyn_cast<ConstantSDNode>(VL); 2258 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2259 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2260 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2261 // access the subtarget here now. 2262 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2263 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2264 } 2265 } 2266 2267 // Fall back to a stack store and stride x0 vector load. 2268 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2269 } 2270 2271 // Called by type legalization to handle splat of i64 on RV32. 2272 // FIXME: We can optimize this when the type has sign or zero bits in one 2273 // of the halves. 2274 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2275 SDValue VL, SelectionDAG &DAG) { 2276 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2277 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2278 DAG.getConstant(0, DL, MVT::i32)); 2279 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2280 DAG.getConstant(1, DL, MVT::i32)); 2281 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2282 } 2283 2284 // This function lowers a splat of a scalar operand Splat with the vector 2285 // length VL. It ensures the final sequence is type legal, which is useful when 2286 // lowering a splat after type legalization. 2287 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2288 SelectionDAG &DAG, 2289 const RISCVSubtarget &Subtarget) { 2290 if (VT.isFloatingPoint()) { 2291 // If VL is 1, we could use vfmv.s.f. 2292 if (isOneConstant(VL)) 2293 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2294 Scalar, VL); 2295 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2296 } 2297 2298 MVT XLenVT = Subtarget.getXLenVT(); 2299 2300 // Simplest case is that the operand needs to be promoted to XLenVT. 2301 if (Scalar.getValueType().bitsLE(XLenVT)) { 2302 // If the operand is a constant, sign extend to increase our chances 2303 // of being able to use a .vi instruction. ANY_EXTEND would become a 2304 // a zero extend and the simm5 check in isel would fail. 2305 // FIXME: Should we ignore the upper bits in isel instead? 2306 unsigned ExtOpc = 2307 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2308 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2309 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2310 // If VL is 1 and the scalar value won't benefit from immediate, we could 2311 // use vmv.s.x. 2312 if (isOneConstant(VL) && 2313 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2314 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2315 VL); 2316 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2317 } 2318 2319 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2320 "Unexpected scalar for splat lowering!"); 2321 2322 if (isOneConstant(VL) && isNullConstant(Scalar)) 2323 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2324 DAG.getConstant(0, DL, XLenVT), VL); 2325 2326 // Otherwise use the more complicated splatting algorithm. 2327 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2328 } 2329 2330 // Is the mask a slidedown that shifts in undefs. 2331 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2332 int Size = Mask.size(); 2333 2334 // Elements shifted in should be undef. 2335 auto CheckUndefs = [&](int Shift) { 2336 for (int i = Size - Shift; i != Size; ++i) 2337 if (Mask[i] >= 0) 2338 return false; 2339 return true; 2340 }; 2341 2342 // Elements should be shifted or undef. 2343 auto MatchShift = [&](int Shift) { 2344 for (int i = 0; i != Size - Shift; ++i) 2345 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2346 return false; 2347 return true; 2348 }; 2349 2350 // Try all possible shifts. 2351 for (int Shift = 1; Shift != Size; ++Shift) 2352 if (CheckUndefs(Shift) && MatchShift(Shift)) 2353 return Shift; 2354 2355 // No match. 2356 return -1; 2357 } 2358 2359 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2360 const RISCVSubtarget &Subtarget) { 2361 // We need to be able to widen elements to the next larger integer type. 2362 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2363 return false; 2364 2365 int Size = Mask.size(); 2366 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2367 2368 int Srcs[] = {-1, -1}; 2369 for (int i = 0; i != Size; ++i) { 2370 // Ignore undef elements. 2371 if (Mask[i] < 0) 2372 continue; 2373 2374 // Is this an even or odd element. 2375 int Pol = i % 2; 2376 2377 // Ensure we consistently use the same source for this element polarity. 2378 int Src = Mask[i] / Size; 2379 if (Srcs[Pol] < 0) 2380 Srcs[Pol] = Src; 2381 if (Srcs[Pol] != Src) 2382 return false; 2383 2384 // Make sure the element within the source is appropriate for this element 2385 // in the destination. 2386 int Elt = Mask[i] % Size; 2387 if (Elt != i / 2) 2388 return false; 2389 } 2390 2391 // We need to find a source for each polarity and they can't be the same. 2392 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2393 return false; 2394 2395 // Swap the sources if the second source was in the even polarity. 2396 SwapSources = Srcs[0] > Srcs[1]; 2397 2398 return true; 2399 } 2400 2401 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2402 const RISCVSubtarget &Subtarget) { 2403 SDValue V1 = Op.getOperand(0); 2404 SDValue V2 = Op.getOperand(1); 2405 SDLoc DL(Op); 2406 MVT XLenVT = Subtarget.getXLenVT(); 2407 MVT VT = Op.getSimpleValueType(); 2408 unsigned NumElts = VT.getVectorNumElements(); 2409 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2410 2411 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2412 2413 SDValue TrueMask, VL; 2414 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2415 2416 if (SVN->isSplat()) { 2417 const int Lane = SVN->getSplatIndex(); 2418 if (Lane >= 0) { 2419 MVT SVT = VT.getVectorElementType(); 2420 2421 // Turn splatted vector load into a strided load with an X0 stride. 2422 SDValue V = V1; 2423 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2424 // with undef. 2425 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2426 int Offset = Lane; 2427 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2428 int OpElements = 2429 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2430 V = V.getOperand(Offset / OpElements); 2431 Offset %= OpElements; 2432 } 2433 2434 // We need to ensure the load isn't atomic or volatile. 2435 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2436 auto *Ld = cast<LoadSDNode>(V); 2437 Offset *= SVT.getStoreSize(); 2438 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2439 TypeSize::Fixed(Offset), DL); 2440 2441 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2442 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2443 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2444 SDValue IntID = 2445 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2446 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2447 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2448 SDValue NewLoad = DAG.getMemIntrinsicNode( 2449 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2450 DAG.getMachineFunction().getMachineMemOperand( 2451 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2452 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2453 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2454 } 2455 2456 // Otherwise use a scalar load and splat. This will give the best 2457 // opportunity to fold a splat into the operation. ISel can turn it into 2458 // the x0 strided load if we aren't able to fold away the select. 2459 if (SVT.isFloatingPoint()) 2460 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2461 Ld->getPointerInfo().getWithOffset(Offset), 2462 Ld->getOriginalAlign(), 2463 Ld->getMemOperand()->getFlags()); 2464 else 2465 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2466 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2467 Ld->getOriginalAlign(), 2468 Ld->getMemOperand()->getFlags()); 2469 DAG.makeEquivalentMemoryOrdering(Ld, V); 2470 2471 unsigned Opc = 2472 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2473 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2474 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2475 } 2476 2477 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2478 assert(Lane < (int)NumElts && "Unexpected lane!"); 2479 SDValue Gather = 2480 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2481 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2482 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2483 } 2484 } 2485 2486 ArrayRef<int> Mask = SVN->getMask(); 2487 2488 // Try to match as a slidedown. 2489 int SlideAmt = matchShuffleAsSlideDown(Mask); 2490 if (SlideAmt >= 0) { 2491 // TODO: Should we reduce the VL to account for the upper undef elements? 2492 // Requires additional vsetvlis, but might be faster to execute. 2493 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2494 SDValue SlideDown = 2495 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2496 DAG.getUNDEF(ContainerVT), V1, 2497 DAG.getConstant(SlideAmt, DL, XLenVT), 2498 TrueMask, VL); 2499 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2500 } 2501 2502 // Detect an interleave shuffle and lower to 2503 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2504 bool SwapSources; 2505 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2506 // Swap sources if needed. 2507 if (SwapSources) 2508 std::swap(V1, V2); 2509 2510 // Extract the lower half of the vectors. 2511 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2512 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2513 DAG.getConstant(0, DL, XLenVT)); 2514 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2515 DAG.getConstant(0, DL, XLenVT)); 2516 2517 // Double the element width and halve the number of elements in an int type. 2518 unsigned EltBits = VT.getScalarSizeInBits(); 2519 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2520 MVT WideIntVT = 2521 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2522 // Convert this to a scalable vector. We need to base this on the 2523 // destination size to ensure there's always a type with a smaller LMUL. 2524 MVT WideIntContainerVT = 2525 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2526 2527 // Convert sources to scalable vectors with the same element count as the 2528 // larger type. 2529 MVT HalfContainerVT = MVT::getVectorVT( 2530 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2531 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2532 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2533 2534 // Cast sources to integer. 2535 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2536 MVT IntHalfVT = 2537 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2538 V1 = DAG.getBitcast(IntHalfVT, V1); 2539 V2 = DAG.getBitcast(IntHalfVT, V2); 2540 2541 // Freeze V2 since we use it twice and we need to be sure that the add and 2542 // multiply see the same value. 2543 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2544 2545 // Recreate TrueMask using the widened type's element count. 2546 MVT MaskVT = 2547 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2548 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2549 2550 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2551 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2552 V2, TrueMask, VL); 2553 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2554 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2555 DAG.getAllOnesConstant(DL, XLenVT)); 2556 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2557 V2, Multiplier, TrueMask, VL); 2558 // Add the new copies to our previous addition giving us 2^eltbits copies of 2559 // V2. This is equivalent to shifting V2 left by eltbits. This should 2560 // combine with the vwmulu.vv above to form vwmaccu.vv. 2561 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2562 TrueMask, VL); 2563 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2564 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2565 // vector VT. 2566 ContainerVT = 2567 MVT::getVectorVT(VT.getVectorElementType(), 2568 WideIntContainerVT.getVectorElementCount() * 2); 2569 Add = DAG.getBitcast(ContainerVT, Add); 2570 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2571 } 2572 2573 // Detect shuffles which can be re-expressed as vector selects; these are 2574 // shuffles in which each element in the destination is taken from an element 2575 // at the corresponding index in either source vectors. 2576 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2577 int MaskIndex = MaskIdx.value(); 2578 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2579 }); 2580 2581 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2582 2583 SmallVector<SDValue> MaskVals; 2584 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2585 // merged with a second vrgather. 2586 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2587 2588 // By default we preserve the original operand order, and use a mask to 2589 // select LHS as true and RHS as false. However, since RVV vector selects may 2590 // feature splats but only on the LHS, we may choose to invert our mask and 2591 // instead select between RHS and LHS. 2592 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2593 bool InvertMask = IsSelect == SwapOps; 2594 2595 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2596 // half. 2597 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2598 2599 // Now construct the mask that will be used by the vselect or blended 2600 // vrgather operation. For vrgathers, construct the appropriate indices into 2601 // each vector. 2602 for (int MaskIndex : Mask) { 2603 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2604 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2605 if (!IsSelect) { 2606 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2607 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2608 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2609 : DAG.getUNDEF(XLenVT)); 2610 GatherIndicesRHS.push_back( 2611 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2612 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2613 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2614 ++LHSIndexCounts[MaskIndex]; 2615 if (!IsLHSOrUndefIndex) 2616 ++RHSIndexCounts[MaskIndex - NumElts]; 2617 } 2618 } 2619 2620 if (SwapOps) { 2621 std::swap(V1, V2); 2622 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2623 } 2624 2625 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2626 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2627 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2628 2629 if (IsSelect) 2630 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2631 2632 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2633 // On such a large vector we're unable to use i8 as the index type. 2634 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2635 // may involve vector splitting if we're already at LMUL=8, or our 2636 // user-supplied maximum fixed-length LMUL. 2637 return SDValue(); 2638 } 2639 2640 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2641 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2642 MVT IndexVT = VT.changeTypeToInteger(); 2643 // Since we can't introduce illegal index types at this stage, use i16 and 2644 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2645 // than XLenVT. 2646 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2647 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2648 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2649 } 2650 2651 MVT IndexContainerVT = 2652 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2653 2654 SDValue Gather; 2655 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2656 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2657 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2658 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2659 } else { 2660 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2661 // If only one index is used, we can use a "splat" vrgather. 2662 // TODO: We can splat the most-common index and fix-up any stragglers, if 2663 // that's beneficial. 2664 if (LHSIndexCounts.size() == 1) { 2665 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2666 Gather = 2667 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2668 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2669 } else { 2670 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2671 LHSIndices = 2672 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2673 2674 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2675 TrueMask, VL); 2676 } 2677 } 2678 2679 // If a second vector operand is used by this shuffle, blend it in with an 2680 // additional vrgather. 2681 if (!V2.isUndef()) { 2682 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2683 // If only one index is used, we can use a "splat" vrgather. 2684 // TODO: We can splat the most-common index and fix-up any stragglers, if 2685 // that's beneficial. 2686 if (RHSIndexCounts.size() == 1) { 2687 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2688 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2689 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2690 } else { 2691 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2692 RHSIndices = 2693 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2694 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2695 VL); 2696 } 2697 2698 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2699 SelectMask = 2700 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2701 2702 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2703 Gather, VL); 2704 } 2705 2706 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2707 } 2708 2709 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2710 SDLoc DL, SelectionDAG &DAG, 2711 const RISCVSubtarget &Subtarget) { 2712 if (VT.isScalableVector()) 2713 return DAG.getFPExtendOrRound(Op, DL, VT); 2714 assert(VT.isFixedLengthVector() && 2715 "Unexpected value type for RVV FP extend/round lowering"); 2716 SDValue Mask, VL; 2717 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2718 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2719 ? RISCVISD::FP_EXTEND_VL 2720 : RISCVISD::FP_ROUND_VL; 2721 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2722 } 2723 2724 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2725 // the exponent. 2726 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2727 MVT VT = Op.getSimpleValueType(); 2728 unsigned EltSize = VT.getScalarSizeInBits(); 2729 SDValue Src = Op.getOperand(0); 2730 SDLoc DL(Op); 2731 2732 // We need a FP type that can represent the value. 2733 // TODO: Use f16 for i8 when possible? 2734 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2735 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2736 2737 // Legal types should have been checked in the RISCVTargetLowering 2738 // constructor. 2739 // TODO: Splitting may make sense in some cases. 2740 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2741 "Expected legal float type!"); 2742 2743 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2744 // The trailing zero count is equal to log2 of this single bit value. 2745 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2746 SDValue Neg = 2747 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2748 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2749 } 2750 2751 // We have a legal FP type, convert to it. 2752 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2753 // Bitcast to integer and shift the exponent to the LSB. 2754 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2755 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2756 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2757 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2758 DAG.getConstant(ShiftAmt, DL, IntVT)); 2759 // Truncate back to original type to allow vnsrl. 2760 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2761 // The exponent contains log2 of the value in biased form. 2762 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2763 2764 // For trailing zeros, we just need to subtract the bias. 2765 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2766 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2767 DAG.getConstant(ExponentBias, DL, VT)); 2768 2769 // For leading zeros, we need to remove the bias and convert from log2 to 2770 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2771 unsigned Adjust = ExponentBias + (EltSize - 1); 2772 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2773 } 2774 2775 // While RVV has alignment restrictions, we should always be able to load as a 2776 // legal equivalently-sized byte-typed vector instead. This method is 2777 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2778 // the load is already correctly-aligned, it returns SDValue(). 2779 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2780 SelectionDAG &DAG) const { 2781 auto *Load = cast<LoadSDNode>(Op); 2782 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2783 2784 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2785 Load->getMemoryVT(), 2786 *Load->getMemOperand())) 2787 return SDValue(); 2788 2789 SDLoc DL(Op); 2790 MVT VT = Op.getSimpleValueType(); 2791 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2792 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2793 "Unexpected unaligned RVV load type"); 2794 MVT NewVT = 2795 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2796 assert(NewVT.isValid() && 2797 "Expecting equally-sized RVV vector types to be legal"); 2798 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2799 Load->getPointerInfo(), Load->getOriginalAlign(), 2800 Load->getMemOperand()->getFlags()); 2801 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2802 } 2803 2804 // While RVV has alignment restrictions, we should always be able to store as a 2805 // legal equivalently-sized byte-typed vector instead. This method is 2806 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2807 // returns SDValue() if the store is already correctly aligned. 2808 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2809 SelectionDAG &DAG) const { 2810 auto *Store = cast<StoreSDNode>(Op); 2811 assert(Store && Store->getValue().getValueType().isVector() && 2812 "Expected vector store"); 2813 2814 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2815 Store->getMemoryVT(), 2816 *Store->getMemOperand())) 2817 return SDValue(); 2818 2819 SDLoc DL(Op); 2820 SDValue StoredVal = Store->getValue(); 2821 MVT VT = StoredVal.getSimpleValueType(); 2822 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2823 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2824 "Unexpected unaligned RVV store type"); 2825 MVT NewVT = 2826 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2827 assert(NewVT.isValid() && 2828 "Expecting equally-sized RVV vector types to be legal"); 2829 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2830 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2831 Store->getPointerInfo(), Store->getOriginalAlign(), 2832 Store->getMemOperand()->getFlags()); 2833 } 2834 2835 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2836 SelectionDAG &DAG) const { 2837 switch (Op.getOpcode()) { 2838 default: 2839 report_fatal_error("unimplemented operand"); 2840 case ISD::GlobalAddress: 2841 return lowerGlobalAddress(Op, DAG); 2842 case ISD::BlockAddress: 2843 return lowerBlockAddress(Op, DAG); 2844 case ISD::ConstantPool: 2845 return lowerConstantPool(Op, DAG); 2846 case ISD::JumpTable: 2847 return lowerJumpTable(Op, DAG); 2848 case ISD::GlobalTLSAddress: 2849 return lowerGlobalTLSAddress(Op, DAG); 2850 case ISD::SELECT: 2851 return lowerSELECT(Op, DAG); 2852 case ISD::BRCOND: 2853 return lowerBRCOND(Op, DAG); 2854 case ISD::VASTART: 2855 return lowerVASTART(Op, DAG); 2856 case ISD::FRAMEADDR: 2857 return lowerFRAMEADDR(Op, DAG); 2858 case ISD::RETURNADDR: 2859 return lowerRETURNADDR(Op, DAG); 2860 case ISD::SHL_PARTS: 2861 return lowerShiftLeftParts(Op, DAG); 2862 case ISD::SRA_PARTS: 2863 return lowerShiftRightParts(Op, DAG, true); 2864 case ISD::SRL_PARTS: 2865 return lowerShiftRightParts(Op, DAG, false); 2866 case ISD::BITCAST: { 2867 SDLoc DL(Op); 2868 EVT VT = Op.getValueType(); 2869 SDValue Op0 = Op.getOperand(0); 2870 EVT Op0VT = Op0.getValueType(); 2871 MVT XLenVT = Subtarget.getXLenVT(); 2872 if (VT.isFixedLengthVector()) { 2873 // We can handle fixed length vector bitcasts with a simple replacement 2874 // in isel. 2875 if (Op0VT.isFixedLengthVector()) 2876 return Op; 2877 // When bitcasting from scalar to fixed-length vector, insert the scalar 2878 // into a one-element vector of the result type, and perform a vector 2879 // bitcast. 2880 if (!Op0VT.isVector()) { 2881 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2882 if (!isTypeLegal(BVT)) 2883 return SDValue(); 2884 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2885 DAG.getUNDEF(BVT), Op0, 2886 DAG.getConstant(0, DL, XLenVT))); 2887 } 2888 return SDValue(); 2889 } 2890 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2891 // thus: bitcast the vector to a one-element vector type whose element type 2892 // is the same as the result type, and extract the first element. 2893 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2894 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2895 if (!isTypeLegal(BVT)) 2896 return SDValue(); 2897 SDValue BVec = DAG.getBitcast(BVT, Op0); 2898 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2899 DAG.getConstant(0, DL, XLenVT)); 2900 } 2901 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2902 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2903 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2904 return FPConv; 2905 } 2906 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2907 Subtarget.hasStdExtF()) { 2908 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2909 SDValue FPConv = 2910 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2911 return FPConv; 2912 } 2913 return SDValue(); 2914 } 2915 case ISD::INTRINSIC_WO_CHAIN: 2916 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2917 case ISD::INTRINSIC_W_CHAIN: 2918 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2919 case ISD::INTRINSIC_VOID: 2920 return LowerINTRINSIC_VOID(Op, DAG); 2921 case ISD::BSWAP: 2922 case ISD::BITREVERSE: { 2923 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2924 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2925 MVT VT = Op.getSimpleValueType(); 2926 SDLoc DL(Op); 2927 // Start with the maximum immediate value which is the bitwidth - 1. 2928 unsigned Imm = VT.getSizeInBits() - 1; 2929 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2930 if (Op.getOpcode() == ISD::BSWAP) 2931 Imm &= ~0x7U; 2932 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2933 DAG.getConstant(Imm, DL, VT)); 2934 } 2935 case ISD::FSHL: 2936 case ISD::FSHR: { 2937 MVT VT = Op.getSimpleValueType(); 2938 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2939 SDLoc DL(Op); 2940 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2941 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2942 // accidentally setting the extra bit. 2943 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2944 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2945 DAG.getConstant(ShAmtWidth, DL, VT)); 2946 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2947 // instruction use different orders. fshl will return its first operand for 2948 // shift of zero, fshr will return its second operand. fsl and fsr both 2949 // return rs1 so the ISD nodes need to have different operand orders. 2950 // Shift amount is in rs2. 2951 SDValue Op0 = Op.getOperand(0); 2952 SDValue Op1 = Op.getOperand(1); 2953 unsigned Opc = RISCVISD::FSL; 2954 if (Op.getOpcode() == ISD::FSHR) { 2955 std::swap(Op0, Op1); 2956 Opc = RISCVISD::FSR; 2957 } 2958 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 2959 } 2960 case ISD::TRUNCATE: { 2961 SDLoc DL(Op); 2962 MVT VT = Op.getSimpleValueType(); 2963 // Only custom-lower vector truncates 2964 if (!VT.isVector()) 2965 return Op; 2966 2967 // Truncates to mask types are handled differently 2968 if (VT.getVectorElementType() == MVT::i1) 2969 return lowerVectorMaskTrunc(Op, DAG); 2970 2971 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2972 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2973 // truncate by one power of two at a time. 2974 MVT DstEltVT = VT.getVectorElementType(); 2975 2976 SDValue Src = Op.getOperand(0); 2977 MVT SrcVT = Src.getSimpleValueType(); 2978 MVT SrcEltVT = SrcVT.getVectorElementType(); 2979 2980 assert(DstEltVT.bitsLT(SrcEltVT) && 2981 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2982 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2983 "Unexpected vector truncate lowering"); 2984 2985 MVT ContainerVT = SrcVT; 2986 if (SrcVT.isFixedLengthVector()) { 2987 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2988 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2989 } 2990 2991 SDValue Result = Src; 2992 SDValue Mask, VL; 2993 std::tie(Mask, VL) = 2994 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2995 LLVMContext &Context = *DAG.getContext(); 2996 const ElementCount Count = ContainerVT.getVectorElementCount(); 2997 do { 2998 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2999 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3000 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3001 Mask, VL); 3002 } while (SrcEltVT != DstEltVT); 3003 3004 if (SrcVT.isFixedLengthVector()) 3005 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3006 3007 return Result; 3008 } 3009 case ISD::ANY_EXTEND: 3010 case ISD::ZERO_EXTEND: 3011 if (Op.getOperand(0).getValueType().isVector() && 3012 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3013 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3014 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3015 case ISD::SIGN_EXTEND: 3016 if (Op.getOperand(0).getValueType().isVector() && 3017 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3018 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3019 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3020 case ISD::SPLAT_VECTOR_PARTS: 3021 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3022 case ISD::INSERT_VECTOR_ELT: 3023 return lowerINSERT_VECTOR_ELT(Op, DAG); 3024 case ISD::EXTRACT_VECTOR_ELT: 3025 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3026 case ISD::VSCALE: { 3027 MVT VT = Op.getSimpleValueType(); 3028 SDLoc DL(Op); 3029 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3030 // We define our scalable vector types for lmul=1 to use a 64 bit known 3031 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3032 // vscale as VLENB / 8. 3033 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3034 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3035 // We assume VLENB is a multiple of 8. We manually choose the best shift 3036 // here because SimplifyDemandedBits isn't always able to simplify it. 3037 uint64_t Val = Op.getConstantOperandVal(0); 3038 if (isPowerOf2_64(Val)) { 3039 uint64_t Log2 = Log2_64(Val); 3040 if (Log2 < 3) 3041 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3042 DAG.getConstant(3 - Log2, DL, VT)); 3043 if (Log2 > 3) 3044 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3045 DAG.getConstant(Log2 - 3, DL, VT)); 3046 return VLENB; 3047 } 3048 // If the multiplier is a multiple of 8, scale it down to avoid needing 3049 // to shift the VLENB value. 3050 if ((Val % 8) == 0) 3051 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3052 DAG.getConstant(Val / 8, DL, VT)); 3053 } 3054 3055 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3056 DAG.getConstant(3, DL, VT)); 3057 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3058 } 3059 case ISD::FPOWI: { 3060 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3061 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3062 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3063 Op.getOperand(1).getValueType() == MVT::i32) { 3064 SDLoc DL(Op); 3065 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3066 SDValue Powi = 3067 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3068 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3069 DAG.getIntPtrConstant(0, DL)); 3070 } 3071 return SDValue(); 3072 } 3073 case ISD::FP_EXTEND: { 3074 // RVV can only do fp_extend to types double the size as the source. We 3075 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3076 // via f32. 3077 SDLoc DL(Op); 3078 MVT VT = Op.getSimpleValueType(); 3079 SDValue Src = Op.getOperand(0); 3080 MVT SrcVT = Src.getSimpleValueType(); 3081 3082 // Prepare any fixed-length vector operands. 3083 MVT ContainerVT = VT; 3084 if (SrcVT.isFixedLengthVector()) { 3085 ContainerVT = getContainerForFixedLengthVector(VT); 3086 MVT SrcContainerVT = 3087 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3088 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3089 } 3090 3091 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3092 SrcVT.getVectorElementType() != MVT::f16) { 3093 // For scalable vectors, we only need to close the gap between 3094 // vXf16->vXf64. 3095 if (!VT.isFixedLengthVector()) 3096 return Op; 3097 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3098 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3099 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3100 } 3101 3102 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3103 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3104 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3105 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3106 3107 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3108 DL, DAG, Subtarget); 3109 if (VT.isFixedLengthVector()) 3110 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3111 return Extend; 3112 } 3113 case ISD::FP_ROUND: { 3114 // RVV can only do fp_round to types half the size as the source. We 3115 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3116 // conversion instruction. 3117 SDLoc DL(Op); 3118 MVT VT = Op.getSimpleValueType(); 3119 SDValue Src = Op.getOperand(0); 3120 MVT SrcVT = Src.getSimpleValueType(); 3121 3122 // Prepare any fixed-length vector operands. 3123 MVT ContainerVT = VT; 3124 if (VT.isFixedLengthVector()) { 3125 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3126 ContainerVT = 3127 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3128 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3129 } 3130 3131 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3132 SrcVT.getVectorElementType() != MVT::f64) { 3133 // For scalable vectors, we only need to close the gap between 3134 // vXf64<->vXf16. 3135 if (!VT.isFixedLengthVector()) 3136 return Op; 3137 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3138 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3139 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3140 } 3141 3142 SDValue Mask, VL; 3143 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3144 3145 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3146 SDValue IntermediateRound = 3147 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3148 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3149 DL, DAG, Subtarget); 3150 3151 if (VT.isFixedLengthVector()) 3152 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3153 return Round; 3154 } 3155 case ISD::FP_TO_SINT: 3156 case ISD::FP_TO_UINT: 3157 case ISD::SINT_TO_FP: 3158 case ISD::UINT_TO_FP: { 3159 // RVV can only do fp<->int conversions to types half/double the size as 3160 // the source. We custom-lower any conversions that do two hops into 3161 // sequences. 3162 MVT VT = Op.getSimpleValueType(); 3163 if (!VT.isVector()) 3164 return Op; 3165 SDLoc DL(Op); 3166 SDValue Src = Op.getOperand(0); 3167 MVT EltVT = VT.getVectorElementType(); 3168 MVT SrcVT = Src.getSimpleValueType(); 3169 MVT SrcEltVT = SrcVT.getVectorElementType(); 3170 unsigned EltSize = EltVT.getSizeInBits(); 3171 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3172 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3173 "Unexpected vector element types"); 3174 3175 bool IsInt2FP = SrcEltVT.isInteger(); 3176 // Widening conversions 3177 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3178 if (IsInt2FP) { 3179 // Do a regular integer sign/zero extension then convert to float. 3180 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3181 VT.getVectorElementCount()); 3182 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3183 ? ISD::ZERO_EXTEND 3184 : ISD::SIGN_EXTEND; 3185 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3186 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3187 } 3188 // FP2Int 3189 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3190 // Do one doubling fp_extend then complete the operation by converting 3191 // to int. 3192 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3193 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3194 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3195 } 3196 3197 // Narrowing conversions 3198 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3199 if (IsInt2FP) { 3200 // One narrowing int_to_fp, then an fp_round. 3201 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3202 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3203 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3204 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3205 } 3206 // FP2Int 3207 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3208 // representable by the integer, the result is poison. 3209 MVT IVecVT = 3210 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3211 VT.getVectorElementCount()); 3212 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3213 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3214 } 3215 3216 // Scalable vectors can exit here. Patterns will handle equally-sized 3217 // conversions halving/doubling ones. 3218 if (!VT.isFixedLengthVector()) 3219 return Op; 3220 3221 // For fixed-length vectors we lower to a custom "VL" node. 3222 unsigned RVVOpc = 0; 3223 switch (Op.getOpcode()) { 3224 default: 3225 llvm_unreachable("Impossible opcode"); 3226 case ISD::FP_TO_SINT: 3227 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3228 break; 3229 case ISD::FP_TO_UINT: 3230 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3231 break; 3232 case ISD::SINT_TO_FP: 3233 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3234 break; 3235 case ISD::UINT_TO_FP: 3236 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3237 break; 3238 } 3239 3240 MVT ContainerVT, SrcContainerVT; 3241 // Derive the reference container type from the larger vector type. 3242 if (SrcEltSize > EltSize) { 3243 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3244 ContainerVT = 3245 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3246 } else { 3247 ContainerVT = getContainerForFixedLengthVector(VT); 3248 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3249 } 3250 3251 SDValue Mask, VL; 3252 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3253 3254 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3255 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3256 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3257 } 3258 case ISD::FP_TO_SINT_SAT: 3259 case ISD::FP_TO_UINT_SAT: 3260 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3261 case ISD::FTRUNC: 3262 case ISD::FCEIL: 3263 case ISD::FFLOOR: 3264 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3265 case ISD::VECREDUCE_ADD: 3266 case ISD::VECREDUCE_UMAX: 3267 case ISD::VECREDUCE_SMAX: 3268 case ISD::VECREDUCE_UMIN: 3269 case ISD::VECREDUCE_SMIN: 3270 return lowerVECREDUCE(Op, DAG); 3271 case ISD::VECREDUCE_AND: 3272 case ISD::VECREDUCE_OR: 3273 case ISD::VECREDUCE_XOR: 3274 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3275 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3276 return lowerVECREDUCE(Op, DAG); 3277 case ISD::VECREDUCE_FADD: 3278 case ISD::VECREDUCE_SEQ_FADD: 3279 case ISD::VECREDUCE_FMIN: 3280 case ISD::VECREDUCE_FMAX: 3281 return lowerFPVECREDUCE(Op, DAG); 3282 case ISD::VP_REDUCE_ADD: 3283 case ISD::VP_REDUCE_UMAX: 3284 case ISD::VP_REDUCE_SMAX: 3285 case ISD::VP_REDUCE_UMIN: 3286 case ISD::VP_REDUCE_SMIN: 3287 case ISD::VP_REDUCE_FADD: 3288 case ISD::VP_REDUCE_SEQ_FADD: 3289 case ISD::VP_REDUCE_FMIN: 3290 case ISD::VP_REDUCE_FMAX: 3291 return lowerVPREDUCE(Op, DAG); 3292 case ISD::VP_REDUCE_AND: 3293 case ISD::VP_REDUCE_OR: 3294 case ISD::VP_REDUCE_XOR: 3295 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3296 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3297 return lowerVPREDUCE(Op, DAG); 3298 case ISD::INSERT_SUBVECTOR: 3299 return lowerINSERT_SUBVECTOR(Op, DAG); 3300 case ISD::EXTRACT_SUBVECTOR: 3301 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3302 case ISD::STEP_VECTOR: 3303 return lowerSTEP_VECTOR(Op, DAG); 3304 case ISD::VECTOR_REVERSE: 3305 return lowerVECTOR_REVERSE(Op, DAG); 3306 case ISD::BUILD_VECTOR: 3307 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3308 case ISD::SPLAT_VECTOR: 3309 if (Op.getValueType().getVectorElementType() == MVT::i1) 3310 return lowerVectorMaskSplat(Op, DAG); 3311 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3312 case ISD::VECTOR_SHUFFLE: 3313 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3314 case ISD::CONCAT_VECTORS: { 3315 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3316 // better than going through the stack, as the default expansion does. 3317 SDLoc DL(Op); 3318 MVT VT = Op.getSimpleValueType(); 3319 unsigned NumOpElts = 3320 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3321 SDValue Vec = DAG.getUNDEF(VT); 3322 for (const auto &OpIdx : enumerate(Op->ops())) { 3323 SDValue SubVec = OpIdx.value(); 3324 // Don't insert undef subvectors. 3325 if (SubVec.isUndef()) 3326 continue; 3327 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3328 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3329 } 3330 return Vec; 3331 } 3332 case ISD::LOAD: 3333 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3334 return V; 3335 if (Op.getValueType().isFixedLengthVector()) 3336 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3337 return Op; 3338 case ISD::STORE: 3339 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3340 return V; 3341 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3342 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3343 return Op; 3344 case ISD::MLOAD: 3345 case ISD::VP_LOAD: 3346 return lowerMaskedLoad(Op, DAG); 3347 case ISD::MSTORE: 3348 case ISD::VP_STORE: 3349 return lowerMaskedStore(Op, DAG); 3350 case ISD::SETCC: 3351 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3352 case ISD::ADD: 3353 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3354 case ISD::SUB: 3355 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3356 case ISD::MUL: 3357 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3358 case ISD::MULHS: 3359 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3360 case ISD::MULHU: 3361 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3362 case ISD::AND: 3363 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3364 RISCVISD::AND_VL); 3365 case ISD::OR: 3366 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3367 RISCVISD::OR_VL); 3368 case ISD::XOR: 3369 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3370 RISCVISD::XOR_VL); 3371 case ISD::SDIV: 3372 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3373 case ISD::SREM: 3374 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3375 case ISD::UDIV: 3376 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3377 case ISD::UREM: 3378 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3379 case ISD::SHL: 3380 case ISD::SRA: 3381 case ISD::SRL: 3382 if (Op.getSimpleValueType().isFixedLengthVector()) 3383 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3384 // This can be called for an i32 shift amount that needs to be promoted. 3385 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3386 "Unexpected custom legalisation"); 3387 return SDValue(); 3388 case ISD::SADDSAT: 3389 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3390 case ISD::UADDSAT: 3391 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3392 case ISD::SSUBSAT: 3393 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3394 case ISD::USUBSAT: 3395 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3396 case ISD::FADD: 3397 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3398 case ISD::FSUB: 3399 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3400 case ISD::FMUL: 3401 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3402 case ISD::FDIV: 3403 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3404 case ISD::FNEG: 3405 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3406 case ISD::FABS: 3407 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3408 case ISD::FSQRT: 3409 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3410 case ISD::FMA: 3411 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3412 case ISD::SMIN: 3413 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3414 case ISD::SMAX: 3415 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3416 case ISD::UMIN: 3417 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3418 case ISD::UMAX: 3419 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3420 case ISD::FMINNUM: 3421 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3422 case ISD::FMAXNUM: 3423 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3424 case ISD::ABS: 3425 return lowerABS(Op, DAG); 3426 case ISD::CTLZ_ZERO_UNDEF: 3427 case ISD::CTTZ_ZERO_UNDEF: 3428 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3429 case ISD::VSELECT: 3430 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3431 case ISD::FCOPYSIGN: 3432 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3433 case ISD::MGATHER: 3434 case ISD::VP_GATHER: 3435 return lowerMaskedGather(Op, DAG); 3436 case ISD::MSCATTER: 3437 case ISD::VP_SCATTER: 3438 return lowerMaskedScatter(Op, DAG); 3439 case ISD::FLT_ROUNDS_: 3440 return lowerGET_ROUNDING(Op, DAG); 3441 case ISD::SET_ROUNDING: 3442 return lowerSET_ROUNDING(Op, DAG); 3443 case ISD::VP_SELECT: 3444 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3445 case ISD::VP_MERGE: 3446 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3447 case ISD::VP_ADD: 3448 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3449 case ISD::VP_SUB: 3450 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3451 case ISD::VP_MUL: 3452 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3453 case ISD::VP_SDIV: 3454 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3455 case ISD::VP_UDIV: 3456 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3457 case ISD::VP_SREM: 3458 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3459 case ISD::VP_UREM: 3460 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3461 case ISD::VP_AND: 3462 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3463 case ISD::VP_OR: 3464 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3465 case ISD::VP_XOR: 3466 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3467 case ISD::VP_ASHR: 3468 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3469 case ISD::VP_LSHR: 3470 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3471 case ISD::VP_SHL: 3472 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3473 case ISD::VP_FADD: 3474 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3475 case ISD::VP_FSUB: 3476 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3477 case ISD::VP_FMUL: 3478 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3479 case ISD::VP_FDIV: 3480 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3481 } 3482 } 3483 3484 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3485 SelectionDAG &DAG, unsigned Flags) { 3486 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3487 } 3488 3489 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3490 SelectionDAG &DAG, unsigned Flags) { 3491 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3492 Flags); 3493 } 3494 3495 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3496 SelectionDAG &DAG, unsigned Flags) { 3497 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3498 N->getOffset(), Flags); 3499 } 3500 3501 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3502 SelectionDAG &DAG, unsigned Flags) { 3503 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3504 } 3505 3506 template <class NodeTy> 3507 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3508 bool IsLocal) const { 3509 SDLoc DL(N); 3510 EVT Ty = getPointerTy(DAG.getDataLayout()); 3511 3512 if (isPositionIndependent()) { 3513 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3514 if (IsLocal) 3515 // Use PC-relative addressing to access the symbol. This generates the 3516 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3517 // %pcrel_lo(auipc)). 3518 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3519 3520 // Use PC-relative addressing to access the GOT for this symbol, then load 3521 // the address from the GOT. This generates the pattern (PseudoLA sym), 3522 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3523 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3524 } 3525 3526 switch (getTargetMachine().getCodeModel()) { 3527 default: 3528 report_fatal_error("Unsupported code model for lowering"); 3529 case CodeModel::Small: { 3530 // Generate a sequence for accessing addresses within the first 2 GiB of 3531 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3532 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3533 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3534 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3535 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3536 } 3537 case CodeModel::Medium: { 3538 // Generate a sequence for accessing addresses within any 2GiB range within 3539 // the address space. This generates the pattern (PseudoLLA sym), which 3540 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3541 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3542 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3543 } 3544 } 3545 } 3546 3547 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3548 SelectionDAG &DAG) const { 3549 SDLoc DL(Op); 3550 EVT Ty = Op.getValueType(); 3551 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3552 int64_t Offset = N->getOffset(); 3553 MVT XLenVT = Subtarget.getXLenVT(); 3554 3555 const GlobalValue *GV = N->getGlobal(); 3556 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3557 SDValue Addr = getAddr(N, DAG, IsLocal); 3558 3559 // In order to maximise the opportunity for common subexpression elimination, 3560 // emit a separate ADD node for the global address offset instead of folding 3561 // it in the global address node. Later peephole optimisations may choose to 3562 // fold it back in when profitable. 3563 if (Offset != 0) 3564 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3565 DAG.getConstant(Offset, DL, XLenVT)); 3566 return Addr; 3567 } 3568 3569 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3570 SelectionDAG &DAG) const { 3571 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3572 3573 return getAddr(N, DAG); 3574 } 3575 3576 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3577 SelectionDAG &DAG) const { 3578 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3579 3580 return getAddr(N, DAG); 3581 } 3582 3583 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3584 SelectionDAG &DAG) const { 3585 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3586 3587 return getAddr(N, DAG); 3588 } 3589 3590 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3591 SelectionDAG &DAG, 3592 bool UseGOT) const { 3593 SDLoc DL(N); 3594 EVT Ty = getPointerTy(DAG.getDataLayout()); 3595 const GlobalValue *GV = N->getGlobal(); 3596 MVT XLenVT = Subtarget.getXLenVT(); 3597 3598 if (UseGOT) { 3599 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3600 // load the address from the GOT and add the thread pointer. This generates 3601 // the pattern (PseudoLA_TLS_IE sym), which expands to 3602 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3603 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3604 SDValue Load = 3605 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3606 3607 // Add the thread pointer. 3608 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3609 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3610 } 3611 3612 // Generate a sequence for accessing the address relative to the thread 3613 // pointer, with the appropriate adjustment for the thread pointer offset. 3614 // This generates the pattern 3615 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3616 SDValue AddrHi = 3617 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3618 SDValue AddrAdd = 3619 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3620 SDValue AddrLo = 3621 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3622 3623 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3624 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3625 SDValue MNAdd = SDValue( 3626 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3627 0); 3628 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3629 } 3630 3631 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3632 SelectionDAG &DAG) const { 3633 SDLoc DL(N); 3634 EVT Ty = getPointerTy(DAG.getDataLayout()); 3635 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3636 const GlobalValue *GV = N->getGlobal(); 3637 3638 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3639 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3640 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3641 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3642 SDValue Load = 3643 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3644 3645 // Prepare argument list to generate call. 3646 ArgListTy Args; 3647 ArgListEntry Entry; 3648 Entry.Node = Load; 3649 Entry.Ty = CallTy; 3650 Args.push_back(Entry); 3651 3652 // Setup call to __tls_get_addr. 3653 TargetLowering::CallLoweringInfo CLI(DAG); 3654 CLI.setDebugLoc(DL) 3655 .setChain(DAG.getEntryNode()) 3656 .setLibCallee(CallingConv::C, CallTy, 3657 DAG.getExternalSymbol("__tls_get_addr", Ty), 3658 std::move(Args)); 3659 3660 return LowerCallTo(CLI).first; 3661 } 3662 3663 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3664 SelectionDAG &DAG) const { 3665 SDLoc DL(Op); 3666 EVT Ty = Op.getValueType(); 3667 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3668 int64_t Offset = N->getOffset(); 3669 MVT XLenVT = Subtarget.getXLenVT(); 3670 3671 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3672 3673 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3674 CallingConv::GHC) 3675 report_fatal_error("In GHC calling convention TLS is not supported"); 3676 3677 SDValue Addr; 3678 switch (Model) { 3679 case TLSModel::LocalExec: 3680 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3681 break; 3682 case TLSModel::InitialExec: 3683 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3684 break; 3685 case TLSModel::LocalDynamic: 3686 case TLSModel::GeneralDynamic: 3687 Addr = getDynamicTLSAddr(N, DAG); 3688 break; 3689 } 3690 3691 // In order to maximise the opportunity for common subexpression elimination, 3692 // emit a separate ADD node for the global address offset instead of folding 3693 // it in the global address node. Later peephole optimisations may choose to 3694 // fold it back in when profitable. 3695 if (Offset != 0) 3696 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3697 DAG.getConstant(Offset, DL, XLenVT)); 3698 return Addr; 3699 } 3700 3701 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3702 SDValue CondV = Op.getOperand(0); 3703 SDValue TrueV = Op.getOperand(1); 3704 SDValue FalseV = Op.getOperand(2); 3705 SDLoc DL(Op); 3706 MVT VT = Op.getSimpleValueType(); 3707 MVT XLenVT = Subtarget.getXLenVT(); 3708 3709 // Lower vector SELECTs to VSELECTs by splatting the condition. 3710 if (VT.isVector()) { 3711 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3712 SDValue CondSplat = VT.isScalableVector() 3713 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3714 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3715 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3716 } 3717 3718 // If the result type is XLenVT and CondV is the output of a SETCC node 3719 // which also operated on XLenVT inputs, then merge the SETCC node into the 3720 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3721 // compare+branch instructions. i.e.: 3722 // (select (setcc lhs, rhs, cc), truev, falsev) 3723 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3724 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3725 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3726 SDValue LHS = CondV.getOperand(0); 3727 SDValue RHS = CondV.getOperand(1); 3728 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3729 ISD::CondCode CCVal = CC->get(); 3730 3731 // Special case for a select of 2 constants that have a diffence of 1. 3732 // Normally this is done by DAGCombine, but if the select is introduced by 3733 // type legalization or op legalization, we miss it. Restricting to SETLT 3734 // case for now because that is what signed saturating add/sub need. 3735 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3736 // but we would probably want to swap the true/false values if the condition 3737 // is SETGE/SETLE to avoid an XORI. 3738 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3739 CCVal == ISD::SETLT) { 3740 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3741 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3742 if (TrueVal - 1 == FalseVal) 3743 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3744 if (TrueVal + 1 == FalseVal) 3745 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3746 } 3747 3748 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3749 3750 SDValue TargetCC = DAG.getCondCode(CCVal); 3751 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3752 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3753 } 3754 3755 // Otherwise: 3756 // (select condv, truev, falsev) 3757 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3758 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3759 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3760 3761 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3762 3763 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3764 } 3765 3766 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3767 SDValue CondV = Op.getOperand(1); 3768 SDLoc DL(Op); 3769 MVT XLenVT = Subtarget.getXLenVT(); 3770 3771 if (CondV.getOpcode() == ISD::SETCC && 3772 CondV.getOperand(0).getValueType() == XLenVT) { 3773 SDValue LHS = CondV.getOperand(0); 3774 SDValue RHS = CondV.getOperand(1); 3775 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3776 3777 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3778 3779 SDValue TargetCC = DAG.getCondCode(CCVal); 3780 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3781 LHS, RHS, TargetCC, Op.getOperand(2)); 3782 } 3783 3784 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3785 CondV, DAG.getConstant(0, DL, XLenVT), 3786 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3787 } 3788 3789 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3790 MachineFunction &MF = DAG.getMachineFunction(); 3791 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3792 3793 SDLoc DL(Op); 3794 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3795 getPointerTy(MF.getDataLayout())); 3796 3797 // vastart just stores the address of the VarArgsFrameIndex slot into the 3798 // memory location argument. 3799 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3800 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3801 MachinePointerInfo(SV)); 3802 } 3803 3804 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3805 SelectionDAG &DAG) const { 3806 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3807 MachineFunction &MF = DAG.getMachineFunction(); 3808 MachineFrameInfo &MFI = MF.getFrameInfo(); 3809 MFI.setFrameAddressIsTaken(true); 3810 Register FrameReg = RI.getFrameRegister(MF); 3811 int XLenInBytes = Subtarget.getXLen() / 8; 3812 3813 EVT VT = Op.getValueType(); 3814 SDLoc DL(Op); 3815 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3816 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3817 while (Depth--) { 3818 int Offset = -(XLenInBytes * 2); 3819 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3820 DAG.getIntPtrConstant(Offset, DL)); 3821 FrameAddr = 3822 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3823 } 3824 return FrameAddr; 3825 } 3826 3827 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3828 SelectionDAG &DAG) const { 3829 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3830 MachineFunction &MF = DAG.getMachineFunction(); 3831 MachineFrameInfo &MFI = MF.getFrameInfo(); 3832 MFI.setReturnAddressIsTaken(true); 3833 MVT XLenVT = Subtarget.getXLenVT(); 3834 int XLenInBytes = Subtarget.getXLen() / 8; 3835 3836 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3837 return SDValue(); 3838 3839 EVT VT = Op.getValueType(); 3840 SDLoc DL(Op); 3841 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3842 if (Depth) { 3843 int Off = -XLenInBytes; 3844 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3845 SDValue Offset = DAG.getConstant(Off, DL, VT); 3846 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3847 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3848 MachinePointerInfo()); 3849 } 3850 3851 // Return the value of the return address register, marking it an implicit 3852 // live-in. 3853 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3854 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3855 } 3856 3857 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3858 SelectionDAG &DAG) const { 3859 SDLoc DL(Op); 3860 SDValue Lo = Op.getOperand(0); 3861 SDValue Hi = Op.getOperand(1); 3862 SDValue Shamt = Op.getOperand(2); 3863 EVT VT = Lo.getValueType(); 3864 3865 // if Shamt-XLEN < 0: // Shamt < XLEN 3866 // Lo = Lo << Shamt 3867 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3868 // else: 3869 // Lo = 0 3870 // Hi = Lo << (Shamt-XLEN) 3871 3872 SDValue Zero = DAG.getConstant(0, DL, VT); 3873 SDValue One = DAG.getConstant(1, DL, VT); 3874 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3875 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3876 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3877 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3878 3879 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3880 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3881 SDValue ShiftRightLo = 3882 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3883 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3884 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3885 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3886 3887 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3888 3889 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3890 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3891 3892 SDValue Parts[2] = {Lo, Hi}; 3893 return DAG.getMergeValues(Parts, DL); 3894 } 3895 3896 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3897 bool IsSRA) const { 3898 SDLoc DL(Op); 3899 SDValue Lo = Op.getOperand(0); 3900 SDValue Hi = Op.getOperand(1); 3901 SDValue Shamt = Op.getOperand(2); 3902 EVT VT = Lo.getValueType(); 3903 3904 // SRA expansion: 3905 // if Shamt-XLEN < 0: // Shamt < XLEN 3906 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3907 // Hi = Hi >>s Shamt 3908 // else: 3909 // Lo = Hi >>s (Shamt-XLEN); 3910 // Hi = Hi >>s (XLEN-1) 3911 // 3912 // SRL expansion: 3913 // if Shamt-XLEN < 0: // Shamt < XLEN 3914 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3915 // Hi = Hi >>u Shamt 3916 // else: 3917 // Lo = Hi >>u (Shamt-XLEN); 3918 // Hi = 0; 3919 3920 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3921 3922 SDValue Zero = DAG.getConstant(0, DL, VT); 3923 SDValue One = DAG.getConstant(1, DL, VT); 3924 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3925 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3926 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3927 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3928 3929 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3930 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3931 SDValue ShiftLeftHi = 3932 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3933 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3934 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3935 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3936 SDValue HiFalse = 3937 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3938 3939 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3940 3941 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3942 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3943 3944 SDValue Parts[2] = {Lo, Hi}; 3945 return DAG.getMergeValues(Parts, DL); 3946 } 3947 3948 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3949 // legal equivalently-sized i8 type, so we can use that as a go-between. 3950 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3951 SelectionDAG &DAG) const { 3952 SDLoc DL(Op); 3953 MVT VT = Op.getSimpleValueType(); 3954 SDValue SplatVal = Op.getOperand(0); 3955 // All-zeros or all-ones splats are handled specially. 3956 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3957 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3958 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3959 } 3960 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3961 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3962 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3963 } 3964 MVT XLenVT = Subtarget.getXLenVT(); 3965 assert(SplatVal.getValueType() == XLenVT && 3966 "Unexpected type for i1 splat value"); 3967 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3968 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3969 DAG.getConstant(1, DL, XLenVT)); 3970 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3971 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3972 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3973 } 3974 3975 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3976 // illegal (currently only vXi64 RV32). 3977 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3978 // them to SPLAT_VECTOR_I64 3979 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3980 SelectionDAG &DAG) const { 3981 SDLoc DL(Op); 3982 MVT VecVT = Op.getSimpleValueType(); 3983 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3984 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3985 3986 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3987 SDValue Lo = Op.getOperand(0); 3988 SDValue Hi = Op.getOperand(1); 3989 3990 if (VecVT.isFixedLengthVector()) { 3991 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3992 SDLoc DL(Op); 3993 SDValue Mask, VL; 3994 std::tie(Mask, VL) = 3995 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3996 3997 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3998 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3999 } 4000 4001 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4002 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4003 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4004 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4005 // node in order to try and match RVV vector/scalar instructions. 4006 if ((LoC >> 31) == HiC) 4007 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4008 } 4009 4010 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4011 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4012 isa<ConstantSDNode>(Hi.getOperand(1)) && 4013 Hi.getConstantOperandVal(1) == 31) 4014 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4015 4016 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4017 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4018 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4019 } 4020 4021 // Custom-lower extensions from mask vectors by using a vselect either with 1 4022 // for zero/any-extension or -1 for sign-extension: 4023 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4024 // Note that any-extension is lowered identically to zero-extension. 4025 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4026 int64_t ExtTrueVal) const { 4027 SDLoc DL(Op); 4028 MVT VecVT = Op.getSimpleValueType(); 4029 SDValue Src = Op.getOperand(0); 4030 // Only custom-lower extensions from mask types 4031 assert(Src.getValueType().isVector() && 4032 Src.getValueType().getVectorElementType() == MVT::i1); 4033 4034 MVT XLenVT = Subtarget.getXLenVT(); 4035 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4036 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4037 4038 if (VecVT.isScalableVector()) { 4039 // Be careful not to introduce illegal scalar types at this stage, and be 4040 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4041 // illegal and must be expanded. Since we know that the constants are 4042 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4043 bool IsRV32E64 = 4044 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4045 4046 if (!IsRV32E64) { 4047 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4048 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4049 } else { 4050 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4051 SplatTrueVal = 4052 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4053 } 4054 4055 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4056 } 4057 4058 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4059 MVT I1ContainerVT = 4060 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4061 4062 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4063 4064 SDValue Mask, VL; 4065 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4066 4067 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4068 SplatTrueVal = 4069 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4070 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4071 SplatTrueVal, SplatZero, VL); 4072 4073 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4074 } 4075 4076 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4077 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4078 MVT ExtVT = Op.getSimpleValueType(); 4079 // Only custom-lower extensions from fixed-length vector types. 4080 if (!ExtVT.isFixedLengthVector()) 4081 return Op; 4082 MVT VT = Op.getOperand(0).getSimpleValueType(); 4083 // Grab the canonical container type for the extended type. Infer the smaller 4084 // type from that to ensure the same number of vector elements, as we know 4085 // the LMUL will be sufficient to hold the smaller type. 4086 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4087 // Get the extended container type manually to ensure the same number of 4088 // vector elements between source and dest. 4089 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4090 ContainerExtVT.getVectorElementCount()); 4091 4092 SDValue Op1 = 4093 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4094 4095 SDLoc DL(Op); 4096 SDValue Mask, VL; 4097 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4098 4099 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4100 4101 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4102 } 4103 4104 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4105 // setcc operation: 4106 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4107 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4108 SelectionDAG &DAG) const { 4109 SDLoc DL(Op); 4110 EVT MaskVT = Op.getValueType(); 4111 // Only expect to custom-lower truncations to mask types 4112 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4113 "Unexpected type for vector mask lowering"); 4114 SDValue Src = Op.getOperand(0); 4115 MVT VecVT = Src.getSimpleValueType(); 4116 4117 // If this is a fixed vector, we need to convert it to a scalable vector. 4118 MVT ContainerVT = VecVT; 4119 if (VecVT.isFixedLengthVector()) { 4120 ContainerVT = getContainerForFixedLengthVector(VecVT); 4121 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4122 } 4123 4124 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4125 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4126 4127 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4128 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4129 4130 if (VecVT.isScalableVector()) { 4131 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4132 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4133 } 4134 4135 SDValue Mask, VL; 4136 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4137 4138 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4139 SDValue Trunc = 4140 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4141 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4142 DAG.getCondCode(ISD::SETNE), Mask, VL); 4143 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4144 } 4145 4146 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4147 // first position of a vector, and that vector is slid up to the insert index. 4148 // By limiting the active vector length to index+1 and merging with the 4149 // original vector (with an undisturbed tail policy for elements >= VL), we 4150 // achieve the desired result of leaving all elements untouched except the one 4151 // at VL-1, which is replaced with the desired value. 4152 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4153 SelectionDAG &DAG) const { 4154 SDLoc DL(Op); 4155 MVT VecVT = Op.getSimpleValueType(); 4156 SDValue Vec = Op.getOperand(0); 4157 SDValue Val = Op.getOperand(1); 4158 SDValue Idx = Op.getOperand(2); 4159 4160 if (VecVT.getVectorElementType() == MVT::i1) { 4161 // FIXME: For now we just promote to an i8 vector and insert into that, 4162 // but this is probably not optimal. 4163 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4164 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4165 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4166 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4167 } 4168 4169 MVT ContainerVT = VecVT; 4170 // If the operand is a fixed-length vector, convert to a scalable one. 4171 if (VecVT.isFixedLengthVector()) { 4172 ContainerVT = getContainerForFixedLengthVector(VecVT); 4173 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4174 } 4175 4176 MVT XLenVT = Subtarget.getXLenVT(); 4177 4178 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4179 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4180 // Even i64-element vectors on RV32 can be lowered without scalar 4181 // legalization if the most-significant 32 bits of the value are not affected 4182 // by the sign-extension of the lower 32 bits. 4183 // TODO: We could also catch sign extensions of a 32-bit value. 4184 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4185 const auto *CVal = cast<ConstantSDNode>(Val); 4186 if (isInt<32>(CVal->getSExtValue())) { 4187 IsLegalInsert = true; 4188 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4189 } 4190 } 4191 4192 SDValue Mask, VL; 4193 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4194 4195 SDValue ValInVec; 4196 4197 if (IsLegalInsert) { 4198 unsigned Opc = 4199 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4200 if (isNullConstant(Idx)) { 4201 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4202 if (!VecVT.isFixedLengthVector()) 4203 return Vec; 4204 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4205 } 4206 ValInVec = 4207 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4208 } else { 4209 // On RV32, i64-element vectors must be specially handled to place the 4210 // value at element 0, by using two vslide1up instructions in sequence on 4211 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4212 // this. 4213 SDValue One = DAG.getConstant(1, DL, XLenVT); 4214 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4215 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4216 MVT I32ContainerVT = 4217 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4218 SDValue I32Mask = 4219 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4220 // Limit the active VL to two. 4221 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4222 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4223 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4224 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4225 InsertI64VL); 4226 // First slide in the hi value, then the lo in underneath it. 4227 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4228 ValHi, I32Mask, InsertI64VL); 4229 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4230 ValLo, I32Mask, InsertI64VL); 4231 // Bitcast back to the right container type. 4232 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4233 } 4234 4235 // Now that the value is in a vector, slide it into position. 4236 SDValue InsertVL = 4237 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4238 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4239 ValInVec, Idx, Mask, InsertVL); 4240 if (!VecVT.isFixedLengthVector()) 4241 return Slideup; 4242 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4243 } 4244 4245 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4246 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4247 // types this is done using VMV_X_S to allow us to glean information about the 4248 // sign bits of the result. 4249 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4250 SelectionDAG &DAG) const { 4251 SDLoc DL(Op); 4252 SDValue Idx = Op.getOperand(1); 4253 SDValue Vec = Op.getOperand(0); 4254 EVT EltVT = Op.getValueType(); 4255 MVT VecVT = Vec.getSimpleValueType(); 4256 MVT XLenVT = Subtarget.getXLenVT(); 4257 4258 if (VecVT.getVectorElementType() == MVT::i1) { 4259 // FIXME: For now we just promote to an i8 vector and extract from that, 4260 // but this is probably not optimal. 4261 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4262 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4263 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4264 } 4265 4266 // If this is a fixed vector, we need to convert it to a scalable vector. 4267 MVT ContainerVT = VecVT; 4268 if (VecVT.isFixedLengthVector()) { 4269 ContainerVT = getContainerForFixedLengthVector(VecVT); 4270 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4271 } 4272 4273 // If the index is 0, the vector is already in the right position. 4274 if (!isNullConstant(Idx)) { 4275 // Use a VL of 1 to avoid processing more elements than we need. 4276 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4277 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4278 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4279 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4280 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4281 } 4282 4283 if (!EltVT.isInteger()) { 4284 // Floating-point extracts are handled in TableGen. 4285 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4286 DAG.getConstant(0, DL, XLenVT)); 4287 } 4288 4289 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4290 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4291 } 4292 4293 // Some RVV intrinsics may claim that they want an integer operand to be 4294 // promoted or expanded. 4295 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4296 const RISCVSubtarget &Subtarget) { 4297 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4298 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4299 "Unexpected opcode"); 4300 4301 if (!Subtarget.hasVInstructions()) 4302 return SDValue(); 4303 4304 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4305 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4306 SDLoc DL(Op); 4307 4308 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4309 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4310 if (!II || !II->hasSplatOperand()) 4311 return SDValue(); 4312 4313 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4314 assert(SplatOp < Op.getNumOperands()); 4315 4316 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4317 SDValue &ScalarOp = Operands[SplatOp]; 4318 MVT OpVT = ScalarOp.getSimpleValueType(); 4319 MVT XLenVT = Subtarget.getXLenVT(); 4320 4321 // If this isn't a scalar, or its type is XLenVT we're done. 4322 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4323 return SDValue(); 4324 4325 // Simplest case is that the operand needs to be promoted to XLenVT. 4326 if (OpVT.bitsLT(XLenVT)) { 4327 // If the operand is a constant, sign extend to increase our chances 4328 // of being able to use a .vi instruction. ANY_EXTEND would become a 4329 // a zero extend and the simm5 check in isel would fail. 4330 // FIXME: Should we ignore the upper bits in isel instead? 4331 unsigned ExtOpc = 4332 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4333 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4334 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4335 } 4336 4337 // Use the previous operand to get the vXi64 VT. The result might be a mask 4338 // VT for compares. Using the previous operand assumes that the previous 4339 // operand will never have a smaller element size than a scalar operand and 4340 // that a widening operation never uses SEW=64. 4341 // NOTE: If this fails the below assert, we can probably just find the 4342 // element count from any operand or result and use it to construct the VT. 4343 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4344 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4345 4346 // The more complex case is when the scalar is larger than XLenVT. 4347 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4348 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4349 4350 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4351 // on the instruction to sign-extend since SEW>XLEN. 4352 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4353 if (isInt<32>(CVal->getSExtValue())) { 4354 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4355 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4356 } 4357 } 4358 4359 // We need to convert the scalar to a splat vector. 4360 // FIXME: Can we implicitly truncate the scalar if it is known to 4361 // be sign extended? 4362 SDValue VL = Op.getOperand(II->VLOperand + 1 + HasChain); 4363 assert(VL.getValueType() == XLenVT); 4364 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4365 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4366 } 4367 4368 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4369 SelectionDAG &DAG) const { 4370 unsigned IntNo = Op.getConstantOperandVal(0); 4371 SDLoc DL(Op); 4372 MVT XLenVT = Subtarget.getXLenVT(); 4373 4374 switch (IntNo) { 4375 default: 4376 break; // Don't custom lower most intrinsics. 4377 case Intrinsic::thread_pointer: { 4378 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4379 return DAG.getRegister(RISCV::X4, PtrVT); 4380 } 4381 case Intrinsic::riscv_orc_b: 4382 // Lower to the GORCI encoding for orc.b. 4383 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4384 DAG.getConstant(7, DL, XLenVT)); 4385 case Intrinsic::riscv_grev: 4386 case Intrinsic::riscv_gorc: { 4387 unsigned Opc = 4388 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4389 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4390 } 4391 case Intrinsic::riscv_shfl: 4392 case Intrinsic::riscv_unshfl: { 4393 unsigned Opc = 4394 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4395 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4396 } 4397 case Intrinsic::riscv_bcompress: 4398 case Intrinsic::riscv_bdecompress: { 4399 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4400 : RISCVISD::BDECOMPRESS; 4401 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4402 } 4403 case Intrinsic::riscv_bfp: 4404 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4405 Op.getOperand(2)); 4406 case Intrinsic::riscv_fsl: 4407 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4408 Op.getOperand(2), Op.getOperand(3)); 4409 case Intrinsic::riscv_fsr: 4410 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4411 Op.getOperand(2), Op.getOperand(3)); 4412 case Intrinsic::riscv_vmv_x_s: 4413 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4414 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4415 Op.getOperand(1)); 4416 case Intrinsic::riscv_vmv_v_x: 4417 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4418 Op.getSimpleValueType(), DL, DAG, Subtarget); 4419 case Intrinsic::riscv_vfmv_v_f: 4420 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4421 Op.getOperand(1), Op.getOperand(2)); 4422 case Intrinsic::riscv_vmv_s_x: { 4423 SDValue Scalar = Op.getOperand(2); 4424 4425 if (Scalar.getValueType().bitsLE(XLenVT)) { 4426 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4427 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4428 Op.getOperand(1), Scalar, Op.getOperand(3)); 4429 } 4430 4431 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4432 4433 // This is an i64 value that lives in two scalar registers. We have to 4434 // insert this in a convoluted way. First we build vXi64 splat containing 4435 // the/ two values that we assemble using some bit math. Next we'll use 4436 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4437 // to merge element 0 from our splat into the source vector. 4438 // FIXME: This is probably not the best way to do this, but it is 4439 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4440 // point. 4441 // sw lo, (a0) 4442 // sw hi, 4(a0) 4443 // vlse vX, (a0) 4444 // 4445 // vid.v vVid 4446 // vmseq.vx mMask, vVid, 0 4447 // vmerge.vvm vDest, vSrc, vVal, mMask 4448 MVT VT = Op.getSimpleValueType(); 4449 SDValue Vec = Op.getOperand(1); 4450 SDValue VL = Op.getOperand(3); 4451 4452 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4453 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4454 DAG.getConstant(0, DL, MVT::i32), VL); 4455 4456 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4457 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4458 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4459 SDValue SelectCond = 4460 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4461 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4462 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4463 Vec, VL); 4464 } 4465 case Intrinsic::riscv_vslide1up: 4466 case Intrinsic::riscv_vslide1down: 4467 case Intrinsic::riscv_vslide1up_mask: 4468 case Intrinsic::riscv_vslide1down_mask: { 4469 // We need to special case these when the scalar is larger than XLen. 4470 unsigned NumOps = Op.getNumOperands(); 4471 bool IsMasked = NumOps == 7; 4472 unsigned OpOffset = IsMasked ? 1 : 0; 4473 SDValue Scalar = Op.getOperand(2 + OpOffset); 4474 if (Scalar.getValueType().bitsLE(XLenVT)) 4475 break; 4476 4477 // Splatting a sign extended constant is fine. 4478 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4479 if (isInt<32>(CVal->getSExtValue())) 4480 break; 4481 4482 MVT VT = Op.getSimpleValueType(); 4483 assert(VT.getVectorElementType() == MVT::i64 && 4484 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4485 4486 // Convert the vector source to the equivalent nxvXi32 vector. 4487 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4488 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4489 4490 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4491 DAG.getConstant(0, DL, XLenVT)); 4492 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4493 DAG.getConstant(1, DL, XLenVT)); 4494 4495 // Double the VL since we halved SEW. 4496 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4497 SDValue I32VL = 4498 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4499 4500 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4501 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4502 4503 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4504 // instructions. 4505 if (IntNo == Intrinsic::riscv_vslide1up || 4506 IntNo == Intrinsic::riscv_vslide1up_mask) { 4507 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4508 I32Mask, I32VL); 4509 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4510 I32Mask, I32VL); 4511 } else { 4512 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4513 I32Mask, I32VL); 4514 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4515 I32Mask, I32VL); 4516 } 4517 4518 // Convert back to nxvXi64. 4519 Vec = DAG.getBitcast(VT, Vec); 4520 4521 if (!IsMasked) 4522 return Vec; 4523 4524 // Apply mask after the operation. 4525 SDValue Mask = Op.getOperand(NumOps - 3); 4526 SDValue MaskedOff = Op.getOperand(1); 4527 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4528 } 4529 } 4530 4531 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4532 } 4533 4534 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4535 SelectionDAG &DAG) const { 4536 unsigned IntNo = Op.getConstantOperandVal(1); 4537 switch (IntNo) { 4538 default: 4539 break; 4540 case Intrinsic::riscv_masked_strided_load: { 4541 SDLoc DL(Op); 4542 MVT XLenVT = Subtarget.getXLenVT(); 4543 4544 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4545 // the selection of the masked intrinsics doesn't do this for us. 4546 SDValue Mask = Op.getOperand(5); 4547 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4548 4549 MVT VT = Op->getSimpleValueType(0); 4550 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4551 4552 SDValue PassThru = Op.getOperand(2); 4553 if (!IsUnmasked) { 4554 MVT MaskVT = 4555 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4556 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4557 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4558 } 4559 4560 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4561 4562 SDValue IntID = DAG.getTargetConstant( 4563 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4564 XLenVT); 4565 4566 auto *Load = cast<MemIntrinsicSDNode>(Op); 4567 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4568 if (!IsUnmasked) 4569 Ops.push_back(PassThru); 4570 Ops.push_back(Op.getOperand(3)); // Ptr 4571 Ops.push_back(Op.getOperand(4)); // Stride 4572 if (!IsUnmasked) 4573 Ops.push_back(Mask); 4574 Ops.push_back(VL); 4575 if (!IsUnmasked) { 4576 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4577 Ops.push_back(Policy); 4578 } 4579 4580 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4581 SDValue Result = 4582 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4583 Load->getMemoryVT(), Load->getMemOperand()); 4584 SDValue Chain = Result.getValue(1); 4585 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4586 return DAG.getMergeValues({Result, Chain}, DL); 4587 } 4588 } 4589 4590 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4591 } 4592 4593 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4594 SelectionDAG &DAG) const { 4595 unsigned IntNo = Op.getConstantOperandVal(1); 4596 switch (IntNo) { 4597 default: 4598 break; 4599 case Intrinsic::riscv_masked_strided_store: { 4600 SDLoc DL(Op); 4601 MVT XLenVT = Subtarget.getXLenVT(); 4602 4603 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4604 // the selection of the masked intrinsics doesn't do this for us. 4605 SDValue Mask = Op.getOperand(5); 4606 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4607 4608 SDValue Val = Op.getOperand(2); 4609 MVT VT = Val.getSimpleValueType(); 4610 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4611 4612 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4613 if (!IsUnmasked) { 4614 MVT MaskVT = 4615 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4616 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4617 } 4618 4619 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4620 4621 SDValue IntID = DAG.getTargetConstant( 4622 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4623 XLenVT); 4624 4625 auto *Store = cast<MemIntrinsicSDNode>(Op); 4626 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4627 Ops.push_back(Val); 4628 Ops.push_back(Op.getOperand(3)); // Ptr 4629 Ops.push_back(Op.getOperand(4)); // Stride 4630 if (!IsUnmasked) 4631 Ops.push_back(Mask); 4632 Ops.push_back(VL); 4633 4634 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4635 Ops, Store->getMemoryVT(), 4636 Store->getMemOperand()); 4637 } 4638 } 4639 4640 return SDValue(); 4641 } 4642 4643 static MVT getLMUL1VT(MVT VT) { 4644 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4645 "Unexpected vector MVT"); 4646 return MVT::getScalableVectorVT( 4647 VT.getVectorElementType(), 4648 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4649 } 4650 4651 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4652 switch (ISDOpcode) { 4653 default: 4654 llvm_unreachable("Unhandled reduction"); 4655 case ISD::VECREDUCE_ADD: 4656 return RISCVISD::VECREDUCE_ADD_VL; 4657 case ISD::VECREDUCE_UMAX: 4658 return RISCVISD::VECREDUCE_UMAX_VL; 4659 case ISD::VECREDUCE_SMAX: 4660 return RISCVISD::VECREDUCE_SMAX_VL; 4661 case ISD::VECREDUCE_UMIN: 4662 return RISCVISD::VECREDUCE_UMIN_VL; 4663 case ISD::VECREDUCE_SMIN: 4664 return RISCVISD::VECREDUCE_SMIN_VL; 4665 case ISD::VECREDUCE_AND: 4666 return RISCVISD::VECREDUCE_AND_VL; 4667 case ISD::VECREDUCE_OR: 4668 return RISCVISD::VECREDUCE_OR_VL; 4669 case ISD::VECREDUCE_XOR: 4670 return RISCVISD::VECREDUCE_XOR_VL; 4671 } 4672 } 4673 4674 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4675 SelectionDAG &DAG, 4676 bool IsVP) const { 4677 SDLoc DL(Op); 4678 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4679 MVT VecVT = Vec.getSimpleValueType(); 4680 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4681 Op.getOpcode() == ISD::VECREDUCE_OR || 4682 Op.getOpcode() == ISD::VECREDUCE_XOR || 4683 Op.getOpcode() == ISD::VP_REDUCE_AND || 4684 Op.getOpcode() == ISD::VP_REDUCE_OR || 4685 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4686 "Unexpected reduction lowering"); 4687 4688 MVT XLenVT = Subtarget.getXLenVT(); 4689 assert(Op.getValueType() == XLenVT && 4690 "Expected reduction output to be legalized to XLenVT"); 4691 4692 MVT ContainerVT = VecVT; 4693 if (VecVT.isFixedLengthVector()) { 4694 ContainerVT = getContainerForFixedLengthVector(VecVT); 4695 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4696 } 4697 4698 SDValue Mask, VL; 4699 if (IsVP) { 4700 Mask = Op.getOperand(2); 4701 VL = Op.getOperand(3); 4702 } else { 4703 std::tie(Mask, VL) = 4704 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4705 } 4706 4707 unsigned BaseOpc; 4708 ISD::CondCode CC; 4709 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4710 4711 switch (Op.getOpcode()) { 4712 default: 4713 llvm_unreachable("Unhandled reduction"); 4714 case ISD::VECREDUCE_AND: 4715 case ISD::VP_REDUCE_AND: { 4716 // vcpop ~x == 0 4717 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4718 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4719 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4720 CC = ISD::SETEQ; 4721 BaseOpc = ISD::AND; 4722 break; 4723 } 4724 case ISD::VECREDUCE_OR: 4725 case ISD::VP_REDUCE_OR: 4726 // vcpop x != 0 4727 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4728 CC = ISD::SETNE; 4729 BaseOpc = ISD::OR; 4730 break; 4731 case ISD::VECREDUCE_XOR: 4732 case ISD::VP_REDUCE_XOR: { 4733 // ((vcpop x) & 1) != 0 4734 SDValue One = DAG.getConstant(1, DL, XLenVT); 4735 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4736 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4737 CC = ISD::SETNE; 4738 BaseOpc = ISD::XOR; 4739 break; 4740 } 4741 } 4742 4743 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4744 4745 if (!IsVP) 4746 return SetCC; 4747 4748 // Now include the start value in the operation. 4749 // Note that we must return the start value when no elements are operated 4750 // upon. The vcpop instructions we've emitted in each case above will return 4751 // 0 for an inactive vector, and so we've already received the neutral value: 4752 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4753 // can simply include the start value. 4754 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4755 } 4756 4757 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4758 SelectionDAG &DAG) const { 4759 SDLoc DL(Op); 4760 SDValue Vec = Op.getOperand(0); 4761 EVT VecEVT = Vec.getValueType(); 4762 4763 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4764 4765 // Due to ordering in legalize types we may have a vector type that needs to 4766 // be split. Do that manually so we can get down to a legal type. 4767 while (getTypeAction(*DAG.getContext(), VecEVT) == 4768 TargetLowering::TypeSplitVector) { 4769 SDValue Lo, Hi; 4770 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4771 VecEVT = Lo.getValueType(); 4772 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4773 } 4774 4775 // TODO: The type may need to be widened rather than split. Or widened before 4776 // it can be split. 4777 if (!isTypeLegal(VecEVT)) 4778 return SDValue(); 4779 4780 MVT VecVT = VecEVT.getSimpleVT(); 4781 MVT VecEltVT = VecVT.getVectorElementType(); 4782 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4783 4784 MVT ContainerVT = VecVT; 4785 if (VecVT.isFixedLengthVector()) { 4786 ContainerVT = getContainerForFixedLengthVector(VecVT); 4787 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4788 } 4789 4790 MVT M1VT = getLMUL1VT(ContainerVT); 4791 MVT XLenVT = Subtarget.getXLenVT(); 4792 4793 SDValue Mask, VL; 4794 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4795 4796 SDValue NeutralElem = 4797 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4798 SDValue IdentitySplat = lowerScalarSplat( 4799 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4800 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4801 IdentitySplat, Mask, VL); 4802 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4803 DAG.getConstant(0, DL, XLenVT)); 4804 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4805 } 4806 4807 // Given a reduction op, this function returns the matching reduction opcode, 4808 // the vector SDValue and the scalar SDValue required to lower this to a 4809 // RISCVISD node. 4810 static std::tuple<unsigned, SDValue, SDValue> 4811 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4812 SDLoc DL(Op); 4813 auto Flags = Op->getFlags(); 4814 unsigned Opcode = Op.getOpcode(); 4815 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4816 switch (Opcode) { 4817 default: 4818 llvm_unreachable("Unhandled reduction"); 4819 case ISD::VECREDUCE_FADD: { 4820 // Use positive zero if we can. It is cheaper to materialize. 4821 SDValue Zero = 4822 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4823 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4824 } 4825 case ISD::VECREDUCE_SEQ_FADD: 4826 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4827 Op.getOperand(0)); 4828 case ISD::VECREDUCE_FMIN: 4829 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4830 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4831 case ISD::VECREDUCE_FMAX: 4832 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4833 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4834 } 4835 } 4836 4837 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4838 SelectionDAG &DAG) const { 4839 SDLoc DL(Op); 4840 MVT VecEltVT = Op.getSimpleValueType(); 4841 4842 unsigned RVVOpcode; 4843 SDValue VectorVal, ScalarVal; 4844 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4845 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4846 MVT VecVT = VectorVal.getSimpleValueType(); 4847 4848 MVT ContainerVT = VecVT; 4849 if (VecVT.isFixedLengthVector()) { 4850 ContainerVT = getContainerForFixedLengthVector(VecVT); 4851 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4852 } 4853 4854 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4855 MVT XLenVT = Subtarget.getXLenVT(); 4856 4857 SDValue Mask, VL; 4858 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4859 4860 SDValue ScalarSplat = lowerScalarSplat( 4861 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4862 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4863 VectorVal, ScalarSplat, Mask, VL); 4864 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4865 DAG.getConstant(0, DL, XLenVT)); 4866 } 4867 4868 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4869 switch (ISDOpcode) { 4870 default: 4871 llvm_unreachable("Unhandled reduction"); 4872 case ISD::VP_REDUCE_ADD: 4873 return RISCVISD::VECREDUCE_ADD_VL; 4874 case ISD::VP_REDUCE_UMAX: 4875 return RISCVISD::VECREDUCE_UMAX_VL; 4876 case ISD::VP_REDUCE_SMAX: 4877 return RISCVISD::VECREDUCE_SMAX_VL; 4878 case ISD::VP_REDUCE_UMIN: 4879 return RISCVISD::VECREDUCE_UMIN_VL; 4880 case ISD::VP_REDUCE_SMIN: 4881 return RISCVISD::VECREDUCE_SMIN_VL; 4882 case ISD::VP_REDUCE_AND: 4883 return RISCVISD::VECREDUCE_AND_VL; 4884 case ISD::VP_REDUCE_OR: 4885 return RISCVISD::VECREDUCE_OR_VL; 4886 case ISD::VP_REDUCE_XOR: 4887 return RISCVISD::VECREDUCE_XOR_VL; 4888 case ISD::VP_REDUCE_FADD: 4889 return RISCVISD::VECREDUCE_FADD_VL; 4890 case ISD::VP_REDUCE_SEQ_FADD: 4891 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4892 case ISD::VP_REDUCE_FMAX: 4893 return RISCVISD::VECREDUCE_FMAX_VL; 4894 case ISD::VP_REDUCE_FMIN: 4895 return RISCVISD::VECREDUCE_FMIN_VL; 4896 } 4897 } 4898 4899 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4900 SelectionDAG &DAG) const { 4901 SDLoc DL(Op); 4902 SDValue Vec = Op.getOperand(1); 4903 EVT VecEVT = Vec.getValueType(); 4904 4905 // TODO: The type may need to be widened rather than split. Or widened before 4906 // it can be split. 4907 if (!isTypeLegal(VecEVT)) 4908 return SDValue(); 4909 4910 MVT VecVT = VecEVT.getSimpleVT(); 4911 MVT VecEltVT = VecVT.getVectorElementType(); 4912 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4913 4914 MVT ContainerVT = VecVT; 4915 if (VecVT.isFixedLengthVector()) { 4916 ContainerVT = getContainerForFixedLengthVector(VecVT); 4917 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4918 } 4919 4920 SDValue VL = Op.getOperand(3); 4921 SDValue Mask = Op.getOperand(2); 4922 4923 MVT M1VT = getLMUL1VT(ContainerVT); 4924 MVT XLenVT = Subtarget.getXLenVT(); 4925 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4926 4927 SDValue StartSplat = 4928 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4929 DL, DAG, Subtarget); 4930 SDValue Reduction = 4931 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4932 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4933 DAG.getConstant(0, DL, XLenVT)); 4934 if (!VecVT.isInteger()) 4935 return Elt0; 4936 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4937 } 4938 4939 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4940 SelectionDAG &DAG) const { 4941 SDValue Vec = Op.getOperand(0); 4942 SDValue SubVec = Op.getOperand(1); 4943 MVT VecVT = Vec.getSimpleValueType(); 4944 MVT SubVecVT = SubVec.getSimpleValueType(); 4945 4946 SDLoc DL(Op); 4947 MVT XLenVT = Subtarget.getXLenVT(); 4948 unsigned OrigIdx = Op.getConstantOperandVal(2); 4949 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4950 4951 // We don't have the ability to slide mask vectors up indexed by their i1 4952 // elements; the smallest we can do is i8. Often we are able to bitcast to 4953 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4954 // into a scalable one, we might not necessarily have enough scalable 4955 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4956 if (SubVecVT.getVectorElementType() == MVT::i1 && 4957 (OrigIdx != 0 || !Vec.isUndef())) { 4958 if (VecVT.getVectorMinNumElements() >= 8 && 4959 SubVecVT.getVectorMinNumElements() >= 8) { 4960 assert(OrigIdx % 8 == 0 && "Invalid index"); 4961 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4962 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4963 "Unexpected mask vector lowering"); 4964 OrigIdx /= 8; 4965 SubVecVT = 4966 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4967 SubVecVT.isScalableVector()); 4968 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4969 VecVT.isScalableVector()); 4970 Vec = DAG.getBitcast(VecVT, Vec); 4971 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4972 } else { 4973 // We can't slide this mask vector up indexed by its i1 elements. 4974 // This poses a problem when we wish to insert a scalable vector which 4975 // can't be re-expressed as a larger type. Just choose the slow path and 4976 // extend to a larger type, then truncate back down. 4977 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4978 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4979 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4980 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4981 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4982 Op.getOperand(2)); 4983 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4984 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4985 } 4986 } 4987 4988 // If the subvector vector is a fixed-length type, we cannot use subregister 4989 // manipulation to simplify the codegen; we don't know which register of a 4990 // LMUL group contains the specific subvector as we only know the minimum 4991 // register size. Therefore we must slide the vector group up the full 4992 // amount. 4993 if (SubVecVT.isFixedLengthVector()) { 4994 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 4995 return Op; 4996 MVT ContainerVT = VecVT; 4997 if (VecVT.isFixedLengthVector()) { 4998 ContainerVT = getContainerForFixedLengthVector(VecVT); 4999 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5000 } 5001 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5002 DAG.getUNDEF(ContainerVT), SubVec, 5003 DAG.getConstant(0, DL, XLenVT)); 5004 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5005 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5006 return DAG.getBitcast(Op.getValueType(), SubVec); 5007 } 5008 SDValue Mask = 5009 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5010 // Set the vector length to only the number of elements we care about. Note 5011 // that for slideup this includes the offset. 5012 SDValue VL = 5013 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5014 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5015 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5016 SubVec, SlideupAmt, Mask, VL); 5017 if (VecVT.isFixedLengthVector()) 5018 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5019 return DAG.getBitcast(Op.getValueType(), Slideup); 5020 } 5021 5022 unsigned SubRegIdx, RemIdx; 5023 std::tie(SubRegIdx, RemIdx) = 5024 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5025 VecVT, SubVecVT, OrigIdx, TRI); 5026 5027 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5028 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5029 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5030 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5031 5032 // 1. If the Idx has been completely eliminated and this subvector's size is 5033 // a vector register or a multiple thereof, or the surrounding elements are 5034 // undef, then this is a subvector insert which naturally aligns to a vector 5035 // register. These can easily be handled using subregister manipulation. 5036 // 2. If the subvector is smaller than a vector register, then the insertion 5037 // must preserve the undisturbed elements of the register. We do this by 5038 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5039 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5040 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5041 // LMUL=1 type back into the larger vector (resolving to another subregister 5042 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5043 // to avoid allocating a large register group to hold our subvector. 5044 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5045 return Op; 5046 5047 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5048 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5049 // (in our case undisturbed). This means we can set up a subvector insertion 5050 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5051 // size of the subvector. 5052 MVT InterSubVT = VecVT; 5053 SDValue AlignedExtract = Vec; 5054 unsigned AlignedIdx = OrigIdx - RemIdx; 5055 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5056 InterSubVT = getLMUL1VT(VecVT); 5057 // Extract a subvector equal to the nearest full vector register type. This 5058 // should resolve to a EXTRACT_SUBREG instruction. 5059 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5060 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5061 } 5062 5063 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5064 // For scalable vectors this must be further multiplied by vscale. 5065 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5066 5067 SDValue Mask, VL; 5068 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5069 5070 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5071 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5072 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5073 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5074 5075 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5076 DAG.getUNDEF(InterSubVT), SubVec, 5077 DAG.getConstant(0, DL, XLenVT)); 5078 5079 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5080 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5081 5082 // If required, insert this subvector back into the correct vector register. 5083 // This should resolve to an INSERT_SUBREG instruction. 5084 if (VecVT.bitsGT(InterSubVT)) 5085 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5086 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5087 5088 // We might have bitcast from a mask type: cast back to the original type if 5089 // required. 5090 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5091 } 5092 5093 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5094 SelectionDAG &DAG) const { 5095 SDValue Vec = Op.getOperand(0); 5096 MVT SubVecVT = Op.getSimpleValueType(); 5097 MVT VecVT = Vec.getSimpleValueType(); 5098 5099 SDLoc DL(Op); 5100 MVT XLenVT = Subtarget.getXLenVT(); 5101 unsigned OrigIdx = Op.getConstantOperandVal(1); 5102 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5103 5104 // We don't have the ability to slide mask vectors down indexed by their i1 5105 // elements; the smallest we can do is i8. Often we are able to bitcast to 5106 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5107 // from a scalable one, we might not necessarily have enough scalable 5108 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5109 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5110 if (VecVT.getVectorMinNumElements() >= 8 && 5111 SubVecVT.getVectorMinNumElements() >= 8) { 5112 assert(OrigIdx % 8 == 0 && "Invalid index"); 5113 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5114 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5115 "Unexpected mask vector lowering"); 5116 OrigIdx /= 8; 5117 SubVecVT = 5118 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5119 SubVecVT.isScalableVector()); 5120 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5121 VecVT.isScalableVector()); 5122 Vec = DAG.getBitcast(VecVT, Vec); 5123 } else { 5124 // We can't slide this mask vector down, indexed by its i1 elements. 5125 // This poses a problem when we wish to extract a scalable vector which 5126 // can't be re-expressed as a larger type. Just choose the slow path and 5127 // extend to a larger type, then truncate back down. 5128 // TODO: We could probably improve this when extracting certain fixed 5129 // from fixed, where we can extract as i8 and shift the correct element 5130 // right to reach the desired subvector? 5131 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5132 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5133 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5134 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5135 Op.getOperand(1)); 5136 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5137 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5138 } 5139 } 5140 5141 // If the subvector vector is a fixed-length type, we cannot use subregister 5142 // manipulation to simplify the codegen; we don't know which register of a 5143 // LMUL group contains the specific subvector as we only know the minimum 5144 // register size. Therefore we must slide the vector group down the full 5145 // amount. 5146 if (SubVecVT.isFixedLengthVector()) { 5147 // With an index of 0 this is a cast-like subvector, which can be performed 5148 // with subregister operations. 5149 if (OrigIdx == 0) 5150 return Op; 5151 MVT ContainerVT = VecVT; 5152 if (VecVT.isFixedLengthVector()) { 5153 ContainerVT = getContainerForFixedLengthVector(VecVT); 5154 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5155 } 5156 SDValue Mask = 5157 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5158 // Set the vector length to only the number of elements we care about. This 5159 // avoids sliding down elements we're going to discard straight away. 5160 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5161 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5162 SDValue Slidedown = 5163 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5164 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5165 // Now we can use a cast-like subvector extract to get the result. 5166 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5167 DAG.getConstant(0, DL, XLenVT)); 5168 return DAG.getBitcast(Op.getValueType(), Slidedown); 5169 } 5170 5171 unsigned SubRegIdx, RemIdx; 5172 std::tie(SubRegIdx, RemIdx) = 5173 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5174 VecVT, SubVecVT, OrigIdx, TRI); 5175 5176 // If the Idx has been completely eliminated then this is a subvector extract 5177 // which naturally aligns to a vector register. These can easily be handled 5178 // using subregister manipulation. 5179 if (RemIdx == 0) 5180 return Op; 5181 5182 // Else we must shift our vector register directly to extract the subvector. 5183 // Do this using VSLIDEDOWN. 5184 5185 // If the vector type is an LMUL-group type, extract a subvector equal to the 5186 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5187 // instruction. 5188 MVT InterSubVT = VecVT; 5189 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5190 InterSubVT = getLMUL1VT(VecVT); 5191 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5192 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5193 } 5194 5195 // Slide this vector register down by the desired number of elements in order 5196 // to place the desired subvector starting at element 0. 5197 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5198 // For scalable vectors this must be further multiplied by vscale. 5199 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5200 5201 SDValue Mask, VL; 5202 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5203 SDValue Slidedown = 5204 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5205 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5206 5207 // Now the vector is in the right position, extract our final subvector. This 5208 // should resolve to a COPY. 5209 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5210 DAG.getConstant(0, DL, XLenVT)); 5211 5212 // We might have bitcast from a mask type: cast back to the original type if 5213 // required. 5214 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5215 } 5216 5217 // Lower step_vector to the vid instruction. Any non-identity step value must 5218 // be accounted for my manual expansion. 5219 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5220 SelectionDAG &DAG) const { 5221 SDLoc DL(Op); 5222 MVT VT = Op.getSimpleValueType(); 5223 MVT XLenVT = Subtarget.getXLenVT(); 5224 SDValue Mask, VL; 5225 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5226 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5227 uint64_t StepValImm = Op.getConstantOperandVal(0); 5228 if (StepValImm != 1) { 5229 if (isPowerOf2_64(StepValImm)) { 5230 SDValue StepVal = 5231 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5232 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5233 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5234 } else { 5235 SDValue StepVal = lowerScalarSplat( 5236 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5237 DL, DAG, Subtarget); 5238 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5239 } 5240 } 5241 return StepVec; 5242 } 5243 5244 // Implement vector_reverse using vrgather.vv with indices determined by 5245 // subtracting the id of each element from (VLMAX-1). This will convert 5246 // the indices like so: 5247 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5248 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5249 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5250 SelectionDAG &DAG) const { 5251 SDLoc DL(Op); 5252 MVT VecVT = Op.getSimpleValueType(); 5253 unsigned EltSize = VecVT.getScalarSizeInBits(); 5254 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5255 5256 unsigned MaxVLMAX = 0; 5257 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5258 if (VectorBitsMax != 0) 5259 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5260 5261 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5262 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5263 5264 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5265 // to use vrgatherei16.vv. 5266 // TODO: It's also possible to use vrgatherei16.vv for other types to 5267 // decrease register width for the index calculation. 5268 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5269 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5270 // Reverse each half, then reassemble them in reverse order. 5271 // NOTE: It's also possible that after splitting that VLMAX no longer 5272 // requires vrgatherei16.vv. 5273 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5274 SDValue Lo, Hi; 5275 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5276 EVT LoVT, HiVT; 5277 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5278 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5279 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5280 // Reassemble the low and high pieces reversed. 5281 // FIXME: This is a CONCAT_VECTORS. 5282 SDValue Res = 5283 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5284 DAG.getIntPtrConstant(0, DL)); 5285 return DAG.getNode( 5286 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5287 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5288 } 5289 5290 // Just promote the int type to i16 which will double the LMUL. 5291 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5292 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5293 } 5294 5295 MVT XLenVT = Subtarget.getXLenVT(); 5296 SDValue Mask, VL; 5297 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5298 5299 // Calculate VLMAX-1 for the desired SEW. 5300 unsigned MinElts = VecVT.getVectorMinNumElements(); 5301 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5302 DAG.getConstant(MinElts, DL, XLenVT)); 5303 SDValue VLMinus1 = 5304 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5305 5306 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5307 bool IsRV32E64 = 5308 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5309 SDValue SplatVL; 5310 if (!IsRV32E64) 5311 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5312 else 5313 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5314 5315 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5316 SDValue Indices = 5317 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5318 5319 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5320 } 5321 5322 SDValue 5323 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5324 SelectionDAG &DAG) const { 5325 SDLoc DL(Op); 5326 auto *Load = cast<LoadSDNode>(Op); 5327 5328 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5329 Load->getMemoryVT(), 5330 *Load->getMemOperand()) && 5331 "Expecting a correctly-aligned load"); 5332 5333 MVT VT = Op.getSimpleValueType(); 5334 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5335 5336 SDValue VL = 5337 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5338 5339 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5340 SDValue NewLoad = DAG.getMemIntrinsicNode( 5341 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5342 Load->getMemoryVT(), Load->getMemOperand()); 5343 5344 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5345 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5346 } 5347 5348 SDValue 5349 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5350 SelectionDAG &DAG) const { 5351 SDLoc DL(Op); 5352 auto *Store = cast<StoreSDNode>(Op); 5353 5354 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5355 Store->getMemoryVT(), 5356 *Store->getMemOperand()) && 5357 "Expecting a correctly-aligned store"); 5358 5359 SDValue StoreVal = Store->getValue(); 5360 MVT VT = StoreVal.getSimpleValueType(); 5361 5362 // If the size less than a byte, we need to pad with zeros to make a byte. 5363 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5364 VT = MVT::v8i1; 5365 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5366 DAG.getConstant(0, DL, VT), StoreVal, 5367 DAG.getIntPtrConstant(0, DL)); 5368 } 5369 5370 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5371 5372 SDValue VL = 5373 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5374 5375 SDValue NewValue = 5376 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5377 return DAG.getMemIntrinsicNode( 5378 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5379 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5380 Store->getMemoryVT(), Store->getMemOperand()); 5381 } 5382 5383 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5384 SelectionDAG &DAG) const { 5385 SDLoc DL(Op); 5386 MVT VT = Op.getSimpleValueType(); 5387 5388 const auto *MemSD = cast<MemSDNode>(Op); 5389 EVT MemVT = MemSD->getMemoryVT(); 5390 MachineMemOperand *MMO = MemSD->getMemOperand(); 5391 SDValue Chain = MemSD->getChain(); 5392 SDValue BasePtr = MemSD->getBasePtr(); 5393 5394 SDValue Mask, PassThru, VL; 5395 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5396 Mask = VPLoad->getMask(); 5397 PassThru = DAG.getUNDEF(VT); 5398 VL = VPLoad->getVectorLength(); 5399 } else { 5400 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5401 Mask = MLoad->getMask(); 5402 PassThru = MLoad->getPassThru(); 5403 } 5404 5405 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5406 5407 MVT XLenVT = Subtarget.getXLenVT(); 5408 5409 MVT ContainerVT = VT; 5410 if (VT.isFixedLengthVector()) { 5411 ContainerVT = getContainerForFixedLengthVector(VT); 5412 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5413 if (!IsUnmasked) { 5414 MVT MaskVT = 5415 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5416 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5417 } 5418 } 5419 5420 if (!VL) 5421 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5422 5423 unsigned IntID = 5424 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5425 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5426 if (!IsUnmasked) 5427 Ops.push_back(PassThru); 5428 Ops.push_back(BasePtr); 5429 if (!IsUnmasked) 5430 Ops.push_back(Mask); 5431 Ops.push_back(VL); 5432 if (!IsUnmasked) 5433 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5434 5435 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5436 5437 SDValue Result = 5438 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5439 Chain = Result.getValue(1); 5440 5441 if (VT.isFixedLengthVector()) 5442 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5443 5444 return DAG.getMergeValues({Result, Chain}, DL); 5445 } 5446 5447 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5448 SelectionDAG &DAG) const { 5449 SDLoc DL(Op); 5450 5451 const auto *MemSD = cast<MemSDNode>(Op); 5452 EVT MemVT = MemSD->getMemoryVT(); 5453 MachineMemOperand *MMO = MemSD->getMemOperand(); 5454 SDValue Chain = MemSD->getChain(); 5455 SDValue BasePtr = MemSD->getBasePtr(); 5456 SDValue Val, Mask, VL; 5457 5458 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5459 Val = VPStore->getValue(); 5460 Mask = VPStore->getMask(); 5461 VL = VPStore->getVectorLength(); 5462 } else { 5463 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5464 Val = MStore->getValue(); 5465 Mask = MStore->getMask(); 5466 } 5467 5468 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5469 5470 MVT VT = Val.getSimpleValueType(); 5471 MVT XLenVT = Subtarget.getXLenVT(); 5472 5473 MVT ContainerVT = VT; 5474 if (VT.isFixedLengthVector()) { 5475 ContainerVT = getContainerForFixedLengthVector(VT); 5476 5477 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5478 if (!IsUnmasked) { 5479 MVT MaskVT = 5480 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5481 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5482 } 5483 } 5484 5485 if (!VL) 5486 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5487 5488 unsigned IntID = 5489 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5490 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5491 Ops.push_back(Val); 5492 Ops.push_back(BasePtr); 5493 if (!IsUnmasked) 5494 Ops.push_back(Mask); 5495 Ops.push_back(VL); 5496 5497 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5498 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5499 } 5500 5501 SDValue 5502 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5503 SelectionDAG &DAG) const { 5504 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5505 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5506 5507 MVT VT = Op.getSimpleValueType(); 5508 5509 SDValue Op1 = 5510 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5511 SDValue Op2 = 5512 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5513 5514 SDLoc DL(Op); 5515 SDValue VL = 5516 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5517 5518 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5519 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5520 5521 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5522 Op.getOperand(2), Mask, VL); 5523 5524 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5525 } 5526 5527 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5528 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5529 MVT VT = Op.getSimpleValueType(); 5530 5531 if (VT.getVectorElementType() == MVT::i1) 5532 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5533 5534 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5535 } 5536 5537 SDValue 5538 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5539 SelectionDAG &DAG) const { 5540 unsigned Opc; 5541 switch (Op.getOpcode()) { 5542 default: llvm_unreachable("Unexpected opcode!"); 5543 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5544 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5545 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5546 } 5547 5548 return lowerToScalableOp(Op, DAG, Opc); 5549 } 5550 5551 // Lower vector ABS to smax(X, sub(0, X)). 5552 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5553 SDLoc DL(Op); 5554 MVT VT = Op.getSimpleValueType(); 5555 SDValue X = Op.getOperand(0); 5556 5557 assert(VT.isFixedLengthVector() && "Unexpected type"); 5558 5559 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5560 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5561 5562 SDValue Mask, VL; 5563 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5564 5565 SDValue SplatZero = 5566 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5567 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5568 SDValue NegX = 5569 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5570 SDValue Max = 5571 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5572 5573 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5574 } 5575 5576 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5577 SDValue Op, SelectionDAG &DAG) const { 5578 SDLoc DL(Op); 5579 MVT VT = Op.getSimpleValueType(); 5580 SDValue Mag = Op.getOperand(0); 5581 SDValue Sign = Op.getOperand(1); 5582 assert(Mag.getValueType() == Sign.getValueType() && 5583 "Can only handle COPYSIGN with matching types."); 5584 5585 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5586 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5587 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5588 5589 SDValue Mask, VL; 5590 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5591 5592 SDValue CopySign = 5593 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5594 5595 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5596 } 5597 5598 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5599 SDValue Op, SelectionDAG &DAG) const { 5600 MVT VT = Op.getSimpleValueType(); 5601 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5602 5603 MVT I1ContainerVT = 5604 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5605 5606 SDValue CC = 5607 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5608 SDValue Op1 = 5609 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5610 SDValue Op2 = 5611 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5612 5613 SDLoc DL(Op); 5614 SDValue Mask, VL; 5615 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5616 5617 SDValue Select = 5618 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5619 5620 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5621 } 5622 5623 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5624 unsigned NewOpc, 5625 bool HasMask) const { 5626 MVT VT = Op.getSimpleValueType(); 5627 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5628 5629 // Create list of operands by converting existing ones to scalable types. 5630 SmallVector<SDValue, 6> Ops; 5631 for (const SDValue &V : Op->op_values()) { 5632 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5633 5634 // Pass through non-vector operands. 5635 if (!V.getValueType().isVector()) { 5636 Ops.push_back(V); 5637 continue; 5638 } 5639 5640 // "cast" fixed length vector to a scalable vector. 5641 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5642 "Only fixed length vectors are supported!"); 5643 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5644 } 5645 5646 SDLoc DL(Op); 5647 SDValue Mask, VL; 5648 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5649 if (HasMask) 5650 Ops.push_back(Mask); 5651 Ops.push_back(VL); 5652 5653 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5654 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5655 } 5656 5657 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5658 // * Operands of each node are assumed to be in the same order. 5659 // * The EVL operand is promoted from i32 to i64 on RV64. 5660 // * Fixed-length vectors are converted to their scalable-vector container 5661 // types. 5662 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5663 unsigned RISCVISDOpc) const { 5664 SDLoc DL(Op); 5665 MVT VT = Op.getSimpleValueType(); 5666 SmallVector<SDValue, 4> Ops; 5667 5668 for (const auto &OpIdx : enumerate(Op->ops())) { 5669 SDValue V = OpIdx.value(); 5670 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5671 // Pass through operands which aren't fixed-length vectors. 5672 if (!V.getValueType().isFixedLengthVector()) { 5673 Ops.push_back(V); 5674 continue; 5675 } 5676 // "cast" fixed length vector to a scalable vector. 5677 MVT OpVT = V.getSimpleValueType(); 5678 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5679 assert(useRVVForFixedLengthVectorVT(OpVT) && 5680 "Only fixed length vectors are supported!"); 5681 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5682 } 5683 5684 if (!VT.isFixedLengthVector()) 5685 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5686 5687 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5688 5689 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5690 5691 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5692 } 5693 5694 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5695 unsigned MaskOpc, 5696 unsigned VecOpc) const { 5697 MVT VT = Op.getSimpleValueType(); 5698 if (VT.getVectorElementType() != MVT::i1) 5699 return lowerVPOp(Op, DAG, VecOpc); 5700 5701 // It is safe to drop mask parameter as masked-off elements are undef. 5702 SDValue Op1 = Op->getOperand(0); 5703 SDValue Op2 = Op->getOperand(1); 5704 SDValue VL = Op->getOperand(3); 5705 5706 MVT ContainerVT = VT; 5707 const bool IsFixed = VT.isFixedLengthVector(); 5708 if (IsFixed) { 5709 ContainerVT = getContainerForFixedLengthVector(VT); 5710 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5711 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5712 } 5713 5714 SDLoc DL(Op); 5715 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5716 if (!IsFixed) 5717 return Val; 5718 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5719 } 5720 5721 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5722 // matched to a RVV indexed load. The RVV indexed load instructions only 5723 // support the "unsigned unscaled" addressing mode; indices are implicitly 5724 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5725 // signed or scaled indexing is extended to the XLEN value type and scaled 5726 // accordingly. 5727 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5728 SelectionDAG &DAG) const { 5729 SDLoc DL(Op); 5730 MVT VT = Op.getSimpleValueType(); 5731 5732 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5733 EVT MemVT = MemSD->getMemoryVT(); 5734 MachineMemOperand *MMO = MemSD->getMemOperand(); 5735 SDValue Chain = MemSD->getChain(); 5736 SDValue BasePtr = MemSD->getBasePtr(); 5737 5738 ISD::LoadExtType LoadExtType; 5739 SDValue Index, Mask, PassThru, VL; 5740 5741 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5742 Index = VPGN->getIndex(); 5743 Mask = VPGN->getMask(); 5744 PassThru = DAG.getUNDEF(VT); 5745 VL = VPGN->getVectorLength(); 5746 // VP doesn't support extending loads. 5747 LoadExtType = ISD::NON_EXTLOAD; 5748 } else { 5749 // Else it must be a MGATHER. 5750 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5751 Index = MGN->getIndex(); 5752 Mask = MGN->getMask(); 5753 PassThru = MGN->getPassThru(); 5754 LoadExtType = MGN->getExtensionType(); 5755 } 5756 5757 MVT IndexVT = Index.getSimpleValueType(); 5758 MVT XLenVT = Subtarget.getXLenVT(); 5759 5760 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5761 "Unexpected VTs!"); 5762 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5763 // Targets have to explicitly opt-in for extending vector loads. 5764 assert(LoadExtType == ISD::NON_EXTLOAD && 5765 "Unexpected extending MGATHER/VP_GATHER"); 5766 (void)LoadExtType; 5767 5768 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5769 // the selection of the masked intrinsics doesn't do this for us. 5770 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5771 5772 MVT ContainerVT = VT; 5773 if (VT.isFixedLengthVector()) { 5774 // We need to use the larger of the result and index type to determine the 5775 // scalable type to use so we don't increase LMUL for any operand/result. 5776 if (VT.bitsGE(IndexVT)) { 5777 ContainerVT = getContainerForFixedLengthVector(VT); 5778 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5779 ContainerVT.getVectorElementCount()); 5780 } else { 5781 IndexVT = getContainerForFixedLengthVector(IndexVT); 5782 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5783 IndexVT.getVectorElementCount()); 5784 } 5785 5786 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5787 5788 if (!IsUnmasked) { 5789 MVT MaskVT = 5790 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5791 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5792 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5793 } 5794 } 5795 5796 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5797 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5798 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5799 } 5800 5801 if (!VL) 5802 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5803 5804 unsigned IntID = 5805 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5806 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5807 if (!IsUnmasked) 5808 Ops.push_back(PassThru); 5809 Ops.push_back(BasePtr); 5810 Ops.push_back(Index); 5811 if (!IsUnmasked) 5812 Ops.push_back(Mask); 5813 Ops.push_back(VL); 5814 if (!IsUnmasked) 5815 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5816 5817 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5818 SDValue Result = 5819 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5820 Chain = Result.getValue(1); 5821 5822 if (VT.isFixedLengthVector()) 5823 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5824 5825 return DAG.getMergeValues({Result, Chain}, DL); 5826 } 5827 5828 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5829 // matched to a RVV indexed store. The RVV indexed store instructions only 5830 // support the "unsigned unscaled" addressing mode; indices are implicitly 5831 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5832 // signed or scaled indexing is extended to the XLEN value type and scaled 5833 // accordingly. 5834 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5835 SelectionDAG &DAG) const { 5836 SDLoc DL(Op); 5837 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5838 EVT MemVT = MemSD->getMemoryVT(); 5839 MachineMemOperand *MMO = MemSD->getMemOperand(); 5840 SDValue Chain = MemSD->getChain(); 5841 SDValue BasePtr = MemSD->getBasePtr(); 5842 5843 bool IsTruncatingStore = false; 5844 SDValue Index, Mask, Val, VL; 5845 5846 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5847 Index = VPSN->getIndex(); 5848 Mask = VPSN->getMask(); 5849 Val = VPSN->getValue(); 5850 VL = VPSN->getVectorLength(); 5851 // VP doesn't support truncating stores. 5852 IsTruncatingStore = false; 5853 } else { 5854 // Else it must be a MSCATTER. 5855 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5856 Index = MSN->getIndex(); 5857 Mask = MSN->getMask(); 5858 Val = MSN->getValue(); 5859 IsTruncatingStore = MSN->isTruncatingStore(); 5860 } 5861 5862 MVT VT = Val.getSimpleValueType(); 5863 MVT IndexVT = Index.getSimpleValueType(); 5864 MVT XLenVT = Subtarget.getXLenVT(); 5865 5866 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5867 "Unexpected VTs!"); 5868 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5869 // Targets have to explicitly opt-in for extending vector loads and 5870 // truncating vector stores. 5871 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5872 (void)IsTruncatingStore; 5873 5874 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5875 // the selection of the masked intrinsics doesn't do this for us. 5876 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5877 5878 MVT ContainerVT = VT; 5879 if (VT.isFixedLengthVector()) { 5880 // We need to use the larger of the value and index type to determine the 5881 // scalable type to use so we don't increase LMUL for any operand/result. 5882 if (VT.bitsGE(IndexVT)) { 5883 ContainerVT = getContainerForFixedLengthVector(VT); 5884 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5885 ContainerVT.getVectorElementCount()); 5886 } else { 5887 IndexVT = getContainerForFixedLengthVector(IndexVT); 5888 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5889 IndexVT.getVectorElementCount()); 5890 } 5891 5892 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5893 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5894 5895 if (!IsUnmasked) { 5896 MVT MaskVT = 5897 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5898 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5899 } 5900 } 5901 5902 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5903 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5904 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5905 } 5906 5907 if (!VL) 5908 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5909 5910 unsigned IntID = 5911 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5912 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5913 Ops.push_back(Val); 5914 Ops.push_back(BasePtr); 5915 Ops.push_back(Index); 5916 if (!IsUnmasked) 5917 Ops.push_back(Mask); 5918 Ops.push_back(VL); 5919 5920 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5921 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5922 } 5923 5924 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5925 SelectionDAG &DAG) const { 5926 const MVT XLenVT = Subtarget.getXLenVT(); 5927 SDLoc DL(Op); 5928 SDValue Chain = Op->getOperand(0); 5929 SDValue SysRegNo = DAG.getTargetConstant( 5930 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5931 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5932 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5933 5934 // Encoding used for rounding mode in RISCV differs from that used in 5935 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5936 // table, which consists of a sequence of 4-bit fields, each representing 5937 // corresponding FLT_ROUNDS mode. 5938 static const int Table = 5939 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5940 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5941 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5942 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5943 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5944 5945 SDValue Shift = 5946 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5947 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5948 DAG.getConstant(Table, DL, XLenVT), Shift); 5949 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5950 DAG.getConstant(7, DL, XLenVT)); 5951 5952 return DAG.getMergeValues({Masked, Chain}, DL); 5953 } 5954 5955 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5956 SelectionDAG &DAG) const { 5957 const MVT XLenVT = Subtarget.getXLenVT(); 5958 SDLoc DL(Op); 5959 SDValue Chain = Op->getOperand(0); 5960 SDValue RMValue = Op->getOperand(1); 5961 SDValue SysRegNo = DAG.getTargetConstant( 5962 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5963 5964 // Encoding used for rounding mode in RISCV differs from that used in 5965 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5966 // a table, which consists of a sequence of 4-bit fields, each representing 5967 // corresponding RISCV mode. 5968 static const unsigned Table = 5969 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5970 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5971 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5972 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5973 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5974 5975 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5976 DAG.getConstant(2, DL, XLenVT)); 5977 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5978 DAG.getConstant(Table, DL, XLenVT), Shift); 5979 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5980 DAG.getConstant(0x7, DL, XLenVT)); 5981 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5982 RMValue); 5983 } 5984 5985 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 5986 switch (IntNo) { 5987 default: 5988 llvm_unreachable("Unexpected Intrinsic"); 5989 case Intrinsic::riscv_grev: 5990 return RISCVISD::GREVW; 5991 case Intrinsic::riscv_gorc: 5992 return RISCVISD::GORCW; 5993 case Intrinsic::riscv_bcompress: 5994 return RISCVISD::BCOMPRESSW; 5995 case Intrinsic::riscv_bdecompress: 5996 return RISCVISD::BDECOMPRESSW; 5997 case Intrinsic::riscv_bfp: 5998 return RISCVISD::BFPW; 5999 case Intrinsic::riscv_fsl: 6000 return RISCVISD::FSLW; 6001 case Intrinsic::riscv_fsr: 6002 return RISCVISD::FSRW; 6003 } 6004 } 6005 6006 // Converts the given intrinsic to a i64 operation with any extension. 6007 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6008 unsigned IntNo) { 6009 SDLoc DL(N); 6010 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6011 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6012 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6013 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6014 // ReplaceNodeResults requires we maintain the same type for the return value. 6015 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6016 } 6017 6018 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6019 // form of the given Opcode. 6020 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6021 switch (Opcode) { 6022 default: 6023 llvm_unreachable("Unexpected opcode"); 6024 case ISD::SHL: 6025 return RISCVISD::SLLW; 6026 case ISD::SRA: 6027 return RISCVISD::SRAW; 6028 case ISD::SRL: 6029 return RISCVISD::SRLW; 6030 case ISD::SDIV: 6031 return RISCVISD::DIVW; 6032 case ISD::UDIV: 6033 return RISCVISD::DIVUW; 6034 case ISD::UREM: 6035 return RISCVISD::REMUW; 6036 case ISD::ROTL: 6037 return RISCVISD::ROLW; 6038 case ISD::ROTR: 6039 return RISCVISD::RORW; 6040 case RISCVISD::GREV: 6041 return RISCVISD::GREVW; 6042 case RISCVISD::GORC: 6043 return RISCVISD::GORCW; 6044 } 6045 } 6046 6047 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6048 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6049 // otherwise be promoted to i64, making it difficult to select the 6050 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6051 // type i8/i16/i32 is lost. 6052 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6053 unsigned ExtOpc = ISD::ANY_EXTEND) { 6054 SDLoc DL(N); 6055 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6056 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6057 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6058 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6059 // ReplaceNodeResults requires we maintain the same type for the return value. 6060 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6061 } 6062 6063 // Converts the given 32-bit operation to a i64 operation with signed extension 6064 // semantic to reduce the signed extension instructions. 6065 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6066 SDLoc DL(N); 6067 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6068 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6069 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6070 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6071 DAG.getValueType(MVT::i32)); 6072 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6073 } 6074 6075 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6076 SmallVectorImpl<SDValue> &Results, 6077 SelectionDAG &DAG) const { 6078 SDLoc DL(N); 6079 switch (N->getOpcode()) { 6080 default: 6081 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6082 case ISD::STRICT_FP_TO_SINT: 6083 case ISD::STRICT_FP_TO_UINT: 6084 case ISD::FP_TO_SINT: 6085 case ISD::FP_TO_UINT: { 6086 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6087 "Unexpected custom legalisation"); 6088 bool IsStrict = N->isStrictFPOpcode(); 6089 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6090 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6091 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6092 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6093 TargetLowering::TypeSoftenFloat) { 6094 if (!isTypeLegal(Op0.getValueType())) 6095 return; 6096 if (IsStrict) { 6097 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6098 : RISCVISD::STRICT_FCVT_WU_RV64; 6099 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6100 SDValue Res = DAG.getNode( 6101 Opc, DL, VTs, N->getOperand(0), Op0, 6102 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6103 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6104 Results.push_back(Res.getValue(1)); 6105 return; 6106 } 6107 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6108 SDValue Res = 6109 DAG.getNode(Opc, DL, MVT::i64, Op0, 6110 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6111 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6112 return; 6113 } 6114 // If the FP type needs to be softened, emit a library call using the 'si' 6115 // version. If we left it to default legalization we'd end up with 'di'. If 6116 // the FP type doesn't need to be softened just let generic type 6117 // legalization promote the result type. 6118 RTLIB::Libcall LC; 6119 if (IsSigned) 6120 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6121 else 6122 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6123 MakeLibCallOptions CallOptions; 6124 EVT OpVT = Op0.getValueType(); 6125 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6126 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6127 SDValue Result; 6128 std::tie(Result, Chain) = 6129 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6130 Results.push_back(Result); 6131 if (IsStrict) 6132 Results.push_back(Chain); 6133 break; 6134 } 6135 case ISD::READCYCLECOUNTER: { 6136 assert(!Subtarget.is64Bit() && 6137 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6138 6139 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6140 SDValue RCW = 6141 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6142 6143 Results.push_back( 6144 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6145 Results.push_back(RCW.getValue(2)); 6146 break; 6147 } 6148 case ISD::MUL: { 6149 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6150 unsigned XLen = Subtarget.getXLen(); 6151 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6152 if (Size > XLen) { 6153 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6154 SDValue LHS = N->getOperand(0); 6155 SDValue RHS = N->getOperand(1); 6156 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6157 6158 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6159 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6160 // We need exactly one side to be unsigned. 6161 if (LHSIsU == RHSIsU) 6162 return; 6163 6164 auto MakeMULPair = [&](SDValue S, SDValue U) { 6165 MVT XLenVT = Subtarget.getXLenVT(); 6166 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6167 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6168 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6169 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6170 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6171 }; 6172 6173 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6174 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6175 6176 // The other operand should be signed, but still prefer MULH when 6177 // possible. 6178 if (RHSIsU && LHSIsS && !RHSIsS) 6179 Results.push_back(MakeMULPair(LHS, RHS)); 6180 else if (LHSIsU && RHSIsS && !LHSIsS) 6181 Results.push_back(MakeMULPair(RHS, LHS)); 6182 6183 return; 6184 } 6185 LLVM_FALLTHROUGH; 6186 } 6187 case ISD::ADD: 6188 case ISD::SUB: 6189 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6190 "Unexpected custom legalisation"); 6191 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6192 break; 6193 case ISD::SHL: 6194 case ISD::SRA: 6195 case ISD::SRL: 6196 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6197 "Unexpected custom legalisation"); 6198 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6199 Results.push_back(customLegalizeToWOp(N, DAG)); 6200 break; 6201 } 6202 6203 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6204 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6205 // shift amount. 6206 if (N->getOpcode() == ISD::SHL) { 6207 SDLoc DL(N); 6208 SDValue NewOp0 = 6209 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6210 SDValue NewOp1 = 6211 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6212 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6213 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6214 DAG.getValueType(MVT::i32)); 6215 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6216 } 6217 6218 break; 6219 case ISD::ROTL: 6220 case ISD::ROTR: 6221 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6222 "Unexpected custom legalisation"); 6223 Results.push_back(customLegalizeToWOp(N, DAG)); 6224 break; 6225 case ISD::CTTZ: 6226 case ISD::CTTZ_ZERO_UNDEF: 6227 case ISD::CTLZ: 6228 case ISD::CTLZ_ZERO_UNDEF: { 6229 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6230 "Unexpected custom legalisation"); 6231 6232 SDValue NewOp0 = 6233 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6234 bool IsCTZ = 6235 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6236 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6237 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6238 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6239 return; 6240 } 6241 case ISD::SDIV: 6242 case ISD::UDIV: 6243 case ISD::UREM: { 6244 MVT VT = N->getSimpleValueType(0); 6245 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6246 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6247 "Unexpected custom legalisation"); 6248 // Don't promote division/remainder by constant since we should expand those 6249 // to multiply by magic constant. 6250 // FIXME: What if the expansion is disabled for minsize. 6251 if (N->getOperand(1).getOpcode() == ISD::Constant) 6252 return; 6253 6254 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6255 // the upper 32 bits. For other types we need to sign or zero extend 6256 // based on the opcode. 6257 unsigned ExtOpc = ISD::ANY_EXTEND; 6258 if (VT != MVT::i32) 6259 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6260 : ISD::ZERO_EXTEND; 6261 6262 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6263 break; 6264 } 6265 case ISD::UADDO: 6266 case ISD::USUBO: { 6267 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6268 "Unexpected custom legalisation"); 6269 bool IsAdd = N->getOpcode() == ISD::UADDO; 6270 // Create an ADDW or SUBW. 6271 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6272 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6273 SDValue Res = 6274 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6275 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6276 DAG.getValueType(MVT::i32)); 6277 6278 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6279 // Since the inputs are sign extended from i32, this is equivalent to 6280 // comparing the lower 32 bits. 6281 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6282 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6283 IsAdd ? ISD::SETULT : ISD::SETUGT); 6284 6285 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6286 Results.push_back(Overflow); 6287 return; 6288 } 6289 case ISD::UADDSAT: 6290 case ISD::USUBSAT: { 6291 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6292 "Unexpected custom legalisation"); 6293 if (Subtarget.hasStdExtZbb()) { 6294 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6295 // sign extend allows overflow of the lower 32 bits to be detected on 6296 // the promoted size. 6297 SDValue LHS = 6298 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6299 SDValue RHS = 6300 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6301 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6302 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6303 return; 6304 } 6305 6306 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6307 // promotion for UADDO/USUBO. 6308 Results.push_back(expandAddSubSat(N, DAG)); 6309 return; 6310 } 6311 case ISD::BITCAST: { 6312 EVT VT = N->getValueType(0); 6313 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6314 SDValue Op0 = N->getOperand(0); 6315 EVT Op0VT = Op0.getValueType(); 6316 MVT XLenVT = Subtarget.getXLenVT(); 6317 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6318 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6319 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6320 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6321 Subtarget.hasStdExtF()) { 6322 SDValue FPConv = 6323 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6324 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6325 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6326 isTypeLegal(Op0VT)) { 6327 // Custom-legalize bitcasts from fixed-length vector types to illegal 6328 // scalar types in order to improve codegen. Bitcast the vector to a 6329 // one-element vector type whose element type is the same as the result 6330 // type, and extract the first element. 6331 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6332 if (isTypeLegal(BVT)) { 6333 SDValue BVec = DAG.getBitcast(BVT, Op0); 6334 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6335 DAG.getConstant(0, DL, XLenVT))); 6336 } 6337 } 6338 break; 6339 } 6340 case RISCVISD::GREV: 6341 case RISCVISD::GORC: { 6342 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6343 "Unexpected custom legalisation"); 6344 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6345 // This is similar to customLegalizeToWOp, except that we pass the second 6346 // operand (a TargetConstant) straight through: it is already of type 6347 // XLenVT. 6348 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6349 SDValue NewOp0 = 6350 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6351 SDValue NewOp1 = 6352 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6353 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6354 // ReplaceNodeResults requires we maintain the same type for the return 6355 // value. 6356 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6357 break; 6358 } 6359 case RISCVISD::SHFL: { 6360 // There is no SHFLIW instruction, but we can just promote the operation. 6361 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6362 "Unexpected custom legalisation"); 6363 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6364 SDValue NewOp0 = 6365 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6366 SDValue NewOp1 = 6367 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6368 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6369 // ReplaceNodeResults requires we maintain the same type for the return 6370 // value. 6371 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6372 break; 6373 } 6374 case ISD::BSWAP: 6375 case ISD::BITREVERSE: { 6376 MVT VT = N->getSimpleValueType(0); 6377 MVT XLenVT = Subtarget.getXLenVT(); 6378 assert((VT == MVT::i8 || VT == MVT::i16 || 6379 (VT == MVT::i32 && Subtarget.is64Bit())) && 6380 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6381 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6382 unsigned Imm = VT.getSizeInBits() - 1; 6383 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6384 if (N->getOpcode() == ISD::BSWAP) 6385 Imm &= ~0x7U; 6386 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6387 SDValue GREVI = 6388 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6389 // ReplaceNodeResults requires we maintain the same type for the return 6390 // value. 6391 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6392 break; 6393 } 6394 case ISD::FSHL: 6395 case ISD::FSHR: { 6396 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6397 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6398 SDValue NewOp0 = 6399 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6400 SDValue NewOp1 = 6401 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6402 SDValue NewShAmt = 6403 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6404 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6405 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6406 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6407 DAG.getConstant(0x1f, DL, MVT::i64)); 6408 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6409 // instruction use different orders. fshl will return its first operand for 6410 // shift of zero, fshr will return its second operand. fsl and fsr both 6411 // return rs1 so the ISD nodes need to have different operand orders. 6412 // Shift amount is in rs2. 6413 unsigned Opc = RISCVISD::FSLW; 6414 if (N->getOpcode() == ISD::FSHR) { 6415 std::swap(NewOp0, NewOp1); 6416 Opc = RISCVISD::FSRW; 6417 } 6418 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6419 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6420 break; 6421 } 6422 case ISD::EXTRACT_VECTOR_ELT: { 6423 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6424 // type is illegal (currently only vXi64 RV32). 6425 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6426 // transferred to the destination register. We issue two of these from the 6427 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6428 // first element. 6429 SDValue Vec = N->getOperand(0); 6430 SDValue Idx = N->getOperand(1); 6431 6432 // The vector type hasn't been legalized yet so we can't issue target 6433 // specific nodes if it needs legalization. 6434 // FIXME: We would manually legalize if it's important. 6435 if (!isTypeLegal(Vec.getValueType())) 6436 return; 6437 6438 MVT VecVT = Vec.getSimpleValueType(); 6439 6440 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6441 VecVT.getVectorElementType() == MVT::i64 && 6442 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6443 6444 // If this is a fixed vector, we need to convert it to a scalable vector. 6445 MVT ContainerVT = VecVT; 6446 if (VecVT.isFixedLengthVector()) { 6447 ContainerVT = getContainerForFixedLengthVector(VecVT); 6448 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6449 } 6450 6451 MVT XLenVT = Subtarget.getXLenVT(); 6452 6453 // Use a VL of 1 to avoid processing more elements than we need. 6454 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6455 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6456 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6457 6458 // Unless the index is known to be 0, we must slide the vector down to get 6459 // the desired element into index 0. 6460 if (!isNullConstant(Idx)) { 6461 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6462 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6463 } 6464 6465 // Extract the lower XLEN bits of the correct vector element. 6466 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6467 6468 // To extract the upper XLEN bits of the vector element, shift the first 6469 // element right by 32 bits and re-extract the lower XLEN bits. 6470 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6471 DAG.getConstant(32, DL, XLenVT), VL); 6472 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6473 ThirtyTwoV, Mask, VL); 6474 6475 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6476 6477 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6478 break; 6479 } 6480 case ISD::INTRINSIC_WO_CHAIN: { 6481 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6482 switch (IntNo) { 6483 default: 6484 llvm_unreachable( 6485 "Don't know how to custom type legalize this intrinsic!"); 6486 case Intrinsic::riscv_grev: 6487 case Intrinsic::riscv_gorc: 6488 case Intrinsic::riscv_bcompress: 6489 case Intrinsic::riscv_bdecompress: 6490 case Intrinsic::riscv_bfp: { 6491 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6492 "Unexpected custom legalisation"); 6493 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6494 break; 6495 } 6496 case Intrinsic::riscv_fsl: 6497 case Intrinsic::riscv_fsr: { 6498 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6499 "Unexpected custom legalisation"); 6500 SDValue NewOp1 = 6501 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6502 SDValue NewOp2 = 6503 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6504 SDValue NewOp3 = 6505 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6506 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6507 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6508 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6509 break; 6510 } 6511 case Intrinsic::riscv_orc_b: { 6512 // Lower to the GORCI encoding for orc.b with the operand extended. 6513 SDValue NewOp = 6514 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6515 // If Zbp is enabled, use GORCIW which will sign extend the result. 6516 unsigned Opc = 6517 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6518 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6519 DAG.getConstant(7, DL, MVT::i64)); 6520 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6521 return; 6522 } 6523 case Intrinsic::riscv_shfl: 6524 case Intrinsic::riscv_unshfl: { 6525 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6526 "Unexpected custom legalisation"); 6527 SDValue NewOp1 = 6528 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6529 SDValue NewOp2 = 6530 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6531 unsigned Opc = 6532 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6533 if (isa<ConstantSDNode>(N->getOperand(2))) { 6534 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6535 DAG.getConstant(0xf, DL, MVT::i64)); 6536 Opc = 6537 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6538 } 6539 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6540 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6541 break; 6542 } 6543 case Intrinsic::riscv_vmv_x_s: { 6544 EVT VT = N->getValueType(0); 6545 MVT XLenVT = Subtarget.getXLenVT(); 6546 if (VT.bitsLT(XLenVT)) { 6547 // Simple case just extract using vmv.x.s and truncate. 6548 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6549 Subtarget.getXLenVT(), N->getOperand(1)); 6550 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6551 return; 6552 } 6553 6554 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6555 "Unexpected custom legalization"); 6556 6557 // We need to do the move in two steps. 6558 SDValue Vec = N->getOperand(1); 6559 MVT VecVT = Vec.getSimpleValueType(); 6560 6561 // First extract the lower XLEN bits of the element. 6562 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6563 6564 // To extract the upper XLEN bits of the vector element, shift the first 6565 // element right by 32 bits and re-extract the lower XLEN bits. 6566 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6567 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6568 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6569 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6570 DAG.getConstant(32, DL, XLenVT), VL); 6571 SDValue LShr32 = 6572 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6573 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6574 6575 Results.push_back( 6576 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6577 break; 6578 } 6579 } 6580 break; 6581 } 6582 case ISD::VECREDUCE_ADD: 6583 case ISD::VECREDUCE_AND: 6584 case ISD::VECREDUCE_OR: 6585 case ISD::VECREDUCE_XOR: 6586 case ISD::VECREDUCE_SMAX: 6587 case ISD::VECREDUCE_UMAX: 6588 case ISD::VECREDUCE_SMIN: 6589 case ISD::VECREDUCE_UMIN: 6590 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6591 Results.push_back(V); 6592 break; 6593 case ISD::VP_REDUCE_ADD: 6594 case ISD::VP_REDUCE_AND: 6595 case ISD::VP_REDUCE_OR: 6596 case ISD::VP_REDUCE_XOR: 6597 case ISD::VP_REDUCE_SMAX: 6598 case ISD::VP_REDUCE_UMAX: 6599 case ISD::VP_REDUCE_SMIN: 6600 case ISD::VP_REDUCE_UMIN: 6601 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6602 Results.push_back(V); 6603 break; 6604 case ISD::FLT_ROUNDS_: { 6605 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6606 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6607 Results.push_back(Res.getValue(0)); 6608 Results.push_back(Res.getValue(1)); 6609 break; 6610 } 6611 } 6612 } 6613 6614 // A structure to hold one of the bit-manipulation patterns below. Together, a 6615 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6616 // (or (and (shl x, 1), 0xAAAAAAAA), 6617 // (and (srl x, 1), 0x55555555)) 6618 struct RISCVBitmanipPat { 6619 SDValue Op; 6620 unsigned ShAmt; 6621 bool IsSHL; 6622 6623 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6624 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6625 } 6626 }; 6627 6628 // Matches patterns of the form 6629 // (and (shl x, C2), (C1 << C2)) 6630 // (and (srl x, C2), C1) 6631 // (shl (and x, C1), C2) 6632 // (srl (and x, (C1 << C2)), C2) 6633 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6634 // The expected masks for each shift amount are specified in BitmanipMasks where 6635 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6636 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6637 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6638 // XLen is 64. 6639 static Optional<RISCVBitmanipPat> 6640 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6641 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6642 "Unexpected number of masks"); 6643 Optional<uint64_t> Mask; 6644 // Optionally consume a mask around the shift operation. 6645 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6646 Mask = Op.getConstantOperandVal(1); 6647 Op = Op.getOperand(0); 6648 } 6649 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6650 return None; 6651 bool IsSHL = Op.getOpcode() == ISD::SHL; 6652 6653 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6654 return None; 6655 uint64_t ShAmt = Op.getConstantOperandVal(1); 6656 6657 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6658 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6659 return None; 6660 // If we don't have enough masks for 64 bit, then we must be trying to 6661 // match SHFL so we're only allowed to shift 1/4 of the width. 6662 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6663 return None; 6664 6665 SDValue Src = Op.getOperand(0); 6666 6667 // The expected mask is shifted left when the AND is found around SHL 6668 // patterns. 6669 // ((x >> 1) & 0x55555555) 6670 // ((x << 1) & 0xAAAAAAAA) 6671 bool SHLExpMask = IsSHL; 6672 6673 if (!Mask) { 6674 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6675 // the mask is all ones: consume that now. 6676 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6677 Mask = Src.getConstantOperandVal(1); 6678 Src = Src.getOperand(0); 6679 // The expected mask is now in fact shifted left for SRL, so reverse the 6680 // decision. 6681 // ((x & 0xAAAAAAAA) >> 1) 6682 // ((x & 0x55555555) << 1) 6683 SHLExpMask = !SHLExpMask; 6684 } else { 6685 // Use a default shifted mask of all-ones if there's no AND, truncated 6686 // down to the expected width. This simplifies the logic later on. 6687 Mask = maskTrailingOnes<uint64_t>(Width); 6688 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6689 } 6690 } 6691 6692 unsigned MaskIdx = Log2_32(ShAmt); 6693 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6694 6695 if (SHLExpMask) 6696 ExpMask <<= ShAmt; 6697 6698 if (Mask != ExpMask) 6699 return None; 6700 6701 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6702 } 6703 6704 // Matches any of the following bit-manipulation patterns: 6705 // (and (shl x, 1), (0x55555555 << 1)) 6706 // (and (srl x, 1), 0x55555555) 6707 // (shl (and x, 0x55555555), 1) 6708 // (srl (and x, (0x55555555 << 1)), 1) 6709 // where the shift amount and mask may vary thus: 6710 // [1] = 0x55555555 / 0xAAAAAAAA 6711 // [2] = 0x33333333 / 0xCCCCCCCC 6712 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6713 // [8] = 0x00FF00FF / 0xFF00FF00 6714 // [16] = 0x0000FFFF / 0xFFFFFFFF 6715 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6716 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6717 // These are the unshifted masks which we use to match bit-manipulation 6718 // patterns. They may be shifted left in certain circumstances. 6719 static const uint64_t BitmanipMasks[] = { 6720 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6721 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6722 6723 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6724 } 6725 6726 // Match the following pattern as a GREVI(W) operation 6727 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6728 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6729 const RISCVSubtarget &Subtarget) { 6730 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6731 EVT VT = Op.getValueType(); 6732 6733 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6734 auto LHS = matchGREVIPat(Op.getOperand(0)); 6735 auto RHS = matchGREVIPat(Op.getOperand(1)); 6736 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6737 SDLoc DL(Op); 6738 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6739 DAG.getConstant(LHS->ShAmt, DL, VT)); 6740 } 6741 } 6742 return SDValue(); 6743 } 6744 6745 // Matches any the following pattern as a GORCI(W) operation 6746 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6747 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6748 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6749 // Note that with the variant of 3., 6750 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6751 // the inner pattern will first be matched as GREVI and then the outer 6752 // pattern will be matched to GORC via the first rule above. 6753 // 4. (or (rotl/rotr x, bitwidth/2), x) 6754 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6755 const RISCVSubtarget &Subtarget) { 6756 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6757 EVT VT = Op.getValueType(); 6758 6759 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6760 SDLoc DL(Op); 6761 SDValue Op0 = Op.getOperand(0); 6762 SDValue Op1 = Op.getOperand(1); 6763 6764 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6765 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6766 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6767 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6768 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6769 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6770 if ((Reverse.getOpcode() == ISD::ROTL || 6771 Reverse.getOpcode() == ISD::ROTR) && 6772 Reverse.getOperand(0) == X && 6773 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6774 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6775 if (RotAmt == (VT.getSizeInBits() / 2)) 6776 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6777 DAG.getConstant(RotAmt, DL, VT)); 6778 } 6779 return SDValue(); 6780 }; 6781 6782 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6783 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6784 return V; 6785 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6786 return V; 6787 6788 // OR is commutable so canonicalize its OR operand to the left 6789 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6790 std::swap(Op0, Op1); 6791 if (Op0.getOpcode() != ISD::OR) 6792 return SDValue(); 6793 SDValue OrOp0 = Op0.getOperand(0); 6794 SDValue OrOp1 = Op0.getOperand(1); 6795 auto LHS = matchGREVIPat(OrOp0); 6796 // OR is commutable so swap the operands and try again: x might have been 6797 // on the left 6798 if (!LHS) { 6799 std::swap(OrOp0, OrOp1); 6800 LHS = matchGREVIPat(OrOp0); 6801 } 6802 auto RHS = matchGREVIPat(Op1); 6803 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6804 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6805 DAG.getConstant(LHS->ShAmt, DL, VT)); 6806 } 6807 } 6808 return SDValue(); 6809 } 6810 6811 // Matches any of the following bit-manipulation patterns: 6812 // (and (shl x, 1), (0x22222222 << 1)) 6813 // (and (srl x, 1), 0x22222222) 6814 // (shl (and x, 0x22222222), 1) 6815 // (srl (and x, (0x22222222 << 1)), 1) 6816 // where the shift amount and mask may vary thus: 6817 // [1] = 0x22222222 / 0x44444444 6818 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6819 // [4] = 0x00F000F0 / 0x0F000F00 6820 // [8] = 0x0000FF00 / 0x00FF0000 6821 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6822 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6823 // These are the unshifted masks which we use to match bit-manipulation 6824 // patterns. They may be shifted left in certain circumstances. 6825 static const uint64_t BitmanipMasks[] = { 6826 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6827 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6828 6829 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6830 } 6831 6832 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6833 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6834 const RISCVSubtarget &Subtarget) { 6835 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6836 EVT VT = Op.getValueType(); 6837 6838 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6839 return SDValue(); 6840 6841 SDValue Op0 = Op.getOperand(0); 6842 SDValue Op1 = Op.getOperand(1); 6843 6844 // Or is commutable so canonicalize the second OR to the LHS. 6845 if (Op0.getOpcode() != ISD::OR) 6846 std::swap(Op0, Op1); 6847 if (Op0.getOpcode() != ISD::OR) 6848 return SDValue(); 6849 6850 // We found an inner OR, so our operands are the operands of the inner OR 6851 // and the other operand of the outer OR. 6852 SDValue A = Op0.getOperand(0); 6853 SDValue B = Op0.getOperand(1); 6854 SDValue C = Op1; 6855 6856 auto Match1 = matchSHFLPat(A); 6857 auto Match2 = matchSHFLPat(B); 6858 6859 // If neither matched, we failed. 6860 if (!Match1 && !Match2) 6861 return SDValue(); 6862 6863 // We had at least one match. if one failed, try the remaining C operand. 6864 if (!Match1) { 6865 std::swap(A, C); 6866 Match1 = matchSHFLPat(A); 6867 if (!Match1) 6868 return SDValue(); 6869 } else if (!Match2) { 6870 std::swap(B, C); 6871 Match2 = matchSHFLPat(B); 6872 if (!Match2) 6873 return SDValue(); 6874 } 6875 assert(Match1 && Match2); 6876 6877 // Make sure our matches pair up. 6878 if (!Match1->formsPairWith(*Match2)) 6879 return SDValue(); 6880 6881 // All the remains is to make sure C is an AND with the same input, that masks 6882 // out the bits that are being shuffled. 6883 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6884 C.getOperand(0) != Match1->Op) 6885 return SDValue(); 6886 6887 uint64_t Mask = C.getConstantOperandVal(1); 6888 6889 static const uint64_t BitmanipMasks[] = { 6890 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6891 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6892 }; 6893 6894 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6895 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6896 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6897 6898 if (Mask != ExpMask) 6899 return SDValue(); 6900 6901 SDLoc DL(Op); 6902 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6903 DAG.getConstant(Match1->ShAmt, DL, VT)); 6904 } 6905 6906 // Optimize (add (shl x, c0), (shl y, c1)) -> 6907 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6908 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6909 const RISCVSubtarget &Subtarget) { 6910 // Perform this optimization only in the zba extension. 6911 if (!Subtarget.hasStdExtZba()) 6912 return SDValue(); 6913 6914 // Skip for vector types and larger types. 6915 EVT VT = N->getValueType(0); 6916 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6917 return SDValue(); 6918 6919 // The two operand nodes must be SHL and have no other use. 6920 SDValue N0 = N->getOperand(0); 6921 SDValue N1 = N->getOperand(1); 6922 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6923 !N0->hasOneUse() || !N1->hasOneUse()) 6924 return SDValue(); 6925 6926 // Check c0 and c1. 6927 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6928 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6929 if (!N0C || !N1C) 6930 return SDValue(); 6931 int64_t C0 = N0C->getSExtValue(); 6932 int64_t C1 = N1C->getSExtValue(); 6933 if (C0 <= 0 || C1 <= 0) 6934 return SDValue(); 6935 6936 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6937 int64_t Bits = std::min(C0, C1); 6938 int64_t Diff = std::abs(C0 - C1); 6939 if (Diff != 1 && Diff != 2 && Diff != 3) 6940 return SDValue(); 6941 6942 // Build nodes. 6943 SDLoc DL(N); 6944 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6945 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6946 SDValue NA0 = 6947 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6948 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6949 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6950 } 6951 6952 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6953 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6954 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6955 // not undo itself, but they are redundant. 6956 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6957 SDValue Src = N->getOperand(0); 6958 6959 if (Src.getOpcode() != N->getOpcode()) 6960 return SDValue(); 6961 6962 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6963 !isa<ConstantSDNode>(Src.getOperand(1))) 6964 return SDValue(); 6965 6966 unsigned ShAmt1 = N->getConstantOperandVal(1); 6967 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6968 Src = Src.getOperand(0); 6969 6970 unsigned CombinedShAmt; 6971 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6972 CombinedShAmt = ShAmt1 | ShAmt2; 6973 else 6974 CombinedShAmt = ShAmt1 ^ ShAmt2; 6975 6976 if (CombinedShAmt == 0) 6977 return Src; 6978 6979 SDLoc DL(N); 6980 return DAG.getNode( 6981 N->getOpcode(), DL, N->getValueType(0), Src, 6982 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6983 } 6984 6985 // Combine a constant select operand into its use: 6986 // 6987 // (and (select cond, -1, c), x) 6988 // -> (select cond, x, (and x, c)) [AllOnes=1] 6989 // (or (select cond, 0, c), x) 6990 // -> (select cond, x, (or x, c)) [AllOnes=0] 6991 // (xor (select cond, 0, c), x) 6992 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6993 // (add (select cond, 0, c), x) 6994 // -> (select cond, x, (add x, c)) [AllOnes=0] 6995 // (sub x, (select cond, 0, c)) 6996 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6997 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6998 SelectionDAG &DAG, bool AllOnes) { 6999 EVT VT = N->getValueType(0); 7000 7001 // Skip vectors. 7002 if (VT.isVector()) 7003 return SDValue(); 7004 7005 if ((Slct.getOpcode() != ISD::SELECT && 7006 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7007 !Slct.hasOneUse()) 7008 return SDValue(); 7009 7010 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7011 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7012 }; 7013 7014 bool SwapSelectOps; 7015 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7016 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7017 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7018 SDValue NonConstantVal; 7019 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7020 SwapSelectOps = false; 7021 NonConstantVal = FalseVal; 7022 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7023 SwapSelectOps = true; 7024 NonConstantVal = TrueVal; 7025 } else 7026 return SDValue(); 7027 7028 // Slct is now know to be the desired identity constant when CC is true. 7029 TrueVal = OtherOp; 7030 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7031 // Unless SwapSelectOps says the condition should be false. 7032 if (SwapSelectOps) 7033 std::swap(TrueVal, FalseVal); 7034 7035 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7036 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7037 {Slct.getOperand(0), Slct.getOperand(1), 7038 Slct.getOperand(2), TrueVal, FalseVal}); 7039 7040 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7041 {Slct.getOperand(0), TrueVal, FalseVal}); 7042 } 7043 7044 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7045 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7046 bool AllOnes) { 7047 SDValue N0 = N->getOperand(0); 7048 SDValue N1 = N->getOperand(1); 7049 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7050 return Result; 7051 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7052 return Result; 7053 return SDValue(); 7054 } 7055 7056 // Transform (add (mul x, c0), c1) -> 7057 // (add (mul (add x, c1/c0), c0), c1%c0). 7058 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7059 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7060 // to an infinite loop in DAGCombine if transformed. 7061 // Or transform (add (mul x, c0), c1) -> 7062 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7063 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7064 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7065 // lead to an infinite loop in DAGCombine if transformed. 7066 // Or transform (add (mul x, c0), c1) -> 7067 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7068 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7069 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7070 // lead to an infinite loop in DAGCombine if transformed. 7071 // Or transform (add (mul x, c0), c1) -> 7072 // (mul (add x, c1/c0), c0). 7073 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7074 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7075 const RISCVSubtarget &Subtarget) { 7076 // Skip for vector types and larger types. 7077 EVT VT = N->getValueType(0); 7078 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7079 return SDValue(); 7080 // The first operand node must be a MUL and has no other use. 7081 SDValue N0 = N->getOperand(0); 7082 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7083 return SDValue(); 7084 // Check if c0 and c1 match above conditions. 7085 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7086 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7087 if (!N0C || !N1C) 7088 return SDValue(); 7089 int64_t C0 = N0C->getSExtValue(); 7090 int64_t C1 = N1C->getSExtValue(); 7091 int64_t CA, CB; 7092 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7093 return SDValue(); 7094 // Search for proper CA (non-zero) and CB that both are simm12. 7095 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7096 !isInt<12>(C0 * (C1 / C0))) { 7097 CA = C1 / C0; 7098 CB = C1 % C0; 7099 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7100 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7101 CA = C1 / C0 + 1; 7102 CB = C1 % C0 - C0; 7103 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7104 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7105 CA = C1 / C0 - 1; 7106 CB = C1 % C0 + C0; 7107 } else 7108 return SDValue(); 7109 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7110 SDLoc DL(N); 7111 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7112 DAG.getConstant(CA, DL, VT)); 7113 SDValue New1 = 7114 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7115 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7116 } 7117 7118 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7119 const RISCVSubtarget &Subtarget) { 7120 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7121 return V; 7122 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7123 return V; 7124 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7125 // (select lhs, rhs, cc, x, (add x, y)) 7126 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7127 } 7128 7129 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7130 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7131 // (select lhs, rhs, cc, x, (sub x, y)) 7132 SDValue N0 = N->getOperand(0); 7133 SDValue N1 = N->getOperand(1); 7134 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7135 } 7136 7137 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7138 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7139 // (select lhs, rhs, cc, x, (and x, y)) 7140 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7141 } 7142 7143 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7144 const RISCVSubtarget &Subtarget) { 7145 if (Subtarget.hasStdExtZbp()) { 7146 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7147 return GREV; 7148 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7149 return GORC; 7150 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7151 return SHFL; 7152 } 7153 7154 // fold (or (select cond, 0, y), x) -> 7155 // (select cond, x, (or x, y)) 7156 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7157 } 7158 7159 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7160 // fold (xor (select cond, 0, y), x) -> 7161 // (select cond, x, (xor x, y)) 7162 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7163 } 7164 7165 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7166 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7167 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7168 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7169 // ADDW/SUBW/MULW. 7170 static SDValue performANY_EXTENDCombine(SDNode *N, 7171 TargetLowering::DAGCombinerInfo &DCI, 7172 const RISCVSubtarget &Subtarget) { 7173 if (!Subtarget.is64Bit()) 7174 return SDValue(); 7175 7176 SelectionDAG &DAG = DCI.DAG; 7177 7178 SDValue Src = N->getOperand(0); 7179 EVT VT = N->getValueType(0); 7180 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7181 return SDValue(); 7182 7183 // The opcode must be one that can implicitly sign_extend. 7184 // FIXME: Additional opcodes. 7185 switch (Src.getOpcode()) { 7186 default: 7187 return SDValue(); 7188 case ISD::MUL: 7189 if (!Subtarget.hasStdExtM()) 7190 return SDValue(); 7191 LLVM_FALLTHROUGH; 7192 case ISD::ADD: 7193 case ISD::SUB: 7194 break; 7195 } 7196 7197 // Only handle cases where the result is used by a CopyToReg. That likely 7198 // means the value is a liveout of the basic block. This helps prevent 7199 // infinite combine loops like PR51206. 7200 if (none_of(N->uses(), 7201 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7202 return SDValue(); 7203 7204 SmallVector<SDNode *, 4> SetCCs; 7205 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7206 UE = Src.getNode()->use_end(); 7207 UI != UE; ++UI) { 7208 SDNode *User = *UI; 7209 if (User == N) 7210 continue; 7211 if (UI.getUse().getResNo() != Src.getResNo()) 7212 continue; 7213 // All i32 setccs are legalized by sign extending operands. 7214 if (User->getOpcode() == ISD::SETCC) { 7215 SetCCs.push_back(User); 7216 continue; 7217 } 7218 // We don't know if we can extend this user. 7219 break; 7220 } 7221 7222 // If we don't have any SetCCs, this isn't worthwhile. 7223 if (SetCCs.empty()) 7224 return SDValue(); 7225 7226 SDLoc DL(N); 7227 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7228 DCI.CombineTo(N, SExt); 7229 7230 // Promote all the setccs. 7231 for (SDNode *SetCC : SetCCs) { 7232 SmallVector<SDValue, 4> Ops; 7233 7234 for (unsigned j = 0; j != 2; ++j) { 7235 SDValue SOp = SetCC->getOperand(j); 7236 if (SOp == Src) 7237 Ops.push_back(SExt); 7238 else 7239 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7240 } 7241 7242 Ops.push_back(SetCC->getOperand(2)); 7243 DCI.CombineTo(SetCC, 7244 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7245 } 7246 return SDValue(N, 0); 7247 } 7248 7249 // Try to form VWMUL or VWMULU. 7250 // FIXME: Support VWMULSU. 7251 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7252 bool Commute) { 7253 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7254 SDValue Op0 = N->getOperand(0); 7255 SDValue Op1 = N->getOperand(1); 7256 if (Commute) 7257 std::swap(Op0, Op1); 7258 7259 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7260 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7261 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7262 return SDValue(); 7263 7264 SDValue Mask = N->getOperand(2); 7265 SDValue VL = N->getOperand(3); 7266 7267 // Make sure the mask and VL match. 7268 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7269 return SDValue(); 7270 7271 MVT VT = N->getSimpleValueType(0); 7272 7273 // Determine the narrow size for a widening multiply. 7274 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7275 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7276 VT.getVectorElementCount()); 7277 7278 SDLoc DL(N); 7279 7280 // See if the other operand is the same opcode. 7281 if (Op0.getOpcode() == Op1.getOpcode()) { 7282 if (!Op1.hasOneUse()) 7283 return SDValue(); 7284 7285 // Make sure the mask and VL match. 7286 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7287 return SDValue(); 7288 7289 Op1 = Op1.getOperand(0); 7290 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7291 // The operand is a splat of a scalar. 7292 7293 // The VL must be the same. 7294 if (Op1.getOperand(1) != VL) 7295 return SDValue(); 7296 7297 // Get the scalar value. 7298 Op1 = Op1.getOperand(0); 7299 7300 // See if have enough sign bits or zero bits in the scalar to use a 7301 // widening multiply by splatting to smaller element size. 7302 unsigned EltBits = VT.getScalarSizeInBits(); 7303 unsigned ScalarBits = Op1.getValueSizeInBits(); 7304 // Make sure we're getting all element bits from the scalar register. 7305 // FIXME: Support implicit sign extension of vmv.v.x? 7306 if (ScalarBits < EltBits) 7307 return SDValue(); 7308 7309 if (IsSignExt) { 7310 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7311 return SDValue(); 7312 } else { 7313 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7314 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7315 return SDValue(); 7316 } 7317 7318 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7319 } else 7320 return SDValue(); 7321 7322 Op0 = Op0.getOperand(0); 7323 7324 // Re-introduce narrower extends if needed. 7325 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7326 if (Op0.getValueType() != NarrowVT) 7327 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7328 if (Op1.getValueType() != NarrowVT) 7329 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7330 7331 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7332 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7333 } 7334 7335 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7336 switch (Op.getOpcode()) { 7337 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7338 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7339 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7340 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7341 case ISD::FROUND: return RISCVFPRndMode::RMM; 7342 } 7343 7344 return RISCVFPRndMode::Invalid; 7345 } 7346 7347 // Fold 7348 // (fp_to_int (froundeven X)) -> fcvt X, rne 7349 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7350 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7351 // (fp_to_int (fceil X)) -> fcvt X, rup 7352 // (fp_to_int (fround X)) -> fcvt X, rmm 7353 static SDValue performFP_TO_INTCombine(SDNode *N, 7354 TargetLowering::DAGCombinerInfo &DCI, 7355 const RISCVSubtarget &Subtarget) { 7356 SelectionDAG &DAG = DCI.DAG; 7357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7358 MVT XLenVT = Subtarget.getXLenVT(); 7359 7360 // Only handle XLen or i32 types. Other types narrower than XLen will 7361 // eventually be legalized to XLenVT. 7362 EVT VT = N->getValueType(0); 7363 if (VT != MVT::i32 && VT != XLenVT) 7364 return SDValue(); 7365 7366 SDValue Src = N->getOperand(0); 7367 7368 // Ensure the FP type is also legal. 7369 if (!TLI.isTypeLegal(Src.getValueType())) 7370 return SDValue(); 7371 7372 // Don't do this for f16 with Zfhmin and not Zfh. 7373 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7374 return SDValue(); 7375 7376 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7377 if (FRM == RISCVFPRndMode::Invalid) 7378 return SDValue(); 7379 7380 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7381 7382 unsigned Opc; 7383 if (VT == XLenVT) 7384 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7385 else 7386 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7387 7388 SDLoc DL(N); 7389 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7390 DAG.getTargetConstant(FRM, DL, XLenVT)); 7391 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7392 } 7393 7394 // Fold 7395 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7396 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7397 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7398 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7399 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7400 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7401 TargetLowering::DAGCombinerInfo &DCI, 7402 const RISCVSubtarget &Subtarget) { 7403 SelectionDAG &DAG = DCI.DAG; 7404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7405 MVT XLenVT = Subtarget.getXLenVT(); 7406 7407 // Only handle XLen types. Other types narrower than XLen will eventually be 7408 // legalized to XLenVT. 7409 EVT DstVT = N->getValueType(0); 7410 if (DstVT != XLenVT) 7411 return SDValue(); 7412 7413 SDValue Src = N->getOperand(0); 7414 7415 // Ensure the FP type is also legal. 7416 if (!TLI.isTypeLegal(Src.getValueType())) 7417 return SDValue(); 7418 7419 // Don't do this for f16 with Zfhmin and not Zfh. 7420 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7421 return SDValue(); 7422 7423 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7424 7425 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7426 if (FRM == RISCVFPRndMode::Invalid) 7427 return SDValue(); 7428 7429 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7430 7431 unsigned Opc; 7432 if (SatVT == DstVT) 7433 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7434 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7435 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7436 else 7437 return SDValue(); 7438 // FIXME: Support other SatVTs by clamping before or after the conversion. 7439 7440 Src = Src.getOperand(0); 7441 7442 SDLoc DL(N); 7443 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7444 DAG.getTargetConstant(FRM, DL, XLenVT)); 7445 7446 // RISCV FP-to-int conversions saturate to the destination register size, but 7447 // don't produce 0 for nan. 7448 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7449 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7450 } 7451 7452 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7453 DAGCombinerInfo &DCI) const { 7454 SelectionDAG &DAG = DCI.DAG; 7455 7456 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7457 // bits are demanded. N will be added to the Worklist if it was not deleted. 7458 // Caller should return SDValue(N, 0) if this returns true. 7459 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7460 SDValue Op = N->getOperand(OpNo); 7461 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7462 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7463 return false; 7464 7465 if (N->getOpcode() != ISD::DELETED_NODE) 7466 DCI.AddToWorklist(N); 7467 return true; 7468 }; 7469 7470 switch (N->getOpcode()) { 7471 default: 7472 break; 7473 case RISCVISD::SplitF64: { 7474 SDValue Op0 = N->getOperand(0); 7475 // If the input to SplitF64 is just BuildPairF64 then the operation is 7476 // redundant. Instead, use BuildPairF64's operands directly. 7477 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7478 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7479 7480 SDLoc DL(N); 7481 7482 // It's cheaper to materialise two 32-bit integers than to load a double 7483 // from the constant pool and transfer it to integer registers through the 7484 // stack. 7485 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7486 APInt V = C->getValueAPF().bitcastToAPInt(); 7487 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7488 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7489 return DCI.CombineTo(N, Lo, Hi); 7490 } 7491 7492 // This is a target-specific version of a DAGCombine performed in 7493 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7494 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7495 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7496 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7497 !Op0.getNode()->hasOneUse()) 7498 break; 7499 SDValue NewSplitF64 = 7500 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7501 Op0.getOperand(0)); 7502 SDValue Lo = NewSplitF64.getValue(0); 7503 SDValue Hi = NewSplitF64.getValue(1); 7504 APInt SignBit = APInt::getSignMask(32); 7505 if (Op0.getOpcode() == ISD::FNEG) { 7506 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7507 DAG.getConstant(SignBit, DL, MVT::i32)); 7508 return DCI.CombineTo(N, Lo, NewHi); 7509 } 7510 assert(Op0.getOpcode() == ISD::FABS); 7511 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7512 DAG.getConstant(~SignBit, DL, MVT::i32)); 7513 return DCI.CombineTo(N, Lo, NewHi); 7514 } 7515 case RISCVISD::SLLW: 7516 case RISCVISD::SRAW: 7517 case RISCVISD::SRLW: 7518 case RISCVISD::ROLW: 7519 case RISCVISD::RORW: { 7520 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7521 if (SimplifyDemandedLowBitsHelper(0, 32) || 7522 SimplifyDemandedLowBitsHelper(1, 5)) 7523 return SDValue(N, 0); 7524 break; 7525 } 7526 case RISCVISD::CLZW: 7527 case RISCVISD::CTZW: { 7528 // Only the lower 32 bits of the first operand are read 7529 if (SimplifyDemandedLowBitsHelper(0, 32)) 7530 return SDValue(N, 0); 7531 break; 7532 } 7533 case RISCVISD::GREV: 7534 case RISCVISD::GORC: { 7535 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7536 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7537 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7538 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7539 return SDValue(N, 0); 7540 7541 return combineGREVI_GORCI(N, DAG); 7542 } 7543 case RISCVISD::GREVW: 7544 case RISCVISD::GORCW: { 7545 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7546 if (SimplifyDemandedLowBitsHelper(0, 32) || 7547 SimplifyDemandedLowBitsHelper(1, 5)) 7548 return SDValue(N, 0); 7549 7550 return combineGREVI_GORCI(N, DAG); 7551 } 7552 case RISCVISD::SHFL: 7553 case RISCVISD::UNSHFL: { 7554 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7555 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7556 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7557 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7558 return SDValue(N, 0); 7559 7560 break; 7561 } 7562 case RISCVISD::SHFLW: 7563 case RISCVISD::UNSHFLW: { 7564 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7565 SDValue LHS = N->getOperand(0); 7566 SDValue RHS = N->getOperand(1); 7567 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7568 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7569 if (SimplifyDemandedLowBitsHelper(0, 32) || 7570 SimplifyDemandedLowBitsHelper(1, 4)) 7571 return SDValue(N, 0); 7572 7573 break; 7574 } 7575 case RISCVISD::BCOMPRESSW: 7576 case RISCVISD::BDECOMPRESSW: { 7577 // Only the lower 32 bits of LHS and RHS are read. 7578 if (SimplifyDemandedLowBitsHelper(0, 32) || 7579 SimplifyDemandedLowBitsHelper(1, 32)) 7580 return SDValue(N, 0); 7581 7582 break; 7583 } 7584 case RISCVISD::FMV_X_ANYEXTH: 7585 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7586 SDLoc DL(N); 7587 SDValue Op0 = N->getOperand(0); 7588 MVT VT = N->getSimpleValueType(0); 7589 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7590 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7591 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7592 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7593 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7594 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7595 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7596 assert(Op0.getOperand(0).getValueType() == VT && 7597 "Unexpected value type!"); 7598 return Op0.getOperand(0); 7599 } 7600 7601 // This is a target-specific version of a DAGCombine performed in 7602 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7603 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7604 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7605 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7606 !Op0.getNode()->hasOneUse()) 7607 break; 7608 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7609 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7610 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7611 if (Op0.getOpcode() == ISD::FNEG) 7612 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7613 DAG.getConstant(SignBit, DL, VT)); 7614 7615 assert(Op0.getOpcode() == ISD::FABS); 7616 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7617 DAG.getConstant(~SignBit, DL, VT)); 7618 } 7619 case ISD::ADD: 7620 return performADDCombine(N, DAG, Subtarget); 7621 case ISD::SUB: 7622 return performSUBCombine(N, DAG); 7623 case ISD::AND: 7624 return performANDCombine(N, DAG); 7625 case ISD::OR: 7626 return performORCombine(N, DAG, Subtarget); 7627 case ISD::XOR: 7628 return performXORCombine(N, DAG); 7629 case ISD::ANY_EXTEND: 7630 return performANY_EXTENDCombine(N, DCI, Subtarget); 7631 case ISD::ZERO_EXTEND: 7632 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7633 // type legalization. This is safe because fp_to_uint produces poison if 7634 // it overflows. 7635 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7636 SDValue Src = N->getOperand(0); 7637 if (Src.getOpcode() == ISD::FP_TO_UINT && 7638 isTypeLegal(Src.getOperand(0).getValueType())) 7639 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7640 Src.getOperand(0)); 7641 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7642 isTypeLegal(Src.getOperand(1).getValueType())) { 7643 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7644 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7645 Src.getOperand(0), Src.getOperand(1)); 7646 DCI.CombineTo(N, Res); 7647 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7648 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7649 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7650 } 7651 } 7652 return SDValue(); 7653 case RISCVISD::SELECT_CC: { 7654 // Transform 7655 SDValue LHS = N->getOperand(0); 7656 SDValue RHS = N->getOperand(1); 7657 SDValue TrueV = N->getOperand(3); 7658 SDValue FalseV = N->getOperand(4); 7659 7660 // If the True and False values are the same, we don't need a select_cc. 7661 if (TrueV == FalseV) 7662 return TrueV; 7663 7664 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7665 if (!ISD::isIntEqualitySetCC(CCVal)) 7666 break; 7667 7668 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7669 // (select_cc X, Y, lt, trueV, falseV) 7670 // Sometimes the setcc is introduced after select_cc has been formed. 7671 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7672 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7673 // If we're looking for eq 0 instead of ne 0, we need to invert the 7674 // condition. 7675 bool Invert = CCVal == ISD::SETEQ; 7676 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7677 if (Invert) 7678 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7679 7680 SDLoc DL(N); 7681 RHS = LHS.getOperand(1); 7682 LHS = LHS.getOperand(0); 7683 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7684 7685 SDValue TargetCC = DAG.getCondCode(CCVal); 7686 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7687 {LHS, RHS, TargetCC, TrueV, FalseV}); 7688 } 7689 7690 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7691 // (select_cc X, Y, eq/ne, trueV, falseV) 7692 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7693 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7694 {LHS.getOperand(0), LHS.getOperand(1), 7695 N->getOperand(2), TrueV, FalseV}); 7696 // (select_cc X, 1, setne, trueV, falseV) -> 7697 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7698 // This can occur when legalizing some floating point comparisons. 7699 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7700 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7701 SDLoc DL(N); 7702 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7703 SDValue TargetCC = DAG.getCondCode(CCVal); 7704 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7705 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7706 {LHS, RHS, TargetCC, TrueV, FalseV}); 7707 } 7708 7709 break; 7710 } 7711 case RISCVISD::BR_CC: { 7712 SDValue LHS = N->getOperand(1); 7713 SDValue RHS = N->getOperand(2); 7714 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7715 if (!ISD::isIntEqualitySetCC(CCVal)) 7716 break; 7717 7718 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7719 // (br_cc X, Y, lt, dest) 7720 // Sometimes the setcc is introduced after br_cc has been formed. 7721 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7722 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7723 // If we're looking for eq 0 instead of ne 0, we need to invert the 7724 // condition. 7725 bool Invert = CCVal == ISD::SETEQ; 7726 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7727 if (Invert) 7728 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7729 7730 SDLoc DL(N); 7731 RHS = LHS.getOperand(1); 7732 LHS = LHS.getOperand(0); 7733 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7734 7735 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7736 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7737 N->getOperand(4)); 7738 } 7739 7740 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7741 // (br_cc X, Y, eq/ne, trueV, falseV) 7742 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7743 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7744 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7745 N->getOperand(3), N->getOperand(4)); 7746 7747 // (br_cc X, 1, setne, br_cc) -> 7748 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7749 // This can occur when legalizing some floating point comparisons. 7750 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7751 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7752 SDLoc DL(N); 7753 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7754 SDValue TargetCC = DAG.getCondCode(CCVal); 7755 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7756 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7757 N->getOperand(0), LHS, RHS, TargetCC, 7758 N->getOperand(4)); 7759 } 7760 break; 7761 } 7762 case ISD::FP_TO_SINT: 7763 case ISD::FP_TO_UINT: 7764 return performFP_TO_INTCombine(N, DCI, Subtarget); 7765 case ISD::FP_TO_SINT_SAT: 7766 case ISD::FP_TO_UINT_SAT: 7767 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7768 case ISD::FCOPYSIGN: { 7769 EVT VT = N->getValueType(0); 7770 if (!VT.isVector()) 7771 break; 7772 // There is a form of VFSGNJ which injects the negated sign of its second 7773 // operand. Try and bubble any FNEG up after the extend/round to produce 7774 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7775 // TRUNC=1. 7776 SDValue In2 = N->getOperand(1); 7777 // Avoid cases where the extend/round has multiple uses, as duplicating 7778 // those is typically more expensive than removing a fneg. 7779 if (!In2.hasOneUse()) 7780 break; 7781 if (In2.getOpcode() != ISD::FP_EXTEND && 7782 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7783 break; 7784 In2 = In2.getOperand(0); 7785 if (In2.getOpcode() != ISD::FNEG) 7786 break; 7787 SDLoc DL(N); 7788 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7789 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7790 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7791 } 7792 case ISD::MGATHER: 7793 case ISD::MSCATTER: 7794 case ISD::VP_GATHER: 7795 case ISD::VP_SCATTER: { 7796 if (!DCI.isBeforeLegalize()) 7797 break; 7798 SDValue Index, ScaleOp; 7799 bool IsIndexScaled = false; 7800 bool IsIndexSigned = false; 7801 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7802 Index = VPGSN->getIndex(); 7803 ScaleOp = VPGSN->getScale(); 7804 IsIndexScaled = VPGSN->isIndexScaled(); 7805 IsIndexSigned = VPGSN->isIndexSigned(); 7806 } else { 7807 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7808 Index = MGSN->getIndex(); 7809 ScaleOp = MGSN->getScale(); 7810 IsIndexScaled = MGSN->isIndexScaled(); 7811 IsIndexSigned = MGSN->isIndexSigned(); 7812 } 7813 EVT IndexVT = Index.getValueType(); 7814 MVT XLenVT = Subtarget.getXLenVT(); 7815 // RISCV indexed loads only support the "unsigned unscaled" addressing 7816 // mode, so anything else must be manually legalized. 7817 bool NeedsIdxLegalization = 7818 IsIndexScaled || 7819 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7820 if (!NeedsIdxLegalization) 7821 break; 7822 7823 SDLoc DL(N); 7824 7825 // Any index legalization should first promote to XLenVT, so we don't lose 7826 // bits when scaling. This may create an illegal index type so we let 7827 // LLVM's legalization take care of the splitting. 7828 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7829 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7830 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7831 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7832 DL, IndexVT, Index); 7833 } 7834 7835 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7836 if (IsIndexScaled && Scale != 1) { 7837 // Manually scale the indices by the element size. 7838 // TODO: Sanitize the scale operand here? 7839 // TODO: For VP nodes, should we use VP_SHL here? 7840 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7841 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7842 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7843 } 7844 7845 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7846 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7847 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7848 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7849 VPGN->getScale(), VPGN->getMask(), 7850 VPGN->getVectorLength()}, 7851 VPGN->getMemOperand(), NewIndexTy); 7852 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7853 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7854 {VPSN->getChain(), VPSN->getValue(), 7855 VPSN->getBasePtr(), Index, VPSN->getScale(), 7856 VPSN->getMask(), VPSN->getVectorLength()}, 7857 VPSN->getMemOperand(), NewIndexTy); 7858 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7859 return DAG.getMaskedGather( 7860 N->getVTList(), MGN->getMemoryVT(), DL, 7861 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7862 MGN->getBasePtr(), Index, MGN->getScale()}, 7863 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7864 const auto *MSN = cast<MaskedScatterSDNode>(N); 7865 return DAG.getMaskedScatter( 7866 N->getVTList(), MSN->getMemoryVT(), DL, 7867 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7868 Index, MSN->getScale()}, 7869 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7870 } 7871 case RISCVISD::SRA_VL: 7872 case RISCVISD::SRL_VL: 7873 case RISCVISD::SHL_VL: { 7874 SDValue ShAmt = N->getOperand(1); 7875 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7876 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7877 SDLoc DL(N); 7878 SDValue VL = N->getOperand(3); 7879 EVT VT = N->getValueType(0); 7880 ShAmt = 7881 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7882 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7883 N->getOperand(2), N->getOperand(3)); 7884 } 7885 break; 7886 } 7887 case ISD::SRA: 7888 case ISD::SRL: 7889 case ISD::SHL: { 7890 SDValue ShAmt = N->getOperand(1); 7891 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7892 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7893 SDLoc DL(N); 7894 EVT VT = N->getValueType(0); 7895 ShAmt = 7896 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7897 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7898 } 7899 break; 7900 } 7901 case RISCVISD::MUL_VL: 7902 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 7903 return V; 7904 // Mul is commutative. 7905 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 7906 case ISD::STORE: { 7907 auto *Store = cast<StoreSDNode>(N); 7908 SDValue Val = Store->getValue(); 7909 // Combine store of vmv.x.s to vse with VL of 1. 7910 // FIXME: Support FP. 7911 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7912 SDValue Src = Val.getOperand(0); 7913 EVT VecVT = Src.getValueType(); 7914 EVT MemVT = Store->getMemoryVT(); 7915 // The memory VT and the element type must match. 7916 if (VecVT.getVectorElementType() == MemVT) { 7917 SDLoc DL(N); 7918 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7919 return DAG.getStoreVP( 7920 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 7921 DAG.getConstant(1, DL, MaskVT), 7922 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 7923 Store->getMemOperand(), Store->getAddressingMode(), 7924 Store->isTruncatingStore(), /*IsCompress*/ false); 7925 } 7926 } 7927 7928 break; 7929 } 7930 } 7931 7932 return SDValue(); 7933 } 7934 7935 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7936 const SDNode *N, CombineLevel Level) const { 7937 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7938 // materialised in fewer instructions than `(OP _, c1)`: 7939 // 7940 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7941 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7942 SDValue N0 = N->getOperand(0); 7943 EVT Ty = N0.getValueType(); 7944 if (Ty.isScalarInteger() && 7945 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7946 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7947 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7948 if (C1 && C2) { 7949 const APInt &C1Int = C1->getAPIntValue(); 7950 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7951 7952 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7953 // and the combine should happen, to potentially allow further combines 7954 // later. 7955 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7956 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7957 return true; 7958 7959 // We can materialise `c1` in an add immediate, so it's "free", and the 7960 // combine should be prevented. 7961 if (C1Int.getMinSignedBits() <= 64 && 7962 isLegalAddImmediate(C1Int.getSExtValue())) 7963 return false; 7964 7965 // Neither constant will fit into an immediate, so find materialisation 7966 // costs. 7967 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7968 Subtarget.getFeatureBits(), 7969 /*CompressionCost*/true); 7970 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7971 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7972 /*CompressionCost*/true); 7973 7974 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7975 // combine should be prevented. 7976 if (C1Cost < ShiftedC1Cost) 7977 return false; 7978 } 7979 } 7980 return true; 7981 } 7982 7983 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7984 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7985 TargetLoweringOpt &TLO) const { 7986 // Delay this optimization as late as possible. 7987 if (!TLO.LegalOps) 7988 return false; 7989 7990 EVT VT = Op.getValueType(); 7991 if (VT.isVector()) 7992 return false; 7993 7994 // Only handle AND for now. 7995 if (Op.getOpcode() != ISD::AND) 7996 return false; 7997 7998 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7999 if (!C) 8000 return false; 8001 8002 const APInt &Mask = C->getAPIntValue(); 8003 8004 // Clear all non-demanded bits initially. 8005 APInt ShrunkMask = Mask & DemandedBits; 8006 8007 // Try to make a smaller immediate by setting undemanded bits. 8008 8009 APInt ExpandedMask = Mask | ~DemandedBits; 8010 8011 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8012 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8013 }; 8014 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8015 if (NewMask == Mask) 8016 return true; 8017 SDLoc DL(Op); 8018 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8019 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8020 return TLO.CombineTo(Op, NewOp); 8021 }; 8022 8023 // If the shrunk mask fits in sign extended 12 bits, let the target 8024 // independent code apply it. 8025 if (ShrunkMask.isSignedIntN(12)) 8026 return false; 8027 8028 // Preserve (and X, 0xffff) when zext.h is supported. 8029 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8030 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8031 if (IsLegalMask(NewMask)) 8032 return UseMask(NewMask); 8033 } 8034 8035 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8036 if (VT == MVT::i64) { 8037 APInt NewMask = APInt(64, 0xffffffff); 8038 if (IsLegalMask(NewMask)) 8039 return UseMask(NewMask); 8040 } 8041 8042 // For the remaining optimizations, we need to be able to make a negative 8043 // number through a combination of mask and undemanded bits. 8044 if (!ExpandedMask.isNegative()) 8045 return false; 8046 8047 // What is the fewest number of bits we need to represent the negative number. 8048 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8049 8050 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8051 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8052 APInt NewMask = ShrunkMask; 8053 if (MinSignedBits <= 12) 8054 NewMask.setBitsFrom(11); 8055 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8056 NewMask.setBitsFrom(31); 8057 else 8058 return false; 8059 8060 // Check that our new mask is a subset of the demanded mask. 8061 assert(IsLegalMask(NewMask)); 8062 return UseMask(NewMask); 8063 } 8064 8065 static void computeGREV(APInt &Src, unsigned ShAmt) { 8066 ShAmt &= Src.getBitWidth() - 1; 8067 uint64_t x = Src.getZExtValue(); 8068 if (ShAmt & 1) 8069 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8070 if (ShAmt & 2) 8071 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8072 if (ShAmt & 4) 8073 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8074 if (ShAmt & 8) 8075 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8076 if (ShAmt & 16) 8077 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8078 if (ShAmt & 32) 8079 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8080 Src = x; 8081 } 8082 8083 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8084 KnownBits &Known, 8085 const APInt &DemandedElts, 8086 const SelectionDAG &DAG, 8087 unsigned Depth) const { 8088 unsigned BitWidth = Known.getBitWidth(); 8089 unsigned Opc = Op.getOpcode(); 8090 assert((Opc >= ISD::BUILTIN_OP_END || 8091 Opc == ISD::INTRINSIC_WO_CHAIN || 8092 Opc == ISD::INTRINSIC_W_CHAIN || 8093 Opc == ISD::INTRINSIC_VOID) && 8094 "Should use MaskedValueIsZero if you don't know whether Op" 8095 " is a target node!"); 8096 8097 Known.resetAll(); 8098 switch (Opc) { 8099 default: break; 8100 case RISCVISD::SELECT_CC: { 8101 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8102 // If we don't know any bits, early out. 8103 if (Known.isUnknown()) 8104 break; 8105 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8106 8107 // Only known if known in both the LHS and RHS. 8108 Known = KnownBits::commonBits(Known, Known2); 8109 break; 8110 } 8111 case RISCVISD::REMUW: { 8112 KnownBits Known2; 8113 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8114 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8115 // We only care about the lower 32 bits. 8116 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8117 // Restore the original width by sign extending. 8118 Known = Known.sext(BitWidth); 8119 break; 8120 } 8121 case RISCVISD::DIVUW: { 8122 KnownBits Known2; 8123 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8124 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8125 // We only care about the lower 32 bits. 8126 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8127 // Restore the original width by sign extending. 8128 Known = Known.sext(BitWidth); 8129 break; 8130 } 8131 case RISCVISD::CTZW: { 8132 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8133 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8134 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8135 Known.Zero.setBitsFrom(LowBits); 8136 break; 8137 } 8138 case RISCVISD::CLZW: { 8139 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8140 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8141 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8142 Known.Zero.setBitsFrom(LowBits); 8143 break; 8144 } 8145 case RISCVISD::GREV: 8146 case RISCVISD::GREVW: { 8147 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8148 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8149 if (Opc == RISCVISD::GREVW) 8150 Known = Known.trunc(32); 8151 unsigned ShAmt = C->getZExtValue(); 8152 computeGREV(Known.Zero, ShAmt); 8153 computeGREV(Known.One, ShAmt); 8154 if (Opc == RISCVISD::GREVW) 8155 Known = Known.sext(BitWidth); 8156 } 8157 break; 8158 } 8159 case RISCVISD::READ_VLENB: 8160 // We assume VLENB is at least 16 bytes. 8161 Known.Zero.setLowBits(4); 8162 // We assume VLENB is no more than 65536 / 8 bytes. 8163 Known.Zero.setBitsFrom(14); 8164 break; 8165 case ISD::INTRINSIC_W_CHAIN: 8166 case ISD::INTRINSIC_WO_CHAIN: { 8167 unsigned IntNo = 8168 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8169 switch (IntNo) { 8170 default: 8171 // We can't do anything for most intrinsics. 8172 break; 8173 case Intrinsic::riscv_vsetvli: 8174 case Intrinsic::riscv_vsetvlimax: 8175 case Intrinsic::riscv_vsetvli_opt: 8176 case Intrinsic::riscv_vsetvlimax_opt: 8177 // Assume that VL output is positive and would fit in an int32_t. 8178 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8179 if (BitWidth >= 32) 8180 Known.Zero.setBitsFrom(31); 8181 break; 8182 } 8183 break; 8184 } 8185 } 8186 } 8187 8188 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8189 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8190 unsigned Depth) const { 8191 switch (Op.getOpcode()) { 8192 default: 8193 break; 8194 case RISCVISD::SELECT_CC: { 8195 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8196 if (Tmp == 1) return 1; // Early out. 8197 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8198 return std::min(Tmp, Tmp2); 8199 } 8200 case RISCVISD::SLLW: 8201 case RISCVISD::SRAW: 8202 case RISCVISD::SRLW: 8203 case RISCVISD::DIVW: 8204 case RISCVISD::DIVUW: 8205 case RISCVISD::REMUW: 8206 case RISCVISD::ROLW: 8207 case RISCVISD::RORW: 8208 case RISCVISD::GREVW: 8209 case RISCVISD::GORCW: 8210 case RISCVISD::FSLW: 8211 case RISCVISD::FSRW: 8212 case RISCVISD::SHFLW: 8213 case RISCVISD::UNSHFLW: 8214 case RISCVISD::BCOMPRESSW: 8215 case RISCVISD::BDECOMPRESSW: 8216 case RISCVISD::BFPW: 8217 case RISCVISD::FCVT_W_RV64: 8218 case RISCVISD::FCVT_WU_RV64: 8219 case RISCVISD::STRICT_FCVT_W_RV64: 8220 case RISCVISD::STRICT_FCVT_WU_RV64: 8221 // TODO: As the result is sign-extended, this is conservatively correct. A 8222 // more precise answer could be calculated for SRAW depending on known 8223 // bits in the shift amount. 8224 return 33; 8225 case RISCVISD::SHFL: 8226 case RISCVISD::UNSHFL: { 8227 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8228 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8229 // will stay within the upper 32 bits. If there were more than 32 sign bits 8230 // before there will be at least 33 sign bits after. 8231 if (Op.getValueType() == MVT::i64 && 8232 isa<ConstantSDNode>(Op.getOperand(1)) && 8233 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8234 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8235 if (Tmp > 32) 8236 return 33; 8237 } 8238 break; 8239 } 8240 case RISCVISD::VMV_X_S: 8241 // The number of sign bits of the scalar result is computed by obtaining the 8242 // element type of the input vector operand, subtracting its width from the 8243 // XLEN, and then adding one (sign bit within the element type). If the 8244 // element type is wider than XLen, the least-significant XLEN bits are 8245 // taken. 8246 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 8247 return 1; 8248 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8249 } 8250 8251 return 1; 8252 } 8253 8254 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8255 MachineBasicBlock *BB) { 8256 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8257 8258 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8259 // Should the count have wrapped while it was being read, we need to try 8260 // again. 8261 // ... 8262 // read: 8263 // rdcycleh x3 # load high word of cycle 8264 // rdcycle x2 # load low word of cycle 8265 // rdcycleh x4 # load high word of cycle 8266 // bne x3, x4, read # check if high word reads match, otherwise try again 8267 // ... 8268 8269 MachineFunction &MF = *BB->getParent(); 8270 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8271 MachineFunction::iterator It = ++BB->getIterator(); 8272 8273 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8274 MF.insert(It, LoopMBB); 8275 8276 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8277 MF.insert(It, DoneMBB); 8278 8279 // Transfer the remainder of BB and its successor edges to DoneMBB. 8280 DoneMBB->splice(DoneMBB->begin(), BB, 8281 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8282 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8283 8284 BB->addSuccessor(LoopMBB); 8285 8286 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8287 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8288 Register LoReg = MI.getOperand(0).getReg(); 8289 Register HiReg = MI.getOperand(1).getReg(); 8290 DebugLoc DL = MI.getDebugLoc(); 8291 8292 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8293 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8294 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8295 .addReg(RISCV::X0); 8296 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8297 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8298 .addReg(RISCV::X0); 8299 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8300 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8301 .addReg(RISCV::X0); 8302 8303 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8304 .addReg(HiReg) 8305 .addReg(ReadAgainReg) 8306 .addMBB(LoopMBB); 8307 8308 LoopMBB->addSuccessor(LoopMBB); 8309 LoopMBB->addSuccessor(DoneMBB); 8310 8311 MI.eraseFromParent(); 8312 8313 return DoneMBB; 8314 } 8315 8316 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8317 MachineBasicBlock *BB) { 8318 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8319 8320 MachineFunction &MF = *BB->getParent(); 8321 DebugLoc DL = MI.getDebugLoc(); 8322 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8323 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8324 Register LoReg = MI.getOperand(0).getReg(); 8325 Register HiReg = MI.getOperand(1).getReg(); 8326 Register SrcReg = MI.getOperand(2).getReg(); 8327 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8328 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8329 8330 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8331 RI); 8332 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8333 MachineMemOperand *MMOLo = 8334 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8335 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8336 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8337 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8338 .addFrameIndex(FI) 8339 .addImm(0) 8340 .addMemOperand(MMOLo); 8341 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8342 .addFrameIndex(FI) 8343 .addImm(4) 8344 .addMemOperand(MMOHi); 8345 MI.eraseFromParent(); // The pseudo instruction is gone now. 8346 return BB; 8347 } 8348 8349 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8350 MachineBasicBlock *BB) { 8351 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8352 "Unexpected instruction"); 8353 8354 MachineFunction &MF = *BB->getParent(); 8355 DebugLoc DL = MI.getDebugLoc(); 8356 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8357 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8358 Register DstReg = MI.getOperand(0).getReg(); 8359 Register LoReg = MI.getOperand(1).getReg(); 8360 Register HiReg = MI.getOperand(2).getReg(); 8361 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8362 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8363 8364 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8365 MachineMemOperand *MMOLo = 8366 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8367 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8368 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8369 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8370 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8371 .addFrameIndex(FI) 8372 .addImm(0) 8373 .addMemOperand(MMOLo); 8374 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8375 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8376 .addFrameIndex(FI) 8377 .addImm(4) 8378 .addMemOperand(MMOHi); 8379 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8380 MI.eraseFromParent(); // The pseudo instruction is gone now. 8381 return BB; 8382 } 8383 8384 static bool isSelectPseudo(MachineInstr &MI) { 8385 switch (MI.getOpcode()) { 8386 default: 8387 return false; 8388 case RISCV::Select_GPR_Using_CC_GPR: 8389 case RISCV::Select_FPR16_Using_CC_GPR: 8390 case RISCV::Select_FPR32_Using_CC_GPR: 8391 case RISCV::Select_FPR64_Using_CC_GPR: 8392 return true; 8393 } 8394 } 8395 8396 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8397 unsigned RelOpcode, unsigned EqOpcode, 8398 const RISCVSubtarget &Subtarget) { 8399 DebugLoc DL = MI.getDebugLoc(); 8400 Register DstReg = MI.getOperand(0).getReg(); 8401 Register Src1Reg = MI.getOperand(1).getReg(); 8402 Register Src2Reg = MI.getOperand(2).getReg(); 8403 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8404 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8405 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8406 8407 // Save the current FFLAGS. 8408 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8409 8410 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8411 .addReg(Src1Reg) 8412 .addReg(Src2Reg); 8413 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8414 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8415 8416 // Restore the FFLAGS. 8417 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8418 .addReg(SavedFFlags, RegState::Kill); 8419 8420 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8421 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8422 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8423 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8424 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8425 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8426 8427 // Erase the pseudoinstruction. 8428 MI.eraseFromParent(); 8429 return BB; 8430 } 8431 8432 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8433 MachineBasicBlock *BB, 8434 const RISCVSubtarget &Subtarget) { 8435 // To "insert" Select_* instructions, we actually have to insert the triangle 8436 // control-flow pattern. The incoming instructions know the destination vreg 8437 // to set, the condition code register to branch on, the true/false values to 8438 // select between, and the condcode to use to select the appropriate branch. 8439 // 8440 // We produce the following control flow: 8441 // HeadMBB 8442 // | \ 8443 // | IfFalseMBB 8444 // | / 8445 // TailMBB 8446 // 8447 // When we find a sequence of selects we attempt to optimize their emission 8448 // by sharing the control flow. Currently we only handle cases where we have 8449 // multiple selects with the exact same condition (same LHS, RHS and CC). 8450 // The selects may be interleaved with other instructions if the other 8451 // instructions meet some requirements we deem safe: 8452 // - They are debug instructions. Otherwise, 8453 // - They do not have side-effects, do not access memory and their inputs do 8454 // not depend on the results of the select pseudo-instructions. 8455 // The TrueV/FalseV operands of the selects cannot depend on the result of 8456 // previous selects in the sequence. 8457 // These conditions could be further relaxed. See the X86 target for a 8458 // related approach and more information. 8459 Register LHS = MI.getOperand(1).getReg(); 8460 Register RHS = MI.getOperand(2).getReg(); 8461 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8462 8463 SmallVector<MachineInstr *, 4> SelectDebugValues; 8464 SmallSet<Register, 4> SelectDests; 8465 SelectDests.insert(MI.getOperand(0).getReg()); 8466 8467 MachineInstr *LastSelectPseudo = &MI; 8468 8469 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8470 SequenceMBBI != E; ++SequenceMBBI) { 8471 if (SequenceMBBI->isDebugInstr()) 8472 continue; 8473 else if (isSelectPseudo(*SequenceMBBI)) { 8474 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8475 SequenceMBBI->getOperand(2).getReg() != RHS || 8476 SequenceMBBI->getOperand(3).getImm() != CC || 8477 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8478 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8479 break; 8480 LastSelectPseudo = &*SequenceMBBI; 8481 SequenceMBBI->collectDebugValues(SelectDebugValues); 8482 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8483 } else { 8484 if (SequenceMBBI->hasUnmodeledSideEffects() || 8485 SequenceMBBI->mayLoadOrStore()) 8486 break; 8487 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8488 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8489 })) 8490 break; 8491 } 8492 } 8493 8494 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8495 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8496 DebugLoc DL = MI.getDebugLoc(); 8497 MachineFunction::iterator I = ++BB->getIterator(); 8498 8499 MachineBasicBlock *HeadMBB = BB; 8500 MachineFunction *F = BB->getParent(); 8501 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8502 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8503 8504 F->insert(I, IfFalseMBB); 8505 F->insert(I, TailMBB); 8506 8507 // Transfer debug instructions associated with the selects to TailMBB. 8508 for (MachineInstr *DebugInstr : SelectDebugValues) { 8509 TailMBB->push_back(DebugInstr->removeFromParent()); 8510 } 8511 8512 // Move all instructions after the sequence to TailMBB. 8513 TailMBB->splice(TailMBB->end(), HeadMBB, 8514 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8515 // Update machine-CFG edges by transferring all successors of the current 8516 // block to the new block which will contain the Phi nodes for the selects. 8517 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8518 // Set the successors for HeadMBB. 8519 HeadMBB->addSuccessor(IfFalseMBB); 8520 HeadMBB->addSuccessor(TailMBB); 8521 8522 // Insert appropriate branch. 8523 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8524 .addReg(LHS) 8525 .addReg(RHS) 8526 .addMBB(TailMBB); 8527 8528 // IfFalseMBB just falls through to TailMBB. 8529 IfFalseMBB->addSuccessor(TailMBB); 8530 8531 // Create PHIs for all of the select pseudo-instructions. 8532 auto SelectMBBI = MI.getIterator(); 8533 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8534 auto InsertionPoint = TailMBB->begin(); 8535 while (SelectMBBI != SelectEnd) { 8536 auto Next = std::next(SelectMBBI); 8537 if (isSelectPseudo(*SelectMBBI)) { 8538 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8539 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8540 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8541 .addReg(SelectMBBI->getOperand(4).getReg()) 8542 .addMBB(HeadMBB) 8543 .addReg(SelectMBBI->getOperand(5).getReg()) 8544 .addMBB(IfFalseMBB); 8545 SelectMBBI->eraseFromParent(); 8546 } 8547 SelectMBBI = Next; 8548 } 8549 8550 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8551 return TailMBB; 8552 } 8553 8554 MachineBasicBlock * 8555 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8556 MachineBasicBlock *BB) const { 8557 switch (MI.getOpcode()) { 8558 default: 8559 llvm_unreachable("Unexpected instr type to insert"); 8560 case RISCV::ReadCycleWide: 8561 assert(!Subtarget.is64Bit() && 8562 "ReadCycleWrite is only to be used on riscv32"); 8563 return emitReadCycleWidePseudo(MI, BB); 8564 case RISCV::Select_GPR_Using_CC_GPR: 8565 case RISCV::Select_FPR16_Using_CC_GPR: 8566 case RISCV::Select_FPR32_Using_CC_GPR: 8567 case RISCV::Select_FPR64_Using_CC_GPR: 8568 return emitSelectPseudo(MI, BB, Subtarget); 8569 case RISCV::BuildPairF64Pseudo: 8570 return emitBuildPairF64Pseudo(MI, BB); 8571 case RISCV::SplitF64Pseudo: 8572 return emitSplitF64Pseudo(MI, BB); 8573 case RISCV::PseudoQuietFLE_H: 8574 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8575 case RISCV::PseudoQuietFLT_H: 8576 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8577 case RISCV::PseudoQuietFLE_S: 8578 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8579 case RISCV::PseudoQuietFLT_S: 8580 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8581 case RISCV::PseudoQuietFLE_D: 8582 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8583 case RISCV::PseudoQuietFLT_D: 8584 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8585 } 8586 } 8587 8588 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8589 SDNode *Node) const { 8590 // Add FRM dependency to any instructions with dynamic rounding mode. 8591 unsigned Opc = MI.getOpcode(); 8592 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8593 if (Idx < 0) 8594 return; 8595 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8596 return; 8597 // If the instruction already reads FRM, don't add another read. 8598 if (MI.readsRegister(RISCV::FRM)) 8599 return; 8600 MI.addOperand( 8601 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8602 } 8603 8604 // Calling Convention Implementation. 8605 // The expectations for frontend ABI lowering vary from target to target. 8606 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8607 // details, but this is a longer term goal. For now, we simply try to keep the 8608 // role of the frontend as simple and well-defined as possible. The rules can 8609 // be summarised as: 8610 // * Never split up large scalar arguments. We handle them here. 8611 // * If a hardfloat calling convention is being used, and the struct may be 8612 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8613 // available, then pass as two separate arguments. If either the GPRs or FPRs 8614 // are exhausted, then pass according to the rule below. 8615 // * If a struct could never be passed in registers or directly in a stack 8616 // slot (as it is larger than 2*XLEN and the floating point rules don't 8617 // apply), then pass it using a pointer with the byval attribute. 8618 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8619 // word-sized array or a 2*XLEN scalar (depending on alignment). 8620 // * The frontend can determine whether a struct is returned by reference or 8621 // not based on its size and fields. If it will be returned by reference, the 8622 // frontend must modify the prototype so a pointer with the sret annotation is 8623 // passed as the first argument. This is not necessary for large scalar 8624 // returns. 8625 // * Struct return values and varargs should be coerced to structs containing 8626 // register-size fields in the same situations they would be for fixed 8627 // arguments. 8628 8629 static const MCPhysReg ArgGPRs[] = { 8630 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8631 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8632 }; 8633 static const MCPhysReg ArgFPR16s[] = { 8634 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8635 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8636 }; 8637 static const MCPhysReg ArgFPR32s[] = { 8638 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8639 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8640 }; 8641 static const MCPhysReg ArgFPR64s[] = { 8642 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8643 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8644 }; 8645 // This is an interim calling convention and it may be changed in the future. 8646 static const MCPhysReg ArgVRs[] = { 8647 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8648 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8649 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8650 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8651 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8652 RISCV::V20M2, RISCV::V22M2}; 8653 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8654 RISCV::V20M4}; 8655 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8656 8657 // Pass a 2*XLEN argument that has been split into two XLEN values through 8658 // registers or the stack as necessary. 8659 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8660 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8661 MVT ValVT2, MVT LocVT2, 8662 ISD::ArgFlagsTy ArgFlags2) { 8663 unsigned XLenInBytes = XLen / 8; 8664 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8665 // At least one half can be passed via register. 8666 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8667 VA1.getLocVT(), CCValAssign::Full)); 8668 } else { 8669 // Both halves must be passed on the stack, with proper alignment. 8670 Align StackAlign = 8671 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8672 State.addLoc( 8673 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8674 State.AllocateStack(XLenInBytes, StackAlign), 8675 VA1.getLocVT(), CCValAssign::Full)); 8676 State.addLoc(CCValAssign::getMem( 8677 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8678 LocVT2, CCValAssign::Full)); 8679 return false; 8680 } 8681 8682 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8683 // The second half can also be passed via register. 8684 State.addLoc( 8685 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8686 } else { 8687 // The second half is passed via the stack, without additional alignment. 8688 State.addLoc(CCValAssign::getMem( 8689 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8690 LocVT2, CCValAssign::Full)); 8691 } 8692 8693 return false; 8694 } 8695 8696 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8697 Optional<unsigned> FirstMaskArgument, 8698 CCState &State, const RISCVTargetLowering &TLI) { 8699 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8700 if (RC == &RISCV::VRRegClass) { 8701 // Assign the first mask argument to V0. 8702 // This is an interim calling convention and it may be changed in the 8703 // future. 8704 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8705 return State.AllocateReg(RISCV::V0); 8706 return State.AllocateReg(ArgVRs); 8707 } 8708 if (RC == &RISCV::VRM2RegClass) 8709 return State.AllocateReg(ArgVRM2s); 8710 if (RC == &RISCV::VRM4RegClass) 8711 return State.AllocateReg(ArgVRM4s); 8712 if (RC == &RISCV::VRM8RegClass) 8713 return State.AllocateReg(ArgVRM8s); 8714 llvm_unreachable("Unhandled register class for ValueType"); 8715 } 8716 8717 // Implements the RISC-V calling convention. Returns true upon failure. 8718 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8719 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8720 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8721 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8722 Optional<unsigned> FirstMaskArgument) { 8723 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8724 assert(XLen == 32 || XLen == 64); 8725 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8726 8727 // Any return value split in to more than two values can't be returned 8728 // directly. Vectors are returned via the available vector registers. 8729 if (!LocVT.isVector() && IsRet && ValNo > 1) 8730 return true; 8731 8732 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8733 // variadic argument, or if no F16/F32 argument registers are available. 8734 bool UseGPRForF16_F32 = true; 8735 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8736 // variadic argument, or if no F64 argument registers are available. 8737 bool UseGPRForF64 = true; 8738 8739 switch (ABI) { 8740 default: 8741 llvm_unreachable("Unexpected ABI"); 8742 case RISCVABI::ABI_ILP32: 8743 case RISCVABI::ABI_LP64: 8744 break; 8745 case RISCVABI::ABI_ILP32F: 8746 case RISCVABI::ABI_LP64F: 8747 UseGPRForF16_F32 = !IsFixed; 8748 break; 8749 case RISCVABI::ABI_ILP32D: 8750 case RISCVABI::ABI_LP64D: 8751 UseGPRForF16_F32 = !IsFixed; 8752 UseGPRForF64 = !IsFixed; 8753 break; 8754 } 8755 8756 // FPR16, FPR32, and FPR64 alias each other. 8757 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8758 UseGPRForF16_F32 = true; 8759 UseGPRForF64 = true; 8760 } 8761 8762 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8763 // similar local variables rather than directly checking against the target 8764 // ABI. 8765 8766 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8767 LocVT = XLenVT; 8768 LocInfo = CCValAssign::BCvt; 8769 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8770 LocVT = MVT::i64; 8771 LocInfo = CCValAssign::BCvt; 8772 } 8773 8774 // If this is a variadic argument, the RISC-V calling convention requires 8775 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8776 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8777 // be used regardless of whether the original argument was split during 8778 // legalisation or not. The argument will not be passed by registers if the 8779 // original type is larger than 2*XLEN, so the register alignment rule does 8780 // not apply. 8781 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8782 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8783 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8784 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8785 // Skip 'odd' register if necessary. 8786 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8787 State.AllocateReg(ArgGPRs); 8788 } 8789 8790 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8791 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8792 State.getPendingArgFlags(); 8793 8794 assert(PendingLocs.size() == PendingArgFlags.size() && 8795 "PendingLocs and PendingArgFlags out of sync"); 8796 8797 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8798 // registers are exhausted. 8799 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8800 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8801 "Can't lower f64 if it is split"); 8802 // Depending on available argument GPRS, f64 may be passed in a pair of 8803 // GPRs, split between a GPR and the stack, or passed completely on the 8804 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8805 // cases. 8806 Register Reg = State.AllocateReg(ArgGPRs); 8807 LocVT = MVT::i32; 8808 if (!Reg) { 8809 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8810 State.addLoc( 8811 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8812 return false; 8813 } 8814 if (!State.AllocateReg(ArgGPRs)) 8815 State.AllocateStack(4, Align(4)); 8816 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8817 return false; 8818 } 8819 8820 // Fixed-length vectors are located in the corresponding scalable-vector 8821 // container types. 8822 if (ValVT.isFixedLengthVector()) 8823 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8824 8825 // Split arguments might be passed indirectly, so keep track of the pending 8826 // values. Split vectors are passed via a mix of registers and indirectly, so 8827 // treat them as we would any other argument. 8828 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8829 LocVT = XLenVT; 8830 LocInfo = CCValAssign::Indirect; 8831 PendingLocs.push_back( 8832 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8833 PendingArgFlags.push_back(ArgFlags); 8834 if (!ArgFlags.isSplitEnd()) { 8835 return false; 8836 } 8837 } 8838 8839 // If the split argument only had two elements, it should be passed directly 8840 // in registers or on the stack. 8841 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8842 PendingLocs.size() <= 2) { 8843 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8844 // Apply the normal calling convention rules to the first half of the 8845 // split argument. 8846 CCValAssign VA = PendingLocs[0]; 8847 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8848 PendingLocs.clear(); 8849 PendingArgFlags.clear(); 8850 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8851 ArgFlags); 8852 } 8853 8854 // Allocate to a register if possible, or else a stack slot. 8855 Register Reg; 8856 unsigned StoreSizeBytes = XLen / 8; 8857 Align StackAlign = Align(XLen / 8); 8858 8859 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8860 Reg = State.AllocateReg(ArgFPR16s); 8861 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8862 Reg = State.AllocateReg(ArgFPR32s); 8863 else if (ValVT == MVT::f64 && !UseGPRForF64) 8864 Reg = State.AllocateReg(ArgFPR64s); 8865 else if (ValVT.isVector()) { 8866 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8867 if (!Reg) { 8868 // For return values, the vector must be passed fully via registers or 8869 // via the stack. 8870 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8871 // but we're using all of them. 8872 if (IsRet) 8873 return true; 8874 // Try using a GPR to pass the address 8875 if ((Reg = State.AllocateReg(ArgGPRs))) { 8876 LocVT = XLenVT; 8877 LocInfo = CCValAssign::Indirect; 8878 } else if (ValVT.isScalableVector()) { 8879 LocVT = XLenVT; 8880 LocInfo = CCValAssign::Indirect; 8881 } else { 8882 // Pass fixed-length vectors on the stack. 8883 LocVT = ValVT; 8884 StoreSizeBytes = ValVT.getStoreSize(); 8885 // Align vectors to their element sizes, being careful for vXi1 8886 // vectors. 8887 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8888 } 8889 } 8890 } else { 8891 Reg = State.AllocateReg(ArgGPRs); 8892 } 8893 8894 unsigned StackOffset = 8895 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8896 8897 // If we reach this point and PendingLocs is non-empty, we must be at the 8898 // end of a split argument that must be passed indirectly. 8899 if (!PendingLocs.empty()) { 8900 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8901 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8902 8903 for (auto &It : PendingLocs) { 8904 if (Reg) 8905 It.convertToReg(Reg); 8906 else 8907 It.convertToMem(StackOffset); 8908 State.addLoc(It); 8909 } 8910 PendingLocs.clear(); 8911 PendingArgFlags.clear(); 8912 return false; 8913 } 8914 8915 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8916 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8917 "Expected an XLenVT or vector types at this stage"); 8918 8919 if (Reg) { 8920 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8921 return false; 8922 } 8923 8924 // When a floating-point value is passed on the stack, no bit-conversion is 8925 // needed. 8926 if (ValVT.isFloatingPoint()) { 8927 LocVT = ValVT; 8928 LocInfo = CCValAssign::Full; 8929 } 8930 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8931 return false; 8932 } 8933 8934 template <typename ArgTy> 8935 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8936 for (const auto &ArgIdx : enumerate(Args)) { 8937 MVT ArgVT = ArgIdx.value().VT; 8938 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8939 return ArgIdx.index(); 8940 } 8941 return None; 8942 } 8943 8944 void RISCVTargetLowering::analyzeInputArgs( 8945 MachineFunction &MF, CCState &CCInfo, 8946 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8947 RISCVCCAssignFn Fn) const { 8948 unsigned NumArgs = Ins.size(); 8949 FunctionType *FType = MF.getFunction().getFunctionType(); 8950 8951 Optional<unsigned> FirstMaskArgument; 8952 if (Subtarget.hasVInstructions()) 8953 FirstMaskArgument = preAssignMask(Ins); 8954 8955 for (unsigned i = 0; i != NumArgs; ++i) { 8956 MVT ArgVT = Ins[i].VT; 8957 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8958 8959 Type *ArgTy = nullptr; 8960 if (IsRet) 8961 ArgTy = FType->getReturnType(); 8962 else if (Ins[i].isOrigArg()) 8963 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8964 8965 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8966 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8967 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8968 FirstMaskArgument)) { 8969 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8970 << EVT(ArgVT).getEVTString() << '\n'); 8971 llvm_unreachable(nullptr); 8972 } 8973 } 8974 } 8975 8976 void RISCVTargetLowering::analyzeOutputArgs( 8977 MachineFunction &MF, CCState &CCInfo, 8978 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8979 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8980 unsigned NumArgs = Outs.size(); 8981 8982 Optional<unsigned> FirstMaskArgument; 8983 if (Subtarget.hasVInstructions()) 8984 FirstMaskArgument = preAssignMask(Outs); 8985 8986 for (unsigned i = 0; i != NumArgs; i++) { 8987 MVT ArgVT = Outs[i].VT; 8988 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8989 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8990 8991 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8992 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8993 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8994 FirstMaskArgument)) { 8995 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8996 << EVT(ArgVT).getEVTString() << "\n"); 8997 llvm_unreachable(nullptr); 8998 } 8999 } 9000 } 9001 9002 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9003 // values. 9004 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9005 const CCValAssign &VA, const SDLoc &DL, 9006 const RISCVSubtarget &Subtarget) { 9007 switch (VA.getLocInfo()) { 9008 default: 9009 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9010 case CCValAssign::Full: 9011 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9012 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9013 break; 9014 case CCValAssign::BCvt: 9015 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9016 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9017 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9018 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9019 else 9020 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9021 break; 9022 } 9023 return Val; 9024 } 9025 9026 // The caller is responsible for loading the full value if the argument is 9027 // passed with CCValAssign::Indirect. 9028 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9029 const CCValAssign &VA, const SDLoc &DL, 9030 const RISCVTargetLowering &TLI) { 9031 MachineFunction &MF = DAG.getMachineFunction(); 9032 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9033 EVT LocVT = VA.getLocVT(); 9034 SDValue Val; 9035 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9036 Register VReg = RegInfo.createVirtualRegister(RC); 9037 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9038 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9039 9040 if (VA.getLocInfo() == CCValAssign::Indirect) 9041 return Val; 9042 9043 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9044 } 9045 9046 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9047 const CCValAssign &VA, const SDLoc &DL, 9048 const RISCVSubtarget &Subtarget) { 9049 EVT LocVT = VA.getLocVT(); 9050 9051 switch (VA.getLocInfo()) { 9052 default: 9053 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9054 case CCValAssign::Full: 9055 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9056 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9057 break; 9058 case CCValAssign::BCvt: 9059 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9060 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9061 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9062 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9063 else 9064 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9065 break; 9066 } 9067 return Val; 9068 } 9069 9070 // The caller is responsible for loading the full value if the argument is 9071 // passed with CCValAssign::Indirect. 9072 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9073 const CCValAssign &VA, const SDLoc &DL) { 9074 MachineFunction &MF = DAG.getMachineFunction(); 9075 MachineFrameInfo &MFI = MF.getFrameInfo(); 9076 EVT LocVT = VA.getLocVT(); 9077 EVT ValVT = VA.getValVT(); 9078 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9079 if (ValVT.isScalableVector()) { 9080 // When the value is a scalable vector, we save the pointer which points to 9081 // the scalable vector value in the stack. The ValVT will be the pointer 9082 // type, instead of the scalable vector type. 9083 ValVT = LocVT; 9084 } 9085 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9086 /*IsImmutable=*/true); 9087 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9088 SDValue Val; 9089 9090 ISD::LoadExtType ExtType; 9091 switch (VA.getLocInfo()) { 9092 default: 9093 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9094 case CCValAssign::Full: 9095 case CCValAssign::Indirect: 9096 case CCValAssign::BCvt: 9097 ExtType = ISD::NON_EXTLOAD; 9098 break; 9099 } 9100 Val = DAG.getExtLoad( 9101 ExtType, DL, LocVT, Chain, FIN, 9102 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9103 return Val; 9104 } 9105 9106 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9107 const CCValAssign &VA, const SDLoc &DL) { 9108 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9109 "Unexpected VA"); 9110 MachineFunction &MF = DAG.getMachineFunction(); 9111 MachineFrameInfo &MFI = MF.getFrameInfo(); 9112 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9113 9114 if (VA.isMemLoc()) { 9115 // f64 is passed on the stack. 9116 int FI = 9117 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9118 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9119 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9120 MachinePointerInfo::getFixedStack(MF, FI)); 9121 } 9122 9123 assert(VA.isRegLoc() && "Expected register VA assignment"); 9124 9125 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9126 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9127 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9128 SDValue Hi; 9129 if (VA.getLocReg() == RISCV::X17) { 9130 // Second half of f64 is passed on the stack. 9131 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9132 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9133 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9134 MachinePointerInfo::getFixedStack(MF, FI)); 9135 } else { 9136 // Second half of f64 is passed in another GPR. 9137 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9138 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9139 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9140 } 9141 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9142 } 9143 9144 // FastCC has less than 1% performance improvement for some particular 9145 // benchmark. But theoretically, it may has benenfit for some cases. 9146 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9147 unsigned ValNo, MVT ValVT, MVT LocVT, 9148 CCValAssign::LocInfo LocInfo, 9149 ISD::ArgFlagsTy ArgFlags, CCState &State, 9150 bool IsFixed, bool IsRet, Type *OrigTy, 9151 const RISCVTargetLowering &TLI, 9152 Optional<unsigned> FirstMaskArgument) { 9153 9154 // X5 and X6 might be used for save-restore libcall. 9155 static const MCPhysReg GPRList[] = { 9156 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9157 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9158 RISCV::X29, RISCV::X30, RISCV::X31}; 9159 9160 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9161 if (unsigned Reg = State.AllocateReg(GPRList)) { 9162 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9163 return false; 9164 } 9165 } 9166 9167 if (LocVT == MVT::f16) { 9168 static const MCPhysReg FPR16List[] = { 9169 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9170 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9171 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9172 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9173 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9174 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9175 return false; 9176 } 9177 } 9178 9179 if (LocVT == MVT::f32) { 9180 static const MCPhysReg FPR32List[] = { 9181 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9182 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9183 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9184 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9185 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9186 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9187 return false; 9188 } 9189 } 9190 9191 if (LocVT == MVT::f64) { 9192 static const MCPhysReg FPR64List[] = { 9193 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9194 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9195 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9196 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9197 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9198 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9199 return false; 9200 } 9201 } 9202 9203 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9204 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9205 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9206 return false; 9207 } 9208 9209 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9210 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9211 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9212 return false; 9213 } 9214 9215 if (LocVT.isVector()) { 9216 if (unsigned Reg = 9217 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9218 // Fixed-length vectors are located in the corresponding scalable-vector 9219 // container types. 9220 if (ValVT.isFixedLengthVector()) 9221 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9222 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9223 } else { 9224 // Try and pass the address via a "fast" GPR. 9225 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9226 LocInfo = CCValAssign::Indirect; 9227 LocVT = TLI.getSubtarget().getXLenVT(); 9228 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9229 } else if (ValVT.isFixedLengthVector()) { 9230 auto StackAlign = 9231 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9232 unsigned StackOffset = 9233 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9234 State.addLoc( 9235 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9236 } else { 9237 // Can't pass scalable vectors on the stack. 9238 return true; 9239 } 9240 } 9241 9242 return false; 9243 } 9244 9245 return true; // CC didn't match. 9246 } 9247 9248 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9249 CCValAssign::LocInfo LocInfo, 9250 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9251 9252 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9253 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9254 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9255 static const MCPhysReg GPRList[] = { 9256 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9257 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9258 if (unsigned Reg = State.AllocateReg(GPRList)) { 9259 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9260 return false; 9261 } 9262 } 9263 9264 if (LocVT == MVT::f32) { 9265 // Pass in STG registers: F1, ..., F6 9266 // fs0 ... fs5 9267 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9268 RISCV::F18_F, RISCV::F19_F, 9269 RISCV::F20_F, RISCV::F21_F}; 9270 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9271 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9272 return false; 9273 } 9274 } 9275 9276 if (LocVT == MVT::f64) { 9277 // Pass in STG registers: D1, ..., D6 9278 // fs6 ... fs11 9279 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9280 RISCV::F24_D, RISCV::F25_D, 9281 RISCV::F26_D, RISCV::F27_D}; 9282 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9283 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9284 return false; 9285 } 9286 } 9287 9288 report_fatal_error("No registers left in GHC calling convention"); 9289 return true; 9290 } 9291 9292 // Transform physical registers into virtual registers. 9293 SDValue RISCVTargetLowering::LowerFormalArguments( 9294 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9295 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9296 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9297 9298 MachineFunction &MF = DAG.getMachineFunction(); 9299 9300 switch (CallConv) { 9301 default: 9302 report_fatal_error("Unsupported calling convention"); 9303 case CallingConv::C: 9304 case CallingConv::Fast: 9305 break; 9306 case CallingConv::GHC: 9307 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9308 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9309 report_fatal_error( 9310 "GHC calling convention requires the F and D instruction set extensions"); 9311 } 9312 9313 const Function &Func = MF.getFunction(); 9314 if (Func.hasFnAttribute("interrupt")) { 9315 if (!Func.arg_empty()) 9316 report_fatal_error( 9317 "Functions with the interrupt attribute cannot have arguments!"); 9318 9319 StringRef Kind = 9320 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9321 9322 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9323 report_fatal_error( 9324 "Function interrupt attribute argument not supported!"); 9325 } 9326 9327 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9328 MVT XLenVT = Subtarget.getXLenVT(); 9329 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9330 // Used with vargs to acumulate store chains. 9331 std::vector<SDValue> OutChains; 9332 9333 // Assign locations to all of the incoming arguments. 9334 SmallVector<CCValAssign, 16> ArgLocs; 9335 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9336 9337 if (CallConv == CallingConv::GHC) 9338 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9339 else 9340 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9341 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9342 : CC_RISCV); 9343 9344 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9345 CCValAssign &VA = ArgLocs[i]; 9346 SDValue ArgValue; 9347 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9348 // case. 9349 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9350 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9351 else if (VA.isRegLoc()) 9352 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9353 else 9354 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9355 9356 if (VA.getLocInfo() == CCValAssign::Indirect) { 9357 // If the original argument was split and passed by reference (e.g. i128 9358 // on RV32), we need to load all parts of it here (using the same 9359 // address). Vectors may be partly split to registers and partly to the 9360 // stack, in which case the base address is partly offset and subsequent 9361 // stores are relative to that. 9362 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9363 MachinePointerInfo())); 9364 unsigned ArgIndex = Ins[i].OrigArgIndex; 9365 unsigned ArgPartOffset = Ins[i].PartOffset; 9366 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9367 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9368 CCValAssign &PartVA = ArgLocs[i + 1]; 9369 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9370 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9371 if (PartVA.getValVT().isScalableVector()) 9372 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9373 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9374 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9375 MachinePointerInfo())); 9376 ++i; 9377 } 9378 continue; 9379 } 9380 InVals.push_back(ArgValue); 9381 } 9382 9383 if (IsVarArg) { 9384 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9385 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9386 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9387 MachineFrameInfo &MFI = MF.getFrameInfo(); 9388 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9389 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9390 9391 // Offset of the first variable argument from stack pointer, and size of 9392 // the vararg save area. For now, the varargs save area is either zero or 9393 // large enough to hold a0-a7. 9394 int VaArgOffset, VarArgsSaveSize; 9395 9396 // If all registers are allocated, then all varargs must be passed on the 9397 // stack and we don't need to save any argregs. 9398 if (ArgRegs.size() == Idx) { 9399 VaArgOffset = CCInfo.getNextStackOffset(); 9400 VarArgsSaveSize = 0; 9401 } else { 9402 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9403 VaArgOffset = -VarArgsSaveSize; 9404 } 9405 9406 // Record the frame index of the first variable argument 9407 // which is a value necessary to VASTART. 9408 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9409 RVFI->setVarArgsFrameIndex(FI); 9410 9411 // If saving an odd number of registers then create an extra stack slot to 9412 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9413 // offsets to even-numbered registered remain 2*XLEN-aligned. 9414 if (Idx % 2) { 9415 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9416 VarArgsSaveSize += XLenInBytes; 9417 } 9418 9419 // Copy the integer registers that may have been used for passing varargs 9420 // to the vararg save area. 9421 for (unsigned I = Idx; I < ArgRegs.size(); 9422 ++I, VaArgOffset += XLenInBytes) { 9423 const Register Reg = RegInfo.createVirtualRegister(RC); 9424 RegInfo.addLiveIn(ArgRegs[I], Reg); 9425 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9426 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9427 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9428 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9429 MachinePointerInfo::getFixedStack(MF, FI)); 9430 cast<StoreSDNode>(Store.getNode()) 9431 ->getMemOperand() 9432 ->setValue((Value *)nullptr); 9433 OutChains.push_back(Store); 9434 } 9435 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9436 } 9437 9438 // All stores are grouped in one node to allow the matching between 9439 // the size of Ins and InVals. This only happens for vararg functions. 9440 if (!OutChains.empty()) { 9441 OutChains.push_back(Chain); 9442 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9443 } 9444 9445 return Chain; 9446 } 9447 9448 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9449 /// for tail call optimization. 9450 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9451 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9452 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9453 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9454 9455 auto &Callee = CLI.Callee; 9456 auto CalleeCC = CLI.CallConv; 9457 auto &Outs = CLI.Outs; 9458 auto &Caller = MF.getFunction(); 9459 auto CallerCC = Caller.getCallingConv(); 9460 9461 // Exception-handling functions need a special set of instructions to 9462 // indicate a return to the hardware. Tail-calling another function would 9463 // probably break this. 9464 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9465 // should be expanded as new function attributes are introduced. 9466 if (Caller.hasFnAttribute("interrupt")) 9467 return false; 9468 9469 // Do not tail call opt if the stack is used to pass parameters. 9470 if (CCInfo.getNextStackOffset() != 0) 9471 return false; 9472 9473 // Do not tail call opt if any parameters need to be passed indirectly. 9474 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9475 // passed indirectly. So the address of the value will be passed in a 9476 // register, or if not available, then the address is put on the stack. In 9477 // order to pass indirectly, space on the stack often needs to be allocated 9478 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9479 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9480 // are passed CCValAssign::Indirect. 9481 for (auto &VA : ArgLocs) 9482 if (VA.getLocInfo() == CCValAssign::Indirect) 9483 return false; 9484 9485 // Do not tail call opt if either caller or callee uses struct return 9486 // semantics. 9487 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9488 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9489 if (IsCallerStructRet || IsCalleeStructRet) 9490 return false; 9491 9492 // Externally-defined functions with weak linkage should not be 9493 // tail-called. The behaviour of branch instructions in this situation (as 9494 // used for tail calls) is implementation-defined, so we cannot rely on the 9495 // linker replacing the tail call with a return. 9496 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9497 const GlobalValue *GV = G->getGlobal(); 9498 if (GV->hasExternalWeakLinkage()) 9499 return false; 9500 } 9501 9502 // The callee has to preserve all registers the caller needs to preserve. 9503 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9504 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9505 if (CalleeCC != CallerCC) { 9506 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9507 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9508 return false; 9509 } 9510 9511 // Byval parameters hand the function a pointer directly into the stack area 9512 // we want to reuse during a tail call. Working around this *is* possible 9513 // but less efficient and uglier in LowerCall. 9514 for (auto &Arg : Outs) 9515 if (Arg.Flags.isByVal()) 9516 return false; 9517 9518 return true; 9519 } 9520 9521 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9522 return DAG.getDataLayout().getPrefTypeAlign( 9523 VT.getTypeForEVT(*DAG.getContext())); 9524 } 9525 9526 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9527 // and output parameter nodes. 9528 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9529 SmallVectorImpl<SDValue> &InVals) const { 9530 SelectionDAG &DAG = CLI.DAG; 9531 SDLoc &DL = CLI.DL; 9532 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9533 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9534 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9535 SDValue Chain = CLI.Chain; 9536 SDValue Callee = CLI.Callee; 9537 bool &IsTailCall = CLI.IsTailCall; 9538 CallingConv::ID CallConv = CLI.CallConv; 9539 bool IsVarArg = CLI.IsVarArg; 9540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9541 MVT XLenVT = Subtarget.getXLenVT(); 9542 9543 MachineFunction &MF = DAG.getMachineFunction(); 9544 9545 // Analyze the operands of the call, assigning locations to each operand. 9546 SmallVector<CCValAssign, 16> ArgLocs; 9547 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9548 9549 if (CallConv == CallingConv::GHC) 9550 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9551 else 9552 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9553 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9554 : CC_RISCV); 9555 9556 // Check if it's really possible to do a tail call. 9557 if (IsTailCall) 9558 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9559 9560 if (IsTailCall) 9561 ++NumTailCalls; 9562 else if (CLI.CB && CLI.CB->isMustTailCall()) 9563 report_fatal_error("failed to perform tail call elimination on a call " 9564 "site marked musttail"); 9565 9566 // Get a count of how many bytes are to be pushed on the stack. 9567 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9568 9569 // Create local copies for byval args 9570 SmallVector<SDValue, 8> ByValArgs; 9571 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9572 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9573 if (!Flags.isByVal()) 9574 continue; 9575 9576 SDValue Arg = OutVals[i]; 9577 unsigned Size = Flags.getByValSize(); 9578 Align Alignment = Flags.getNonZeroByValAlign(); 9579 9580 int FI = 9581 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9582 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9583 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9584 9585 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9586 /*IsVolatile=*/false, 9587 /*AlwaysInline=*/false, IsTailCall, 9588 MachinePointerInfo(), MachinePointerInfo()); 9589 ByValArgs.push_back(FIPtr); 9590 } 9591 9592 if (!IsTailCall) 9593 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9594 9595 // Copy argument values to their designated locations. 9596 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9597 SmallVector<SDValue, 8> MemOpChains; 9598 SDValue StackPtr; 9599 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9600 CCValAssign &VA = ArgLocs[i]; 9601 SDValue ArgValue = OutVals[i]; 9602 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9603 9604 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9605 bool IsF64OnRV32DSoftABI = 9606 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9607 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9608 SDValue SplitF64 = DAG.getNode( 9609 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9610 SDValue Lo = SplitF64.getValue(0); 9611 SDValue Hi = SplitF64.getValue(1); 9612 9613 Register RegLo = VA.getLocReg(); 9614 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9615 9616 if (RegLo == RISCV::X17) { 9617 // Second half of f64 is passed on the stack. 9618 // Work out the address of the stack slot. 9619 if (!StackPtr.getNode()) 9620 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9621 // Emit the store. 9622 MemOpChains.push_back( 9623 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9624 } else { 9625 // Second half of f64 is passed in another GPR. 9626 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9627 Register RegHigh = RegLo + 1; 9628 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9629 } 9630 continue; 9631 } 9632 9633 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9634 // as any other MemLoc. 9635 9636 // Promote the value if needed. 9637 // For now, only handle fully promoted and indirect arguments. 9638 if (VA.getLocInfo() == CCValAssign::Indirect) { 9639 // Store the argument in a stack slot and pass its address. 9640 Align StackAlign = 9641 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9642 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9643 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9644 // If the original argument was split (e.g. i128), we need 9645 // to store the required parts of it here (and pass just one address). 9646 // Vectors may be partly split to registers and partly to the stack, in 9647 // which case the base address is partly offset and subsequent stores are 9648 // relative to that. 9649 unsigned ArgIndex = Outs[i].OrigArgIndex; 9650 unsigned ArgPartOffset = Outs[i].PartOffset; 9651 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9652 // Calculate the total size to store. We don't have access to what we're 9653 // actually storing other than performing the loop and collecting the 9654 // info. 9655 SmallVector<std::pair<SDValue, SDValue>> Parts; 9656 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9657 SDValue PartValue = OutVals[i + 1]; 9658 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9659 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9660 EVT PartVT = PartValue.getValueType(); 9661 if (PartVT.isScalableVector()) 9662 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9663 StoredSize += PartVT.getStoreSize(); 9664 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9665 Parts.push_back(std::make_pair(PartValue, Offset)); 9666 ++i; 9667 } 9668 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9669 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9670 MemOpChains.push_back( 9671 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9672 MachinePointerInfo::getFixedStack(MF, FI))); 9673 for (const auto &Part : Parts) { 9674 SDValue PartValue = Part.first; 9675 SDValue PartOffset = Part.second; 9676 SDValue Address = 9677 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9678 MemOpChains.push_back( 9679 DAG.getStore(Chain, DL, PartValue, Address, 9680 MachinePointerInfo::getFixedStack(MF, FI))); 9681 } 9682 ArgValue = SpillSlot; 9683 } else { 9684 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9685 } 9686 9687 // Use local copy if it is a byval arg. 9688 if (Flags.isByVal()) 9689 ArgValue = ByValArgs[j++]; 9690 9691 if (VA.isRegLoc()) { 9692 // Queue up the argument copies and emit them at the end. 9693 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9694 } else { 9695 assert(VA.isMemLoc() && "Argument not register or memory"); 9696 assert(!IsTailCall && "Tail call not allowed if stack is used " 9697 "for passing parameters"); 9698 9699 // Work out the address of the stack slot. 9700 if (!StackPtr.getNode()) 9701 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9702 SDValue Address = 9703 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9704 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9705 9706 // Emit the store. 9707 MemOpChains.push_back( 9708 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9709 } 9710 } 9711 9712 // Join the stores, which are independent of one another. 9713 if (!MemOpChains.empty()) 9714 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9715 9716 SDValue Glue; 9717 9718 // Build a sequence of copy-to-reg nodes, chained and glued together. 9719 for (auto &Reg : RegsToPass) { 9720 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9721 Glue = Chain.getValue(1); 9722 } 9723 9724 // Validate that none of the argument registers have been marked as 9725 // reserved, if so report an error. Do the same for the return address if this 9726 // is not a tailcall. 9727 validateCCReservedRegs(RegsToPass, MF); 9728 if (!IsTailCall && 9729 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9730 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9731 MF.getFunction(), 9732 "Return address register required, but has been reserved."}); 9733 9734 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9735 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9736 // split it and then direct call can be matched by PseudoCALL. 9737 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9738 const GlobalValue *GV = S->getGlobal(); 9739 9740 unsigned OpFlags = RISCVII::MO_CALL; 9741 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9742 OpFlags = RISCVII::MO_PLT; 9743 9744 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9745 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9746 unsigned OpFlags = RISCVII::MO_CALL; 9747 9748 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9749 nullptr)) 9750 OpFlags = RISCVII::MO_PLT; 9751 9752 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9753 } 9754 9755 // The first call operand is the chain and the second is the target address. 9756 SmallVector<SDValue, 8> Ops; 9757 Ops.push_back(Chain); 9758 Ops.push_back(Callee); 9759 9760 // Add argument registers to the end of the list so that they are 9761 // known live into the call. 9762 for (auto &Reg : RegsToPass) 9763 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9764 9765 if (!IsTailCall) { 9766 // Add a register mask operand representing the call-preserved registers. 9767 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9768 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9769 assert(Mask && "Missing call preserved mask for calling convention"); 9770 Ops.push_back(DAG.getRegisterMask(Mask)); 9771 } 9772 9773 // Glue the call to the argument copies, if any. 9774 if (Glue.getNode()) 9775 Ops.push_back(Glue); 9776 9777 // Emit the call. 9778 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9779 9780 if (IsTailCall) { 9781 MF.getFrameInfo().setHasTailCall(); 9782 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9783 } 9784 9785 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9786 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9787 Glue = Chain.getValue(1); 9788 9789 // Mark the end of the call, which is glued to the call itself. 9790 Chain = DAG.getCALLSEQ_END(Chain, 9791 DAG.getConstant(NumBytes, DL, PtrVT, true), 9792 DAG.getConstant(0, DL, PtrVT, true), 9793 Glue, DL); 9794 Glue = Chain.getValue(1); 9795 9796 // Assign locations to each value returned by this call. 9797 SmallVector<CCValAssign, 16> RVLocs; 9798 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9799 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9800 9801 // Copy all of the result registers out of their specified physreg. 9802 for (auto &VA : RVLocs) { 9803 // Copy the value out 9804 SDValue RetValue = 9805 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9806 // Glue the RetValue to the end of the call sequence 9807 Chain = RetValue.getValue(1); 9808 Glue = RetValue.getValue(2); 9809 9810 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9811 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9812 SDValue RetValue2 = 9813 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9814 Chain = RetValue2.getValue(1); 9815 Glue = RetValue2.getValue(2); 9816 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9817 RetValue2); 9818 } 9819 9820 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9821 9822 InVals.push_back(RetValue); 9823 } 9824 9825 return Chain; 9826 } 9827 9828 bool RISCVTargetLowering::CanLowerReturn( 9829 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9830 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9831 SmallVector<CCValAssign, 16> RVLocs; 9832 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9833 9834 Optional<unsigned> FirstMaskArgument; 9835 if (Subtarget.hasVInstructions()) 9836 FirstMaskArgument = preAssignMask(Outs); 9837 9838 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9839 MVT VT = Outs[i].VT; 9840 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9841 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9842 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9843 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9844 *this, FirstMaskArgument)) 9845 return false; 9846 } 9847 return true; 9848 } 9849 9850 SDValue 9851 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9852 bool IsVarArg, 9853 const SmallVectorImpl<ISD::OutputArg> &Outs, 9854 const SmallVectorImpl<SDValue> &OutVals, 9855 const SDLoc &DL, SelectionDAG &DAG) const { 9856 const MachineFunction &MF = DAG.getMachineFunction(); 9857 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9858 9859 // Stores the assignment of the return value to a location. 9860 SmallVector<CCValAssign, 16> RVLocs; 9861 9862 // Info about the registers and stack slot. 9863 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9864 *DAG.getContext()); 9865 9866 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9867 nullptr, CC_RISCV); 9868 9869 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9870 report_fatal_error("GHC functions return void only"); 9871 9872 SDValue Glue; 9873 SmallVector<SDValue, 4> RetOps(1, Chain); 9874 9875 // Copy the result values into the output registers. 9876 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9877 SDValue Val = OutVals[i]; 9878 CCValAssign &VA = RVLocs[i]; 9879 assert(VA.isRegLoc() && "Can only return in registers!"); 9880 9881 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9882 // Handle returning f64 on RV32D with a soft float ABI. 9883 assert(VA.isRegLoc() && "Expected return via registers"); 9884 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9885 DAG.getVTList(MVT::i32, MVT::i32), Val); 9886 SDValue Lo = SplitF64.getValue(0); 9887 SDValue Hi = SplitF64.getValue(1); 9888 Register RegLo = VA.getLocReg(); 9889 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9890 Register RegHi = RegLo + 1; 9891 9892 if (STI.isRegisterReservedByUser(RegLo) || 9893 STI.isRegisterReservedByUser(RegHi)) 9894 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9895 MF.getFunction(), 9896 "Return value register required, but has been reserved."}); 9897 9898 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9899 Glue = Chain.getValue(1); 9900 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9901 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9902 Glue = Chain.getValue(1); 9903 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9904 } else { 9905 // Handle a 'normal' return. 9906 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9907 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9908 9909 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9910 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9911 MF.getFunction(), 9912 "Return value register required, but has been reserved."}); 9913 9914 // Guarantee that all emitted copies are stuck together. 9915 Glue = Chain.getValue(1); 9916 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9917 } 9918 } 9919 9920 RetOps[0] = Chain; // Update chain. 9921 9922 // Add the glue node if we have it. 9923 if (Glue.getNode()) { 9924 RetOps.push_back(Glue); 9925 } 9926 9927 unsigned RetOpc = RISCVISD::RET_FLAG; 9928 // Interrupt service routines use different return instructions. 9929 const Function &Func = DAG.getMachineFunction().getFunction(); 9930 if (Func.hasFnAttribute("interrupt")) { 9931 if (!Func.getReturnType()->isVoidTy()) 9932 report_fatal_error( 9933 "Functions with the interrupt attribute must have void return type!"); 9934 9935 MachineFunction &MF = DAG.getMachineFunction(); 9936 StringRef Kind = 9937 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9938 9939 if (Kind == "user") 9940 RetOpc = RISCVISD::URET_FLAG; 9941 else if (Kind == "supervisor") 9942 RetOpc = RISCVISD::SRET_FLAG; 9943 else 9944 RetOpc = RISCVISD::MRET_FLAG; 9945 } 9946 9947 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9948 } 9949 9950 void RISCVTargetLowering::validateCCReservedRegs( 9951 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9952 MachineFunction &MF) const { 9953 const Function &F = MF.getFunction(); 9954 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9955 9956 if (llvm::any_of(Regs, [&STI](auto Reg) { 9957 return STI.isRegisterReservedByUser(Reg.first); 9958 })) 9959 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9960 F, "Argument register required, but has been reserved."}); 9961 } 9962 9963 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9964 return CI->isTailCall(); 9965 } 9966 9967 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9968 #define NODE_NAME_CASE(NODE) \ 9969 case RISCVISD::NODE: \ 9970 return "RISCVISD::" #NODE; 9971 // clang-format off 9972 switch ((RISCVISD::NodeType)Opcode) { 9973 case RISCVISD::FIRST_NUMBER: 9974 break; 9975 NODE_NAME_CASE(RET_FLAG) 9976 NODE_NAME_CASE(URET_FLAG) 9977 NODE_NAME_CASE(SRET_FLAG) 9978 NODE_NAME_CASE(MRET_FLAG) 9979 NODE_NAME_CASE(CALL) 9980 NODE_NAME_CASE(SELECT_CC) 9981 NODE_NAME_CASE(BR_CC) 9982 NODE_NAME_CASE(BuildPairF64) 9983 NODE_NAME_CASE(SplitF64) 9984 NODE_NAME_CASE(TAIL) 9985 NODE_NAME_CASE(MULHSU) 9986 NODE_NAME_CASE(SLLW) 9987 NODE_NAME_CASE(SRAW) 9988 NODE_NAME_CASE(SRLW) 9989 NODE_NAME_CASE(DIVW) 9990 NODE_NAME_CASE(DIVUW) 9991 NODE_NAME_CASE(REMUW) 9992 NODE_NAME_CASE(ROLW) 9993 NODE_NAME_CASE(RORW) 9994 NODE_NAME_CASE(CLZW) 9995 NODE_NAME_CASE(CTZW) 9996 NODE_NAME_CASE(FSLW) 9997 NODE_NAME_CASE(FSRW) 9998 NODE_NAME_CASE(FSL) 9999 NODE_NAME_CASE(FSR) 10000 NODE_NAME_CASE(FMV_H_X) 10001 NODE_NAME_CASE(FMV_X_ANYEXTH) 10002 NODE_NAME_CASE(FMV_W_X_RV64) 10003 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10004 NODE_NAME_CASE(FCVT_X) 10005 NODE_NAME_CASE(FCVT_XU) 10006 NODE_NAME_CASE(FCVT_W_RV64) 10007 NODE_NAME_CASE(FCVT_WU_RV64) 10008 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10009 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10010 NODE_NAME_CASE(READ_CYCLE_WIDE) 10011 NODE_NAME_CASE(GREV) 10012 NODE_NAME_CASE(GREVW) 10013 NODE_NAME_CASE(GORC) 10014 NODE_NAME_CASE(GORCW) 10015 NODE_NAME_CASE(SHFL) 10016 NODE_NAME_CASE(SHFLW) 10017 NODE_NAME_CASE(UNSHFL) 10018 NODE_NAME_CASE(UNSHFLW) 10019 NODE_NAME_CASE(BFP) 10020 NODE_NAME_CASE(BFPW) 10021 NODE_NAME_CASE(BCOMPRESS) 10022 NODE_NAME_CASE(BCOMPRESSW) 10023 NODE_NAME_CASE(BDECOMPRESS) 10024 NODE_NAME_CASE(BDECOMPRESSW) 10025 NODE_NAME_CASE(VMV_V_X_VL) 10026 NODE_NAME_CASE(VFMV_V_F_VL) 10027 NODE_NAME_CASE(VMV_X_S) 10028 NODE_NAME_CASE(VMV_S_X_VL) 10029 NODE_NAME_CASE(VFMV_S_F_VL) 10030 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10031 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10032 NODE_NAME_CASE(READ_VLENB) 10033 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10034 NODE_NAME_CASE(VSLIDEUP_VL) 10035 NODE_NAME_CASE(VSLIDE1UP_VL) 10036 NODE_NAME_CASE(VSLIDEDOWN_VL) 10037 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10038 NODE_NAME_CASE(VID_VL) 10039 NODE_NAME_CASE(VFNCVT_ROD_VL) 10040 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10041 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10042 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10043 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10044 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10045 NODE_NAME_CASE(VECREDUCE_AND_VL) 10046 NODE_NAME_CASE(VECREDUCE_OR_VL) 10047 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10048 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10049 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10050 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10051 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10052 NODE_NAME_CASE(ADD_VL) 10053 NODE_NAME_CASE(AND_VL) 10054 NODE_NAME_CASE(MUL_VL) 10055 NODE_NAME_CASE(OR_VL) 10056 NODE_NAME_CASE(SDIV_VL) 10057 NODE_NAME_CASE(SHL_VL) 10058 NODE_NAME_CASE(SREM_VL) 10059 NODE_NAME_CASE(SRA_VL) 10060 NODE_NAME_CASE(SRL_VL) 10061 NODE_NAME_CASE(SUB_VL) 10062 NODE_NAME_CASE(UDIV_VL) 10063 NODE_NAME_CASE(UREM_VL) 10064 NODE_NAME_CASE(XOR_VL) 10065 NODE_NAME_CASE(SADDSAT_VL) 10066 NODE_NAME_CASE(UADDSAT_VL) 10067 NODE_NAME_CASE(SSUBSAT_VL) 10068 NODE_NAME_CASE(USUBSAT_VL) 10069 NODE_NAME_CASE(FADD_VL) 10070 NODE_NAME_CASE(FSUB_VL) 10071 NODE_NAME_CASE(FMUL_VL) 10072 NODE_NAME_CASE(FDIV_VL) 10073 NODE_NAME_CASE(FNEG_VL) 10074 NODE_NAME_CASE(FABS_VL) 10075 NODE_NAME_CASE(FSQRT_VL) 10076 NODE_NAME_CASE(FMA_VL) 10077 NODE_NAME_CASE(FCOPYSIGN_VL) 10078 NODE_NAME_CASE(SMIN_VL) 10079 NODE_NAME_CASE(SMAX_VL) 10080 NODE_NAME_CASE(UMIN_VL) 10081 NODE_NAME_CASE(UMAX_VL) 10082 NODE_NAME_CASE(FMINNUM_VL) 10083 NODE_NAME_CASE(FMAXNUM_VL) 10084 NODE_NAME_CASE(MULHS_VL) 10085 NODE_NAME_CASE(MULHU_VL) 10086 NODE_NAME_CASE(FP_TO_SINT_VL) 10087 NODE_NAME_CASE(FP_TO_UINT_VL) 10088 NODE_NAME_CASE(SINT_TO_FP_VL) 10089 NODE_NAME_CASE(UINT_TO_FP_VL) 10090 NODE_NAME_CASE(FP_EXTEND_VL) 10091 NODE_NAME_CASE(FP_ROUND_VL) 10092 NODE_NAME_CASE(VWMUL_VL) 10093 NODE_NAME_CASE(VWMULU_VL) 10094 NODE_NAME_CASE(VWADDU_VL) 10095 NODE_NAME_CASE(SETCC_VL) 10096 NODE_NAME_CASE(VSELECT_VL) 10097 NODE_NAME_CASE(VP_MERGE_VL) 10098 NODE_NAME_CASE(VMAND_VL) 10099 NODE_NAME_CASE(VMOR_VL) 10100 NODE_NAME_CASE(VMXOR_VL) 10101 NODE_NAME_CASE(VMCLR_VL) 10102 NODE_NAME_CASE(VMSET_VL) 10103 NODE_NAME_CASE(VRGATHER_VX_VL) 10104 NODE_NAME_CASE(VRGATHER_VV_VL) 10105 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10106 NODE_NAME_CASE(VSEXT_VL) 10107 NODE_NAME_CASE(VZEXT_VL) 10108 NODE_NAME_CASE(VCPOP_VL) 10109 NODE_NAME_CASE(VLE_VL) 10110 NODE_NAME_CASE(VSE_VL) 10111 NODE_NAME_CASE(READ_CSR) 10112 NODE_NAME_CASE(WRITE_CSR) 10113 NODE_NAME_CASE(SWAP_CSR) 10114 } 10115 // clang-format on 10116 return nullptr; 10117 #undef NODE_NAME_CASE 10118 } 10119 10120 /// getConstraintType - Given a constraint letter, return the type of 10121 /// constraint it is for this target. 10122 RISCVTargetLowering::ConstraintType 10123 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10124 if (Constraint.size() == 1) { 10125 switch (Constraint[0]) { 10126 default: 10127 break; 10128 case 'f': 10129 return C_RegisterClass; 10130 case 'I': 10131 case 'J': 10132 case 'K': 10133 return C_Immediate; 10134 case 'A': 10135 return C_Memory; 10136 case 'S': // A symbolic address 10137 return C_Other; 10138 } 10139 } else { 10140 if (Constraint == "vr" || Constraint == "vm") 10141 return C_RegisterClass; 10142 } 10143 return TargetLowering::getConstraintType(Constraint); 10144 } 10145 10146 std::pair<unsigned, const TargetRegisterClass *> 10147 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10148 StringRef Constraint, 10149 MVT VT) const { 10150 // First, see if this is a constraint that directly corresponds to a 10151 // RISCV register class. 10152 if (Constraint.size() == 1) { 10153 switch (Constraint[0]) { 10154 case 'r': 10155 // TODO: Support fixed vectors up to XLen for P extension? 10156 if (VT.isVector()) 10157 break; 10158 return std::make_pair(0U, &RISCV::GPRRegClass); 10159 case 'f': 10160 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10161 return std::make_pair(0U, &RISCV::FPR16RegClass); 10162 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10163 return std::make_pair(0U, &RISCV::FPR32RegClass); 10164 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10165 return std::make_pair(0U, &RISCV::FPR64RegClass); 10166 break; 10167 default: 10168 break; 10169 } 10170 } else if (Constraint == "vr") { 10171 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10172 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10173 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10174 return std::make_pair(0U, RC); 10175 } 10176 } else if (Constraint == "vm") { 10177 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10178 return std::make_pair(0U, &RISCV::VMV0RegClass); 10179 } 10180 10181 // Clang will correctly decode the usage of register name aliases into their 10182 // official names. However, other frontends like `rustc` do not. This allows 10183 // users of these frontends to use the ABI names for registers in LLVM-style 10184 // register constraints. 10185 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10186 .Case("{zero}", RISCV::X0) 10187 .Case("{ra}", RISCV::X1) 10188 .Case("{sp}", RISCV::X2) 10189 .Case("{gp}", RISCV::X3) 10190 .Case("{tp}", RISCV::X4) 10191 .Case("{t0}", RISCV::X5) 10192 .Case("{t1}", RISCV::X6) 10193 .Case("{t2}", RISCV::X7) 10194 .Cases("{s0}", "{fp}", RISCV::X8) 10195 .Case("{s1}", RISCV::X9) 10196 .Case("{a0}", RISCV::X10) 10197 .Case("{a1}", RISCV::X11) 10198 .Case("{a2}", RISCV::X12) 10199 .Case("{a3}", RISCV::X13) 10200 .Case("{a4}", RISCV::X14) 10201 .Case("{a5}", RISCV::X15) 10202 .Case("{a6}", RISCV::X16) 10203 .Case("{a7}", RISCV::X17) 10204 .Case("{s2}", RISCV::X18) 10205 .Case("{s3}", RISCV::X19) 10206 .Case("{s4}", RISCV::X20) 10207 .Case("{s5}", RISCV::X21) 10208 .Case("{s6}", RISCV::X22) 10209 .Case("{s7}", RISCV::X23) 10210 .Case("{s8}", RISCV::X24) 10211 .Case("{s9}", RISCV::X25) 10212 .Case("{s10}", RISCV::X26) 10213 .Case("{s11}", RISCV::X27) 10214 .Case("{t3}", RISCV::X28) 10215 .Case("{t4}", RISCV::X29) 10216 .Case("{t5}", RISCV::X30) 10217 .Case("{t6}", RISCV::X31) 10218 .Default(RISCV::NoRegister); 10219 if (XRegFromAlias != RISCV::NoRegister) 10220 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10221 10222 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10223 // TableGen record rather than the AsmName to choose registers for InlineAsm 10224 // constraints, plus we want to match those names to the widest floating point 10225 // register type available, manually select floating point registers here. 10226 // 10227 // The second case is the ABI name of the register, so that frontends can also 10228 // use the ABI names in register constraint lists. 10229 if (Subtarget.hasStdExtF()) { 10230 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10231 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10232 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10233 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10234 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10235 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10236 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10237 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10238 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10239 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10240 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10241 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10242 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10243 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10244 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10245 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10246 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10247 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10248 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10249 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10250 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10251 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10252 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10253 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10254 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10255 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10256 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10257 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10258 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10259 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10260 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10261 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10262 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10263 .Default(RISCV::NoRegister); 10264 if (FReg != RISCV::NoRegister) { 10265 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10266 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10267 unsigned RegNo = FReg - RISCV::F0_F; 10268 unsigned DReg = RISCV::F0_D + RegNo; 10269 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10270 } 10271 if (VT == MVT::f32 || VT == MVT::Other) 10272 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10273 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10274 unsigned RegNo = FReg - RISCV::F0_F; 10275 unsigned HReg = RISCV::F0_H + RegNo; 10276 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10277 } 10278 } 10279 } 10280 10281 if (Subtarget.hasVInstructions()) { 10282 Register VReg = StringSwitch<Register>(Constraint.lower()) 10283 .Case("{v0}", RISCV::V0) 10284 .Case("{v1}", RISCV::V1) 10285 .Case("{v2}", RISCV::V2) 10286 .Case("{v3}", RISCV::V3) 10287 .Case("{v4}", RISCV::V4) 10288 .Case("{v5}", RISCV::V5) 10289 .Case("{v6}", RISCV::V6) 10290 .Case("{v7}", RISCV::V7) 10291 .Case("{v8}", RISCV::V8) 10292 .Case("{v9}", RISCV::V9) 10293 .Case("{v10}", RISCV::V10) 10294 .Case("{v11}", RISCV::V11) 10295 .Case("{v12}", RISCV::V12) 10296 .Case("{v13}", RISCV::V13) 10297 .Case("{v14}", RISCV::V14) 10298 .Case("{v15}", RISCV::V15) 10299 .Case("{v16}", RISCV::V16) 10300 .Case("{v17}", RISCV::V17) 10301 .Case("{v18}", RISCV::V18) 10302 .Case("{v19}", RISCV::V19) 10303 .Case("{v20}", RISCV::V20) 10304 .Case("{v21}", RISCV::V21) 10305 .Case("{v22}", RISCV::V22) 10306 .Case("{v23}", RISCV::V23) 10307 .Case("{v24}", RISCV::V24) 10308 .Case("{v25}", RISCV::V25) 10309 .Case("{v26}", RISCV::V26) 10310 .Case("{v27}", RISCV::V27) 10311 .Case("{v28}", RISCV::V28) 10312 .Case("{v29}", RISCV::V29) 10313 .Case("{v30}", RISCV::V30) 10314 .Case("{v31}", RISCV::V31) 10315 .Default(RISCV::NoRegister); 10316 if (VReg != RISCV::NoRegister) { 10317 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10318 return std::make_pair(VReg, &RISCV::VMRegClass); 10319 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10320 return std::make_pair(VReg, &RISCV::VRRegClass); 10321 for (const auto *RC : 10322 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10323 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10324 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10325 return std::make_pair(VReg, RC); 10326 } 10327 } 10328 } 10329 } 10330 10331 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10332 } 10333 10334 unsigned 10335 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10336 // Currently only support length 1 constraints. 10337 if (ConstraintCode.size() == 1) { 10338 switch (ConstraintCode[0]) { 10339 case 'A': 10340 return InlineAsm::Constraint_A; 10341 default: 10342 break; 10343 } 10344 } 10345 10346 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10347 } 10348 10349 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10350 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10351 SelectionDAG &DAG) const { 10352 // Currently only support length 1 constraints. 10353 if (Constraint.length() == 1) { 10354 switch (Constraint[0]) { 10355 case 'I': 10356 // Validate & create a 12-bit signed immediate operand. 10357 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10358 uint64_t CVal = C->getSExtValue(); 10359 if (isInt<12>(CVal)) 10360 Ops.push_back( 10361 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10362 } 10363 return; 10364 case 'J': 10365 // Validate & create an integer zero operand. 10366 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10367 if (C->getZExtValue() == 0) 10368 Ops.push_back( 10369 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10370 return; 10371 case 'K': 10372 // Validate & create a 5-bit unsigned immediate operand. 10373 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10374 uint64_t CVal = C->getZExtValue(); 10375 if (isUInt<5>(CVal)) 10376 Ops.push_back( 10377 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10378 } 10379 return; 10380 case 'S': 10381 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10382 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10383 GA->getValueType(0))); 10384 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10385 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10386 BA->getValueType(0))); 10387 } 10388 return; 10389 default: 10390 break; 10391 } 10392 } 10393 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10394 } 10395 10396 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10397 Instruction *Inst, 10398 AtomicOrdering Ord) const { 10399 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10400 return Builder.CreateFence(Ord); 10401 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10402 return Builder.CreateFence(AtomicOrdering::Release); 10403 return nullptr; 10404 } 10405 10406 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10407 Instruction *Inst, 10408 AtomicOrdering Ord) const { 10409 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10410 return Builder.CreateFence(AtomicOrdering::Acquire); 10411 return nullptr; 10412 } 10413 10414 TargetLowering::AtomicExpansionKind 10415 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10416 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10417 // point operations can't be used in an lr/sc sequence without breaking the 10418 // forward-progress guarantee. 10419 if (AI->isFloatingPointOperation()) 10420 return AtomicExpansionKind::CmpXChg; 10421 10422 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10423 if (Size == 8 || Size == 16) 10424 return AtomicExpansionKind::MaskedIntrinsic; 10425 return AtomicExpansionKind::None; 10426 } 10427 10428 static Intrinsic::ID 10429 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10430 if (XLen == 32) { 10431 switch (BinOp) { 10432 default: 10433 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10434 case AtomicRMWInst::Xchg: 10435 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10436 case AtomicRMWInst::Add: 10437 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10438 case AtomicRMWInst::Sub: 10439 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10440 case AtomicRMWInst::Nand: 10441 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10442 case AtomicRMWInst::Max: 10443 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10444 case AtomicRMWInst::Min: 10445 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10446 case AtomicRMWInst::UMax: 10447 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10448 case AtomicRMWInst::UMin: 10449 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10450 } 10451 } 10452 10453 if (XLen == 64) { 10454 switch (BinOp) { 10455 default: 10456 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10457 case AtomicRMWInst::Xchg: 10458 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10459 case AtomicRMWInst::Add: 10460 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10461 case AtomicRMWInst::Sub: 10462 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10463 case AtomicRMWInst::Nand: 10464 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10465 case AtomicRMWInst::Max: 10466 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10467 case AtomicRMWInst::Min: 10468 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10469 case AtomicRMWInst::UMax: 10470 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10471 case AtomicRMWInst::UMin: 10472 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10473 } 10474 } 10475 10476 llvm_unreachable("Unexpected XLen\n"); 10477 } 10478 10479 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10480 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10481 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10482 unsigned XLen = Subtarget.getXLen(); 10483 Value *Ordering = 10484 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10485 Type *Tys[] = {AlignedAddr->getType()}; 10486 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10487 AI->getModule(), 10488 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10489 10490 if (XLen == 64) { 10491 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10492 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10493 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10494 } 10495 10496 Value *Result; 10497 10498 // Must pass the shift amount needed to sign extend the loaded value prior 10499 // to performing a signed comparison for min/max. ShiftAmt is the number of 10500 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10501 // is the number of bits to left+right shift the value in order to 10502 // sign-extend. 10503 if (AI->getOperation() == AtomicRMWInst::Min || 10504 AI->getOperation() == AtomicRMWInst::Max) { 10505 const DataLayout &DL = AI->getModule()->getDataLayout(); 10506 unsigned ValWidth = 10507 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10508 Value *SextShamt = 10509 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10510 Result = Builder.CreateCall(LrwOpScwLoop, 10511 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10512 } else { 10513 Result = 10514 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10515 } 10516 10517 if (XLen == 64) 10518 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10519 return Result; 10520 } 10521 10522 TargetLowering::AtomicExpansionKind 10523 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10524 AtomicCmpXchgInst *CI) const { 10525 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10526 if (Size == 8 || Size == 16) 10527 return AtomicExpansionKind::MaskedIntrinsic; 10528 return AtomicExpansionKind::None; 10529 } 10530 10531 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10532 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10533 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10534 unsigned XLen = Subtarget.getXLen(); 10535 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10536 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10537 if (XLen == 64) { 10538 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10539 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10540 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10541 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10542 } 10543 Type *Tys[] = {AlignedAddr->getType()}; 10544 Function *MaskedCmpXchg = 10545 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10546 Value *Result = Builder.CreateCall( 10547 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10548 if (XLen == 64) 10549 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10550 return Result; 10551 } 10552 10553 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10554 return false; 10555 } 10556 10557 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10558 EVT VT) const { 10559 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10560 return false; 10561 10562 switch (FPVT.getSimpleVT().SimpleTy) { 10563 case MVT::f16: 10564 return Subtarget.hasStdExtZfh(); 10565 case MVT::f32: 10566 return Subtarget.hasStdExtF(); 10567 case MVT::f64: 10568 return Subtarget.hasStdExtD(); 10569 default: 10570 return false; 10571 } 10572 } 10573 10574 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10575 // If we are using the small code model, we can reduce size of jump table 10576 // entry to 4 bytes. 10577 if (Subtarget.is64Bit() && !isPositionIndependent() && 10578 getTargetMachine().getCodeModel() == CodeModel::Small) { 10579 return MachineJumpTableInfo::EK_Custom32; 10580 } 10581 return TargetLowering::getJumpTableEncoding(); 10582 } 10583 10584 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10585 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10586 unsigned uid, MCContext &Ctx) const { 10587 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10588 getTargetMachine().getCodeModel() == CodeModel::Small); 10589 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10590 } 10591 10592 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10593 EVT VT) const { 10594 VT = VT.getScalarType(); 10595 10596 if (!VT.isSimple()) 10597 return false; 10598 10599 switch (VT.getSimpleVT().SimpleTy) { 10600 case MVT::f16: 10601 return Subtarget.hasStdExtZfh(); 10602 case MVT::f32: 10603 return Subtarget.hasStdExtF(); 10604 case MVT::f64: 10605 return Subtarget.hasStdExtD(); 10606 default: 10607 break; 10608 } 10609 10610 return false; 10611 } 10612 10613 Register RISCVTargetLowering::getExceptionPointerRegister( 10614 const Constant *PersonalityFn) const { 10615 return RISCV::X10; 10616 } 10617 10618 Register RISCVTargetLowering::getExceptionSelectorRegister( 10619 const Constant *PersonalityFn) const { 10620 return RISCV::X11; 10621 } 10622 10623 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10624 // Return false to suppress the unnecessary extensions if the LibCall 10625 // arguments or return value is f32 type for LP64 ABI. 10626 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10627 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10628 return false; 10629 10630 return true; 10631 } 10632 10633 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10634 if (Subtarget.is64Bit() && Type == MVT::i32) 10635 return true; 10636 10637 return IsSigned; 10638 } 10639 10640 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10641 SDValue C) const { 10642 // Check integral scalar types. 10643 if (VT.isScalarInteger()) { 10644 // Omit the optimization if the sub target has the M extension and the data 10645 // size exceeds XLen. 10646 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10647 return false; 10648 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10649 // Break the MUL to a SLLI and an ADD/SUB. 10650 const APInt &Imm = ConstNode->getAPIntValue(); 10651 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10652 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10653 return true; 10654 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10655 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10656 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10657 (Imm - 8).isPowerOf2())) 10658 return true; 10659 // Omit the following optimization if the sub target has the M extension 10660 // and the data size >= XLen. 10661 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10662 return false; 10663 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10664 // a pair of LUI/ADDI. 10665 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10666 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10667 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10668 (1 - ImmS).isPowerOf2()) 10669 return true; 10670 } 10671 } 10672 } 10673 10674 return false; 10675 } 10676 10677 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10678 const SDValue &AddNode, const SDValue &ConstNode) const { 10679 // Let the DAGCombiner decide for vectors. 10680 EVT VT = AddNode.getValueType(); 10681 if (VT.isVector()) 10682 return true; 10683 10684 // Let the DAGCombiner decide for larger types. 10685 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10686 return true; 10687 10688 // It is worse if c1 is simm12 while c1*c2 is not. 10689 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10690 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10691 const APInt &C1 = C1Node->getAPIntValue(); 10692 const APInt &C2 = C2Node->getAPIntValue(); 10693 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10694 return false; 10695 10696 // Default to true and let the DAGCombiner decide. 10697 return true; 10698 } 10699 10700 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10701 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10702 bool *Fast) const { 10703 if (!VT.isVector()) 10704 return false; 10705 10706 EVT ElemVT = VT.getVectorElementType(); 10707 if (Alignment >= ElemVT.getStoreSize()) { 10708 if (Fast) 10709 *Fast = true; 10710 return true; 10711 } 10712 10713 return false; 10714 } 10715 10716 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10717 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10718 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10719 bool IsABIRegCopy = CC.hasValue(); 10720 EVT ValueVT = Val.getValueType(); 10721 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10722 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10723 // and cast to f32. 10724 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10725 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10726 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10727 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10728 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10729 Parts[0] = Val; 10730 return true; 10731 } 10732 10733 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10734 LLVMContext &Context = *DAG.getContext(); 10735 EVT ValueEltVT = ValueVT.getVectorElementType(); 10736 EVT PartEltVT = PartVT.getVectorElementType(); 10737 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10738 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10739 if (PartVTBitSize % ValueVTBitSize == 0) { 10740 assert(PartVTBitSize >= ValueVTBitSize); 10741 // If the element types are different, bitcast to the same element type of 10742 // PartVT first. 10743 // Give an example here, we want copy a <vscale x 1 x i8> value to 10744 // <vscale x 4 x i16>. 10745 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10746 // subvector, then we can bitcast to <vscale x 4 x i16>. 10747 if (ValueEltVT != PartEltVT) { 10748 if (PartVTBitSize > ValueVTBitSize) { 10749 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10750 assert(Count != 0 && "The number of element should not be zero."); 10751 EVT SameEltTypeVT = 10752 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10753 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10754 DAG.getUNDEF(SameEltTypeVT), Val, 10755 DAG.getVectorIdxConstant(0, DL)); 10756 } 10757 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10758 } else { 10759 Val = 10760 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10761 Val, DAG.getVectorIdxConstant(0, DL)); 10762 } 10763 Parts[0] = Val; 10764 return true; 10765 } 10766 } 10767 return false; 10768 } 10769 10770 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10771 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10772 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10773 bool IsABIRegCopy = CC.hasValue(); 10774 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10775 SDValue Val = Parts[0]; 10776 10777 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10778 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10779 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10780 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10781 return Val; 10782 } 10783 10784 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10785 LLVMContext &Context = *DAG.getContext(); 10786 SDValue Val = Parts[0]; 10787 EVT ValueEltVT = ValueVT.getVectorElementType(); 10788 EVT PartEltVT = PartVT.getVectorElementType(); 10789 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10790 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10791 if (PartVTBitSize % ValueVTBitSize == 0) { 10792 assert(PartVTBitSize >= ValueVTBitSize); 10793 EVT SameEltTypeVT = ValueVT; 10794 // If the element types are different, convert it to the same element type 10795 // of PartVT. 10796 // Give an example here, we want copy a <vscale x 1 x i8> value from 10797 // <vscale x 4 x i16>. 10798 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10799 // then we can extract <vscale x 1 x i8>. 10800 if (ValueEltVT != PartEltVT) { 10801 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10802 assert(Count != 0 && "The number of element should not be zero."); 10803 SameEltTypeVT = 10804 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10805 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10806 } 10807 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10808 DAG.getVectorIdxConstant(0, DL)); 10809 return Val; 10810 } 10811 } 10812 return SDValue(); 10813 } 10814 10815 SDValue 10816 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10817 SelectionDAG &DAG, 10818 SmallVectorImpl<SDNode *> &Created) const { 10819 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10820 if (isIntDivCheap(N->getValueType(0), Attr)) 10821 return SDValue(N, 0); // Lower SDIV as SDIV 10822 10823 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10824 "Unexpected divisor!"); 10825 10826 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10827 if (!Subtarget.hasStdExtZbt()) 10828 return SDValue(); 10829 10830 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10831 // Besides, more critical path instructions will be generated when dividing 10832 // by 2. So we keep using the original DAGs for these cases. 10833 unsigned Lg2 = Divisor.countTrailingZeros(); 10834 if (Lg2 == 1 || Lg2 >= 12) 10835 return SDValue(); 10836 10837 // fold (sdiv X, pow2) 10838 EVT VT = N->getValueType(0); 10839 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10840 return SDValue(); 10841 10842 SDLoc DL(N); 10843 SDValue N0 = N->getOperand(0); 10844 SDValue Zero = DAG.getConstant(0, DL, VT); 10845 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10846 10847 // Add (N0 < 0) ? Pow2 - 1 : 0; 10848 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10849 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10850 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10851 10852 Created.push_back(Cmp.getNode()); 10853 Created.push_back(Add.getNode()); 10854 Created.push_back(Sel.getNode()); 10855 10856 // Divide by pow2. 10857 SDValue SRA = 10858 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10859 10860 // If we're dividing by a positive value, we're done. Otherwise, we must 10861 // negate the result. 10862 if (Divisor.isNonNegative()) 10863 return SRA; 10864 10865 Created.push_back(SRA.getNode()); 10866 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10867 } 10868 10869 #define GET_REGISTER_MATCHER 10870 #include "RISCVGenAsmMatcher.inc" 10871 10872 Register 10873 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10874 const MachineFunction &MF) const { 10875 Register Reg = MatchRegisterAltName(RegName); 10876 if (Reg == RISCV::NoRegister) 10877 Reg = MatchRegisterName(RegName); 10878 if (Reg == RISCV::NoRegister) 10879 report_fatal_error( 10880 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10881 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10882 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10883 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10884 StringRef(RegName) + "\".")); 10885 return Reg; 10886 } 10887 10888 namespace llvm { 10889 namespace RISCVVIntrinsicsTable { 10890 10891 #define GET_RISCVVIntrinsicsTable_IMPL 10892 #include "RISCVGenSearchableTables.inc" 10893 10894 } // namespace RISCVVIntrinsicsTable 10895 10896 } // namespace llvm 10897