1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 256 // BSWAP i8 doesn't exist. 257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 259 260 if (Subtarget.is64Bit()) { 261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 262 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 263 } 264 } else { 265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 266 // pattern match it directly in isel. 267 setOperationAction(ISD::BSWAP, XLenVT, 268 Subtarget.hasStdExtZbb() ? Legal : Expand); 269 } 270 271 if (Subtarget.hasStdExtZbb()) { 272 setOperationAction(ISD::SMIN, XLenVT, Legal); 273 setOperationAction(ISD::SMAX, XLenVT, Legal); 274 setOperationAction(ISD::UMIN, XLenVT, Legal); 275 setOperationAction(ISD::UMAX, XLenVT, Legal); 276 277 if (Subtarget.is64Bit()) { 278 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 280 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 282 } 283 } else { 284 setOperationAction(ISD::CTTZ, XLenVT, Expand); 285 setOperationAction(ISD::CTLZ, XLenVT, Expand); 286 setOperationAction(ISD::CTPOP, XLenVT, Expand); 287 } 288 289 if (Subtarget.hasStdExtZbt()) { 290 setOperationAction(ISD::FSHL, XLenVT, Custom); 291 setOperationAction(ISD::FSHR, XLenVT, Custom); 292 setOperationAction(ISD::SELECT, XLenVT, Legal); 293 294 if (Subtarget.is64Bit()) { 295 setOperationAction(ISD::FSHL, MVT::i32, Custom); 296 setOperationAction(ISD::FSHR, MVT::i32, Custom); 297 } 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 ISD::CondCode FPCCToExpand[] = { 303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 306 307 ISD::NodeType FPOpToExpand[] = { 308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 309 ISD::FP_TO_FP16}; 310 311 if (Subtarget.hasStdExtZfh()) 312 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 313 314 if (Subtarget.hasStdExtZfh()) { 315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 317 setOperationAction(ISD::LRINT, MVT::f16, Legal); 318 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 319 setOperationAction(ISD::LROUND, MVT::f16, Legal); 320 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 321 for (auto CC : FPCCToExpand) 322 setCondCodeAction(CC, MVT::f16, Expand); 323 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 324 setOperationAction(ISD::SELECT, MVT::f16, Custom); 325 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 326 for (auto Op : FPOpToExpand) 327 setOperationAction(Op, MVT::f16, Expand); 328 } 329 330 if (Subtarget.hasStdExtF()) { 331 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 332 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 333 setOperationAction(ISD::LRINT, MVT::f32, Legal); 334 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 335 setOperationAction(ISD::LROUND, MVT::f32, Legal); 336 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 337 for (auto CC : FPCCToExpand) 338 setCondCodeAction(CC, MVT::f32, Expand); 339 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT, MVT::f32, Custom); 341 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 342 for (auto Op : FPOpToExpand) 343 setOperationAction(Op, MVT::f32, Expand); 344 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 345 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 346 } 347 348 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 349 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 350 351 if (Subtarget.hasStdExtD()) { 352 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 353 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 354 setOperationAction(ISD::LRINT, MVT::f64, Legal); 355 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 356 setOperationAction(ISD::LROUND, MVT::f64, Legal); 357 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 358 for (auto CC : FPCCToExpand) 359 setCondCodeAction(CC, MVT::f64, Expand); 360 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 361 setOperationAction(ISD::SELECT, MVT::f64, Custom); 362 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 363 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 364 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 365 for (auto Op : FPOpToExpand) 366 setOperationAction(Op, MVT::f64, Expand); 367 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 368 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 369 } 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 373 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 374 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 375 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 376 } 377 378 if (Subtarget.hasStdExtF()) { 379 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 380 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 381 } 382 383 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 384 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 385 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 386 setOperationAction(ISD::JumpTable, XLenVT, Custom); 387 388 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 389 390 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 391 // Unfortunately this can't be determined just from the ISA naming string. 392 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 393 Subtarget.is64Bit() ? Legal : Custom); 394 395 setOperationAction(ISD::TRAP, MVT::Other, Legal); 396 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 397 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 398 if (Subtarget.is64Bit()) 399 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 400 401 if (Subtarget.hasStdExtA()) { 402 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 403 setMinCmpXchgSizeInBits(32); 404 } else { 405 setMaxAtomicSizeInBitsSupported(0); 406 } 407 408 setBooleanContents(ZeroOrOneBooleanContent); 409 410 if (Subtarget.hasStdExtV()) { 411 setBooleanVectorContents(ZeroOrOneBooleanContent); 412 413 setOperationAction(ISD::VSCALE, XLenVT, Custom); 414 415 // RVV intrinsics may have illegal operands. 416 // We also need to custom legalize vmv.x.s. 417 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 418 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 419 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 420 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 421 if (Subtarget.is64Bit()) { 422 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 423 } else { 424 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 425 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 426 } 427 428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 429 430 static unsigned IntegerVPOps[] = { 431 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 432 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 433 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 434 435 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 436 ISD::VP_FMUL, ISD::VP_FDIV}; 437 438 if (!Subtarget.is64Bit()) { 439 // We must custom-lower certain vXi64 operations on RV32 due to the vector 440 // element type being illegal. 441 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 442 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 443 444 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 445 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 446 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 447 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 448 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 449 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 450 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 451 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 452 } 453 454 for (MVT VT : BoolVecVTs) { 455 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 456 457 // Mask VTs are custom-expanded into a series of standard nodes 458 setOperationAction(ISD::TRUNCATE, VT, Custom); 459 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 460 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 461 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 462 463 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 465 466 setOperationAction(ISD::SELECT, VT, Custom); 467 setOperationAction(ISD::SELECT_CC, VT, Expand); 468 setOperationAction(ISD::VSELECT, VT, Expand); 469 470 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 471 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 472 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 473 474 // RVV has native int->float & float->int conversions where the 475 // element type sizes are within one power-of-two of each other. Any 476 // wider distances between type sizes have to be lowered as sequences 477 // which progressively narrow the gap in stages. 478 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 479 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 480 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 481 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 482 483 // Expand all extending loads to types larger than this, and truncating 484 // stores from types larger than this. 485 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 486 setTruncStoreAction(OtherVT, VT, Expand); 487 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 488 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 489 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 490 } 491 } 492 493 for (MVT VT : IntVecVTs) { 494 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 495 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 496 497 setOperationAction(ISD::SMIN, VT, Legal); 498 setOperationAction(ISD::SMAX, VT, Legal); 499 setOperationAction(ISD::UMIN, VT, Legal); 500 setOperationAction(ISD::UMAX, VT, Legal); 501 502 setOperationAction(ISD::ROTL, VT, Expand); 503 setOperationAction(ISD::ROTR, VT, Expand); 504 505 // Custom-lower extensions and truncations from/to mask types. 506 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 507 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 508 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 509 510 // RVV has native int->float & float->int conversions where the 511 // element type sizes are within one power-of-two of each other. Any 512 // wider distances between type sizes have to be lowered as sequences 513 // which progressively narrow the gap in stages. 514 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 516 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 517 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 518 519 setOperationAction(ISD::SADDSAT, VT, Legal); 520 setOperationAction(ISD::UADDSAT, VT, Legal); 521 setOperationAction(ISD::SSUBSAT, VT, Legal); 522 setOperationAction(ISD::USUBSAT, VT, Legal); 523 524 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 525 // nodes which truncate by one power of two at a time. 526 setOperationAction(ISD::TRUNCATE, VT, Custom); 527 528 // Custom-lower insert/extract operations to simplify patterns. 529 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 530 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 531 532 // Custom-lower reduction operations to set up the corresponding custom 533 // nodes' operands. 534 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 535 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 536 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 537 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 538 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 539 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 540 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 541 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 542 543 for (unsigned VPOpc : IntegerVPOps) 544 setOperationAction(VPOpc, VT, Custom); 545 546 setOperationAction(ISD::LOAD, VT, Custom); 547 setOperationAction(ISD::STORE, VT, Custom); 548 549 setOperationAction(ISD::MLOAD, VT, Custom); 550 setOperationAction(ISD::MSTORE, VT, Custom); 551 setOperationAction(ISD::MGATHER, VT, Custom); 552 setOperationAction(ISD::MSCATTER, VT, Custom); 553 554 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 555 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 556 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 557 558 setOperationAction(ISD::SELECT, VT, Custom); 559 setOperationAction(ISD::SELECT_CC, VT, Expand); 560 561 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 562 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 563 564 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 565 setTruncStoreAction(VT, OtherVT, Expand); 566 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 567 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 568 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 569 } 570 } 571 572 // Expand various CCs to best match the RVV ISA, which natively supports UNE 573 // but no other unordered comparisons, and supports all ordered comparisons 574 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 575 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 576 // and we pattern-match those back to the "original", swapping operands once 577 // more. This way we catch both operations and both "vf" and "fv" forms with 578 // fewer patterns. 579 ISD::CondCode VFPCCToExpand[] = { 580 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 581 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 582 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 583 }; 584 585 // Sets common operation actions on RVV floating-point vector types. 586 const auto SetCommonVFPActions = [&](MVT VT) { 587 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 588 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 589 // sizes are within one power-of-two of each other. Therefore conversions 590 // between vXf16 and vXf64 must be lowered as sequences which convert via 591 // vXf32. 592 setOperationAction(ISD::FP_ROUND, VT, Custom); 593 setOperationAction(ISD::FP_EXTEND, VT, Custom); 594 // Custom-lower insert/extract operations to simplify patterns. 595 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 596 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 597 // Expand various condition codes (explained above). 598 for (auto CC : VFPCCToExpand) 599 setCondCodeAction(CC, VT, Expand); 600 601 setOperationAction(ISD::FMINNUM, VT, Legal); 602 setOperationAction(ISD::FMAXNUM, VT, Legal); 603 604 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 605 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 606 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 607 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 608 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 609 610 setOperationAction(ISD::LOAD, VT, Custom); 611 setOperationAction(ISD::STORE, VT, Custom); 612 613 setOperationAction(ISD::MLOAD, VT, Custom); 614 setOperationAction(ISD::MSTORE, VT, Custom); 615 setOperationAction(ISD::MGATHER, VT, Custom); 616 setOperationAction(ISD::MSCATTER, VT, Custom); 617 618 setOperationAction(ISD::SELECT, VT, Custom); 619 setOperationAction(ISD::SELECT_CC, VT, Expand); 620 621 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 622 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 623 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 624 625 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 626 627 for (unsigned VPOpc : FloatingPointVPOps) 628 setOperationAction(VPOpc, VT, Custom); 629 }; 630 631 // Sets common extload/truncstore actions on RVV floating-point vector 632 // types. 633 const auto SetCommonVFPExtLoadTruncStoreActions = 634 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 635 for (auto SmallVT : SmallerVTs) { 636 setTruncStoreAction(VT, SmallVT, Expand); 637 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 638 } 639 }; 640 641 if (Subtarget.hasStdExtZfh()) 642 for (MVT VT : F16VecVTs) 643 SetCommonVFPActions(VT); 644 645 for (MVT VT : F32VecVTs) { 646 if (Subtarget.hasStdExtF()) 647 SetCommonVFPActions(VT); 648 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 649 } 650 651 for (MVT VT : F64VecVTs) { 652 if (Subtarget.hasStdExtD()) 653 SetCommonVFPActions(VT); 654 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 655 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 656 } 657 658 if (Subtarget.useRVVForFixedLengthVectors()) { 659 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 660 if (!useRVVForFixedLengthVectorVT(VT)) 661 continue; 662 663 // By default everything must be expanded. 664 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 665 setOperationAction(Op, VT, Expand); 666 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 667 setTruncStoreAction(VT, OtherVT, Expand); 668 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 669 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 670 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 671 } 672 673 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 674 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 675 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 676 677 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 678 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 679 680 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 681 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 682 683 setOperationAction(ISD::LOAD, VT, Custom); 684 setOperationAction(ISD::STORE, VT, Custom); 685 686 setOperationAction(ISD::SETCC, VT, Custom); 687 688 setOperationAction(ISD::SELECT, VT, Custom); 689 690 setOperationAction(ISD::TRUNCATE, VT, Custom); 691 692 setOperationAction(ISD::BITCAST, VT, Custom); 693 694 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 695 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 696 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 697 698 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 699 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 700 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 701 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 702 703 // Operations below are different for between masks and other vectors. 704 if (VT.getVectorElementType() == MVT::i1) { 705 setOperationAction(ISD::AND, VT, Custom); 706 setOperationAction(ISD::OR, VT, Custom); 707 setOperationAction(ISD::XOR, VT, Custom); 708 continue; 709 } 710 711 // Use SPLAT_VECTOR to prevent type legalization from destroying the 712 // splats when type legalizing i64 scalar on RV32. 713 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 714 // improvements first. 715 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 716 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 717 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 718 } 719 720 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 721 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 722 723 setOperationAction(ISD::MLOAD, VT, Custom); 724 setOperationAction(ISD::MSTORE, VT, Custom); 725 setOperationAction(ISD::MGATHER, VT, Custom); 726 setOperationAction(ISD::MSCATTER, VT, Custom); 727 setOperationAction(ISD::ADD, VT, Custom); 728 setOperationAction(ISD::MUL, VT, Custom); 729 setOperationAction(ISD::SUB, VT, Custom); 730 setOperationAction(ISD::AND, VT, Custom); 731 setOperationAction(ISD::OR, VT, Custom); 732 setOperationAction(ISD::XOR, VT, Custom); 733 setOperationAction(ISD::SDIV, VT, Custom); 734 setOperationAction(ISD::SREM, VT, Custom); 735 setOperationAction(ISD::UDIV, VT, Custom); 736 setOperationAction(ISD::UREM, VT, Custom); 737 setOperationAction(ISD::SHL, VT, Custom); 738 setOperationAction(ISD::SRA, VT, Custom); 739 setOperationAction(ISD::SRL, VT, Custom); 740 741 setOperationAction(ISD::SMIN, VT, Custom); 742 setOperationAction(ISD::SMAX, VT, Custom); 743 setOperationAction(ISD::UMIN, VT, Custom); 744 setOperationAction(ISD::UMAX, VT, Custom); 745 setOperationAction(ISD::ABS, VT, Custom); 746 747 setOperationAction(ISD::MULHS, VT, Custom); 748 setOperationAction(ISD::MULHU, VT, Custom); 749 750 setOperationAction(ISD::SADDSAT, VT, Custom); 751 setOperationAction(ISD::UADDSAT, VT, Custom); 752 setOperationAction(ISD::SSUBSAT, VT, Custom); 753 setOperationAction(ISD::USUBSAT, VT, Custom); 754 755 setOperationAction(ISD::VSELECT, VT, Custom); 756 setOperationAction(ISD::SELECT_CC, VT, Expand); 757 758 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 759 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 760 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 761 762 // Custom-lower reduction operations to set up the corresponding custom 763 // nodes' operands. 764 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 765 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 766 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 767 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 768 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 769 770 for (unsigned VPOpc : IntegerVPOps) 771 setOperationAction(VPOpc, VT, Custom); 772 } 773 774 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 775 if (!useRVVForFixedLengthVectorVT(VT)) 776 continue; 777 778 // By default everything must be expanded. 779 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 780 setOperationAction(Op, VT, Expand); 781 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 782 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 783 setTruncStoreAction(VT, OtherVT, Expand); 784 } 785 786 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 787 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 788 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 789 790 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 791 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 792 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 793 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 794 795 setOperationAction(ISD::LOAD, VT, Custom); 796 setOperationAction(ISD::STORE, VT, Custom); 797 setOperationAction(ISD::MLOAD, VT, Custom); 798 setOperationAction(ISD::MSTORE, VT, Custom); 799 setOperationAction(ISD::MGATHER, VT, Custom); 800 setOperationAction(ISD::MSCATTER, VT, Custom); 801 setOperationAction(ISD::FADD, VT, Custom); 802 setOperationAction(ISD::FSUB, VT, Custom); 803 setOperationAction(ISD::FMUL, VT, Custom); 804 setOperationAction(ISD::FDIV, VT, Custom); 805 setOperationAction(ISD::FNEG, VT, Custom); 806 setOperationAction(ISD::FABS, VT, Custom); 807 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 808 setOperationAction(ISD::FSQRT, VT, Custom); 809 setOperationAction(ISD::FMA, VT, Custom); 810 setOperationAction(ISD::FMINNUM, VT, Custom); 811 setOperationAction(ISD::FMAXNUM, VT, Custom); 812 813 setOperationAction(ISD::FP_ROUND, VT, Custom); 814 setOperationAction(ISD::FP_EXTEND, VT, Custom); 815 816 for (auto CC : VFPCCToExpand) 817 setCondCodeAction(CC, VT, Expand); 818 819 setOperationAction(ISD::VSELECT, VT, Custom); 820 setOperationAction(ISD::SELECT, VT, Custom); 821 setOperationAction(ISD::SELECT_CC, VT, Expand); 822 823 setOperationAction(ISD::BITCAST, VT, Custom); 824 825 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 826 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 827 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 828 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 829 830 for (unsigned VPOpc : FloatingPointVPOps) 831 setOperationAction(VPOpc, VT, Custom); 832 } 833 834 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 835 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 836 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 837 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 838 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 839 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 840 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 841 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 842 } 843 } 844 845 // Function alignments. 846 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 847 setMinFunctionAlignment(FunctionAlignment); 848 setPrefFunctionAlignment(FunctionAlignment); 849 850 setMinimumJumpTableEntries(5); 851 852 // Jumps are expensive, compared to logic 853 setJumpIsExpensive(); 854 855 // We can use any register for comparisons 856 setHasMultipleConditionRegisters(); 857 858 setTargetDAGCombine(ISD::AND); 859 setTargetDAGCombine(ISD::OR); 860 setTargetDAGCombine(ISD::XOR); 861 setTargetDAGCombine(ISD::ANY_EXTEND); 862 setTargetDAGCombine(ISD::ZERO_EXTEND); 863 if (Subtarget.hasStdExtV()) { 864 setTargetDAGCombine(ISD::FCOPYSIGN); 865 setTargetDAGCombine(ISD::MGATHER); 866 setTargetDAGCombine(ISD::MSCATTER); 867 setTargetDAGCombine(ISD::SRA); 868 setTargetDAGCombine(ISD::SRL); 869 setTargetDAGCombine(ISD::SHL); 870 } 871 } 872 873 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 874 LLVMContext &Context, 875 EVT VT) const { 876 if (!VT.isVector()) 877 return getPointerTy(DL); 878 if (Subtarget.hasStdExtV() && 879 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 880 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 881 return VT.changeVectorElementTypeToInteger(); 882 } 883 884 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 885 return Subtarget.getXLenVT(); 886 } 887 888 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 889 const CallInst &I, 890 MachineFunction &MF, 891 unsigned Intrinsic) const { 892 switch (Intrinsic) { 893 default: 894 return false; 895 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 896 case Intrinsic::riscv_masked_atomicrmw_add_i32: 897 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 898 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 899 case Intrinsic::riscv_masked_atomicrmw_max_i32: 900 case Intrinsic::riscv_masked_atomicrmw_min_i32: 901 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 902 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 903 case Intrinsic::riscv_masked_cmpxchg_i32: { 904 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 905 Info.opc = ISD::INTRINSIC_W_CHAIN; 906 Info.memVT = MVT::getVT(PtrTy->getElementType()); 907 Info.ptrVal = I.getArgOperand(0); 908 Info.offset = 0; 909 Info.align = Align(4); 910 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 911 MachineMemOperand::MOVolatile; 912 return true; 913 } 914 } 915 } 916 917 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 918 const AddrMode &AM, Type *Ty, 919 unsigned AS, 920 Instruction *I) const { 921 // No global is ever allowed as a base. 922 if (AM.BaseGV) 923 return false; 924 925 // Require a 12-bit signed offset. 926 if (!isInt<12>(AM.BaseOffs)) 927 return false; 928 929 switch (AM.Scale) { 930 case 0: // "r+i" or just "i", depending on HasBaseReg. 931 break; 932 case 1: 933 if (!AM.HasBaseReg) // allow "r+i". 934 break; 935 return false; // disallow "r+r" or "r+r+i". 936 default: 937 return false; 938 } 939 940 return true; 941 } 942 943 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 944 return isInt<12>(Imm); 945 } 946 947 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 948 return isInt<12>(Imm); 949 } 950 951 // On RV32, 64-bit integers are split into their high and low parts and held 952 // in two different registers, so the trunc is free since the low register can 953 // just be used. 954 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 955 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 956 return false; 957 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 958 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 959 return (SrcBits == 64 && DestBits == 32); 960 } 961 962 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 963 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 964 !SrcVT.isInteger() || !DstVT.isInteger()) 965 return false; 966 unsigned SrcBits = SrcVT.getSizeInBits(); 967 unsigned DestBits = DstVT.getSizeInBits(); 968 return (SrcBits == 64 && DestBits == 32); 969 } 970 971 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 972 // Zexts are free if they can be combined with a load. 973 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 974 EVT MemVT = LD->getMemoryVT(); 975 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 976 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 977 (LD->getExtensionType() == ISD::NON_EXTLOAD || 978 LD->getExtensionType() == ISD::ZEXTLOAD)) 979 return true; 980 } 981 982 return TargetLowering::isZExtFree(Val, VT2); 983 } 984 985 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 986 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 987 } 988 989 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 990 return Subtarget.hasStdExtZbb(); 991 } 992 993 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 994 return Subtarget.hasStdExtZbb(); 995 } 996 997 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 998 bool ForCodeSize) const { 999 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1000 return false; 1001 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1002 return false; 1003 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1004 return false; 1005 if (Imm.isNegZero()) 1006 return false; 1007 return Imm.isZero(); 1008 } 1009 1010 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1011 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1012 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1013 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1014 } 1015 1016 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1017 CallingConv::ID CC, 1018 EVT VT) const { 1019 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1020 // end up using a GPR but that will be decided based on ABI. 1021 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1022 return MVT::f32; 1023 1024 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1025 } 1026 1027 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1028 CallingConv::ID CC, 1029 EVT VT) const { 1030 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1031 // end up using a GPR but that will be decided based on ABI. 1032 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1033 return 1; 1034 1035 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1036 } 1037 1038 // Changes the condition code and swaps operands if necessary, so the SetCC 1039 // operation matches one of the comparisons supported directly by branches 1040 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1041 // with 1/-1. 1042 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1043 ISD::CondCode &CC, SelectionDAG &DAG) { 1044 // Convert X > -1 to X >= 0. 1045 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1046 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1047 CC = ISD::SETGE; 1048 return; 1049 } 1050 // Convert X < 1 to 0 >= X. 1051 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1052 RHS = LHS; 1053 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1054 CC = ISD::SETGE; 1055 return; 1056 } 1057 1058 switch (CC) { 1059 default: 1060 break; 1061 case ISD::SETGT: 1062 case ISD::SETLE: 1063 case ISD::SETUGT: 1064 case ISD::SETULE: 1065 CC = ISD::getSetCCSwappedOperands(CC); 1066 std::swap(LHS, RHS); 1067 break; 1068 } 1069 } 1070 1071 // Return the RISC-V branch opcode that matches the given DAG integer 1072 // condition code. The CondCode must be one of those supported by the RISC-V 1073 // ISA (see translateSetCCForBranch). 1074 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1075 switch (CC) { 1076 default: 1077 llvm_unreachable("Unsupported CondCode"); 1078 case ISD::SETEQ: 1079 return RISCV::BEQ; 1080 case ISD::SETNE: 1081 return RISCV::BNE; 1082 case ISD::SETLT: 1083 return RISCV::BLT; 1084 case ISD::SETGE: 1085 return RISCV::BGE; 1086 case ISD::SETULT: 1087 return RISCV::BLTU; 1088 case ISD::SETUGE: 1089 return RISCV::BGEU; 1090 } 1091 } 1092 1093 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1094 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1095 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1096 if (VT.getVectorElementType() == MVT::i1) 1097 KnownSize *= 8; 1098 1099 switch (KnownSize) { 1100 default: 1101 llvm_unreachable("Invalid LMUL."); 1102 case 8: 1103 return RISCVII::VLMUL::LMUL_F8; 1104 case 16: 1105 return RISCVII::VLMUL::LMUL_F4; 1106 case 32: 1107 return RISCVII::VLMUL::LMUL_F2; 1108 case 64: 1109 return RISCVII::VLMUL::LMUL_1; 1110 case 128: 1111 return RISCVII::VLMUL::LMUL_2; 1112 case 256: 1113 return RISCVII::VLMUL::LMUL_4; 1114 case 512: 1115 return RISCVII::VLMUL::LMUL_8; 1116 } 1117 } 1118 1119 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1120 switch (LMul) { 1121 default: 1122 llvm_unreachable("Invalid LMUL."); 1123 case RISCVII::VLMUL::LMUL_F8: 1124 case RISCVII::VLMUL::LMUL_F4: 1125 case RISCVII::VLMUL::LMUL_F2: 1126 case RISCVII::VLMUL::LMUL_1: 1127 return RISCV::VRRegClassID; 1128 case RISCVII::VLMUL::LMUL_2: 1129 return RISCV::VRM2RegClassID; 1130 case RISCVII::VLMUL::LMUL_4: 1131 return RISCV::VRM4RegClassID; 1132 case RISCVII::VLMUL::LMUL_8: 1133 return RISCV::VRM8RegClassID; 1134 } 1135 } 1136 1137 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1138 RISCVII::VLMUL LMUL = getLMUL(VT); 1139 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1140 LMUL == RISCVII::VLMUL::LMUL_F4 || 1141 LMUL == RISCVII::VLMUL::LMUL_F2 || 1142 LMUL == RISCVII::VLMUL::LMUL_1) { 1143 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1144 "Unexpected subreg numbering"); 1145 return RISCV::sub_vrm1_0 + Index; 1146 } 1147 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1148 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1149 "Unexpected subreg numbering"); 1150 return RISCV::sub_vrm2_0 + Index; 1151 } 1152 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1153 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1154 "Unexpected subreg numbering"); 1155 return RISCV::sub_vrm4_0 + Index; 1156 } 1157 llvm_unreachable("Invalid vector type."); 1158 } 1159 1160 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1161 if (VT.getVectorElementType() == MVT::i1) 1162 return RISCV::VRRegClassID; 1163 return getRegClassIDForLMUL(getLMUL(VT)); 1164 } 1165 1166 // Attempt to decompose a subvector insert/extract between VecVT and 1167 // SubVecVT via subregister indices. Returns the subregister index that 1168 // can perform the subvector insert/extract with the given element index, as 1169 // well as the index corresponding to any leftover subvectors that must be 1170 // further inserted/extracted within the register class for SubVecVT. 1171 std::pair<unsigned, unsigned> 1172 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1173 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1174 const RISCVRegisterInfo *TRI) { 1175 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1176 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1177 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1178 "Register classes not ordered"); 1179 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1180 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1181 // Try to compose a subregister index that takes us from the incoming 1182 // LMUL>1 register class down to the outgoing one. At each step we half 1183 // the LMUL: 1184 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1185 // Note that this is not guaranteed to find a subregister index, such as 1186 // when we are extracting from one VR type to another. 1187 unsigned SubRegIdx = RISCV::NoSubRegister; 1188 for (const unsigned RCID : 1189 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1190 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1191 VecVT = VecVT.getHalfNumVectorElementsVT(); 1192 bool IsHi = 1193 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1194 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1195 getSubregIndexByMVT(VecVT, IsHi)); 1196 if (IsHi) 1197 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1198 } 1199 return {SubRegIdx, InsertExtractIdx}; 1200 } 1201 1202 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1203 // stores for those types. 1204 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1205 return !Subtarget.useRVVForFixedLengthVectors() || 1206 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1207 } 1208 1209 static bool useRVVForFixedLengthVectorVT(MVT VT, 1210 const RISCVSubtarget &Subtarget) { 1211 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1212 if (!Subtarget.useRVVForFixedLengthVectors()) 1213 return false; 1214 1215 // We only support a set of vector types with a consistent maximum fixed size 1216 // across all supported vector element types to avoid legalization issues. 1217 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1218 // fixed-length vector type we support is 1024 bytes. 1219 if (VT.getFixedSizeInBits() > 1024 * 8) 1220 return false; 1221 1222 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1223 1224 // Don't use RVV for vectors we cannot scalarize if required. 1225 switch (VT.getVectorElementType().SimpleTy) { 1226 // i1 is supported but has different rules. 1227 default: 1228 return false; 1229 case MVT::i1: 1230 // Masks can only use a single register. 1231 if (VT.getVectorNumElements() > MinVLen) 1232 return false; 1233 MinVLen /= 8; 1234 break; 1235 case MVT::i8: 1236 case MVT::i16: 1237 case MVT::i32: 1238 case MVT::i64: 1239 break; 1240 case MVT::f16: 1241 if (!Subtarget.hasStdExtZfh()) 1242 return false; 1243 break; 1244 case MVT::f32: 1245 if (!Subtarget.hasStdExtF()) 1246 return false; 1247 break; 1248 case MVT::f64: 1249 if (!Subtarget.hasStdExtD()) 1250 return false; 1251 break; 1252 } 1253 1254 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1255 // Don't use RVV for types that don't fit. 1256 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1257 return false; 1258 1259 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1260 // the base fixed length RVV support in place. 1261 if (!VT.isPow2VectorType()) 1262 return false; 1263 1264 return true; 1265 } 1266 1267 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1268 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1269 } 1270 1271 // Return the largest legal scalable vector type that matches VT's element type. 1272 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1273 const RISCVSubtarget &Subtarget) { 1274 // This may be called before legal types are setup. 1275 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1276 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1277 "Expected legal fixed length vector!"); 1278 1279 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1280 1281 MVT EltVT = VT.getVectorElementType(); 1282 switch (EltVT.SimpleTy) { 1283 default: 1284 llvm_unreachable("unexpected element type for RVV container"); 1285 case MVT::i1: 1286 case MVT::i8: 1287 case MVT::i16: 1288 case MVT::i32: 1289 case MVT::i64: 1290 case MVT::f16: 1291 case MVT::f32: 1292 case MVT::f64: { 1293 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1294 // narrower types, but we can't have a fractional LMUL with demoninator less 1295 // than 64/SEW. 1296 unsigned NumElts = 1297 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1298 return MVT::getScalableVectorVT(EltVT, NumElts); 1299 } 1300 } 1301 } 1302 1303 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1304 const RISCVSubtarget &Subtarget) { 1305 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1306 Subtarget); 1307 } 1308 1309 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1310 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1311 } 1312 1313 // Grow V to consume an entire RVV register. 1314 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1315 const RISCVSubtarget &Subtarget) { 1316 assert(VT.isScalableVector() && 1317 "Expected to convert into a scalable vector!"); 1318 assert(V.getValueType().isFixedLengthVector() && 1319 "Expected a fixed length vector operand!"); 1320 SDLoc DL(V); 1321 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1322 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1323 } 1324 1325 // Shrink V so it's just big enough to maintain a VT's worth of data. 1326 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1327 const RISCVSubtarget &Subtarget) { 1328 assert(VT.isFixedLengthVector() && 1329 "Expected to convert into a fixed length vector!"); 1330 assert(V.getValueType().isScalableVector() && 1331 "Expected a scalable vector operand!"); 1332 SDLoc DL(V); 1333 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1334 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1335 } 1336 1337 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1338 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1339 // the vector type that it is contained in. 1340 static std::pair<SDValue, SDValue> 1341 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1342 const RISCVSubtarget &Subtarget) { 1343 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1344 MVT XLenVT = Subtarget.getXLenVT(); 1345 SDValue VL = VecVT.isFixedLengthVector() 1346 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1347 : DAG.getRegister(RISCV::X0, XLenVT); 1348 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1349 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1350 return {Mask, VL}; 1351 } 1352 1353 // As above but assuming the given type is a scalable vector type. 1354 static std::pair<SDValue, SDValue> 1355 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1356 const RISCVSubtarget &Subtarget) { 1357 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1358 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1359 } 1360 1361 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1362 // of either is (currently) supported. This can get us into an infinite loop 1363 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1364 // as a ..., etc. 1365 // Until either (or both) of these can reliably lower any node, reporting that 1366 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1367 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1368 // which is not desirable. 1369 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1370 EVT VT, unsigned DefinedValues) const { 1371 return false; 1372 } 1373 1374 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1375 // Only splats are currently supported. 1376 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1383 const RISCVSubtarget &Subtarget) { 1384 MVT VT = Op.getSimpleValueType(); 1385 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1386 1387 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1388 1389 SDLoc DL(Op); 1390 SDValue Mask, VL; 1391 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1392 1393 unsigned Opc = 1394 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1395 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1396 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1397 } 1398 1399 struct VIDSequence { 1400 int64_t Step; 1401 int64_t Addend; 1402 }; 1403 1404 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1405 // to the (non-zero) step S and start value X. This can be then lowered as the 1406 // RVV sequence (VID * S) + X, for example. 1407 // Note that this method will also match potentially unappealing index 1408 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1409 // determine whether this is worth generating code for. 1410 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1411 unsigned NumElts = Op.getNumOperands(); 1412 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1413 if (!Op.getValueType().isInteger()) 1414 return None; 1415 1416 Optional<int64_t> SeqStep, SeqAddend; 1417 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1418 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1419 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1420 // Assume undef elements match the sequence; we just have to be careful 1421 // when interpolating across them. 1422 if (Op.getOperand(Idx).isUndef()) 1423 continue; 1424 // The BUILD_VECTOR must be all constants. 1425 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1426 return None; 1427 1428 uint64_t Val = Op.getConstantOperandVal(Idx) & 1429 maskTrailingOnes<uint64_t>(EltSizeInBits); 1430 1431 if (PrevElt) { 1432 // Calculate the step since the last non-undef element, and ensure 1433 // it's consistent across the entire sequence. 1434 int64_t Diff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1435 // The difference must cleanly divide the element span. 1436 if (Diff % (Idx - PrevElt->second) != 0) 1437 return None; 1438 int64_t Step = Diff / (Idx - PrevElt->second); 1439 // A zero step indicates we're either a not an index sequence, or we 1440 // have a fractional step. This must be handled by a more complex 1441 // pattern recognition (undefs complicate things here). 1442 if (Step == 0) 1443 return None; 1444 if (!SeqStep) 1445 SeqStep = Step; 1446 else if (Step != SeqStep) 1447 return None; 1448 } 1449 1450 // Record and/or check any addend. 1451 if (SeqStep) { 1452 int64_t Addend = 1453 SignExtend64(Val - (Idx * (uint64_t)*SeqStep), EltSizeInBits); 1454 if (!SeqAddend) 1455 SeqAddend = Addend; 1456 else if (SeqAddend != Addend) 1457 return None; 1458 } 1459 1460 // Record this non-undef element for later. 1461 PrevElt = std::make_pair(Val, Idx); 1462 } 1463 // We need to have logged both a step and an addend for this to count as 1464 // a legal index sequence. 1465 if (!SeqStep || !SeqAddend) 1466 return None; 1467 1468 return VIDSequence{*SeqStep, *SeqAddend}; 1469 } 1470 1471 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1472 const RISCVSubtarget &Subtarget) { 1473 MVT VT = Op.getSimpleValueType(); 1474 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1475 1476 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1477 1478 SDLoc DL(Op); 1479 SDValue Mask, VL; 1480 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1481 1482 MVT XLenVT = Subtarget.getXLenVT(); 1483 unsigned NumElts = Op.getNumOperands(); 1484 1485 if (VT.getVectorElementType() == MVT::i1) { 1486 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1487 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1488 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1489 } 1490 1491 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1492 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1493 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1494 } 1495 1496 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1497 // scalar integer chunks whose bit-width depends on the number of mask 1498 // bits and XLEN. 1499 // First, determine the most appropriate scalar integer type to use. This 1500 // is at most XLenVT, but may be shrunk to a smaller vector element type 1501 // according to the size of the final vector - use i8 chunks rather than 1502 // XLenVT if we're producing a v8i1. This results in more consistent 1503 // codegen across RV32 and RV64. 1504 unsigned NumViaIntegerBits = 1505 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1506 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1507 // If we have to use more than one INSERT_VECTOR_ELT then this 1508 // optimization is likely to increase code size; avoid peforming it in 1509 // such a case. We can use a load from a constant pool in this case. 1510 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1511 return SDValue(); 1512 // Now we can create our integer vector type. Note that it may be larger 1513 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1514 MVT IntegerViaVecVT = 1515 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1516 divideCeil(NumElts, NumViaIntegerBits)); 1517 1518 uint64_t Bits = 0; 1519 unsigned BitPos = 0, IntegerEltIdx = 0; 1520 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1521 1522 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1523 // Once we accumulate enough bits to fill our scalar type, insert into 1524 // our vector and clear our accumulated data. 1525 if (I != 0 && I % NumViaIntegerBits == 0) { 1526 if (NumViaIntegerBits <= 32) 1527 Bits = SignExtend64(Bits, 32); 1528 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1529 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1530 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1531 Bits = 0; 1532 BitPos = 0; 1533 IntegerEltIdx++; 1534 } 1535 SDValue V = Op.getOperand(I); 1536 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1537 Bits |= ((uint64_t)BitValue << BitPos); 1538 } 1539 1540 // Insert the (remaining) scalar value into position in our integer 1541 // vector type. 1542 if (NumViaIntegerBits <= 32) 1543 Bits = SignExtend64(Bits, 32); 1544 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1545 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1546 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1547 1548 if (NumElts < NumViaIntegerBits) { 1549 // If we're producing a smaller vector than our minimum legal integer 1550 // type, bitcast to the equivalent (known-legal) mask type, and extract 1551 // our final mask. 1552 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1553 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1554 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1555 DAG.getConstant(0, DL, XLenVT)); 1556 } else { 1557 // Else we must have produced an integer type with the same size as the 1558 // mask type; bitcast for the final result. 1559 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1560 Vec = DAG.getBitcast(VT, Vec); 1561 } 1562 1563 return Vec; 1564 } 1565 1566 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1567 // vector type, we have a legal equivalently-sized i8 type, so we can use 1568 // that. 1569 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1570 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1571 1572 SDValue WideVec; 1573 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1574 // For a splat, perform a scalar truncate before creating the wider 1575 // vector. 1576 assert(Splat.getValueType() == XLenVT && 1577 "Unexpected type for i1 splat value"); 1578 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1579 DAG.getConstant(1, DL, XLenVT)); 1580 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1581 } else { 1582 SmallVector<SDValue, 8> Ops(Op->op_values()); 1583 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1584 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1585 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1586 } 1587 1588 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1589 } 1590 1591 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1592 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1593 : RISCVISD::VMV_V_X_VL; 1594 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1595 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1596 } 1597 1598 // Try and match index sequences, which we can lower to the vid instruction 1599 // with optional modifications. An all-undef vector is matched by 1600 // getSplatValue, above. 1601 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1602 int64_t Step = SimpleVID->Step; 1603 int64_t Addend = SimpleVID->Addend; 1604 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1605 // threshold since it's the immediate value many RVV instructions accept. 1606 if (isInt<5>(Step) && isInt<5>(Addend)) { 1607 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1608 // Convert right out of the scalable type so we can use standard ISD 1609 // nodes for the rest of the computation. If we used scalable types with 1610 // these, we'd lose the fixed-length vector info and generate worse 1611 // vsetvli code. 1612 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1613 assert(Step != 0 && "Invalid step"); 1614 bool Negate = false; 1615 if (Step != 1) { 1616 int64_t SplatStepVal = Step; 1617 unsigned Opcode = ISD::MUL; 1618 if (isPowerOf2_64(std::abs(Step))) { 1619 Negate = Step < 0; 1620 Opcode = ISD::SHL; 1621 SplatStepVal = Log2_64(std::abs(Step)); 1622 } 1623 SDValue SplatStep = DAG.getSplatVector( 1624 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1625 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1626 } 1627 if (Addend != 0 || Negate) { 1628 SDValue SplatAddend = 1629 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1630 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1631 } 1632 return VID; 1633 } 1634 } 1635 1636 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1637 // when re-interpreted as a vector with a larger element type. For example, 1638 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1639 // could be instead splat as 1640 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1641 // TODO: This optimization could also work on non-constant splats, but it 1642 // would require bit-manipulation instructions to construct the splat value. 1643 SmallVector<SDValue> Sequence; 1644 unsigned EltBitSize = VT.getScalarSizeInBits(); 1645 const auto *BV = cast<BuildVectorSDNode>(Op); 1646 if (VT.isInteger() && EltBitSize < 64 && 1647 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1648 BV->getRepeatedSequence(Sequence) && 1649 (Sequence.size() * EltBitSize) <= 64) { 1650 unsigned SeqLen = Sequence.size(); 1651 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1652 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1653 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1654 ViaIntVT == MVT::i64) && 1655 "Unexpected sequence type"); 1656 1657 unsigned EltIdx = 0; 1658 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1659 uint64_t SplatValue = 0; 1660 // Construct the amalgamated value which can be splatted as this larger 1661 // vector type. 1662 for (const auto &SeqV : Sequence) { 1663 if (!SeqV.isUndef()) 1664 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1665 << (EltIdx * EltBitSize)); 1666 EltIdx++; 1667 } 1668 1669 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1670 // achieve better constant materializion. 1671 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1672 SplatValue = SignExtend64(SplatValue, 32); 1673 1674 // Since we can't introduce illegal i64 types at this stage, we can only 1675 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1676 // way we can use RVV instructions to splat. 1677 assert((ViaIntVT.bitsLE(XLenVT) || 1678 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1679 "Unexpected bitcast sequence"); 1680 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1681 SDValue ViaVL = 1682 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1683 MVT ViaContainerVT = 1684 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1685 SDValue Splat = 1686 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1687 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1688 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1689 return DAG.getBitcast(VT, Splat); 1690 } 1691 } 1692 1693 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1694 // which constitute a large proportion of the elements. In such cases we can 1695 // splat a vector with the dominant element and make up the shortfall with 1696 // INSERT_VECTOR_ELTs. 1697 // Note that this includes vectors of 2 elements by association. The 1698 // upper-most element is the "dominant" one, allowing us to use a splat to 1699 // "insert" the upper element, and an insert of the lower element at position 1700 // 0, which improves codegen. 1701 SDValue DominantValue; 1702 unsigned MostCommonCount = 0; 1703 DenseMap<SDValue, unsigned> ValueCounts; 1704 unsigned NumUndefElts = 1705 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1706 1707 // Track the number of scalar loads we know we'd be inserting, estimated as 1708 // any non-zero floating-point constant. Other kinds of element are either 1709 // already in registers or are materialized on demand. The threshold at which 1710 // a vector load is more desirable than several scalar materializion and 1711 // vector-insertion instructions is not known. 1712 unsigned NumScalarLoads = 0; 1713 1714 for (SDValue V : Op->op_values()) { 1715 if (V.isUndef()) 1716 continue; 1717 1718 ValueCounts.insert(std::make_pair(V, 0)); 1719 unsigned &Count = ValueCounts[V]; 1720 1721 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1722 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1723 1724 // Is this value dominant? In case of a tie, prefer the highest element as 1725 // it's cheaper to insert near the beginning of a vector than it is at the 1726 // end. 1727 if (++Count >= MostCommonCount) { 1728 DominantValue = V; 1729 MostCommonCount = Count; 1730 } 1731 } 1732 1733 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1734 unsigned NumDefElts = NumElts - NumUndefElts; 1735 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1736 1737 // Don't perform this optimization when optimizing for size, since 1738 // materializing elements and inserting them tends to cause code bloat. 1739 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1740 ((MostCommonCount > DominantValueCountThreshold) || 1741 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1742 // Start by splatting the most common element. 1743 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1744 1745 DenseSet<SDValue> Processed{DominantValue}; 1746 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1747 for (const auto &OpIdx : enumerate(Op->ops())) { 1748 const SDValue &V = OpIdx.value(); 1749 if (V.isUndef() || !Processed.insert(V).second) 1750 continue; 1751 if (ValueCounts[V] == 1) { 1752 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1753 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1754 } else { 1755 // Blend in all instances of this value using a VSELECT, using a 1756 // mask where each bit signals whether that element is the one 1757 // we're after. 1758 SmallVector<SDValue> Ops; 1759 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1760 return DAG.getConstant(V == V1, DL, XLenVT); 1761 }); 1762 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1763 DAG.getBuildVector(SelMaskTy, DL, Ops), 1764 DAG.getSplatBuildVector(VT, DL, V), Vec); 1765 } 1766 } 1767 1768 return Vec; 1769 } 1770 1771 return SDValue(); 1772 } 1773 1774 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1775 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1776 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1777 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1778 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1779 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1780 // node in order to try and match RVV vector/scalar instructions. 1781 if ((LoC >> 31) == HiC) 1782 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1783 } 1784 1785 // Fall back to a stack store and stride x0 vector load. 1786 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1787 } 1788 1789 // Called by type legalization to handle splat of i64 on RV32. 1790 // FIXME: We can optimize this when the type has sign or zero bits in one 1791 // of the halves. 1792 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1793 SDValue VL, SelectionDAG &DAG) { 1794 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1795 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1796 DAG.getConstant(0, DL, MVT::i32)); 1797 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1798 DAG.getConstant(1, DL, MVT::i32)); 1799 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1800 } 1801 1802 // This function lowers a splat of a scalar operand Splat with the vector 1803 // length VL. It ensures the final sequence is type legal, which is useful when 1804 // lowering a splat after type legalization. 1805 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1806 SelectionDAG &DAG, 1807 const RISCVSubtarget &Subtarget) { 1808 if (VT.isFloatingPoint()) 1809 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1810 1811 MVT XLenVT = Subtarget.getXLenVT(); 1812 1813 // Simplest case is that the operand needs to be promoted to XLenVT. 1814 if (Scalar.getValueType().bitsLE(XLenVT)) { 1815 // If the operand is a constant, sign extend to increase our chances 1816 // of being able to use a .vi instruction. ANY_EXTEND would become a 1817 // a zero extend and the simm5 check in isel would fail. 1818 // FIXME: Should we ignore the upper bits in isel instead? 1819 unsigned ExtOpc = 1820 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1821 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1822 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1823 } 1824 1825 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1826 "Unexpected scalar for splat lowering!"); 1827 1828 // Otherwise use the more complicated splatting algorithm. 1829 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1830 } 1831 1832 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1833 const RISCVSubtarget &Subtarget) { 1834 SDValue V1 = Op.getOperand(0); 1835 SDValue V2 = Op.getOperand(1); 1836 SDLoc DL(Op); 1837 MVT XLenVT = Subtarget.getXLenVT(); 1838 MVT VT = Op.getSimpleValueType(); 1839 unsigned NumElts = VT.getVectorNumElements(); 1840 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1841 1842 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1843 1844 SDValue TrueMask, VL; 1845 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1846 1847 if (SVN->isSplat()) { 1848 const int Lane = SVN->getSplatIndex(); 1849 if (Lane >= 0) { 1850 MVT SVT = VT.getVectorElementType(); 1851 1852 // Turn splatted vector load into a strided load with an X0 stride. 1853 SDValue V = V1; 1854 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1855 // with undef. 1856 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1857 int Offset = Lane; 1858 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1859 int OpElements = 1860 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1861 V = V.getOperand(Offset / OpElements); 1862 Offset %= OpElements; 1863 } 1864 1865 // We need to ensure the load isn't atomic or volatile. 1866 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1867 auto *Ld = cast<LoadSDNode>(V); 1868 Offset *= SVT.getStoreSize(); 1869 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1870 TypeSize::Fixed(Offset), DL); 1871 1872 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1873 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1874 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1875 SDValue IntID = 1876 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1877 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1878 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1879 SDValue NewLoad = DAG.getMemIntrinsicNode( 1880 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1881 DAG.getMachineFunction().getMachineMemOperand( 1882 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1883 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1884 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1885 } 1886 1887 // Otherwise use a scalar load and splat. This will give the best 1888 // opportunity to fold a splat into the operation. ISel can turn it into 1889 // the x0 strided load if we aren't able to fold away the select. 1890 if (SVT.isFloatingPoint()) 1891 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1892 Ld->getPointerInfo().getWithOffset(Offset), 1893 Ld->getOriginalAlign(), 1894 Ld->getMemOperand()->getFlags()); 1895 else 1896 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1897 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1898 Ld->getOriginalAlign(), 1899 Ld->getMemOperand()->getFlags()); 1900 DAG.makeEquivalentMemoryOrdering(Ld, V); 1901 1902 unsigned Opc = 1903 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1904 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1905 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1906 } 1907 1908 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1909 assert(Lane < (int)NumElts && "Unexpected lane!"); 1910 SDValue Gather = 1911 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1912 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1913 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1914 } 1915 } 1916 1917 // Detect shuffles which can be re-expressed as vector selects; these are 1918 // shuffles in which each element in the destination is taken from an element 1919 // at the corresponding index in either source vectors. 1920 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1921 int MaskIndex = MaskIdx.value(); 1922 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1923 }); 1924 1925 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1926 1927 SmallVector<SDValue> MaskVals; 1928 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1929 // merged with a second vrgather. 1930 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1931 1932 // By default we preserve the original operand order, and use a mask to 1933 // select LHS as true and RHS as false. However, since RVV vector selects may 1934 // feature splats but only on the LHS, we may choose to invert our mask and 1935 // instead select between RHS and LHS. 1936 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1937 bool InvertMask = IsSelect == SwapOps; 1938 1939 // Now construct the mask that will be used by the vselect or blended 1940 // vrgather operation. For vrgathers, construct the appropriate indices into 1941 // each vector. 1942 for (int MaskIndex : SVN->getMask()) { 1943 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1944 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1945 if (!IsSelect) { 1946 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 1947 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 1948 ? DAG.getConstant(MaskIndex, DL, XLenVT) 1949 : DAG.getUNDEF(XLenVT)); 1950 GatherIndicesRHS.push_back( 1951 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 1952 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 1953 } 1954 } 1955 1956 if (SwapOps) { 1957 std::swap(V1, V2); 1958 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1959 } 1960 1961 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1962 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1963 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1964 1965 if (IsSelect) 1966 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1967 1968 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1969 // On such a large vector we're unable to use i8 as the index type. 1970 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1971 // may involve vector splitting if we're already at LMUL=8, or our 1972 // user-supplied maximum fixed-length LMUL. 1973 return SDValue(); 1974 } 1975 1976 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1977 MVT IndexVT = VT.changeTypeToInteger(); 1978 // Since we can't introduce illegal index types at this stage, use i16 and 1979 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1980 // than XLenVT. 1981 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1982 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1983 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1984 } 1985 1986 MVT IndexContainerVT = 1987 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1988 1989 SDValue Gather; 1990 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1991 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1992 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1993 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1994 } else { 1995 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1996 LHSIndices = 1997 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1998 1999 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2000 Gather = 2001 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 2002 } 2003 2004 // If a second vector operand is used by this shuffle, blend it in with an 2005 // additional vrgather. 2006 if (!V2.isUndef()) { 2007 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2008 SelectMask = 2009 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2010 2011 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2012 RHSIndices = 2013 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2014 2015 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2016 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 2017 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2018 Gather, VL); 2019 } 2020 2021 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2022 } 2023 2024 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2025 SDLoc DL, SelectionDAG &DAG, 2026 const RISCVSubtarget &Subtarget) { 2027 if (VT.isScalableVector()) 2028 return DAG.getFPExtendOrRound(Op, DL, VT); 2029 assert(VT.isFixedLengthVector() && 2030 "Unexpected value type for RVV FP extend/round lowering"); 2031 SDValue Mask, VL; 2032 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2033 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2034 ? RISCVISD::FP_EXTEND_VL 2035 : RISCVISD::FP_ROUND_VL; 2036 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2037 } 2038 2039 // While RVV has alignment restrictions, we should always be able to load as a 2040 // legal equivalently-sized byte-typed vector instead. This method is 2041 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2042 // the load is already correctly-aligned, it returns SDValue(). 2043 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2044 SelectionDAG &DAG) const { 2045 auto *Load = cast<LoadSDNode>(Op); 2046 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2047 2048 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2049 Load->getMemoryVT(), 2050 *Load->getMemOperand())) 2051 return SDValue(); 2052 2053 SDLoc DL(Op); 2054 MVT VT = Op.getSimpleValueType(); 2055 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2056 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2057 "Unexpected unaligned RVV load type"); 2058 MVT NewVT = 2059 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2060 assert(NewVT.isValid() && 2061 "Expecting equally-sized RVV vector types to be legal"); 2062 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2063 Load->getPointerInfo(), Load->getOriginalAlign(), 2064 Load->getMemOperand()->getFlags()); 2065 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2066 } 2067 2068 // While RVV has alignment restrictions, we should always be able to store as a 2069 // legal equivalently-sized byte-typed vector instead. This method is 2070 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2071 // returns SDValue() if the store is already correctly aligned. 2072 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2073 SelectionDAG &DAG) const { 2074 auto *Store = cast<StoreSDNode>(Op); 2075 assert(Store && Store->getValue().getValueType().isVector() && 2076 "Expected vector store"); 2077 2078 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2079 Store->getMemoryVT(), 2080 *Store->getMemOperand())) 2081 return SDValue(); 2082 2083 SDLoc DL(Op); 2084 SDValue StoredVal = Store->getValue(); 2085 MVT VT = StoredVal.getSimpleValueType(); 2086 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2087 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2088 "Unexpected unaligned RVV store type"); 2089 MVT NewVT = 2090 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2091 assert(NewVT.isValid() && 2092 "Expecting equally-sized RVV vector types to be legal"); 2093 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2094 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2095 Store->getPointerInfo(), Store->getOriginalAlign(), 2096 Store->getMemOperand()->getFlags()); 2097 } 2098 2099 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2100 SelectionDAG &DAG) const { 2101 switch (Op.getOpcode()) { 2102 default: 2103 report_fatal_error("unimplemented operand"); 2104 case ISD::GlobalAddress: 2105 return lowerGlobalAddress(Op, DAG); 2106 case ISD::BlockAddress: 2107 return lowerBlockAddress(Op, DAG); 2108 case ISD::ConstantPool: 2109 return lowerConstantPool(Op, DAG); 2110 case ISD::JumpTable: 2111 return lowerJumpTable(Op, DAG); 2112 case ISD::GlobalTLSAddress: 2113 return lowerGlobalTLSAddress(Op, DAG); 2114 case ISD::SELECT: 2115 return lowerSELECT(Op, DAG); 2116 case ISD::BRCOND: 2117 return lowerBRCOND(Op, DAG); 2118 case ISD::VASTART: 2119 return lowerVASTART(Op, DAG); 2120 case ISD::FRAMEADDR: 2121 return lowerFRAMEADDR(Op, DAG); 2122 case ISD::RETURNADDR: 2123 return lowerRETURNADDR(Op, DAG); 2124 case ISD::SHL_PARTS: 2125 return lowerShiftLeftParts(Op, DAG); 2126 case ISD::SRA_PARTS: 2127 return lowerShiftRightParts(Op, DAG, true); 2128 case ISD::SRL_PARTS: 2129 return lowerShiftRightParts(Op, DAG, false); 2130 case ISD::BITCAST: { 2131 SDLoc DL(Op); 2132 EVT VT = Op.getValueType(); 2133 SDValue Op0 = Op.getOperand(0); 2134 EVT Op0VT = Op0.getValueType(); 2135 MVT XLenVT = Subtarget.getXLenVT(); 2136 if (VT.isFixedLengthVector()) { 2137 // We can handle fixed length vector bitcasts with a simple replacement 2138 // in isel. 2139 if (Op0VT.isFixedLengthVector()) 2140 return Op; 2141 // When bitcasting from scalar to fixed-length vector, insert the scalar 2142 // into a one-element vector of the result type, and perform a vector 2143 // bitcast. 2144 if (!Op0VT.isVector()) { 2145 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2146 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2147 DAG.getUNDEF(BVT), Op0, 2148 DAG.getConstant(0, DL, XLenVT))); 2149 } 2150 return SDValue(); 2151 } 2152 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2153 // thus: bitcast the vector to a one-element vector type whose element type 2154 // is the same as the result type, and extract the first element. 2155 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2156 LLVMContext &Context = *DAG.getContext(); 2157 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2158 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2159 DAG.getConstant(0, DL, XLenVT)); 2160 } 2161 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2162 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2163 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2164 return FPConv; 2165 } 2166 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2167 Subtarget.hasStdExtF()) { 2168 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2169 SDValue FPConv = 2170 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2171 return FPConv; 2172 } 2173 return SDValue(); 2174 } 2175 case ISD::INTRINSIC_WO_CHAIN: 2176 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2177 case ISD::INTRINSIC_W_CHAIN: 2178 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2179 case ISD::BSWAP: 2180 case ISD::BITREVERSE: { 2181 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2182 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2183 MVT VT = Op.getSimpleValueType(); 2184 SDLoc DL(Op); 2185 // Start with the maximum immediate value which is the bitwidth - 1. 2186 unsigned Imm = VT.getSizeInBits() - 1; 2187 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2188 if (Op.getOpcode() == ISD::BSWAP) 2189 Imm &= ~0x7U; 2190 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2191 DAG.getConstant(Imm, DL, VT)); 2192 } 2193 case ISD::FSHL: 2194 case ISD::FSHR: { 2195 MVT VT = Op.getSimpleValueType(); 2196 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2197 SDLoc DL(Op); 2198 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2199 return Op; 2200 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2201 // use log(XLen) bits. Mask the shift amount accordingly. 2202 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2203 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2204 DAG.getConstant(ShAmtWidth, DL, VT)); 2205 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2206 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2207 } 2208 case ISD::TRUNCATE: { 2209 SDLoc DL(Op); 2210 MVT VT = Op.getSimpleValueType(); 2211 // Only custom-lower vector truncates 2212 if (!VT.isVector()) 2213 return Op; 2214 2215 // Truncates to mask types are handled differently 2216 if (VT.getVectorElementType() == MVT::i1) 2217 return lowerVectorMaskTrunc(Op, DAG); 2218 2219 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2220 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2221 // truncate by one power of two at a time. 2222 MVT DstEltVT = VT.getVectorElementType(); 2223 2224 SDValue Src = Op.getOperand(0); 2225 MVT SrcVT = Src.getSimpleValueType(); 2226 MVT SrcEltVT = SrcVT.getVectorElementType(); 2227 2228 assert(DstEltVT.bitsLT(SrcEltVT) && 2229 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2230 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2231 "Unexpected vector truncate lowering"); 2232 2233 MVT ContainerVT = SrcVT; 2234 if (SrcVT.isFixedLengthVector()) { 2235 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2236 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2237 } 2238 2239 SDValue Result = Src; 2240 SDValue Mask, VL; 2241 std::tie(Mask, VL) = 2242 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2243 LLVMContext &Context = *DAG.getContext(); 2244 const ElementCount Count = ContainerVT.getVectorElementCount(); 2245 do { 2246 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2247 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2248 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2249 Mask, VL); 2250 } while (SrcEltVT != DstEltVT); 2251 2252 if (SrcVT.isFixedLengthVector()) 2253 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2254 2255 return Result; 2256 } 2257 case ISD::ANY_EXTEND: 2258 case ISD::ZERO_EXTEND: 2259 if (Op.getOperand(0).getValueType().isVector() && 2260 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2261 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2262 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2263 case ISD::SIGN_EXTEND: 2264 if (Op.getOperand(0).getValueType().isVector() && 2265 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2266 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2267 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2268 case ISD::SPLAT_VECTOR_PARTS: 2269 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2270 case ISD::INSERT_VECTOR_ELT: 2271 return lowerINSERT_VECTOR_ELT(Op, DAG); 2272 case ISD::EXTRACT_VECTOR_ELT: 2273 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2274 case ISD::VSCALE: { 2275 MVT VT = Op.getSimpleValueType(); 2276 SDLoc DL(Op); 2277 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2278 // We define our scalable vector types for lmul=1 to use a 64 bit known 2279 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2280 // vscale as VLENB / 8. 2281 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2282 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2283 // We assume VLENB is a multiple of 8. We manually choose the best shift 2284 // here because SimplifyDemandedBits isn't always able to simplify it. 2285 uint64_t Val = Op.getConstantOperandVal(0); 2286 if (isPowerOf2_64(Val)) { 2287 uint64_t Log2 = Log2_64(Val); 2288 if (Log2 < 3) 2289 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2290 DAG.getConstant(3 - Log2, DL, VT)); 2291 if (Log2 > 3) 2292 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2293 DAG.getConstant(Log2 - 3, DL, VT)); 2294 return VLENB; 2295 } 2296 // If the multiplier is a multiple of 8, scale it down to avoid needing 2297 // to shift the VLENB value. 2298 if ((Val % 8) == 0) 2299 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2300 DAG.getConstant(Val / 8, DL, VT)); 2301 } 2302 2303 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2304 DAG.getConstant(3, DL, VT)); 2305 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2306 } 2307 case ISD::FP_EXTEND: { 2308 // RVV can only do fp_extend to types double the size as the source. We 2309 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2310 // via f32. 2311 SDLoc DL(Op); 2312 MVT VT = Op.getSimpleValueType(); 2313 SDValue Src = Op.getOperand(0); 2314 MVT SrcVT = Src.getSimpleValueType(); 2315 2316 // Prepare any fixed-length vector operands. 2317 MVT ContainerVT = VT; 2318 if (SrcVT.isFixedLengthVector()) { 2319 ContainerVT = getContainerForFixedLengthVector(VT); 2320 MVT SrcContainerVT = 2321 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2322 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2323 } 2324 2325 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2326 SrcVT.getVectorElementType() != MVT::f16) { 2327 // For scalable vectors, we only need to close the gap between 2328 // vXf16->vXf64. 2329 if (!VT.isFixedLengthVector()) 2330 return Op; 2331 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2332 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2333 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2334 } 2335 2336 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2337 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2338 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2339 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2340 2341 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2342 DL, DAG, Subtarget); 2343 if (VT.isFixedLengthVector()) 2344 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2345 return Extend; 2346 } 2347 case ISD::FP_ROUND: { 2348 // RVV can only do fp_round to types half the size as the source. We 2349 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2350 // conversion instruction. 2351 SDLoc DL(Op); 2352 MVT VT = Op.getSimpleValueType(); 2353 SDValue Src = Op.getOperand(0); 2354 MVT SrcVT = Src.getSimpleValueType(); 2355 2356 // Prepare any fixed-length vector operands. 2357 MVT ContainerVT = VT; 2358 if (VT.isFixedLengthVector()) { 2359 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2360 ContainerVT = 2361 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2362 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2363 } 2364 2365 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2366 SrcVT.getVectorElementType() != MVT::f64) { 2367 // For scalable vectors, we only need to close the gap between 2368 // vXf64<->vXf16. 2369 if (!VT.isFixedLengthVector()) 2370 return Op; 2371 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2372 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2373 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2374 } 2375 2376 SDValue Mask, VL; 2377 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2378 2379 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2380 SDValue IntermediateRound = 2381 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2382 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2383 DL, DAG, Subtarget); 2384 2385 if (VT.isFixedLengthVector()) 2386 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2387 return Round; 2388 } 2389 case ISD::FP_TO_SINT: 2390 case ISD::FP_TO_UINT: 2391 case ISD::SINT_TO_FP: 2392 case ISD::UINT_TO_FP: { 2393 // RVV can only do fp<->int conversions to types half/double the size as 2394 // the source. We custom-lower any conversions that do two hops into 2395 // sequences. 2396 MVT VT = Op.getSimpleValueType(); 2397 if (!VT.isVector()) 2398 return Op; 2399 SDLoc DL(Op); 2400 SDValue Src = Op.getOperand(0); 2401 MVT EltVT = VT.getVectorElementType(); 2402 MVT SrcVT = Src.getSimpleValueType(); 2403 MVT SrcEltVT = SrcVT.getVectorElementType(); 2404 unsigned EltSize = EltVT.getSizeInBits(); 2405 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2406 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2407 "Unexpected vector element types"); 2408 2409 bool IsInt2FP = SrcEltVT.isInteger(); 2410 // Widening conversions 2411 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2412 if (IsInt2FP) { 2413 // Do a regular integer sign/zero extension then convert to float. 2414 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2415 VT.getVectorElementCount()); 2416 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2417 ? ISD::ZERO_EXTEND 2418 : ISD::SIGN_EXTEND; 2419 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2420 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2421 } 2422 // FP2Int 2423 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2424 // Do one doubling fp_extend then complete the operation by converting 2425 // to int. 2426 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2427 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2428 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2429 } 2430 2431 // Narrowing conversions 2432 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2433 if (IsInt2FP) { 2434 // One narrowing int_to_fp, then an fp_round. 2435 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2436 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2437 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2438 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2439 } 2440 // FP2Int 2441 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2442 // representable by the integer, the result is poison. 2443 MVT IVecVT = 2444 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2445 VT.getVectorElementCount()); 2446 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2447 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2448 } 2449 2450 // Scalable vectors can exit here. Patterns will handle equally-sized 2451 // conversions halving/doubling ones. 2452 if (!VT.isFixedLengthVector()) 2453 return Op; 2454 2455 // For fixed-length vectors we lower to a custom "VL" node. 2456 unsigned RVVOpc = 0; 2457 switch (Op.getOpcode()) { 2458 default: 2459 llvm_unreachable("Impossible opcode"); 2460 case ISD::FP_TO_SINT: 2461 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2462 break; 2463 case ISD::FP_TO_UINT: 2464 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2465 break; 2466 case ISD::SINT_TO_FP: 2467 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2468 break; 2469 case ISD::UINT_TO_FP: 2470 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2471 break; 2472 } 2473 2474 MVT ContainerVT, SrcContainerVT; 2475 // Derive the reference container type from the larger vector type. 2476 if (SrcEltSize > EltSize) { 2477 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2478 ContainerVT = 2479 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2480 } else { 2481 ContainerVT = getContainerForFixedLengthVector(VT); 2482 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2483 } 2484 2485 SDValue Mask, VL; 2486 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2487 2488 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2489 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2490 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2491 } 2492 case ISD::VECREDUCE_ADD: 2493 case ISD::VECREDUCE_UMAX: 2494 case ISD::VECREDUCE_SMAX: 2495 case ISD::VECREDUCE_UMIN: 2496 case ISD::VECREDUCE_SMIN: 2497 return lowerVECREDUCE(Op, DAG); 2498 case ISD::VECREDUCE_AND: 2499 case ISD::VECREDUCE_OR: 2500 case ISD::VECREDUCE_XOR: 2501 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2502 return lowerVectorMaskVECREDUCE(Op, DAG); 2503 return lowerVECREDUCE(Op, DAG); 2504 case ISD::VECREDUCE_FADD: 2505 case ISD::VECREDUCE_SEQ_FADD: 2506 case ISD::VECREDUCE_FMIN: 2507 case ISD::VECREDUCE_FMAX: 2508 return lowerFPVECREDUCE(Op, DAG); 2509 case ISD::INSERT_SUBVECTOR: 2510 return lowerINSERT_SUBVECTOR(Op, DAG); 2511 case ISD::EXTRACT_SUBVECTOR: 2512 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2513 case ISD::STEP_VECTOR: 2514 return lowerSTEP_VECTOR(Op, DAG); 2515 case ISD::VECTOR_REVERSE: 2516 return lowerVECTOR_REVERSE(Op, DAG); 2517 case ISD::BUILD_VECTOR: 2518 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2519 case ISD::SPLAT_VECTOR: 2520 if (Op.getValueType().getVectorElementType() == MVT::i1) 2521 return lowerVectorMaskSplat(Op, DAG); 2522 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2523 case ISD::VECTOR_SHUFFLE: 2524 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2525 case ISD::CONCAT_VECTORS: { 2526 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2527 // better than going through the stack, as the default expansion does. 2528 SDLoc DL(Op); 2529 MVT VT = Op.getSimpleValueType(); 2530 unsigned NumOpElts = 2531 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2532 SDValue Vec = DAG.getUNDEF(VT); 2533 for (const auto &OpIdx : enumerate(Op->ops())) 2534 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2535 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2536 return Vec; 2537 } 2538 case ISD::LOAD: 2539 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2540 return V; 2541 if (Op.getValueType().isFixedLengthVector()) 2542 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2543 return Op; 2544 case ISD::STORE: 2545 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2546 return V; 2547 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2548 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2549 return Op; 2550 case ISD::MLOAD: 2551 return lowerMLOAD(Op, DAG); 2552 case ISD::MSTORE: 2553 return lowerMSTORE(Op, DAG); 2554 case ISD::SETCC: 2555 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2556 case ISD::ADD: 2557 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2558 case ISD::SUB: 2559 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2560 case ISD::MUL: 2561 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2562 case ISD::MULHS: 2563 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2564 case ISD::MULHU: 2565 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2566 case ISD::AND: 2567 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2568 RISCVISD::AND_VL); 2569 case ISD::OR: 2570 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2571 RISCVISD::OR_VL); 2572 case ISD::XOR: 2573 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2574 RISCVISD::XOR_VL); 2575 case ISD::SDIV: 2576 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2577 case ISD::SREM: 2578 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2579 case ISD::UDIV: 2580 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2581 case ISD::UREM: 2582 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2583 case ISD::SHL: 2584 case ISD::SRA: 2585 case ISD::SRL: 2586 if (Op.getSimpleValueType().isFixedLengthVector()) 2587 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2588 // This can be called for an i32 shift amount that needs to be promoted. 2589 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2590 "Unexpected custom legalisation"); 2591 return SDValue(); 2592 case ISD::SADDSAT: 2593 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2594 case ISD::UADDSAT: 2595 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2596 case ISD::SSUBSAT: 2597 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2598 case ISD::USUBSAT: 2599 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2600 case ISD::FADD: 2601 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2602 case ISD::FSUB: 2603 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2604 case ISD::FMUL: 2605 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2606 case ISD::FDIV: 2607 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2608 case ISD::FNEG: 2609 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2610 case ISD::FABS: 2611 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2612 case ISD::FSQRT: 2613 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2614 case ISD::FMA: 2615 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2616 case ISD::SMIN: 2617 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2618 case ISD::SMAX: 2619 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2620 case ISD::UMIN: 2621 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2622 case ISD::UMAX: 2623 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2624 case ISD::FMINNUM: 2625 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2626 case ISD::FMAXNUM: 2627 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2628 case ISD::ABS: 2629 return lowerABS(Op, DAG); 2630 case ISD::VSELECT: 2631 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2632 case ISD::FCOPYSIGN: 2633 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2634 case ISD::MGATHER: 2635 return lowerMGATHER(Op, DAG); 2636 case ISD::MSCATTER: 2637 return lowerMSCATTER(Op, DAG); 2638 case ISD::FLT_ROUNDS_: 2639 return lowerGET_ROUNDING(Op, DAG); 2640 case ISD::SET_ROUNDING: 2641 return lowerSET_ROUNDING(Op, DAG); 2642 case ISD::VP_ADD: 2643 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2644 case ISD::VP_SUB: 2645 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2646 case ISD::VP_MUL: 2647 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2648 case ISD::VP_SDIV: 2649 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2650 case ISD::VP_UDIV: 2651 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2652 case ISD::VP_SREM: 2653 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2654 case ISD::VP_UREM: 2655 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2656 case ISD::VP_AND: 2657 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2658 case ISD::VP_OR: 2659 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2660 case ISD::VP_XOR: 2661 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2662 case ISD::VP_ASHR: 2663 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2664 case ISD::VP_LSHR: 2665 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2666 case ISD::VP_SHL: 2667 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2668 case ISD::VP_FADD: 2669 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2670 case ISD::VP_FSUB: 2671 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2672 case ISD::VP_FMUL: 2673 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2674 case ISD::VP_FDIV: 2675 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2676 } 2677 } 2678 2679 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2680 SelectionDAG &DAG, unsigned Flags) { 2681 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2682 } 2683 2684 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2685 SelectionDAG &DAG, unsigned Flags) { 2686 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2687 Flags); 2688 } 2689 2690 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2691 SelectionDAG &DAG, unsigned Flags) { 2692 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2693 N->getOffset(), Flags); 2694 } 2695 2696 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2697 SelectionDAG &DAG, unsigned Flags) { 2698 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2699 } 2700 2701 template <class NodeTy> 2702 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2703 bool IsLocal) const { 2704 SDLoc DL(N); 2705 EVT Ty = getPointerTy(DAG.getDataLayout()); 2706 2707 if (isPositionIndependent()) { 2708 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2709 if (IsLocal) 2710 // Use PC-relative addressing to access the symbol. This generates the 2711 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2712 // %pcrel_lo(auipc)). 2713 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2714 2715 // Use PC-relative addressing to access the GOT for this symbol, then load 2716 // the address from the GOT. This generates the pattern (PseudoLA sym), 2717 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2718 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2719 } 2720 2721 switch (getTargetMachine().getCodeModel()) { 2722 default: 2723 report_fatal_error("Unsupported code model for lowering"); 2724 case CodeModel::Small: { 2725 // Generate a sequence for accessing addresses within the first 2 GiB of 2726 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2727 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2728 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2729 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2730 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2731 } 2732 case CodeModel::Medium: { 2733 // Generate a sequence for accessing addresses within any 2GiB range within 2734 // the address space. This generates the pattern (PseudoLLA sym), which 2735 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2736 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2737 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2738 } 2739 } 2740 } 2741 2742 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2743 SelectionDAG &DAG) const { 2744 SDLoc DL(Op); 2745 EVT Ty = Op.getValueType(); 2746 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2747 int64_t Offset = N->getOffset(); 2748 MVT XLenVT = Subtarget.getXLenVT(); 2749 2750 const GlobalValue *GV = N->getGlobal(); 2751 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2752 SDValue Addr = getAddr(N, DAG, IsLocal); 2753 2754 // In order to maximise the opportunity for common subexpression elimination, 2755 // emit a separate ADD node for the global address offset instead of folding 2756 // it in the global address node. Later peephole optimisations may choose to 2757 // fold it back in when profitable. 2758 if (Offset != 0) 2759 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2760 DAG.getConstant(Offset, DL, XLenVT)); 2761 return Addr; 2762 } 2763 2764 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2765 SelectionDAG &DAG) const { 2766 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2767 2768 return getAddr(N, DAG); 2769 } 2770 2771 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2772 SelectionDAG &DAG) const { 2773 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2774 2775 return getAddr(N, DAG); 2776 } 2777 2778 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2779 SelectionDAG &DAG) const { 2780 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2781 2782 return getAddr(N, DAG); 2783 } 2784 2785 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2786 SelectionDAG &DAG, 2787 bool UseGOT) const { 2788 SDLoc DL(N); 2789 EVT Ty = getPointerTy(DAG.getDataLayout()); 2790 const GlobalValue *GV = N->getGlobal(); 2791 MVT XLenVT = Subtarget.getXLenVT(); 2792 2793 if (UseGOT) { 2794 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2795 // load the address from the GOT and add the thread pointer. This generates 2796 // the pattern (PseudoLA_TLS_IE sym), which expands to 2797 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2798 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2799 SDValue Load = 2800 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2801 2802 // Add the thread pointer. 2803 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2804 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2805 } 2806 2807 // Generate a sequence for accessing the address relative to the thread 2808 // pointer, with the appropriate adjustment for the thread pointer offset. 2809 // This generates the pattern 2810 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2811 SDValue AddrHi = 2812 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2813 SDValue AddrAdd = 2814 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2815 SDValue AddrLo = 2816 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2817 2818 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2819 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2820 SDValue MNAdd = SDValue( 2821 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2822 0); 2823 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2824 } 2825 2826 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2827 SelectionDAG &DAG) const { 2828 SDLoc DL(N); 2829 EVT Ty = getPointerTy(DAG.getDataLayout()); 2830 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2831 const GlobalValue *GV = N->getGlobal(); 2832 2833 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2834 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2835 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2836 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2837 SDValue Load = 2838 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2839 2840 // Prepare argument list to generate call. 2841 ArgListTy Args; 2842 ArgListEntry Entry; 2843 Entry.Node = Load; 2844 Entry.Ty = CallTy; 2845 Args.push_back(Entry); 2846 2847 // Setup call to __tls_get_addr. 2848 TargetLowering::CallLoweringInfo CLI(DAG); 2849 CLI.setDebugLoc(DL) 2850 .setChain(DAG.getEntryNode()) 2851 .setLibCallee(CallingConv::C, CallTy, 2852 DAG.getExternalSymbol("__tls_get_addr", Ty), 2853 std::move(Args)); 2854 2855 return LowerCallTo(CLI).first; 2856 } 2857 2858 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2859 SelectionDAG &DAG) const { 2860 SDLoc DL(Op); 2861 EVT Ty = Op.getValueType(); 2862 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2863 int64_t Offset = N->getOffset(); 2864 MVT XLenVT = Subtarget.getXLenVT(); 2865 2866 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2867 2868 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2869 CallingConv::GHC) 2870 report_fatal_error("In GHC calling convention TLS is not supported"); 2871 2872 SDValue Addr; 2873 switch (Model) { 2874 case TLSModel::LocalExec: 2875 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2876 break; 2877 case TLSModel::InitialExec: 2878 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2879 break; 2880 case TLSModel::LocalDynamic: 2881 case TLSModel::GeneralDynamic: 2882 Addr = getDynamicTLSAddr(N, DAG); 2883 break; 2884 } 2885 2886 // In order to maximise the opportunity for common subexpression elimination, 2887 // emit a separate ADD node for the global address offset instead of folding 2888 // it in the global address node. Later peephole optimisations may choose to 2889 // fold it back in when profitable. 2890 if (Offset != 0) 2891 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2892 DAG.getConstant(Offset, DL, XLenVT)); 2893 return Addr; 2894 } 2895 2896 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2897 SDValue CondV = Op.getOperand(0); 2898 SDValue TrueV = Op.getOperand(1); 2899 SDValue FalseV = Op.getOperand(2); 2900 SDLoc DL(Op); 2901 MVT VT = Op.getSimpleValueType(); 2902 MVT XLenVT = Subtarget.getXLenVT(); 2903 2904 // Lower vector SELECTs to VSELECTs by splatting the condition. 2905 if (VT.isVector()) { 2906 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 2907 SDValue CondSplat = VT.isScalableVector() 2908 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 2909 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 2910 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 2911 } 2912 2913 // If the result type is XLenVT and CondV is the output of a SETCC node 2914 // which also operated on XLenVT inputs, then merge the SETCC node into the 2915 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2916 // compare+branch instructions. i.e.: 2917 // (select (setcc lhs, rhs, cc), truev, falsev) 2918 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2919 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 2920 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2921 SDValue LHS = CondV.getOperand(0); 2922 SDValue RHS = CondV.getOperand(1); 2923 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2924 ISD::CondCode CCVal = CC->get(); 2925 2926 // Special case for a select of 2 constants that have a diffence of 1. 2927 // Normally this is done by DAGCombine, but if the select is introduced by 2928 // type legalization or op legalization, we miss it. Restricting to SETLT 2929 // case for now because that is what signed saturating add/sub need. 2930 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2931 // but we would probably want to swap the true/false values if the condition 2932 // is SETGE/SETLE to avoid an XORI. 2933 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2934 CCVal == ISD::SETLT) { 2935 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2936 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2937 if (TrueVal - 1 == FalseVal) 2938 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2939 if (TrueVal + 1 == FalseVal) 2940 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2941 } 2942 2943 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2944 2945 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2946 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2947 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2948 } 2949 2950 // Otherwise: 2951 // (select condv, truev, falsev) 2952 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2953 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2954 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2955 2956 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2957 2958 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2959 } 2960 2961 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2962 SDValue CondV = Op.getOperand(1); 2963 SDLoc DL(Op); 2964 MVT XLenVT = Subtarget.getXLenVT(); 2965 2966 if (CondV.getOpcode() == ISD::SETCC && 2967 CondV.getOperand(0).getValueType() == XLenVT) { 2968 SDValue LHS = CondV.getOperand(0); 2969 SDValue RHS = CondV.getOperand(1); 2970 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2971 2972 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2973 2974 SDValue TargetCC = DAG.getCondCode(CCVal); 2975 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2976 LHS, RHS, TargetCC, Op.getOperand(2)); 2977 } 2978 2979 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2980 CondV, DAG.getConstant(0, DL, XLenVT), 2981 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2982 } 2983 2984 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2985 MachineFunction &MF = DAG.getMachineFunction(); 2986 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2987 2988 SDLoc DL(Op); 2989 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2990 getPointerTy(MF.getDataLayout())); 2991 2992 // vastart just stores the address of the VarArgsFrameIndex slot into the 2993 // memory location argument. 2994 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2995 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2996 MachinePointerInfo(SV)); 2997 } 2998 2999 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3000 SelectionDAG &DAG) const { 3001 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3002 MachineFunction &MF = DAG.getMachineFunction(); 3003 MachineFrameInfo &MFI = MF.getFrameInfo(); 3004 MFI.setFrameAddressIsTaken(true); 3005 Register FrameReg = RI.getFrameRegister(MF); 3006 int XLenInBytes = Subtarget.getXLen() / 8; 3007 3008 EVT VT = Op.getValueType(); 3009 SDLoc DL(Op); 3010 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3011 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3012 while (Depth--) { 3013 int Offset = -(XLenInBytes * 2); 3014 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3015 DAG.getIntPtrConstant(Offset, DL)); 3016 FrameAddr = 3017 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3018 } 3019 return FrameAddr; 3020 } 3021 3022 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3023 SelectionDAG &DAG) const { 3024 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3025 MachineFunction &MF = DAG.getMachineFunction(); 3026 MachineFrameInfo &MFI = MF.getFrameInfo(); 3027 MFI.setReturnAddressIsTaken(true); 3028 MVT XLenVT = Subtarget.getXLenVT(); 3029 int XLenInBytes = Subtarget.getXLen() / 8; 3030 3031 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3032 return SDValue(); 3033 3034 EVT VT = Op.getValueType(); 3035 SDLoc DL(Op); 3036 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3037 if (Depth) { 3038 int Off = -XLenInBytes; 3039 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3040 SDValue Offset = DAG.getConstant(Off, DL, VT); 3041 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3042 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3043 MachinePointerInfo()); 3044 } 3045 3046 // Return the value of the return address register, marking it an implicit 3047 // live-in. 3048 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3049 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3050 } 3051 3052 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3053 SelectionDAG &DAG) const { 3054 SDLoc DL(Op); 3055 SDValue Lo = Op.getOperand(0); 3056 SDValue Hi = Op.getOperand(1); 3057 SDValue Shamt = Op.getOperand(2); 3058 EVT VT = Lo.getValueType(); 3059 3060 // if Shamt-XLEN < 0: // Shamt < XLEN 3061 // Lo = Lo << Shamt 3062 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3063 // else: 3064 // Lo = 0 3065 // Hi = Lo << (Shamt-XLEN) 3066 3067 SDValue Zero = DAG.getConstant(0, DL, VT); 3068 SDValue One = DAG.getConstant(1, DL, VT); 3069 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3070 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3071 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3072 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3073 3074 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3075 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3076 SDValue ShiftRightLo = 3077 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3078 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3079 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3080 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3081 3082 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3083 3084 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3085 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3086 3087 SDValue Parts[2] = {Lo, Hi}; 3088 return DAG.getMergeValues(Parts, DL); 3089 } 3090 3091 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3092 bool IsSRA) const { 3093 SDLoc DL(Op); 3094 SDValue Lo = Op.getOperand(0); 3095 SDValue Hi = Op.getOperand(1); 3096 SDValue Shamt = Op.getOperand(2); 3097 EVT VT = Lo.getValueType(); 3098 3099 // SRA expansion: 3100 // if Shamt-XLEN < 0: // Shamt < XLEN 3101 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3102 // Hi = Hi >>s Shamt 3103 // else: 3104 // Lo = Hi >>s (Shamt-XLEN); 3105 // Hi = Hi >>s (XLEN-1) 3106 // 3107 // SRL expansion: 3108 // if Shamt-XLEN < 0: // Shamt < XLEN 3109 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3110 // Hi = Hi >>u Shamt 3111 // else: 3112 // Lo = Hi >>u (Shamt-XLEN); 3113 // Hi = 0; 3114 3115 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3116 3117 SDValue Zero = DAG.getConstant(0, DL, VT); 3118 SDValue One = DAG.getConstant(1, DL, VT); 3119 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3120 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3121 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3122 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3123 3124 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3125 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3126 SDValue ShiftLeftHi = 3127 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3128 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3129 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3130 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3131 SDValue HiFalse = 3132 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3133 3134 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3135 3136 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3137 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3138 3139 SDValue Parts[2] = {Lo, Hi}; 3140 return DAG.getMergeValues(Parts, DL); 3141 } 3142 3143 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3144 // legal equivalently-sized i8 type, so we can use that as a go-between. 3145 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3146 SelectionDAG &DAG) const { 3147 SDLoc DL(Op); 3148 MVT VT = Op.getSimpleValueType(); 3149 SDValue SplatVal = Op.getOperand(0); 3150 // All-zeros or all-ones splats are handled specially. 3151 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3152 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3153 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3154 } 3155 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3156 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3157 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3158 } 3159 MVT XLenVT = Subtarget.getXLenVT(); 3160 assert(SplatVal.getValueType() == XLenVT && 3161 "Unexpected type for i1 splat value"); 3162 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3163 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3164 DAG.getConstant(1, DL, XLenVT)); 3165 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3166 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3167 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3168 } 3169 3170 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3171 // illegal (currently only vXi64 RV32). 3172 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3173 // them to SPLAT_VECTOR_I64 3174 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3175 SelectionDAG &DAG) const { 3176 SDLoc DL(Op); 3177 MVT VecVT = Op.getSimpleValueType(); 3178 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3179 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3180 3181 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3182 SDValue Lo = Op.getOperand(0); 3183 SDValue Hi = Op.getOperand(1); 3184 3185 if (VecVT.isFixedLengthVector()) { 3186 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3187 SDLoc DL(Op); 3188 SDValue Mask, VL; 3189 std::tie(Mask, VL) = 3190 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3191 3192 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3193 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3194 } 3195 3196 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3197 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3198 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3199 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3200 // node in order to try and match RVV vector/scalar instructions. 3201 if ((LoC >> 31) == HiC) 3202 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3203 } 3204 3205 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3206 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3207 isa<ConstantSDNode>(Hi.getOperand(1)) && 3208 Hi.getConstantOperandVal(1) == 31) 3209 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3210 3211 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3212 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3213 DAG.getRegister(RISCV::X0, MVT::i64)); 3214 } 3215 3216 // Custom-lower extensions from mask vectors by using a vselect either with 1 3217 // for zero/any-extension or -1 for sign-extension: 3218 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3219 // Note that any-extension is lowered identically to zero-extension. 3220 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3221 int64_t ExtTrueVal) const { 3222 SDLoc DL(Op); 3223 MVT VecVT = Op.getSimpleValueType(); 3224 SDValue Src = Op.getOperand(0); 3225 // Only custom-lower extensions from mask types 3226 assert(Src.getValueType().isVector() && 3227 Src.getValueType().getVectorElementType() == MVT::i1); 3228 3229 MVT XLenVT = Subtarget.getXLenVT(); 3230 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3231 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3232 3233 if (VecVT.isScalableVector()) { 3234 // Be careful not to introduce illegal scalar types at this stage, and be 3235 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3236 // illegal and must be expanded. Since we know that the constants are 3237 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3238 bool IsRV32E64 = 3239 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3240 3241 if (!IsRV32E64) { 3242 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3243 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3244 } else { 3245 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3246 SplatTrueVal = 3247 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3248 } 3249 3250 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3251 } 3252 3253 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3254 MVT I1ContainerVT = 3255 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3256 3257 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3258 3259 SDValue Mask, VL; 3260 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3261 3262 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3263 SplatTrueVal = 3264 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3265 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3266 SplatTrueVal, SplatZero, VL); 3267 3268 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3269 } 3270 3271 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3272 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3273 MVT ExtVT = Op.getSimpleValueType(); 3274 // Only custom-lower extensions from fixed-length vector types. 3275 if (!ExtVT.isFixedLengthVector()) 3276 return Op; 3277 MVT VT = Op.getOperand(0).getSimpleValueType(); 3278 // Grab the canonical container type for the extended type. Infer the smaller 3279 // type from that to ensure the same number of vector elements, as we know 3280 // the LMUL will be sufficient to hold the smaller type. 3281 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3282 // Get the extended container type manually to ensure the same number of 3283 // vector elements between source and dest. 3284 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3285 ContainerExtVT.getVectorElementCount()); 3286 3287 SDValue Op1 = 3288 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3289 3290 SDLoc DL(Op); 3291 SDValue Mask, VL; 3292 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3293 3294 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3295 3296 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3297 } 3298 3299 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3300 // setcc operation: 3301 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3302 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3303 SelectionDAG &DAG) const { 3304 SDLoc DL(Op); 3305 EVT MaskVT = Op.getValueType(); 3306 // Only expect to custom-lower truncations to mask types 3307 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3308 "Unexpected type for vector mask lowering"); 3309 SDValue Src = Op.getOperand(0); 3310 MVT VecVT = Src.getSimpleValueType(); 3311 3312 // If this is a fixed vector, we need to convert it to a scalable vector. 3313 MVT ContainerVT = VecVT; 3314 if (VecVT.isFixedLengthVector()) { 3315 ContainerVT = getContainerForFixedLengthVector(VecVT); 3316 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3317 } 3318 3319 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3320 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3321 3322 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3323 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3324 3325 if (VecVT.isScalableVector()) { 3326 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3327 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3328 } 3329 3330 SDValue Mask, VL; 3331 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3332 3333 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3334 SDValue Trunc = 3335 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3336 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3337 DAG.getCondCode(ISD::SETNE), Mask, VL); 3338 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3339 } 3340 3341 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3342 // first position of a vector, and that vector is slid up to the insert index. 3343 // By limiting the active vector length to index+1 and merging with the 3344 // original vector (with an undisturbed tail policy for elements >= VL), we 3345 // achieve the desired result of leaving all elements untouched except the one 3346 // at VL-1, which is replaced with the desired value. 3347 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3348 SelectionDAG &DAG) const { 3349 SDLoc DL(Op); 3350 MVT VecVT = Op.getSimpleValueType(); 3351 SDValue Vec = Op.getOperand(0); 3352 SDValue Val = Op.getOperand(1); 3353 SDValue Idx = Op.getOperand(2); 3354 3355 if (VecVT.getVectorElementType() == MVT::i1) { 3356 // FIXME: For now we just promote to an i8 vector and insert into that, 3357 // but this is probably not optimal. 3358 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3359 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3360 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3361 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3362 } 3363 3364 MVT ContainerVT = VecVT; 3365 // If the operand is a fixed-length vector, convert to a scalable one. 3366 if (VecVT.isFixedLengthVector()) { 3367 ContainerVT = getContainerForFixedLengthVector(VecVT); 3368 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3369 } 3370 3371 MVT XLenVT = Subtarget.getXLenVT(); 3372 3373 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3374 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3375 // Even i64-element vectors on RV32 can be lowered without scalar 3376 // legalization if the most-significant 32 bits of the value are not affected 3377 // by the sign-extension of the lower 32 bits. 3378 // TODO: We could also catch sign extensions of a 32-bit value. 3379 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3380 const auto *CVal = cast<ConstantSDNode>(Val); 3381 if (isInt<32>(CVal->getSExtValue())) { 3382 IsLegalInsert = true; 3383 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3384 } 3385 } 3386 3387 SDValue Mask, VL; 3388 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3389 3390 SDValue ValInVec; 3391 3392 if (IsLegalInsert) { 3393 unsigned Opc = 3394 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3395 if (isNullConstant(Idx)) { 3396 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3397 if (!VecVT.isFixedLengthVector()) 3398 return Vec; 3399 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3400 } 3401 ValInVec = 3402 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3403 } else { 3404 // On RV32, i64-element vectors must be specially handled to place the 3405 // value at element 0, by using two vslide1up instructions in sequence on 3406 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3407 // this. 3408 SDValue One = DAG.getConstant(1, DL, XLenVT); 3409 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3410 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3411 MVT I32ContainerVT = 3412 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3413 SDValue I32Mask = 3414 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3415 // Limit the active VL to two. 3416 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3417 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3418 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3419 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3420 InsertI64VL); 3421 // First slide in the hi value, then the lo in underneath it. 3422 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3423 ValHi, I32Mask, InsertI64VL); 3424 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3425 ValLo, I32Mask, InsertI64VL); 3426 // Bitcast back to the right container type. 3427 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3428 } 3429 3430 // Now that the value is in a vector, slide it into position. 3431 SDValue InsertVL = 3432 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3433 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3434 ValInVec, Idx, Mask, InsertVL); 3435 if (!VecVT.isFixedLengthVector()) 3436 return Slideup; 3437 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3438 } 3439 3440 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3441 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3442 // types this is done using VMV_X_S to allow us to glean information about the 3443 // sign bits of the result. 3444 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3445 SelectionDAG &DAG) const { 3446 SDLoc DL(Op); 3447 SDValue Idx = Op.getOperand(1); 3448 SDValue Vec = Op.getOperand(0); 3449 EVT EltVT = Op.getValueType(); 3450 MVT VecVT = Vec.getSimpleValueType(); 3451 MVT XLenVT = Subtarget.getXLenVT(); 3452 3453 if (VecVT.getVectorElementType() == MVT::i1) { 3454 // FIXME: For now we just promote to an i8 vector and extract from that, 3455 // but this is probably not optimal. 3456 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3457 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3458 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3459 } 3460 3461 // If this is a fixed vector, we need to convert it to a scalable vector. 3462 MVT ContainerVT = VecVT; 3463 if (VecVT.isFixedLengthVector()) { 3464 ContainerVT = getContainerForFixedLengthVector(VecVT); 3465 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3466 } 3467 3468 // If the index is 0, the vector is already in the right position. 3469 if (!isNullConstant(Idx)) { 3470 // Use a VL of 1 to avoid processing more elements than we need. 3471 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3472 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3473 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3474 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3475 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3476 } 3477 3478 if (!EltVT.isInteger()) { 3479 // Floating-point extracts are handled in TableGen. 3480 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3481 DAG.getConstant(0, DL, XLenVT)); 3482 } 3483 3484 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3485 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3486 } 3487 3488 // Some RVV intrinsics may claim that they want an integer operand to be 3489 // promoted or expanded. 3490 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3491 const RISCVSubtarget &Subtarget) { 3492 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3493 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3494 "Unexpected opcode"); 3495 3496 if (!Subtarget.hasStdExtV()) 3497 return SDValue(); 3498 3499 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3500 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3501 SDLoc DL(Op); 3502 3503 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3504 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3505 if (!II || !II->SplatOperand) 3506 return SDValue(); 3507 3508 unsigned SplatOp = II->SplatOperand + HasChain; 3509 assert(SplatOp < Op.getNumOperands()); 3510 3511 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3512 SDValue &ScalarOp = Operands[SplatOp]; 3513 MVT OpVT = ScalarOp.getSimpleValueType(); 3514 MVT XLenVT = Subtarget.getXLenVT(); 3515 3516 // If this isn't a scalar, or its type is XLenVT we're done. 3517 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3518 return SDValue(); 3519 3520 // Simplest case is that the operand needs to be promoted to XLenVT. 3521 if (OpVT.bitsLT(XLenVT)) { 3522 // If the operand is a constant, sign extend to increase our chances 3523 // of being able to use a .vi instruction. ANY_EXTEND would become a 3524 // a zero extend and the simm5 check in isel would fail. 3525 // FIXME: Should we ignore the upper bits in isel instead? 3526 unsigned ExtOpc = 3527 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3528 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3529 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3530 } 3531 3532 // Use the previous operand to get the vXi64 VT. The result might be a mask 3533 // VT for compares. Using the previous operand assumes that the previous 3534 // operand will never have a smaller element size than a scalar operand and 3535 // that a widening operation never uses SEW=64. 3536 // NOTE: If this fails the below assert, we can probably just find the 3537 // element count from any operand or result and use it to construct the VT. 3538 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3539 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3540 3541 // The more complex case is when the scalar is larger than XLenVT. 3542 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3543 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3544 3545 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3546 // on the instruction to sign-extend since SEW>XLEN. 3547 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3548 if (isInt<32>(CVal->getSExtValue())) { 3549 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3550 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3551 } 3552 } 3553 3554 // We need to convert the scalar to a splat vector. 3555 // FIXME: Can we implicitly truncate the scalar if it is known to 3556 // be sign extended? 3557 // VL should be the last operand. 3558 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3559 assert(VL.getValueType() == XLenVT); 3560 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3561 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3562 } 3563 3564 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3565 SelectionDAG &DAG) const { 3566 unsigned IntNo = Op.getConstantOperandVal(0); 3567 SDLoc DL(Op); 3568 MVT XLenVT = Subtarget.getXLenVT(); 3569 3570 switch (IntNo) { 3571 default: 3572 break; // Don't custom lower most intrinsics. 3573 case Intrinsic::thread_pointer: { 3574 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3575 return DAG.getRegister(RISCV::X4, PtrVT); 3576 } 3577 case Intrinsic::riscv_orc_b: 3578 // Lower to the GORCI encoding for orc.b. 3579 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3580 DAG.getConstant(7, DL, XLenVT)); 3581 case Intrinsic::riscv_grev: 3582 case Intrinsic::riscv_gorc: { 3583 unsigned Opc = 3584 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3585 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3586 } 3587 case Intrinsic::riscv_shfl: 3588 case Intrinsic::riscv_unshfl: { 3589 unsigned Opc = 3590 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3591 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3592 } 3593 case Intrinsic::riscv_bcompress: 3594 case Intrinsic::riscv_bdecompress: { 3595 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3596 : RISCVISD::BDECOMPRESS; 3597 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3598 } 3599 case Intrinsic::riscv_vmv_x_s: 3600 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3601 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3602 Op.getOperand(1)); 3603 case Intrinsic::riscv_vmv_v_x: 3604 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3605 Op.getSimpleValueType(), DL, DAG, Subtarget); 3606 case Intrinsic::riscv_vfmv_v_f: 3607 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3608 Op.getOperand(1), Op.getOperand(2)); 3609 case Intrinsic::riscv_vmv_s_x: { 3610 SDValue Scalar = Op.getOperand(2); 3611 3612 if (Scalar.getValueType().bitsLE(XLenVT)) { 3613 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3614 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3615 Op.getOperand(1), Scalar, Op.getOperand(3)); 3616 } 3617 3618 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3619 3620 // This is an i64 value that lives in two scalar registers. We have to 3621 // insert this in a convoluted way. First we build vXi64 splat containing 3622 // the/ two values that we assemble using some bit math. Next we'll use 3623 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3624 // to merge element 0 from our splat into the source vector. 3625 // FIXME: This is probably not the best way to do this, but it is 3626 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3627 // point. 3628 // sw lo, (a0) 3629 // sw hi, 4(a0) 3630 // vlse vX, (a0) 3631 // 3632 // vid.v vVid 3633 // vmseq.vx mMask, vVid, 0 3634 // vmerge.vvm vDest, vSrc, vVal, mMask 3635 MVT VT = Op.getSimpleValueType(); 3636 SDValue Vec = Op.getOperand(1); 3637 SDValue VL = Op.getOperand(3); 3638 3639 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3640 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3641 DAG.getConstant(0, DL, MVT::i32), VL); 3642 3643 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3644 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3645 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3646 SDValue SelectCond = 3647 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3648 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3649 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3650 Vec, VL); 3651 } 3652 case Intrinsic::riscv_vslide1up: 3653 case Intrinsic::riscv_vslide1down: 3654 case Intrinsic::riscv_vslide1up_mask: 3655 case Intrinsic::riscv_vslide1down_mask: { 3656 // We need to special case these when the scalar is larger than XLen. 3657 unsigned NumOps = Op.getNumOperands(); 3658 bool IsMasked = NumOps == 6; 3659 unsigned OpOffset = IsMasked ? 1 : 0; 3660 SDValue Scalar = Op.getOperand(2 + OpOffset); 3661 if (Scalar.getValueType().bitsLE(XLenVT)) 3662 break; 3663 3664 // Splatting a sign extended constant is fine. 3665 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3666 if (isInt<32>(CVal->getSExtValue())) 3667 break; 3668 3669 MVT VT = Op.getSimpleValueType(); 3670 assert(VT.getVectorElementType() == MVT::i64 && 3671 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3672 3673 // Convert the vector source to the equivalent nxvXi32 vector. 3674 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3675 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3676 3677 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3678 DAG.getConstant(0, DL, XLenVT)); 3679 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3680 DAG.getConstant(1, DL, XLenVT)); 3681 3682 // Double the VL since we halved SEW. 3683 SDValue VL = Op.getOperand(NumOps - 1); 3684 SDValue I32VL = 3685 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3686 3687 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3688 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3689 3690 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3691 // instructions. 3692 if (IntNo == Intrinsic::riscv_vslide1up || 3693 IntNo == Intrinsic::riscv_vslide1up_mask) { 3694 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3695 I32Mask, I32VL); 3696 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3697 I32Mask, I32VL); 3698 } else { 3699 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3700 I32Mask, I32VL); 3701 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3702 I32Mask, I32VL); 3703 } 3704 3705 // Convert back to nxvXi64. 3706 Vec = DAG.getBitcast(VT, Vec); 3707 3708 if (!IsMasked) 3709 return Vec; 3710 3711 // Apply mask after the operation. 3712 SDValue Mask = Op.getOperand(NumOps - 2); 3713 SDValue MaskedOff = Op.getOperand(1); 3714 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3715 } 3716 } 3717 3718 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3719 } 3720 3721 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3722 SelectionDAG &DAG) const { 3723 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3724 } 3725 3726 static MVT getLMUL1VT(MVT VT) { 3727 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3728 "Unexpected vector MVT"); 3729 return MVT::getScalableVectorVT( 3730 VT.getVectorElementType(), 3731 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3732 } 3733 3734 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3735 switch (ISDOpcode) { 3736 default: 3737 llvm_unreachable("Unhandled reduction"); 3738 case ISD::VECREDUCE_ADD: 3739 return RISCVISD::VECREDUCE_ADD_VL; 3740 case ISD::VECREDUCE_UMAX: 3741 return RISCVISD::VECREDUCE_UMAX_VL; 3742 case ISD::VECREDUCE_SMAX: 3743 return RISCVISD::VECREDUCE_SMAX_VL; 3744 case ISD::VECREDUCE_UMIN: 3745 return RISCVISD::VECREDUCE_UMIN_VL; 3746 case ISD::VECREDUCE_SMIN: 3747 return RISCVISD::VECREDUCE_SMIN_VL; 3748 case ISD::VECREDUCE_AND: 3749 return RISCVISD::VECREDUCE_AND_VL; 3750 case ISD::VECREDUCE_OR: 3751 return RISCVISD::VECREDUCE_OR_VL; 3752 case ISD::VECREDUCE_XOR: 3753 return RISCVISD::VECREDUCE_XOR_VL; 3754 } 3755 } 3756 3757 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3758 SelectionDAG &DAG) const { 3759 SDLoc DL(Op); 3760 SDValue Vec = Op.getOperand(0); 3761 MVT VecVT = Vec.getSimpleValueType(); 3762 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3763 Op.getOpcode() == ISD::VECREDUCE_OR || 3764 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3765 "Unexpected reduction lowering"); 3766 3767 MVT XLenVT = Subtarget.getXLenVT(); 3768 assert(Op.getValueType() == XLenVT && 3769 "Expected reduction output to be legalized to XLenVT"); 3770 3771 MVT ContainerVT = VecVT; 3772 if (VecVT.isFixedLengthVector()) { 3773 ContainerVT = getContainerForFixedLengthVector(VecVT); 3774 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3775 } 3776 3777 SDValue Mask, VL; 3778 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3779 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3780 3781 switch (Op.getOpcode()) { 3782 default: 3783 llvm_unreachable("Unhandled reduction"); 3784 case ISD::VECREDUCE_AND: 3785 // vpopc ~x == 0 3786 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3787 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3788 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3789 case ISD::VECREDUCE_OR: 3790 // vpopc x != 0 3791 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3792 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3793 case ISD::VECREDUCE_XOR: { 3794 // ((vpopc x) & 1) != 0 3795 SDValue One = DAG.getConstant(1, DL, XLenVT); 3796 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3797 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3798 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3799 } 3800 } 3801 } 3802 3803 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3804 SelectionDAG &DAG) const { 3805 SDLoc DL(Op); 3806 SDValue Vec = Op.getOperand(0); 3807 EVT VecEVT = Vec.getValueType(); 3808 3809 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3810 3811 // Due to ordering in legalize types we may have a vector type that needs to 3812 // be split. Do that manually so we can get down to a legal type. 3813 while (getTypeAction(*DAG.getContext(), VecEVT) == 3814 TargetLowering::TypeSplitVector) { 3815 SDValue Lo, Hi; 3816 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3817 VecEVT = Lo.getValueType(); 3818 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3819 } 3820 3821 // TODO: The type may need to be widened rather than split. Or widened before 3822 // it can be split. 3823 if (!isTypeLegal(VecEVT)) 3824 return SDValue(); 3825 3826 MVT VecVT = VecEVT.getSimpleVT(); 3827 MVT VecEltVT = VecVT.getVectorElementType(); 3828 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3829 3830 MVT ContainerVT = VecVT; 3831 if (VecVT.isFixedLengthVector()) { 3832 ContainerVT = getContainerForFixedLengthVector(VecVT); 3833 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3834 } 3835 3836 MVT M1VT = getLMUL1VT(ContainerVT); 3837 3838 SDValue Mask, VL; 3839 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3840 3841 // FIXME: This is a VLMAX splat which might be too large and can prevent 3842 // vsetvli removal. 3843 SDValue NeutralElem = 3844 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3845 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3846 SDValue Reduction = 3847 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3848 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3849 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3850 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3851 } 3852 3853 // Given a reduction op, this function returns the matching reduction opcode, 3854 // the vector SDValue and the scalar SDValue required to lower this to a 3855 // RISCVISD node. 3856 static std::tuple<unsigned, SDValue, SDValue> 3857 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3858 SDLoc DL(Op); 3859 auto Flags = Op->getFlags(); 3860 unsigned Opcode = Op.getOpcode(); 3861 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3862 switch (Opcode) { 3863 default: 3864 llvm_unreachable("Unhandled reduction"); 3865 case ISD::VECREDUCE_FADD: 3866 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3867 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3868 case ISD::VECREDUCE_SEQ_FADD: 3869 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3870 Op.getOperand(0)); 3871 case ISD::VECREDUCE_FMIN: 3872 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3873 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3874 case ISD::VECREDUCE_FMAX: 3875 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3876 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3877 } 3878 } 3879 3880 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 SDLoc DL(Op); 3883 MVT VecEltVT = Op.getSimpleValueType(); 3884 3885 unsigned RVVOpcode; 3886 SDValue VectorVal, ScalarVal; 3887 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3888 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3889 MVT VecVT = VectorVal.getSimpleValueType(); 3890 3891 MVT ContainerVT = VecVT; 3892 if (VecVT.isFixedLengthVector()) { 3893 ContainerVT = getContainerForFixedLengthVector(VecVT); 3894 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3895 } 3896 3897 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3898 3899 SDValue Mask, VL; 3900 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3901 3902 // FIXME: This is a VLMAX splat which might be too large and can prevent 3903 // vsetvli removal. 3904 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3905 SDValue Reduction = 3906 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3907 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3908 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3909 } 3910 3911 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3912 SelectionDAG &DAG) const { 3913 SDValue Vec = Op.getOperand(0); 3914 SDValue SubVec = Op.getOperand(1); 3915 MVT VecVT = Vec.getSimpleValueType(); 3916 MVT SubVecVT = SubVec.getSimpleValueType(); 3917 3918 SDLoc DL(Op); 3919 MVT XLenVT = Subtarget.getXLenVT(); 3920 unsigned OrigIdx = Op.getConstantOperandVal(2); 3921 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3922 3923 // We don't have the ability to slide mask vectors up indexed by their i1 3924 // elements; the smallest we can do is i8. Often we are able to bitcast to 3925 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3926 // into a scalable one, we might not necessarily have enough scalable 3927 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3928 if (SubVecVT.getVectorElementType() == MVT::i1 && 3929 (OrigIdx != 0 || !Vec.isUndef())) { 3930 if (VecVT.getVectorMinNumElements() >= 8 && 3931 SubVecVT.getVectorMinNumElements() >= 8) { 3932 assert(OrigIdx % 8 == 0 && "Invalid index"); 3933 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3934 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3935 "Unexpected mask vector lowering"); 3936 OrigIdx /= 8; 3937 SubVecVT = 3938 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3939 SubVecVT.isScalableVector()); 3940 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3941 VecVT.isScalableVector()); 3942 Vec = DAG.getBitcast(VecVT, Vec); 3943 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3944 } else { 3945 // We can't slide this mask vector up indexed by its i1 elements. 3946 // This poses a problem when we wish to insert a scalable vector which 3947 // can't be re-expressed as a larger type. Just choose the slow path and 3948 // extend to a larger type, then truncate back down. 3949 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3950 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3951 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3952 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3953 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3954 Op.getOperand(2)); 3955 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3956 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3957 } 3958 } 3959 3960 // If the subvector vector is a fixed-length type, we cannot use subregister 3961 // manipulation to simplify the codegen; we don't know which register of a 3962 // LMUL group contains the specific subvector as we only know the minimum 3963 // register size. Therefore we must slide the vector group up the full 3964 // amount. 3965 if (SubVecVT.isFixedLengthVector()) { 3966 if (OrigIdx == 0 && Vec.isUndef()) 3967 return Op; 3968 MVT ContainerVT = VecVT; 3969 if (VecVT.isFixedLengthVector()) { 3970 ContainerVT = getContainerForFixedLengthVector(VecVT); 3971 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3972 } 3973 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3974 DAG.getUNDEF(ContainerVT), SubVec, 3975 DAG.getConstant(0, DL, XLenVT)); 3976 SDValue Mask = 3977 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3978 // Set the vector length to only the number of elements we care about. Note 3979 // that for slideup this includes the offset. 3980 SDValue VL = 3981 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3982 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3983 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3984 SubVec, SlideupAmt, Mask, VL); 3985 if (VecVT.isFixedLengthVector()) 3986 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3987 return DAG.getBitcast(Op.getValueType(), Slideup); 3988 } 3989 3990 unsigned SubRegIdx, RemIdx; 3991 std::tie(SubRegIdx, RemIdx) = 3992 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3993 VecVT, SubVecVT, OrigIdx, TRI); 3994 3995 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3996 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3997 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3998 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3999 4000 // 1. If the Idx has been completely eliminated and this subvector's size is 4001 // a vector register or a multiple thereof, or the surrounding elements are 4002 // undef, then this is a subvector insert which naturally aligns to a vector 4003 // register. These can easily be handled using subregister manipulation. 4004 // 2. If the subvector is smaller than a vector register, then the insertion 4005 // must preserve the undisturbed elements of the register. We do this by 4006 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4007 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4008 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4009 // LMUL=1 type back into the larger vector (resolving to another subregister 4010 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4011 // to avoid allocating a large register group to hold our subvector. 4012 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4013 return Op; 4014 4015 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4016 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4017 // (in our case undisturbed). This means we can set up a subvector insertion 4018 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4019 // size of the subvector. 4020 MVT InterSubVT = VecVT; 4021 SDValue AlignedExtract = Vec; 4022 unsigned AlignedIdx = OrigIdx - RemIdx; 4023 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4024 InterSubVT = getLMUL1VT(VecVT); 4025 // Extract a subvector equal to the nearest full vector register type. This 4026 // should resolve to a EXTRACT_SUBREG instruction. 4027 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4028 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4029 } 4030 4031 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4032 // For scalable vectors this must be further multiplied by vscale. 4033 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4034 4035 SDValue Mask, VL; 4036 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4037 4038 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4039 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4040 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4041 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4042 4043 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4044 DAG.getUNDEF(InterSubVT), SubVec, 4045 DAG.getConstant(0, DL, XLenVT)); 4046 4047 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4048 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4049 4050 // If required, insert this subvector back into the correct vector register. 4051 // This should resolve to an INSERT_SUBREG instruction. 4052 if (VecVT.bitsGT(InterSubVT)) 4053 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4054 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4055 4056 // We might have bitcast from a mask type: cast back to the original type if 4057 // required. 4058 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4059 } 4060 4061 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4062 SelectionDAG &DAG) const { 4063 SDValue Vec = Op.getOperand(0); 4064 MVT SubVecVT = Op.getSimpleValueType(); 4065 MVT VecVT = Vec.getSimpleValueType(); 4066 4067 SDLoc DL(Op); 4068 MVT XLenVT = Subtarget.getXLenVT(); 4069 unsigned OrigIdx = Op.getConstantOperandVal(1); 4070 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4071 4072 // We don't have the ability to slide mask vectors down indexed by their i1 4073 // elements; the smallest we can do is i8. Often we are able to bitcast to 4074 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4075 // from a scalable one, we might not necessarily have enough scalable 4076 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4077 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4078 if (VecVT.getVectorMinNumElements() >= 8 && 4079 SubVecVT.getVectorMinNumElements() >= 8) { 4080 assert(OrigIdx % 8 == 0 && "Invalid index"); 4081 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4082 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4083 "Unexpected mask vector lowering"); 4084 OrigIdx /= 8; 4085 SubVecVT = 4086 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4087 SubVecVT.isScalableVector()); 4088 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4089 VecVT.isScalableVector()); 4090 Vec = DAG.getBitcast(VecVT, Vec); 4091 } else { 4092 // We can't slide this mask vector down, indexed by its i1 elements. 4093 // This poses a problem when we wish to extract a scalable vector which 4094 // can't be re-expressed as a larger type. Just choose the slow path and 4095 // extend to a larger type, then truncate back down. 4096 // TODO: We could probably improve this when extracting certain fixed 4097 // from fixed, where we can extract as i8 and shift the correct element 4098 // right to reach the desired subvector? 4099 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4100 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4101 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4102 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4103 Op.getOperand(1)); 4104 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4105 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4106 } 4107 } 4108 4109 // If the subvector vector is a fixed-length type, we cannot use subregister 4110 // manipulation to simplify the codegen; we don't know which register of a 4111 // LMUL group contains the specific subvector as we only know the minimum 4112 // register size. Therefore we must slide the vector group down the full 4113 // amount. 4114 if (SubVecVT.isFixedLengthVector()) { 4115 // With an index of 0 this is a cast-like subvector, which can be performed 4116 // with subregister operations. 4117 if (OrigIdx == 0) 4118 return Op; 4119 MVT ContainerVT = VecVT; 4120 if (VecVT.isFixedLengthVector()) { 4121 ContainerVT = getContainerForFixedLengthVector(VecVT); 4122 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4123 } 4124 SDValue Mask = 4125 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4126 // Set the vector length to only the number of elements we care about. This 4127 // avoids sliding down elements we're going to discard straight away. 4128 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4129 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4130 SDValue Slidedown = 4131 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4132 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4133 // Now we can use a cast-like subvector extract to get the result. 4134 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4135 DAG.getConstant(0, DL, XLenVT)); 4136 return DAG.getBitcast(Op.getValueType(), Slidedown); 4137 } 4138 4139 unsigned SubRegIdx, RemIdx; 4140 std::tie(SubRegIdx, RemIdx) = 4141 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4142 VecVT, SubVecVT, OrigIdx, TRI); 4143 4144 // If the Idx has been completely eliminated then this is a subvector extract 4145 // which naturally aligns to a vector register. These can easily be handled 4146 // using subregister manipulation. 4147 if (RemIdx == 0) 4148 return Op; 4149 4150 // Else we must shift our vector register directly to extract the subvector. 4151 // Do this using VSLIDEDOWN. 4152 4153 // If the vector type is an LMUL-group type, extract a subvector equal to the 4154 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4155 // instruction. 4156 MVT InterSubVT = VecVT; 4157 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4158 InterSubVT = getLMUL1VT(VecVT); 4159 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4160 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4161 } 4162 4163 // Slide this vector register down by the desired number of elements in order 4164 // to place the desired subvector starting at element 0. 4165 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4166 // For scalable vectors this must be further multiplied by vscale. 4167 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4168 4169 SDValue Mask, VL; 4170 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4171 SDValue Slidedown = 4172 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4173 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4174 4175 // Now the vector is in the right position, extract our final subvector. This 4176 // should resolve to a COPY. 4177 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4178 DAG.getConstant(0, DL, XLenVT)); 4179 4180 // We might have bitcast from a mask type: cast back to the original type if 4181 // required. 4182 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4183 } 4184 4185 // Lower step_vector to the vid instruction. Any non-identity step value must 4186 // be accounted for my manual expansion. 4187 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4188 SelectionDAG &DAG) const { 4189 SDLoc DL(Op); 4190 MVT VT = Op.getSimpleValueType(); 4191 MVT XLenVT = Subtarget.getXLenVT(); 4192 SDValue Mask, VL; 4193 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4194 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4195 uint64_t StepValImm = Op.getConstantOperandVal(0); 4196 if (StepValImm != 1) { 4197 if (isPowerOf2_64(StepValImm)) { 4198 SDValue StepVal = 4199 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4200 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4201 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4202 } else { 4203 SDValue StepVal = lowerScalarSplat( 4204 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4205 DL, DAG, Subtarget); 4206 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4207 } 4208 } 4209 return StepVec; 4210 } 4211 4212 // Implement vector_reverse using vrgather.vv with indices determined by 4213 // subtracting the id of each element from (VLMAX-1). This will convert 4214 // the indices like so: 4215 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4216 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4217 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4218 SelectionDAG &DAG) const { 4219 SDLoc DL(Op); 4220 MVT VecVT = Op.getSimpleValueType(); 4221 unsigned EltSize = VecVT.getScalarSizeInBits(); 4222 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4223 4224 unsigned MaxVLMAX = 0; 4225 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4226 if (VectorBitsMax != 0) 4227 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4228 4229 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4230 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4231 4232 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4233 // to use vrgatherei16.vv. 4234 // TODO: It's also possible to use vrgatherei16.vv for other types to 4235 // decrease register width for the index calculation. 4236 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4237 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4238 // Reverse each half, then reassemble them in reverse order. 4239 // NOTE: It's also possible that after splitting that VLMAX no longer 4240 // requires vrgatherei16.vv. 4241 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4242 SDValue Lo, Hi; 4243 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4244 EVT LoVT, HiVT; 4245 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4246 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4247 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4248 // Reassemble the low and high pieces reversed. 4249 // FIXME: This is a CONCAT_VECTORS. 4250 SDValue Res = 4251 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4252 DAG.getIntPtrConstant(0, DL)); 4253 return DAG.getNode( 4254 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4255 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4256 } 4257 4258 // Just promote the int type to i16 which will double the LMUL. 4259 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4260 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4261 } 4262 4263 MVT XLenVT = Subtarget.getXLenVT(); 4264 SDValue Mask, VL; 4265 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4266 4267 // Calculate VLMAX-1 for the desired SEW. 4268 unsigned MinElts = VecVT.getVectorMinNumElements(); 4269 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4270 DAG.getConstant(MinElts, DL, XLenVT)); 4271 SDValue VLMinus1 = 4272 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4273 4274 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4275 bool IsRV32E64 = 4276 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4277 SDValue SplatVL; 4278 if (!IsRV32E64) 4279 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4280 else 4281 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4282 4283 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4284 SDValue Indices = 4285 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4286 4287 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4288 } 4289 4290 SDValue 4291 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4292 SelectionDAG &DAG) const { 4293 SDLoc DL(Op); 4294 auto *Load = cast<LoadSDNode>(Op); 4295 4296 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4297 Load->getMemoryVT(), 4298 *Load->getMemOperand()) && 4299 "Expecting a correctly-aligned load"); 4300 4301 MVT VT = Op.getSimpleValueType(); 4302 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4303 4304 SDValue VL = 4305 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4306 4307 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4308 SDValue NewLoad = DAG.getMemIntrinsicNode( 4309 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4310 Load->getMemoryVT(), Load->getMemOperand()); 4311 4312 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4313 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4314 } 4315 4316 SDValue 4317 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4318 SelectionDAG &DAG) const { 4319 SDLoc DL(Op); 4320 auto *Store = cast<StoreSDNode>(Op); 4321 4322 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4323 Store->getMemoryVT(), 4324 *Store->getMemOperand()) && 4325 "Expecting a correctly-aligned store"); 4326 4327 SDValue StoreVal = Store->getValue(); 4328 MVT VT = StoreVal.getSimpleValueType(); 4329 4330 // If the size less than a byte, we need to pad with zeros to make a byte. 4331 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4332 VT = MVT::v8i1; 4333 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4334 DAG.getConstant(0, DL, VT), StoreVal, 4335 DAG.getIntPtrConstant(0, DL)); 4336 } 4337 4338 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4339 4340 SDValue VL = 4341 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4342 4343 SDValue NewValue = 4344 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4345 return DAG.getMemIntrinsicNode( 4346 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4347 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4348 Store->getMemoryVT(), Store->getMemOperand()); 4349 } 4350 4351 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4352 auto *Load = cast<MaskedLoadSDNode>(Op); 4353 4354 SDLoc DL(Op); 4355 MVT VT = Op.getSimpleValueType(); 4356 MVT XLenVT = Subtarget.getXLenVT(); 4357 4358 SDValue Mask = Load->getMask(); 4359 SDValue PassThru = Load->getPassThru(); 4360 SDValue VL; 4361 4362 MVT ContainerVT = VT; 4363 if (VT.isFixedLengthVector()) { 4364 ContainerVT = getContainerForFixedLengthVector(VT); 4365 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4366 4367 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4368 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4369 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4370 } else 4371 VL = DAG.getRegister(RISCV::X0, XLenVT); 4372 4373 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4374 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4375 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4376 Load->getBasePtr(), Mask, VL}; 4377 SDValue Result = 4378 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4379 Load->getMemoryVT(), Load->getMemOperand()); 4380 SDValue Chain = Result.getValue(1); 4381 4382 if (VT.isFixedLengthVector()) 4383 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4384 4385 return DAG.getMergeValues({Result, Chain}, DL); 4386 } 4387 4388 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4389 auto *Store = cast<MaskedStoreSDNode>(Op); 4390 4391 SDLoc DL(Op); 4392 SDValue Val = Store->getValue(); 4393 SDValue Mask = Store->getMask(); 4394 MVT VT = Val.getSimpleValueType(); 4395 MVT XLenVT = Subtarget.getXLenVT(); 4396 SDValue VL; 4397 4398 MVT ContainerVT = VT; 4399 if (VT.isFixedLengthVector()) { 4400 ContainerVT = getContainerForFixedLengthVector(VT); 4401 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4402 4403 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4404 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4405 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4406 } else 4407 VL = DAG.getRegister(RISCV::X0, XLenVT); 4408 4409 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4410 return DAG.getMemIntrinsicNode( 4411 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4412 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4413 Store->getMemoryVT(), Store->getMemOperand()); 4414 } 4415 4416 SDValue 4417 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4418 SelectionDAG &DAG) const { 4419 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4420 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4421 4422 MVT VT = Op.getSimpleValueType(); 4423 4424 SDValue Op1 = 4425 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4426 SDValue Op2 = 4427 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4428 4429 SDLoc DL(Op); 4430 SDValue VL = 4431 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4432 4433 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4434 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4435 4436 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4437 Op.getOperand(2), Mask, VL); 4438 4439 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4440 } 4441 4442 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4443 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4444 MVT VT = Op.getSimpleValueType(); 4445 4446 if (VT.getVectorElementType() == MVT::i1) 4447 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4448 4449 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4450 } 4451 4452 SDValue 4453 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4454 SelectionDAG &DAG) const { 4455 unsigned Opc; 4456 switch (Op.getOpcode()) { 4457 default: llvm_unreachable("Unexpected opcode!"); 4458 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4459 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4460 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4461 } 4462 4463 return lowerToScalableOp(Op, DAG, Opc); 4464 } 4465 4466 // Lower vector ABS to smax(X, sub(0, X)). 4467 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4468 SDLoc DL(Op); 4469 MVT VT = Op.getSimpleValueType(); 4470 SDValue X = Op.getOperand(0); 4471 4472 assert(VT.isFixedLengthVector() && "Unexpected type"); 4473 4474 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4475 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4476 4477 SDValue Mask, VL; 4478 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4479 4480 SDValue SplatZero = 4481 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4482 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4483 SDValue NegX = 4484 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4485 SDValue Max = 4486 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4487 4488 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4489 } 4490 4491 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4492 SDValue Op, SelectionDAG &DAG) const { 4493 SDLoc DL(Op); 4494 MVT VT = Op.getSimpleValueType(); 4495 SDValue Mag = Op.getOperand(0); 4496 SDValue Sign = Op.getOperand(1); 4497 assert(Mag.getValueType() == Sign.getValueType() && 4498 "Can only handle COPYSIGN with matching types."); 4499 4500 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4501 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4502 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4503 4504 SDValue Mask, VL; 4505 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4506 4507 SDValue CopySign = 4508 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4509 4510 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4511 } 4512 4513 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4514 SDValue Op, SelectionDAG &DAG) const { 4515 MVT VT = Op.getSimpleValueType(); 4516 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4517 4518 MVT I1ContainerVT = 4519 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4520 4521 SDValue CC = 4522 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4523 SDValue Op1 = 4524 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4525 SDValue Op2 = 4526 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4527 4528 SDLoc DL(Op); 4529 SDValue Mask, VL; 4530 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4531 4532 SDValue Select = 4533 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4534 4535 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4536 } 4537 4538 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4539 unsigned NewOpc, 4540 bool HasMask) const { 4541 MVT VT = Op.getSimpleValueType(); 4542 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4543 4544 // Create list of operands by converting existing ones to scalable types. 4545 SmallVector<SDValue, 6> Ops; 4546 for (const SDValue &V : Op->op_values()) { 4547 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4548 4549 // Pass through non-vector operands. 4550 if (!V.getValueType().isVector()) { 4551 Ops.push_back(V); 4552 continue; 4553 } 4554 4555 // "cast" fixed length vector to a scalable vector. 4556 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4557 "Only fixed length vectors are supported!"); 4558 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4559 } 4560 4561 SDLoc DL(Op); 4562 SDValue Mask, VL; 4563 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4564 if (HasMask) 4565 Ops.push_back(Mask); 4566 Ops.push_back(VL); 4567 4568 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4569 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4570 } 4571 4572 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4573 // * Operands of each node are assumed to be in the same order. 4574 // * The EVL operand is promoted from i32 to i64 on RV64. 4575 // * Fixed-length vectors are converted to their scalable-vector container 4576 // types. 4577 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4578 unsigned RISCVISDOpc) const { 4579 SDLoc DL(Op); 4580 MVT VT = Op.getSimpleValueType(); 4581 SmallVector<SDValue, 4> Ops; 4582 4583 for (const auto &OpIdx : enumerate(Op->ops())) { 4584 SDValue V = OpIdx.value(); 4585 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4586 // Pass through operands which aren't fixed-length vectors. 4587 if (!V.getValueType().isFixedLengthVector()) { 4588 Ops.push_back(V); 4589 continue; 4590 } 4591 // "cast" fixed length vector to a scalable vector. 4592 MVT OpVT = V.getSimpleValueType(); 4593 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4594 assert(useRVVForFixedLengthVectorVT(OpVT) && 4595 "Only fixed length vectors are supported!"); 4596 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4597 } 4598 4599 if (!VT.isFixedLengthVector()) 4600 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4601 4602 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4603 4604 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4605 4606 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4607 } 4608 4609 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4610 // a RVV indexed load. The RVV indexed load instructions only support the 4611 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4612 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4613 // indexing is extended to the XLEN value type and scaled accordingly. 4614 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4615 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4616 SDLoc DL(Op); 4617 4618 SDValue Index = MGN->getIndex(); 4619 SDValue Mask = MGN->getMask(); 4620 SDValue PassThru = MGN->getPassThru(); 4621 4622 MVT VT = Op.getSimpleValueType(); 4623 MVT IndexVT = Index.getSimpleValueType(); 4624 MVT XLenVT = Subtarget.getXLenVT(); 4625 4626 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4627 "Unexpected VTs!"); 4628 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4629 "Unexpected pointer type"); 4630 // Targets have to explicitly opt-in for extending vector loads. 4631 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4632 "Unexpected extending MGATHER"); 4633 4634 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4635 // the selection of the masked intrinsics doesn't do this for us. 4636 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4637 4638 SDValue VL; 4639 MVT ContainerVT = VT; 4640 if (VT.isFixedLengthVector()) { 4641 // We need to use the larger of the result and index type to determine the 4642 // scalable type to use so we don't increase LMUL for any operand/result. 4643 if (VT.bitsGE(IndexVT)) { 4644 ContainerVT = getContainerForFixedLengthVector(VT); 4645 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4646 ContainerVT.getVectorElementCount()); 4647 } else { 4648 IndexVT = getContainerForFixedLengthVector(IndexVT); 4649 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4650 IndexVT.getVectorElementCount()); 4651 } 4652 4653 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4654 4655 if (!IsUnmasked) { 4656 MVT MaskVT = 4657 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4658 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4659 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4660 } 4661 4662 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4663 } else 4664 VL = DAG.getRegister(RISCV::X0, XLenVT); 4665 4666 unsigned IntID = 4667 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 4668 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4669 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4670 if (!IsUnmasked) 4671 Ops.push_back(PassThru); 4672 Ops.push_back(MGN->getBasePtr()); 4673 Ops.push_back(Index); 4674 if (!IsUnmasked) 4675 Ops.push_back(Mask); 4676 Ops.push_back(VL); 4677 4678 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4679 SDValue Result = 4680 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4681 MGN->getMemoryVT(), MGN->getMemOperand()); 4682 SDValue Chain = Result.getValue(1); 4683 4684 if (VT.isFixedLengthVector()) 4685 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4686 4687 return DAG.getMergeValues({Result, Chain}, DL); 4688 } 4689 4690 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4691 // a RVV indexed store. The RVV indexed store instructions only support the 4692 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4693 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4694 // indexing is extended to the XLEN value type and scaled accordingly. 4695 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4696 SelectionDAG &DAG) const { 4697 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4698 SDLoc DL(Op); 4699 SDValue Index = MSN->getIndex(); 4700 SDValue Mask = MSN->getMask(); 4701 SDValue Val = MSN->getValue(); 4702 4703 MVT VT = Val.getSimpleValueType(); 4704 MVT IndexVT = Index.getSimpleValueType(); 4705 MVT XLenVT = Subtarget.getXLenVT(); 4706 4707 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4708 "Unexpected VTs!"); 4709 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4710 "Unexpected pointer type"); 4711 // Targets have to explicitly opt-in for extending vector loads and 4712 // truncating vector stores. 4713 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4714 4715 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4716 // the selection of the masked intrinsics doesn't do this for us. 4717 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4718 4719 SDValue VL; 4720 if (VT.isFixedLengthVector()) { 4721 // We need to use the larger of the value and index type to determine the 4722 // scalable type to use so we don't increase LMUL for any operand/result. 4723 MVT ContainerVT; 4724 if (VT.bitsGE(IndexVT)) { 4725 ContainerVT = getContainerForFixedLengthVector(VT); 4726 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4727 ContainerVT.getVectorElementCount()); 4728 } else { 4729 IndexVT = getContainerForFixedLengthVector(IndexVT); 4730 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4731 IndexVT.getVectorElementCount()); 4732 } 4733 4734 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4735 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4736 4737 if (!IsUnmasked) { 4738 MVT MaskVT = 4739 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4740 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4741 } 4742 4743 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4744 } else 4745 VL = DAG.getRegister(RISCV::X0, XLenVT); 4746 4747 unsigned IntID = 4748 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4749 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4750 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4751 Ops.push_back(Val); 4752 Ops.push_back(MSN->getBasePtr()); 4753 Ops.push_back(Index); 4754 if (!IsUnmasked) 4755 Ops.push_back(Mask); 4756 Ops.push_back(VL); 4757 4758 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4759 MSN->getMemoryVT(), MSN->getMemOperand()); 4760 } 4761 4762 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4763 SelectionDAG &DAG) const { 4764 const MVT XLenVT = Subtarget.getXLenVT(); 4765 SDLoc DL(Op); 4766 SDValue Chain = Op->getOperand(0); 4767 SDValue SysRegNo = DAG.getConstant( 4768 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4769 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4770 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4771 4772 // Encoding used for rounding mode in RISCV differs from that used in 4773 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4774 // table, which consists of a sequence of 4-bit fields, each representing 4775 // corresponding FLT_ROUNDS mode. 4776 static const int Table = 4777 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4778 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4779 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4780 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4781 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4782 4783 SDValue Shift = 4784 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4785 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4786 DAG.getConstant(Table, DL, XLenVT), Shift); 4787 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4788 DAG.getConstant(7, DL, XLenVT)); 4789 4790 return DAG.getMergeValues({Masked, Chain}, DL); 4791 } 4792 4793 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4794 SelectionDAG &DAG) const { 4795 const MVT XLenVT = Subtarget.getXLenVT(); 4796 SDLoc DL(Op); 4797 SDValue Chain = Op->getOperand(0); 4798 SDValue RMValue = Op->getOperand(1); 4799 SDValue SysRegNo = DAG.getConstant( 4800 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4801 4802 // Encoding used for rounding mode in RISCV differs from that used in 4803 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4804 // a table, which consists of a sequence of 4-bit fields, each representing 4805 // corresponding RISCV mode. 4806 static const unsigned Table = 4807 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4808 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4809 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4810 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4811 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4812 4813 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4814 DAG.getConstant(2, DL, XLenVT)); 4815 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4816 DAG.getConstant(Table, DL, XLenVT), Shift); 4817 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4818 DAG.getConstant(0x7, DL, XLenVT)); 4819 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4820 RMValue); 4821 } 4822 4823 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4824 // form of the given Opcode. 4825 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4826 switch (Opcode) { 4827 default: 4828 llvm_unreachable("Unexpected opcode"); 4829 case ISD::SHL: 4830 return RISCVISD::SLLW; 4831 case ISD::SRA: 4832 return RISCVISD::SRAW; 4833 case ISD::SRL: 4834 return RISCVISD::SRLW; 4835 case ISD::SDIV: 4836 return RISCVISD::DIVW; 4837 case ISD::UDIV: 4838 return RISCVISD::DIVUW; 4839 case ISD::UREM: 4840 return RISCVISD::REMUW; 4841 case ISD::ROTL: 4842 return RISCVISD::ROLW; 4843 case ISD::ROTR: 4844 return RISCVISD::RORW; 4845 case RISCVISD::GREV: 4846 return RISCVISD::GREVW; 4847 case RISCVISD::GORC: 4848 return RISCVISD::GORCW; 4849 } 4850 } 4851 4852 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 4853 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 4854 // otherwise be promoted to i64, making it difficult to select the 4855 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 4856 // type i8/i16/i32 is lost. 4857 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4858 unsigned ExtOpc = ISD::ANY_EXTEND) { 4859 SDLoc DL(N); 4860 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4861 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4862 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4863 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4864 // ReplaceNodeResults requires we maintain the same type for the return value. 4865 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4866 } 4867 4868 // Converts the given 32-bit operation to a i64 operation with signed extension 4869 // semantic to reduce the signed extension instructions. 4870 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4871 SDLoc DL(N); 4872 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4873 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4874 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4875 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4876 DAG.getValueType(MVT::i32)); 4877 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4878 } 4879 4880 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4881 SmallVectorImpl<SDValue> &Results, 4882 SelectionDAG &DAG) const { 4883 SDLoc DL(N); 4884 switch (N->getOpcode()) { 4885 default: 4886 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4887 case ISD::STRICT_FP_TO_SINT: 4888 case ISD::STRICT_FP_TO_UINT: 4889 case ISD::FP_TO_SINT: 4890 case ISD::FP_TO_UINT: { 4891 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4892 "Unexpected custom legalisation"); 4893 bool IsStrict = N->isStrictFPOpcode(); 4894 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 4895 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 4896 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4897 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4898 TargetLowering::TypeSoftenFloat) { 4899 // FIXME: Support strict FP. 4900 if (IsStrict) 4901 return; 4902 if (!isTypeLegal(Op0.getValueType())) 4903 return; 4904 unsigned Opc = 4905 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 4906 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 4907 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4908 return; 4909 } 4910 // If the FP type needs to be softened, emit a library call using the 'si' 4911 // version. If we left it to default legalization we'd end up with 'di'. If 4912 // the FP type doesn't need to be softened just let generic type 4913 // legalization promote the result type. 4914 RTLIB::Libcall LC; 4915 if (IsSigned) 4916 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4917 else 4918 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4919 MakeLibCallOptions CallOptions; 4920 EVT OpVT = Op0.getValueType(); 4921 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4922 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4923 SDValue Result; 4924 std::tie(Result, Chain) = 4925 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4926 Results.push_back(Result); 4927 if (IsStrict) 4928 Results.push_back(Chain); 4929 break; 4930 } 4931 case ISD::READCYCLECOUNTER: { 4932 assert(!Subtarget.is64Bit() && 4933 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4934 4935 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4936 SDValue RCW = 4937 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4938 4939 Results.push_back( 4940 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4941 Results.push_back(RCW.getValue(2)); 4942 break; 4943 } 4944 case ISD::MUL: { 4945 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4946 unsigned XLen = Subtarget.getXLen(); 4947 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4948 if (Size > XLen) { 4949 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4950 SDValue LHS = N->getOperand(0); 4951 SDValue RHS = N->getOperand(1); 4952 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4953 4954 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4955 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4956 // We need exactly one side to be unsigned. 4957 if (LHSIsU == RHSIsU) 4958 return; 4959 4960 auto MakeMULPair = [&](SDValue S, SDValue U) { 4961 MVT XLenVT = Subtarget.getXLenVT(); 4962 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4963 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4964 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4965 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4966 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4967 }; 4968 4969 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4970 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4971 4972 // The other operand should be signed, but still prefer MULH when 4973 // possible. 4974 if (RHSIsU && LHSIsS && !RHSIsS) 4975 Results.push_back(MakeMULPair(LHS, RHS)); 4976 else if (LHSIsU && RHSIsS && !LHSIsS) 4977 Results.push_back(MakeMULPair(RHS, LHS)); 4978 4979 return; 4980 } 4981 LLVM_FALLTHROUGH; 4982 } 4983 case ISD::ADD: 4984 case ISD::SUB: 4985 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4986 "Unexpected custom legalisation"); 4987 if (N->getOperand(1).getOpcode() == ISD::Constant) 4988 return; 4989 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4990 break; 4991 case ISD::SHL: 4992 case ISD::SRA: 4993 case ISD::SRL: 4994 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4995 "Unexpected custom legalisation"); 4996 if (N->getOperand(1).getOpcode() == ISD::Constant) 4997 return; 4998 Results.push_back(customLegalizeToWOp(N, DAG)); 4999 break; 5000 case ISD::ROTL: 5001 case ISD::ROTR: 5002 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5003 "Unexpected custom legalisation"); 5004 Results.push_back(customLegalizeToWOp(N, DAG)); 5005 break; 5006 case ISD::CTTZ: 5007 case ISD::CTTZ_ZERO_UNDEF: 5008 case ISD::CTLZ: 5009 case ISD::CTLZ_ZERO_UNDEF: { 5010 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5011 "Unexpected custom legalisation"); 5012 5013 SDValue NewOp0 = 5014 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5015 bool IsCTZ = 5016 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5017 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5018 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5019 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5020 return; 5021 } 5022 case ISD::SDIV: 5023 case ISD::UDIV: 5024 case ISD::UREM: { 5025 MVT VT = N->getSimpleValueType(0); 5026 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5027 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5028 "Unexpected custom legalisation"); 5029 // Don't promote division/remainder by constant since we should expand those 5030 // to multiply by magic constant. 5031 // FIXME: What if the expansion is disabled for minsize. 5032 if (N->getOperand(1).getOpcode() == ISD::Constant) 5033 return; 5034 5035 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5036 // the upper 32 bits. For other types we need to sign or zero extend 5037 // based on the opcode. 5038 unsigned ExtOpc = ISD::ANY_EXTEND; 5039 if (VT != MVT::i32) 5040 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5041 : ISD::ZERO_EXTEND; 5042 5043 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5044 break; 5045 } 5046 case ISD::UADDO: 5047 case ISD::USUBO: { 5048 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5049 "Unexpected custom legalisation"); 5050 bool IsAdd = N->getOpcode() == ISD::UADDO; 5051 // Create an ADDW or SUBW. 5052 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5053 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5054 SDValue Res = 5055 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5056 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5057 DAG.getValueType(MVT::i32)); 5058 5059 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5060 // Since the inputs are sign extended from i32, this is equivalent to 5061 // comparing the lower 32 bits. 5062 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5063 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5064 IsAdd ? ISD::SETULT : ISD::SETUGT); 5065 5066 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5067 Results.push_back(Overflow); 5068 return; 5069 } 5070 case ISD::UADDSAT: 5071 case ISD::USUBSAT: { 5072 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5073 "Unexpected custom legalisation"); 5074 if (Subtarget.hasStdExtZbb()) { 5075 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5076 // sign extend allows overflow of the lower 32 bits to be detected on 5077 // the promoted size. 5078 SDValue LHS = 5079 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5080 SDValue RHS = 5081 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5082 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5083 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5084 return; 5085 } 5086 5087 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5088 // promotion for UADDO/USUBO. 5089 Results.push_back(expandAddSubSat(N, DAG)); 5090 return; 5091 } 5092 case ISD::BITCAST: { 5093 EVT VT = N->getValueType(0); 5094 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5095 SDValue Op0 = N->getOperand(0); 5096 EVT Op0VT = Op0.getValueType(); 5097 MVT XLenVT = Subtarget.getXLenVT(); 5098 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5099 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5100 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5101 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5102 Subtarget.hasStdExtF()) { 5103 SDValue FPConv = 5104 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5105 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5106 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5107 isTypeLegal(Op0VT)) { 5108 // Custom-legalize bitcasts from fixed-length vector types to illegal 5109 // scalar types in order to improve codegen. Bitcast the vector to a 5110 // one-element vector type whose element type is the same as the result 5111 // type, and extract the first element. 5112 LLVMContext &Context = *DAG.getContext(); 5113 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5114 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5115 DAG.getConstant(0, DL, XLenVT))); 5116 } 5117 break; 5118 } 5119 case RISCVISD::GREV: 5120 case RISCVISD::GORC: { 5121 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5122 "Unexpected custom legalisation"); 5123 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5124 // This is similar to customLegalizeToWOp, except that we pass the second 5125 // operand (a TargetConstant) straight through: it is already of type 5126 // XLenVT. 5127 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5128 SDValue NewOp0 = 5129 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5130 SDValue NewOp1 = 5131 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5132 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5133 // ReplaceNodeResults requires we maintain the same type for the return 5134 // value. 5135 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5136 break; 5137 } 5138 case RISCVISD::SHFL: { 5139 // There is no SHFLIW instruction, but we can just promote the operation. 5140 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5141 "Unexpected custom legalisation"); 5142 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5143 SDValue NewOp0 = 5144 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5145 SDValue NewOp1 = 5146 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5147 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5148 // ReplaceNodeResults requires we maintain the same type for the return 5149 // value. 5150 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5151 break; 5152 } 5153 case ISD::BSWAP: 5154 case ISD::BITREVERSE: { 5155 MVT VT = N->getSimpleValueType(0); 5156 MVT XLenVT = Subtarget.getXLenVT(); 5157 assert((VT == MVT::i8 || VT == MVT::i16 || 5158 (VT == MVT::i32 && Subtarget.is64Bit())) && 5159 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5160 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5161 unsigned Imm = VT.getSizeInBits() - 1; 5162 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5163 if (N->getOpcode() == ISD::BSWAP) 5164 Imm &= ~0x7U; 5165 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5166 SDValue GREVI = 5167 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5168 // ReplaceNodeResults requires we maintain the same type for the return 5169 // value. 5170 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5171 break; 5172 } 5173 case ISD::FSHL: 5174 case ISD::FSHR: { 5175 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5176 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5177 SDValue NewOp0 = 5178 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5179 SDValue NewOp1 = 5180 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5181 SDValue NewOp2 = 5182 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5183 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5184 // Mask the shift amount to 5 bits. 5185 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5186 DAG.getConstant(0x1f, DL, MVT::i64)); 5187 unsigned Opc = 5188 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5189 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5190 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5191 break; 5192 } 5193 case ISD::EXTRACT_VECTOR_ELT: { 5194 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5195 // type is illegal (currently only vXi64 RV32). 5196 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5197 // transferred to the destination register. We issue two of these from the 5198 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5199 // first element. 5200 SDValue Vec = N->getOperand(0); 5201 SDValue Idx = N->getOperand(1); 5202 5203 // The vector type hasn't been legalized yet so we can't issue target 5204 // specific nodes if it needs legalization. 5205 // FIXME: We would manually legalize if it's important. 5206 if (!isTypeLegal(Vec.getValueType())) 5207 return; 5208 5209 MVT VecVT = Vec.getSimpleValueType(); 5210 5211 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5212 VecVT.getVectorElementType() == MVT::i64 && 5213 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5214 5215 // If this is a fixed vector, we need to convert it to a scalable vector. 5216 MVT ContainerVT = VecVT; 5217 if (VecVT.isFixedLengthVector()) { 5218 ContainerVT = getContainerForFixedLengthVector(VecVT); 5219 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5220 } 5221 5222 MVT XLenVT = Subtarget.getXLenVT(); 5223 5224 // Use a VL of 1 to avoid processing more elements than we need. 5225 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5226 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5227 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5228 5229 // Unless the index is known to be 0, we must slide the vector down to get 5230 // the desired element into index 0. 5231 if (!isNullConstant(Idx)) { 5232 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5233 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5234 } 5235 5236 // Extract the lower XLEN bits of the correct vector element. 5237 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5238 5239 // To extract the upper XLEN bits of the vector element, shift the first 5240 // element right by 32 bits and re-extract the lower XLEN bits. 5241 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5242 DAG.getConstant(32, DL, XLenVT), VL); 5243 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5244 ThirtyTwoV, Mask, VL); 5245 5246 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5247 5248 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5249 break; 5250 } 5251 case ISD::INTRINSIC_WO_CHAIN: { 5252 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5253 switch (IntNo) { 5254 default: 5255 llvm_unreachable( 5256 "Don't know how to custom type legalize this intrinsic!"); 5257 case Intrinsic::riscv_orc_b: { 5258 // Lower to the GORCI encoding for orc.b with the operand extended. 5259 SDValue NewOp = 5260 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5261 // If Zbp is enabled, use GORCIW which will sign extend the result. 5262 unsigned Opc = 5263 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5264 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5265 DAG.getConstant(7, DL, MVT::i64)); 5266 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5267 return; 5268 } 5269 case Intrinsic::riscv_grev: 5270 case Intrinsic::riscv_gorc: { 5271 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5272 "Unexpected custom legalisation"); 5273 SDValue NewOp1 = 5274 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5275 SDValue NewOp2 = 5276 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5277 unsigned Opc = 5278 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5279 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5280 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5281 break; 5282 } 5283 case Intrinsic::riscv_shfl: 5284 case Intrinsic::riscv_unshfl: { 5285 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5286 "Unexpected custom legalisation"); 5287 SDValue NewOp1 = 5288 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5289 SDValue NewOp2 = 5290 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5291 unsigned Opc = 5292 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5293 if (isa<ConstantSDNode>(N->getOperand(2))) { 5294 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5295 DAG.getConstant(0xf, DL, MVT::i64)); 5296 Opc = 5297 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5298 } 5299 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5300 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5301 break; 5302 } 5303 case Intrinsic::riscv_bcompress: 5304 case Intrinsic::riscv_bdecompress: { 5305 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5306 "Unexpected custom legalisation"); 5307 SDValue NewOp1 = 5308 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5309 SDValue NewOp2 = 5310 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5311 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5312 ? RISCVISD::BCOMPRESSW 5313 : RISCVISD::BDECOMPRESSW; 5314 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5315 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5316 break; 5317 } 5318 case Intrinsic::riscv_vmv_x_s: { 5319 EVT VT = N->getValueType(0); 5320 MVT XLenVT = Subtarget.getXLenVT(); 5321 if (VT.bitsLT(XLenVT)) { 5322 // Simple case just extract using vmv.x.s and truncate. 5323 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5324 Subtarget.getXLenVT(), N->getOperand(1)); 5325 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5326 return; 5327 } 5328 5329 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5330 "Unexpected custom legalization"); 5331 5332 // We need to do the move in two steps. 5333 SDValue Vec = N->getOperand(1); 5334 MVT VecVT = Vec.getSimpleValueType(); 5335 5336 // First extract the lower XLEN bits of the element. 5337 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5338 5339 // To extract the upper XLEN bits of the vector element, shift the first 5340 // element right by 32 bits and re-extract the lower XLEN bits. 5341 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5342 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5343 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5344 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5345 DAG.getConstant(32, DL, XLenVT), VL); 5346 SDValue LShr32 = 5347 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5348 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5349 5350 Results.push_back( 5351 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5352 break; 5353 } 5354 } 5355 break; 5356 } 5357 case ISD::VECREDUCE_ADD: 5358 case ISD::VECREDUCE_AND: 5359 case ISD::VECREDUCE_OR: 5360 case ISD::VECREDUCE_XOR: 5361 case ISD::VECREDUCE_SMAX: 5362 case ISD::VECREDUCE_UMAX: 5363 case ISD::VECREDUCE_SMIN: 5364 case ISD::VECREDUCE_UMIN: 5365 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5366 Results.push_back(V); 5367 break; 5368 case ISD::FLT_ROUNDS_: { 5369 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5370 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5371 Results.push_back(Res.getValue(0)); 5372 Results.push_back(Res.getValue(1)); 5373 break; 5374 } 5375 } 5376 } 5377 5378 // A structure to hold one of the bit-manipulation patterns below. Together, a 5379 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5380 // (or (and (shl x, 1), 0xAAAAAAAA), 5381 // (and (srl x, 1), 0x55555555)) 5382 struct RISCVBitmanipPat { 5383 SDValue Op; 5384 unsigned ShAmt; 5385 bool IsSHL; 5386 5387 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5388 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5389 } 5390 }; 5391 5392 // Matches patterns of the form 5393 // (and (shl x, C2), (C1 << C2)) 5394 // (and (srl x, C2), C1) 5395 // (shl (and x, C1), C2) 5396 // (srl (and x, (C1 << C2)), C2) 5397 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5398 // The expected masks for each shift amount are specified in BitmanipMasks where 5399 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5400 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5401 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5402 // XLen is 64. 5403 static Optional<RISCVBitmanipPat> 5404 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5405 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5406 "Unexpected number of masks"); 5407 Optional<uint64_t> Mask; 5408 // Optionally consume a mask around the shift operation. 5409 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5410 Mask = Op.getConstantOperandVal(1); 5411 Op = Op.getOperand(0); 5412 } 5413 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5414 return None; 5415 bool IsSHL = Op.getOpcode() == ISD::SHL; 5416 5417 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5418 return None; 5419 uint64_t ShAmt = Op.getConstantOperandVal(1); 5420 5421 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5422 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5423 return None; 5424 // If we don't have enough masks for 64 bit, then we must be trying to 5425 // match SHFL so we're only allowed to shift 1/4 of the width. 5426 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5427 return None; 5428 5429 SDValue Src = Op.getOperand(0); 5430 5431 // The expected mask is shifted left when the AND is found around SHL 5432 // patterns. 5433 // ((x >> 1) & 0x55555555) 5434 // ((x << 1) & 0xAAAAAAAA) 5435 bool SHLExpMask = IsSHL; 5436 5437 if (!Mask) { 5438 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5439 // the mask is all ones: consume that now. 5440 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5441 Mask = Src.getConstantOperandVal(1); 5442 Src = Src.getOperand(0); 5443 // The expected mask is now in fact shifted left for SRL, so reverse the 5444 // decision. 5445 // ((x & 0xAAAAAAAA) >> 1) 5446 // ((x & 0x55555555) << 1) 5447 SHLExpMask = !SHLExpMask; 5448 } else { 5449 // Use a default shifted mask of all-ones if there's no AND, truncated 5450 // down to the expected width. This simplifies the logic later on. 5451 Mask = maskTrailingOnes<uint64_t>(Width); 5452 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5453 } 5454 } 5455 5456 unsigned MaskIdx = Log2_32(ShAmt); 5457 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5458 5459 if (SHLExpMask) 5460 ExpMask <<= ShAmt; 5461 5462 if (Mask != ExpMask) 5463 return None; 5464 5465 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5466 } 5467 5468 // Matches any of the following bit-manipulation patterns: 5469 // (and (shl x, 1), (0x55555555 << 1)) 5470 // (and (srl x, 1), 0x55555555) 5471 // (shl (and x, 0x55555555), 1) 5472 // (srl (and x, (0x55555555 << 1)), 1) 5473 // where the shift amount and mask may vary thus: 5474 // [1] = 0x55555555 / 0xAAAAAAAA 5475 // [2] = 0x33333333 / 0xCCCCCCCC 5476 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5477 // [8] = 0x00FF00FF / 0xFF00FF00 5478 // [16] = 0x0000FFFF / 0xFFFFFFFF 5479 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5480 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5481 // These are the unshifted masks which we use to match bit-manipulation 5482 // patterns. They may be shifted left in certain circumstances. 5483 static const uint64_t BitmanipMasks[] = { 5484 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5485 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5486 5487 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5488 } 5489 5490 // Match the following pattern as a GREVI(W) operation 5491 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5492 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5493 const RISCVSubtarget &Subtarget) { 5494 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5495 EVT VT = Op.getValueType(); 5496 5497 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5498 auto LHS = matchGREVIPat(Op.getOperand(0)); 5499 auto RHS = matchGREVIPat(Op.getOperand(1)); 5500 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5501 SDLoc DL(Op); 5502 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5503 DAG.getConstant(LHS->ShAmt, DL, VT)); 5504 } 5505 } 5506 return SDValue(); 5507 } 5508 5509 // Matches any the following pattern as a GORCI(W) operation 5510 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5511 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5512 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5513 // Note that with the variant of 3., 5514 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5515 // the inner pattern will first be matched as GREVI and then the outer 5516 // pattern will be matched to GORC via the first rule above. 5517 // 4. (or (rotl/rotr x, bitwidth/2), x) 5518 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5519 const RISCVSubtarget &Subtarget) { 5520 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5521 EVT VT = Op.getValueType(); 5522 5523 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5524 SDLoc DL(Op); 5525 SDValue Op0 = Op.getOperand(0); 5526 SDValue Op1 = Op.getOperand(1); 5527 5528 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5529 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5530 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5531 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5532 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5533 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5534 if ((Reverse.getOpcode() == ISD::ROTL || 5535 Reverse.getOpcode() == ISD::ROTR) && 5536 Reverse.getOperand(0) == X && 5537 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5538 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5539 if (RotAmt == (VT.getSizeInBits() / 2)) 5540 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5541 DAG.getConstant(RotAmt, DL, VT)); 5542 } 5543 return SDValue(); 5544 }; 5545 5546 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5547 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5548 return V; 5549 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5550 return V; 5551 5552 // OR is commutable so canonicalize its OR operand to the left 5553 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5554 std::swap(Op0, Op1); 5555 if (Op0.getOpcode() != ISD::OR) 5556 return SDValue(); 5557 SDValue OrOp0 = Op0.getOperand(0); 5558 SDValue OrOp1 = Op0.getOperand(1); 5559 auto LHS = matchGREVIPat(OrOp0); 5560 // OR is commutable so swap the operands and try again: x might have been 5561 // on the left 5562 if (!LHS) { 5563 std::swap(OrOp0, OrOp1); 5564 LHS = matchGREVIPat(OrOp0); 5565 } 5566 auto RHS = matchGREVIPat(Op1); 5567 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5568 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5569 DAG.getConstant(LHS->ShAmt, DL, VT)); 5570 } 5571 } 5572 return SDValue(); 5573 } 5574 5575 // Matches any of the following bit-manipulation patterns: 5576 // (and (shl x, 1), (0x22222222 << 1)) 5577 // (and (srl x, 1), 0x22222222) 5578 // (shl (and x, 0x22222222), 1) 5579 // (srl (and x, (0x22222222 << 1)), 1) 5580 // where the shift amount and mask may vary thus: 5581 // [1] = 0x22222222 / 0x44444444 5582 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5583 // [4] = 0x00F000F0 / 0x0F000F00 5584 // [8] = 0x0000FF00 / 0x00FF0000 5585 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5586 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5587 // These are the unshifted masks which we use to match bit-manipulation 5588 // patterns. They may be shifted left in certain circumstances. 5589 static const uint64_t BitmanipMasks[] = { 5590 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5591 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5592 5593 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5594 } 5595 5596 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5597 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5598 const RISCVSubtarget &Subtarget) { 5599 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5600 EVT VT = Op.getValueType(); 5601 5602 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5603 return SDValue(); 5604 5605 SDValue Op0 = Op.getOperand(0); 5606 SDValue Op1 = Op.getOperand(1); 5607 5608 // Or is commutable so canonicalize the second OR to the LHS. 5609 if (Op0.getOpcode() != ISD::OR) 5610 std::swap(Op0, Op1); 5611 if (Op0.getOpcode() != ISD::OR) 5612 return SDValue(); 5613 5614 // We found an inner OR, so our operands are the operands of the inner OR 5615 // and the other operand of the outer OR. 5616 SDValue A = Op0.getOperand(0); 5617 SDValue B = Op0.getOperand(1); 5618 SDValue C = Op1; 5619 5620 auto Match1 = matchSHFLPat(A); 5621 auto Match2 = matchSHFLPat(B); 5622 5623 // If neither matched, we failed. 5624 if (!Match1 && !Match2) 5625 return SDValue(); 5626 5627 // We had at least one match. if one failed, try the remaining C operand. 5628 if (!Match1) { 5629 std::swap(A, C); 5630 Match1 = matchSHFLPat(A); 5631 if (!Match1) 5632 return SDValue(); 5633 } else if (!Match2) { 5634 std::swap(B, C); 5635 Match2 = matchSHFLPat(B); 5636 if (!Match2) 5637 return SDValue(); 5638 } 5639 assert(Match1 && Match2); 5640 5641 // Make sure our matches pair up. 5642 if (!Match1->formsPairWith(*Match2)) 5643 return SDValue(); 5644 5645 // All the remains is to make sure C is an AND with the same input, that masks 5646 // out the bits that are being shuffled. 5647 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5648 C.getOperand(0) != Match1->Op) 5649 return SDValue(); 5650 5651 uint64_t Mask = C.getConstantOperandVal(1); 5652 5653 static const uint64_t BitmanipMasks[] = { 5654 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5655 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5656 }; 5657 5658 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5659 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5660 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5661 5662 if (Mask != ExpMask) 5663 return SDValue(); 5664 5665 SDLoc DL(Op); 5666 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5667 DAG.getConstant(Match1->ShAmt, DL, VT)); 5668 } 5669 5670 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5671 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5672 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5673 // not undo itself, but they are redundant. 5674 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5675 SDValue Src = N->getOperand(0); 5676 5677 if (Src.getOpcode() != N->getOpcode()) 5678 return SDValue(); 5679 5680 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5681 !isa<ConstantSDNode>(Src.getOperand(1))) 5682 return SDValue(); 5683 5684 unsigned ShAmt1 = N->getConstantOperandVal(1); 5685 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5686 Src = Src.getOperand(0); 5687 5688 unsigned CombinedShAmt; 5689 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5690 CombinedShAmt = ShAmt1 | ShAmt2; 5691 else 5692 CombinedShAmt = ShAmt1 ^ ShAmt2; 5693 5694 if (CombinedShAmt == 0) 5695 return Src; 5696 5697 SDLoc DL(N); 5698 return DAG.getNode( 5699 N->getOpcode(), DL, N->getValueType(0), Src, 5700 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5701 } 5702 5703 // Combine a constant select operand into its use: 5704 // 5705 // (and (select_cc lhs, rhs, cc, -1, c), x) 5706 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5707 // (or (select_cc lhs, rhs, cc, 0, c), x) 5708 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5709 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5710 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5711 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5712 SelectionDAG &DAG, bool AllOnes) { 5713 EVT VT = N->getValueType(0); 5714 5715 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5716 return SDValue(); 5717 5718 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5719 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5720 }; 5721 5722 bool SwapSelectOps; 5723 SDValue TrueVal = Slct.getOperand(3); 5724 SDValue FalseVal = Slct.getOperand(4); 5725 SDValue NonConstantVal; 5726 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5727 SwapSelectOps = false; 5728 NonConstantVal = FalseVal; 5729 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5730 SwapSelectOps = true; 5731 NonConstantVal = TrueVal; 5732 } else 5733 return SDValue(); 5734 5735 // Slct is now know to be the desired identity constant when CC is true. 5736 TrueVal = OtherOp; 5737 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5738 // Unless SwapSelectOps says CC should be false. 5739 if (SwapSelectOps) 5740 std::swap(TrueVal, FalseVal); 5741 5742 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5743 {Slct.getOperand(0), Slct.getOperand(1), 5744 Slct.getOperand(2), TrueVal, FalseVal}); 5745 } 5746 5747 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5748 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5749 bool AllOnes) { 5750 SDValue N0 = N->getOperand(0); 5751 SDValue N1 = N->getOperand(1); 5752 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5753 return Result; 5754 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5755 return Result; 5756 return SDValue(); 5757 } 5758 5759 static SDValue performANDCombine(SDNode *N, 5760 TargetLowering::DAGCombinerInfo &DCI, 5761 const RISCVSubtarget &Subtarget) { 5762 SelectionDAG &DAG = DCI.DAG; 5763 5764 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5765 // (select lhs, rhs, cc, x, (and x, y)) 5766 return combineSelectCCAndUseCommutative(N, DAG, true); 5767 } 5768 5769 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5770 const RISCVSubtarget &Subtarget) { 5771 SelectionDAG &DAG = DCI.DAG; 5772 if (Subtarget.hasStdExtZbp()) { 5773 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5774 return GREV; 5775 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5776 return GORC; 5777 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5778 return SHFL; 5779 } 5780 5781 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5782 // (select lhs, rhs, cc, x, (or x, y)) 5783 return combineSelectCCAndUseCommutative(N, DAG, false); 5784 } 5785 5786 static SDValue performXORCombine(SDNode *N, 5787 TargetLowering::DAGCombinerInfo &DCI, 5788 const RISCVSubtarget &Subtarget) { 5789 SelectionDAG &DAG = DCI.DAG; 5790 5791 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5792 // (select lhs, rhs, cc, x, (xor x, y)) 5793 return combineSelectCCAndUseCommutative(N, DAG, false); 5794 } 5795 5796 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 5797 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 5798 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 5799 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 5800 // ADDW/SUBW/MULW. 5801 static SDValue performANY_EXTENDCombine(SDNode *N, 5802 TargetLowering::DAGCombinerInfo &DCI, 5803 const RISCVSubtarget &Subtarget) { 5804 if (!Subtarget.is64Bit()) 5805 return SDValue(); 5806 5807 SelectionDAG &DAG = DCI.DAG; 5808 5809 SDValue Src = N->getOperand(0); 5810 EVT VT = N->getValueType(0); 5811 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 5812 return SDValue(); 5813 5814 // The opcode must be one that can implicitly sign_extend. 5815 // FIXME: Additional opcodes. 5816 switch (Src.getOpcode()) { 5817 default: 5818 return SDValue(); 5819 case ISD::MUL: 5820 if (!Subtarget.hasStdExtM()) 5821 return SDValue(); 5822 LLVM_FALLTHROUGH; 5823 case ISD::ADD: 5824 case ISD::SUB: 5825 break; 5826 } 5827 5828 // Only handle cases where the result is used by a CopyToReg. That likely 5829 // means the value is a liveout of the basic block. This helps prevent 5830 // infinite combine loops like PR51206. 5831 if (none_of(N->uses(), 5832 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 5833 return SDValue(); 5834 5835 SmallVector<SDNode *, 4> SetCCs; 5836 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 5837 UE = Src.getNode()->use_end(); 5838 UI != UE; ++UI) { 5839 SDNode *User = *UI; 5840 if (User == N) 5841 continue; 5842 if (UI.getUse().getResNo() != Src.getResNo()) 5843 continue; 5844 // All i32 setccs are legalized by sign extending operands. 5845 if (User->getOpcode() == ISD::SETCC) { 5846 SetCCs.push_back(User); 5847 continue; 5848 } 5849 // We don't know if we can extend this user. 5850 break; 5851 } 5852 5853 // If we don't have any SetCCs, this isn't worthwhile. 5854 if (SetCCs.empty()) 5855 return SDValue(); 5856 5857 SDLoc DL(N); 5858 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 5859 DCI.CombineTo(N, SExt); 5860 5861 // Promote all the setccs. 5862 for (SDNode *SetCC : SetCCs) { 5863 SmallVector<SDValue, 4> Ops; 5864 5865 for (unsigned j = 0; j != 2; ++j) { 5866 SDValue SOp = SetCC->getOperand(j); 5867 if (SOp == Src) 5868 Ops.push_back(SExt); 5869 else 5870 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 5871 } 5872 5873 Ops.push_back(SetCC->getOperand(2)); 5874 DCI.CombineTo(SetCC, 5875 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5876 } 5877 return SDValue(N, 0); 5878 } 5879 5880 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5881 DAGCombinerInfo &DCI) const { 5882 SelectionDAG &DAG = DCI.DAG; 5883 5884 switch (N->getOpcode()) { 5885 default: 5886 break; 5887 case RISCVISD::SplitF64: { 5888 SDValue Op0 = N->getOperand(0); 5889 // If the input to SplitF64 is just BuildPairF64 then the operation is 5890 // redundant. Instead, use BuildPairF64's operands directly. 5891 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5892 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5893 5894 SDLoc DL(N); 5895 5896 // It's cheaper to materialise two 32-bit integers than to load a double 5897 // from the constant pool and transfer it to integer registers through the 5898 // stack. 5899 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5900 APInt V = C->getValueAPF().bitcastToAPInt(); 5901 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5902 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5903 return DCI.CombineTo(N, Lo, Hi); 5904 } 5905 5906 // This is a target-specific version of a DAGCombine performed in 5907 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5908 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5909 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5910 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5911 !Op0.getNode()->hasOneUse()) 5912 break; 5913 SDValue NewSplitF64 = 5914 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5915 Op0.getOperand(0)); 5916 SDValue Lo = NewSplitF64.getValue(0); 5917 SDValue Hi = NewSplitF64.getValue(1); 5918 APInt SignBit = APInt::getSignMask(32); 5919 if (Op0.getOpcode() == ISD::FNEG) { 5920 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5921 DAG.getConstant(SignBit, DL, MVT::i32)); 5922 return DCI.CombineTo(N, Lo, NewHi); 5923 } 5924 assert(Op0.getOpcode() == ISD::FABS); 5925 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5926 DAG.getConstant(~SignBit, DL, MVT::i32)); 5927 return DCI.CombineTo(N, Lo, NewHi); 5928 } 5929 case RISCVISD::SLLW: 5930 case RISCVISD::SRAW: 5931 case RISCVISD::SRLW: 5932 case RISCVISD::ROLW: 5933 case RISCVISD::RORW: { 5934 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5935 SDValue LHS = N->getOperand(0); 5936 SDValue RHS = N->getOperand(1); 5937 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5938 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5939 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5940 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5941 if (N->getOpcode() != ISD::DELETED_NODE) 5942 DCI.AddToWorklist(N); 5943 return SDValue(N, 0); 5944 } 5945 break; 5946 } 5947 case RISCVISD::CLZW: 5948 case RISCVISD::CTZW: { 5949 // Only the lower 32 bits of the first operand are read 5950 SDValue Op0 = N->getOperand(0); 5951 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5952 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5953 if (N->getOpcode() != ISD::DELETED_NODE) 5954 DCI.AddToWorklist(N); 5955 return SDValue(N, 0); 5956 } 5957 break; 5958 } 5959 case RISCVISD::FSL: 5960 case RISCVISD::FSR: { 5961 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5962 SDValue ShAmt = N->getOperand(2); 5963 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5964 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5965 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5966 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5967 if (N->getOpcode() != ISD::DELETED_NODE) 5968 DCI.AddToWorklist(N); 5969 return SDValue(N, 0); 5970 } 5971 break; 5972 } 5973 case RISCVISD::FSLW: 5974 case RISCVISD::FSRW: { 5975 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5976 // read. 5977 SDValue Op0 = N->getOperand(0); 5978 SDValue Op1 = N->getOperand(1); 5979 SDValue ShAmt = N->getOperand(2); 5980 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5981 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5982 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5983 SimplifyDemandedBits(Op1, OpMask, DCI) || 5984 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5985 if (N->getOpcode() != ISD::DELETED_NODE) 5986 DCI.AddToWorklist(N); 5987 return SDValue(N, 0); 5988 } 5989 break; 5990 } 5991 case RISCVISD::GREV: 5992 case RISCVISD::GORC: { 5993 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5994 SDValue ShAmt = N->getOperand(1); 5995 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5996 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5997 APInt ShAmtMask(BitWidth, BitWidth - 1); 5998 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5999 if (N->getOpcode() != ISD::DELETED_NODE) 6000 DCI.AddToWorklist(N); 6001 return SDValue(N, 0); 6002 } 6003 6004 return combineGREVI_GORCI(N, DCI.DAG); 6005 } 6006 case RISCVISD::GREVW: 6007 case RISCVISD::GORCW: { 6008 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6009 SDValue LHS = N->getOperand(0); 6010 SDValue RHS = N->getOperand(1); 6011 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6012 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 6013 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 6014 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 6015 if (N->getOpcode() != ISD::DELETED_NODE) 6016 DCI.AddToWorklist(N); 6017 return SDValue(N, 0); 6018 } 6019 6020 return combineGREVI_GORCI(N, DCI.DAG); 6021 } 6022 case RISCVISD::SHFL: 6023 case RISCVISD::UNSHFL: { 6024 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6025 SDValue ShAmt = N->getOperand(1); 6026 unsigned BitWidth = ShAmt.getValueSizeInBits(); 6027 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6028 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 6029 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 6030 if (N->getOpcode() != ISD::DELETED_NODE) 6031 DCI.AddToWorklist(N); 6032 return SDValue(N, 0); 6033 } 6034 6035 break; 6036 } 6037 case RISCVISD::SHFLW: 6038 case RISCVISD::UNSHFLW: { 6039 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6040 SDValue LHS = N->getOperand(0); 6041 SDValue RHS = N->getOperand(1); 6042 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6043 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6044 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 6045 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 6046 if (N->getOpcode() != ISD::DELETED_NODE) 6047 DCI.AddToWorklist(N); 6048 return SDValue(N, 0); 6049 } 6050 6051 break; 6052 } 6053 case RISCVISD::BCOMPRESSW: 6054 case RISCVISD::BDECOMPRESSW: { 6055 // Only the lower 32 bits of LHS and RHS are read. 6056 SDValue LHS = N->getOperand(0); 6057 SDValue RHS = N->getOperand(1); 6058 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6059 if (SimplifyDemandedBits(LHS, Mask, DCI) || 6060 SimplifyDemandedBits(RHS, Mask, DCI)) { 6061 if (N->getOpcode() != ISD::DELETED_NODE) 6062 DCI.AddToWorklist(N); 6063 return SDValue(N, 0); 6064 } 6065 6066 break; 6067 } 6068 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6069 SDLoc DL(N); 6070 SDValue Op0 = N->getOperand(0); 6071 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6072 // conversion is unnecessary and can be replaced with an ANY_EXTEND 6073 // of the FMV_W_X_RV64 operand. 6074 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 6075 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 6076 "Unexpected value type!"); 6077 return Op0.getOperand(0); 6078 } 6079 6080 // This is a target-specific version of a DAGCombine performed in 6081 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6082 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6083 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6084 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6085 !Op0.getNode()->hasOneUse()) 6086 break; 6087 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 6088 Op0.getOperand(0)); 6089 APInt SignBit = APInt::getSignMask(32).sext(64); 6090 if (Op0.getOpcode() == ISD::FNEG) 6091 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 6092 DAG.getConstant(SignBit, DL, MVT::i64)); 6093 6094 assert(Op0.getOpcode() == ISD::FABS); 6095 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 6096 DAG.getConstant(~SignBit, DL, MVT::i64)); 6097 } 6098 case ISD::AND: 6099 return performANDCombine(N, DCI, Subtarget); 6100 case ISD::OR: 6101 return performORCombine(N, DCI, Subtarget); 6102 case ISD::XOR: 6103 return performXORCombine(N, DCI, Subtarget); 6104 case ISD::ANY_EXTEND: 6105 return performANY_EXTENDCombine(N, DCI, Subtarget); 6106 case ISD::ZERO_EXTEND: 6107 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6108 // type legalization. This is safe because fp_to_uint produces poison if 6109 // it overflows. 6110 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6111 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6112 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6113 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6114 N->getOperand(0).getOperand(0)); 6115 return SDValue(); 6116 case RISCVISD::SELECT_CC: { 6117 // Transform 6118 SDValue LHS = N->getOperand(0); 6119 SDValue RHS = N->getOperand(1); 6120 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 6121 if (!ISD::isIntEqualitySetCC(CCVal)) 6122 break; 6123 6124 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6125 // (select_cc X, Y, lt, trueV, falseV) 6126 // Sometimes the setcc is introduced after select_cc has been formed. 6127 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6128 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6129 // If we're looking for eq 0 instead of ne 0, we need to invert the 6130 // condition. 6131 bool Invert = CCVal == ISD::SETEQ; 6132 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6133 if (Invert) 6134 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6135 6136 SDLoc DL(N); 6137 RHS = LHS.getOperand(1); 6138 LHS = LHS.getOperand(0); 6139 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6140 6141 SDValue TargetCC = 6142 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 6143 return DAG.getNode( 6144 RISCVISD::SELECT_CC, DL, N->getValueType(0), 6145 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 6146 } 6147 6148 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6149 // (select_cc X, Y, eq/ne, trueV, falseV) 6150 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6151 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6152 {LHS.getOperand(0), LHS.getOperand(1), 6153 N->getOperand(2), N->getOperand(3), 6154 N->getOperand(4)}); 6155 // (select_cc X, 1, setne, trueV, falseV) -> 6156 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6157 // This can occur when legalizing some floating point comparisons. 6158 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6159 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6160 SDLoc DL(N); 6161 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6162 SDValue TargetCC = 6163 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 6164 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6165 return DAG.getNode( 6166 RISCVISD::SELECT_CC, DL, N->getValueType(0), 6167 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 6168 } 6169 6170 break; 6171 } 6172 case RISCVISD::BR_CC: { 6173 SDValue LHS = N->getOperand(1); 6174 SDValue RHS = N->getOperand(2); 6175 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6176 if (!ISD::isIntEqualitySetCC(CCVal)) 6177 break; 6178 6179 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6180 // (br_cc X, Y, lt, dest) 6181 // Sometimes the setcc is introduced after br_cc has been formed. 6182 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6183 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6184 // If we're looking for eq 0 instead of ne 0, we need to invert the 6185 // condition. 6186 bool Invert = CCVal == ISD::SETEQ; 6187 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6188 if (Invert) 6189 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6190 6191 SDLoc DL(N); 6192 RHS = LHS.getOperand(1); 6193 LHS = LHS.getOperand(0); 6194 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6195 6196 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6197 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6198 N->getOperand(4)); 6199 } 6200 6201 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6202 // (br_cc X, Y, eq/ne, trueV, falseV) 6203 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6204 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6205 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6206 N->getOperand(3), N->getOperand(4)); 6207 6208 // (br_cc X, 1, setne, br_cc) -> 6209 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6210 // This can occur when legalizing some floating point comparisons. 6211 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6212 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6213 SDLoc DL(N); 6214 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6215 SDValue TargetCC = DAG.getCondCode(CCVal); 6216 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6217 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6218 N->getOperand(0), LHS, RHS, TargetCC, 6219 N->getOperand(4)); 6220 } 6221 break; 6222 } 6223 case ISD::FCOPYSIGN: { 6224 EVT VT = N->getValueType(0); 6225 if (!VT.isVector()) 6226 break; 6227 // There is a form of VFSGNJ which injects the negated sign of its second 6228 // operand. Try and bubble any FNEG up after the extend/round to produce 6229 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6230 // TRUNC=1. 6231 SDValue In2 = N->getOperand(1); 6232 // Avoid cases where the extend/round has multiple uses, as duplicating 6233 // those is typically more expensive than removing a fneg. 6234 if (!In2.hasOneUse()) 6235 break; 6236 if (In2.getOpcode() != ISD::FP_EXTEND && 6237 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6238 break; 6239 In2 = In2.getOperand(0); 6240 if (In2.getOpcode() != ISD::FNEG) 6241 break; 6242 SDLoc DL(N); 6243 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6244 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6245 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6246 } 6247 case ISD::MGATHER: 6248 case ISD::MSCATTER: { 6249 if (!DCI.isBeforeLegalize()) 6250 break; 6251 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 6252 SDValue Index = MGSN->getIndex(); 6253 EVT IndexVT = Index.getValueType(); 6254 MVT XLenVT = Subtarget.getXLenVT(); 6255 // RISCV indexed loads only support the "unsigned unscaled" addressing 6256 // mode, so anything else must be manually legalized. 6257 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 6258 (MGSN->isIndexSigned() && 6259 IndexVT.getVectorElementType().bitsLT(XLenVT)); 6260 if (!NeedsIdxLegalization) 6261 break; 6262 6263 SDLoc DL(N); 6264 6265 // Any index legalization should first promote to XLenVT, so we don't lose 6266 // bits when scaling. This may create an illegal index type so we let 6267 // LLVM's legalization take care of the splitting. 6268 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6269 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6270 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 6271 : ISD::ZERO_EXTEND, 6272 DL, IndexVT, Index); 6273 } 6274 6275 unsigned Scale = N->getConstantOperandVal(5); 6276 if (MGSN->isIndexScaled() && Scale != 1) { 6277 // Manually scale the indices by the element size. 6278 // TODO: Sanitize the scale operand here? 6279 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6280 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6281 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6282 } 6283 6284 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6285 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 6286 return DAG.getMaskedGather( 6287 N->getVTList(), MGSN->getMemoryVT(), DL, 6288 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 6289 MGSN->getBasePtr(), Index, MGN->getScale()}, 6290 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6291 } 6292 const auto *MSN = cast<MaskedScatterSDNode>(N); 6293 return DAG.getMaskedScatter( 6294 N->getVTList(), MGSN->getMemoryVT(), DL, 6295 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 6296 Index, MGSN->getScale()}, 6297 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6298 } 6299 case RISCVISD::SRA_VL: 6300 case RISCVISD::SRL_VL: 6301 case RISCVISD::SHL_VL: { 6302 SDValue ShAmt = N->getOperand(1); 6303 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6304 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6305 SDLoc DL(N); 6306 SDValue VL = N->getOperand(3); 6307 EVT VT = N->getValueType(0); 6308 ShAmt = 6309 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6310 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6311 N->getOperand(2), N->getOperand(3)); 6312 } 6313 break; 6314 } 6315 case ISD::SRA: 6316 case ISD::SRL: 6317 case ISD::SHL: { 6318 SDValue ShAmt = N->getOperand(1); 6319 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6320 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6321 SDLoc DL(N); 6322 EVT VT = N->getValueType(0); 6323 ShAmt = 6324 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6325 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6326 } 6327 break; 6328 } 6329 case RISCVISD::MUL_VL: { 6330 // Try to form VWMUL or VWMULU. 6331 // FIXME: Look for splat of extended scalar as well. 6332 // FIXME: Support VWMULSU. 6333 SDValue Op0 = N->getOperand(0); 6334 SDValue Op1 = N->getOperand(1); 6335 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6336 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6337 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6338 return SDValue(); 6339 6340 // Make sure the extends have a single use. 6341 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6342 return SDValue(); 6343 6344 SDValue Mask = N->getOperand(2); 6345 SDValue VL = N->getOperand(3); 6346 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6347 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6348 return SDValue(); 6349 6350 Op0 = Op0.getOperand(0); 6351 Op1 = Op1.getOperand(0); 6352 6353 MVT VT = N->getSimpleValueType(0); 6354 MVT NarrowVT = 6355 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6356 VT.getVectorElementCount()); 6357 6358 SDLoc DL(N); 6359 6360 // Re-introduce narrower extends if needed. 6361 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6362 if (Op0.getValueType() != NarrowVT) 6363 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6364 if (Op1.getValueType() != NarrowVT) 6365 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6366 6367 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6368 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6369 } 6370 } 6371 6372 return SDValue(); 6373 } 6374 6375 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6376 const SDNode *N, CombineLevel Level) const { 6377 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6378 // materialised in fewer instructions than `(OP _, c1)`: 6379 // 6380 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6381 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6382 SDValue N0 = N->getOperand(0); 6383 EVT Ty = N0.getValueType(); 6384 if (Ty.isScalarInteger() && 6385 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6386 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6387 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6388 if (C1 && C2) { 6389 const APInt &C1Int = C1->getAPIntValue(); 6390 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6391 6392 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6393 // and the combine should happen, to potentially allow further combines 6394 // later. 6395 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6396 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6397 return true; 6398 6399 // We can materialise `c1` in an add immediate, so it's "free", and the 6400 // combine should be prevented. 6401 if (C1Int.getMinSignedBits() <= 64 && 6402 isLegalAddImmediate(C1Int.getSExtValue())) 6403 return false; 6404 6405 // Neither constant will fit into an immediate, so find materialisation 6406 // costs. 6407 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6408 Subtarget.getFeatureBits(), 6409 /*CompressionCost*/true); 6410 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6411 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 6412 /*CompressionCost*/true); 6413 6414 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6415 // combine should be prevented. 6416 if (C1Cost < ShiftedC1Cost) 6417 return false; 6418 } 6419 } 6420 return true; 6421 } 6422 6423 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6424 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6425 TargetLoweringOpt &TLO) const { 6426 // Delay this optimization as late as possible. 6427 if (!TLO.LegalOps) 6428 return false; 6429 6430 EVT VT = Op.getValueType(); 6431 if (VT.isVector()) 6432 return false; 6433 6434 // Only handle AND for now. 6435 if (Op.getOpcode() != ISD::AND) 6436 return false; 6437 6438 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6439 if (!C) 6440 return false; 6441 6442 const APInt &Mask = C->getAPIntValue(); 6443 6444 // Clear all non-demanded bits initially. 6445 APInt ShrunkMask = Mask & DemandedBits; 6446 6447 // Try to make a smaller immediate by setting undemanded bits. 6448 6449 APInt ExpandedMask = Mask | ~DemandedBits; 6450 6451 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6452 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6453 }; 6454 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6455 if (NewMask == Mask) 6456 return true; 6457 SDLoc DL(Op); 6458 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6459 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6460 return TLO.CombineTo(Op, NewOp); 6461 }; 6462 6463 // If the shrunk mask fits in sign extended 12 bits, let the target 6464 // independent code apply it. 6465 if (ShrunkMask.isSignedIntN(12)) 6466 return false; 6467 6468 // Preserve (and X, 0xffff) when zext.h is supported. 6469 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6470 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6471 if (IsLegalMask(NewMask)) 6472 return UseMask(NewMask); 6473 } 6474 6475 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6476 if (VT == MVT::i64) { 6477 APInt NewMask = APInt(64, 0xffffffff); 6478 if (IsLegalMask(NewMask)) 6479 return UseMask(NewMask); 6480 } 6481 6482 // For the remaining optimizations, we need to be able to make a negative 6483 // number through a combination of mask and undemanded bits. 6484 if (!ExpandedMask.isNegative()) 6485 return false; 6486 6487 // What is the fewest number of bits we need to represent the negative number. 6488 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6489 6490 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6491 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6492 APInt NewMask = ShrunkMask; 6493 if (MinSignedBits <= 12) 6494 NewMask.setBitsFrom(11); 6495 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6496 NewMask.setBitsFrom(31); 6497 else 6498 return false; 6499 6500 // Sanity check that our new mask is a subset of the demanded mask. 6501 assert(IsLegalMask(NewMask)); 6502 return UseMask(NewMask); 6503 } 6504 6505 static void computeGREV(APInt &Src, unsigned ShAmt) { 6506 ShAmt &= Src.getBitWidth() - 1; 6507 uint64_t x = Src.getZExtValue(); 6508 if (ShAmt & 1) 6509 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6510 if (ShAmt & 2) 6511 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6512 if (ShAmt & 4) 6513 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6514 if (ShAmt & 8) 6515 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6516 if (ShAmt & 16) 6517 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6518 if (ShAmt & 32) 6519 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6520 Src = x; 6521 } 6522 6523 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6524 KnownBits &Known, 6525 const APInt &DemandedElts, 6526 const SelectionDAG &DAG, 6527 unsigned Depth) const { 6528 unsigned BitWidth = Known.getBitWidth(); 6529 unsigned Opc = Op.getOpcode(); 6530 assert((Opc >= ISD::BUILTIN_OP_END || 6531 Opc == ISD::INTRINSIC_WO_CHAIN || 6532 Opc == ISD::INTRINSIC_W_CHAIN || 6533 Opc == ISD::INTRINSIC_VOID) && 6534 "Should use MaskedValueIsZero if you don't know whether Op" 6535 " is a target node!"); 6536 6537 Known.resetAll(); 6538 switch (Opc) { 6539 default: break; 6540 case RISCVISD::SELECT_CC: { 6541 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6542 // If we don't know any bits, early out. 6543 if (Known.isUnknown()) 6544 break; 6545 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6546 6547 // Only known if known in both the LHS and RHS. 6548 Known = KnownBits::commonBits(Known, Known2); 6549 break; 6550 } 6551 case RISCVISD::REMUW: { 6552 KnownBits Known2; 6553 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6554 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6555 // We only care about the lower 32 bits. 6556 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6557 // Restore the original width by sign extending. 6558 Known = Known.sext(BitWidth); 6559 break; 6560 } 6561 case RISCVISD::DIVUW: { 6562 KnownBits Known2; 6563 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6564 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6565 // We only care about the lower 32 bits. 6566 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6567 // Restore the original width by sign extending. 6568 Known = Known.sext(BitWidth); 6569 break; 6570 } 6571 case RISCVISD::CTZW: { 6572 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6573 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6574 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6575 Known.Zero.setBitsFrom(LowBits); 6576 break; 6577 } 6578 case RISCVISD::CLZW: { 6579 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6580 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6581 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6582 Known.Zero.setBitsFrom(LowBits); 6583 break; 6584 } 6585 case RISCVISD::GREV: 6586 case RISCVISD::GREVW: { 6587 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6588 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6589 if (Opc == RISCVISD::GREVW) 6590 Known = Known.trunc(32); 6591 unsigned ShAmt = C->getZExtValue(); 6592 computeGREV(Known.Zero, ShAmt); 6593 computeGREV(Known.One, ShAmt); 6594 if (Opc == RISCVISD::GREVW) 6595 Known = Known.sext(BitWidth); 6596 } 6597 break; 6598 } 6599 case RISCVISD::READ_VLENB: 6600 // We assume VLENB is at least 16 bytes. 6601 Known.Zero.setLowBits(4); 6602 // We assume VLENB is no more than 65536 / 8 bytes. 6603 Known.Zero.setBitsFrom(14); 6604 break; 6605 case ISD::INTRINSIC_W_CHAIN: { 6606 unsigned IntNo = Op.getConstantOperandVal(1); 6607 switch (IntNo) { 6608 default: 6609 // We can't do anything for most intrinsics. 6610 break; 6611 case Intrinsic::riscv_vsetvli: 6612 case Intrinsic::riscv_vsetvlimax: 6613 // Assume that VL output is positive and would fit in an int32_t. 6614 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6615 if (BitWidth >= 32) 6616 Known.Zero.setBitsFrom(31); 6617 break; 6618 } 6619 break; 6620 } 6621 } 6622 } 6623 6624 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6625 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6626 unsigned Depth) const { 6627 switch (Op.getOpcode()) { 6628 default: 6629 break; 6630 case RISCVISD::SLLW: 6631 case RISCVISD::SRAW: 6632 case RISCVISD::SRLW: 6633 case RISCVISD::DIVW: 6634 case RISCVISD::DIVUW: 6635 case RISCVISD::REMUW: 6636 case RISCVISD::ROLW: 6637 case RISCVISD::RORW: 6638 case RISCVISD::GREVW: 6639 case RISCVISD::GORCW: 6640 case RISCVISD::FSLW: 6641 case RISCVISD::FSRW: 6642 case RISCVISD::SHFLW: 6643 case RISCVISD::UNSHFLW: 6644 case RISCVISD::BCOMPRESSW: 6645 case RISCVISD::BDECOMPRESSW: 6646 case RISCVISD::FCVT_W_RTZ_RV64: 6647 case RISCVISD::FCVT_WU_RTZ_RV64: 6648 // TODO: As the result is sign-extended, this is conservatively correct. A 6649 // more precise answer could be calculated for SRAW depending on known 6650 // bits in the shift amount. 6651 return 33; 6652 case RISCVISD::SHFL: 6653 case RISCVISD::UNSHFL: { 6654 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6655 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6656 // will stay within the upper 32 bits. If there were more than 32 sign bits 6657 // before there will be at least 33 sign bits after. 6658 if (Op.getValueType() == MVT::i64 && 6659 isa<ConstantSDNode>(Op.getOperand(1)) && 6660 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6661 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6662 if (Tmp > 32) 6663 return 33; 6664 } 6665 break; 6666 } 6667 case RISCVISD::VMV_X_S: 6668 // The number of sign bits of the scalar result is computed by obtaining the 6669 // element type of the input vector operand, subtracting its width from the 6670 // XLEN, and then adding one (sign bit within the element type). If the 6671 // element type is wider than XLen, the least-significant XLEN bits are 6672 // taken. 6673 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6674 return 1; 6675 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6676 } 6677 6678 return 1; 6679 } 6680 6681 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6682 MachineBasicBlock *BB) { 6683 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6684 6685 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6686 // Should the count have wrapped while it was being read, we need to try 6687 // again. 6688 // ... 6689 // read: 6690 // rdcycleh x3 # load high word of cycle 6691 // rdcycle x2 # load low word of cycle 6692 // rdcycleh x4 # load high word of cycle 6693 // bne x3, x4, read # check if high word reads match, otherwise try again 6694 // ... 6695 6696 MachineFunction &MF = *BB->getParent(); 6697 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6698 MachineFunction::iterator It = ++BB->getIterator(); 6699 6700 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6701 MF.insert(It, LoopMBB); 6702 6703 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6704 MF.insert(It, DoneMBB); 6705 6706 // Transfer the remainder of BB and its successor edges to DoneMBB. 6707 DoneMBB->splice(DoneMBB->begin(), BB, 6708 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6709 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6710 6711 BB->addSuccessor(LoopMBB); 6712 6713 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6714 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6715 Register LoReg = MI.getOperand(0).getReg(); 6716 Register HiReg = MI.getOperand(1).getReg(); 6717 DebugLoc DL = MI.getDebugLoc(); 6718 6719 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6720 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6721 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6722 .addReg(RISCV::X0); 6723 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6724 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6725 .addReg(RISCV::X0); 6726 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6727 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6728 .addReg(RISCV::X0); 6729 6730 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6731 .addReg(HiReg) 6732 .addReg(ReadAgainReg) 6733 .addMBB(LoopMBB); 6734 6735 LoopMBB->addSuccessor(LoopMBB); 6736 LoopMBB->addSuccessor(DoneMBB); 6737 6738 MI.eraseFromParent(); 6739 6740 return DoneMBB; 6741 } 6742 6743 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6744 MachineBasicBlock *BB) { 6745 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6746 6747 MachineFunction &MF = *BB->getParent(); 6748 DebugLoc DL = MI.getDebugLoc(); 6749 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6750 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6751 Register LoReg = MI.getOperand(0).getReg(); 6752 Register HiReg = MI.getOperand(1).getReg(); 6753 Register SrcReg = MI.getOperand(2).getReg(); 6754 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6755 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6756 6757 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6758 RI); 6759 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6760 MachineMemOperand *MMOLo = 6761 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6762 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6763 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6764 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6765 .addFrameIndex(FI) 6766 .addImm(0) 6767 .addMemOperand(MMOLo); 6768 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6769 .addFrameIndex(FI) 6770 .addImm(4) 6771 .addMemOperand(MMOHi); 6772 MI.eraseFromParent(); // The pseudo instruction is gone now. 6773 return BB; 6774 } 6775 6776 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6777 MachineBasicBlock *BB) { 6778 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6779 "Unexpected instruction"); 6780 6781 MachineFunction &MF = *BB->getParent(); 6782 DebugLoc DL = MI.getDebugLoc(); 6783 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6784 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6785 Register DstReg = MI.getOperand(0).getReg(); 6786 Register LoReg = MI.getOperand(1).getReg(); 6787 Register HiReg = MI.getOperand(2).getReg(); 6788 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6789 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6790 6791 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6792 MachineMemOperand *MMOLo = 6793 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6794 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6795 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6796 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6797 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6798 .addFrameIndex(FI) 6799 .addImm(0) 6800 .addMemOperand(MMOLo); 6801 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6802 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6803 .addFrameIndex(FI) 6804 .addImm(4) 6805 .addMemOperand(MMOHi); 6806 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6807 MI.eraseFromParent(); // The pseudo instruction is gone now. 6808 return BB; 6809 } 6810 6811 static bool isSelectPseudo(MachineInstr &MI) { 6812 switch (MI.getOpcode()) { 6813 default: 6814 return false; 6815 case RISCV::Select_GPR_Using_CC_GPR: 6816 case RISCV::Select_FPR16_Using_CC_GPR: 6817 case RISCV::Select_FPR32_Using_CC_GPR: 6818 case RISCV::Select_FPR64_Using_CC_GPR: 6819 return true; 6820 } 6821 } 6822 6823 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6824 MachineBasicBlock *BB) { 6825 // To "insert" Select_* instructions, we actually have to insert the triangle 6826 // control-flow pattern. The incoming instructions know the destination vreg 6827 // to set, the condition code register to branch on, the true/false values to 6828 // select between, and the condcode to use to select the appropriate branch. 6829 // 6830 // We produce the following control flow: 6831 // HeadMBB 6832 // | \ 6833 // | IfFalseMBB 6834 // | / 6835 // TailMBB 6836 // 6837 // When we find a sequence of selects we attempt to optimize their emission 6838 // by sharing the control flow. Currently we only handle cases where we have 6839 // multiple selects with the exact same condition (same LHS, RHS and CC). 6840 // The selects may be interleaved with other instructions if the other 6841 // instructions meet some requirements we deem safe: 6842 // - They are debug instructions. Otherwise, 6843 // - They do not have side-effects, do not access memory and their inputs do 6844 // not depend on the results of the select pseudo-instructions. 6845 // The TrueV/FalseV operands of the selects cannot depend on the result of 6846 // previous selects in the sequence. 6847 // These conditions could be further relaxed. See the X86 target for a 6848 // related approach and more information. 6849 Register LHS = MI.getOperand(1).getReg(); 6850 Register RHS = MI.getOperand(2).getReg(); 6851 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6852 6853 SmallVector<MachineInstr *, 4> SelectDebugValues; 6854 SmallSet<Register, 4> SelectDests; 6855 SelectDests.insert(MI.getOperand(0).getReg()); 6856 6857 MachineInstr *LastSelectPseudo = &MI; 6858 6859 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6860 SequenceMBBI != E; ++SequenceMBBI) { 6861 if (SequenceMBBI->isDebugInstr()) 6862 continue; 6863 else if (isSelectPseudo(*SequenceMBBI)) { 6864 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6865 SequenceMBBI->getOperand(2).getReg() != RHS || 6866 SequenceMBBI->getOperand(3).getImm() != CC || 6867 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6868 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6869 break; 6870 LastSelectPseudo = &*SequenceMBBI; 6871 SequenceMBBI->collectDebugValues(SelectDebugValues); 6872 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6873 } else { 6874 if (SequenceMBBI->hasUnmodeledSideEffects() || 6875 SequenceMBBI->mayLoadOrStore()) 6876 break; 6877 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6878 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6879 })) 6880 break; 6881 } 6882 } 6883 6884 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6885 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6886 DebugLoc DL = MI.getDebugLoc(); 6887 MachineFunction::iterator I = ++BB->getIterator(); 6888 6889 MachineBasicBlock *HeadMBB = BB; 6890 MachineFunction *F = BB->getParent(); 6891 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6892 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6893 6894 F->insert(I, IfFalseMBB); 6895 F->insert(I, TailMBB); 6896 6897 // Transfer debug instructions associated with the selects to TailMBB. 6898 for (MachineInstr *DebugInstr : SelectDebugValues) { 6899 TailMBB->push_back(DebugInstr->removeFromParent()); 6900 } 6901 6902 // Move all instructions after the sequence to TailMBB. 6903 TailMBB->splice(TailMBB->end(), HeadMBB, 6904 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6905 // Update machine-CFG edges by transferring all successors of the current 6906 // block to the new block which will contain the Phi nodes for the selects. 6907 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6908 // Set the successors for HeadMBB. 6909 HeadMBB->addSuccessor(IfFalseMBB); 6910 HeadMBB->addSuccessor(TailMBB); 6911 6912 // Insert appropriate branch. 6913 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6914 6915 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6916 .addReg(LHS) 6917 .addReg(RHS) 6918 .addMBB(TailMBB); 6919 6920 // IfFalseMBB just falls through to TailMBB. 6921 IfFalseMBB->addSuccessor(TailMBB); 6922 6923 // Create PHIs for all of the select pseudo-instructions. 6924 auto SelectMBBI = MI.getIterator(); 6925 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6926 auto InsertionPoint = TailMBB->begin(); 6927 while (SelectMBBI != SelectEnd) { 6928 auto Next = std::next(SelectMBBI); 6929 if (isSelectPseudo(*SelectMBBI)) { 6930 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6931 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6932 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6933 .addReg(SelectMBBI->getOperand(4).getReg()) 6934 .addMBB(HeadMBB) 6935 .addReg(SelectMBBI->getOperand(5).getReg()) 6936 .addMBB(IfFalseMBB); 6937 SelectMBBI->eraseFromParent(); 6938 } 6939 SelectMBBI = Next; 6940 } 6941 6942 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6943 return TailMBB; 6944 } 6945 6946 MachineBasicBlock * 6947 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6948 MachineBasicBlock *BB) const { 6949 switch (MI.getOpcode()) { 6950 default: 6951 llvm_unreachable("Unexpected instr type to insert"); 6952 case RISCV::ReadCycleWide: 6953 assert(!Subtarget.is64Bit() && 6954 "ReadCycleWrite is only to be used on riscv32"); 6955 return emitReadCycleWidePseudo(MI, BB); 6956 case RISCV::Select_GPR_Using_CC_GPR: 6957 case RISCV::Select_FPR16_Using_CC_GPR: 6958 case RISCV::Select_FPR32_Using_CC_GPR: 6959 case RISCV::Select_FPR64_Using_CC_GPR: 6960 return emitSelectPseudo(MI, BB); 6961 case RISCV::BuildPairF64Pseudo: 6962 return emitBuildPairF64Pseudo(MI, BB); 6963 case RISCV::SplitF64Pseudo: 6964 return emitSplitF64Pseudo(MI, BB); 6965 } 6966 } 6967 6968 // Calling Convention Implementation. 6969 // The expectations for frontend ABI lowering vary from target to target. 6970 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6971 // details, but this is a longer term goal. For now, we simply try to keep the 6972 // role of the frontend as simple and well-defined as possible. The rules can 6973 // be summarised as: 6974 // * Never split up large scalar arguments. We handle them here. 6975 // * If a hardfloat calling convention is being used, and the struct may be 6976 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6977 // available, then pass as two separate arguments. If either the GPRs or FPRs 6978 // are exhausted, then pass according to the rule below. 6979 // * If a struct could never be passed in registers or directly in a stack 6980 // slot (as it is larger than 2*XLEN and the floating point rules don't 6981 // apply), then pass it using a pointer with the byval attribute. 6982 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6983 // word-sized array or a 2*XLEN scalar (depending on alignment). 6984 // * The frontend can determine whether a struct is returned by reference or 6985 // not based on its size and fields. If it will be returned by reference, the 6986 // frontend must modify the prototype so a pointer with the sret annotation is 6987 // passed as the first argument. This is not necessary for large scalar 6988 // returns. 6989 // * Struct return values and varargs should be coerced to structs containing 6990 // register-size fields in the same situations they would be for fixed 6991 // arguments. 6992 6993 static const MCPhysReg ArgGPRs[] = { 6994 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6995 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6996 }; 6997 static const MCPhysReg ArgFPR16s[] = { 6998 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6999 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7000 }; 7001 static const MCPhysReg ArgFPR32s[] = { 7002 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7003 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7004 }; 7005 static const MCPhysReg ArgFPR64s[] = { 7006 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7007 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7008 }; 7009 // This is an interim calling convention and it may be changed in the future. 7010 static const MCPhysReg ArgVRs[] = { 7011 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7012 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7013 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7014 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7015 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7016 RISCV::V20M2, RISCV::V22M2}; 7017 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7018 RISCV::V20M4}; 7019 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7020 7021 // Pass a 2*XLEN argument that has been split into two XLEN values through 7022 // registers or the stack as necessary. 7023 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7024 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7025 MVT ValVT2, MVT LocVT2, 7026 ISD::ArgFlagsTy ArgFlags2) { 7027 unsigned XLenInBytes = XLen / 8; 7028 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7029 // At least one half can be passed via register. 7030 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7031 VA1.getLocVT(), CCValAssign::Full)); 7032 } else { 7033 // Both halves must be passed on the stack, with proper alignment. 7034 Align StackAlign = 7035 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7036 State.addLoc( 7037 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7038 State.AllocateStack(XLenInBytes, StackAlign), 7039 VA1.getLocVT(), CCValAssign::Full)); 7040 State.addLoc(CCValAssign::getMem( 7041 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7042 LocVT2, CCValAssign::Full)); 7043 return false; 7044 } 7045 7046 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7047 // The second half can also be passed via register. 7048 State.addLoc( 7049 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7050 } else { 7051 // The second half is passed via the stack, without additional alignment. 7052 State.addLoc(CCValAssign::getMem( 7053 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7054 LocVT2, CCValAssign::Full)); 7055 } 7056 7057 return false; 7058 } 7059 7060 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7061 Optional<unsigned> FirstMaskArgument, 7062 CCState &State, const RISCVTargetLowering &TLI) { 7063 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7064 if (RC == &RISCV::VRRegClass) { 7065 // Assign the first mask argument to V0. 7066 // This is an interim calling convention and it may be changed in the 7067 // future. 7068 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7069 return State.AllocateReg(RISCV::V0); 7070 return State.AllocateReg(ArgVRs); 7071 } 7072 if (RC == &RISCV::VRM2RegClass) 7073 return State.AllocateReg(ArgVRM2s); 7074 if (RC == &RISCV::VRM4RegClass) 7075 return State.AllocateReg(ArgVRM4s); 7076 if (RC == &RISCV::VRM8RegClass) 7077 return State.AllocateReg(ArgVRM8s); 7078 llvm_unreachable("Unhandled register class for ValueType"); 7079 } 7080 7081 // Implements the RISC-V calling convention. Returns true upon failure. 7082 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7083 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7084 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7085 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7086 Optional<unsigned> FirstMaskArgument) { 7087 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7088 assert(XLen == 32 || XLen == 64); 7089 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7090 7091 // Any return value split in to more than two values can't be returned 7092 // directly. Vectors are returned via the available vector registers. 7093 if (!LocVT.isVector() && IsRet && ValNo > 1) 7094 return true; 7095 7096 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7097 // variadic argument, or if no F16/F32 argument registers are available. 7098 bool UseGPRForF16_F32 = true; 7099 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7100 // variadic argument, or if no F64 argument registers are available. 7101 bool UseGPRForF64 = true; 7102 7103 switch (ABI) { 7104 default: 7105 llvm_unreachable("Unexpected ABI"); 7106 case RISCVABI::ABI_ILP32: 7107 case RISCVABI::ABI_LP64: 7108 break; 7109 case RISCVABI::ABI_ILP32F: 7110 case RISCVABI::ABI_LP64F: 7111 UseGPRForF16_F32 = !IsFixed; 7112 break; 7113 case RISCVABI::ABI_ILP32D: 7114 case RISCVABI::ABI_LP64D: 7115 UseGPRForF16_F32 = !IsFixed; 7116 UseGPRForF64 = !IsFixed; 7117 break; 7118 } 7119 7120 // FPR16, FPR32, and FPR64 alias each other. 7121 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7122 UseGPRForF16_F32 = true; 7123 UseGPRForF64 = true; 7124 } 7125 7126 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7127 // similar local variables rather than directly checking against the target 7128 // ABI. 7129 7130 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7131 LocVT = XLenVT; 7132 LocInfo = CCValAssign::BCvt; 7133 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7134 LocVT = MVT::i64; 7135 LocInfo = CCValAssign::BCvt; 7136 } 7137 7138 // If this is a variadic argument, the RISC-V calling convention requires 7139 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7140 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7141 // be used regardless of whether the original argument was split during 7142 // legalisation or not. The argument will not be passed by registers if the 7143 // original type is larger than 2*XLEN, so the register alignment rule does 7144 // not apply. 7145 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7146 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7147 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7148 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7149 // Skip 'odd' register if necessary. 7150 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7151 State.AllocateReg(ArgGPRs); 7152 } 7153 7154 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7155 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7156 State.getPendingArgFlags(); 7157 7158 assert(PendingLocs.size() == PendingArgFlags.size() && 7159 "PendingLocs and PendingArgFlags out of sync"); 7160 7161 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7162 // registers are exhausted. 7163 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7164 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7165 "Can't lower f64 if it is split"); 7166 // Depending on available argument GPRS, f64 may be passed in a pair of 7167 // GPRs, split between a GPR and the stack, or passed completely on the 7168 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7169 // cases. 7170 Register Reg = State.AllocateReg(ArgGPRs); 7171 LocVT = MVT::i32; 7172 if (!Reg) { 7173 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7174 State.addLoc( 7175 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7176 return false; 7177 } 7178 if (!State.AllocateReg(ArgGPRs)) 7179 State.AllocateStack(4, Align(4)); 7180 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7181 return false; 7182 } 7183 7184 // Fixed-length vectors are located in the corresponding scalable-vector 7185 // container types. 7186 if (ValVT.isFixedLengthVector()) 7187 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7188 7189 // Split arguments might be passed indirectly, so keep track of the pending 7190 // values. Split vectors are passed via a mix of registers and indirectly, so 7191 // treat them as we would any other argument. 7192 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7193 LocVT = XLenVT; 7194 LocInfo = CCValAssign::Indirect; 7195 PendingLocs.push_back( 7196 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7197 PendingArgFlags.push_back(ArgFlags); 7198 if (!ArgFlags.isSplitEnd()) { 7199 return false; 7200 } 7201 } 7202 7203 // If the split argument only had two elements, it should be passed directly 7204 // in registers or on the stack. 7205 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7206 PendingLocs.size() <= 2) { 7207 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7208 // Apply the normal calling convention rules to the first half of the 7209 // split argument. 7210 CCValAssign VA = PendingLocs[0]; 7211 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7212 PendingLocs.clear(); 7213 PendingArgFlags.clear(); 7214 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7215 ArgFlags); 7216 } 7217 7218 // Allocate to a register if possible, or else a stack slot. 7219 Register Reg; 7220 unsigned StoreSizeBytes = XLen / 8; 7221 Align StackAlign = Align(XLen / 8); 7222 7223 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7224 Reg = State.AllocateReg(ArgFPR16s); 7225 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7226 Reg = State.AllocateReg(ArgFPR32s); 7227 else if (ValVT == MVT::f64 && !UseGPRForF64) 7228 Reg = State.AllocateReg(ArgFPR64s); 7229 else if (ValVT.isVector()) { 7230 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7231 if (!Reg) { 7232 // For return values, the vector must be passed fully via registers or 7233 // via the stack. 7234 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7235 // but we're using all of them. 7236 if (IsRet) 7237 return true; 7238 // Try using a GPR to pass the address 7239 if ((Reg = State.AllocateReg(ArgGPRs))) { 7240 LocVT = XLenVT; 7241 LocInfo = CCValAssign::Indirect; 7242 } else if (ValVT.isScalableVector()) { 7243 report_fatal_error("Unable to pass scalable vector types on the stack"); 7244 } else { 7245 // Pass fixed-length vectors on the stack. 7246 LocVT = ValVT; 7247 StoreSizeBytes = ValVT.getStoreSize(); 7248 // Align vectors to their element sizes, being careful for vXi1 7249 // vectors. 7250 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7251 } 7252 } 7253 } else { 7254 Reg = State.AllocateReg(ArgGPRs); 7255 } 7256 7257 unsigned StackOffset = 7258 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7259 7260 // If we reach this point and PendingLocs is non-empty, we must be at the 7261 // end of a split argument that must be passed indirectly. 7262 if (!PendingLocs.empty()) { 7263 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7264 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7265 7266 for (auto &It : PendingLocs) { 7267 if (Reg) 7268 It.convertToReg(Reg); 7269 else 7270 It.convertToMem(StackOffset); 7271 State.addLoc(It); 7272 } 7273 PendingLocs.clear(); 7274 PendingArgFlags.clear(); 7275 return false; 7276 } 7277 7278 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7279 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7280 "Expected an XLenVT or vector types at this stage"); 7281 7282 if (Reg) { 7283 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7284 return false; 7285 } 7286 7287 // When a floating-point value is passed on the stack, no bit-conversion is 7288 // needed. 7289 if (ValVT.isFloatingPoint()) { 7290 LocVT = ValVT; 7291 LocInfo = CCValAssign::Full; 7292 } 7293 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7294 return false; 7295 } 7296 7297 template <typename ArgTy> 7298 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7299 for (const auto &ArgIdx : enumerate(Args)) { 7300 MVT ArgVT = ArgIdx.value().VT; 7301 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7302 return ArgIdx.index(); 7303 } 7304 return None; 7305 } 7306 7307 void RISCVTargetLowering::analyzeInputArgs( 7308 MachineFunction &MF, CCState &CCInfo, 7309 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7310 RISCVCCAssignFn Fn) const { 7311 unsigned NumArgs = Ins.size(); 7312 FunctionType *FType = MF.getFunction().getFunctionType(); 7313 7314 Optional<unsigned> FirstMaskArgument; 7315 if (Subtarget.hasStdExtV()) 7316 FirstMaskArgument = preAssignMask(Ins); 7317 7318 for (unsigned i = 0; i != NumArgs; ++i) { 7319 MVT ArgVT = Ins[i].VT; 7320 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7321 7322 Type *ArgTy = nullptr; 7323 if (IsRet) 7324 ArgTy = FType->getReturnType(); 7325 else if (Ins[i].isOrigArg()) 7326 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7327 7328 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7329 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7330 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7331 FirstMaskArgument)) { 7332 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7333 << EVT(ArgVT).getEVTString() << '\n'); 7334 llvm_unreachable(nullptr); 7335 } 7336 } 7337 } 7338 7339 void RISCVTargetLowering::analyzeOutputArgs( 7340 MachineFunction &MF, CCState &CCInfo, 7341 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7342 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7343 unsigned NumArgs = Outs.size(); 7344 7345 Optional<unsigned> FirstMaskArgument; 7346 if (Subtarget.hasStdExtV()) 7347 FirstMaskArgument = preAssignMask(Outs); 7348 7349 for (unsigned i = 0; i != NumArgs; i++) { 7350 MVT ArgVT = Outs[i].VT; 7351 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7352 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7353 7354 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7355 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7356 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7357 FirstMaskArgument)) { 7358 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7359 << EVT(ArgVT).getEVTString() << "\n"); 7360 llvm_unreachable(nullptr); 7361 } 7362 } 7363 } 7364 7365 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7366 // values. 7367 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7368 const CCValAssign &VA, const SDLoc &DL, 7369 const RISCVSubtarget &Subtarget) { 7370 switch (VA.getLocInfo()) { 7371 default: 7372 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7373 case CCValAssign::Full: 7374 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7375 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7376 break; 7377 case CCValAssign::BCvt: 7378 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7379 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7380 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7381 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7382 else 7383 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7384 break; 7385 } 7386 return Val; 7387 } 7388 7389 // The caller is responsible for loading the full value if the argument is 7390 // passed with CCValAssign::Indirect. 7391 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7392 const CCValAssign &VA, const SDLoc &DL, 7393 const RISCVTargetLowering &TLI) { 7394 MachineFunction &MF = DAG.getMachineFunction(); 7395 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7396 EVT LocVT = VA.getLocVT(); 7397 SDValue Val; 7398 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7399 Register VReg = RegInfo.createVirtualRegister(RC); 7400 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7401 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7402 7403 if (VA.getLocInfo() == CCValAssign::Indirect) 7404 return Val; 7405 7406 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7407 } 7408 7409 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7410 const CCValAssign &VA, const SDLoc &DL, 7411 const RISCVSubtarget &Subtarget) { 7412 EVT LocVT = VA.getLocVT(); 7413 7414 switch (VA.getLocInfo()) { 7415 default: 7416 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7417 case CCValAssign::Full: 7418 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7419 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7420 break; 7421 case CCValAssign::BCvt: 7422 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7423 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7424 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7425 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7426 else 7427 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7428 break; 7429 } 7430 return Val; 7431 } 7432 7433 // The caller is responsible for loading the full value if the argument is 7434 // passed with CCValAssign::Indirect. 7435 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7436 const CCValAssign &VA, const SDLoc &DL) { 7437 MachineFunction &MF = DAG.getMachineFunction(); 7438 MachineFrameInfo &MFI = MF.getFrameInfo(); 7439 EVT LocVT = VA.getLocVT(); 7440 EVT ValVT = VA.getValVT(); 7441 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7442 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7443 /*Immutable=*/true); 7444 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7445 SDValue Val; 7446 7447 ISD::LoadExtType ExtType; 7448 switch (VA.getLocInfo()) { 7449 default: 7450 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7451 case CCValAssign::Full: 7452 case CCValAssign::Indirect: 7453 case CCValAssign::BCvt: 7454 ExtType = ISD::NON_EXTLOAD; 7455 break; 7456 } 7457 Val = DAG.getExtLoad( 7458 ExtType, DL, LocVT, Chain, FIN, 7459 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7460 return Val; 7461 } 7462 7463 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7464 const CCValAssign &VA, const SDLoc &DL) { 7465 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7466 "Unexpected VA"); 7467 MachineFunction &MF = DAG.getMachineFunction(); 7468 MachineFrameInfo &MFI = MF.getFrameInfo(); 7469 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7470 7471 if (VA.isMemLoc()) { 7472 // f64 is passed on the stack. 7473 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7474 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7475 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7476 MachinePointerInfo::getFixedStack(MF, FI)); 7477 } 7478 7479 assert(VA.isRegLoc() && "Expected register VA assignment"); 7480 7481 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7482 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7483 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7484 SDValue Hi; 7485 if (VA.getLocReg() == RISCV::X17) { 7486 // Second half of f64 is passed on the stack. 7487 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7488 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7489 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7490 MachinePointerInfo::getFixedStack(MF, FI)); 7491 } else { 7492 // Second half of f64 is passed in another GPR. 7493 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7494 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7495 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7496 } 7497 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7498 } 7499 7500 // FastCC has less than 1% performance improvement for some particular 7501 // benchmark. But theoretically, it may has benenfit for some cases. 7502 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7503 unsigned ValNo, MVT ValVT, MVT LocVT, 7504 CCValAssign::LocInfo LocInfo, 7505 ISD::ArgFlagsTy ArgFlags, CCState &State, 7506 bool IsFixed, bool IsRet, Type *OrigTy, 7507 const RISCVTargetLowering &TLI, 7508 Optional<unsigned> FirstMaskArgument) { 7509 7510 // X5 and X6 might be used for save-restore libcall. 7511 static const MCPhysReg GPRList[] = { 7512 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7513 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7514 RISCV::X29, RISCV::X30, RISCV::X31}; 7515 7516 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7517 if (unsigned Reg = State.AllocateReg(GPRList)) { 7518 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7519 return false; 7520 } 7521 } 7522 7523 if (LocVT == MVT::f16) { 7524 static const MCPhysReg FPR16List[] = { 7525 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7526 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7527 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7528 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7529 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7530 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7531 return false; 7532 } 7533 } 7534 7535 if (LocVT == MVT::f32) { 7536 static const MCPhysReg FPR32List[] = { 7537 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7538 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7539 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7540 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7541 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7542 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7543 return false; 7544 } 7545 } 7546 7547 if (LocVT == MVT::f64) { 7548 static const MCPhysReg FPR64List[] = { 7549 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7550 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7551 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7552 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7553 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7554 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7555 return false; 7556 } 7557 } 7558 7559 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7560 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7561 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7562 return false; 7563 } 7564 7565 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7566 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7567 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7568 return false; 7569 } 7570 7571 if (LocVT.isVector()) { 7572 if (unsigned Reg = 7573 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7574 // Fixed-length vectors are located in the corresponding scalable-vector 7575 // container types. 7576 if (ValVT.isFixedLengthVector()) 7577 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7578 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7579 } else { 7580 // Try and pass the address via a "fast" GPR. 7581 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7582 LocInfo = CCValAssign::Indirect; 7583 LocVT = TLI.getSubtarget().getXLenVT(); 7584 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7585 } else if (ValVT.isFixedLengthVector()) { 7586 auto StackAlign = 7587 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7588 unsigned StackOffset = 7589 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7590 State.addLoc( 7591 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7592 } else { 7593 // Can't pass scalable vectors on the stack. 7594 return true; 7595 } 7596 } 7597 7598 return false; 7599 } 7600 7601 return true; // CC didn't match. 7602 } 7603 7604 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7605 CCValAssign::LocInfo LocInfo, 7606 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7607 7608 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7609 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7610 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7611 static const MCPhysReg GPRList[] = { 7612 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7613 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7614 if (unsigned Reg = State.AllocateReg(GPRList)) { 7615 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7616 return false; 7617 } 7618 } 7619 7620 if (LocVT == MVT::f32) { 7621 // Pass in STG registers: F1, ..., F6 7622 // fs0 ... fs5 7623 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7624 RISCV::F18_F, RISCV::F19_F, 7625 RISCV::F20_F, RISCV::F21_F}; 7626 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7627 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7628 return false; 7629 } 7630 } 7631 7632 if (LocVT == MVT::f64) { 7633 // Pass in STG registers: D1, ..., D6 7634 // fs6 ... fs11 7635 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7636 RISCV::F24_D, RISCV::F25_D, 7637 RISCV::F26_D, RISCV::F27_D}; 7638 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7639 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7640 return false; 7641 } 7642 } 7643 7644 report_fatal_error("No registers left in GHC calling convention"); 7645 return true; 7646 } 7647 7648 // Transform physical registers into virtual registers. 7649 SDValue RISCVTargetLowering::LowerFormalArguments( 7650 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7651 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7652 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7653 7654 MachineFunction &MF = DAG.getMachineFunction(); 7655 7656 switch (CallConv) { 7657 default: 7658 report_fatal_error("Unsupported calling convention"); 7659 case CallingConv::C: 7660 case CallingConv::Fast: 7661 break; 7662 case CallingConv::GHC: 7663 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7664 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7665 report_fatal_error( 7666 "GHC calling convention requires the F and D instruction set extensions"); 7667 } 7668 7669 const Function &Func = MF.getFunction(); 7670 if (Func.hasFnAttribute("interrupt")) { 7671 if (!Func.arg_empty()) 7672 report_fatal_error( 7673 "Functions with the interrupt attribute cannot have arguments!"); 7674 7675 StringRef Kind = 7676 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7677 7678 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7679 report_fatal_error( 7680 "Function interrupt attribute argument not supported!"); 7681 } 7682 7683 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7684 MVT XLenVT = Subtarget.getXLenVT(); 7685 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7686 // Used with vargs to acumulate store chains. 7687 std::vector<SDValue> OutChains; 7688 7689 // Assign locations to all of the incoming arguments. 7690 SmallVector<CCValAssign, 16> ArgLocs; 7691 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7692 7693 if (CallConv == CallingConv::GHC) 7694 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7695 else 7696 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7697 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7698 : CC_RISCV); 7699 7700 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7701 CCValAssign &VA = ArgLocs[i]; 7702 SDValue ArgValue; 7703 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7704 // case. 7705 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7706 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7707 else if (VA.isRegLoc()) 7708 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7709 else 7710 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7711 7712 if (VA.getLocInfo() == CCValAssign::Indirect) { 7713 // If the original argument was split and passed by reference (e.g. i128 7714 // on RV32), we need to load all parts of it here (using the same 7715 // address). Vectors may be partly split to registers and partly to the 7716 // stack, in which case the base address is partly offset and subsequent 7717 // stores are relative to that. 7718 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7719 MachinePointerInfo())); 7720 unsigned ArgIndex = Ins[i].OrigArgIndex; 7721 unsigned ArgPartOffset = Ins[i].PartOffset; 7722 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7723 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7724 CCValAssign &PartVA = ArgLocs[i + 1]; 7725 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7726 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7727 if (PartVA.getValVT().isScalableVector()) 7728 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7729 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7730 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7731 MachinePointerInfo())); 7732 ++i; 7733 } 7734 continue; 7735 } 7736 InVals.push_back(ArgValue); 7737 } 7738 7739 if (IsVarArg) { 7740 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7741 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7742 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7743 MachineFrameInfo &MFI = MF.getFrameInfo(); 7744 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7745 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7746 7747 // Offset of the first variable argument from stack pointer, and size of 7748 // the vararg save area. For now, the varargs save area is either zero or 7749 // large enough to hold a0-a7. 7750 int VaArgOffset, VarArgsSaveSize; 7751 7752 // If all registers are allocated, then all varargs must be passed on the 7753 // stack and we don't need to save any argregs. 7754 if (ArgRegs.size() == Idx) { 7755 VaArgOffset = CCInfo.getNextStackOffset(); 7756 VarArgsSaveSize = 0; 7757 } else { 7758 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7759 VaArgOffset = -VarArgsSaveSize; 7760 } 7761 7762 // Record the frame index of the first variable argument 7763 // which is a value necessary to VASTART. 7764 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7765 RVFI->setVarArgsFrameIndex(FI); 7766 7767 // If saving an odd number of registers then create an extra stack slot to 7768 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7769 // offsets to even-numbered registered remain 2*XLEN-aligned. 7770 if (Idx % 2) { 7771 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7772 VarArgsSaveSize += XLenInBytes; 7773 } 7774 7775 // Copy the integer registers that may have been used for passing varargs 7776 // to the vararg save area. 7777 for (unsigned I = Idx; I < ArgRegs.size(); 7778 ++I, VaArgOffset += XLenInBytes) { 7779 const Register Reg = RegInfo.createVirtualRegister(RC); 7780 RegInfo.addLiveIn(ArgRegs[I], Reg); 7781 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7782 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7783 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7784 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7785 MachinePointerInfo::getFixedStack(MF, FI)); 7786 cast<StoreSDNode>(Store.getNode()) 7787 ->getMemOperand() 7788 ->setValue((Value *)nullptr); 7789 OutChains.push_back(Store); 7790 } 7791 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7792 } 7793 7794 // All stores are grouped in one node to allow the matching between 7795 // the size of Ins and InVals. This only happens for vararg functions. 7796 if (!OutChains.empty()) { 7797 OutChains.push_back(Chain); 7798 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7799 } 7800 7801 return Chain; 7802 } 7803 7804 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7805 /// for tail call optimization. 7806 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7807 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7808 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7809 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7810 7811 auto &Callee = CLI.Callee; 7812 auto CalleeCC = CLI.CallConv; 7813 auto &Outs = CLI.Outs; 7814 auto &Caller = MF.getFunction(); 7815 auto CallerCC = Caller.getCallingConv(); 7816 7817 // Exception-handling functions need a special set of instructions to 7818 // indicate a return to the hardware. Tail-calling another function would 7819 // probably break this. 7820 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7821 // should be expanded as new function attributes are introduced. 7822 if (Caller.hasFnAttribute("interrupt")) 7823 return false; 7824 7825 // Do not tail call opt if the stack is used to pass parameters. 7826 if (CCInfo.getNextStackOffset() != 0) 7827 return false; 7828 7829 // Do not tail call opt if any parameters need to be passed indirectly. 7830 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7831 // passed indirectly. So the address of the value will be passed in a 7832 // register, or if not available, then the address is put on the stack. In 7833 // order to pass indirectly, space on the stack often needs to be allocated 7834 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7835 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7836 // are passed CCValAssign::Indirect. 7837 for (auto &VA : ArgLocs) 7838 if (VA.getLocInfo() == CCValAssign::Indirect) 7839 return false; 7840 7841 // Do not tail call opt if either caller or callee uses struct return 7842 // semantics. 7843 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7844 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7845 if (IsCallerStructRet || IsCalleeStructRet) 7846 return false; 7847 7848 // Externally-defined functions with weak linkage should not be 7849 // tail-called. The behaviour of branch instructions in this situation (as 7850 // used for tail calls) is implementation-defined, so we cannot rely on the 7851 // linker replacing the tail call with a return. 7852 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7853 const GlobalValue *GV = G->getGlobal(); 7854 if (GV->hasExternalWeakLinkage()) 7855 return false; 7856 } 7857 7858 // The callee has to preserve all registers the caller needs to preserve. 7859 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7860 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7861 if (CalleeCC != CallerCC) { 7862 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7863 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7864 return false; 7865 } 7866 7867 // Byval parameters hand the function a pointer directly into the stack area 7868 // we want to reuse during a tail call. Working around this *is* possible 7869 // but less efficient and uglier in LowerCall. 7870 for (auto &Arg : Outs) 7871 if (Arg.Flags.isByVal()) 7872 return false; 7873 7874 return true; 7875 } 7876 7877 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7878 return DAG.getDataLayout().getPrefTypeAlign( 7879 VT.getTypeForEVT(*DAG.getContext())); 7880 } 7881 7882 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7883 // and output parameter nodes. 7884 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7885 SmallVectorImpl<SDValue> &InVals) const { 7886 SelectionDAG &DAG = CLI.DAG; 7887 SDLoc &DL = CLI.DL; 7888 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7889 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7890 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7891 SDValue Chain = CLI.Chain; 7892 SDValue Callee = CLI.Callee; 7893 bool &IsTailCall = CLI.IsTailCall; 7894 CallingConv::ID CallConv = CLI.CallConv; 7895 bool IsVarArg = CLI.IsVarArg; 7896 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7897 MVT XLenVT = Subtarget.getXLenVT(); 7898 7899 MachineFunction &MF = DAG.getMachineFunction(); 7900 7901 // Analyze the operands of the call, assigning locations to each operand. 7902 SmallVector<CCValAssign, 16> ArgLocs; 7903 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7904 7905 if (CallConv == CallingConv::GHC) 7906 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7907 else 7908 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 7909 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7910 : CC_RISCV); 7911 7912 // Check if it's really possible to do a tail call. 7913 if (IsTailCall) 7914 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7915 7916 if (IsTailCall) 7917 ++NumTailCalls; 7918 else if (CLI.CB && CLI.CB->isMustTailCall()) 7919 report_fatal_error("failed to perform tail call elimination on a call " 7920 "site marked musttail"); 7921 7922 // Get a count of how many bytes are to be pushed on the stack. 7923 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7924 7925 // Create local copies for byval args 7926 SmallVector<SDValue, 8> ByValArgs; 7927 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7928 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7929 if (!Flags.isByVal()) 7930 continue; 7931 7932 SDValue Arg = OutVals[i]; 7933 unsigned Size = Flags.getByValSize(); 7934 Align Alignment = Flags.getNonZeroByValAlign(); 7935 7936 int FI = 7937 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7938 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7939 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7940 7941 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7942 /*IsVolatile=*/false, 7943 /*AlwaysInline=*/false, IsTailCall, 7944 MachinePointerInfo(), MachinePointerInfo()); 7945 ByValArgs.push_back(FIPtr); 7946 } 7947 7948 if (!IsTailCall) 7949 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7950 7951 // Copy argument values to their designated locations. 7952 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7953 SmallVector<SDValue, 8> MemOpChains; 7954 SDValue StackPtr; 7955 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7956 CCValAssign &VA = ArgLocs[i]; 7957 SDValue ArgValue = OutVals[i]; 7958 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7959 7960 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7961 bool IsF64OnRV32DSoftABI = 7962 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7963 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7964 SDValue SplitF64 = DAG.getNode( 7965 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7966 SDValue Lo = SplitF64.getValue(0); 7967 SDValue Hi = SplitF64.getValue(1); 7968 7969 Register RegLo = VA.getLocReg(); 7970 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7971 7972 if (RegLo == RISCV::X17) { 7973 // Second half of f64 is passed on the stack. 7974 // Work out the address of the stack slot. 7975 if (!StackPtr.getNode()) 7976 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7977 // Emit the store. 7978 MemOpChains.push_back( 7979 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7980 } else { 7981 // Second half of f64 is passed in another GPR. 7982 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7983 Register RegHigh = RegLo + 1; 7984 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7985 } 7986 continue; 7987 } 7988 7989 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7990 // as any other MemLoc. 7991 7992 // Promote the value if needed. 7993 // For now, only handle fully promoted and indirect arguments. 7994 if (VA.getLocInfo() == CCValAssign::Indirect) { 7995 // Store the argument in a stack slot and pass its address. 7996 Align StackAlign = 7997 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7998 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7999 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8000 // If the original argument was split (e.g. i128), we need 8001 // to store the required parts of it here (and pass just one address). 8002 // Vectors may be partly split to registers and partly to the stack, in 8003 // which case the base address is partly offset and subsequent stores are 8004 // relative to that. 8005 unsigned ArgIndex = Outs[i].OrigArgIndex; 8006 unsigned ArgPartOffset = Outs[i].PartOffset; 8007 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8008 // Calculate the total size to store. We don't have access to what we're 8009 // actually storing other than performing the loop and collecting the 8010 // info. 8011 SmallVector<std::pair<SDValue, SDValue>> Parts; 8012 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8013 SDValue PartValue = OutVals[i + 1]; 8014 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8015 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8016 EVT PartVT = PartValue.getValueType(); 8017 if (PartVT.isScalableVector()) 8018 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8019 StoredSize += PartVT.getStoreSize(); 8020 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8021 Parts.push_back(std::make_pair(PartValue, Offset)); 8022 ++i; 8023 } 8024 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8025 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8026 MemOpChains.push_back( 8027 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8028 MachinePointerInfo::getFixedStack(MF, FI))); 8029 for (const auto &Part : Parts) { 8030 SDValue PartValue = Part.first; 8031 SDValue PartOffset = Part.second; 8032 SDValue Address = 8033 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8034 MemOpChains.push_back( 8035 DAG.getStore(Chain, DL, PartValue, Address, 8036 MachinePointerInfo::getFixedStack(MF, FI))); 8037 } 8038 ArgValue = SpillSlot; 8039 } else { 8040 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8041 } 8042 8043 // Use local copy if it is a byval arg. 8044 if (Flags.isByVal()) 8045 ArgValue = ByValArgs[j++]; 8046 8047 if (VA.isRegLoc()) { 8048 // Queue up the argument copies and emit them at the end. 8049 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8050 } else { 8051 assert(VA.isMemLoc() && "Argument not register or memory"); 8052 assert(!IsTailCall && "Tail call not allowed if stack is used " 8053 "for passing parameters"); 8054 8055 // Work out the address of the stack slot. 8056 if (!StackPtr.getNode()) 8057 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8058 SDValue Address = 8059 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8060 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8061 8062 // Emit the store. 8063 MemOpChains.push_back( 8064 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8065 } 8066 } 8067 8068 // Join the stores, which are independent of one another. 8069 if (!MemOpChains.empty()) 8070 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8071 8072 SDValue Glue; 8073 8074 // Build a sequence of copy-to-reg nodes, chained and glued together. 8075 for (auto &Reg : RegsToPass) { 8076 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8077 Glue = Chain.getValue(1); 8078 } 8079 8080 // Validate that none of the argument registers have been marked as 8081 // reserved, if so report an error. Do the same for the return address if this 8082 // is not a tailcall. 8083 validateCCReservedRegs(RegsToPass, MF); 8084 if (!IsTailCall && 8085 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8086 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8087 MF.getFunction(), 8088 "Return address register required, but has been reserved."}); 8089 8090 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8091 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8092 // split it and then direct call can be matched by PseudoCALL. 8093 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8094 const GlobalValue *GV = S->getGlobal(); 8095 8096 unsigned OpFlags = RISCVII::MO_CALL; 8097 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8098 OpFlags = RISCVII::MO_PLT; 8099 8100 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8101 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8102 unsigned OpFlags = RISCVII::MO_CALL; 8103 8104 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8105 nullptr)) 8106 OpFlags = RISCVII::MO_PLT; 8107 8108 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8109 } 8110 8111 // The first call operand is the chain and the second is the target address. 8112 SmallVector<SDValue, 8> Ops; 8113 Ops.push_back(Chain); 8114 Ops.push_back(Callee); 8115 8116 // Add argument registers to the end of the list so that they are 8117 // known live into the call. 8118 for (auto &Reg : RegsToPass) 8119 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8120 8121 if (!IsTailCall) { 8122 // Add a register mask operand representing the call-preserved registers. 8123 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8124 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8125 assert(Mask && "Missing call preserved mask for calling convention"); 8126 Ops.push_back(DAG.getRegisterMask(Mask)); 8127 } 8128 8129 // Glue the call to the argument copies, if any. 8130 if (Glue.getNode()) 8131 Ops.push_back(Glue); 8132 8133 // Emit the call. 8134 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8135 8136 if (IsTailCall) { 8137 MF.getFrameInfo().setHasTailCall(); 8138 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8139 } 8140 8141 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8142 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8143 Glue = Chain.getValue(1); 8144 8145 // Mark the end of the call, which is glued to the call itself. 8146 Chain = DAG.getCALLSEQ_END(Chain, 8147 DAG.getConstant(NumBytes, DL, PtrVT, true), 8148 DAG.getConstant(0, DL, PtrVT, true), 8149 Glue, DL); 8150 Glue = Chain.getValue(1); 8151 8152 // Assign locations to each value returned by this call. 8153 SmallVector<CCValAssign, 16> RVLocs; 8154 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8155 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8156 8157 // Copy all of the result registers out of their specified physreg. 8158 for (auto &VA : RVLocs) { 8159 // Copy the value out 8160 SDValue RetValue = 8161 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8162 // Glue the RetValue to the end of the call sequence 8163 Chain = RetValue.getValue(1); 8164 Glue = RetValue.getValue(2); 8165 8166 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8167 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8168 SDValue RetValue2 = 8169 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8170 Chain = RetValue2.getValue(1); 8171 Glue = RetValue2.getValue(2); 8172 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8173 RetValue2); 8174 } 8175 8176 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8177 8178 InVals.push_back(RetValue); 8179 } 8180 8181 return Chain; 8182 } 8183 8184 bool RISCVTargetLowering::CanLowerReturn( 8185 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8186 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8187 SmallVector<CCValAssign, 16> RVLocs; 8188 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8189 8190 Optional<unsigned> FirstMaskArgument; 8191 if (Subtarget.hasStdExtV()) 8192 FirstMaskArgument = preAssignMask(Outs); 8193 8194 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8195 MVT VT = Outs[i].VT; 8196 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8197 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8198 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8199 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8200 *this, FirstMaskArgument)) 8201 return false; 8202 } 8203 return true; 8204 } 8205 8206 SDValue 8207 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8208 bool IsVarArg, 8209 const SmallVectorImpl<ISD::OutputArg> &Outs, 8210 const SmallVectorImpl<SDValue> &OutVals, 8211 const SDLoc &DL, SelectionDAG &DAG) const { 8212 const MachineFunction &MF = DAG.getMachineFunction(); 8213 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8214 8215 // Stores the assignment of the return value to a location. 8216 SmallVector<CCValAssign, 16> RVLocs; 8217 8218 // Info about the registers and stack slot. 8219 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8220 *DAG.getContext()); 8221 8222 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8223 nullptr, CC_RISCV); 8224 8225 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8226 report_fatal_error("GHC functions return void only"); 8227 8228 SDValue Glue; 8229 SmallVector<SDValue, 4> RetOps(1, Chain); 8230 8231 // Copy the result values into the output registers. 8232 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8233 SDValue Val = OutVals[i]; 8234 CCValAssign &VA = RVLocs[i]; 8235 assert(VA.isRegLoc() && "Can only return in registers!"); 8236 8237 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8238 // Handle returning f64 on RV32D with a soft float ABI. 8239 assert(VA.isRegLoc() && "Expected return via registers"); 8240 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8241 DAG.getVTList(MVT::i32, MVT::i32), Val); 8242 SDValue Lo = SplitF64.getValue(0); 8243 SDValue Hi = SplitF64.getValue(1); 8244 Register RegLo = VA.getLocReg(); 8245 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8246 Register RegHi = RegLo + 1; 8247 8248 if (STI.isRegisterReservedByUser(RegLo) || 8249 STI.isRegisterReservedByUser(RegHi)) 8250 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8251 MF.getFunction(), 8252 "Return value register required, but has been reserved."}); 8253 8254 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8255 Glue = Chain.getValue(1); 8256 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8257 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8258 Glue = Chain.getValue(1); 8259 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8260 } else { 8261 // Handle a 'normal' return. 8262 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8263 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8264 8265 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8266 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8267 MF.getFunction(), 8268 "Return value register required, but has been reserved."}); 8269 8270 // Guarantee that all emitted copies are stuck together. 8271 Glue = Chain.getValue(1); 8272 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8273 } 8274 } 8275 8276 RetOps[0] = Chain; // Update chain. 8277 8278 // Add the glue node if we have it. 8279 if (Glue.getNode()) { 8280 RetOps.push_back(Glue); 8281 } 8282 8283 unsigned RetOpc = RISCVISD::RET_FLAG; 8284 // Interrupt service routines use different return instructions. 8285 const Function &Func = DAG.getMachineFunction().getFunction(); 8286 if (Func.hasFnAttribute("interrupt")) { 8287 if (!Func.getReturnType()->isVoidTy()) 8288 report_fatal_error( 8289 "Functions with the interrupt attribute must have void return type!"); 8290 8291 MachineFunction &MF = DAG.getMachineFunction(); 8292 StringRef Kind = 8293 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8294 8295 if (Kind == "user") 8296 RetOpc = RISCVISD::URET_FLAG; 8297 else if (Kind == "supervisor") 8298 RetOpc = RISCVISD::SRET_FLAG; 8299 else 8300 RetOpc = RISCVISD::MRET_FLAG; 8301 } 8302 8303 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8304 } 8305 8306 void RISCVTargetLowering::validateCCReservedRegs( 8307 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8308 MachineFunction &MF) const { 8309 const Function &F = MF.getFunction(); 8310 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8311 8312 if (llvm::any_of(Regs, [&STI](auto Reg) { 8313 return STI.isRegisterReservedByUser(Reg.first); 8314 })) 8315 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8316 F, "Argument register required, but has been reserved."}); 8317 } 8318 8319 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8320 return CI->isTailCall(); 8321 } 8322 8323 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8324 #define NODE_NAME_CASE(NODE) \ 8325 case RISCVISD::NODE: \ 8326 return "RISCVISD::" #NODE; 8327 // clang-format off 8328 switch ((RISCVISD::NodeType)Opcode) { 8329 case RISCVISD::FIRST_NUMBER: 8330 break; 8331 NODE_NAME_CASE(RET_FLAG) 8332 NODE_NAME_CASE(URET_FLAG) 8333 NODE_NAME_CASE(SRET_FLAG) 8334 NODE_NAME_CASE(MRET_FLAG) 8335 NODE_NAME_CASE(CALL) 8336 NODE_NAME_CASE(SELECT_CC) 8337 NODE_NAME_CASE(BR_CC) 8338 NODE_NAME_CASE(BuildPairF64) 8339 NODE_NAME_CASE(SplitF64) 8340 NODE_NAME_CASE(TAIL) 8341 NODE_NAME_CASE(MULHSU) 8342 NODE_NAME_CASE(SLLW) 8343 NODE_NAME_CASE(SRAW) 8344 NODE_NAME_CASE(SRLW) 8345 NODE_NAME_CASE(DIVW) 8346 NODE_NAME_CASE(DIVUW) 8347 NODE_NAME_CASE(REMUW) 8348 NODE_NAME_CASE(ROLW) 8349 NODE_NAME_CASE(RORW) 8350 NODE_NAME_CASE(CLZW) 8351 NODE_NAME_CASE(CTZW) 8352 NODE_NAME_CASE(FSLW) 8353 NODE_NAME_CASE(FSRW) 8354 NODE_NAME_CASE(FSL) 8355 NODE_NAME_CASE(FSR) 8356 NODE_NAME_CASE(FMV_H_X) 8357 NODE_NAME_CASE(FMV_X_ANYEXTH) 8358 NODE_NAME_CASE(FMV_W_X_RV64) 8359 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8360 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 8361 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 8362 NODE_NAME_CASE(READ_CYCLE_WIDE) 8363 NODE_NAME_CASE(GREV) 8364 NODE_NAME_CASE(GREVW) 8365 NODE_NAME_CASE(GORC) 8366 NODE_NAME_CASE(GORCW) 8367 NODE_NAME_CASE(SHFL) 8368 NODE_NAME_CASE(SHFLW) 8369 NODE_NAME_CASE(UNSHFL) 8370 NODE_NAME_CASE(UNSHFLW) 8371 NODE_NAME_CASE(BCOMPRESS) 8372 NODE_NAME_CASE(BCOMPRESSW) 8373 NODE_NAME_CASE(BDECOMPRESS) 8374 NODE_NAME_CASE(BDECOMPRESSW) 8375 NODE_NAME_CASE(VMV_V_X_VL) 8376 NODE_NAME_CASE(VFMV_V_F_VL) 8377 NODE_NAME_CASE(VMV_X_S) 8378 NODE_NAME_CASE(VMV_S_X_VL) 8379 NODE_NAME_CASE(VFMV_S_F_VL) 8380 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8381 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8382 NODE_NAME_CASE(READ_VLENB) 8383 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8384 NODE_NAME_CASE(VSLIDEUP_VL) 8385 NODE_NAME_CASE(VSLIDE1UP_VL) 8386 NODE_NAME_CASE(VSLIDEDOWN_VL) 8387 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8388 NODE_NAME_CASE(VID_VL) 8389 NODE_NAME_CASE(VFNCVT_ROD_VL) 8390 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8391 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8392 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8393 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8394 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8395 NODE_NAME_CASE(VECREDUCE_AND_VL) 8396 NODE_NAME_CASE(VECREDUCE_OR_VL) 8397 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8398 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8399 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8400 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8401 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8402 NODE_NAME_CASE(ADD_VL) 8403 NODE_NAME_CASE(AND_VL) 8404 NODE_NAME_CASE(MUL_VL) 8405 NODE_NAME_CASE(OR_VL) 8406 NODE_NAME_CASE(SDIV_VL) 8407 NODE_NAME_CASE(SHL_VL) 8408 NODE_NAME_CASE(SREM_VL) 8409 NODE_NAME_CASE(SRA_VL) 8410 NODE_NAME_CASE(SRL_VL) 8411 NODE_NAME_CASE(SUB_VL) 8412 NODE_NAME_CASE(UDIV_VL) 8413 NODE_NAME_CASE(UREM_VL) 8414 NODE_NAME_CASE(XOR_VL) 8415 NODE_NAME_CASE(SADDSAT_VL) 8416 NODE_NAME_CASE(UADDSAT_VL) 8417 NODE_NAME_CASE(SSUBSAT_VL) 8418 NODE_NAME_CASE(USUBSAT_VL) 8419 NODE_NAME_CASE(FADD_VL) 8420 NODE_NAME_CASE(FSUB_VL) 8421 NODE_NAME_CASE(FMUL_VL) 8422 NODE_NAME_CASE(FDIV_VL) 8423 NODE_NAME_CASE(FNEG_VL) 8424 NODE_NAME_CASE(FABS_VL) 8425 NODE_NAME_CASE(FSQRT_VL) 8426 NODE_NAME_CASE(FMA_VL) 8427 NODE_NAME_CASE(FCOPYSIGN_VL) 8428 NODE_NAME_CASE(SMIN_VL) 8429 NODE_NAME_CASE(SMAX_VL) 8430 NODE_NAME_CASE(UMIN_VL) 8431 NODE_NAME_CASE(UMAX_VL) 8432 NODE_NAME_CASE(FMINNUM_VL) 8433 NODE_NAME_CASE(FMAXNUM_VL) 8434 NODE_NAME_CASE(MULHS_VL) 8435 NODE_NAME_CASE(MULHU_VL) 8436 NODE_NAME_CASE(FP_TO_SINT_VL) 8437 NODE_NAME_CASE(FP_TO_UINT_VL) 8438 NODE_NAME_CASE(SINT_TO_FP_VL) 8439 NODE_NAME_CASE(UINT_TO_FP_VL) 8440 NODE_NAME_CASE(FP_EXTEND_VL) 8441 NODE_NAME_CASE(FP_ROUND_VL) 8442 NODE_NAME_CASE(VWMUL_VL) 8443 NODE_NAME_CASE(VWMULU_VL) 8444 NODE_NAME_CASE(SETCC_VL) 8445 NODE_NAME_CASE(VSELECT_VL) 8446 NODE_NAME_CASE(VMAND_VL) 8447 NODE_NAME_CASE(VMOR_VL) 8448 NODE_NAME_CASE(VMXOR_VL) 8449 NODE_NAME_CASE(VMCLR_VL) 8450 NODE_NAME_CASE(VMSET_VL) 8451 NODE_NAME_CASE(VRGATHER_VX_VL) 8452 NODE_NAME_CASE(VRGATHER_VV_VL) 8453 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8454 NODE_NAME_CASE(VSEXT_VL) 8455 NODE_NAME_CASE(VZEXT_VL) 8456 NODE_NAME_CASE(VPOPC_VL) 8457 NODE_NAME_CASE(VLE_VL) 8458 NODE_NAME_CASE(VSE_VL) 8459 NODE_NAME_CASE(READ_CSR) 8460 NODE_NAME_CASE(WRITE_CSR) 8461 NODE_NAME_CASE(SWAP_CSR) 8462 } 8463 // clang-format on 8464 return nullptr; 8465 #undef NODE_NAME_CASE 8466 } 8467 8468 /// getConstraintType - Given a constraint letter, return the type of 8469 /// constraint it is for this target. 8470 RISCVTargetLowering::ConstraintType 8471 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8472 if (Constraint.size() == 1) { 8473 switch (Constraint[0]) { 8474 default: 8475 break; 8476 case 'f': 8477 return C_RegisterClass; 8478 case 'I': 8479 case 'J': 8480 case 'K': 8481 return C_Immediate; 8482 case 'A': 8483 return C_Memory; 8484 case 'S': // A symbolic address 8485 return C_Other; 8486 } 8487 } else { 8488 if (Constraint == "vr" || Constraint == "vm") 8489 return C_RegisterClass; 8490 } 8491 return TargetLowering::getConstraintType(Constraint); 8492 } 8493 8494 std::pair<unsigned, const TargetRegisterClass *> 8495 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8496 StringRef Constraint, 8497 MVT VT) const { 8498 // First, see if this is a constraint that directly corresponds to a 8499 // RISCV register class. 8500 if (Constraint.size() == 1) { 8501 switch (Constraint[0]) { 8502 case 'r': 8503 return std::make_pair(0U, &RISCV::GPRRegClass); 8504 case 'f': 8505 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8506 return std::make_pair(0U, &RISCV::FPR16RegClass); 8507 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8508 return std::make_pair(0U, &RISCV::FPR32RegClass); 8509 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8510 return std::make_pair(0U, &RISCV::FPR64RegClass); 8511 break; 8512 default: 8513 break; 8514 } 8515 } else { 8516 if (Constraint == "vr") { 8517 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 8518 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8519 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8520 return std::make_pair(0U, RC); 8521 } 8522 } else if (Constraint == "vm") { 8523 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8524 return std::make_pair(0U, &RISCV::VMRegClass); 8525 } 8526 } 8527 8528 // Clang will correctly decode the usage of register name aliases into their 8529 // official names. However, other frontends like `rustc` do not. This allows 8530 // users of these frontends to use the ABI names for registers in LLVM-style 8531 // register constraints. 8532 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8533 .Case("{zero}", RISCV::X0) 8534 .Case("{ra}", RISCV::X1) 8535 .Case("{sp}", RISCV::X2) 8536 .Case("{gp}", RISCV::X3) 8537 .Case("{tp}", RISCV::X4) 8538 .Case("{t0}", RISCV::X5) 8539 .Case("{t1}", RISCV::X6) 8540 .Case("{t2}", RISCV::X7) 8541 .Cases("{s0}", "{fp}", RISCV::X8) 8542 .Case("{s1}", RISCV::X9) 8543 .Case("{a0}", RISCV::X10) 8544 .Case("{a1}", RISCV::X11) 8545 .Case("{a2}", RISCV::X12) 8546 .Case("{a3}", RISCV::X13) 8547 .Case("{a4}", RISCV::X14) 8548 .Case("{a5}", RISCV::X15) 8549 .Case("{a6}", RISCV::X16) 8550 .Case("{a7}", RISCV::X17) 8551 .Case("{s2}", RISCV::X18) 8552 .Case("{s3}", RISCV::X19) 8553 .Case("{s4}", RISCV::X20) 8554 .Case("{s5}", RISCV::X21) 8555 .Case("{s6}", RISCV::X22) 8556 .Case("{s7}", RISCV::X23) 8557 .Case("{s8}", RISCV::X24) 8558 .Case("{s9}", RISCV::X25) 8559 .Case("{s10}", RISCV::X26) 8560 .Case("{s11}", RISCV::X27) 8561 .Case("{t3}", RISCV::X28) 8562 .Case("{t4}", RISCV::X29) 8563 .Case("{t5}", RISCV::X30) 8564 .Case("{t6}", RISCV::X31) 8565 .Default(RISCV::NoRegister); 8566 if (XRegFromAlias != RISCV::NoRegister) 8567 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8568 8569 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8570 // TableGen record rather than the AsmName to choose registers for InlineAsm 8571 // constraints, plus we want to match those names to the widest floating point 8572 // register type available, manually select floating point registers here. 8573 // 8574 // The second case is the ABI name of the register, so that frontends can also 8575 // use the ABI names in register constraint lists. 8576 if (Subtarget.hasStdExtF()) { 8577 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8578 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8579 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8580 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8581 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8582 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8583 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8584 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8585 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8586 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8587 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8588 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8589 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8590 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8591 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8592 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8593 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8594 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8595 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8596 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8597 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8598 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8599 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8600 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8601 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8602 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8603 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8604 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8605 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8606 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8607 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8608 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8609 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8610 .Default(RISCV::NoRegister); 8611 if (FReg != RISCV::NoRegister) { 8612 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8613 if (Subtarget.hasStdExtD()) { 8614 unsigned RegNo = FReg - RISCV::F0_F; 8615 unsigned DReg = RISCV::F0_D + RegNo; 8616 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8617 } 8618 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8619 } 8620 } 8621 8622 if (Subtarget.hasStdExtV()) { 8623 Register VReg = StringSwitch<Register>(Constraint.lower()) 8624 .Case("{v0}", RISCV::V0) 8625 .Case("{v1}", RISCV::V1) 8626 .Case("{v2}", RISCV::V2) 8627 .Case("{v3}", RISCV::V3) 8628 .Case("{v4}", RISCV::V4) 8629 .Case("{v5}", RISCV::V5) 8630 .Case("{v6}", RISCV::V6) 8631 .Case("{v7}", RISCV::V7) 8632 .Case("{v8}", RISCV::V8) 8633 .Case("{v9}", RISCV::V9) 8634 .Case("{v10}", RISCV::V10) 8635 .Case("{v11}", RISCV::V11) 8636 .Case("{v12}", RISCV::V12) 8637 .Case("{v13}", RISCV::V13) 8638 .Case("{v14}", RISCV::V14) 8639 .Case("{v15}", RISCV::V15) 8640 .Case("{v16}", RISCV::V16) 8641 .Case("{v17}", RISCV::V17) 8642 .Case("{v18}", RISCV::V18) 8643 .Case("{v19}", RISCV::V19) 8644 .Case("{v20}", RISCV::V20) 8645 .Case("{v21}", RISCV::V21) 8646 .Case("{v22}", RISCV::V22) 8647 .Case("{v23}", RISCV::V23) 8648 .Case("{v24}", RISCV::V24) 8649 .Case("{v25}", RISCV::V25) 8650 .Case("{v26}", RISCV::V26) 8651 .Case("{v27}", RISCV::V27) 8652 .Case("{v28}", RISCV::V28) 8653 .Case("{v29}", RISCV::V29) 8654 .Case("{v30}", RISCV::V30) 8655 .Case("{v31}", RISCV::V31) 8656 .Default(RISCV::NoRegister); 8657 if (VReg != RISCV::NoRegister) { 8658 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8659 return std::make_pair(VReg, &RISCV::VMRegClass); 8660 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8661 return std::make_pair(VReg, &RISCV::VRRegClass); 8662 for (const auto *RC : 8663 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8664 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8665 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8666 return std::make_pair(VReg, RC); 8667 } 8668 } 8669 } 8670 } 8671 8672 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8673 } 8674 8675 unsigned 8676 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8677 // Currently only support length 1 constraints. 8678 if (ConstraintCode.size() == 1) { 8679 switch (ConstraintCode[0]) { 8680 case 'A': 8681 return InlineAsm::Constraint_A; 8682 default: 8683 break; 8684 } 8685 } 8686 8687 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8688 } 8689 8690 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8691 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8692 SelectionDAG &DAG) const { 8693 // Currently only support length 1 constraints. 8694 if (Constraint.length() == 1) { 8695 switch (Constraint[0]) { 8696 case 'I': 8697 // Validate & create a 12-bit signed immediate operand. 8698 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8699 uint64_t CVal = C->getSExtValue(); 8700 if (isInt<12>(CVal)) 8701 Ops.push_back( 8702 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8703 } 8704 return; 8705 case 'J': 8706 // Validate & create an integer zero operand. 8707 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8708 if (C->getZExtValue() == 0) 8709 Ops.push_back( 8710 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8711 return; 8712 case 'K': 8713 // Validate & create a 5-bit unsigned immediate operand. 8714 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8715 uint64_t CVal = C->getZExtValue(); 8716 if (isUInt<5>(CVal)) 8717 Ops.push_back( 8718 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8719 } 8720 return; 8721 case 'S': 8722 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8723 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 8724 GA->getValueType(0))); 8725 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 8726 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 8727 BA->getValueType(0))); 8728 } 8729 return; 8730 default: 8731 break; 8732 } 8733 } 8734 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8735 } 8736 8737 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8738 Instruction *Inst, 8739 AtomicOrdering Ord) const { 8740 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8741 return Builder.CreateFence(Ord); 8742 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8743 return Builder.CreateFence(AtomicOrdering::Release); 8744 return nullptr; 8745 } 8746 8747 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8748 Instruction *Inst, 8749 AtomicOrdering Ord) const { 8750 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8751 return Builder.CreateFence(AtomicOrdering::Acquire); 8752 return nullptr; 8753 } 8754 8755 TargetLowering::AtomicExpansionKind 8756 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8757 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8758 // point operations can't be used in an lr/sc sequence without breaking the 8759 // forward-progress guarantee. 8760 if (AI->isFloatingPointOperation()) 8761 return AtomicExpansionKind::CmpXChg; 8762 8763 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8764 if (Size == 8 || Size == 16) 8765 return AtomicExpansionKind::MaskedIntrinsic; 8766 return AtomicExpansionKind::None; 8767 } 8768 8769 static Intrinsic::ID 8770 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8771 if (XLen == 32) { 8772 switch (BinOp) { 8773 default: 8774 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8775 case AtomicRMWInst::Xchg: 8776 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8777 case AtomicRMWInst::Add: 8778 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8779 case AtomicRMWInst::Sub: 8780 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8781 case AtomicRMWInst::Nand: 8782 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8783 case AtomicRMWInst::Max: 8784 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8785 case AtomicRMWInst::Min: 8786 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8787 case AtomicRMWInst::UMax: 8788 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8789 case AtomicRMWInst::UMin: 8790 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8791 } 8792 } 8793 8794 if (XLen == 64) { 8795 switch (BinOp) { 8796 default: 8797 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8798 case AtomicRMWInst::Xchg: 8799 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8800 case AtomicRMWInst::Add: 8801 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8802 case AtomicRMWInst::Sub: 8803 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8804 case AtomicRMWInst::Nand: 8805 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8806 case AtomicRMWInst::Max: 8807 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8808 case AtomicRMWInst::Min: 8809 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8810 case AtomicRMWInst::UMax: 8811 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8812 case AtomicRMWInst::UMin: 8813 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8814 } 8815 } 8816 8817 llvm_unreachable("Unexpected XLen\n"); 8818 } 8819 8820 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8821 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8822 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8823 unsigned XLen = Subtarget.getXLen(); 8824 Value *Ordering = 8825 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8826 Type *Tys[] = {AlignedAddr->getType()}; 8827 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8828 AI->getModule(), 8829 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8830 8831 if (XLen == 64) { 8832 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8833 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8834 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8835 } 8836 8837 Value *Result; 8838 8839 // Must pass the shift amount needed to sign extend the loaded value prior 8840 // to performing a signed comparison for min/max. ShiftAmt is the number of 8841 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8842 // is the number of bits to left+right shift the value in order to 8843 // sign-extend. 8844 if (AI->getOperation() == AtomicRMWInst::Min || 8845 AI->getOperation() == AtomicRMWInst::Max) { 8846 const DataLayout &DL = AI->getModule()->getDataLayout(); 8847 unsigned ValWidth = 8848 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8849 Value *SextShamt = 8850 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8851 Result = Builder.CreateCall(LrwOpScwLoop, 8852 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8853 } else { 8854 Result = 8855 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8856 } 8857 8858 if (XLen == 64) 8859 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8860 return Result; 8861 } 8862 8863 TargetLowering::AtomicExpansionKind 8864 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8865 AtomicCmpXchgInst *CI) const { 8866 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8867 if (Size == 8 || Size == 16) 8868 return AtomicExpansionKind::MaskedIntrinsic; 8869 return AtomicExpansionKind::None; 8870 } 8871 8872 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8873 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8874 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8875 unsigned XLen = Subtarget.getXLen(); 8876 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8877 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8878 if (XLen == 64) { 8879 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8880 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8881 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8882 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8883 } 8884 Type *Tys[] = {AlignedAddr->getType()}; 8885 Function *MaskedCmpXchg = 8886 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8887 Value *Result = Builder.CreateCall( 8888 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8889 if (XLen == 64) 8890 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8891 return Result; 8892 } 8893 8894 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8895 return false; 8896 } 8897 8898 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8899 EVT VT) const { 8900 VT = VT.getScalarType(); 8901 8902 if (!VT.isSimple()) 8903 return false; 8904 8905 switch (VT.getSimpleVT().SimpleTy) { 8906 case MVT::f16: 8907 return Subtarget.hasStdExtZfh(); 8908 case MVT::f32: 8909 return Subtarget.hasStdExtF(); 8910 case MVT::f64: 8911 return Subtarget.hasStdExtD(); 8912 default: 8913 break; 8914 } 8915 8916 return false; 8917 } 8918 8919 Register RISCVTargetLowering::getExceptionPointerRegister( 8920 const Constant *PersonalityFn) const { 8921 return RISCV::X10; 8922 } 8923 8924 Register RISCVTargetLowering::getExceptionSelectorRegister( 8925 const Constant *PersonalityFn) const { 8926 return RISCV::X11; 8927 } 8928 8929 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8930 // Return false to suppress the unnecessary extensions if the LibCall 8931 // arguments or return value is f32 type for LP64 ABI. 8932 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8933 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8934 return false; 8935 8936 return true; 8937 } 8938 8939 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8940 if (Subtarget.is64Bit() && Type == MVT::i32) 8941 return true; 8942 8943 return IsSigned; 8944 } 8945 8946 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8947 SDValue C) const { 8948 // Check integral scalar types. 8949 if (VT.isScalarInteger()) { 8950 // Omit the optimization if the sub target has the M extension and the data 8951 // size exceeds XLen. 8952 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8953 return false; 8954 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8955 // Break the MUL to a SLLI and an ADD/SUB. 8956 const APInt &Imm = ConstNode->getAPIntValue(); 8957 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8958 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8959 return true; 8960 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 8961 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 8962 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 8963 (Imm - 8).isPowerOf2())) 8964 return true; 8965 // Omit the following optimization if the sub target has the M extension 8966 // and the data size >= XLen. 8967 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8968 return false; 8969 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8970 // a pair of LUI/ADDI. 8971 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8972 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8973 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8974 (1 - ImmS).isPowerOf2()) 8975 return true; 8976 } 8977 } 8978 } 8979 8980 return false; 8981 } 8982 8983 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8984 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8985 bool *Fast) const { 8986 if (!VT.isVector()) 8987 return false; 8988 8989 EVT ElemVT = VT.getVectorElementType(); 8990 if (Alignment >= ElemVT.getStoreSize()) { 8991 if (Fast) 8992 *Fast = true; 8993 return true; 8994 } 8995 8996 return false; 8997 } 8998 8999 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9000 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9001 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9002 bool IsABIRegCopy = CC.hasValue(); 9003 EVT ValueVT = Val.getValueType(); 9004 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9005 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9006 // and cast to f32. 9007 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9008 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9009 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9010 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9011 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9012 Parts[0] = Val; 9013 return true; 9014 } 9015 9016 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9017 LLVMContext &Context = *DAG.getContext(); 9018 EVT ValueEltVT = ValueVT.getVectorElementType(); 9019 EVT PartEltVT = PartVT.getVectorElementType(); 9020 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9021 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9022 if (PartVTBitSize % ValueVTBitSize == 0) { 9023 // If the element types are different, bitcast to the same element type of 9024 // PartVT first. 9025 if (ValueEltVT != PartEltVT) { 9026 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9027 assert(Count != 0 && "The number of element should not be zero."); 9028 EVT SameEltTypeVT = 9029 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9030 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9031 } 9032 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9033 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9034 Parts[0] = Val; 9035 return true; 9036 } 9037 } 9038 return false; 9039 } 9040 9041 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9042 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9043 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9044 bool IsABIRegCopy = CC.hasValue(); 9045 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9046 SDValue Val = Parts[0]; 9047 9048 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9049 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9050 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9051 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9052 return Val; 9053 } 9054 9055 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9056 LLVMContext &Context = *DAG.getContext(); 9057 SDValue Val = Parts[0]; 9058 EVT ValueEltVT = ValueVT.getVectorElementType(); 9059 EVT PartEltVT = PartVT.getVectorElementType(); 9060 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9061 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9062 if (PartVTBitSize % ValueVTBitSize == 0) { 9063 EVT SameEltTypeVT = ValueVT; 9064 // If the element types are different, convert it to the same element type 9065 // of PartVT. 9066 if (ValueEltVT != PartEltVT) { 9067 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9068 assert(Count != 0 && "The number of element should not be zero."); 9069 SameEltTypeVT = 9070 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9071 } 9072 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9073 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9074 if (ValueEltVT != PartEltVT) 9075 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9076 return Val; 9077 } 9078 } 9079 return SDValue(); 9080 } 9081 9082 #define GET_REGISTER_MATCHER 9083 #include "RISCVGenAsmMatcher.inc" 9084 9085 Register 9086 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9087 const MachineFunction &MF) const { 9088 Register Reg = MatchRegisterAltName(RegName); 9089 if (Reg == RISCV::NoRegister) 9090 Reg = MatchRegisterName(RegName); 9091 if (Reg == RISCV::NoRegister) 9092 report_fatal_error( 9093 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9094 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9095 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9096 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9097 StringRef(RegName) + "\".")); 9098 return Reg; 9099 } 9100 9101 namespace llvm { 9102 namespace RISCVVIntrinsicsTable { 9103 9104 #define GET_RISCVVIntrinsicsTable_IMPL 9105 #include "RISCVGenSearchableTables.inc" 9106 9107 } // namespace RISCVVIntrinsicsTable 9108 9109 } // namespace llvm 9110