1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "RISCV.h" 16 #include "RISCVMachineFunctionInfo.h" 17 #include "RISCVRegisterInfo.h" 18 #include "RISCVSubtarget.h" 19 #include "RISCVTargetMachine.h" 20 #include "Utils/RISCVMatInt.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "riscv-lower" 41 42 STATISTIC(NumTailCalls, "Number of tail calls"); 43 44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 45 const RISCVSubtarget &STI) 46 : TargetLowering(TM), Subtarget(STI) { 47 48 if (Subtarget.isRV32E()) 49 report_fatal_error("Codegen not yet implemented for RV32E"); 50 51 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 52 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 53 54 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 55 !Subtarget.hasStdExtF()) { 56 errs() << "Hard-float 'f' ABI can't be used for a target that " 57 "doesn't support the F instruction set extension (ignoring " 58 "target-abi)\n"; 59 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 60 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 61 !Subtarget.hasStdExtD()) { 62 errs() << "Hard-float 'd' ABI can't be used for a target that " 63 "doesn't support the D instruction set extension (ignoring " 64 "target-abi)\n"; 65 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 66 } 67 68 switch (ABI) { 69 default: 70 report_fatal_error("Don't know how to lower this ABI"); 71 case RISCVABI::ABI_ILP32: 72 case RISCVABI::ABI_ILP32F: 73 case RISCVABI::ABI_ILP32D: 74 case RISCVABI::ABI_LP64: 75 case RISCVABI::ABI_LP64F: 76 case RISCVABI::ABI_LP64D: 77 break; 78 } 79 80 MVT XLenVT = Subtarget.getXLenVT(); 81 82 // Set up the register classes. 83 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 84 85 if (Subtarget.hasStdExtF()) 86 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 87 if (Subtarget.hasStdExtD()) 88 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 89 90 // Compute derived properties from the register classes. 91 computeRegisterProperties(STI.getRegisterInfo()); 92 93 setStackPointerRegisterToSaveRestore(RISCV::X2); 94 95 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 96 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 97 98 // TODO: add all necessary setOperationAction calls. 99 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 100 101 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 102 setOperationAction(ISD::BR_CC, XLenVT, Expand); 103 setOperationAction(ISD::SELECT, XLenVT, Custom); 104 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 105 106 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 107 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 108 109 setOperationAction(ISD::VASTART, MVT::Other, Custom); 110 setOperationAction(ISD::VAARG, MVT::Other, Expand); 111 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 112 setOperationAction(ISD::VAEND, MVT::Other, Expand); 113 114 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 115 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 116 117 if (Subtarget.is64Bit()) { 118 setOperationAction(ISD::ADD, MVT::i32, Custom); 119 setOperationAction(ISD::SUB, MVT::i32, Custom); 120 setOperationAction(ISD::SHL, MVT::i32, Custom); 121 setOperationAction(ISD::SRA, MVT::i32, Custom); 122 setOperationAction(ISD::SRL, MVT::i32, Custom); 123 } 124 125 if (!Subtarget.hasStdExtM()) { 126 setOperationAction(ISD::MUL, XLenVT, Expand); 127 setOperationAction(ISD::MULHS, XLenVT, Expand); 128 setOperationAction(ISD::MULHU, XLenVT, Expand); 129 setOperationAction(ISD::SDIV, XLenVT, Expand); 130 setOperationAction(ISD::UDIV, XLenVT, Expand); 131 setOperationAction(ISD::SREM, XLenVT, Expand); 132 setOperationAction(ISD::UREM, XLenVT, Expand); 133 } 134 135 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 136 setOperationAction(ISD::MUL, MVT::i32, Custom); 137 setOperationAction(ISD::SDIV, MVT::i32, Custom); 138 setOperationAction(ISD::UDIV, MVT::i32, Custom); 139 setOperationAction(ISD::UREM, MVT::i32, Custom); 140 } 141 142 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 143 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 144 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 145 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 146 147 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 148 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 149 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 150 151 setOperationAction(ISD::ROTL, XLenVT, Expand); 152 setOperationAction(ISD::ROTR, XLenVT, Expand); 153 setOperationAction(ISD::BSWAP, XLenVT, Expand); 154 setOperationAction(ISD::CTTZ, XLenVT, Expand); 155 setOperationAction(ISD::CTLZ, XLenVT, Expand); 156 setOperationAction(ISD::CTPOP, XLenVT, Expand); 157 158 ISD::CondCode FPCCToExtend[] = { 159 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 160 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 161 ISD::SETGE, ISD::SETNE}; 162 163 ISD::NodeType FPOpToExtend[] = { 164 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 165 ISD::FP_TO_FP16}; 166 167 if (Subtarget.hasStdExtF()) { 168 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 169 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 170 for (auto CC : FPCCToExtend) 171 setCondCodeAction(CC, MVT::f32, Expand); 172 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 173 setOperationAction(ISD::SELECT, MVT::f32, Custom); 174 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 175 for (auto Op : FPOpToExtend) 176 setOperationAction(Op, MVT::f32, Expand); 177 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 178 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 179 } 180 181 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 182 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 183 184 if (Subtarget.hasStdExtD()) { 185 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 186 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 187 for (auto CC : FPCCToExtend) 188 setCondCodeAction(CC, MVT::f64, Expand); 189 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 190 setOperationAction(ISD::SELECT, MVT::f64, Custom); 191 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 193 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 194 for (auto Op : FPOpToExtend) 195 setOperationAction(Op, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 197 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 198 } 199 200 if (Subtarget.is64Bit() && 201 !(Subtarget.hasStdExtD() || Subtarget.hasStdExtF())) { 202 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 203 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 204 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 205 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 206 } 207 208 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 209 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 210 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 211 212 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 213 214 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 215 // Unfortunately this can't be determined just from the ISA naming string. 216 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 217 Subtarget.is64Bit() ? Legal : Custom); 218 219 setOperationAction(ISD::TRAP, MVT::Other, Legal); 220 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 221 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 222 223 if (Subtarget.hasStdExtA()) { 224 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 225 setMinCmpXchgSizeInBits(32); 226 } else { 227 setMaxAtomicSizeInBitsSupported(0); 228 } 229 230 setBooleanContents(ZeroOrOneBooleanContent); 231 232 // Function alignments. 233 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 234 setMinFunctionAlignment(FunctionAlignment); 235 setPrefFunctionAlignment(FunctionAlignment); 236 237 // Effectively disable jump table generation. 238 setMinimumJumpTableEntries(INT_MAX); 239 240 // Jumps are expensive, compared to logic 241 setJumpIsExpensive(); 242 243 // We can use any register for comparisons 244 setHasMultipleConditionRegisters(); 245 } 246 247 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 248 EVT VT) const { 249 if (!VT.isVector()) 250 return getPointerTy(DL); 251 return VT.changeVectorElementTypeToInteger(); 252 } 253 254 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 255 const CallInst &I, 256 MachineFunction &MF, 257 unsigned Intrinsic) const { 258 switch (Intrinsic) { 259 default: 260 return false; 261 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 262 case Intrinsic::riscv_masked_atomicrmw_add_i32: 263 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 264 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 265 case Intrinsic::riscv_masked_atomicrmw_max_i32: 266 case Intrinsic::riscv_masked_atomicrmw_min_i32: 267 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 268 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 269 case Intrinsic::riscv_masked_cmpxchg_i32: 270 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 271 Info.opc = ISD::INTRINSIC_W_CHAIN; 272 Info.memVT = MVT::getVT(PtrTy->getElementType()); 273 Info.ptrVal = I.getArgOperand(0); 274 Info.offset = 0; 275 Info.align = Align(4); 276 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 277 MachineMemOperand::MOVolatile; 278 return true; 279 } 280 } 281 282 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 283 const AddrMode &AM, Type *Ty, 284 unsigned AS, 285 Instruction *I) const { 286 // No global is ever allowed as a base. 287 if (AM.BaseGV) 288 return false; 289 290 // Require a 12-bit signed offset. 291 if (!isInt<12>(AM.BaseOffs)) 292 return false; 293 294 switch (AM.Scale) { 295 case 0: // "r+i" or just "i", depending on HasBaseReg. 296 break; 297 case 1: 298 if (!AM.HasBaseReg) // allow "r+i". 299 break; 300 return false; // disallow "r+r" or "r+r+i". 301 default: 302 return false; 303 } 304 305 return true; 306 } 307 308 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 309 return isInt<12>(Imm); 310 } 311 312 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 313 return isInt<12>(Imm); 314 } 315 316 // On RV32, 64-bit integers are split into their high and low parts and held 317 // in two different registers, so the trunc is free since the low register can 318 // just be used. 319 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 320 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 321 return false; 322 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 323 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 324 return (SrcBits == 64 && DestBits == 32); 325 } 326 327 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 328 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 329 !SrcVT.isInteger() || !DstVT.isInteger()) 330 return false; 331 unsigned SrcBits = SrcVT.getSizeInBits(); 332 unsigned DestBits = DstVT.getSizeInBits(); 333 return (SrcBits == 64 && DestBits == 32); 334 } 335 336 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 337 // Zexts are free if they can be combined with a load. 338 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 339 EVT MemVT = LD->getMemoryVT(); 340 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 341 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 342 (LD->getExtensionType() == ISD::NON_EXTLOAD || 343 LD->getExtensionType() == ISD::ZEXTLOAD)) 344 return true; 345 } 346 347 return TargetLowering::isZExtFree(Val, VT2); 348 } 349 350 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 351 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 352 } 353 354 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 355 bool ForCodeSize) const { 356 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 357 return false; 358 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 359 return false; 360 if (Imm.isNegZero()) 361 return false; 362 return Imm.isZero(); 363 } 364 365 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 366 return (VT == MVT::f32 && Subtarget.hasStdExtF()) || 367 (VT == MVT::f64 && Subtarget.hasStdExtD()); 368 } 369 370 // Changes the condition code and swaps operands if necessary, so the SetCC 371 // operation matches one of the comparisons supported directly in the RISC-V 372 // ISA. 373 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 374 switch (CC) { 375 default: 376 break; 377 case ISD::SETGT: 378 case ISD::SETLE: 379 case ISD::SETUGT: 380 case ISD::SETULE: 381 CC = ISD::getSetCCSwappedOperands(CC); 382 std::swap(LHS, RHS); 383 break; 384 } 385 } 386 387 // Return the RISC-V branch opcode that matches the given DAG integer 388 // condition code. The CondCode must be one of those supported by the RISC-V 389 // ISA (see normaliseSetCC). 390 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 391 switch (CC) { 392 default: 393 llvm_unreachable("Unsupported CondCode"); 394 case ISD::SETEQ: 395 return RISCV::BEQ; 396 case ISD::SETNE: 397 return RISCV::BNE; 398 case ISD::SETLT: 399 return RISCV::BLT; 400 case ISD::SETGE: 401 return RISCV::BGE; 402 case ISD::SETULT: 403 return RISCV::BLTU; 404 case ISD::SETUGE: 405 return RISCV::BGEU; 406 } 407 } 408 409 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 410 SelectionDAG &DAG) const { 411 switch (Op.getOpcode()) { 412 default: 413 report_fatal_error("unimplemented operand"); 414 case ISD::GlobalAddress: 415 return lowerGlobalAddress(Op, DAG); 416 case ISD::BlockAddress: 417 return lowerBlockAddress(Op, DAG); 418 case ISD::ConstantPool: 419 return lowerConstantPool(Op, DAG); 420 case ISD::GlobalTLSAddress: 421 return lowerGlobalTLSAddress(Op, DAG); 422 case ISD::SELECT: 423 return lowerSELECT(Op, DAG); 424 case ISD::VASTART: 425 return lowerVASTART(Op, DAG); 426 case ISD::FRAMEADDR: 427 return lowerFRAMEADDR(Op, DAG); 428 case ISD::RETURNADDR: 429 return lowerRETURNADDR(Op, DAG); 430 case ISD::SHL_PARTS: 431 return lowerShiftLeftParts(Op, DAG); 432 case ISD::SRA_PARTS: 433 return lowerShiftRightParts(Op, DAG, true); 434 case ISD::SRL_PARTS: 435 return lowerShiftRightParts(Op, DAG, false); 436 case ISD::BITCAST: { 437 assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() && 438 "Unexpected custom legalisation"); 439 SDLoc DL(Op); 440 SDValue Op0 = Op.getOperand(0); 441 if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32) 442 return SDValue(); 443 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 444 SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 445 return FPConv; 446 } 447 case ISD::INTRINSIC_WO_CHAIN: 448 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 449 } 450 } 451 452 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 453 SelectionDAG &DAG, unsigned Flags) { 454 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 455 } 456 457 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 458 SelectionDAG &DAG, unsigned Flags) { 459 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 460 Flags); 461 } 462 463 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 464 SelectionDAG &DAG, unsigned Flags) { 465 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 466 N->getOffset(), Flags); 467 } 468 469 template <class NodeTy> 470 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 471 bool IsLocal) const { 472 SDLoc DL(N); 473 EVT Ty = getPointerTy(DAG.getDataLayout()); 474 475 if (isPositionIndependent()) { 476 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 477 if (IsLocal) 478 // Use PC-relative addressing to access the symbol. This generates the 479 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 480 // %pcrel_lo(auipc)). 481 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 482 483 // Use PC-relative addressing to access the GOT for this symbol, then load 484 // the address from the GOT. This generates the pattern (PseudoLA sym), 485 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 486 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 487 } 488 489 switch (getTargetMachine().getCodeModel()) { 490 default: 491 report_fatal_error("Unsupported code model for lowering"); 492 case CodeModel::Small: { 493 // Generate a sequence for accessing addresses within the first 2 GiB of 494 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 495 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 496 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 497 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 498 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 499 } 500 case CodeModel::Medium: { 501 // Generate a sequence for accessing addresses within any 2GiB range within 502 // the address space. This generates the pattern (PseudoLLA sym), which 503 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 504 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 505 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 506 } 507 } 508 } 509 510 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 511 SelectionDAG &DAG) const { 512 SDLoc DL(Op); 513 EVT Ty = Op.getValueType(); 514 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 515 int64_t Offset = N->getOffset(); 516 MVT XLenVT = Subtarget.getXLenVT(); 517 518 const GlobalValue *GV = N->getGlobal(); 519 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 520 SDValue Addr = getAddr(N, DAG, IsLocal); 521 522 // In order to maximise the opportunity for common subexpression elimination, 523 // emit a separate ADD node for the global address offset instead of folding 524 // it in the global address node. Later peephole optimisations may choose to 525 // fold it back in when profitable. 526 if (Offset != 0) 527 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 528 DAG.getConstant(Offset, DL, XLenVT)); 529 return Addr; 530 } 531 532 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 533 SelectionDAG &DAG) const { 534 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 535 536 return getAddr(N, DAG); 537 } 538 539 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 540 SelectionDAG &DAG) const { 541 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 542 543 return getAddr(N, DAG); 544 } 545 546 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 547 SelectionDAG &DAG, 548 bool UseGOT) const { 549 SDLoc DL(N); 550 EVT Ty = getPointerTy(DAG.getDataLayout()); 551 const GlobalValue *GV = N->getGlobal(); 552 MVT XLenVT = Subtarget.getXLenVT(); 553 554 if (UseGOT) { 555 // Use PC-relative addressing to access the GOT for this TLS symbol, then 556 // load the address from the GOT and add the thread pointer. This generates 557 // the pattern (PseudoLA_TLS_IE sym), which expands to 558 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 559 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 560 SDValue Load = 561 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 562 563 // Add the thread pointer. 564 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 565 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 566 } 567 568 // Generate a sequence for accessing the address relative to the thread 569 // pointer, with the appropriate adjustment for the thread pointer offset. 570 // This generates the pattern 571 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 572 SDValue AddrHi = 573 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 574 SDValue AddrAdd = 575 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 576 SDValue AddrLo = 577 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 578 579 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 580 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 581 SDValue MNAdd = SDValue( 582 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 583 0); 584 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 585 } 586 587 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 588 SelectionDAG &DAG) const { 589 SDLoc DL(N); 590 EVT Ty = getPointerTy(DAG.getDataLayout()); 591 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 592 const GlobalValue *GV = N->getGlobal(); 593 594 // Use a PC-relative addressing mode to access the global dynamic GOT address. 595 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 596 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 597 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 598 SDValue Load = 599 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 600 601 // Prepare argument list to generate call. 602 ArgListTy Args; 603 ArgListEntry Entry; 604 Entry.Node = Load; 605 Entry.Ty = CallTy; 606 Args.push_back(Entry); 607 608 // Setup call to __tls_get_addr. 609 TargetLowering::CallLoweringInfo CLI(DAG); 610 CLI.setDebugLoc(DL) 611 .setChain(DAG.getEntryNode()) 612 .setLibCallee(CallingConv::C, CallTy, 613 DAG.getExternalSymbol("__tls_get_addr", Ty), 614 std::move(Args)); 615 616 return LowerCallTo(CLI).first; 617 } 618 619 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 620 SelectionDAG &DAG) const { 621 SDLoc DL(Op); 622 EVT Ty = Op.getValueType(); 623 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 624 int64_t Offset = N->getOffset(); 625 MVT XLenVT = Subtarget.getXLenVT(); 626 627 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 628 629 SDValue Addr; 630 switch (Model) { 631 case TLSModel::LocalExec: 632 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 633 break; 634 case TLSModel::InitialExec: 635 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 636 break; 637 case TLSModel::LocalDynamic: 638 case TLSModel::GeneralDynamic: 639 Addr = getDynamicTLSAddr(N, DAG); 640 break; 641 } 642 643 // In order to maximise the opportunity for common subexpression elimination, 644 // emit a separate ADD node for the global address offset instead of folding 645 // it in the global address node. Later peephole optimisations may choose to 646 // fold it back in when profitable. 647 if (Offset != 0) 648 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 649 DAG.getConstant(Offset, DL, XLenVT)); 650 return Addr; 651 } 652 653 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 654 SDValue CondV = Op.getOperand(0); 655 SDValue TrueV = Op.getOperand(1); 656 SDValue FalseV = Op.getOperand(2); 657 SDLoc DL(Op); 658 MVT XLenVT = Subtarget.getXLenVT(); 659 660 // If the result type is XLenVT and CondV is the output of a SETCC node 661 // which also operated on XLenVT inputs, then merge the SETCC node into the 662 // lowered RISCVISD::SELECT_CC to take advantage of the integer 663 // compare+branch instructions. i.e.: 664 // (select (setcc lhs, rhs, cc), truev, falsev) 665 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 666 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 667 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 668 SDValue LHS = CondV.getOperand(0); 669 SDValue RHS = CondV.getOperand(1); 670 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 671 ISD::CondCode CCVal = CC->get(); 672 673 normaliseSetCC(LHS, RHS, CCVal); 674 675 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 676 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 677 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 678 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 679 } 680 681 // Otherwise: 682 // (select condv, truev, falsev) 683 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 684 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 685 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 686 687 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 688 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 689 690 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 691 } 692 693 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 694 MachineFunction &MF = DAG.getMachineFunction(); 695 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 696 697 SDLoc DL(Op); 698 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 699 getPointerTy(MF.getDataLayout())); 700 701 // vastart just stores the address of the VarArgsFrameIndex slot into the 702 // memory location argument. 703 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 704 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 705 MachinePointerInfo(SV)); 706 } 707 708 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 709 SelectionDAG &DAG) const { 710 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 711 MachineFunction &MF = DAG.getMachineFunction(); 712 MachineFrameInfo &MFI = MF.getFrameInfo(); 713 MFI.setFrameAddressIsTaken(true); 714 Register FrameReg = RI.getFrameRegister(MF); 715 int XLenInBytes = Subtarget.getXLen() / 8; 716 717 EVT VT = Op.getValueType(); 718 SDLoc DL(Op); 719 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 720 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 721 while (Depth--) { 722 int Offset = -(XLenInBytes * 2); 723 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 724 DAG.getIntPtrConstant(Offset, DL)); 725 FrameAddr = 726 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 727 } 728 return FrameAddr; 729 } 730 731 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 732 SelectionDAG &DAG) const { 733 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 734 MachineFunction &MF = DAG.getMachineFunction(); 735 MachineFrameInfo &MFI = MF.getFrameInfo(); 736 MFI.setReturnAddressIsTaken(true); 737 MVT XLenVT = Subtarget.getXLenVT(); 738 int XLenInBytes = Subtarget.getXLen() / 8; 739 740 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 741 return SDValue(); 742 743 EVT VT = Op.getValueType(); 744 SDLoc DL(Op); 745 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 746 if (Depth) { 747 int Off = -XLenInBytes; 748 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 749 SDValue Offset = DAG.getConstant(Off, DL, VT); 750 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 751 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 752 MachinePointerInfo()); 753 } 754 755 // Return the value of the return address register, marking it an implicit 756 // live-in. 757 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 758 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 759 } 760 761 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 762 SelectionDAG &DAG) const { 763 SDLoc DL(Op); 764 SDValue Lo = Op.getOperand(0); 765 SDValue Hi = Op.getOperand(1); 766 SDValue Shamt = Op.getOperand(2); 767 EVT VT = Lo.getValueType(); 768 769 // if Shamt-XLEN < 0: // Shamt < XLEN 770 // Lo = Lo << Shamt 771 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 772 // else: 773 // Lo = 0 774 // Hi = Lo << (Shamt-XLEN) 775 776 SDValue Zero = DAG.getConstant(0, DL, VT); 777 SDValue One = DAG.getConstant(1, DL, VT); 778 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 779 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 780 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 781 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 782 783 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 784 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 785 SDValue ShiftRightLo = 786 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 787 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 788 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 789 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 790 791 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 792 793 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 794 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 795 796 SDValue Parts[2] = {Lo, Hi}; 797 return DAG.getMergeValues(Parts, DL); 798 } 799 800 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 801 bool IsSRA) const { 802 SDLoc DL(Op); 803 SDValue Lo = Op.getOperand(0); 804 SDValue Hi = Op.getOperand(1); 805 SDValue Shamt = Op.getOperand(2); 806 EVT VT = Lo.getValueType(); 807 808 // SRA expansion: 809 // if Shamt-XLEN < 0: // Shamt < XLEN 810 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 811 // Hi = Hi >>s Shamt 812 // else: 813 // Lo = Hi >>s (Shamt-XLEN); 814 // Hi = Hi >>s (XLEN-1) 815 // 816 // SRL expansion: 817 // if Shamt-XLEN < 0: // Shamt < XLEN 818 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 819 // Hi = Hi >>u Shamt 820 // else: 821 // Lo = Hi >>u (Shamt-XLEN); 822 // Hi = 0; 823 824 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 825 826 SDValue Zero = DAG.getConstant(0, DL, VT); 827 SDValue One = DAG.getConstant(1, DL, VT); 828 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 829 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 830 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 831 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 832 833 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 834 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 835 SDValue ShiftLeftHi = 836 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 837 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 838 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 839 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 840 SDValue HiFalse = 841 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 842 843 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 844 845 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 846 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 847 848 SDValue Parts[2] = {Lo, Hi}; 849 return DAG.getMergeValues(Parts, DL); 850 } 851 852 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 853 SelectionDAG &DAG) const { 854 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 855 SDLoc DL(Op); 856 switch (IntNo) { 857 default: 858 return SDValue(); // Don't custom lower most intrinsics. 859 case Intrinsic::thread_pointer: { 860 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 861 return DAG.getRegister(RISCV::X4, PtrVT); 862 } 863 } 864 } 865 866 // Returns the opcode of the target-specific SDNode that implements the 32-bit 867 // form of the given Opcode. 868 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 869 switch (Opcode) { 870 default: 871 llvm_unreachable("Unexpected opcode"); 872 case ISD::SHL: 873 return RISCVISD::SLLW; 874 case ISD::SRA: 875 return RISCVISD::SRAW; 876 case ISD::SRL: 877 return RISCVISD::SRLW; 878 case ISD::SDIV: 879 return RISCVISD::DIVW; 880 case ISD::UDIV: 881 return RISCVISD::DIVUW; 882 case ISD::UREM: 883 return RISCVISD::REMUW; 884 } 885 } 886 887 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 888 // Because i32 isn't a legal type for RV64, these operations would otherwise 889 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 890 // later one because the fact the operation was originally of type i32 is 891 // lost. 892 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) { 893 SDLoc DL(N); 894 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 895 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 896 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 897 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 898 // ReplaceNodeResults requires we maintain the same type for the return value. 899 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 900 } 901 902 // Converts the given 32-bit operation to a i64 operation with signed extension 903 // semantic to reduce the signed extension instructions. 904 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 905 SDLoc DL(N); 906 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 907 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 908 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 909 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 910 DAG.getValueType(MVT::i32)); 911 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 912 } 913 914 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 915 SmallVectorImpl<SDValue> &Results, 916 SelectionDAG &DAG) const { 917 SDLoc DL(N); 918 switch (N->getOpcode()) { 919 default: 920 llvm_unreachable("Don't know how to custom type legalize this operation!"); 921 case ISD::STRICT_FP_TO_SINT: 922 case ISD::STRICT_FP_TO_UINT: 923 case ISD::FP_TO_SINT: 924 case ISD::FP_TO_UINT: { 925 bool IsStrict = N->isStrictFPOpcode(); 926 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 927 "Unexpected custom legalisation"); 928 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 929 RTLIB::Libcall LC; 930 if (N->getOpcode() == ISD::FP_TO_SINT || 931 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 932 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 933 else 934 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 935 MakeLibCallOptions CallOptions; 936 EVT OpVT = Op0.getValueType(); 937 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 938 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 939 SDValue Result; 940 std::tie(Result, Chain) = 941 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 942 Results.push_back(Result); 943 if (IsStrict) 944 Results.push_back(Chain); 945 break; 946 } 947 case ISD::READCYCLECOUNTER: { 948 assert(!Subtarget.is64Bit() && 949 "READCYCLECOUNTER only has custom type legalization on riscv32"); 950 951 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 952 SDValue RCW = 953 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 954 955 Results.push_back( 956 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 957 Results.push_back(RCW.getValue(2)); 958 break; 959 } 960 case ISD::ADD: 961 case ISD::SUB: 962 case ISD::MUL: 963 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 964 "Unexpected custom legalisation"); 965 if (N->getOperand(1).getOpcode() == ISD::Constant) 966 return; 967 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 968 break; 969 case ISD::SHL: 970 case ISD::SRA: 971 case ISD::SRL: 972 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 973 "Unexpected custom legalisation"); 974 if (N->getOperand(1).getOpcode() == ISD::Constant) 975 return; 976 Results.push_back(customLegalizeToWOp(N, DAG)); 977 break; 978 case ISD::SDIV: 979 case ISD::UDIV: 980 case ISD::UREM: 981 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 982 Subtarget.hasStdExtM() && "Unexpected custom legalisation"); 983 if (N->getOperand(0).getOpcode() == ISD::Constant || 984 N->getOperand(1).getOpcode() == ISD::Constant) 985 return; 986 Results.push_back(customLegalizeToWOp(N, DAG)); 987 break; 988 case ISD::BITCAST: { 989 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 990 Subtarget.hasStdExtF() && "Unexpected custom legalisation"); 991 SDLoc DL(N); 992 SDValue Op0 = N->getOperand(0); 993 if (Op0.getValueType() != MVT::f32) 994 return; 995 SDValue FPConv = 996 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 997 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 998 break; 999 } 1000 } 1001 } 1002 1003 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 1004 DAGCombinerInfo &DCI) const { 1005 SelectionDAG &DAG = DCI.DAG; 1006 1007 switch (N->getOpcode()) { 1008 default: 1009 break; 1010 case RISCVISD::SplitF64: { 1011 SDValue Op0 = N->getOperand(0); 1012 // If the input to SplitF64 is just BuildPairF64 then the operation is 1013 // redundant. Instead, use BuildPairF64's operands directly. 1014 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 1015 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 1016 1017 SDLoc DL(N); 1018 1019 // It's cheaper to materialise two 32-bit integers than to load a double 1020 // from the constant pool and transfer it to integer registers through the 1021 // stack. 1022 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 1023 APInt V = C->getValueAPF().bitcastToAPInt(); 1024 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 1025 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 1026 return DCI.CombineTo(N, Lo, Hi); 1027 } 1028 1029 // This is a target-specific version of a DAGCombine performed in 1030 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1031 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1032 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1033 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1034 !Op0.getNode()->hasOneUse()) 1035 break; 1036 SDValue NewSplitF64 = 1037 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 1038 Op0.getOperand(0)); 1039 SDValue Lo = NewSplitF64.getValue(0); 1040 SDValue Hi = NewSplitF64.getValue(1); 1041 APInt SignBit = APInt::getSignMask(32); 1042 if (Op0.getOpcode() == ISD::FNEG) { 1043 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 1044 DAG.getConstant(SignBit, DL, MVT::i32)); 1045 return DCI.CombineTo(N, Lo, NewHi); 1046 } 1047 assert(Op0.getOpcode() == ISD::FABS); 1048 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 1049 DAG.getConstant(~SignBit, DL, MVT::i32)); 1050 return DCI.CombineTo(N, Lo, NewHi); 1051 } 1052 case RISCVISD::SLLW: 1053 case RISCVISD::SRAW: 1054 case RISCVISD::SRLW: { 1055 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 1056 SDValue LHS = N->getOperand(0); 1057 SDValue RHS = N->getOperand(1); 1058 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 1059 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 1060 if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) || 1061 (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI))) 1062 return SDValue(); 1063 break; 1064 } 1065 case RISCVISD::FMV_X_ANYEXTW_RV64: { 1066 SDLoc DL(N); 1067 SDValue Op0 = N->getOperand(0); 1068 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 1069 // conversion is unnecessary and can be replaced with an ANY_EXTEND 1070 // of the FMV_W_X_RV64 operand. 1071 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 1072 SDValue AExtOp = 1073 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0)); 1074 return DCI.CombineTo(N, AExtOp); 1075 } 1076 1077 // This is a target-specific version of a DAGCombine performed in 1078 // DAGCombiner::visitBITCAST. It performs the equivalent of: 1079 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 1080 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 1081 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 1082 !Op0.getNode()->hasOneUse()) 1083 break; 1084 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 1085 Op0.getOperand(0)); 1086 APInt SignBit = APInt::getSignMask(32).sext(64); 1087 if (Op0.getOpcode() == ISD::FNEG) { 1088 return DCI.CombineTo(N, 1089 DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 1090 DAG.getConstant(SignBit, DL, MVT::i64))); 1091 } 1092 assert(Op0.getOpcode() == ISD::FABS); 1093 return DCI.CombineTo(N, 1094 DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 1095 DAG.getConstant(~SignBit, DL, MVT::i64))); 1096 } 1097 } 1098 1099 return SDValue(); 1100 } 1101 1102 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 1103 const SDNode *N, CombineLevel Level) const { 1104 // The following folds are only desirable if `(OP _, c1 << c2)` can be 1105 // materialised in fewer instructions than `(OP _, c1)`: 1106 // 1107 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 1108 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 1109 SDValue N0 = N->getOperand(0); 1110 EVT Ty = N0.getValueType(); 1111 if (Ty.isScalarInteger() && 1112 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 1113 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1114 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1115 if (C1 && C2) { 1116 APInt C1Int = C1->getAPIntValue(); 1117 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 1118 1119 // We can materialise `c1 << c2` into an add immediate, so it's "free", 1120 // and the combine should happen, to potentially allow further combines 1121 // later. 1122 if (ShiftedC1Int.getMinSignedBits() <= 64 && 1123 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 1124 return true; 1125 1126 // We can materialise `c1` in an add immediate, so it's "free", and the 1127 // combine should be prevented. 1128 if (C1Int.getMinSignedBits() <= 64 && 1129 isLegalAddImmediate(C1Int.getSExtValue())) 1130 return false; 1131 1132 // Neither constant will fit into an immediate, so find materialisation 1133 // costs. 1134 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 1135 Subtarget.is64Bit()); 1136 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 1137 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 1138 1139 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 1140 // combine should be prevented. 1141 if (C1Cost < ShiftedC1Cost) 1142 return false; 1143 } 1144 } 1145 return true; 1146 } 1147 1148 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 1149 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 1150 unsigned Depth) const { 1151 switch (Op.getOpcode()) { 1152 default: 1153 break; 1154 case RISCVISD::SLLW: 1155 case RISCVISD::SRAW: 1156 case RISCVISD::SRLW: 1157 case RISCVISD::DIVW: 1158 case RISCVISD::DIVUW: 1159 case RISCVISD::REMUW: 1160 // TODO: As the result is sign-extended, this is conservatively correct. A 1161 // more precise answer could be calculated for SRAW depending on known 1162 // bits in the shift amount. 1163 return 33; 1164 } 1165 1166 return 1; 1167 } 1168 1169 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 1170 MachineBasicBlock *BB) { 1171 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 1172 1173 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 1174 // Should the count have wrapped while it was being read, we need to try 1175 // again. 1176 // ... 1177 // read: 1178 // rdcycleh x3 # load high word of cycle 1179 // rdcycle x2 # load low word of cycle 1180 // rdcycleh x4 # load high word of cycle 1181 // bne x3, x4, read # check if high word reads match, otherwise try again 1182 // ... 1183 1184 MachineFunction &MF = *BB->getParent(); 1185 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1186 MachineFunction::iterator It = ++BB->getIterator(); 1187 1188 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1189 MF.insert(It, LoopMBB); 1190 1191 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 1192 MF.insert(It, DoneMBB); 1193 1194 // Transfer the remainder of BB and its successor edges to DoneMBB. 1195 DoneMBB->splice(DoneMBB->begin(), BB, 1196 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1197 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 1198 1199 BB->addSuccessor(LoopMBB); 1200 1201 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1202 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1203 Register LoReg = MI.getOperand(0).getReg(); 1204 Register HiReg = MI.getOperand(1).getReg(); 1205 DebugLoc DL = MI.getDebugLoc(); 1206 1207 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1208 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 1209 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1210 .addReg(RISCV::X0); 1211 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 1212 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 1213 .addReg(RISCV::X0); 1214 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 1215 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 1216 .addReg(RISCV::X0); 1217 1218 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 1219 .addReg(HiReg) 1220 .addReg(ReadAgainReg) 1221 .addMBB(LoopMBB); 1222 1223 LoopMBB->addSuccessor(LoopMBB); 1224 LoopMBB->addSuccessor(DoneMBB); 1225 1226 MI.eraseFromParent(); 1227 1228 return DoneMBB; 1229 } 1230 1231 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 1232 MachineBasicBlock *BB) { 1233 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 1234 1235 MachineFunction &MF = *BB->getParent(); 1236 DebugLoc DL = MI.getDebugLoc(); 1237 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1238 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1239 Register LoReg = MI.getOperand(0).getReg(); 1240 Register HiReg = MI.getOperand(1).getReg(); 1241 Register SrcReg = MI.getOperand(2).getReg(); 1242 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 1243 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1244 1245 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 1246 RI); 1247 MachineMemOperand *MMO = 1248 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1249 MachineMemOperand::MOLoad, 8, Align(8)); 1250 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 1251 .addFrameIndex(FI) 1252 .addImm(0) 1253 .addMemOperand(MMO); 1254 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 1255 .addFrameIndex(FI) 1256 .addImm(4) 1257 .addMemOperand(MMO); 1258 MI.eraseFromParent(); // The pseudo instruction is gone now. 1259 return BB; 1260 } 1261 1262 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 1263 MachineBasicBlock *BB) { 1264 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 1265 "Unexpected instruction"); 1266 1267 MachineFunction &MF = *BB->getParent(); 1268 DebugLoc DL = MI.getDebugLoc(); 1269 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1270 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 1271 Register DstReg = MI.getOperand(0).getReg(); 1272 Register LoReg = MI.getOperand(1).getReg(); 1273 Register HiReg = MI.getOperand(2).getReg(); 1274 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 1275 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 1276 1277 MachineMemOperand *MMO = 1278 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 1279 MachineMemOperand::MOStore, 8, Align(8)); 1280 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1281 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 1282 .addFrameIndex(FI) 1283 .addImm(0) 1284 .addMemOperand(MMO); 1285 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 1286 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 1287 .addFrameIndex(FI) 1288 .addImm(4) 1289 .addMemOperand(MMO); 1290 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 1291 MI.eraseFromParent(); // The pseudo instruction is gone now. 1292 return BB; 1293 } 1294 1295 static bool isSelectPseudo(MachineInstr &MI) { 1296 switch (MI.getOpcode()) { 1297 default: 1298 return false; 1299 case RISCV::Select_GPR_Using_CC_GPR: 1300 case RISCV::Select_FPR32_Using_CC_GPR: 1301 case RISCV::Select_FPR64_Using_CC_GPR: 1302 return true; 1303 } 1304 } 1305 1306 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 1307 MachineBasicBlock *BB) { 1308 // To "insert" Select_* instructions, we actually have to insert the triangle 1309 // control-flow pattern. The incoming instructions know the destination vreg 1310 // to set, the condition code register to branch on, the true/false values to 1311 // select between, and the condcode to use to select the appropriate branch. 1312 // 1313 // We produce the following control flow: 1314 // HeadMBB 1315 // | \ 1316 // | IfFalseMBB 1317 // | / 1318 // TailMBB 1319 // 1320 // When we find a sequence of selects we attempt to optimize their emission 1321 // by sharing the control flow. Currently we only handle cases where we have 1322 // multiple selects with the exact same condition (same LHS, RHS and CC). 1323 // The selects may be interleaved with other instructions if the other 1324 // instructions meet some requirements we deem safe: 1325 // - They are debug instructions. Otherwise, 1326 // - They do not have side-effects, do not access memory and their inputs do 1327 // not depend on the results of the select pseudo-instructions. 1328 // The TrueV/FalseV operands of the selects cannot depend on the result of 1329 // previous selects in the sequence. 1330 // These conditions could be further relaxed. See the X86 target for a 1331 // related approach and more information. 1332 Register LHS = MI.getOperand(1).getReg(); 1333 Register RHS = MI.getOperand(2).getReg(); 1334 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 1335 1336 SmallVector<MachineInstr *, 4> SelectDebugValues; 1337 SmallSet<Register, 4> SelectDests; 1338 SelectDests.insert(MI.getOperand(0).getReg()); 1339 1340 MachineInstr *LastSelectPseudo = &MI; 1341 1342 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 1343 SequenceMBBI != E; ++SequenceMBBI) { 1344 if (SequenceMBBI->isDebugInstr()) 1345 continue; 1346 else if (isSelectPseudo(*SequenceMBBI)) { 1347 if (SequenceMBBI->getOperand(1).getReg() != LHS || 1348 SequenceMBBI->getOperand(2).getReg() != RHS || 1349 SequenceMBBI->getOperand(3).getImm() != CC || 1350 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 1351 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 1352 break; 1353 LastSelectPseudo = &*SequenceMBBI; 1354 SequenceMBBI->collectDebugValues(SelectDebugValues); 1355 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 1356 } else { 1357 if (SequenceMBBI->hasUnmodeledSideEffects() || 1358 SequenceMBBI->mayLoadOrStore()) 1359 break; 1360 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 1361 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 1362 })) 1363 break; 1364 } 1365 } 1366 1367 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1368 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1369 DebugLoc DL = MI.getDebugLoc(); 1370 MachineFunction::iterator I = ++BB->getIterator(); 1371 1372 MachineBasicBlock *HeadMBB = BB; 1373 MachineFunction *F = BB->getParent(); 1374 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 1375 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 1376 1377 F->insert(I, IfFalseMBB); 1378 F->insert(I, TailMBB); 1379 1380 // Transfer debug instructions associated with the selects to TailMBB. 1381 for (MachineInstr *DebugInstr : SelectDebugValues) { 1382 TailMBB->push_back(DebugInstr->removeFromParent()); 1383 } 1384 1385 // Move all instructions after the sequence to TailMBB. 1386 TailMBB->splice(TailMBB->end(), HeadMBB, 1387 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 1388 // Update machine-CFG edges by transferring all successors of the current 1389 // block to the new block which will contain the Phi nodes for the selects. 1390 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 1391 // Set the successors for HeadMBB. 1392 HeadMBB->addSuccessor(IfFalseMBB); 1393 HeadMBB->addSuccessor(TailMBB); 1394 1395 // Insert appropriate branch. 1396 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 1397 1398 BuildMI(HeadMBB, DL, TII.get(Opcode)) 1399 .addReg(LHS) 1400 .addReg(RHS) 1401 .addMBB(TailMBB); 1402 1403 // IfFalseMBB just falls through to TailMBB. 1404 IfFalseMBB->addSuccessor(TailMBB); 1405 1406 // Create PHIs for all of the select pseudo-instructions. 1407 auto SelectMBBI = MI.getIterator(); 1408 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 1409 auto InsertionPoint = TailMBB->begin(); 1410 while (SelectMBBI != SelectEnd) { 1411 auto Next = std::next(SelectMBBI); 1412 if (isSelectPseudo(*SelectMBBI)) { 1413 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 1414 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 1415 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 1416 .addReg(SelectMBBI->getOperand(4).getReg()) 1417 .addMBB(HeadMBB) 1418 .addReg(SelectMBBI->getOperand(5).getReg()) 1419 .addMBB(IfFalseMBB); 1420 SelectMBBI->eraseFromParent(); 1421 } 1422 SelectMBBI = Next; 1423 } 1424 1425 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 1426 return TailMBB; 1427 } 1428 1429 MachineBasicBlock * 1430 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1431 MachineBasicBlock *BB) const { 1432 switch (MI.getOpcode()) { 1433 default: 1434 llvm_unreachable("Unexpected instr type to insert"); 1435 case RISCV::ReadCycleWide: 1436 assert(!Subtarget.is64Bit() && 1437 "ReadCycleWrite is only to be used on riscv32"); 1438 return emitReadCycleWidePseudo(MI, BB); 1439 case RISCV::Select_GPR_Using_CC_GPR: 1440 case RISCV::Select_FPR32_Using_CC_GPR: 1441 case RISCV::Select_FPR64_Using_CC_GPR: 1442 return emitSelectPseudo(MI, BB); 1443 case RISCV::BuildPairF64Pseudo: 1444 return emitBuildPairF64Pseudo(MI, BB); 1445 case RISCV::SplitF64Pseudo: 1446 return emitSplitF64Pseudo(MI, BB); 1447 } 1448 } 1449 1450 // Calling Convention Implementation. 1451 // The expectations for frontend ABI lowering vary from target to target. 1452 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 1453 // details, but this is a longer term goal. For now, we simply try to keep the 1454 // role of the frontend as simple and well-defined as possible. The rules can 1455 // be summarised as: 1456 // * Never split up large scalar arguments. We handle them here. 1457 // * If a hardfloat calling convention is being used, and the struct may be 1458 // passed in a pair of registers (fp+fp, int+fp), and both registers are 1459 // available, then pass as two separate arguments. If either the GPRs or FPRs 1460 // are exhausted, then pass according to the rule below. 1461 // * If a struct could never be passed in registers or directly in a stack 1462 // slot (as it is larger than 2*XLEN and the floating point rules don't 1463 // apply), then pass it using a pointer with the byval attribute. 1464 // * If a struct is less than 2*XLEN, then coerce to either a two-element 1465 // word-sized array or a 2*XLEN scalar (depending on alignment). 1466 // * The frontend can determine whether a struct is returned by reference or 1467 // not based on its size and fields. If it will be returned by reference, the 1468 // frontend must modify the prototype so a pointer with the sret annotation is 1469 // passed as the first argument. This is not necessary for large scalar 1470 // returns. 1471 // * Struct return values and varargs should be coerced to structs containing 1472 // register-size fields in the same situations they would be for fixed 1473 // arguments. 1474 1475 static const MCPhysReg ArgGPRs[] = { 1476 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 1477 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 1478 }; 1479 static const MCPhysReg ArgFPR32s[] = { 1480 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 1481 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 1482 }; 1483 static const MCPhysReg ArgFPR64s[] = { 1484 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 1485 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 1486 }; 1487 1488 // Pass a 2*XLEN argument that has been split into two XLEN values through 1489 // registers or the stack as necessary. 1490 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 1491 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 1492 MVT ValVT2, MVT LocVT2, 1493 ISD::ArgFlagsTy ArgFlags2) { 1494 unsigned XLenInBytes = XLen / 8; 1495 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1496 // At least one half can be passed via register. 1497 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 1498 VA1.getLocVT(), CCValAssign::Full)); 1499 } else { 1500 // Both halves must be passed on the stack, with proper alignment. 1501 Align StackAlign = 1502 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 1503 State.addLoc( 1504 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 1505 State.AllocateStack(XLenInBytes, StackAlign), 1506 VA1.getLocVT(), CCValAssign::Full)); 1507 State.addLoc(CCValAssign::getMem( 1508 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1509 LocVT2, CCValAssign::Full)); 1510 return false; 1511 } 1512 1513 if (Register Reg = State.AllocateReg(ArgGPRs)) { 1514 // The second half can also be passed via register. 1515 State.addLoc( 1516 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 1517 } else { 1518 // The second half is passed via the stack, without additional alignment. 1519 State.addLoc(CCValAssign::getMem( 1520 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 1521 LocVT2, CCValAssign::Full)); 1522 } 1523 1524 return false; 1525 } 1526 1527 // Implements the RISC-V calling convention. Returns true upon failure. 1528 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 1529 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 1530 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 1531 bool IsRet, Type *OrigTy) { 1532 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 1533 assert(XLen == 32 || XLen == 64); 1534 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 1535 1536 // Any return value split in to more than two values can't be returned 1537 // directly. 1538 if (IsRet && ValNo > 1) 1539 return true; 1540 1541 // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a 1542 // variadic argument, or if no F32 argument registers are available. 1543 bool UseGPRForF32 = true; 1544 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 1545 // variadic argument, or if no F64 argument registers are available. 1546 bool UseGPRForF64 = true; 1547 1548 switch (ABI) { 1549 default: 1550 llvm_unreachable("Unexpected ABI"); 1551 case RISCVABI::ABI_ILP32: 1552 case RISCVABI::ABI_LP64: 1553 break; 1554 case RISCVABI::ABI_ILP32F: 1555 case RISCVABI::ABI_LP64F: 1556 UseGPRForF32 = !IsFixed; 1557 break; 1558 case RISCVABI::ABI_ILP32D: 1559 case RISCVABI::ABI_LP64D: 1560 UseGPRForF32 = !IsFixed; 1561 UseGPRForF64 = !IsFixed; 1562 break; 1563 } 1564 1565 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) 1566 UseGPRForF32 = true; 1567 if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s)) 1568 UseGPRForF64 = true; 1569 1570 // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local 1571 // variables rather than directly checking against the target ABI. 1572 1573 if (UseGPRForF32 && ValVT == MVT::f32) { 1574 LocVT = XLenVT; 1575 LocInfo = CCValAssign::BCvt; 1576 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 1577 LocVT = MVT::i64; 1578 LocInfo = CCValAssign::BCvt; 1579 } 1580 1581 // If this is a variadic argument, the RISC-V calling convention requires 1582 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 1583 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 1584 // be used regardless of whether the original argument was split during 1585 // legalisation or not. The argument will not be passed by registers if the 1586 // original type is larger than 2*XLEN, so the register alignment rule does 1587 // not apply. 1588 unsigned TwoXLenInBytes = (2 * XLen) / 8; 1589 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 1590 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 1591 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 1592 // Skip 'odd' register if necessary. 1593 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 1594 State.AllocateReg(ArgGPRs); 1595 } 1596 1597 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 1598 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 1599 State.getPendingArgFlags(); 1600 1601 assert(PendingLocs.size() == PendingArgFlags.size() && 1602 "PendingLocs and PendingArgFlags out of sync"); 1603 1604 // Handle passing f64 on RV32D with a soft float ABI or when floating point 1605 // registers are exhausted. 1606 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 1607 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 1608 "Can't lower f64 if it is split"); 1609 // Depending on available argument GPRS, f64 may be passed in a pair of 1610 // GPRs, split between a GPR and the stack, or passed completely on the 1611 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 1612 // cases. 1613 Register Reg = State.AllocateReg(ArgGPRs); 1614 LocVT = MVT::i32; 1615 if (!Reg) { 1616 unsigned StackOffset = State.AllocateStack(8, Align(8)); 1617 State.addLoc( 1618 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1619 return false; 1620 } 1621 if (!State.AllocateReg(ArgGPRs)) 1622 State.AllocateStack(4, Align(4)); 1623 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1624 return false; 1625 } 1626 1627 // Split arguments might be passed indirectly, so keep track of the pending 1628 // values. 1629 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 1630 LocVT = XLenVT; 1631 LocInfo = CCValAssign::Indirect; 1632 PendingLocs.push_back( 1633 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 1634 PendingArgFlags.push_back(ArgFlags); 1635 if (!ArgFlags.isSplitEnd()) { 1636 return false; 1637 } 1638 } 1639 1640 // If the split argument only had two elements, it should be passed directly 1641 // in registers or on the stack. 1642 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 1643 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 1644 // Apply the normal calling convention rules to the first half of the 1645 // split argument. 1646 CCValAssign VA = PendingLocs[0]; 1647 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 1648 PendingLocs.clear(); 1649 PendingArgFlags.clear(); 1650 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 1651 ArgFlags); 1652 } 1653 1654 // Allocate to a register if possible, or else a stack slot. 1655 Register Reg; 1656 if (ValVT == MVT::f32 && !UseGPRForF32) 1657 Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s); 1658 else if (ValVT == MVT::f64 && !UseGPRForF64) 1659 Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s); 1660 else 1661 Reg = State.AllocateReg(ArgGPRs); 1662 unsigned StackOffset = 1663 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 1664 1665 // If we reach this point and PendingLocs is non-empty, we must be at the 1666 // end of a split argument that must be passed indirectly. 1667 if (!PendingLocs.empty()) { 1668 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 1669 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 1670 1671 for (auto &It : PendingLocs) { 1672 if (Reg) 1673 It.convertToReg(Reg); 1674 else 1675 It.convertToMem(StackOffset); 1676 State.addLoc(It); 1677 } 1678 PendingLocs.clear(); 1679 PendingArgFlags.clear(); 1680 return false; 1681 } 1682 1683 assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) && 1684 "Expected an XLenVT at this stage"); 1685 1686 if (Reg) { 1687 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1688 return false; 1689 } 1690 1691 // When an f32 or f64 is passed on the stack, no bit-conversion is needed. 1692 if (ValVT == MVT::f32 || ValVT == MVT::f64) { 1693 LocVT = ValVT; 1694 LocInfo = CCValAssign::Full; 1695 } 1696 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 1697 return false; 1698 } 1699 1700 void RISCVTargetLowering::analyzeInputArgs( 1701 MachineFunction &MF, CCState &CCInfo, 1702 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 1703 unsigned NumArgs = Ins.size(); 1704 FunctionType *FType = MF.getFunction().getFunctionType(); 1705 1706 for (unsigned i = 0; i != NumArgs; ++i) { 1707 MVT ArgVT = Ins[i].VT; 1708 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 1709 1710 Type *ArgTy = nullptr; 1711 if (IsRet) 1712 ArgTy = FType->getReturnType(); 1713 else if (Ins[i].isOrigArg()) 1714 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 1715 1716 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1717 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1718 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) { 1719 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 1720 << EVT(ArgVT).getEVTString() << '\n'); 1721 llvm_unreachable(nullptr); 1722 } 1723 } 1724 } 1725 1726 void RISCVTargetLowering::analyzeOutputArgs( 1727 MachineFunction &MF, CCState &CCInfo, 1728 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 1729 CallLoweringInfo *CLI) const { 1730 unsigned NumArgs = Outs.size(); 1731 1732 for (unsigned i = 0; i != NumArgs; i++) { 1733 MVT ArgVT = Outs[i].VT; 1734 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1735 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 1736 1737 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 1738 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 1739 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 1740 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 1741 << EVT(ArgVT).getEVTString() << "\n"); 1742 llvm_unreachable(nullptr); 1743 } 1744 } 1745 } 1746 1747 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 1748 // values. 1749 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 1750 const CCValAssign &VA, const SDLoc &DL) { 1751 switch (VA.getLocInfo()) { 1752 default: 1753 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1754 case CCValAssign::Full: 1755 break; 1756 case CCValAssign::BCvt: 1757 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1758 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 1759 break; 1760 } 1761 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 1762 break; 1763 } 1764 return Val; 1765 } 1766 1767 // The caller is responsible for loading the full value if the argument is 1768 // passed with CCValAssign::Indirect. 1769 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 1770 const CCValAssign &VA, const SDLoc &DL) { 1771 MachineFunction &MF = DAG.getMachineFunction(); 1772 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1773 EVT LocVT = VA.getLocVT(); 1774 SDValue Val; 1775 const TargetRegisterClass *RC; 1776 1777 switch (LocVT.getSimpleVT().SimpleTy) { 1778 default: 1779 llvm_unreachable("Unexpected register type"); 1780 case MVT::i32: 1781 case MVT::i64: 1782 RC = &RISCV::GPRRegClass; 1783 break; 1784 case MVT::f32: 1785 RC = &RISCV::FPR32RegClass; 1786 break; 1787 case MVT::f64: 1788 RC = &RISCV::FPR64RegClass; 1789 break; 1790 } 1791 1792 Register VReg = RegInfo.createVirtualRegister(RC); 1793 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1794 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1795 1796 if (VA.getLocInfo() == CCValAssign::Indirect) 1797 return Val; 1798 1799 return convertLocVTToValVT(DAG, Val, VA, DL); 1800 } 1801 1802 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 1803 const CCValAssign &VA, const SDLoc &DL) { 1804 EVT LocVT = VA.getLocVT(); 1805 1806 switch (VA.getLocInfo()) { 1807 default: 1808 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1809 case CCValAssign::Full: 1810 break; 1811 case CCValAssign::BCvt: 1812 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { 1813 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 1814 break; 1815 } 1816 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1817 break; 1818 } 1819 return Val; 1820 } 1821 1822 // The caller is responsible for loading the full value if the argument is 1823 // passed with CCValAssign::Indirect. 1824 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 1825 const CCValAssign &VA, const SDLoc &DL) { 1826 MachineFunction &MF = DAG.getMachineFunction(); 1827 MachineFrameInfo &MFI = MF.getFrameInfo(); 1828 EVT LocVT = VA.getLocVT(); 1829 EVT ValVT = VA.getValVT(); 1830 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 1831 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 1832 VA.getLocMemOffset(), /*Immutable=*/true); 1833 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1834 SDValue Val; 1835 1836 ISD::LoadExtType ExtType; 1837 switch (VA.getLocInfo()) { 1838 default: 1839 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1840 case CCValAssign::Full: 1841 case CCValAssign::Indirect: 1842 case CCValAssign::BCvt: 1843 ExtType = ISD::NON_EXTLOAD; 1844 break; 1845 } 1846 Val = DAG.getExtLoad( 1847 ExtType, DL, LocVT, Chain, FIN, 1848 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 1849 return Val; 1850 } 1851 1852 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 1853 const CCValAssign &VA, const SDLoc &DL) { 1854 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 1855 "Unexpected VA"); 1856 MachineFunction &MF = DAG.getMachineFunction(); 1857 MachineFrameInfo &MFI = MF.getFrameInfo(); 1858 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1859 1860 if (VA.isMemLoc()) { 1861 // f64 is passed on the stack. 1862 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 1863 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1864 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 1865 MachinePointerInfo::getFixedStack(MF, FI)); 1866 } 1867 1868 assert(VA.isRegLoc() && "Expected register VA assignment"); 1869 1870 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1871 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 1872 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 1873 SDValue Hi; 1874 if (VA.getLocReg() == RISCV::X17) { 1875 // Second half of f64 is passed on the stack. 1876 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 1877 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1878 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 1879 MachinePointerInfo::getFixedStack(MF, FI)); 1880 } else { 1881 // Second half of f64 is passed in another GPR. 1882 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 1883 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 1884 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 1885 } 1886 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1887 } 1888 1889 // FastCC has less than 1% performance improvement for some particular 1890 // benchmark. But theoretically, it may has benenfit for some cases. 1891 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 1892 CCValAssign::LocInfo LocInfo, 1893 ISD::ArgFlagsTy ArgFlags, CCState &State) { 1894 1895 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 1896 // X5 and X6 might be used for save-restore libcall. 1897 static const MCPhysReg GPRList[] = { 1898 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 1899 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 1900 RISCV::X29, RISCV::X30, RISCV::X31}; 1901 if (unsigned Reg = State.AllocateReg(GPRList)) { 1902 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1903 return false; 1904 } 1905 } 1906 1907 if (LocVT == MVT::f32) { 1908 static const MCPhysReg FPR32List[] = { 1909 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 1910 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 1911 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 1912 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 1913 if (unsigned Reg = State.AllocateReg(FPR32List)) { 1914 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1915 return false; 1916 } 1917 } 1918 1919 if (LocVT == MVT::f64) { 1920 static const MCPhysReg FPR64List[] = { 1921 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 1922 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 1923 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 1924 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 1925 if (unsigned Reg = State.AllocateReg(FPR64List)) { 1926 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 1927 return false; 1928 } 1929 } 1930 1931 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 1932 unsigned Offset4 = State.AllocateStack(4, Align(4)); 1933 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 1934 return false; 1935 } 1936 1937 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 1938 unsigned Offset5 = State.AllocateStack(8, Align(8)); 1939 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 1940 return false; 1941 } 1942 1943 return true; // CC didn't match. 1944 } 1945 1946 // Transform physical registers into virtual registers. 1947 SDValue RISCVTargetLowering::LowerFormalArguments( 1948 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1949 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1950 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1951 1952 switch (CallConv) { 1953 default: 1954 report_fatal_error("Unsupported calling convention"); 1955 case CallingConv::C: 1956 case CallingConv::Fast: 1957 break; 1958 } 1959 1960 MachineFunction &MF = DAG.getMachineFunction(); 1961 1962 const Function &Func = MF.getFunction(); 1963 if (Func.hasFnAttribute("interrupt")) { 1964 if (!Func.arg_empty()) 1965 report_fatal_error( 1966 "Functions with the interrupt attribute cannot have arguments!"); 1967 1968 StringRef Kind = 1969 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1970 1971 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 1972 report_fatal_error( 1973 "Function interrupt attribute argument not supported!"); 1974 } 1975 1976 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1977 MVT XLenVT = Subtarget.getXLenVT(); 1978 unsigned XLenInBytes = Subtarget.getXLen() / 8; 1979 // Used with vargs to acumulate store chains. 1980 std::vector<SDValue> OutChains; 1981 1982 // Assign locations to all of the incoming arguments. 1983 SmallVector<CCValAssign, 16> ArgLocs; 1984 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1985 1986 if (CallConv == CallingConv::Fast) 1987 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 1988 else 1989 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 1990 1991 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1992 CCValAssign &VA = ArgLocs[i]; 1993 SDValue ArgValue; 1994 // Passing f64 on RV32D with a soft float ABI must be handled as a special 1995 // case. 1996 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 1997 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 1998 else if (VA.isRegLoc()) 1999 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 2000 else 2001 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 2002 2003 if (VA.getLocInfo() == CCValAssign::Indirect) { 2004 // If the original argument was split and passed by reference (e.g. i128 2005 // on RV32), we need to load all parts of it here (using the same 2006 // address). 2007 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 2008 MachinePointerInfo())); 2009 unsigned ArgIndex = Ins[i].OrigArgIndex; 2010 assert(Ins[i].PartOffset == 0); 2011 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 2012 CCValAssign &PartVA = ArgLocs[i + 1]; 2013 unsigned PartOffset = Ins[i + 1].PartOffset; 2014 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 2015 DAG.getIntPtrConstant(PartOffset, DL)); 2016 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 2017 MachinePointerInfo())); 2018 ++i; 2019 } 2020 continue; 2021 } 2022 InVals.push_back(ArgValue); 2023 } 2024 2025 if (IsVarArg) { 2026 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 2027 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 2028 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 2029 MachineFrameInfo &MFI = MF.getFrameInfo(); 2030 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2031 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 2032 2033 // Offset of the first variable argument from stack pointer, and size of 2034 // the vararg save area. For now, the varargs save area is either zero or 2035 // large enough to hold a0-a7. 2036 int VaArgOffset, VarArgsSaveSize; 2037 2038 // If all registers are allocated, then all varargs must be passed on the 2039 // stack and we don't need to save any argregs. 2040 if (ArgRegs.size() == Idx) { 2041 VaArgOffset = CCInfo.getNextStackOffset(); 2042 VarArgsSaveSize = 0; 2043 } else { 2044 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 2045 VaArgOffset = -VarArgsSaveSize; 2046 } 2047 2048 // Record the frame index of the first variable argument 2049 // which is a value necessary to VASTART. 2050 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2051 RVFI->setVarArgsFrameIndex(FI); 2052 2053 // If saving an odd number of registers then create an extra stack slot to 2054 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 2055 // offsets to even-numbered registered remain 2*XLEN-aligned. 2056 if (Idx % 2) { 2057 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 2058 VarArgsSaveSize += XLenInBytes; 2059 } 2060 2061 // Copy the integer registers that may have been used for passing varargs 2062 // to the vararg save area. 2063 for (unsigned I = Idx; I < ArgRegs.size(); 2064 ++I, VaArgOffset += XLenInBytes) { 2065 const Register Reg = RegInfo.createVirtualRegister(RC); 2066 RegInfo.addLiveIn(ArgRegs[I], Reg); 2067 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 2068 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 2069 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2070 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 2071 MachinePointerInfo::getFixedStack(MF, FI)); 2072 cast<StoreSDNode>(Store.getNode()) 2073 ->getMemOperand() 2074 ->setValue((Value *)nullptr); 2075 OutChains.push_back(Store); 2076 } 2077 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 2078 } 2079 2080 // All stores are grouped in one node to allow the matching between 2081 // the size of Ins and InVals. This only happens for vararg functions. 2082 if (!OutChains.empty()) { 2083 OutChains.push_back(Chain); 2084 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 2085 } 2086 2087 return Chain; 2088 } 2089 2090 /// isEligibleForTailCallOptimization - Check whether the call is eligible 2091 /// for tail call optimization. 2092 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 2093 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 2094 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 2095 const SmallVector<CCValAssign, 16> &ArgLocs) const { 2096 2097 auto &Callee = CLI.Callee; 2098 auto CalleeCC = CLI.CallConv; 2099 auto &Outs = CLI.Outs; 2100 auto &Caller = MF.getFunction(); 2101 auto CallerCC = Caller.getCallingConv(); 2102 2103 // Exception-handling functions need a special set of instructions to 2104 // indicate a return to the hardware. Tail-calling another function would 2105 // probably break this. 2106 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 2107 // should be expanded as new function attributes are introduced. 2108 if (Caller.hasFnAttribute("interrupt")) 2109 return false; 2110 2111 // Do not tail call opt if the stack is used to pass parameters. 2112 if (CCInfo.getNextStackOffset() != 0) 2113 return false; 2114 2115 // Do not tail call opt if any parameters need to be passed indirectly. 2116 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 2117 // passed indirectly. So the address of the value will be passed in a 2118 // register, or if not available, then the address is put on the stack. In 2119 // order to pass indirectly, space on the stack often needs to be allocated 2120 // in order to store the value. In this case the CCInfo.getNextStackOffset() 2121 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 2122 // are passed CCValAssign::Indirect. 2123 for (auto &VA : ArgLocs) 2124 if (VA.getLocInfo() == CCValAssign::Indirect) 2125 return false; 2126 2127 // Do not tail call opt if either caller or callee uses struct return 2128 // semantics. 2129 auto IsCallerStructRet = Caller.hasStructRetAttr(); 2130 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 2131 if (IsCallerStructRet || IsCalleeStructRet) 2132 return false; 2133 2134 // Externally-defined functions with weak linkage should not be 2135 // tail-called. The behaviour of branch instructions in this situation (as 2136 // used for tail calls) is implementation-defined, so we cannot rely on the 2137 // linker replacing the tail call with a return. 2138 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2139 const GlobalValue *GV = G->getGlobal(); 2140 if (GV->hasExternalWeakLinkage()) 2141 return false; 2142 } 2143 2144 // The callee has to preserve all registers the caller needs to preserve. 2145 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2146 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 2147 if (CalleeCC != CallerCC) { 2148 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 2149 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 2150 return false; 2151 } 2152 2153 // Byval parameters hand the function a pointer directly into the stack area 2154 // we want to reuse during a tail call. Working around this *is* possible 2155 // but less efficient and uglier in LowerCall. 2156 for (auto &Arg : Outs) 2157 if (Arg.Flags.isByVal()) 2158 return false; 2159 2160 return true; 2161 } 2162 2163 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 2164 // and output parameter nodes. 2165 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 2166 SmallVectorImpl<SDValue> &InVals) const { 2167 SelectionDAG &DAG = CLI.DAG; 2168 SDLoc &DL = CLI.DL; 2169 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2170 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2171 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2172 SDValue Chain = CLI.Chain; 2173 SDValue Callee = CLI.Callee; 2174 bool &IsTailCall = CLI.IsTailCall; 2175 CallingConv::ID CallConv = CLI.CallConv; 2176 bool IsVarArg = CLI.IsVarArg; 2177 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2178 MVT XLenVT = Subtarget.getXLenVT(); 2179 2180 MachineFunction &MF = DAG.getMachineFunction(); 2181 2182 // Analyze the operands of the call, assigning locations to each operand. 2183 SmallVector<CCValAssign, 16> ArgLocs; 2184 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 2185 2186 if (CallConv == CallingConv::Fast) 2187 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 2188 else 2189 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 2190 2191 // Check if it's really possible to do a tail call. 2192 if (IsTailCall) 2193 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 2194 2195 if (IsTailCall) 2196 ++NumTailCalls; 2197 else if (CLI.CB && CLI.CB->isMustTailCall()) 2198 report_fatal_error("failed to perform tail call elimination on a call " 2199 "site marked musttail"); 2200 2201 // Get a count of how many bytes are to be pushed on the stack. 2202 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 2203 2204 // Create local copies for byval args 2205 SmallVector<SDValue, 8> ByValArgs; 2206 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2207 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2208 if (!Flags.isByVal()) 2209 continue; 2210 2211 SDValue Arg = OutVals[i]; 2212 unsigned Size = Flags.getByValSize(); 2213 Align Alignment = Flags.getNonZeroByValAlign(); 2214 2215 int FI = 2216 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 2217 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2218 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 2219 2220 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 2221 /*IsVolatile=*/false, 2222 /*AlwaysInline=*/false, IsTailCall, 2223 MachinePointerInfo(), MachinePointerInfo()); 2224 ByValArgs.push_back(FIPtr); 2225 } 2226 2227 if (!IsTailCall) 2228 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 2229 2230 // Copy argument values to their designated locations. 2231 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 2232 SmallVector<SDValue, 8> MemOpChains; 2233 SDValue StackPtr; 2234 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 2235 CCValAssign &VA = ArgLocs[i]; 2236 SDValue ArgValue = OutVals[i]; 2237 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2238 2239 // Handle passing f64 on RV32D with a soft float ABI as a special case. 2240 bool IsF64OnRV32DSoftABI = 2241 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 2242 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 2243 SDValue SplitF64 = DAG.getNode( 2244 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 2245 SDValue Lo = SplitF64.getValue(0); 2246 SDValue Hi = SplitF64.getValue(1); 2247 2248 Register RegLo = VA.getLocReg(); 2249 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 2250 2251 if (RegLo == RISCV::X17) { 2252 // Second half of f64 is passed on the stack. 2253 // Work out the address of the stack slot. 2254 if (!StackPtr.getNode()) 2255 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2256 // Emit the store. 2257 MemOpChains.push_back( 2258 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 2259 } else { 2260 // Second half of f64 is passed in another GPR. 2261 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2262 Register RegHigh = RegLo + 1; 2263 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 2264 } 2265 continue; 2266 } 2267 2268 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 2269 // as any other MemLoc. 2270 2271 // Promote the value if needed. 2272 // For now, only handle fully promoted and indirect arguments. 2273 if (VA.getLocInfo() == CCValAssign::Indirect) { 2274 // Store the argument in a stack slot and pass its address. 2275 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 2276 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 2277 MemOpChains.push_back( 2278 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 2279 MachinePointerInfo::getFixedStack(MF, FI))); 2280 // If the original argument was split (e.g. i128), we need 2281 // to store all parts of it here (and pass just one address). 2282 unsigned ArgIndex = Outs[i].OrigArgIndex; 2283 assert(Outs[i].PartOffset == 0); 2284 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 2285 SDValue PartValue = OutVals[i + 1]; 2286 unsigned PartOffset = Outs[i + 1].PartOffset; 2287 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 2288 DAG.getIntPtrConstant(PartOffset, DL)); 2289 MemOpChains.push_back( 2290 DAG.getStore(Chain, DL, PartValue, Address, 2291 MachinePointerInfo::getFixedStack(MF, FI))); 2292 ++i; 2293 } 2294 ArgValue = SpillSlot; 2295 } else { 2296 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 2297 } 2298 2299 // Use local copy if it is a byval arg. 2300 if (Flags.isByVal()) 2301 ArgValue = ByValArgs[j++]; 2302 2303 if (VA.isRegLoc()) { 2304 // Queue up the argument copies and emit them at the end. 2305 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 2306 } else { 2307 assert(VA.isMemLoc() && "Argument not register or memory"); 2308 assert(!IsTailCall && "Tail call not allowed if stack is used " 2309 "for passing parameters"); 2310 2311 // Work out the address of the stack slot. 2312 if (!StackPtr.getNode()) 2313 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 2314 SDValue Address = 2315 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 2316 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 2317 2318 // Emit the store. 2319 MemOpChains.push_back( 2320 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 2321 } 2322 } 2323 2324 // Join the stores, which are independent of one another. 2325 if (!MemOpChains.empty()) 2326 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2327 2328 SDValue Glue; 2329 2330 // Build a sequence of copy-to-reg nodes, chained and glued together. 2331 for (auto &Reg : RegsToPass) { 2332 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 2333 Glue = Chain.getValue(1); 2334 } 2335 2336 // Validate that none of the argument registers have been marked as 2337 // reserved, if so report an error. Do the same for the return address if this 2338 // is not a tailcall. 2339 validateCCReservedRegs(RegsToPass, MF); 2340 if (!IsTailCall && 2341 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 2342 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2343 MF.getFunction(), 2344 "Return address register required, but has been reserved."}); 2345 2346 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 2347 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 2348 // split it and then direct call can be matched by PseudoCALL. 2349 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 2350 const GlobalValue *GV = S->getGlobal(); 2351 2352 unsigned OpFlags = RISCVII::MO_CALL; 2353 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 2354 OpFlags = RISCVII::MO_PLT; 2355 2356 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2357 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2358 unsigned OpFlags = RISCVII::MO_CALL; 2359 2360 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 2361 nullptr)) 2362 OpFlags = RISCVII::MO_PLT; 2363 2364 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 2365 } 2366 2367 // The first call operand is the chain and the second is the target address. 2368 SmallVector<SDValue, 8> Ops; 2369 Ops.push_back(Chain); 2370 Ops.push_back(Callee); 2371 2372 // Add argument registers to the end of the list so that they are 2373 // known live into the call. 2374 for (auto &Reg : RegsToPass) 2375 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 2376 2377 if (!IsTailCall) { 2378 // Add a register mask operand representing the call-preserved registers. 2379 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2380 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2381 assert(Mask && "Missing call preserved mask for calling convention"); 2382 Ops.push_back(DAG.getRegisterMask(Mask)); 2383 } 2384 2385 // Glue the call to the argument copies, if any. 2386 if (Glue.getNode()) 2387 Ops.push_back(Glue); 2388 2389 // Emit the call. 2390 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2391 2392 if (IsTailCall) { 2393 MF.getFrameInfo().setHasTailCall(); 2394 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 2395 } 2396 2397 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 2398 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2399 Glue = Chain.getValue(1); 2400 2401 // Mark the end of the call, which is glued to the call itself. 2402 Chain = DAG.getCALLSEQ_END(Chain, 2403 DAG.getConstant(NumBytes, DL, PtrVT, true), 2404 DAG.getConstant(0, DL, PtrVT, true), 2405 Glue, DL); 2406 Glue = Chain.getValue(1); 2407 2408 // Assign locations to each value returned by this call. 2409 SmallVector<CCValAssign, 16> RVLocs; 2410 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 2411 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 2412 2413 // Copy all of the result registers out of their specified physreg. 2414 for (auto &VA : RVLocs) { 2415 // Copy the value out 2416 SDValue RetValue = 2417 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 2418 // Glue the RetValue to the end of the call sequence 2419 Chain = RetValue.getValue(1); 2420 Glue = RetValue.getValue(2); 2421 2422 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2423 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 2424 SDValue RetValue2 = 2425 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 2426 Chain = RetValue2.getValue(1); 2427 Glue = RetValue2.getValue(2); 2428 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 2429 RetValue2); 2430 } 2431 2432 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 2433 2434 InVals.push_back(RetValue); 2435 } 2436 2437 return Chain; 2438 } 2439 2440 bool RISCVTargetLowering::CanLowerReturn( 2441 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 2442 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 2443 SmallVector<CCValAssign, 16> RVLocs; 2444 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 2445 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 2446 MVT VT = Outs[i].VT; 2447 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2448 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 2449 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 2450 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 2451 return false; 2452 } 2453 return true; 2454 } 2455 2456 SDValue 2457 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2458 bool IsVarArg, 2459 const SmallVectorImpl<ISD::OutputArg> &Outs, 2460 const SmallVectorImpl<SDValue> &OutVals, 2461 const SDLoc &DL, SelectionDAG &DAG) const { 2462 const MachineFunction &MF = DAG.getMachineFunction(); 2463 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2464 2465 // Stores the assignment of the return value to a location. 2466 SmallVector<CCValAssign, 16> RVLocs; 2467 2468 // Info about the registers and stack slot. 2469 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2470 *DAG.getContext()); 2471 2472 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 2473 nullptr); 2474 2475 SDValue Glue; 2476 SmallVector<SDValue, 4> RetOps(1, Chain); 2477 2478 // Copy the result values into the output registers. 2479 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 2480 SDValue Val = OutVals[i]; 2481 CCValAssign &VA = RVLocs[i]; 2482 assert(VA.isRegLoc() && "Can only return in registers!"); 2483 2484 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 2485 // Handle returning f64 on RV32D with a soft float ABI. 2486 assert(VA.isRegLoc() && "Expected return via registers"); 2487 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 2488 DAG.getVTList(MVT::i32, MVT::i32), Val); 2489 SDValue Lo = SplitF64.getValue(0); 2490 SDValue Hi = SplitF64.getValue(1); 2491 Register RegLo = VA.getLocReg(); 2492 assert(RegLo < RISCV::X31 && "Invalid register pair"); 2493 Register RegHi = RegLo + 1; 2494 2495 if (STI.isRegisterReservedByUser(RegLo) || 2496 STI.isRegisterReservedByUser(RegHi)) 2497 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2498 MF.getFunction(), 2499 "Return value register required, but has been reserved."}); 2500 2501 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 2502 Glue = Chain.getValue(1); 2503 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 2504 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 2505 Glue = Chain.getValue(1); 2506 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 2507 } else { 2508 // Handle a 'normal' return. 2509 Val = convertValVTToLocVT(DAG, Val, VA, DL); 2510 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 2511 2512 if (STI.isRegisterReservedByUser(VA.getLocReg())) 2513 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 2514 MF.getFunction(), 2515 "Return value register required, but has been reserved."}); 2516 2517 // Guarantee that all emitted copies are stuck together. 2518 Glue = Chain.getValue(1); 2519 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2520 } 2521 } 2522 2523 RetOps[0] = Chain; // Update chain. 2524 2525 // Add the glue node if we have it. 2526 if (Glue.getNode()) { 2527 RetOps.push_back(Glue); 2528 } 2529 2530 // Interrupt service routines use different return instructions. 2531 const Function &Func = DAG.getMachineFunction().getFunction(); 2532 if (Func.hasFnAttribute("interrupt")) { 2533 if (!Func.getReturnType()->isVoidTy()) 2534 report_fatal_error( 2535 "Functions with the interrupt attribute must have void return type!"); 2536 2537 MachineFunction &MF = DAG.getMachineFunction(); 2538 StringRef Kind = 2539 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 2540 2541 unsigned RetOpc; 2542 if (Kind == "user") 2543 RetOpc = RISCVISD::URET_FLAG; 2544 else if (Kind == "supervisor") 2545 RetOpc = RISCVISD::SRET_FLAG; 2546 else 2547 RetOpc = RISCVISD::MRET_FLAG; 2548 2549 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 2550 } 2551 2552 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 2553 } 2554 2555 void RISCVTargetLowering::validateCCReservedRegs( 2556 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 2557 MachineFunction &MF) const { 2558 const Function &F = MF.getFunction(); 2559 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 2560 2561 if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) { 2562 return STI.isRegisterReservedByUser(Reg.first); 2563 })) 2564 F.getContext().diagnose(DiagnosticInfoUnsupported{ 2565 F, "Argument register required, but has been reserved."}); 2566 } 2567 2568 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 2569 return CI->isTailCall(); 2570 } 2571 2572 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 2573 switch ((RISCVISD::NodeType)Opcode) { 2574 case RISCVISD::FIRST_NUMBER: 2575 break; 2576 case RISCVISD::RET_FLAG: 2577 return "RISCVISD::RET_FLAG"; 2578 case RISCVISD::URET_FLAG: 2579 return "RISCVISD::URET_FLAG"; 2580 case RISCVISD::SRET_FLAG: 2581 return "RISCVISD::SRET_FLAG"; 2582 case RISCVISD::MRET_FLAG: 2583 return "RISCVISD::MRET_FLAG"; 2584 case RISCVISD::CALL: 2585 return "RISCVISD::CALL"; 2586 case RISCVISD::SELECT_CC: 2587 return "RISCVISD::SELECT_CC"; 2588 case RISCVISD::BuildPairF64: 2589 return "RISCVISD::BuildPairF64"; 2590 case RISCVISD::SplitF64: 2591 return "RISCVISD::SplitF64"; 2592 case RISCVISD::TAIL: 2593 return "RISCVISD::TAIL"; 2594 case RISCVISD::SLLW: 2595 return "RISCVISD::SLLW"; 2596 case RISCVISD::SRAW: 2597 return "RISCVISD::SRAW"; 2598 case RISCVISD::SRLW: 2599 return "RISCVISD::SRLW"; 2600 case RISCVISD::DIVW: 2601 return "RISCVISD::DIVW"; 2602 case RISCVISD::DIVUW: 2603 return "RISCVISD::DIVUW"; 2604 case RISCVISD::REMUW: 2605 return "RISCVISD::REMUW"; 2606 case RISCVISD::FMV_W_X_RV64: 2607 return "RISCVISD::FMV_W_X_RV64"; 2608 case RISCVISD::FMV_X_ANYEXTW_RV64: 2609 return "RISCVISD::FMV_X_ANYEXTW_RV64"; 2610 case RISCVISD::READ_CYCLE_WIDE: 2611 return "RISCVISD::READ_CYCLE_WIDE"; 2612 } 2613 return nullptr; 2614 } 2615 2616 /// getConstraintType - Given a constraint letter, return the type of 2617 /// constraint it is for this target. 2618 RISCVTargetLowering::ConstraintType 2619 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 2620 if (Constraint.size() == 1) { 2621 switch (Constraint[0]) { 2622 default: 2623 break; 2624 case 'f': 2625 return C_RegisterClass; 2626 case 'I': 2627 case 'J': 2628 case 'K': 2629 return C_Immediate; 2630 case 'A': 2631 return C_Memory; 2632 } 2633 } 2634 return TargetLowering::getConstraintType(Constraint); 2635 } 2636 2637 std::pair<unsigned, const TargetRegisterClass *> 2638 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2639 StringRef Constraint, 2640 MVT VT) const { 2641 // First, see if this is a constraint that directly corresponds to a 2642 // RISCV register class. 2643 if (Constraint.size() == 1) { 2644 switch (Constraint[0]) { 2645 case 'r': 2646 return std::make_pair(0U, &RISCV::GPRRegClass); 2647 case 'f': 2648 if (Subtarget.hasStdExtF() && VT == MVT::f32) 2649 return std::make_pair(0U, &RISCV::FPR32RegClass); 2650 if (Subtarget.hasStdExtD() && VT == MVT::f64) 2651 return std::make_pair(0U, &RISCV::FPR64RegClass); 2652 break; 2653 default: 2654 break; 2655 } 2656 } 2657 2658 // Clang will correctly decode the usage of register name aliases into their 2659 // official names. However, other frontends like `rustc` do not. This allows 2660 // users of these frontends to use the ABI names for registers in LLVM-style 2661 // register constraints. 2662 Register XRegFromAlias = StringSwitch<Register>(Constraint.lower()) 2663 .Case("{zero}", RISCV::X0) 2664 .Case("{ra}", RISCV::X1) 2665 .Case("{sp}", RISCV::X2) 2666 .Case("{gp}", RISCV::X3) 2667 .Case("{tp}", RISCV::X4) 2668 .Case("{t0}", RISCV::X5) 2669 .Case("{t1}", RISCV::X6) 2670 .Case("{t2}", RISCV::X7) 2671 .Cases("{s0}", "{fp}", RISCV::X8) 2672 .Case("{s1}", RISCV::X9) 2673 .Case("{a0}", RISCV::X10) 2674 .Case("{a1}", RISCV::X11) 2675 .Case("{a2}", RISCV::X12) 2676 .Case("{a3}", RISCV::X13) 2677 .Case("{a4}", RISCV::X14) 2678 .Case("{a5}", RISCV::X15) 2679 .Case("{a6}", RISCV::X16) 2680 .Case("{a7}", RISCV::X17) 2681 .Case("{s2}", RISCV::X18) 2682 .Case("{s3}", RISCV::X19) 2683 .Case("{s4}", RISCV::X20) 2684 .Case("{s5}", RISCV::X21) 2685 .Case("{s6}", RISCV::X22) 2686 .Case("{s7}", RISCV::X23) 2687 .Case("{s8}", RISCV::X24) 2688 .Case("{s9}", RISCV::X25) 2689 .Case("{s10}", RISCV::X26) 2690 .Case("{s11}", RISCV::X27) 2691 .Case("{t3}", RISCV::X28) 2692 .Case("{t4}", RISCV::X29) 2693 .Case("{t5}", RISCV::X30) 2694 .Case("{t6}", RISCV::X31) 2695 .Default(RISCV::NoRegister); 2696 if (XRegFromAlias != RISCV::NoRegister) 2697 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 2698 2699 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 2700 // TableGen record rather than the AsmName to choose registers for InlineAsm 2701 // constraints, plus we want to match those names to the widest floating point 2702 // register type available, manually select floating point registers here. 2703 // 2704 // The second case is the ABI name of the register, so that frontends can also 2705 // use the ABI names in register constraint lists. 2706 if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) { 2707 std::pair<Register, Register> FReg = 2708 StringSwitch<std::pair<Register, Register>>(Constraint.lower()) 2709 .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D}) 2710 .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D}) 2711 .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D}) 2712 .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D}) 2713 .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D}) 2714 .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D}) 2715 .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D}) 2716 .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D}) 2717 .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D}) 2718 .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D}) 2719 .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D}) 2720 .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D}) 2721 .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D}) 2722 .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D}) 2723 .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D}) 2724 .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D}) 2725 .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D}) 2726 .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D}) 2727 .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D}) 2728 .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D}) 2729 .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D}) 2730 .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D}) 2731 .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D}) 2732 .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D}) 2733 .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D}) 2734 .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D}) 2735 .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D}) 2736 .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D}) 2737 .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D}) 2738 .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D}) 2739 .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D}) 2740 .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D}) 2741 .Default({RISCV::NoRegister, RISCV::NoRegister}); 2742 if (FReg.first != RISCV::NoRegister) 2743 return Subtarget.hasStdExtD() 2744 ? std::make_pair(FReg.second, &RISCV::FPR64RegClass) 2745 : std::make_pair(FReg.first, &RISCV::FPR32RegClass); 2746 } 2747 2748 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2749 } 2750 2751 unsigned 2752 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2753 // Currently only support length 1 constraints. 2754 if (ConstraintCode.size() == 1) { 2755 switch (ConstraintCode[0]) { 2756 case 'A': 2757 return InlineAsm::Constraint_A; 2758 default: 2759 break; 2760 } 2761 } 2762 2763 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 2764 } 2765 2766 void RISCVTargetLowering::LowerAsmOperandForConstraint( 2767 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 2768 SelectionDAG &DAG) const { 2769 // Currently only support length 1 constraints. 2770 if (Constraint.length() == 1) { 2771 switch (Constraint[0]) { 2772 case 'I': 2773 // Validate & create a 12-bit signed immediate operand. 2774 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2775 uint64_t CVal = C->getSExtValue(); 2776 if (isInt<12>(CVal)) 2777 Ops.push_back( 2778 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2779 } 2780 return; 2781 case 'J': 2782 // Validate & create an integer zero operand. 2783 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2784 if (C->getZExtValue() == 0) 2785 Ops.push_back( 2786 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 2787 return; 2788 case 'K': 2789 // Validate & create a 5-bit unsigned immediate operand. 2790 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2791 uint64_t CVal = C->getZExtValue(); 2792 if (isUInt<5>(CVal)) 2793 Ops.push_back( 2794 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 2795 } 2796 return; 2797 default: 2798 break; 2799 } 2800 } 2801 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 2802 } 2803 2804 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 2805 Instruction *Inst, 2806 AtomicOrdering Ord) const { 2807 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 2808 return Builder.CreateFence(Ord); 2809 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 2810 return Builder.CreateFence(AtomicOrdering::Release); 2811 return nullptr; 2812 } 2813 2814 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 2815 Instruction *Inst, 2816 AtomicOrdering Ord) const { 2817 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 2818 return Builder.CreateFence(AtomicOrdering::Acquire); 2819 return nullptr; 2820 } 2821 2822 TargetLowering::AtomicExpansionKind 2823 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 2824 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 2825 // point operations can't be used in an lr/sc sequence without breaking the 2826 // forward-progress guarantee. 2827 if (AI->isFloatingPointOperation()) 2828 return AtomicExpansionKind::CmpXChg; 2829 2830 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 2831 if (Size == 8 || Size == 16) 2832 return AtomicExpansionKind::MaskedIntrinsic; 2833 return AtomicExpansionKind::None; 2834 } 2835 2836 static Intrinsic::ID 2837 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 2838 if (XLen == 32) { 2839 switch (BinOp) { 2840 default: 2841 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2842 case AtomicRMWInst::Xchg: 2843 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 2844 case AtomicRMWInst::Add: 2845 return Intrinsic::riscv_masked_atomicrmw_add_i32; 2846 case AtomicRMWInst::Sub: 2847 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 2848 case AtomicRMWInst::Nand: 2849 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 2850 case AtomicRMWInst::Max: 2851 return Intrinsic::riscv_masked_atomicrmw_max_i32; 2852 case AtomicRMWInst::Min: 2853 return Intrinsic::riscv_masked_atomicrmw_min_i32; 2854 case AtomicRMWInst::UMax: 2855 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 2856 case AtomicRMWInst::UMin: 2857 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 2858 } 2859 } 2860 2861 if (XLen == 64) { 2862 switch (BinOp) { 2863 default: 2864 llvm_unreachable("Unexpected AtomicRMW BinOp"); 2865 case AtomicRMWInst::Xchg: 2866 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 2867 case AtomicRMWInst::Add: 2868 return Intrinsic::riscv_masked_atomicrmw_add_i64; 2869 case AtomicRMWInst::Sub: 2870 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 2871 case AtomicRMWInst::Nand: 2872 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 2873 case AtomicRMWInst::Max: 2874 return Intrinsic::riscv_masked_atomicrmw_max_i64; 2875 case AtomicRMWInst::Min: 2876 return Intrinsic::riscv_masked_atomicrmw_min_i64; 2877 case AtomicRMWInst::UMax: 2878 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 2879 case AtomicRMWInst::UMin: 2880 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 2881 } 2882 } 2883 2884 llvm_unreachable("Unexpected XLen\n"); 2885 } 2886 2887 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 2888 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 2889 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 2890 unsigned XLen = Subtarget.getXLen(); 2891 Value *Ordering = 2892 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 2893 Type *Tys[] = {AlignedAddr->getType()}; 2894 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 2895 AI->getModule(), 2896 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 2897 2898 if (XLen == 64) { 2899 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 2900 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2901 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 2902 } 2903 2904 Value *Result; 2905 2906 // Must pass the shift amount needed to sign extend the loaded value prior 2907 // to performing a signed comparison for min/max. ShiftAmt is the number of 2908 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 2909 // is the number of bits to left+right shift the value in order to 2910 // sign-extend. 2911 if (AI->getOperation() == AtomicRMWInst::Min || 2912 AI->getOperation() == AtomicRMWInst::Max) { 2913 const DataLayout &DL = AI->getModule()->getDataLayout(); 2914 unsigned ValWidth = 2915 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 2916 Value *SextShamt = 2917 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 2918 Result = Builder.CreateCall(LrwOpScwLoop, 2919 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 2920 } else { 2921 Result = 2922 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 2923 } 2924 2925 if (XLen == 64) 2926 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2927 return Result; 2928 } 2929 2930 TargetLowering::AtomicExpansionKind 2931 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 2932 AtomicCmpXchgInst *CI) const { 2933 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 2934 if (Size == 8 || Size == 16) 2935 return AtomicExpansionKind::MaskedIntrinsic; 2936 return AtomicExpansionKind::None; 2937 } 2938 2939 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 2940 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 2941 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 2942 unsigned XLen = Subtarget.getXLen(); 2943 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 2944 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 2945 if (XLen == 64) { 2946 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 2947 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 2948 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 2949 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 2950 } 2951 Type *Tys[] = {AlignedAddr->getType()}; 2952 Function *MaskedCmpXchg = 2953 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 2954 Value *Result = Builder.CreateCall( 2955 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 2956 if (XLen == 64) 2957 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 2958 return Result; 2959 } 2960 2961 Register RISCVTargetLowering::getExceptionPointerRegister( 2962 const Constant *PersonalityFn) const { 2963 return RISCV::X10; 2964 } 2965 2966 Register RISCVTargetLowering::getExceptionSelectorRegister( 2967 const Constant *PersonalityFn) const { 2968 return RISCV::X11; 2969 } 2970 2971 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 2972 // Return false to suppress the unnecessary extensions if the LibCall 2973 // arguments or return value is f32 type for LP64 ABI. 2974 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 2975 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 2976 return false; 2977 2978 return true; 2979 } 2980 2981 #define GET_REGISTER_MATCHER 2982 #include "RISCVGenAsmMatcher.inc" 2983 2984 Register 2985 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 2986 const MachineFunction &MF) const { 2987 Register Reg = MatchRegisterAltName(RegName); 2988 if (Reg == RISCV::NoRegister) 2989 Reg = MatchRegisterName(RegName); 2990 if (Reg == RISCV::NoRegister) 2991 report_fatal_error( 2992 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 2993 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 2994 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 2995 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 2996 StringRef(RegName) + "\".")); 2997 return Reg; 2998 } 2999