1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 for (auto Op : FPOpToExpand) 339 setOperationAction(Op, MVT::f16, Expand); 340 } 341 342 if (Subtarget.hasStdExtF()) { 343 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 344 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 345 setOperationAction(ISD::LRINT, MVT::f32, Legal); 346 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 347 setOperationAction(ISD::LROUND, MVT::f32, Legal); 348 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f32, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 352 setOperationAction(ISD::SELECT, MVT::f32, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 354 for (auto Op : FPOpToExpand) 355 setOperationAction(Op, MVT::f32, Expand); 356 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 357 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 358 } 359 360 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 361 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 362 363 if (Subtarget.hasStdExtD()) { 364 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 365 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 366 setOperationAction(ISD::LRINT, MVT::f64, Legal); 367 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 368 setOperationAction(ISD::LROUND, MVT::f64, Legal); 369 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 370 for (auto CC : FPCCToExpand) 371 setCondCodeAction(CC, MVT::f64, Expand); 372 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 373 setOperationAction(ISD::SELECT, MVT::f64, Custom); 374 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 377 for (auto Op : FPOpToExpand) 378 setOperationAction(Op, MVT::f64, Expand); 379 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 380 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 381 } 382 383 if (Subtarget.is64Bit()) { 384 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 385 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 386 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 387 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 388 } 389 390 if (Subtarget.hasStdExtF()) { 391 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 392 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 393 394 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 395 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 396 } 397 398 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 399 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 400 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 401 setOperationAction(ISD::JumpTable, XLenVT, Custom); 402 403 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 404 405 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 406 // Unfortunately this can't be determined just from the ISA naming string. 407 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 408 Subtarget.is64Bit() ? Legal : Custom); 409 410 setOperationAction(ISD::TRAP, MVT::Other, Legal); 411 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 412 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 413 if (Subtarget.is64Bit()) 414 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 415 416 if (Subtarget.hasStdExtA()) { 417 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 418 setMinCmpXchgSizeInBits(32); 419 } else { 420 setMaxAtomicSizeInBitsSupported(0); 421 } 422 423 setBooleanContents(ZeroOrOneBooleanContent); 424 425 if (Subtarget.hasVInstructions()) { 426 setBooleanVectorContents(ZeroOrOneBooleanContent); 427 428 setOperationAction(ISD::VSCALE, XLenVT, Custom); 429 430 // RVV intrinsics may have illegal operands. 431 // We also need to custom legalize vmv.x.s. 432 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 434 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 435 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 436 if (Subtarget.is64Bit()) { 437 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 438 } else { 439 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 440 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 441 } 442 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 444 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 445 446 static const unsigned IntegerVPOps[] = { 447 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 448 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 449 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 450 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 451 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 452 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 453 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 454 455 static const unsigned FloatingPointVPOps[] = { 456 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 457 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 458 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 459 460 if (!Subtarget.is64Bit()) { 461 // We must custom-lower certain vXi64 operations on RV32 due to the vector 462 // element type being illegal. 463 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 465 466 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 470 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 471 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 472 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 473 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 474 475 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 479 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 480 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 481 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 482 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 483 } 484 485 for (MVT VT : BoolVecVTs) { 486 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 487 488 // Mask VTs are custom-expanded into a series of standard nodes 489 setOperationAction(ISD::TRUNCATE, VT, Custom); 490 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 491 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 492 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 493 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 497 setOperationAction(ISD::SELECT, VT, Custom); 498 setOperationAction(ISD::SELECT_CC, VT, Expand); 499 setOperationAction(ISD::VSELECT, VT, Expand); 500 501 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 504 505 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 506 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 507 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 508 509 // RVV has native int->float & float->int conversions where the 510 // element type sizes are within one power-of-two of each other. Any 511 // wider distances between type sizes have to be lowered as sequences 512 // which progressively narrow the gap in stages. 513 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 514 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 515 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 516 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 517 518 // Expand all extending loads to types larger than this, and truncating 519 // stores from types larger than this. 520 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 521 setTruncStoreAction(OtherVT, VT, Expand); 522 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 523 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 524 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 525 } 526 } 527 528 for (MVT VT : IntVecVTs) { 529 if (VT.getVectorElementType() == MVT::i64 && 530 !Subtarget.hasVInstructionsI64()) 531 continue; 532 533 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 534 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 535 536 setOperationAction(ISD::SMIN, VT, Legal); 537 setOperationAction(ISD::SMAX, VT, Legal); 538 setOperationAction(ISD::UMIN, VT, Legal); 539 setOperationAction(ISD::UMAX, VT, Legal); 540 541 setOperationAction(ISD::ROTL, VT, Expand); 542 setOperationAction(ISD::ROTR, VT, Expand); 543 544 setOperationAction(ISD::CTTZ, VT, Expand); 545 setOperationAction(ISD::CTLZ, VT, Expand); 546 setOperationAction(ISD::CTPOP, VT, Expand); 547 548 // Custom-lower extensions and truncations from/to mask types. 549 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 550 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 551 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 552 553 // RVV has native int->float & float->int conversions where the 554 // element type sizes are within one power-of-two of each other. Any 555 // wider distances between type sizes have to be lowered as sequences 556 // which progressively narrow the gap in stages. 557 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 558 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 559 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 560 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 561 562 setOperationAction(ISD::SADDSAT, VT, Legal); 563 setOperationAction(ISD::UADDSAT, VT, Legal); 564 setOperationAction(ISD::SSUBSAT, VT, Legal); 565 setOperationAction(ISD::USUBSAT, VT, Legal); 566 567 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 568 // nodes which truncate by one power of two at a time. 569 setOperationAction(ISD::TRUNCATE, VT, Custom); 570 571 // Custom-lower insert/extract operations to simplify patterns. 572 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 574 575 // Custom-lower reduction operations to set up the corresponding custom 576 // nodes' operands. 577 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 578 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 580 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 581 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 582 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 583 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 584 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 585 586 for (unsigned VPOpc : IntegerVPOps) 587 setOperationAction(VPOpc, VT, Custom); 588 589 setOperationAction(ISD::LOAD, VT, Custom); 590 setOperationAction(ISD::STORE, VT, Custom); 591 592 setOperationAction(ISD::MLOAD, VT, Custom); 593 setOperationAction(ISD::MSTORE, VT, Custom); 594 setOperationAction(ISD::MGATHER, VT, Custom); 595 setOperationAction(ISD::MSCATTER, VT, Custom); 596 597 setOperationAction(ISD::VP_LOAD, VT, Custom); 598 setOperationAction(ISD::VP_STORE, VT, Custom); 599 setOperationAction(ISD::VP_GATHER, VT, Custom); 600 setOperationAction(ISD::VP_SCATTER, VT, Custom); 601 602 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 603 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 604 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 605 606 setOperationAction(ISD::SELECT, VT, Custom); 607 setOperationAction(ISD::SELECT_CC, VT, Expand); 608 609 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 610 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 611 612 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 613 setTruncStoreAction(VT, OtherVT, Expand); 614 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 615 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 616 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 617 } 618 } 619 620 // Expand various CCs to best match the RVV ISA, which natively supports UNE 621 // but no other unordered comparisons, and supports all ordered comparisons 622 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 623 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 624 // and we pattern-match those back to the "original", swapping operands once 625 // more. This way we catch both operations and both "vf" and "fv" forms with 626 // fewer patterns. 627 static const ISD::CondCode VFPCCToExpand[] = { 628 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 629 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 630 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 631 }; 632 633 // Sets common operation actions on RVV floating-point vector types. 634 const auto SetCommonVFPActions = [&](MVT VT) { 635 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 636 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 637 // sizes are within one power-of-two of each other. Therefore conversions 638 // between vXf16 and vXf64 must be lowered as sequences which convert via 639 // vXf32. 640 setOperationAction(ISD::FP_ROUND, VT, Custom); 641 setOperationAction(ISD::FP_EXTEND, VT, Custom); 642 // Custom-lower insert/extract operations to simplify patterns. 643 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 644 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 645 // Expand various condition codes (explained above). 646 for (auto CC : VFPCCToExpand) 647 setCondCodeAction(CC, VT, Expand); 648 649 setOperationAction(ISD::FMINNUM, VT, Legal); 650 setOperationAction(ISD::FMAXNUM, VT, Legal); 651 652 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 654 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 655 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 656 657 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 658 659 setOperationAction(ISD::LOAD, VT, Custom); 660 setOperationAction(ISD::STORE, VT, Custom); 661 662 setOperationAction(ISD::MLOAD, VT, Custom); 663 setOperationAction(ISD::MSTORE, VT, Custom); 664 setOperationAction(ISD::MGATHER, VT, Custom); 665 setOperationAction(ISD::MSCATTER, VT, Custom); 666 667 setOperationAction(ISD::VP_LOAD, VT, Custom); 668 setOperationAction(ISD::VP_STORE, VT, Custom); 669 setOperationAction(ISD::VP_GATHER, VT, Custom); 670 setOperationAction(ISD::VP_SCATTER, VT, Custom); 671 672 setOperationAction(ISD::SELECT, VT, Custom); 673 setOperationAction(ISD::SELECT_CC, VT, Expand); 674 675 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 676 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 677 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 678 679 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 680 681 for (unsigned VPOpc : FloatingPointVPOps) 682 setOperationAction(VPOpc, VT, Custom); 683 }; 684 685 // Sets common extload/truncstore actions on RVV floating-point vector 686 // types. 687 const auto SetCommonVFPExtLoadTruncStoreActions = 688 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 689 for (auto SmallVT : SmallerVTs) { 690 setTruncStoreAction(VT, SmallVT, Expand); 691 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 692 } 693 }; 694 695 if (Subtarget.hasVInstructionsF16()) 696 for (MVT VT : F16VecVTs) 697 SetCommonVFPActions(VT); 698 699 for (MVT VT : F32VecVTs) { 700 if (Subtarget.hasVInstructionsF32()) 701 SetCommonVFPActions(VT); 702 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 703 } 704 705 for (MVT VT : F64VecVTs) { 706 if (Subtarget.hasVInstructionsF64()) 707 SetCommonVFPActions(VT); 708 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 709 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 710 } 711 712 if (Subtarget.useRVVForFixedLengthVectors()) { 713 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 714 if (!useRVVForFixedLengthVectorVT(VT)) 715 continue; 716 717 // By default everything must be expanded. 718 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 719 setOperationAction(Op, VT, Expand); 720 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 721 setTruncStoreAction(VT, OtherVT, Expand); 722 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 723 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 724 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 725 } 726 727 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 728 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 729 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 730 731 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 732 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 733 734 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 735 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 736 737 setOperationAction(ISD::LOAD, VT, Custom); 738 setOperationAction(ISD::STORE, VT, Custom); 739 740 setOperationAction(ISD::SETCC, VT, Custom); 741 742 setOperationAction(ISD::SELECT, VT, Custom); 743 744 setOperationAction(ISD::TRUNCATE, VT, Custom); 745 746 setOperationAction(ISD::BITCAST, VT, Custom); 747 748 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 749 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 750 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 751 752 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 753 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 754 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 755 756 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 757 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 758 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 759 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 760 761 // Operations below are different for between masks and other vectors. 762 if (VT.getVectorElementType() == MVT::i1) { 763 setOperationAction(ISD::AND, VT, Custom); 764 setOperationAction(ISD::OR, VT, Custom); 765 setOperationAction(ISD::XOR, VT, Custom); 766 continue; 767 } 768 769 // Use SPLAT_VECTOR to prevent type legalization from destroying the 770 // splats when type legalizing i64 scalar on RV32. 771 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 772 // improvements first. 773 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 774 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 775 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 776 } 777 778 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 779 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 780 781 setOperationAction(ISD::MLOAD, VT, Custom); 782 setOperationAction(ISD::MSTORE, VT, Custom); 783 setOperationAction(ISD::MGATHER, VT, Custom); 784 setOperationAction(ISD::MSCATTER, VT, Custom); 785 786 setOperationAction(ISD::VP_LOAD, VT, Custom); 787 setOperationAction(ISD::VP_STORE, VT, Custom); 788 setOperationAction(ISD::VP_GATHER, VT, Custom); 789 setOperationAction(ISD::VP_SCATTER, VT, Custom); 790 791 setOperationAction(ISD::ADD, VT, Custom); 792 setOperationAction(ISD::MUL, VT, Custom); 793 setOperationAction(ISD::SUB, VT, Custom); 794 setOperationAction(ISD::AND, VT, Custom); 795 setOperationAction(ISD::OR, VT, Custom); 796 setOperationAction(ISD::XOR, VT, Custom); 797 setOperationAction(ISD::SDIV, VT, Custom); 798 setOperationAction(ISD::SREM, VT, Custom); 799 setOperationAction(ISD::UDIV, VT, Custom); 800 setOperationAction(ISD::UREM, VT, Custom); 801 setOperationAction(ISD::SHL, VT, Custom); 802 setOperationAction(ISD::SRA, VT, Custom); 803 setOperationAction(ISD::SRL, VT, Custom); 804 805 setOperationAction(ISD::SMIN, VT, Custom); 806 setOperationAction(ISD::SMAX, VT, Custom); 807 setOperationAction(ISD::UMIN, VT, Custom); 808 setOperationAction(ISD::UMAX, VT, Custom); 809 setOperationAction(ISD::ABS, VT, Custom); 810 811 setOperationAction(ISD::MULHS, VT, Custom); 812 setOperationAction(ISD::MULHU, VT, Custom); 813 814 setOperationAction(ISD::SADDSAT, VT, Custom); 815 setOperationAction(ISD::UADDSAT, VT, Custom); 816 setOperationAction(ISD::SSUBSAT, VT, Custom); 817 setOperationAction(ISD::USUBSAT, VT, Custom); 818 819 setOperationAction(ISD::VSELECT, VT, Custom); 820 setOperationAction(ISD::SELECT_CC, VT, Expand); 821 822 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 823 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 824 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 825 826 // Custom-lower reduction operations to set up the corresponding custom 827 // nodes' operands. 828 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 829 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 831 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 832 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 833 834 for (unsigned VPOpc : IntegerVPOps) 835 setOperationAction(VPOpc, VT, Custom); 836 } 837 838 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 839 if (!useRVVForFixedLengthVectorVT(VT)) 840 continue; 841 842 // By default everything must be expanded. 843 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 844 setOperationAction(Op, VT, Expand); 845 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 846 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 847 setTruncStoreAction(VT, OtherVT, Expand); 848 } 849 850 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 851 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 852 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 853 854 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 855 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 856 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 857 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 858 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 859 860 setOperationAction(ISD::LOAD, VT, Custom); 861 setOperationAction(ISD::STORE, VT, Custom); 862 setOperationAction(ISD::MLOAD, VT, Custom); 863 setOperationAction(ISD::MSTORE, VT, Custom); 864 setOperationAction(ISD::MGATHER, VT, Custom); 865 setOperationAction(ISD::MSCATTER, VT, Custom); 866 867 setOperationAction(ISD::VP_LOAD, VT, Custom); 868 setOperationAction(ISD::VP_STORE, VT, Custom); 869 setOperationAction(ISD::VP_GATHER, VT, Custom); 870 setOperationAction(ISD::VP_SCATTER, VT, Custom); 871 872 setOperationAction(ISD::FADD, VT, Custom); 873 setOperationAction(ISD::FSUB, VT, Custom); 874 setOperationAction(ISD::FMUL, VT, Custom); 875 setOperationAction(ISD::FDIV, VT, Custom); 876 setOperationAction(ISD::FNEG, VT, Custom); 877 setOperationAction(ISD::FABS, VT, Custom); 878 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 879 setOperationAction(ISD::FSQRT, VT, Custom); 880 setOperationAction(ISD::FMA, VT, Custom); 881 setOperationAction(ISD::FMINNUM, VT, Custom); 882 setOperationAction(ISD::FMAXNUM, VT, Custom); 883 884 setOperationAction(ISD::FP_ROUND, VT, Custom); 885 setOperationAction(ISD::FP_EXTEND, VT, Custom); 886 887 for (auto CC : VFPCCToExpand) 888 setCondCodeAction(CC, VT, Expand); 889 890 setOperationAction(ISD::VSELECT, VT, Custom); 891 setOperationAction(ISD::SELECT, VT, Custom); 892 setOperationAction(ISD::SELECT_CC, VT, Expand); 893 894 setOperationAction(ISD::BITCAST, VT, Custom); 895 896 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 897 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 898 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 899 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 900 901 for (unsigned VPOpc : FloatingPointVPOps) 902 setOperationAction(VPOpc, VT, Custom); 903 } 904 905 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 906 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 907 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 908 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 909 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 910 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 911 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 912 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 913 } 914 } 915 916 // Function alignments. 917 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 918 setMinFunctionAlignment(FunctionAlignment); 919 setPrefFunctionAlignment(FunctionAlignment); 920 921 setMinimumJumpTableEntries(5); 922 923 // Jumps are expensive, compared to logic 924 setJumpIsExpensive(); 925 926 // We can use any register for comparisons 927 setHasMultipleConditionRegisters(); 928 929 setTargetDAGCombine(ISD::ADD); 930 setTargetDAGCombine(ISD::SUB); 931 setTargetDAGCombine(ISD::AND); 932 setTargetDAGCombine(ISD::OR); 933 setTargetDAGCombine(ISD::XOR); 934 setTargetDAGCombine(ISD::ANY_EXTEND); 935 setTargetDAGCombine(ISD::ZERO_EXTEND); 936 if (Subtarget.hasVInstructions()) { 937 setTargetDAGCombine(ISD::FCOPYSIGN); 938 setTargetDAGCombine(ISD::MGATHER); 939 setTargetDAGCombine(ISD::MSCATTER); 940 setTargetDAGCombine(ISD::VP_GATHER); 941 setTargetDAGCombine(ISD::VP_SCATTER); 942 setTargetDAGCombine(ISD::SRA); 943 setTargetDAGCombine(ISD::SRL); 944 setTargetDAGCombine(ISD::SHL); 945 setTargetDAGCombine(ISD::STORE); 946 } 947 } 948 949 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 950 LLVMContext &Context, 951 EVT VT) const { 952 if (!VT.isVector()) 953 return getPointerTy(DL); 954 if (Subtarget.hasVInstructions() && 955 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 956 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 957 return VT.changeVectorElementTypeToInteger(); 958 } 959 960 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 961 return Subtarget.getXLenVT(); 962 } 963 964 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 965 const CallInst &I, 966 MachineFunction &MF, 967 unsigned Intrinsic) const { 968 auto &DL = I.getModule()->getDataLayout(); 969 switch (Intrinsic) { 970 default: 971 return false; 972 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 973 case Intrinsic::riscv_masked_atomicrmw_add_i32: 974 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 975 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 976 case Intrinsic::riscv_masked_atomicrmw_max_i32: 977 case Intrinsic::riscv_masked_atomicrmw_min_i32: 978 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 979 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 980 case Intrinsic::riscv_masked_cmpxchg_i32: { 981 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 982 Info.opc = ISD::INTRINSIC_W_CHAIN; 983 Info.memVT = MVT::getVT(PtrTy->getElementType()); 984 Info.ptrVal = I.getArgOperand(0); 985 Info.offset = 0; 986 Info.align = Align(4); 987 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 988 MachineMemOperand::MOVolatile; 989 return true; 990 } 991 case Intrinsic::riscv_masked_strided_load: 992 Info.opc = ISD::INTRINSIC_W_CHAIN; 993 Info.ptrVal = I.getArgOperand(1); 994 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 995 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 996 Info.size = MemoryLocation::UnknownSize; 997 Info.flags |= MachineMemOperand::MOLoad; 998 return true; 999 case Intrinsic::riscv_masked_strided_store: 1000 Info.opc = ISD::INTRINSIC_VOID; 1001 Info.ptrVal = I.getArgOperand(1); 1002 Info.memVT = 1003 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1004 Info.align = Align( 1005 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1006 8); 1007 Info.size = MemoryLocation::UnknownSize; 1008 Info.flags |= MachineMemOperand::MOStore; 1009 return true; 1010 } 1011 } 1012 1013 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1014 const AddrMode &AM, Type *Ty, 1015 unsigned AS, 1016 Instruction *I) const { 1017 // No global is ever allowed as a base. 1018 if (AM.BaseGV) 1019 return false; 1020 1021 // Require a 12-bit signed offset. 1022 if (!isInt<12>(AM.BaseOffs)) 1023 return false; 1024 1025 switch (AM.Scale) { 1026 case 0: // "r+i" or just "i", depending on HasBaseReg. 1027 break; 1028 case 1: 1029 if (!AM.HasBaseReg) // allow "r+i". 1030 break; 1031 return false; // disallow "r+r" or "r+r+i". 1032 default: 1033 return false; 1034 } 1035 1036 return true; 1037 } 1038 1039 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1040 return isInt<12>(Imm); 1041 } 1042 1043 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1044 return isInt<12>(Imm); 1045 } 1046 1047 // On RV32, 64-bit integers are split into their high and low parts and held 1048 // in two different registers, so the trunc is free since the low register can 1049 // just be used. 1050 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1051 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1052 return false; 1053 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1054 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1055 return (SrcBits == 64 && DestBits == 32); 1056 } 1057 1058 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1059 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1060 !SrcVT.isInteger() || !DstVT.isInteger()) 1061 return false; 1062 unsigned SrcBits = SrcVT.getSizeInBits(); 1063 unsigned DestBits = DstVT.getSizeInBits(); 1064 return (SrcBits == 64 && DestBits == 32); 1065 } 1066 1067 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1068 // Zexts are free if they can be combined with a load. 1069 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1070 EVT MemVT = LD->getMemoryVT(); 1071 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1072 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1073 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1074 LD->getExtensionType() == ISD::ZEXTLOAD)) 1075 return true; 1076 } 1077 1078 return TargetLowering::isZExtFree(Val, VT2); 1079 } 1080 1081 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1082 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1083 } 1084 1085 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1086 return Subtarget.hasStdExtZbb(); 1087 } 1088 1089 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1090 return Subtarget.hasStdExtZbb(); 1091 } 1092 1093 /// Check if sinking \p I's operands to I's basic block is profitable, because 1094 /// the operands can be folded into a target instruction, e.g. 1095 /// splats of scalars can fold into vector instructions. 1096 bool RISCVTargetLowering::shouldSinkOperands( 1097 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1098 using namespace llvm::PatternMatch; 1099 1100 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1101 return false; 1102 1103 auto IsSinker = [&](Instruction *I, int Operand) { 1104 switch (I->getOpcode()) { 1105 case Instruction::Add: 1106 case Instruction::Sub: 1107 case Instruction::Mul: 1108 case Instruction::And: 1109 case Instruction::Or: 1110 case Instruction::Xor: 1111 case Instruction::FAdd: 1112 case Instruction::FSub: 1113 case Instruction::FMul: 1114 case Instruction::FDiv: 1115 case Instruction::ICmp: 1116 case Instruction::FCmp: 1117 return true; 1118 case Instruction::Shl: 1119 case Instruction::LShr: 1120 case Instruction::AShr: 1121 return Operand == 1; 1122 case Instruction::Call: 1123 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1124 switch (II->getIntrinsicID()) { 1125 case Intrinsic::fma: 1126 return Operand == 0 || Operand == 1; 1127 default: 1128 return false; 1129 } 1130 } 1131 return false; 1132 default: 1133 return false; 1134 } 1135 }; 1136 1137 for (auto OpIdx : enumerate(I->operands())) { 1138 if (!IsSinker(I, OpIdx.index())) 1139 continue; 1140 1141 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1142 // Make sure we are not already sinking this operand 1143 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1144 continue; 1145 1146 // We are looking for a splat that can be sunk. 1147 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1148 m_Undef(), m_ZeroMask()))) 1149 continue; 1150 1151 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1152 // and vector registers 1153 for (Use &U : Op->uses()) { 1154 Instruction *Insn = cast<Instruction>(U.getUser()); 1155 if (!IsSinker(Insn, U.getOperandNo())) 1156 return false; 1157 } 1158 1159 Ops.push_back(&Op->getOperandUse(0)); 1160 Ops.push_back(&OpIdx.value()); 1161 } 1162 return true; 1163 } 1164 1165 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1166 bool ForCodeSize) const { 1167 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1168 return false; 1169 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1170 return false; 1171 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1172 return false; 1173 if (Imm.isNegZero()) 1174 return false; 1175 return Imm.isZero(); 1176 } 1177 1178 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1179 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1180 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1181 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1182 } 1183 1184 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1185 CallingConv::ID CC, 1186 EVT VT) const { 1187 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1188 // end up using a GPR but that will be decided based on ABI. 1189 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1190 return MVT::f32; 1191 1192 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1193 } 1194 1195 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1196 CallingConv::ID CC, 1197 EVT VT) const { 1198 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1199 // end up using a GPR but that will be decided based on ABI. 1200 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1201 return 1; 1202 1203 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1204 } 1205 1206 // Changes the condition code and swaps operands if necessary, so the SetCC 1207 // operation matches one of the comparisons supported directly by branches 1208 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1209 // with 1/-1. 1210 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1211 ISD::CondCode &CC, SelectionDAG &DAG) { 1212 // Convert X > -1 to X >= 0. 1213 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1214 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1215 CC = ISD::SETGE; 1216 return; 1217 } 1218 // Convert X < 1 to 0 >= X. 1219 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1220 RHS = LHS; 1221 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1222 CC = ISD::SETGE; 1223 return; 1224 } 1225 1226 switch (CC) { 1227 default: 1228 break; 1229 case ISD::SETGT: 1230 case ISD::SETLE: 1231 case ISD::SETUGT: 1232 case ISD::SETULE: 1233 CC = ISD::getSetCCSwappedOperands(CC); 1234 std::swap(LHS, RHS); 1235 break; 1236 } 1237 } 1238 1239 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1240 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1241 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1242 if (VT.getVectorElementType() == MVT::i1) 1243 KnownSize *= 8; 1244 1245 switch (KnownSize) { 1246 default: 1247 llvm_unreachable("Invalid LMUL."); 1248 case 8: 1249 return RISCVII::VLMUL::LMUL_F8; 1250 case 16: 1251 return RISCVII::VLMUL::LMUL_F4; 1252 case 32: 1253 return RISCVII::VLMUL::LMUL_F2; 1254 case 64: 1255 return RISCVII::VLMUL::LMUL_1; 1256 case 128: 1257 return RISCVII::VLMUL::LMUL_2; 1258 case 256: 1259 return RISCVII::VLMUL::LMUL_4; 1260 case 512: 1261 return RISCVII::VLMUL::LMUL_8; 1262 } 1263 } 1264 1265 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1266 switch (LMul) { 1267 default: 1268 llvm_unreachable("Invalid LMUL."); 1269 case RISCVII::VLMUL::LMUL_F8: 1270 case RISCVII::VLMUL::LMUL_F4: 1271 case RISCVII::VLMUL::LMUL_F2: 1272 case RISCVII::VLMUL::LMUL_1: 1273 return RISCV::VRRegClassID; 1274 case RISCVII::VLMUL::LMUL_2: 1275 return RISCV::VRM2RegClassID; 1276 case RISCVII::VLMUL::LMUL_4: 1277 return RISCV::VRM4RegClassID; 1278 case RISCVII::VLMUL::LMUL_8: 1279 return RISCV::VRM8RegClassID; 1280 } 1281 } 1282 1283 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1284 RISCVII::VLMUL LMUL = getLMUL(VT); 1285 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1286 LMUL == RISCVII::VLMUL::LMUL_F4 || 1287 LMUL == RISCVII::VLMUL::LMUL_F2 || 1288 LMUL == RISCVII::VLMUL::LMUL_1) { 1289 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1290 "Unexpected subreg numbering"); 1291 return RISCV::sub_vrm1_0 + Index; 1292 } 1293 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1294 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1295 "Unexpected subreg numbering"); 1296 return RISCV::sub_vrm2_0 + Index; 1297 } 1298 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1299 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1300 "Unexpected subreg numbering"); 1301 return RISCV::sub_vrm4_0 + Index; 1302 } 1303 llvm_unreachable("Invalid vector type."); 1304 } 1305 1306 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1307 if (VT.getVectorElementType() == MVT::i1) 1308 return RISCV::VRRegClassID; 1309 return getRegClassIDForLMUL(getLMUL(VT)); 1310 } 1311 1312 // Attempt to decompose a subvector insert/extract between VecVT and 1313 // SubVecVT via subregister indices. Returns the subregister index that 1314 // can perform the subvector insert/extract with the given element index, as 1315 // well as the index corresponding to any leftover subvectors that must be 1316 // further inserted/extracted within the register class for SubVecVT. 1317 std::pair<unsigned, unsigned> 1318 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1319 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1320 const RISCVRegisterInfo *TRI) { 1321 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1322 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1323 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1324 "Register classes not ordered"); 1325 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1326 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1327 // Try to compose a subregister index that takes us from the incoming 1328 // LMUL>1 register class down to the outgoing one. At each step we half 1329 // the LMUL: 1330 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1331 // Note that this is not guaranteed to find a subregister index, such as 1332 // when we are extracting from one VR type to another. 1333 unsigned SubRegIdx = RISCV::NoSubRegister; 1334 for (const unsigned RCID : 1335 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1336 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1337 VecVT = VecVT.getHalfNumVectorElementsVT(); 1338 bool IsHi = 1339 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1340 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1341 getSubregIndexByMVT(VecVT, IsHi)); 1342 if (IsHi) 1343 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1344 } 1345 return {SubRegIdx, InsertExtractIdx}; 1346 } 1347 1348 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1349 // stores for those types. 1350 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1351 return !Subtarget.useRVVForFixedLengthVectors() || 1352 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1353 } 1354 1355 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1356 if (ScalarTy->isPointerTy()) 1357 return true; 1358 1359 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1360 ScalarTy->isIntegerTy(32)) 1361 return true; 1362 1363 if (ScalarTy->isIntegerTy(64)) 1364 return Subtarget.hasVInstructionsI64(); 1365 1366 if (ScalarTy->isHalfTy()) 1367 return Subtarget.hasVInstructionsF16(); 1368 if (ScalarTy->isFloatTy()) 1369 return Subtarget.hasVInstructionsF32(); 1370 if (ScalarTy->isDoubleTy()) 1371 return Subtarget.hasVInstructionsF64(); 1372 1373 return false; 1374 } 1375 1376 static bool useRVVForFixedLengthVectorVT(MVT VT, 1377 const RISCVSubtarget &Subtarget) { 1378 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1379 if (!Subtarget.useRVVForFixedLengthVectors()) 1380 return false; 1381 1382 // We only support a set of vector types with a consistent maximum fixed size 1383 // across all supported vector element types to avoid legalization issues. 1384 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1385 // fixed-length vector type we support is 1024 bytes. 1386 if (VT.getFixedSizeInBits() > 1024 * 8) 1387 return false; 1388 1389 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1390 1391 MVT EltVT = VT.getVectorElementType(); 1392 1393 // Don't use RVV for vectors we cannot scalarize if required. 1394 switch (EltVT.SimpleTy) { 1395 // i1 is supported but has different rules. 1396 default: 1397 return false; 1398 case MVT::i1: 1399 // Masks can only use a single register. 1400 if (VT.getVectorNumElements() > MinVLen) 1401 return false; 1402 MinVLen /= 8; 1403 break; 1404 case MVT::i8: 1405 case MVT::i16: 1406 case MVT::i32: 1407 break; 1408 case MVT::i64: 1409 if (!Subtarget.hasVInstructionsI64()) 1410 return false; 1411 break; 1412 case MVT::f16: 1413 if (!Subtarget.hasVInstructionsF16()) 1414 return false; 1415 break; 1416 case MVT::f32: 1417 if (!Subtarget.hasVInstructionsF32()) 1418 return false; 1419 break; 1420 case MVT::f64: 1421 if (!Subtarget.hasVInstructionsF64()) 1422 return false; 1423 break; 1424 } 1425 1426 // Reject elements larger than ELEN. 1427 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1428 return false; 1429 1430 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1431 // Don't use RVV for types that don't fit. 1432 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1433 return false; 1434 1435 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1436 // the base fixed length RVV support in place. 1437 if (!VT.isPow2VectorType()) 1438 return false; 1439 1440 return true; 1441 } 1442 1443 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1444 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1445 } 1446 1447 // Return the largest legal scalable vector type that matches VT's element type. 1448 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1449 const RISCVSubtarget &Subtarget) { 1450 // This may be called before legal types are setup. 1451 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1452 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1453 "Expected legal fixed length vector!"); 1454 1455 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1456 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1457 1458 MVT EltVT = VT.getVectorElementType(); 1459 switch (EltVT.SimpleTy) { 1460 default: 1461 llvm_unreachable("unexpected element type for RVV container"); 1462 case MVT::i1: 1463 case MVT::i8: 1464 case MVT::i16: 1465 case MVT::i32: 1466 case MVT::i64: 1467 case MVT::f16: 1468 case MVT::f32: 1469 case MVT::f64: { 1470 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1471 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1472 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1473 unsigned NumElts = 1474 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1475 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1476 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1477 return MVT::getScalableVectorVT(EltVT, NumElts); 1478 } 1479 } 1480 } 1481 1482 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1483 const RISCVSubtarget &Subtarget) { 1484 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1485 Subtarget); 1486 } 1487 1488 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1489 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1490 } 1491 1492 // Grow V to consume an entire RVV register. 1493 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1494 const RISCVSubtarget &Subtarget) { 1495 assert(VT.isScalableVector() && 1496 "Expected to convert into a scalable vector!"); 1497 assert(V.getValueType().isFixedLengthVector() && 1498 "Expected a fixed length vector operand!"); 1499 SDLoc DL(V); 1500 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1501 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1502 } 1503 1504 // Shrink V so it's just big enough to maintain a VT's worth of data. 1505 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1506 const RISCVSubtarget &Subtarget) { 1507 assert(VT.isFixedLengthVector() && 1508 "Expected to convert into a fixed length vector!"); 1509 assert(V.getValueType().isScalableVector() && 1510 "Expected a scalable vector operand!"); 1511 SDLoc DL(V); 1512 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1513 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1514 } 1515 1516 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1517 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1518 // the vector type that it is contained in. 1519 static std::pair<SDValue, SDValue> 1520 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1521 const RISCVSubtarget &Subtarget) { 1522 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1523 MVT XLenVT = Subtarget.getXLenVT(); 1524 SDValue VL = VecVT.isFixedLengthVector() 1525 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1526 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1527 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1528 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1529 return {Mask, VL}; 1530 } 1531 1532 // As above but assuming the given type is a scalable vector type. 1533 static std::pair<SDValue, SDValue> 1534 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1535 const RISCVSubtarget &Subtarget) { 1536 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1537 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1538 } 1539 1540 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1541 // of either is (currently) supported. This can get us into an infinite loop 1542 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1543 // as a ..., etc. 1544 // Until either (or both) of these can reliably lower any node, reporting that 1545 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1546 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1547 // which is not desirable. 1548 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1549 EVT VT, unsigned DefinedValues) const { 1550 return false; 1551 } 1552 1553 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1554 // Only splats are currently supported. 1555 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1556 return true; 1557 1558 return false; 1559 } 1560 1561 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1562 // RISCV FP-to-int conversions saturate to the destination register size, but 1563 // don't produce 0 for nan. We can use a conversion instruction and fix the 1564 // nan case with a compare and a select. 1565 SDValue Src = Op.getOperand(0); 1566 1567 EVT DstVT = Op.getValueType(); 1568 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1569 1570 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1571 unsigned Opc; 1572 if (SatVT == DstVT) 1573 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1574 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1575 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1576 else 1577 return SDValue(); 1578 // FIXME: Support other SatVTs by clamping before or after the conversion. 1579 1580 SDLoc DL(Op); 1581 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1582 1583 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1584 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1585 } 1586 1587 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1588 const RISCVSubtarget &Subtarget) { 1589 MVT VT = Op.getSimpleValueType(); 1590 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1591 1592 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1593 1594 SDLoc DL(Op); 1595 SDValue Mask, VL; 1596 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1597 1598 unsigned Opc = 1599 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1600 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1601 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1602 } 1603 1604 struct VIDSequence { 1605 int64_t StepNumerator; 1606 unsigned StepDenominator; 1607 int64_t Addend; 1608 }; 1609 1610 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1611 // to the (non-zero) step S and start value X. This can be then lowered as the 1612 // RVV sequence (VID * S) + X, for example. 1613 // The step S is represented as an integer numerator divided by a positive 1614 // denominator. Note that the implementation currently only identifies 1615 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1616 // cannot detect 2/3, for example. 1617 // Note that this method will also match potentially unappealing index 1618 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1619 // determine whether this is worth generating code for. 1620 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1621 unsigned NumElts = Op.getNumOperands(); 1622 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1623 if (!Op.getValueType().isInteger()) 1624 return None; 1625 1626 Optional<unsigned> SeqStepDenom; 1627 Optional<int64_t> SeqStepNum, SeqAddend; 1628 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1629 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1630 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1631 // Assume undef elements match the sequence; we just have to be careful 1632 // when interpolating across them. 1633 if (Op.getOperand(Idx).isUndef()) 1634 continue; 1635 // The BUILD_VECTOR must be all constants. 1636 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1637 return None; 1638 1639 uint64_t Val = Op.getConstantOperandVal(Idx) & 1640 maskTrailingOnes<uint64_t>(EltSizeInBits); 1641 1642 if (PrevElt) { 1643 // Calculate the step since the last non-undef element, and ensure 1644 // it's consistent across the entire sequence. 1645 unsigned IdxDiff = Idx - PrevElt->second; 1646 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1647 1648 // A zero-value value difference means that we're somewhere in the middle 1649 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1650 // step change before evaluating the sequence. 1651 if (ValDiff != 0) { 1652 int64_t Remainder = ValDiff % IdxDiff; 1653 // Normalize the step if it's greater than 1. 1654 if (Remainder != ValDiff) { 1655 // The difference must cleanly divide the element span. 1656 if (Remainder != 0) 1657 return None; 1658 ValDiff /= IdxDiff; 1659 IdxDiff = 1; 1660 } 1661 1662 if (!SeqStepNum) 1663 SeqStepNum = ValDiff; 1664 else if (ValDiff != SeqStepNum) 1665 return None; 1666 1667 if (!SeqStepDenom) 1668 SeqStepDenom = IdxDiff; 1669 else if (IdxDiff != *SeqStepDenom) 1670 return None; 1671 } 1672 } 1673 1674 // Record and/or check any addend. 1675 if (SeqStepNum && SeqStepDenom) { 1676 uint64_t ExpectedVal = 1677 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1678 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1679 if (!SeqAddend) 1680 SeqAddend = Addend; 1681 else if (SeqAddend != Addend) 1682 return None; 1683 } 1684 1685 // Record this non-undef element for later. 1686 if (!PrevElt || PrevElt->first != Val) 1687 PrevElt = std::make_pair(Val, Idx); 1688 } 1689 // We need to have logged both a step and an addend for this to count as 1690 // a legal index sequence. 1691 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1692 return None; 1693 1694 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1695 } 1696 1697 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1698 const RISCVSubtarget &Subtarget) { 1699 MVT VT = Op.getSimpleValueType(); 1700 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1701 1702 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1703 1704 SDLoc DL(Op); 1705 SDValue Mask, VL; 1706 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1707 1708 MVT XLenVT = Subtarget.getXLenVT(); 1709 unsigned NumElts = Op.getNumOperands(); 1710 1711 if (VT.getVectorElementType() == MVT::i1) { 1712 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1713 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1714 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1715 } 1716 1717 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1718 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1719 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1720 } 1721 1722 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1723 // scalar integer chunks whose bit-width depends on the number of mask 1724 // bits and XLEN. 1725 // First, determine the most appropriate scalar integer type to use. This 1726 // is at most XLenVT, but may be shrunk to a smaller vector element type 1727 // according to the size of the final vector - use i8 chunks rather than 1728 // XLenVT if we're producing a v8i1. This results in more consistent 1729 // codegen across RV32 and RV64. 1730 unsigned NumViaIntegerBits = 1731 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1732 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1733 // If we have to use more than one INSERT_VECTOR_ELT then this 1734 // optimization is likely to increase code size; avoid peforming it in 1735 // such a case. We can use a load from a constant pool in this case. 1736 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1737 return SDValue(); 1738 // Now we can create our integer vector type. Note that it may be larger 1739 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1740 MVT IntegerViaVecVT = 1741 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1742 divideCeil(NumElts, NumViaIntegerBits)); 1743 1744 uint64_t Bits = 0; 1745 unsigned BitPos = 0, IntegerEltIdx = 0; 1746 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1747 1748 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1749 // Once we accumulate enough bits to fill our scalar type, insert into 1750 // our vector and clear our accumulated data. 1751 if (I != 0 && I % NumViaIntegerBits == 0) { 1752 if (NumViaIntegerBits <= 32) 1753 Bits = SignExtend64(Bits, 32); 1754 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1755 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1756 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1757 Bits = 0; 1758 BitPos = 0; 1759 IntegerEltIdx++; 1760 } 1761 SDValue V = Op.getOperand(I); 1762 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1763 Bits |= ((uint64_t)BitValue << BitPos); 1764 } 1765 1766 // Insert the (remaining) scalar value into position in our integer 1767 // vector type. 1768 if (NumViaIntegerBits <= 32) 1769 Bits = SignExtend64(Bits, 32); 1770 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1771 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1772 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1773 1774 if (NumElts < NumViaIntegerBits) { 1775 // If we're producing a smaller vector than our minimum legal integer 1776 // type, bitcast to the equivalent (known-legal) mask type, and extract 1777 // our final mask. 1778 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1779 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1780 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1781 DAG.getConstant(0, DL, XLenVT)); 1782 } else { 1783 // Else we must have produced an integer type with the same size as the 1784 // mask type; bitcast for the final result. 1785 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1786 Vec = DAG.getBitcast(VT, Vec); 1787 } 1788 1789 return Vec; 1790 } 1791 1792 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1793 // vector type, we have a legal equivalently-sized i8 type, so we can use 1794 // that. 1795 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1796 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1797 1798 SDValue WideVec; 1799 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1800 // For a splat, perform a scalar truncate before creating the wider 1801 // vector. 1802 assert(Splat.getValueType() == XLenVT && 1803 "Unexpected type for i1 splat value"); 1804 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1805 DAG.getConstant(1, DL, XLenVT)); 1806 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1807 } else { 1808 SmallVector<SDValue, 8> Ops(Op->op_values()); 1809 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1810 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1811 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1812 } 1813 1814 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1815 } 1816 1817 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1818 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1819 : RISCVISD::VMV_V_X_VL; 1820 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1821 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1822 } 1823 1824 // Try and match index sequences, which we can lower to the vid instruction 1825 // with optional modifications. An all-undef vector is matched by 1826 // getSplatValue, above. 1827 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1828 int64_t StepNumerator = SimpleVID->StepNumerator; 1829 unsigned StepDenominator = SimpleVID->StepDenominator; 1830 int64_t Addend = SimpleVID->Addend; 1831 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1832 // threshold since it's the immediate value many RVV instructions accept. 1833 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1834 isInt<5>(Addend)) { 1835 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1836 // Convert right out of the scalable type so we can use standard ISD 1837 // nodes for the rest of the computation. If we used scalable types with 1838 // these, we'd lose the fixed-length vector info and generate worse 1839 // vsetvli code. 1840 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1841 assert(StepNumerator != 0 && "Invalid step"); 1842 bool Negate = false; 1843 if (StepNumerator != 1) { 1844 int64_t SplatStepVal = StepNumerator; 1845 unsigned Opcode = ISD::MUL; 1846 if (isPowerOf2_64(std::abs(StepNumerator))) { 1847 Negate = StepNumerator < 0; 1848 Opcode = ISD::SHL; 1849 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1850 } 1851 SDValue SplatStep = DAG.getSplatVector( 1852 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1853 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1854 } 1855 if (StepDenominator != 1) { 1856 SDValue SplatStep = DAG.getSplatVector( 1857 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1858 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1859 } 1860 if (Addend != 0 || Negate) { 1861 SDValue SplatAddend = 1862 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1863 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1864 } 1865 return VID; 1866 } 1867 } 1868 1869 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1870 // when re-interpreted as a vector with a larger element type. For example, 1871 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1872 // could be instead splat as 1873 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1874 // TODO: This optimization could also work on non-constant splats, but it 1875 // would require bit-manipulation instructions to construct the splat value. 1876 SmallVector<SDValue> Sequence; 1877 unsigned EltBitSize = VT.getScalarSizeInBits(); 1878 const auto *BV = cast<BuildVectorSDNode>(Op); 1879 if (VT.isInteger() && EltBitSize < 64 && 1880 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1881 BV->getRepeatedSequence(Sequence) && 1882 (Sequence.size() * EltBitSize) <= 64) { 1883 unsigned SeqLen = Sequence.size(); 1884 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1885 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1886 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1887 ViaIntVT == MVT::i64) && 1888 "Unexpected sequence type"); 1889 1890 unsigned EltIdx = 0; 1891 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1892 uint64_t SplatValue = 0; 1893 // Construct the amalgamated value which can be splatted as this larger 1894 // vector type. 1895 for (const auto &SeqV : Sequence) { 1896 if (!SeqV.isUndef()) 1897 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1898 << (EltIdx * EltBitSize)); 1899 EltIdx++; 1900 } 1901 1902 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1903 // achieve better constant materializion. 1904 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1905 SplatValue = SignExtend64(SplatValue, 32); 1906 1907 // Since we can't introduce illegal i64 types at this stage, we can only 1908 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1909 // way we can use RVV instructions to splat. 1910 assert((ViaIntVT.bitsLE(XLenVT) || 1911 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1912 "Unexpected bitcast sequence"); 1913 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1914 SDValue ViaVL = 1915 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1916 MVT ViaContainerVT = 1917 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1918 SDValue Splat = 1919 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1920 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1921 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1922 return DAG.getBitcast(VT, Splat); 1923 } 1924 } 1925 1926 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1927 // which constitute a large proportion of the elements. In such cases we can 1928 // splat a vector with the dominant element and make up the shortfall with 1929 // INSERT_VECTOR_ELTs. 1930 // Note that this includes vectors of 2 elements by association. The 1931 // upper-most element is the "dominant" one, allowing us to use a splat to 1932 // "insert" the upper element, and an insert of the lower element at position 1933 // 0, which improves codegen. 1934 SDValue DominantValue; 1935 unsigned MostCommonCount = 0; 1936 DenseMap<SDValue, unsigned> ValueCounts; 1937 unsigned NumUndefElts = 1938 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1939 1940 // Track the number of scalar loads we know we'd be inserting, estimated as 1941 // any non-zero floating-point constant. Other kinds of element are either 1942 // already in registers or are materialized on demand. The threshold at which 1943 // a vector load is more desirable than several scalar materializion and 1944 // vector-insertion instructions is not known. 1945 unsigned NumScalarLoads = 0; 1946 1947 for (SDValue V : Op->op_values()) { 1948 if (V.isUndef()) 1949 continue; 1950 1951 ValueCounts.insert(std::make_pair(V, 0)); 1952 unsigned &Count = ValueCounts[V]; 1953 1954 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1955 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1956 1957 // Is this value dominant? In case of a tie, prefer the highest element as 1958 // it's cheaper to insert near the beginning of a vector than it is at the 1959 // end. 1960 if (++Count >= MostCommonCount) { 1961 DominantValue = V; 1962 MostCommonCount = Count; 1963 } 1964 } 1965 1966 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1967 unsigned NumDefElts = NumElts - NumUndefElts; 1968 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1969 1970 // Don't perform this optimization when optimizing for size, since 1971 // materializing elements and inserting them tends to cause code bloat. 1972 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1973 ((MostCommonCount > DominantValueCountThreshold) || 1974 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1975 // Start by splatting the most common element. 1976 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1977 1978 DenseSet<SDValue> Processed{DominantValue}; 1979 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1980 for (const auto &OpIdx : enumerate(Op->ops())) { 1981 const SDValue &V = OpIdx.value(); 1982 if (V.isUndef() || !Processed.insert(V).second) 1983 continue; 1984 if (ValueCounts[V] == 1) { 1985 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1986 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1987 } else { 1988 // Blend in all instances of this value using a VSELECT, using a 1989 // mask where each bit signals whether that element is the one 1990 // we're after. 1991 SmallVector<SDValue> Ops; 1992 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1993 return DAG.getConstant(V == V1, DL, XLenVT); 1994 }); 1995 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1996 DAG.getBuildVector(SelMaskTy, DL, Ops), 1997 DAG.getSplatBuildVector(VT, DL, V), Vec); 1998 } 1999 } 2000 2001 return Vec; 2002 } 2003 2004 return SDValue(); 2005 } 2006 2007 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2008 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2009 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2010 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2011 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2012 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2013 // node in order to try and match RVV vector/scalar instructions. 2014 if ((LoC >> 31) == HiC) 2015 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2016 } 2017 2018 // Fall back to a stack store and stride x0 vector load. 2019 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2020 } 2021 2022 // Called by type legalization to handle splat of i64 on RV32. 2023 // FIXME: We can optimize this when the type has sign or zero bits in one 2024 // of the halves. 2025 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2026 SDValue VL, SelectionDAG &DAG) { 2027 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2028 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2029 DAG.getConstant(0, DL, MVT::i32)); 2030 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2031 DAG.getConstant(1, DL, MVT::i32)); 2032 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2033 } 2034 2035 // This function lowers a splat of a scalar operand Splat with the vector 2036 // length VL. It ensures the final sequence is type legal, which is useful when 2037 // lowering a splat after type legalization. 2038 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2039 SelectionDAG &DAG, 2040 const RISCVSubtarget &Subtarget) { 2041 if (VT.isFloatingPoint()) 2042 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2043 2044 MVT XLenVT = Subtarget.getXLenVT(); 2045 2046 // Simplest case is that the operand needs to be promoted to XLenVT. 2047 if (Scalar.getValueType().bitsLE(XLenVT)) { 2048 // If the operand is a constant, sign extend to increase our chances 2049 // of being able to use a .vi instruction. ANY_EXTEND would become a 2050 // a zero extend and the simm5 check in isel would fail. 2051 // FIXME: Should we ignore the upper bits in isel instead? 2052 unsigned ExtOpc = 2053 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2054 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2055 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2056 } 2057 2058 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2059 "Unexpected scalar for splat lowering!"); 2060 2061 // Otherwise use the more complicated splatting algorithm. 2062 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2063 } 2064 2065 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2066 const RISCVSubtarget &Subtarget) { 2067 SDValue V1 = Op.getOperand(0); 2068 SDValue V2 = Op.getOperand(1); 2069 SDLoc DL(Op); 2070 MVT XLenVT = Subtarget.getXLenVT(); 2071 MVT VT = Op.getSimpleValueType(); 2072 unsigned NumElts = VT.getVectorNumElements(); 2073 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2074 2075 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2076 2077 SDValue TrueMask, VL; 2078 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2079 2080 if (SVN->isSplat()) { 2081 const int Lane = SVN->getSplatIndex(); 2082 if (Lane >= 0) { 2083 MVT SVT = VT.getVectorElementType(); 2084 2085 // Turn splatted vector load into a strided load with an X0 stride. 2086 SDValue V = V1; 2087 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2088 // with undef. 2089 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2090 int Offset = Lane; 2091 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2092 int OpElements = 2093 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2094 V = V.getOperand(Offset / OpElements); 2095 Offset %= OpElements; 2096 } 2097 2098 // We need to ensure the load isn't atomic or volatile. 2099 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2100 auto *Ld = cast<LoadSDNode>(V); 2101 Offset *= SVT.getStoreSize(); 2102 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2103 TypeSize::Fixed(Offset), DL); 2104 2105 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2106 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2107 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2108 SDValue IntID = 2109 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2110 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2111 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2112 SDValue NewLoad = DAG.getMemIntrinsicNode( 2113 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2114 DAG.getMachineFunction().getMachineMemOperand( 2115 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2116 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2117 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2118 } 2119 2120 // Otherwise use a scalar load and splat. This will give the best 2121 // opportunity to fold a splat into the operation. ISel can turn it into 2122 // the x0 strided load if we aren't able to fold away the select. 2123 if (SVT.isFloatingPoint()) 2124 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2125 Ld->getPointerInfo().getWithOffset(Offset), 2126 Ld->getOriginalAlign(), 2127 Ld->getMemOperand()->getFlags()); 2128 else 2129 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2130 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2131 Ld->getOriginalAlign(), 2132 Ld->getMemOperand()->getFlags()); 2133 DAG.makeEquivalentMemoryOrdering(Ld, V); 2134 2135 unsigned Opc = 2136 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2137 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2138 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2139 } 2140 2141 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2142 assert(Lane < (int)NumElts && "Unexpected lane!"); 2143 SDValue Gather = 2144 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2145 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2146 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2147 } 2148 } 2149 2150 // Detect shuffles which can be re-expressed as vector selects; these are 2151 // shuffles in which each element in the destination is taken from an element 2152 // at the corresponding index in either source vectors. 2153 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2154 int MaskIndex = MaskIdx.value(); 2155 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2156 }); 2157 2158 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2159 2160 SmallVector<SDValue> MaskVals; 2161 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2162 // merged with a second vrgather. 2163 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2164 2165 // By default we preserve the original operand order, and use a mask to 2166 // select LHS as true and RHS as false. However, since RVV vector selects may 2167 // feature splats but only on the LHS, we may choose to invert our mask and 2168 // instead select between RHS and LHS. 2169 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2170 bool InvertMask = IsSelect == SwapOps; 2171 2172 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2173 // half. 2174 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2175 2176 // Now construct the mask that will be used by the vselect or blended 2177 // vrgather operation. For vrgathers, construct the appropriate indices into 2178 // each vector. 2179 for (int MaskIndex : SVN->getMask()) { 2180 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2181 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2182 if (!IsSelect) { 2183 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2184 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2185 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2186 : DAG.getUNDEF(XLenVT)); 2187 GatherIndicesRHS.push_back( 2188 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2189 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2190 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2191 ++LHSIndexCounts[MaskIndex]; 2192 if (!IsLHSOrUndefIndex) 2193 ++RHSIndexCounts[MaskIndex - NumElts]; 2194 } 2195 } 2196 2197 if (SwapOps) { 2198 std::swap(V1, V2); 2199 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2200 } 2201 2202 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2203 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2204 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2205 2206 if (IsSelect) 2207 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2208 2209 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2210 // On such a large vector we're unable to use i8 as the index type. 2211 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2212 // may involve vector splitting if we're already at LMUL=8, or our 2213 // user-supplied maximum fixed-length LMUL. 2214 return SDValue(); 2215 } 2216 2217 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2218 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2219 MVT IndexVT = VT.changeTypeToInteger(); 2220 // Since we can't introduce illegal index types at this stage, use i16 and 2221 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2222 // than XLenVT. 2223 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2224 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2225 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2226 } 2227 2228 MVT IndexContainerVT = 2229 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2230 2231 SDValue Gather; 2232 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2233 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2234 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2235 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2236 } else { 2237 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2238 // If only one index is used, we can use a "splat" vrgather. 2239 // TODO: We can splat the most-common index and fix-up any stragglers, if 2240 // that's beneficial. 2241 if (LHSIndexCounts.size() == 1) { 2242 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2243 Gather = 2244 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2245 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2246 } else { 2247 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2248 LHSIndices = 2249 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2250 2251 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2252 TrueMask, VL); 2253 } 2254 } 2255 2256 // If a second vector operand is used by this shuffle, blend it in with an 2257 // additional vrgather. 2258 if (!V2.isUndef()) { 2259 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2260 // If only one index is used, we can use a "splat" vrgather. 2261 // TODO: We can splat the most-common index and fix-up any stragglers, if 2262 // that's beneficial. 2263 if (RHSIndexCounts.size() == 1) { 2264 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2265 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2266 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2267 } else { 2268 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2269 RHSIndices = 2270 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2271 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2272 VL); 2273 } 2274 2275 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2276 SelectMask = 2277 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2278 2279 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2280 Gather, VL); 2281 } 2282 2283 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2284 } 2285 2286 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2287 SDLoc DL, SelectionDAG &DAG, 2288 const RISCVSubtarget &Subtarget) { 2289 if (VT.isScalableVector()) 2290 return DAG.getFPExtendOrRound(Op, DL, VT); 2291 assert(VT.isFixedLengthVector() && 2292 "Unexpected value type for RVV FP extend/round lowering"); 2293 SDValue Mask, VL; 2294 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2295 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2296 ? RISCVISD::FP_EXTEND_VL 2297 : RISCVISD::FP_ROUND_VL; 2298 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2299 } 2300 2301 // While RVV has alignment restrictions, we should always be able to load as a 2302 // legal equivalently-sized byte-typed vector instead. This method is 2303 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2304 // the load is already correctly-aligned, it returns SDValue(). 2305 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2306 SelectionDAG &DAG) const { 2307 auto *Load = cast<LoadSDNode>(Op); 2308 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2309 2310 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2311 Load->getMemoryVT(), 2312 *Load->getMemOperand())) 2313 return SDValue(); 2314 2315 SDLoc DL(Op); 2316 MVT VT = Op.getSimpleValueType(); 2317 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2318 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2319 "Unexpected unaligned RVV load type"); 2320 MVT NewVT = 2321 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2322 assert(NewVT.isValid() && 2323 "Expecting equally-sized RVV vector types to be legal"); 2324 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2325 Load->getPointerInfo(), Load->getOriginalAlign(), 2326 Load->getMemOperand()->getFlags()); 2327 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2328 } 2329 2330 // While RVV has alignment restrictions, we should always be able to store as a 2331 // legal equivalently-sized byte-typed vector instead. This method is 2332 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2333 // returns SDValue() if the store is already correctly aligned. 2334 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2335 SelectionDAG &DAG) const { 2336 auto *Store = cast<StoreSDNode>(Op); 2337 assert(Store && Store->getValue().getValueType().isVector() && 2338 "Expected vector store"); 2339 2340 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2341 Store->getMemoryVT(), 2342 *Store->getMemOperand())) 2343 return SDValue(); 2344 2345 SDLoc DL(Op); 2346 SDValue StoredVal = Store->getValue(); 2347 MVT VT = StoredVal.getSimpleValueType(); 2348 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2349 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2350 "Unexpected unaligned RVV store type"); 2351 MVT NewVT = 2352 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2353 assert(NewVT.isValid() && 2354 "Expecting equally-sized RVV vector types to be legal"); 2355 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2356 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2357 Store->getPointerInfo(), Store->getOriginalAlign(), 2358 Store->getMemOperand()->getFlags()); 2359 } 2360 2361 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2362 SelectionDAG &DAG) const { 2363 switch (Op.getOpcode()) { 2364 default: 2365 report_fatal_error("unimplemented operand"); 2366 case ISD::GlobalAddress: 2367 return lowerGlobalAddress(Op, DAG); 2368 case ISD::BlockAddress: 2369 return lowerBlockAddress(Op, DAG); 2370 case ISD::ConstantPool: 2371 return lowerConstantPool(Op, DAG); 2372 case ISD::JumpTable: 2373 return lowerJumpTable(Op, DAG); 2374 case ISD::GlobalTLSAddress: 2375 return lowerGlobalTLSAddress(Op, DAG); 2376 case ISD::SELECT: 2377 return lowerSELECT(Op, DAG); 2378 case ISD::BRCOND: 2379 return lowerBRCOND(Op, DAG); 2380 case ISD::VASTART: 2381 return lowerVASTART(Op, DAG); 2382 case ISD::FRAMEADDR: 2383 return lowerFRAMEADDR(Op, DAG); 2384 case ISD::RETURNADDR: 2385 return lowerRETURNADDR(Op, DAG); 2386 case ISD::SHL_PARTS: 2387 return lowerShiftLeftParts(Op, DAG); 2388 case ISD::SRA_PARTS: 2389 return lowerShiftRightParts(Op, DAG, true); 2390 case ISD::SRL_PARTS: 2391 return lowerShiftRightParts(Op, DAG, false); 2392 case ISD::BITCAST: { 2393 SDLoc DL(Op); 2394 EVT VT = Op.getValueType(); 2395 SDValue Op0 = Op.getOperand(0); 2396 EVT Op0VT = Op0.getValueType(); 2397 MVT XLenVT = Subtarget.getXLenVT(); 2398 if (VT.isFixedLengthVector()) { 2399 // We can handle fixed length vector bitcasts with a simple replacement 2400 // in isel. 2401 if (Op0VT.isFixedLengthVector()) 2402 return Op; 2403 // When bitcasting from scalar to fixed-length vector, insert the scalar 2404 // into a one-element vector of the result type, and perform a vector 2405 // bitcast. 2406 if (!Op0VT.isVector()) { 2407 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2408 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2409 DAG.getUNDEF(BVT), Op0, 2410 DAG.getConstant(0, DL, XLenVT))); 2411 } 2412 return SDValue(); 2413 } 2414 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2415 // thus: bitcast the vector to a one-element vector type whose element type 2416 // is the same as the result type, and extract the first element. 2417 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2418 LLVMContext &Context = *DAG.getContext(); 2419 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2420 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2421 DAG.getConstant(0, DL, XLenVT)); 2422 } 2423 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2424 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2425 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2426 return FPConv; 2427 } 2428 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2429 Subtarget.hasStdExtF()) { 2430 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2431 SDValue FPConv = 2432 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2433 return FPConv; 2434 } 2435 return SDValue(); 2436 } 2437 case ISD::INTRINSIC_WO_CHAIN: 2438 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2439 case ISD::INTRINSIC_W_CHAIN: 2440 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2441 case ISD::INTRINSIC_VOID: 2442 return LowerINTRINSIC_VOID(Op, DAG); 2443 case ISD::BSWAP: 2444 case ISD::BITREVERSE: { 2445 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2446 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2447 MVT VT = Op.getSimpleValueType(); 2448 SDLoc DL(Op); 2449 // Start with the maximum immediate value which is the bitwidth - 1. 2450 unsigned Imm = VT.getSizeInBits() - 1; 2451 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2452 if (Op.getOpcode() == ISD::BSWAP) 2453 Imm &= ~0x7U; 2454 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2455 DAG.getConstant(Imm, DL, VT)); 2456 } 2457 case ISD::FSHL: 2458 case ISD::FSHR: { 2459 MVT VT = Op.getSimpleValueType(); 2460 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2461 SDLoc DL(Op); 2462 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2463 return Op; 2464 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2465 // use log(XLen) bits. Mask the shift amount accordingly. 2466 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2467 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2468 DAG.getConstant(ShAmtWidth, DL, VT)); 2469 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2470 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2471 } 2472 case ISD::TRUNCATE: { 2473 SDLoc DL(Op); 2474 MVT VT = Op.getSimpleValueType(); 2475 // Only custom-lower vector truncates 2476 if (!VT.isVector()) 2477 return Op; 2478 2479 // Truncates to mask types are handled differently 2480 if (VT.getVectorElementType() == MVT::i1) 2481 return lowerVectorMaskTrunc(Op, DAG); 2482 2483 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2484 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2485 // truncate by one power of two at a time. 2486 MVT DstEltVT = VT.getVectorElementType(); 2487 2488 SDValue Src = Op.getOperand(0); 2489 MVT SrcVT = Src.getSimpleValueType(); 2490 MVT SrcEltVT = SrcVT.getVectorElementType(); 2491 2492 assert(DstEltVT.bitsLT(SrcEltVT) && 2493 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2494 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2495 "Unexpected vector truncate lowering"); 2496 2497 MVT ContainerVT = SrcVT; 2498 if (SrcVT.isFixedLengthVector()) { 2499 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2500 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2501 } 2502 2503 SDValue Result = Src; 2504 SDValue Mask, VL; 2505 std::tie(Mask, VL) = 2506 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2507 LLVMContext &Context = *DAG.getContext(); 2508 const ElementCount Count = ContainerVT.getVectorElementCount(); 2509 do { 2510 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2511 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2512 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2513 Mask, VL); 2514 } while (SrcEltVT != DstEltVT); 2515 2516 if (SrcVT.isFixedLengthVector()) 2517 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2518 2519 return Result; 2520 } 2521 case ISD::ANY_EXTEND: 2522 case ISD::ZERO_EXTEND: 2523 if (Op.getOperand(0).getValueType().isVector() && 2524 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2525 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2526 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2527 case ISD::SIGN_EXTEND: 2528 if (Op.getOperand(0).getValueType().isVector() && 2529 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2530 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2531 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2532 case ISD::SPLAT_VECTOR_PARTS: 2533 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2534 case ISD::INSERT_VECTOR_ELT: 2535 return lowerINSERT_VECTOR_ELT(Op, DAG); 2536 case ISD::EXTRACT_VECTOR_ELT: 2537 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2538 case ISD::VSCALE: { 2539 MVT VT = Op.getSimpleValueType(); 2540 SDLoc DL(Op); 2541 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2542 // We define our scalable vector types for lmul=1 to use a 64 bit known 2543 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2544 // vscale as VLENB / 8. 2545 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2546 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2547 // We assume VLENB is a multiple of 8. We manually choose the best shift 2548 // here because SimplifyDemandedBits isn't always able to simplify it. 2549 uint64_t Val = Op.getConstantOperandVal(0); 2550 if (isPowerOf2_64(Val)) { 2551 uint64_t Log2 = Log2_64(Val); 2552 if (Log2 < 3) 2553 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2554 DAG.getConstant(3 - Log2, DL, VT)); 2555 if (Log2 > 3) 2556 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2557 DAG.getConstant(Log2 - 3, DL, VT)); 2558 return VLENB; 2559 } 2560 // If the multiplier is a multiple of 8, scale it down to avoid needing 2561 // to shift the VLENB value. 2562 if ((Val % 8) == 0) 2563 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2564 DAG.getConstant(Val / 8, DL, VT)); 2565 } 2566 2567 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2568 DAG.getConstant(3, DL, VT)); 2569 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2570 } 2571 case ISD::FP_EXTEND: { 2572 // RVV can only do fp_extend to types double the size as the source. We 2573 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2574 // via f32. 2575 SDLoc DL(Op); 2576 MVT VT = Op.getSimpleValueType(); 2577 SDValue Src = Op.getOperand(0); 2578 MVT SrcVT = Src.getSimpleValueType(); 2579 2580 // Prepare any fixed-length vector operands. 2581 MVT ContainerVT = VT; 2582 if (SrcVT.isFixedLengthVector()) { 2583 ContainerVT = getContainerForFixedLengthVector(VT); 2584 MVT SrcContainerVT = 2585 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2586 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2587 } 2588 2589 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2590 SrcVT.getVectorElementType() != MVT::f16) { 2591 // For scalable vectors, we only need to close the gap between 2592 // vXf16->vXf64. 2593 if (!VT.isFixedLengthVector()) 2594 return Op; 2595 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2596 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2597 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2598 } 2599 2600 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2601 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2602 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2603 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2604 2605 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2606 DL, DAG, Subtarget); 2607 if (VT.isFixedLengthVector()) 2608 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2609 return Extend; 2610 } 2611 case ISD::FP_ROUND: { 2612 // RVV can only do fp_round to types half the size as the source. We 2613 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2614 // conversion instruction. 2615 SDLoc DL(Op); 2616 MVT VT = Op.getSimpleValueType(); 2617 SDValue Src = Op.getOperand(0); 2618 MVT SrcVT = Src.getSimpleValueType(); 2619 2620 // Prepare any fixed-length vector operands. 2621 MVT ContainerVT = VT; 2622 if (VT.isFixedLengthVector()) { 2623 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2624 ContainerVT = 2625 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2626 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2627 } 2628 2629 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2630 SrcVT.getVectorElementType() != MVT::f64) { 2631 // For scalable vectors, we only need to close the gap between 2632 // vXf64<->vXf16. 2633 if (!VT.isFixedLengthVector()) 2634 return Op; 2635 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2636 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2637 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2638 } 2639 2640 SDValue Mask, VL; 2641 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2642 2643 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2644 SDValue IntermediateRound = 2645 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2646 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2647 DL, DAG, Subtarget); 2648 2649 if (VT.isFixedLengthVector()) 2650 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2651 return Round; 2652 } 2653 case ISD::FP_TO_SINT: 2654 case ISD::FP_TO_UINT: 2655 case ISD::SINT_TO_FP: 2656 case ISD::UINT_TO_FP: { 2657 // RVV can only do fp<->int conversions to types half/double the size as 2658 // the source. We custom-lower any conversions that do two hops into 2659 // sequences. 2660 MVT VT = Op.getSimpleValueType(); 2661 if (!VT.isVector()) 2662 return Op; 2663 SDLoc DL(Op); 2664 SDValue Src = Op.getOperand(0); 2665 MVT EltVT = VT.getVectorElementType(); 2666 MVT SrcVT = Src.getSimpleValueType(); 2667 MVT SrcEltVT = SrcVT.getVectorElementType(); 2668 unsigned EltSize = EltVT.getSizeInBits(); 2669 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2670 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2671 "Unexpected vector element types"); 2672 2673 bool IsInt2FP = SrcEltVT.isInteger(); 2674 // Widening conversions 2675 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2676 if (IsInt2FP) { 2677 // Do a regular integer sign/zero extension then convert to float. 2678 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2679 VT.getVectorElementCount()); 2680 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2681 ? ISD::ZERO_EXTEND 2682 : ISD::SIGN_EXTEND; 2683 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2684 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2685 } 2686 // FP2Int 2687 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2688 // Do one doubling fp_extend then complete the operation by converting 2689 // to int. 2690 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2691 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2692 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2693 } 2694 2695 // Narrowing conversions 2696 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2697 if (IsInt2FP) { 2698 // One narrowing int_to_fp, then an fp_round. 2699 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2700 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2701 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2702 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2703 } 2704 // FP2Int 2705 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2706 // representable by the integer, the result is poison. 2707 MVT IVecVT = 2708 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2709 VT.getVectorElementCount()); 2710 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2711 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2712 } 2713 2714 // Scalable vectors can exit here. Patterns will handle equally-sized 2715 // conversions halving/doubling ones. 2716 if (!VT.isFixedLengthVector()) 2717 return Op; 2718 2719 // For fixed-length vectors we lower to a custom "VL" node. 2720 unsigned RVVOpc = 0; 2721 switch (Op.getOpcode()) { 2722 default: 2723 llvm_unreachable("Impossible opcode"); 2724 case ISD::FP_TO_SINT: 2725 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2726 break; 2727 case ISD::FP_TO_UINT: 2728 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2729 break; 2730 case ISD::SINT_TO_FP: 2731 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2732 break; 2733 case ISD::UINT_TO_FP: 2734 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2735 break; 2736 } 2737 2738 MVT ContainerVT, SrcContainerVT; 2739 // Derive the reference container type from the larger vector type. 2740 if (SrcEltSize > EltSize) { 2741 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2742 ContainerVT = 2743 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2744 } else { 2745 ContainerVT = getContainerForFixedLengthVector(VT); 2746 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2747 } 2748 2749 SDValue Mask, VL; 2750 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2751 2752 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2753 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2754 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2755 } 2756 case ISD::FP_TO_SINT_SAT: 2757 case ISD::FP_TO_UINT_SAT: 2758 return lowerFP_TO_INT_SAT(Op, DAG); 2759 case ISD::VECREDUCE_ADD: 2760 case ISD::VECREDUCE_UMAX: 2761 case ISD::VECREDUCE_SMAX: 2762 case ISD::VECREDUCE_UMIN: 2763 case ISD::VECREDUCE_SMIN: 2764 return lowerVECREDUCE(Op, DAG); 2765 case ISD::VECREDUCE_AND: 2766 case ISD::VECREDUCE_OR: 2767 case ISD::VECREDUCE_XOR: 2768 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2769 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2770 return lowerVECREDUCE(Op, DAG); 2771 case ISD::VECREDUCE_FADD: 2772 case ISD::VECREDUCE_SEQ_FADD: 2773 case ISD::VECREDUCE_FMIN: 2774 case ISD::VECREDUCE_FMAX: 2775 return lowerFPVECREDUCE(Op, DAG); 2776 case ISD::VP_REDUCE_ADD: 2777 case ISD::VP_REDUCE_UMAX: 2778 case ISD::VP_REDUCE_SMAX: 2779 case ISD::VP_REDUCE_UMIN: 2780 case ISD::VP_REDUCE_SMIN: 2781 case ISD::VP_REDUCE_FADD: 2782 case ISD::VP_REDUCE_SEQ_FADD: 2783 case ISD::VP_REDUCE_FMIN: 2784 case ISD::VP_REDUCE_FMAX: 2785 return lowerVPREDUCE(Op, DAG); 2786 case ISD::VP_REDUCE_AND: 2787 case ISD::VP_REDUCE_OR: 2788 case ISD::VP_REDUCE_XOR: 2789 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2790 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2791 return lowerVPREDUCE(Op, DAG); 2792 case ISD::INSERT_SUBVECTOR: 2793 return lowerINSERT_SUBVECTOR(Op, DAG); 2794 case ISD::EXTRACT_SUBVECTOR: 2795 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2796 case ISD::STEP_VECTOR: 2797 return lowerSTEP_VECTOR(Op, DAG); 2798 case ISD::VECTOR_REVERSE: 2799 return lowerVECTOR_REVERSE(Op, DAG); 2800 case ISD::BUILD_VECTOR: 2801 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2802 case ISD::SPLAT_VECTOR: 2803 if (Op.getValueType().getVectorElementType() == MVT::i1) 2804 return lowerVectorMaskSplat(Op, DAG); 2805 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2806 case ISD::VECTOR_SHUFFLE: 2807 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2808 case ISD::CONCAT_VECTORS: { 2809 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2810 // better than going through the stack, as the default expansion does. 2811 SDLoc DL(Op); 2812 MVT VT = Op.getSimpleValueType(); 2813 unsigned NumOpElts = 2814 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2815 SDValue Vec = DAG.getUNDEF(VT); 2816 for (const auto &OpIdx : enumerate(Op->ops())) 2817 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2818 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2819 return Vec; 2820 } 2821 case ISD::LOAD: 2822 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2823 return V; 2824 if (Op.getValueType().isFixedLengthVector()) 2825 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2826 return Op; 2827 case ISD::STORE: 2828 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2829 return V; 2830 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2831 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2832 return Op; 2833 case ISD::MLOAD: 2834 case ISD::VP_LOAD: 2835 return lowerMaskedLoad(Op, DAG); 2836 case ISD::MSTORE: 2837 case ISD::VP_STORE: 2838 return lowerMaskedStore(Op, DAG); 2839 case ISD::SETCC: 2840 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2841 case ISD::ADD: 2842 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2843 case ISD::SUB: 2844 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2845 case ISD::MUL: 2846 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2847 case ISD::MULHS: 2848 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2849 case ISD::MULHU: 2850 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2851 case ISD::AND: 2852 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2853 RISCVISD::AND_VL); 2854 case ISD::OR: 2855 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2856 RISCVISD::OR_VL); 2857 case ISD::XOR: 2858 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2859 RISCVISD::XOR_VL); 2860 case ISD::SDIV: 2861 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2862 case ISD::SREM: 2863 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2864 case ISD::UDIV: 2865 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2866 case ISD::UREM: 2867 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2868 case ISD::SHL: 2869 case ISD::SRA: 2870 case ISD::SRL: 2871 if (Op.getSimpleValueType().isFixedLengthVector()) 2872 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2873 // This can be called for an i32 shift amount that needs to be promoted. 2874 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2875 "Unexpected custom legalisation"); 2876 return SDValue(); 2877 case ISD::SADDSAT: 2878 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2879 case ISD::UADDSAT: 2880 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2881 case ISD::SSUBSAT: 2882 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2883 case ISD::USUBSAT: 2884 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2885 case ISD::FADD: 2886 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2887 case ISD::FSUB: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2889 case ISD::FMUL: 2890 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2891 case ISD::FDIV: 2892 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2893 case ISD::FNEG: 2894 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2895 case ISD::FABS: 2896 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2897 case ISD::FSQRT: 2898 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2899 case ISD::FMA: 2900 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2901 case ISD::SMIN: 2902 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2903 case ISD::SMAX: 2904 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2905 case ISD::UMIN: 2906 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2907 case ISD::UMAX: 2908 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2909 case ISD::FMINNUM: 2910 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2911 case ISD::FMAXNUM: 2912 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2913 case ISD::ABS: 2914 return lowerABS(Op, DAG); 2915 case ISD::VSELECT: 2916 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2917 case ISD::FCOPYSIGN: 2918 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2919 case ISD::MGATHER: 2920 case ISD::VP_GATHER: 2921 return lowerMaskedGather(Op, DAG); 2922 case ISD::MSCATTER: 2923 case ISD::VP_SCATTER: 2924 return lowerMaskedScatter(Op, DAG); 2925 case ISD::FLT_ROUNDS_: 2926 return lowerGET_ROUNDING(Op, DAG); 2927 case ISD::SET_ROUNDING: 2928 return lowerSET_ROUNDING(Op, DAG); 2929 case ISD::VP_ADD: 2930 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2931 case ISD::VP_SUB: 2932 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2933 case ISD::VP_MUL: 2934 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2935 case ISD::VP_SDIV: 2936 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2937 case ISD::VP_UDIV: 2938 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2939 case ISD::VP_SREM: 2940 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2941 case ISD::VP_UREM: 2942 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2943 case ISD::VP_AND: 2944 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2945 case ISD::VP_OR: 2946 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2947 case ISD::VP_XOR: 2948 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2949 case ISD::VP_ASHR: 2950 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2951 case ISD::VP_LSHR: 2952 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2953 case ISD::VP_SHL: 2954 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2955 case ISD::VP_FADD: 2956 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2957 case ISD::VP_FSUB: 2958 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2959 case ISD::VP_FMUL: 2960 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2961 case ISD::VP_FDIV: 2962 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2963 } 2964 } 2965 2966 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2967 SelectionDAG &DAG, unsigned Flags) { 2968 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2969 } 2970 2971 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2972 SelectionDAG &DAG, unsigned Flags) { 2973 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2974 Flags); 2975 } 2976 2977 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2978 SelectionDAG &DAG, unsigned Flags) { 2979 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2980 N->getOffset(), Flags); 2981 } 2982 2983 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2984 SelectionDAG &DAG, unsigned Flags) { 2985 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2986 } 2987 2988 template <class NodeTy> 2989 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2990 bool IsLocal) const { 2991 SDLoc DL(N); 2992 EVT Ty = getPointerTy(DAG.getDataLayout()); 2993 2994 if (isPositionIndependent()) { 2995 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2996 if (IsLocal) 2997 // Use PC-relative addressing to access the symbol. This generates the 2998 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2999 // %pcrel_lo(auipc)). 3000 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3001 3002 // Use PC-relative addressing to access the GOT for this symbol, then load 3003 // the address from the GOT. This generates the pattern (PseudoLA sym), 3004 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3005 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3006 } 3007 3008 switch (getTargetMachine().getCodeModel()) { 3009 default: 3010 report_fatal_error("Unsupported code model for lowering"); 3011 case CodeModel::Small: { 3012 // Generate a sequence for accessing addresses within the first 2 GiB of 3013 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3014 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3015 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3016 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3017 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3018 } 3019 case CodeModel::Medium: { 3020 // Generate a sequence for accessing addresses within any 2GiB range within 3021 // the address space. This generates the pattern (PseudoLLA sym), which 3022 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3023 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3024 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3025 } 3026 } 3027 } 3028 3029 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3030 SelectionDAG &DAG) const { 3031 SDLoc DL(Op); 3032 EVT Ty = Op.getValueType(); 3033 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3034 int64_t Offset = N->getOffset(); 3035 MVT XLenVT = Subtarget.getXLenVT(); 3036 3037 const GlobalValue *GV = N->getGlobal(); 3038 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3039 SDValue Addr = getAddr(N, DAG, IsLocal); 3040 3041 // In order to maximise the opportunity for common subexpression elimination, 3042 // emit a separate ADD node for the global address offset instead of folding 3043 // it in the global address node. Later peephole optimisations may choose to 3044 // fold it back in when profitable. 3045 if (Offset != 0) 3046 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3047 DAG.getConstant(Offset, DL, XLenVT)); 3048 return Addr; 3049 } 3050 3051 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3052 SelectionDAG &DAG) const { 3053 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3054 3055 return getAddr(N, DAG); 3056 } 3057 3058 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3059 SelectionDAG &DAG) const { 3060 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3061 3062 return getAddr(N, DAG); 3063 } 3064 3065 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3066 SelectionDAG &DAG) const { 3067 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3068 3069 return getAddr(N, DAG); 3070 } 3071 3072 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3073 SelectionDAG &DAG, 3074 bool UseGOT) const { 3075 SDLoc DL(N); 3076 EVT Ty = getPointerTy(DAG.getDataLayout()); 3077 const GlobalValue *GV = N->getGlobal(); 3078 MVT XLenVT = Subtarget.getXLenVT(); 3079 3080 if (UseGOT) { 3081 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3082 // load the address from the GOT and add the thread pointer. This generates 3083 // the pattern (PseudoLA_TLS_IE sym), which expands to 3084 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3085 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3086 SDValue Load = 3087 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3088 3089 // Add the thread pointer. 3090 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3091 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3092 } 3093 3094 // Generate a sequence for accessing the address relative to the thread 3095 // pointer, with the appropriate adjustment for the thread pointer offset. 3096 // This generates the pattern 3097 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3098 SDValue AddrHi = 3099 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3100 SDValue AddrAdd = 3101 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3102 SDValue AddrLo = 3103 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3104 3105 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3106 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3107 SDValue MNAdd = SDValue( 3108 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3109 0); 3110 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3111 } 3112 3113 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3114 SelectionDAG &DAG) const { 3115 SDLoc DL(N); 3116 EVT Ty = getPointerTy(DAG.getDataLayout()); 3117 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3118 const GlobalValue *GV = N->getGlobal(); 3119 3120 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3121 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3122 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3123 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3124 SDValue Load = 3125 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3126 3127 // Prepare argument list to generate call. 3128 ArgListTy Args; 3129 ArgListEntry Entry; 3130 Entry.Node = Load; 3131 Entry.Ty = CallTy; 3132 Args.push_back(Entry); 3133 3134 // Setup call to __tls_get_addr. 3135 TargetLowering::CallLoweringInfo CLI(DAG); 3136 CLI.setDebugLoc(DL) 3137 .setChain(DAG.getEntryNode()) 3138 .setLibCallee(CallingConv::C, CallTy, 3139 DAG.getExternalSymbol("__tls_get_addr", Ty), 3140 std::move(Args)); 3141 3142 return LowerCallTo(CLI).first; 3143 } 3144 3145 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3146 SelectionDAG &DAG) const { 3147 SDLoc DL(Op); 3148 EVT Ty = Op.getValueType(); 3149 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3150 int64_t Offset = N->getOffset(); 3151 MVT XLenVT = Subtarget.getXLenVT(); 3152 3153 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3154 3155 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3156 CallingConv::GHC) 3157 report_fatal_error("In GHC calling convention TLS is not supported"); 3158 3159 SDValue Addr; 3160 switch (Model) { 3161 case TLSModel::LocalExec: 3162 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3163 break; 3164 case TLSModel::InitialExec: 3165 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3166 break; 3167 case TLSModel::LocalDynamic: 3168 case TLSModel::GeneralDynamic: 3169 Addr = getDynamicTLSAddr(N, DAG); 3170 break; 3171 } 3172 3173 // In order to maximise the opportunity for common subexpression elimination, 3174 // emit a separate ADD node for the global address offset instead of folding 3175 // it in the global address node. Later peephole optimisations may choose to 3176 // fold it back in when profitable. 3177 if (Offset != 0) 3178 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3179 DAG.getConstant(Offset, DL, XLenVT)); 3180 return Addr; 3181 } 3182 3183 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3184 SDValue CondV = Op.getOperand(0); 3185 SDValue TrueV = Op.getOperand(1); 3186 SDValue FalseV = Op.getOperand(2); 3187 SDLoc DL(Op); 3188 MVT VT = Op.getSimpleValueType(); 3189 MVT XLenVT = Subtarget.getXLenVT(); 3190 3191 // Lower vector SELECTs to VSELECTs by splatting the condition. 3192 if (VT.isVector()) { 3193 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3194 SDValue CondSplat = VT.isScalableVector() 3195 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3196 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3197 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3198 } 3199 3200 // If the result type is XLenVT and CondV is the output of a SETCC node 3201 // which also operated on XLenVT inputs, then merge the SETCC node into the 3202 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3203 // compare+branch instructions. i.e.: 3204 // (select (setcc lhs, rhs, cc), truev, falsev) 3205 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3206 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3207 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3208 SDValue LHS = CondV.getOperand(0); 3209 SDValue RHS = CondV.getOperand(1); 3210 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3211 ISD::CondCode CCVal = CC->get(); 3212 3213 // Special case for a select of 2 constants that have a diffence of 1. 3214 // Normally this is done by DAGCombine, but if the select is introduced by 3215 // type legalization or op legalization, we miss it. Restricting to SETLT 3216 // case for now because that is what signed saturating add/sub need. 3217 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3218 // but we would probably want to swap the true/false values if the condition 3219 // is SETGE/SETLE to avoid an XORI. 3220 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3221 CCVal == ISD::SETLT) { 3222 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3223 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3224 if (TrueVal - 1 == FalseVal) 3225 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3226 if (TrueVal + 1 == FalseVal) 3227 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3228 } 3229 3230 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3231 3232 SDValue TargetCC = DAG.getCondCode(CCVal); 3233 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3234 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3235 } 3236 3237 // Otherwise: 3238 // (select condv, truev, falsev) 3239 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3240 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3241 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3242 3243 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3244 3245 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3246 } 3247 3248 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3249 SDValue CondV = Op.getOperand(1); 3250 SDLoc DL(Op); 3251 MVT XLenVT = Subtarget.getXLenVT(); 3252 3253 if (CondV.getOpcode() == ISD::SETCC && 3254 CondV.getOperand(0).getValueType() == XLenVT) { 3255 SDValue LHS = CondV.getOperand(0); 3256 SDValue RHS = CondV.getOperand(1); 3257 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3258 3259 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3260 3261 SDValue TargetCC = DAG.getCondCode(CCVal); 3262 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3263 LHS, RHS, TargetCC, Op.getOperand(2)); 3264 } 3265 3266 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3267 CondV, DAG.getConstant(0, DL, XLenVT), 3268 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3269 } 3270 3271 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3272 MachineFunction &MF = DAG.getMachineFunction(); 3273 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3274 3275 SDLoc DL(Op); 3276 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3277 getPointerTy(MF.getDataLayout())); 3278 3279 // vastart just stores the address of the VarArgsFrameIndex slot into the 3280 // memory location argument. 3281 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3282 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3283 MachinePointerInfo(SV)); 3284 } 3285 3286 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3287 SelectionDAG &DAG) const { 3288 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3289 MachineFunction &MF = DAG.getMachineFunction(); 3290 MachineFrameInfo &MFI = MF.getFrameInfo(); 3291 MFI.setFrameAddressIsTaken(true); 3292 Register FrameReg = RI.getFrameRegister(MF); 3293 int XLenInBytes = Subtarget.getXLen() / 8; 3294 3295 EVT VT = Op.getValueType(); 3296 SDLoc DL(Op); 3297 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3298 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3299 while (Depth--) { 3300 int Offset = -(XLenInBytes * 2); 3301 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3302 DAG.getIntPtrConstant(Offset, DL)); 3303 FrameAddr = 3304 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3305 } 3306 return FrameAddr; 3307 } 3308 3309 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3310 SelectionDAG &DAG) const { 3311 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3312 MachineFunction &MF = DAG.getMachineFunction(); 3313 MachineFrameInfo &MFI = MF.getFrameInfo(); 3314 MFI.setReturnAddressIsTaken(true); 3315 MVT XLenVT = Subtarget.getXLenVT(); 3316 int XLenInBytes = Subtarget.getXLen() / 8; 3317 3318 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3319 return SDValue(); 3320 3321 EVT VT = Op.getValueType(); 3322 SDLoc DL(Op); 3323 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3324 if (Depth) { 3325 int Off = -XLenInBytes; 3326 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3327 SDValue Offset = DAG.getConstant(Off, DL, VT); 3328 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3329 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3330 MachinePointerInfo()); 3331 } 3332 3333 // Return the value of the return address register, marking it an implicit 3334 // live-in. 3335 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3336 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3337 } 3338 3339 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3340 SelectionDAG &DAG) const { 3341 SDLoc DL(Op); 3342 SDValue Lo = Op.getOperand(0); 3343 SDValue Hi = Op.getOperand(1); 3344 SDValue Shamt = Op.getOperand(2); 3345 EVT VT = Lo.getValueType(); 3346 3347 // if Shamt-XLEN < 0: // Shamt < XLEN 3348 // Lo = Lo << Shamt 3349 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3350 // else: 3351 // Lo = 0 3352 // Hi = Lo << (Shamt-XLEN) 3353 3354 SDValue Zero = DAG.getConstant(0, DL, VT); 3355 SDValue One = DAG.getConstant(1, DL, VT); 3356 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3357 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3358 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3359 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3360 3361 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3362 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3363 SDValue ShiftRightLo = 3364 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3365 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3366 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3367 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3368 3369 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3370 3371 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3372 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3373 3374 SDValue Parts[2] = {Lo, Hi}; 3375 return DAG.getMergeValues(Parts, DL); 3376 } 3377 3378 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3379 bool IsSRA) const { 3380 SDLoc DL(Op); 3381 SDValue Lo = Op.getOperand(0); 3382 SDValue Hi = Op.getOperand(1); 3383 SDValue Shamt = Op.getOperand(2); 3384 EVT VT = Lo.getValueType(); 3385 3386 // SRA expansion: 3387 // if Shamt-XLEN < 0: // Shamt < XLEN 3388 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3389 // Hi = Hi >>s Shamt 3390 // else: 3391 // Lo = Hi >>s (Shamt-XLEN); 3392 // Hi = Hi >>s (XLEN-1) 3393 // 3394 // SRL expansion: 3395 // if Shamt-XLEN < 0: // Shamt < XLEN 3396 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3397 // Hi = Hi >>u Shamt 3398 // else: 3399 // Lo = Hi >>u (Shamt-XLEN); 3400 // Hi = 0; 3401 3402 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3403 3404 SDValue Zero = DAG.getConstant(0, DL, VT); 3405 SDValue One = DAG.getConstant(1, DL, VT); 3406 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3407 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3408 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3409 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3410 3411 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3412 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3413 SDValue ShiftLeftHi = 3414 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3415 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3416 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3417 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3418 SDValue HiFalse = 3419 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3420 3421 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3422 3423 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3424 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3425 3426 SDValue Parts[2] = {Lo, Hi}; 3427 return DAG.getMergeValues(Parts, DL); 3428 } 3429 3430 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3431 // legal equivalently-sized i8 type, so we can use that as a go-between. 3432 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3433 SelectionDAG &DAG) const { 3434 SDLoc DL(Op); 3435 MVT VT = Op.getSimpleValueType(); 3436 SDValue SplatVal = Op.getOperand(0); 3437 // All-zeros or all-ones splats are handled specially. 3438 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3439 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3440 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3441 } 3442 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3443 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3444 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3445 } 3446 MVT XLenVT = Subtarget.getXLenVT(); 3447 assert(SplatVal.getValueType() == XLenVT && 3448 "Unexpected type for i1 splat value"); 3449 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3450 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3451 DAG.getConstant(1, DL, XLenVT)); 3452 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3453 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3454 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3455 } 3456 3457 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3458 // illegal (currently only vXi64 RV32). 3459 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3460 // them to SPLAT_VECTOR_I64 3461 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3462 SelectionDAG &DAG) const { 3463 SDLoc DL(Op); 3464 MVT VecVT = Op.getSimpleValueType(); 3465 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3466 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3467 3468 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3469 SDValue Lo = Op.getOperand(0); 3470 SDValue Hi = Op.getOperand(1); 3471 3472 if (VecVT.isFixedLengthVector()) { 3473 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3474 SDLoc DL(Op); 3475 SDValue Mask, VL; 3476 std::tie(Mask, VL) = 3477 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3478 3479 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3480 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3481 } 3482 3483 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3484 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3485 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3486 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3487 // node in order to try and match RVV vector/scalar instructions. 3488 if ((LoC >> 31) == HiC) 3489 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3490 } 3491 3492 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3493 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3494 isa<ConstantSDNode>(Hi.getOperand(1)) && 3495 Hi.getConstantOperandVal(1) == 31) 3496 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3497 3498 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3499 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3500 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3501 } 3502 3503 // Custom-lower extensions from mask vectors by using a vselect either with 1 3504 // for zero/any-extension or -1 for sign-extension: 3505 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3506 // Note that any-extension is lowered identically to zero-extension. 3507 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3508 int64_t ExtTrueVal) const { 3509 SDLoc DL(Op); 3510 MVT VecVT = Op.getSimpleValueType(); 3511 SDValue Src = Op.getOperand(0); 3512 // Only custom-lower extensions from mask types 3513 assert(Src.getValueType().isVector() && 3514 Src.getValueType().getVectorElementType() == MVT::i1); 3515 3516 MVT XLenVT = Subtarget.getXLenVT(); 3517 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3518 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3519 3520 if (VecVT.isScalableVector()) { 3521 // Be careful not to introduce illegal scalar types at this stage, and be 3522 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3523 // illegal and must be expanded. Since we know that the constants are 3524 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3525 bool IsRV32E64 = 3526 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3527 3528 if (!IsRV32E64) { 3529 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3530 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3531 } else { 3532 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3533 SplatTrueVal = 3534 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3535 } 3536 3537 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3538 } 3539 3540 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3541 MVT I1ContainerVT = 3542 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3543 3544 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3545 3546 SDValue Mask, VL; 3547 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3548 3549 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3550 SplatTrueVal = 3551 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3552 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3553 SplatTrueVal, SplatZero, VL); 3554 3555 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3556 } 3557 3558 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3559 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3560 MVT ExtVT = Op.getSimpleValueType(); 3561 // Only custom-lower extensions from fixed-length vector types. 3562 if (!ExtVT.isFixedLengthVector()) 3563 return Op; 3564 MVT VT = Op.getOperand(0).getSimpleValueType(); 3565 // Grab the canonical container type for the extended type. Infer the smaller 3566 // type from that to ensure the same number of vector elements, as we know 3567 // the LMUL will be sufficient to hold the smaller type. 3568 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3569 // Get the extended container type manually to ensure the same number of 3570 // vector elements between source and dest. 3571 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3572 ContainerExtVT.getVectorElementCount()); 3573 3574 SDValue Op1 = 3575 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3576 3577 SDLoc DL(Op); 3578 SDValue Mask, VL; 3579 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3580 3581 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3582 3583 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3584 } 3585 3586 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3587 // setcc operation: 3588 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3589 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3590 SelectionDAG &DAG) const { 3591 SDLoc DL(Op); 3592 EVT MaskVT = Op.getValueType(); 3593 // Only expect to custom-lower truncations to mask types 3594 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3595 "Unexpected type for vector mask lowering"); 3596 SDValue Src = Op.getOperand(0); 3597 MVT VecVT = Src.getSimpleValueType(); 3598 3599 // If this is a fixed vector, we need to convert it to a scalable vector. 3600 MVT ContainerVT = VecVT; 3601 if (VecVT.isFixedLengthVector()) { 3602 ContainerVT = getContainerForFixedLengthVector(VecVT); 3603 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3604 } 3605 3606 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3607 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3608 3609 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3610 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3611 3612 if (VecVT.isScalableVector()) { 3613 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3614 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3615 } 3616 3617 SDValue Mask, VL; 3618 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3619 3620 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3621 SDValue Trunc = 3622 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3623 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3624 DAG.getCondCode(ISD::SETNE), Mask, VL); 3625 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3626 } 3627 3628 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3629 // first position of a vector, and that vector is slid up to the insert index. 3630 // By limiting the active vector length to index+1 and merging with the 3631 // original vector (with an undisturbed tail policy for elements >= VL), we 3632 // achieve the desired result of leaving all elements untouched except the one 3633 // at VL-1, which is replaced with the desired value. 3634 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3635 SelectionDAG &DAG) const { 3636 SDLoc DL(Op); 3637 MVT VecVT = Op.getSimpleValueType(); 3638 SDValue Vec = Op.getOperand(0); 3639 SDValue Val = Op.getOperand(1); 3640 SDValue Idx = Op.getOperand(2); 3641 3642 if (VecVT.getVectorElementType() == MVT::i1) { 3643 // FIXME: For now we just promote to an i8 vector and insert into that, 3644 // but this is probably not optimal. 3645 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3646 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3647 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3648 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3649 } 3650 3651 MVT ContainerVT = VecVT; 3652 // If the operand is a fixed-length vector, convert to a scalable one. 3653 if (VecVT.isFixedLengthVector()) { 3654 ContainerVT = getContainerForFixedLengthVector(VecVT); 3655 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3656 } 3657 3658 MVT XLenVT = Subtarget.getXLenVT(); 3659 3660 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3661 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3662 // Even i64-element vectors on RV32 can be lowered without scalar 3663 // legalization if the most-significant 32 bits of the value are not affected 3664 // by the sign-extension of the lower 32 bits. 3665 // TODO: We could also catch sign extensions of a 32-bit value. 3666 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3667 const auto *CVal = cast<ConstantSDNode>(Val); 3668 if (isInt<32>(CVal->getSExtValue())) { 3669 IsLegalInsert = true; 3670 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3671 } 3672 } 3673 3674 SDValue Mask, VL; 3675 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3676 3677 SDValue ValInVec; 3678 3679 if (IsLegalInsert) { 3680 unsigned Opc = 3681 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3682 if (isNullConstant(Idx)) { 3683 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3684 if (!VecVT.isFixedLengthVector()) 3685 return Vec; 3686 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3687 } 3688 ValInVec = 3689 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3690 } else { 3691 // On RV32, i64-element vectors must be specially handled to place the 3692 // value at element 0, by using two vslide1up instructions in sequence on 3693 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3694 // this. 3695 SDValue One = DAG.getConstant(1, DL, XLenVT); 3696 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3697 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3698 MVT I32ContainerVT = 3699 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3700 SDValue I32Mask = 3701 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3702 // Limit the active VL to two. 3703 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3704 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3705 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3706 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3707 InsertI64VL); 3708 // First slide in the hi value, then the lo in underneath it. 3709 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3710 ValHi, I32Mask, InsertI64VL); 3711 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3712 ValLo, I32Mask, InsertI64VL); 3713 // Bitcast back to the right container type. 3714 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3715 } 3716 3717 // Now that the value is in a vector, slide it into position. 3718 SDValue InsertVL = 3719 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3720 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3721 ValInVec, Idx, Mask, InsertVL); 3722 if (!VecVT.isFixedLengthVector()) 3723 return Slideup; 3724 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3725 } 3726 3727 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3728 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3729 // types this is done using VMV_X_S to allow us to glean information about the 3730 // sign bits of the result. 3731 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3732 SelectionDAG &DAG) const { 3733 SDLoc DL(Op); 3734 SDValue Idx = Op.getOperand(1); 3735 SDValue Vec = Op.getOperand(0); 3736 EVT EltVT = Op.getValueType(); 3737 MVT VecVT = Vec.getSimpleValueType(); 3738 MVT XLenVT = Subtarget.getXLenVT(); 3739 3740 if (VecVT.getVectorElementType() == MVT::i1) { 3741 // FIXME: For now we just promote to an i8 vector and extract from that, 3742 // but this is probably not optimal. 3743 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3744 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3745 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3746 } 3747 3748 // If this is a fixed vector, we need to convert it to a scalable vector. 3749 MVT ContainerVT = VecVT; 3750 if (VecVT.isFixedLengthVector()) { 3751 ContainerVT = getContainerForFixedLengthVector(VecVT); 3752 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3753 } 3754 3755 // If the index is 0, the vector is already in the right position. 3756 if (!isNullConstant(Idx)) { 3757 // Use a VL of 1 to avoid processing more elements than we need. 3758 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3759 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3760 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3761 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3762 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3763 } 3764 3765 if (!EltVT.isInteger()) { 3766 // Floating-point extracts are handled in TableGen. 3767 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3768 DAG.getConstant(0, DL, XLenVT)); 3769 } 3770 3771 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3772 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3773 } 3774 3775 // Some RVV intrinsics may claim that they want an integer operand to be 3776 // promoted or expanded. 3777 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3778 const RISCVSubtarget &Subtarget) { 3779 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3780 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3781 "Unexpected opcode"); 3782 3783 if (!Subtarget.hasVInstructions()) 3784 return SDValue(); 3785 3786 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3787 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3788 SDLoc DL(Op); 3789 3790 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3791 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3792 if (!II || !II->SplatOperand) 3793 return SDValue(); 3794 3795 unsigned SplatOp = II->SplatOperand + HasChain; 3796 assert(SplatOp < Op.getNumOperands()); 3797 3798 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3799 SDValue &ScalarOp = Operands[SplatOp]; 3800 MVT OpVT = ScalarOp.getSimpleValueType(); 3801 MVT XLenVT = Subtarget.getXLenVT(); 3802 3803 // If this isn't a scalar, or its type is XLenVT we're done. 3804 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3805 return SDValue(); 3806 3807 // Simplest case is that the operand needs to be promoted to XLenVT. 3808 if (OpVT.bitsLT(XLenVT)) { 3809 // If the operand is a constant, sign extend to increase our chances 3810 // of being able to use a .vi instruction. ANY_EXTEND would become a 3811 // a zero extend and the simm5 check in isel would fail. 3812 // FIXME: Should we ignore the upper bits in isel instead? 3813 unsigned ExtOpc = 3814 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3815 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3816 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3817 } 3818 3819 // Use the previous operand to get the vXi64 VT. The result might be a mask 3820 // VT for compares. Using the previous operand assumes that the previous 3821 // operand will never have a smaller element size than a scalar operand and 3822 // that a widening operation never uses SEW=64. 3823 // NOTE: If this fails the below assert, we can probably just find the 3824 // element count from any operand or result and use it to construct the VT. 3825 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3826 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3827 3828 // The more complex case is when the scalar is larger than XLenVT. 3829 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3830 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3831 3832 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3833 // on the instruction to sign-extend since SEW>XLEN. 3834 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3835 if (isInt<32>(CVal->getSExtValue())) { 3836 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3837 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3838 } 3839 } 3840 3841 // We need to convert the scalar to a splat vector. 3842 // FIXME: Can we implicitly truncate the scalar if it is known to 3843 // be sign extended? 3844 // VL should be the last operand. 3845 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3846 assert(VL.getValueType() == XLenVT); 3847 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3848 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3849 } 3850 3851 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3852 SelectionDAG &DAG) const { 3853 unsigned IntNo = Op.getConstantOperandVal(0); 3854 SDLoc DL(Op); 3855 MVT XLenVT = Subtarget.getXLenVT(); 3856 3857 switch (IntNo) { 3858 default: 3859 break; // Don't custom lower most intrinsics. 3860 case Intrinsic::thread_pointer: { 3861 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3862 return DAG.getRegister(RISCV::X4, PtrVT); 3863 } 3864 case Intrinsic::riscv_orc_b: 3865 // Lower to the GORCI encoding for orc.b. 3866 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3867 DAG.getConstant(7, DL, XLenVT)); 3868 case Intrinsic::riscv_grev: 3869 case Intrinsic::riscv_gorc: { 3870 unsigned Opc = 3871 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3872 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3873 } 3874 case Intrinsic::riscv_shfl: 3875 case Intrinsic::riscv_unshfl: { 3876 unsigned Opc = 3877 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3878 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3879 } 3880 case Intrinsic::riscv_bcompress: 3881 case Intrinsic::riscv_bdecompress: { 3882 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3883 : RISCVISD::BDECOMPRESS; 3884 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3885 } 3886 case Intrinsic::riscv_vmv_x_s: 3887 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3888 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3889 Op.getOperand(1)); 3890 case Intrinsic::riscv_vmv_v_x: 3891 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3892 Op.getSimpleValueType(), DL, DAG, Subtarget); 3893 case Intrinsic::riscv_vfmv_v_f: 3894 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3895 Op.getOperand(1), Op.getOperand(2)); 3896 case Intrinsic::riscv_vmv_s_x: { 3897 SDValue Scalar = Op.getOperand(2); 3898 3899 if (Scalar.getValueType().bitsLE(XLenVT)) { 3900 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3901 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3902 Op.getOperand(1), Scalar, Op.getOperand(3)); 3903 } 3904 3905 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3906 3907 // This is an i64 value that lives in two scalar registers. We have to 3908 // insert this in a convoluted way. First we build vXi64 splat containing 3909 // the/ two values that we assemble using some bit math. Next we'll use 3910 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3911 // to merge element 0 from our splat into the source vector. 3912 // FIXME: This is probably not the best way to do this, but it is 3913 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3914 // point. 3915 // sw lo, (a0) 3916 // sw hi, 4(a0) 3917 // vlse vX, (a0) 3918 // 3919 // vid.v vVid 3920 // vmseq.vx mMask, vVid, 0 3921 // vmerge.vvm vDest, vSrc, vVal, mMask 3922 MVT VT = Op.getSimpleValueType(); 3923 SDValue Vec = Op.getOperand(1); 3924 SDValue VL = Op.getOperand(3); 3925 3926 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3927 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3928 DAG.getConstant(0, DL, MVT::i32), VL); 3929 3930 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3931 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3932 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3933 SDValue SelectCond = 3934 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3935 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3936 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3937 Vec, VL); 3938 } 3939 case Intrinsic::riscv_vslide1up: 3940 case Intrinsic::riscv_vslide1down: 3941 case Intrinsic::riscv_vslide1up_mask: 3942 case Intrinsic::riscv_vslide1down_mask: { 3943 // We need to special case these when the scalar is larger than XLen. 3944 unsigned NumOps = Op.getNumOperands(); 3945 bool IsMasked = NumOps == 7; 3946 unsigned OpOffset = IsMasked ? 1 : 0; 3947 SDValue Scalar = Op.getOperand(2 + OpOffset); 3948 if (Scalar.getValueType().bitsLE(XLenVT)) 3949 break; 3950 3951 // Splatting a sign extended constant is fine. 3952 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3953 if (isInt<32>(CVal->getSExtValue())) 3954 break; 3955 3956 MVT VT = Op.getSimpleValueType(); 3957 assert(VT.getVectorElementType() == MVT::i64 && 3958 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3959 3960 // Convert the vector source to the equivalent nxvXi32 vector. 3961 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3962 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3963 3964 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3965 DAG.getConstant(0, DL, XLenVT)); 3966 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3967 DAG.getConstant(1, DL, XLenVT)); 3968 3969 // Double the VL since we halved SEW. 3970 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3971 SDValue I32VL = 3972 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3973 3974 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3975 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3976 3977 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3978 // instructions. 3979 if (IntNo == Intrinsic::riscv_vslide1up || 3980 IntNo == Intrinsic::riscv_vslide1up_mask) { 3981 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3982 I32Mask, I32VL); 3983 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3984 I32Mask, I32VL); 3985 } else { 3986 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3987 I32Mask, I32VL); 3988 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3989 I32Mask, I32VL); 3990 } 3991 3992 // Convert back to nxvXi64. 3993 Vec = DAG.getBitcast(VT, Vec); 3994 3995 if (!IsMasked) 3996 return Vec; 3997 3998 // Apply mask after the operation. 3999 SDValue Mask = Op.getOperand(NumOps - 3); 4000 SDValue MaskedOff = Op.getOperand(1); 4001 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4002 } 4003 } 4004 4005 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4006 } 4007 4008 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4009 SelectionDAG &DAG) const { 4010 unsigned IntNo = Op.getConstantOperandVal(1); 4011 switch (IntNo) { 4012 default: 4013 break; 4014 case Intrinsic::riscv_masked_strided_load: { 4015 SDLoc DL(Op); 4016 MVT XLenVT = Subtarget.getXLenVT(); 4017 4018 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4019 // the selection of the masked intrinsics doesn't do this for us. 4020 SDValue Mask = Op.getOperand(5); 4021 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4022 4023 MVT VT = Op->getSimpleValueType(0); 4024 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4025 4026 SDValue PassThru = Op.getOperand(2); 4027 if (!IsUnmasked) { 4028 MVT MaskVT = 4029 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4030 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4031 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4032 } 4033 4034 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4035 4036 SDValue IntID = DAG.getTargetConstant( 4037 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4038 XLenVT); 4039 4040 auto *Load = cast<MemIntrinsicSDNode>(Op); 4041 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4042 if (!IsUnmasked) 4043 Ops.push_back(PassThru); 4044 Ops.push_back(Op.getOperand(3)); // Ptr 4045 Ops.push_back(Op.getOperand(4)); // Stride 4046 if (!IsUnmasked) 4047 Ops.push_back(Mask); 4048 Ops.push_back(VL); 4049 if (!IsUnmasked) { 4050 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4051 Ops.push_back(Policy); 4052 } 4053 4054 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4055 SDValue Result = 4056 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4057 Load->getMemoryVT(), Load->getMemOperand()); 4058 SDValue Chain = Result.getValue(1); 4059 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4060 return DAG.getMergeValues({Result, Chain}, DL); 4061 } 4062 } 4063 4064 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4065 } 4066 4067 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4068 SelectionDAG &DAG) const { 4069 unsigned IntNo = Op.getConstantOperandVal(1); 4070 switch (IntNo) { 4071 default: 4072 break; 4073 case Intrinsic::riscv_masked_strided_store: { 4074 SDLoc DL(Op); 4075 MVT XLenVT = Subtarget.getXLenVT(); 4076 4077 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4078 // the selection of the masked intrinsics doesn't do this for us. 4079 SDValue Mask = Op.getOperand(5); 4080 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4081 4082 SDValue Val = Op.getOperand(2); 4083 MVT VT = Val.getSimpleValueType(); 4084 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4085 4086 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4087 if (!IsUnmasked) { 4088 MVT MaskVT = 4089 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4090 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4091 } 4092 4093 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4094 4095 SDValue IntID = DAG.getTargetConstant( 4096 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4097 XLenVT); 4098 4099 auto *Store = cast<MemIntrinsicSDNode>(Op); 4100 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4101 Ops.push_back(Val); 4102 Ops.push_back(Op.getOperand(3)); // Ptr 4103 Ops.push_back(Op.getOperand(4)); // Stride 4104 if (!IsUnmasked) 4105 Ops.push_back(Mask); 4106 Ops.push_back(VL); 4107 4108 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4109 Ops, Store->getMemoryVT(), 4110 Store->getMemOperand()); 4111 } 4112 } 4113 4114 return SDValue(); 4115 } 4116 4117 static MVT getLMUL1VT(MVT VT) { 4118 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4119 "Unexpected vector MVT"); 4120 return MVT::getScalableVectorVT( 4121 VT.getVectorElementType(), 4122 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4123 } 4124 4125 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4126 switch (ISDOpcode) { 4127 default: 4128 llvm_unreachable("Unhandled reduction"); 4129 case ISD::VECREDUCE_ADD: 4130 return RISCVISD::VECREDUCE_ADD_VL; 4131 case ISD::VECREDUCE_UMAX: 4132 return RISCVISD::VECREDUCE_UMAX_VL; 4133 case ISD::VECREDUCE_SMAX: 4134 return RISCVISD::VECREDUCE_SMAX_VL; 4135 case ISD::VECREDUCE_UMIN: 4136 return RISCVISD::VECREDUCE_UMIN_VL; 4137 case ISD::VECREDUCE_SMIN: 4138 return RISCVISD::VECREDUCE_SMIN_VL; 4139 case ISD::VECREDUCE_AND: 4140 return RISCVISD::VECREDUCE_AND_VL; 4141 case ISD::VECREDUCE_OR: 4142 return RISCVISD::VECREDUCE_OR_VL; 4143 case ISD::VECREDUCE_XOR: 4144 return RISCVISD::VECREDUCE_XOR_VL; 4145 } 4146 } 4147 4148 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4149 SelectionDAG &DAG, 4150 bool IsVP) const { 4151 SDLoc DL(Op); 4152 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4153 MVT VecVT = Vec.getSimpleValueType(); 4154 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4155 Op.getOpcode() == ISD::VECREDUCE_OR || 4156 Op.getOpcode() == ISD::VECREDUCE_XOR || 4157 Op.getOpcode() == ISD::VP_REDUCE_AND || 4158 Op.getOpcode() == ISD::VP_REDUCE_OR || 4159 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4160 "Unexpected reduction lowering"); 4161 4162 MVT XLenVT = Subtarget.getXLenVT(); 4163 assert(Op.getValueType() == XLenVT && 4164 "Expected reduction output to be legalized to XLenVT"); 4165 4166 MVT ContainerVT = VecVT; 4167 if (VecVT.isFixedLengthVector()) { 4168 ContainerVT = getContainerForFixedLengthVector(VecVT); 4169 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4170 } 4171 4172 SDValue Mask, VL; 4173 if (IsVP) { 4174 Mask = Op.getOperand(2); 4175 VL = Op.getOperand(3); 4176 } else { 4177 std::tie(Mask, VL) = 4178 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4179 } 4180 4181 unsigned BaseOpc; 4182 ISD::CondCode CC; 4183 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4184 4185 switch (Op.getOpcode()) { 4186 default: 4187 llvm_unreachable("Unhandled reduction"); 4188 case ISD::VECREDUCE_AND: 4189 case ISD::VP_REDUCE_AND: { 4190 // vpopc ~x == 0 4191 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4192 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4193 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4194 CC = ISD::SETEQ; 4195 BaseOpc = ISD::AND; 4196 break; 4197 } 4198 case ISD::VECREDUCE_OR: 4199 case ISD::VP_REDUCE_OR: 4200 // vpopc x != 0 4201 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4202 CC = ISD::SETNE; 4203 BaseOpc = ISD::OR; 4204 break; 4205 case ISD::VECREDUCE_XOR: 4206 case ISD::VP_REDUCE_XOR: { 4207 // ((vpopc x) & 1) != 0 4208 SDValue One = DAG.getConstant(1, DL, XLenVT); 4209 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4210 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4211 CC = ISD::SETNE; 4212 BaseOpc = ISD::XOR; 4213 break; 4214 } 4215 } 4216 4217 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4218 4219 if (!IsVP) 4220 return SetCC; 4221 4222 // Now include the start value in the operation. 4223 // Note that we must return the start value when no elements are operated 4224 // upon. The vpopc instructions we've emitted in each case above will return 4225 // 0 for an inactive vector, and so we've already received the neutral value: 4226 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4227 // can simply include the start value. 4228 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4229 } 4230 4231 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4232 SelectionDAG &DAG) const { 4233 SDLoc DL(Op); 4234 SDValue Vec = Op.getOperand(0); 4235 EVT VecEVT = Vec.getValueType(); 4236 4237 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4238 4239 // Due to ordering in legalize types we may have a vector type that needs to 4240 // be split. Do that manually so we can get down to a legal type. 4241 while (getTypeAction(*DAG.getContext(), VecEVT) == 4242 TargetLowering::TypeSplitVector) { 4243 SDValue Lo, Hi; 4244 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4245 VecEVT = Lo.getValueType(); 4246 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4247 } 4248 4249 // TODO: The type may need to be widened rather than split. Or widened before 4250 // it can be split. 4251 if (!isTypeLegal(VecEVT)) 4252 return SDValue(); 4253 4254 MVT VecVT = VecEVT.getSimpleVT(); 4255 MVT VecEltVT = VecVT.getVectorElementType(); 4256 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4257 4258 MVT ContainerVT = VecVT; 4259 if (VecVT.isFixedLengthVector()) { 4260 ContainerVT = getContainerForFixedLengthVector(VecVT); 4261 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4262 } 4263 4264 MVT M1VT = getLMUL1VT(ContainerVT); 4265 4266 SDValue Mask, VL; 4267 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4268 4269 // FIXME: This is a VLMAX splat which might be too large and can prevent 4270 // vsetvli removal. 4271 SDValue NeutralElem = 4272 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4273 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4274 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4275 IdentitySplat, Mask, VL); 4276 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4277 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4278 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4279 } 4280 4281 // Given a reduction op, this function returns the matching reduction opcode, 4282 // the vector SDValue and the scalar SDValue required to lower this to a 4283 // RISCVISD node. 4284 static std::tuple<unsigned, SDValue, SDValue> 4285 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4286 SDLoc DL(Op); 4287 auto Flags = Op->getFlags(); 4288 unsigned Opcode = Op.getOpcode(); 4289 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4290 switch (Opcode) { 4291 default: 4292 llvm_unreachable("Unhandled reduction"); 4293 case ISD::VECREDUCE_FADD: 4294 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4295 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4296 case ISD::VECREDUCE_SEQ_FADD: 4297 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4298 Op.getOperand(0)); 4299 case ISD::VECREDUCE_FMIN: 4300 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4301 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4302 case ISD::VECREDUCE_FMAX: 4303 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4304 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4305 } 4306 } 4307 4308 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4309 SelectionDAG &DAG) const { 4310 SDLoc DL(Op); 4311 MVT VecEltVT = Op.getSimpleValueType(); 4312 4313 unsigned RVVOpcode; 4314 SDValue VectorVal, ScalarVal; 4315 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4316 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4317 MVT VecVT = VectorVal.getSimpleValueType(); 4318 4319 MVT ContainerVT = VecVT; 4320 if (VecVT.isFixedLengthVector()) { 4321 ContainerVT = getContainerForFixedLengthVector(VecVT); 4322 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4323 } 4324 4325 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4326 4327 SDValue Mask, VL; 4328 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4329 4330 // FIXME: This is a VLMAX splat which might be too large and can prevent 4331 // vsetvli removal. 4332 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4333 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4334 VectorVal, ScalarSplat, Mask, VL); 4335 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4336 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4337 } 4338 4339 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4340 switch (ISDOpcode) { 4341 default: 4342 llvm_unreachable("Unhandled reduction"); 4343 case ISD::VP_REDUCE_ADD: 4344 return RISCVISD::VECREDUCE_ADD_VL; 4345 case ISD::VP_REDUCE_UMAX: 4346 return RISCVISD::VECREDUCE_UMAX_VL; 4347 case ISD::VP_REDUCE_SMAX: 4348 return RISCVISD::VECREDUCE_SMAX_VL; 4349 case ISD::VP_REDUCE_UMIN: 4350 return RISCVISD::VECREDUCE_UMIN_VL; 4351 case ISD::VP_REDUCE_SMIN: 4352 return RISCVISD::VECREDUCE_SMIN_VL; 4353 case ISD::VP_REDUCE_AND: 4354 return RISCVISD::VECREDUCE_AND_VL; 4355 case ISD::VP_REDUCE_OR: 4356 return RISCVISD::VECREDUCE_OR_VL; 4357 case ISD::VP_REDUCE_XOR: 4358 return RISCVISD::VECREDUCE_XOR_VL; 4359 case ISD::VP_REDUCE_FADD: 4360 return RISCVISD::VECREDUCE_FADD_VL; 4361 case ISD::VP_REDUCE_SEQ_FADD: 4362 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4363 case ISD::VP_REDUCE_FMAX: 4364 return RISCVISD::VECREDUCE_FMAX_VL; 4365 case ISD::VP_REDUCE_FMIN: 4366 return RISCVISD::VECREDUCE_FMIN_VL; 4367 } 4368 } 4369 4370 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4371 SelectionDAG &DAG) const { 4372 SDLoc DL(Op); 4373 SDValue Vec = Op.getOperand(1); 4374 EVT VecEVT = Vec.getValueType(); 4375 4376 // TODO: The type may need to be widened rather than split. Or widened before 4377 // it can be split. 4378 if (!isTypeLegal(VecEVT)) 4379 return SDValue(); 4380 4381 MVT VecVT = VecEVT.getSimpleVT(); 4382 MVT VecEltVT = VecVT.getVectorElementType(); 4383 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4384 4385 MVT ContainerVT = VecVT; 4386 if (VecVT.isFixedLengthVector()) { 4387 ContainerVT = getContainerForFixedLengthVector(VecVT); 4388 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4389 } 4390 4391 SDValue VL = Op.getOperand(3); 4392 SDValue Mask = Op.getOperand(2); 4393 4394 MVT M1VT = getLMUL1VT(ContainerVT); 4395 MVT XLenVT = Subtarget.getXLenVT(); 4396 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4397 4398 // FIXME: This is a VLMAX splat which might be too large and can prevent 4399 // vsetvli removal. 4400 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4401 SDValue Reduction = 4402 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4403 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4404 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4405 if (!VecVT.isInteger()) 4406 return Elt0; 4407 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4408 } 4409 4410 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4411 SelectionDAG &DAG) const { 4412 SDValue Vec = Op.getOperand(0); 4413 SDValue SubVec = Op.getOperand(1); 4414 MVT VecVT = Vec.getSimpleValueType(); 4415 MVT SubVecVT = SubVec.getSimpleValueType(); 4416 4417 SDLoc DL(Op); 4418 MVT XLenVT = Subtarget.getXLenVT(); 4419 unsigned OrigIdx = Op.getConstantOperandVal(2); 4420 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4421 4422 // We don't have the ability to slide mask vectors up indexed by their i1 4423 // elements; the smallest we can do is i8. Often we are able to bitcast to 4424 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4425 // into a scalable one, we might not necessarily have enough scalable 4426 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4427 if (SubVecVT.getVectorElementType() == MVT::i1 && 4428 (OrigIdx != 0 || !Vec.isUndef())) { 4429 if (VecVT.getVectorMinNumElements() >= 8 && 4430 SubVecVT.getVectorMinNumElements() >= 8) { 4431 assert(OrigIdx % 8 == 0 && "Invalid index"); 4432 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4433 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4434 "Unexpected mask vector lowering"); 4435 OrigIdx /= 8; 4436 SubVecVT = 4437 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4438 SubVecVT.isScalableVector()); 4439 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4440 VecVT.isScalableVector()); 4441 Vec = DAG.getBitcast(VecVT, Vec); 4442 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4443 } else { 4444 // We can't slide this mask vector up indexed by its i1 elements. 4445 // This poses a problem when we wish to insert a scalable vector which 4446 // can't be re-expressed as a larger type. Just choose the slow path and 4447 // extend to a larger type, then truncate back down. 4448 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4449 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4450 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4451 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4452 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4453 Op.getOperand(2)); 4454 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4455 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4456 } 4457 } 4458 4459 // If the subvector vector is a fixed-length type, we cannot use subregister 4460 // manipulation to simplify the codegen; we don't know which register of a 4461 // LMUL group contains the specific subvector as we only know the minimum 4462 // register size. Therefore we must slide the vector group up the full 4463 // amount. 4464 if (SubVecVT.isFixedLengthVector()) { 4465 if (OrigIdx == 0 && Vec.isUndef()) 4466 return Op; 4467 MVT ContainerVT = VecVT; 4468 if (VecVT.isFixedLengthVector()) { 4469 ContainerVT = getContainerForFixedLengthVector(VecVT); 4470 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4471 } 4472 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4473 DAG.getUNDEF(ContainerVT), SubVec, 4474 DAG.getConstant(0, DL, XLenVT)); 4475 SDValue Mask = 4476 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4477 // Set the vector length to only the number of elements we care about. Note 4478 // that for slideup this includes the offset. 4479 SDValue VL = 4480 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4481 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4482 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4483 SubVec, SlideupAmt, Mask, VL); 4484 if (VecVT.isFixedLengthVector()) 4485 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4486 return DAG.getBitcast(Op.getValueType(), Slideup); 4487 } 4488 4489 unsigned SubRegIdx, RemIdx; 4490 std::tie(SubRegIdx, RemIdx) = 4491 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4492 VecVT, SubVecVT, OrigIdx, TRI); 4493 4494 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4495 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4496 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4497 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4498 4499 // 1. If the Idx has been completely eliminated and this subvector's size is 4500 // a vector register or a multiple thereof, or the surrounding elements are 4501 // undef, then this is a subvector insert which naturally aligns to a vector 4502 // register. These can easily be handled using subregister manipulation. 4503 // 2. If the subvector is smaller than a vector register, then the insertion 4504 // must preserve the undisturbed elements of the register. We do this by 4505 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4506 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4507 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4508 // LMUL=1 type back into the larger vector (resolving to another subregister 4509 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4510 // to avoid allocating a large register group to hold our subvector. 4511 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4512 return Op; 4513 4514 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4515 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4516 // (in our case undisturbed). This means we can set up a subvector insertion 4517 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4518 // size of the subvector. 4519 MVT InterSubVT = VecVT; 4520 SDValue AlignedExtract = Vec; 4521 unsigned AlignedIdx = OrigIdx - RemIdx; 4522 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4523 InterSubVT = getLMUL1VT(VecVT); 4524 // Extract a subvector equal to the nearest full vector register type. This 4525 // should resolve to a EXTRACT_SUBREG instruction. 4526 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4527 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4528 } 4529 4530 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4531 // For scalable vectors this must be further multiplied by vscale. 4532 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4533 4534 SDValue Mask, VL; 4535 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4536 4537 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4538 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4539 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4540 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4541 4542 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4543 DAG.getUNDEF(InterSubVT), SubVec, 4544 DAG.getConstant(0, DL, XLenVT)); 4545 4546 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4547 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4548 4549 // If required, insert this subvector back into the correct vector register. 4550 // This should resolve to an INSERT_SUBREG instruction. 4551 if (VecVT.bitsGT(InterSubVT)) 4552 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4553 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4554 4555 // We might have bitcast from a mask type: cast back to the original type if 4556 // required. 4557 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4558 } 4559 4560 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4561 SelectionDAG &DAG) const { 4562 SDValue Vec = Op.getOperand(0); 4563 MVT SubVecVT = Op.getSimpleValueType(); 4564 MVT VecVT = Vec.getSimpleValueType(); 4565 4566 SDLoc DL(Op); 4567 MVT XLenVT = Subtarget.getXLenVT(); 4568 unsigned OrigIdx = Op.getConstantOperandVal(1); 4569 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4570 4571 // We don't have the ability to slide mask vectors down indexed by their i1 4572 // elements; the smallest we can do is i8. Often we are able to bitcast to 4573 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4574 // from a scalable one, we might not necessarily have enough scalable 4575 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4576 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4577 if (VecVT.getVectorMinNumElements() >= 8 && 4578 SubVecVT.getVectorMinNumElements() >= 8) { 4579 assert(OrigIdx % 8 == 0 && "Invalid index"); 4580 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4581 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4582 "Unexpected mask vector lowering"); 4583 OrigIdx /= 8; 4584 SubVecVT = 4585 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4586 SubVecVT.isScalableVector()); 4587 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4588 VecVT.isScalableVector()); 4589 Vec = DAG.getBitcast(VecVT, Vec); 4590 } else { 4591 // We can't slide this mask vector down, indexed by its i1 elements. 4592 // This poses a problem when we wish to extract a scalable vector which 4593 // can't be re-expressed as a larger type. Just choose the slow path and 4594 // extend to a larger type, then truncate back down. 4595 // TODO: We could probably improve this when extracting certain fixed 4596 // from fixed, where we can extract as i8 and shift the correct element 4597 // right to reach the desired subvector? 4598 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4599 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4600 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4601 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4602 Op.getOperand(1)); 4603 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4604 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4605 } 4606 } 4607 4608 // If the subvector vector is a fixed-length type, we cannot use subregister 4609 // manipulation to simplify the codegen; we don't know which register of a 4610 // LMUL group contains the specific subvector as we only know the minimum 4611 // register size. Therefore we must slide the vector group down the full 4612 // amount. 4613 if (SubVecVT.isFixedLengthVector()) { 4614 // With an index of 0 this is a cast-like subvector, which can be performed 4615 // with subregister operations. 4616 if (OrigIdx == 0) 4617 return Op; 4618 MVT ContainerVT = VecVT; 4619 if (VecVT.isFixedLengthVector()) { 4620 ContainerVT = getContainerForFixedLengthVector(VecVT); 4621 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4622 } 4623 SDValue Mask = 4624 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4625 // Set the vector length to only the number of elements we care about. This 4626 // avoids sliding down elements we're going to discard straight away. 4627 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4628 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4629 SDValue Slidedown = 4630 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4631 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4632 // Now we can use a cast-like subvector extract to get the result. 4633 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4634 DAG.getConstant(0, DL, XLenVT)); 4635 return DAG.getBitcast(Op.getValueType(), Slidedown); 4636 } 4637 4638 unsigned SubRegIdx, RemIdx; 4639 std::tie(SubRegIdx, RemIdx) = 4640 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4641 VecVT, SubVecVT, OrigIdx, TRI); 4642 4643 // If the Idx has been completely eliminated then this is a subvector extract 4644 // which naturally aligns to a vector register. These can easily be handled 4645 // using subregister manipulation. 4646 if (RemIdx == 0) 4647 return Op; 4648 4649 // Else we must shift our vector register directly to extract the subvector. 4650 // Do this using VSLIDEDOWN. 4651 4652 // If the vector type is an LMUL-group type, extract a subvector equal to the 4653 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4654 // instruction. 4655 MVT InterSubVT = VecVT; 4656 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4657 InterSubVT = getLMUL1VT(VecVT); 4658 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4659 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4660 } 4661 4662 // Slide this vector register down by the desired number of elements in order 4663 // to place the desired subvector starting at element 0. 4664 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4665 // For scalable vectors this must be further multiplied by vscale. 4666 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4667 4668 SDValue Mask, VL; 4669 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4670 SDValue Slidedown = 4671 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4672 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4673 4674 // Now the vector is in the right position, extract our final subvector. This 4675 // should resolve to a COPY. 4676 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4677 DAG.getConstant(0, DL, XLenVT)); 4678 4679 // We might have bitcast from a mask type: cast back to the original type if 4680 // required. 4681 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4682 } 4683 4684 // Lower step_vector to the vid instruction. Any non-identity step value must 4685 // be accounted for my manual expansion. 4686 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4687 SelectionDAG &DAG) const { 4688 SDLoc DL(Op); 4689 MVT VT = Op.getSimpleValueType(); 4690 MVT XLenVT = Subtarget.getXLenVT(); 4691 SDValue Mask, VL; 4692 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4693 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4694 uint64_t StepValImm = Op.getConstantOperandVal(0); 4695 if (StepValImm != 1) { 4696 if (isPowerOf2_64(StepValImm)) { 4697 SDValue StepVal = 4698 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4699 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4700 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4701 } else { 4702 SDValue StepVal = lowerScalarSplat( 4703 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4704 DL, DAG, Subtarget); 4705 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4706 } 4707 } 4708 return StepVec; 4709 } 4710 4711 // Implement vector_reverse using vrgather.vv with indices determined by 4712 // subtracting the id of each element from (VLMAX-1). This will convert 4713 // the indices like so: 4714 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4715 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4716 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4717 SelectionDAG &DAG) const { 4718 SDLoc DL(Op); 4719 MVT VecVT = Op.getSimpleValueType(); 4720 unsigned EltSize = VecVT.getScalarSizeInBits(); 4721 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4722 4723 unsigned MaxVLMAX = 0; 4724 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4725 if (VectorBitsMax != 0) 4726 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4727 4728 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4729 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4730 4731 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4732 // to use vrgatherei16.vv. 4733 // TODO: It's also possible to use vrgatherei16.vv for other types to 4734 // decrease register width for the index calculation. 4735 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4736 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4737 // Reverse each half, then reassemble them in reverse order. 4738 // NOTE: It's also possible that after splitting that VLMAX no longer 4739 // requires vrgatherei16.vv. 4740 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4741 SDValue Lo, Hi; 4742 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4743 EVT LoVT, HiVT; 4744 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4745 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4746 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4747 // Reassemble the low and high pieces reversed. 4748 // FIXME: This is a CONCAT_VECTORS. 4749 SDValue Res = 4750 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4751 DAG.getIntPtrConstant(0, DL)); 4752 return DAG.getNode( 4753 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4754 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4755 } 4756 4757 // Just promote the int type to i16 which will double the LMUL. 4758 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4759 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4760 } 4761 4762 MVT XLenVT = Subtarget.getXLenVT(); 4763 SDValue Mask, VL; 4764 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4765 4766 // Calculate VLMAX-1 for the desired SEW. 4767 unsigned MinElts = VecVT.getVectorMinNumElements(); 4768 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4769 DAG.getConstant(MinElts, DL, XLenVT)); 4770 SDValue VLMinus1 = 4771 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4772 4773 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4774 bool IsRV32E64 = 4775 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4776 SDValue SplatVL; 4777 if (!IsRV32E64) 4778 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4779 else 4780 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4781 4782 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4783 SDValue Indices = 4784 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4785 4786 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4787 } 4788 4789 SDValue 4790 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4791 SelectionDAG &DAG) const { 4792 SDLoc DL(Op); 4793 auto *Load = cast<LoadSDNode>(Op); 4794 4795 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4796 Load->getMemoryVT(), 4797 *Load->getMemOperand()) && 4798 "Expecting a correctly-aligned load"); 4799 4800 MVT VT = Op.getSimpleValueType(); 4801 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4802 4803 SDValue VL = 4804 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4805 4806 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4807 SDValue NewLoad = DAG.getMemIntrinsicNode( 4808 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4809 Load->getMemoryVT(), Load->getMemOperand()); 4810 4811 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4812 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4813 } 4814 4815 SDValue 4816 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4817 SelectionDAG &DAG) const { 4818 SDLoc DL(Op); 4819 auto *Store = cast<StoreSDNode>(Op); 4820 4821 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4822 Store->getMemoryVT(), 4823 *Store->getMemOperand()) && 4824 "Expecting a correctly-aligned store"); 4825 4826 SDValue StoreVal = Store->getValue(); 4827 MVT VT = StoreVal.getSimpleValueType(); 4828 4829 // If the size less than a byte, we need to pad with zeros to make a byte. 4830 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4831 VT = MVT::v8i1; 4832 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4833 DAG.getConstant(0, DL, VT), StoreVal, 4834 DAG.getIntPtrConstant(0, DL)); 4835 } 4836 4837 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4838 4839 SDValue VL = 4840 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4841 4842 SDValue NewValue = 4843 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4844 return DAG.getMemIntrinsicNode( 4845 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4846 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4847 Store->getMemoryVT(), Store->getMemOperand()); 4848 } 4849 4850 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4851 SelectionDAG &DAG) const { 4852 SDLoc DL(Op); 4853 MVT VT = Op.getSimpleValueType(); 4854 4855 const auto *MemSD = cast<MemSDNode>(Op); 4856 EVT MemVT = MemSD->getMemoryVT(); 4857 MachineMemOperand *MMO = MemSD->getMemOperand(); 4858 SDValue Chain = MemSD->getChain(); 4859 SDValue BasePtr = MemSD->getBasePtr(); 4860 4861 SDValue Mask, PassThru, VL; 4862 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4863 Mask = VPLoad->getMask(); 4864 PassThru = DAG.getUNDEF(VT); 4865 VL = VPLoad->getVectorLength(); 4866 } else { 4867 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4868 Mask = MLoad->getMask(); 4869 PassThru = MLoad->getPassThru(); 4870 } 4871 4872 MVT XLenVT = Subtarget.getXLenVT(); 4873 4874 MVT ContainerVT = VT; 4875 if (VT.isFixedLengthVector()) { 4876 ContainerVT = getContainerForFixedLengthVector(VT); 4877 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4878 4879 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4880 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4881 } 4882 4883 if (!VL) 4884 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4885 4886 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4887 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4888 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4889 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy}; 4890 SDValue Result = 4891 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4892 Chain = Result.getValue(1); 4893 4894 if (VT.isFixedLengthVector()) 4895 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4896 4897 return DAG.getMergeValues({Result, Chain}, DL); 4898 } 4899 4900 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4901 SelectionDAG &DAG) const { 4902 SDLoc DL(Op); 4903 4904 const auto *MemSD = cast<MemSDNode>(Op); 4905 EVT MemVT = MemSD->getMemoryVT(); 4906 MachineMemOperand *MMO = MemSD->getMemOperand(); 4907 SDValue Chain = MemSD->getChain(); 4908 SDValue BasePtr = MemSD->getBasePtr(); 4909 SDValue Val, Mask, VL; 4910 4911 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4912 Val = VPStore->getValue(); 4913 Mask = VPStore->getMask(); 4914 VL = VPStore->getVectorLength(); 4915 } else { 4916 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4917 Val = MStore->getValue(); 4918 Mask = MStore->getMask(); 4919 } 4920 4921 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4922 4923 MVT VT = Val.getSimpleValueType(); 4924 MVT XLenVT = Subtarget.getXLenVT(); 4925 4926 MVT ContainerVT = VT; 4927 if (VT.isFixedLengthVector()) { 4928 ContainerVT = getContainerForFixedLengthVector(VT); 4929 4930 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4931 if (!IsUnmasked) { 4932 MVT MaskVT = 4933 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4934 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4935 } 4936 } 4937 4938 if (!VL) 4939 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4940 4941 unsigned IntID = 4942 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4943 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4944 Ops.push_back(Val); 4945 Ops.push_back(BasePtr); 4946 if (!IsUnmasked) 4947 Ops.push_back(Mask); 4948 Ops.push_back(VL); 4949 4950 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4951 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4952 } 4953 4954 SDValue 4955 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4956 SelectionDAG &DAG) const { 4957 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4958 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4959 4960 MVT VT = Op.getSimpleValueType(); 4961 4962 SDValue Op1 = 4963 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4964 SDValue Op2 = 4965 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4966 4967 SDLoc DL(Op); 4968 SDValue VL = 4969 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4970 4971 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4972 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4973 4974 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4975 Op.getOperand(2), Mask, VL); 4976 4977 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4978 } 4979 4980 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4981 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4982 MVT VT = Op.getSimpleValueType(); 4983 4984 if (VT.getVectorElementType() == MVT::i1) 4985 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4986 4987 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4988 } 4989 4990 SDValue 4991 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4992 SelectionDAG &DAG) const { 4993 unsigned Opc; 4994 switch (Op.getOpcode()) { 4995 default: llvm_unreachable("Unexpected opcode!"); 4996 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4997 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4998 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4999 } 5000 5001 return lowerToScalableOp(Op, DAG, Opc); 5002 } 5003 5004 // Lower vector ABS to smax(X, sub(0, X)). 5005 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5006 SDLoc DL(Op); 5007 MVT VT = Op.getSimpleValueType(); 5008 SDValue X = Op.getOperand(0); 5009 5010 assert(VT.isFixedLengthVector() && "Unexpected type"); 5011 5012 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5013 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5014 5015 SDValue Mask, VL; 5016 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5017 5018 SDValue SplatZero = 5019 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5020 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5021 SDValue NegX = 5022 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5023 SDValue Max = 5024 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5025 5026 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5027 } 5028 5029 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5030 SDValue Op, SelectionDAG &DAG) const { 5031 SDLoc DL(Op); 5032 MVT VT = Op.getSimpleValueType(); 5033 SDValue Mag = Op.getOperand(0); 5034 SDValue Sign = Op.getOperand(1); 5035 assert(Mag.getValueType() == Sign.getValueType() && 5036 "Can only handle COPYSIGN with matching types."); 5037 5038 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5039 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5040 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5041 5042 SDValue Mask, VL; 5043 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5044 5045 SDValue CopySign = 5046 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5047 5048 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5049 } 5050 5051 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5052 SDValue Op, SelectionDAG &DAG) const { 5053 MVT VT = Op.getSimpleValueType(); 5054 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5055 5056 MVT I1ContainerVT = 5057 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5058 5059 SDValue CC = 5060 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5061 SDValue Op1 = 5062 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5063 SDValue Op2 = 5064 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5065 5066 SDLoc DL(Op); 5067 SDValue Mask, VL; 5068 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5069 5070 SDValue Select = 5071 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5072 5073 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5074 } 5075 5076 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5077 unsigned NewOpc, 5078 bool HasMask) const { 5079 MVT VT = Op.getSimpleValueType(); 5080 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5081 5082 // Create list of operands by converting existing ones to scalable types. 5083 SmallVector<SDValue, 6> Ops; 5084 for (const SDValue &V : Op->op_values()) { 5085 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5086 5087 // Pass through non-vector operands. 5088 if (!V.getValueType().isVector()) { 5089 Ops.push_back(V); 5090 continue; 5091 } 5092 5093 // "cast" fixed length vector to a scalable vector. 5094 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5095 "Only fixed length vectors are supported!"); 5096 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5097 } 5098 5099 SDLoc DL(Op); 5100 SDValue Mask, VL; 5101 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5102 if (HasMask) 5103 Ops.push_back(Mask); 5104 Ops.push_back(VL); 5105 5106 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5107 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5108 } 5109 5110 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5111 // * Operands of each node are assumed to be in the same order. 5112 // * The EVL operand is promoted from i32 to i64 on RV64. 5113 // * Fixed-length vectors are converted to their scalable-vector container 5114 // types. 5115 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5116 unsigned RISCVISDOpc) const { 5117 SDLoc DL(Op); 5118 MVT VT = Op.getSimpleValueType(); 5119 SmallVector<SDValue, 4> Ops; 5120 5121 for (const auto &OpIdx : enumerate(Op->ops())) { 5122 SDValue V = OpIdx.value(); 5123 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5124 // Pass through operands which aren't fixed-length vectors. 5125 if (!V.getValueType().isFixedLengthVector()) { 5126 Ops.push_back(V); 5127 continue; 5128 } 5129 // "cast" fixed length vector to a scalable vector. 5130 MVT OpVT = V.getSimpleValueType(); 5131 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5132 assert(useRVVForFixedLengthVectorVT(OpVT) && 5133 "Only fixed length vectors are supported!"); 5134 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5135 } 5136 5137 if (!VT.isFixedLengthVector()) 5138 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5139 5140 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5141 5142 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5143 5144 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5145 } 5146 5147 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5148 // matched to a RVV indexed load. The RVV indexed load instructions only 5149 // support the "unsigned unscaled" addressing mode; indices are implicitly 5150 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5151 // signed or scaled indexing is extended to the XLEN value type and scaled 5152 // accordingly. 5153 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5154 SelectionDAG &DAG) const { 5155 SDLoc DL(Op); 5156 MVT VT = Op.getSimpleValueType(); 5157 5158 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5159 EVT MemVT = MemSD->getMemoryVT(); 5160 MachineMemOperand *MMO = MemSD->getMemOperand(); 5161 SDValue Chain = MemSD->getChain(); 5162 SDValue BasePtr = MemSD->getBasePtr(); 5163 5164 ISD::LoadExtType LoadExtType; 5165 SDValue Index, Mask, PassThru, VL; 5166 5167 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5168 Index = VPGN->getIndex(); 5169 Mask = VPGN->getMask(); 5170 PassThru = DAG.getUNDEF(VT); 5171 VL = VPGN->getVectorLength(); 5172 // VP doesn't support extending loads. 5173 LoadExtType = ISD::NON_EXTLOAD; 5174 } else { 5175 // Else it must be a MGATHER. 5176 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5177 Index = MGN->getIndex(); 5178 Mask = MGN->getMask(); 5179 PassThru = MGN->getPassThru(); 5180 LoadExtType = MGN->getExtensionType(); 5181 } 5182 5183 MVT IndexVT = Index.getSimpleValueType(); 5184 MVT XLenVT = Subtarget.getXLenVT(); 5185 5186 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5187 "Unexpected VTs!"); 5188 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5189 // Targets have to explicitly opt-in for extending vector loads. 5190 assert(LoadExtType == ISD::NON_EXTLOAD && 5191 "Unexpected extending MGATHER/VP_GATHER"); 5192 (void)LoadExtType; 5193 5194 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5195 // the selection of the masked intrinsics doesn't do this for us. 5196 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5197 5198 MVT ContainerVT = VT; 5199 if (VT.isFixedLengthVector()) { 5200 // We need to use the larger of the result and index type to determine the 5201 // scalable type to use so we don't increase LMUL for any operand/result. 5202 if (VT.bitsGE(IndexVT)) { 5203 ContainerVT = getContainerForFixedLengthVector(VT); 5204 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5205 ContainerVT.getVectorElementCount()); 5206 } else { 5207 IndexVT = getContainerForFixedLengthVector(IndexVT); 5208 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5209 IndexVT.getVectorElementCount()); 5210 } 5211 5212 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5213 5214 if (!IsUnmasked) { 5215 MVT MaskVT = 5216 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5217 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5218 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5219 } 5220 } 5221 5222 if (!VL) 5223 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5224 5225 unsigned IntID = 5226 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5227 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5228 if (!IsUnmasked) 5229 Ops.push_back(PassThru); 5230 Ops.push_back(BasePtr); 5231 Ops.push_back(Index); 5232 if (!IsUnmasked) 5233 Ops.push_back(Mask); 5234 Ops.push_back(VL); 5235 if (!IsUnmasked) 5236 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5237 5238 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5239 SDValue Result = 5240 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5241 Chain = Result.getValue(1); 5242 5243 if (VT.isFixedLengthVector()) 5244 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5245 5246 return DAG.getMergeValues({Result, Chain}, DL); 5247 } 5248 5249 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5250 // matched to a RVV indexed store. The RVV indexed store instructions only 5251 // support the "unsigned unscaled" addressing mode; indices are implicitly 5252 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5253 // signed or scaled indexing is extended to the XLEN value type and scaled 5254 // accordingly. 5255 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5256 SelectionDAG &DAG) const { 5257 SDLoc DL(Op); 5258 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5259 EVT MemVT = MemSD->getMemoryVT(); 5260 MachineMemOperand *MMO = MemSD->getMemOperand(); 5261 SDValue Chain = MemSD->getChain(); 5262 SDValue BasePtr = MemSD->getBasePtr(); 5263 5264 bool IsTruncatingStore = false; 5265 SDValue Index, Mask, Val, VL; 5266 5267 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5268 Index = VPSN->getIndex(); 5269 Mask = VPSN->getMask(); 5270 Val = VPSN->getValue(); 5271 VL = VPSN->getVectorLength(); 5272 // VP doesn't support truncating stores. 5273 IsTruncatingStore = false; 5274 } else { 5275 // Else it must be a MSCATTER. 5276 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5277 Index = MSN->getIndex(); 5278 Mask = MSN->getMask(); 5279 Val = MSN->getValue(); 5280 IsTruncatingStore = MSN->isTruncatingStore(); 5281 } 5282 5283 MVT VT = Val.getSimpleValueType(); 5284 MVT IndexVT = Index.getSimpleValueType(); 5285 MVT XLenVT = Subtarget.getXLenVT(); 5286 5287 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5288 "Unexpected VTs!"); 5289 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5290 // Targets have to explicitly opt-in for extending vector loads and 5291 // truncating vector stores. 5292 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5293 (void)IsTruncatingStore; 5294 5295 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5296 // the selection of the masked intrinsics doesn't do this for us. 5297 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5298 5299 MVT ContainerVT = VT; 5300 if (VT.isFixedLengthVector()) { 5301 // We need to use the larger of the value and index type to determine the 5302 // scalable type to use so we don't increase LMUL for any operand/result. 5303 if (VT.bitsGE(IndexVT)) { 5304 ContainerVT = getContainerForFixedLengthVector(VT); 5305 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5306 ContainerVT.getVectorElementCount()); 5307 } else { 5308 IndexVT = getContainerForFixedLengthVector(IndexVT); 5309 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5310 IndexVT.getVectorElementCount()); 5311 } 5312 5313 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5314 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5315 5316 if (!IsUnmasked) { 5317 MVT MaskVT = 5318 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5319 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5320 } 5321 } 5322 5323 if (!VL) 5324 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5325 5326 unsigned IntID = 5327 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5328 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5329 Ops.push_back(Val); 5330 Ops.push_back(BasePtr); 5331 Ops.push_back(Index); 5332 if (!IsUnmasked) 5333 Ops.push_back(Mask); 5334 Ops.push_back(VL); 5335 5336 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5337 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5338 } 5339 5340 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5341 SelectionDAG &DAG) const { 5342 const MVT XLenVT = Subtarget.getXLenVT(); 5343 SDLoc DL(Op); 5344 SDValue Chain = Op->getOperand(0); 5345 SDValue SysRegNo = DAG.getConstant( 5346 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5347 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5348 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5349 5350 // Encoding used for rounding mode in RISCV differs from that used in 5351 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5352 // table, which consists of a sequence of 4-bit fields, each representing 5353 // corresponding FLT_ROUNDS mode. 5354 static const int Table = 5355 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5356 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5357 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5358 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5359 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5360 5361 SDValue Shift = 5362 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5363 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5364 DAG.getConstant(Table, DL, XLenVT), Shift); 5365 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5366 DAG.getConstant(7, DL, XLenVT)); 5367 5368 return DAG.getMergeValues({Masked, Chain}, DL); 5369 } 5370 5371 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5372 SelectionDAG &DAG) const { 5373 const MVT XLenVT = Subtarget.getXLenVT(); 5374 SDLoc DL(Op); 5375 SDValue Chain = Op->getOperand(0); 5376 SDValue RMValue = Op->getOperand(1); 5377 SDValue SysRegNo = DAG.getConstant( 5378 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5379 5380 // Encoding used for rounding mode in RISCV differs from that used in 5381 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5382 // a table, which consists of a sequence of 4-bit fields, each representing 5383 // corresponding RISCV mode. 5384 static const unsigned Table = 5385 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5386 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5387 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5388 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5389 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5390 5391 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5392 DAG.getConstant(2, DL, XLenVT)); 5393 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5394 DAG.getConstant(Table, DL, XLenVT), Shift); 5395 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5396 DAG.getConstant(0x7, DL, XLenVT)); 5397 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5398 RMValue); 5399 } 5400 5401 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5402 // form of the given Opcode. 5403 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5404 switch (Opcode) { 5405 default: 5406 llvm_unreachable("Unexpected opcode"); 5407 case ISD::SHL: 5408 return RISCVISD::SLLW; 5409 case ISD::SRA: 5410 return RISCVISD::SRAW; 5411 case ISD::SRL: 5412 return RISCVISD::SRLW; 5413 case ISD::SDIV: 5414 return RISCVISD::DIVW; 5415 case ISD::UDIV: 5416 return RISCVISD::DIVUW; 5417 case ISD::UREM: 5418 return RISCVISD::REMUW; 5419 case ISD::ROTL: 5420 return RISCVISD::ROLW; 5421 case ISD::ROTR: 5422 return RISCVISD::RORW; 5423 case RISCVISD::GREV: 5424 return RISCVISD::GREVW; 5425 case RISCVISD::GORC: 5426 return RISCVISD::GORCW; 5427 } 5428 } 5429 5430 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5431 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5432 // otherwise be promoted to i64, making it difficult to select the 5433 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5434 // type i8/i16/i32 is lost. 5435 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5436 unsigned ExtOpc = ISD::ANY_EXTEND) { 5437 SDLoc DL(N); 5438 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5439 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5440 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5441 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5442 // ReplaceNodeResults requires we maintain the same type for the return value. 5443 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5444 } 5445 5446 // Converts the given 32-bit operation to a i64 operation with signed extension 5447 // semantic to reduce the signed extension instructions. 5448 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5449 SDLoc DL(N); 5450 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5451 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5452 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5453 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5454 DAG.getValueType(MVT::i32)); 5455 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5456 } 5457 5458 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5459 SmallVectorImpl<SDValue> &Results, 5460 SelectionDAG &DAG) const { 5461 SDLoc DL(N); 5462 switch (N->getOpcode()) { 5463 default: 5464 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5465 case ISD::STRICT_FP_TO_SINT: 5466 case ISD::STRICT_FP_TO_UINT: 5467 case ISD::FP_TO_SINT: 5468 case ISD::FP_TO_UINT: { 5469 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5470 "Unexpected custom legalisation"); 5471 bool IsStrict = N->isStrictFPOpcode(); 5472 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5473 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5474 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5475 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5476 TargetLowering::TypeSoftenFloat) { 5477 // FIXME: Support strict FP. 5478 if (IsStrict) 5479 return; 5480 if (!isTypeLegal(Op0.getValueType())) 5481 return; 5482 unsigned Opc = 5483 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5484 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5485 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5486 return; 5487 } 5488 // If the FP type needs to be softened, emit a library call using the 'si' 5489 // version. If we left it to default legalization we'd end up with 'di'. If 5490 // the FP type doesn't need to be softened just let generic type 5491 // legalization promote the result type. 5492 RTLIB::Libcall LC; 5493 if (IsSigned) 5494 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5495 else 5496 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5497 MakeLibCallOptions CallOptions; 5498 EVT OpVT = Op0.getValueType(); 5499 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5500 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5501 SDValue Result; 5502 std::tie(Result, Chain) = 5503 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5504 Results.push_back(Result); 5505 if (IsStrict) 5506 Results.push_back(Chain); 5507 break; 5508 } 5509 case ISD::READCYCLECOUNTER: { 5510 assert(!Subtarget.is64Bit() && 5511 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5512 5513 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5514 SDValue RCW = 5515 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5516 5517 Results.push_back( 5518 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5519 Results.push_back(RCW.getValue(2)); 5520 break; 5521 } 5522 case ISD::MUL: { 5523 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5524 unsigned XLen = Subtarget.getXLen(); 5525 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5526 if (Size > XLen) { 5527 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5528 SDValue LHS = N->getOperand(0); 5529 SDValue RHS = N->getOperand(1); 5530 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5531 5532 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5533 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5534 // We need exactly one side to be unsigned. 5535 if (LHSIsU == RHSIsU) 5536 return; 5537 5538 auto MakeMULPair = [&](SDValue S, SDValue U) { 5539 MVT XLenVT = Subtarget.getXLenVT(); 5540 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5541 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5542 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5543 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5544 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5545 }; 5546 5547 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5548 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5549 5550 // The other operand should be signed, but still prefer MULH when 5551 // possible. 5552 if (RHSIsU && LHSIsS && !RHSIsS) 5553 Results.push_back(MakeMULPair(LHS, RHS)); 5554 else if (LHSIsU && RHSIsS && !LHSIsS) 5555 Results.push_back(MakeMULPair(RHS, LHS)); 5556 5557 return; 5558 } 5559 LLVM_FALLTHROUGH; 5560 } 5561 case ISD::ADD: 5562 case ISD::SUB: 5563 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5564 "Unexpected custom legalisation"); 5565 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5566 break; 5567 case ISD::SHL: 5568 case ISD::SRA: 5569 case ISD::SRL: 5570 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5571 "Unexpected custom legalisation"); 5572 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5573 Results.push_back(customLegalizeToWOp(N, DAG)); 5574 break; 5575 } 5576 5577 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5578 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5579 // shift amount. 5580 if (N->getOpcode() == ISD::SHL) { 5581 SDLoc DL(N); 5582 SDValue NewOp0 = 5583 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5584 SDValue NewOp1 = 5585 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5586 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5587 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5588 DAG.getValueType(MVT::i32)); 5589 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5590 } 5591 5592 break; 5593 case ISD::ROTL: 5594 case ISD::ROTR: 5595 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5596 "Unexpected custom legalisation"); 5597 Results.push_back(customLegalizeToWOp(N, DAG)); 5598 break; 5599 case ISD::CTTZ: 5600 case ISD::CTTZ_ZERO_UNDEF: 5601 case ISD::CTLZ: 5602 case ISD::CTLZ_ZERO_UNDEF: { 5603 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5604 "Unexpected custom legalisation"); 5605 5606 SDValue NewOp0 = 5607 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5608 bool IsCTZ = 5609 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5610 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5611 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5612 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5613 return; 5614 } 5615 case ISD::SDIV: 5616 case ISD::UDIV: 5617 case ISD::UREM: { 5618 MVT VT = N->getSimpleValueType(0); 5619 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5620 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5621 "Unexpected custom legalisation"); 5622 // Don't promote division/remainder by constant since we should expand those 5623 // to multiply by magic constant. 5624 // FIXME: What if the expansion is disabled for minsize. 5625 if (N->getOperand(1).getOpcode() == ISD::Constant) 5626 return; 5627 5628 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5629 // the upper 32 bits. For other types we need to sign or zero extend 5630 // based on the opcode. 5631 unsigned ExtOpc = ISD::ANY_EXTEND; 5632 if (VT != MVT::i32) 5633 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5634 : ISD::ZERO_EXTEND; 5635 5636 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5637 break; 5638 } 5639 case ISD::UADDO: 5640 case ISD::USUBO: { 5641 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5642 "Unexpected custom legalisation"); 5643 bool IsAdd = N->getOpcode() == ISD::UADDO; 5644 // Create an ADDW or SUBW. 5645 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5646 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5647 SDValue Res = 5648 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5649 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5650 DAG.getValueType(MVT::i32)); 5651 5652 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5653 // Since the inputs are sign extended from i32, this is equivalent to 5654 // comparing the lower 32 bits. 5655 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5656 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5657 IsAdd ? ISD::SETULT : ISD::SETUGT); 5658 5659 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5660 Results.push_back(Overflow); 5661 return; 5662 } 5663 case ISD::UADDSAT: 5664 case ISD::USUBSAT: { 5665 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5666 "Unexpected custom legalisation"); 5667 if (Subtarget.hasStdExtZbb()) { 5668 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5669 // sign extend allows overflow of the lower 32 bits to be detected on 5670 // the promoted size. 5671 SDValue LHS = 5672 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5673 SDValue RHS = 5674 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5675 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5676 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5677 return; 5678 } 5679 5680 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5681 // promotion for UADDO/USUBO. 5682 Results.push_back(expandAddSubSat(N, DAG)); 5683 return; 5684 } 5685 case ISD::BITCAST: { 5686 EVT VT = N->getValueType(0); 5687 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5688 SDValue Op0 = N->getOperand(0); 5689 EVT Op0VT = Op0.getValueType(); 5690 MVT XLenVT = Subtarget.getXLenVT(); 5691 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5692 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5693 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5694 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5695 Subtarget.hasStdExtF()) { 5696 SDValue FPConv = 5697 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5698 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5699 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5700 isTypeLegal(Op0VT)) { 5701 // Custom-legalize bitcasts from fixed-length vector types to illegal 5702 // scalar types in order to improve codegen. Bitcast the vector to a 5703 // one-element vector type whose element type is the same as the result 5704 // type, and extract the first element. 5705 LLVMContext &Context = *DAG.getContext(); 5706 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5707 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5708 DAG.getConstant(0, DL, XLenVT))); 5709 } 5710 break; 5711 } 5712 case RISCVISD::GREV: 5713 case RISCVISD::GORC: { 5714 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5715 "Unexpected custom legalisation"); 5716 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5717 // This is similar to customLegalizeToWOp, except that we pass the second 5718 // operand (a TargetConstant) straight through: it is already of type 5719 // XLenVT. 5720 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5721 SDValue NewOp0 = 5722 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5723 SDValue NewOp1 = 5724 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5725 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5726 // ReplaceNodeResults requires we maintain the same type for the return 5727 // value. 5728 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5729 break; 5730 } 5731 case RISCVISD::SHFL: { 5732 // There is no SHFLIW instruction, but we can just promote the operation. 5733 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5734 "Unexpected custom legalisation"); 5735 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5736 SDValue NewOp0 = 5737 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5738 SDValue NewOp1 = 5739 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5740 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5741 // ReplaceNodeResults requires we maintain the same type for the return 5742 // value. 5743 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5744 break; 5745 } 5746 case ISD::BSWAP: 5747 case ISD::BITREVERSE: { 5748 MVT VT = N->getSimpleValueType(0); 5749 MVT XLenVT = Subtarget.getXLenVT(); 5750 assert((VT == MVT::i8 || VT == MVT::i16 || 5751 (VT == MVT::i32 && Subtarget.is64Bit())) && 5752 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5753 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5754 unsigned Imm = VT.getSizeInBits() - 1; 5755 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5756 if (N->getOpcode() == ISD::BSWAP) 5757 Imm &= ~0x7U; 5758 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5759 SDValue GREVI = 5760 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5761 // ReplaceNodeResults requires we maintain the same type for the return 5762 // value. 5763 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5764 break; 5765 } 5766 case ISD::FSHL: 5767 case ISD::FSHR: { 5768 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5769 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5770 SDValue NewOp0 = 5771 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5772 SDValue NewOp1 = 5773 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5774 SDValue NewOp2 = 5775 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5776 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5777 // Mask the shift amount to 5 bits. 5778 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5779 DAG.getConstant(0x1f, DL, MVT::i64)); 5780 unsigned Opc = 5781 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5782 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5783 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5784 break; 5785 } 5786 case ISD::EXTRACT_VECTOR_ELT: { 5787 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5788 // type is illegal (currently only vXi64 RV32). 5789 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5790 // transferred to the destination register. We issue two of these from the 5791 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5792 // first element. 5793 SDValue Vec = N->getOperand(0); 5794 SDValue Idx = N->getOperand(1); 5795 5796 // The vector type hasn't been legalized yet so we can't issue target 5797 // specific nodes if it needs legalization. 5798 // FIXME: We would manually legalize if it's important. 5799 if (!isTypeLegal(Vec.getValueType())) 5800 return; 5801 5802 MVT VecVT = Vec.getSimpleValueType(); 5803 5804 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5805 VecVT.getVectorElementType() == MVT::i64 && 5806 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5807 5808 // If this is a fixed vector, we need to convert it to a scalable vector. 5809 MVT ContainerVT = VecVT; 5810 if (VecVT.isFixedLengthVector()) { 5811 ContainerVT = getContainerForFixedLengthVector(VecVT); 5812 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5813 } 5814 5815 MVT XLenVT = Subtarget.getXLenVT(); 5816 5817 // Use a VL of 1 to avoid processing more elements than we need. 5818 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5819 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5820 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5821 5822 // Unless the index is known to be 0, we must slide the vector down to get 5823 // the desired element into index 0. 5824 if (!isNullConstant(Idx)) { 5825 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5826 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5827 } 5828 5829 // Extract the lower XLEN bits of the correct vector element. 5830 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5831 5832 // To extract the upper XLEN bits of the vector element, shift the first 5833 // element right by 32 bits and re-extract the lower XLEN bits. 5834 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5835 DAG.getConstant(32, DL, XLenVT), VL); 5836 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5837 ThirtyTwoV, Mask, VL); 5838 5839 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5840 5841 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5842 break; 5843 } 5844 case ISD::INTRINSIC_WO_CHAIN: { 5845 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5846 switch (IntNo) { 5847 default: 5848 llvm_unreachable( 5849 "Don't know how to custom type legalize this intrinsic!"); 5850 case Intrinsic::riscv_orc_b: { 5851 // Lower to the GORCI encoding for orc.b with the operand extended. 5852 SDValue NewOp = 5853 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5854 // If Zbp is enabled, use GORCIW which will sign extend the result. 5855 unsigned Opc = 5856 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5857 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5858 DAG.getConstant(7, DL, MVT::i64)); 5859 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5860 return; 5861 } 5862 case Intrinsic::riscv_grev: 5863 case Intrinsic::riscv_gorc: { 5864 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5865 "Unexpected custom legalisation"); 5866 SDValue NewOp1 = 5867 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5868 SDValue NewOp2 = 5869 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5870 unsigned Opc = 5871 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5872 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5873 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5874 break; 5875 } 5876 case Intrinsic::riscv_shfl: 5877 case Intrinsic::riscv_unshfl: { 5878 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5879 "Unexpected custom legalisation"); 5880 SDValue NewOp1 = 5881 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5882 SDValue NewOp2 = 5883 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5884 unsigned Opc = 5885 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5886 if (isa<ConstantSDNode>(N->getOperand(2))) { 5887 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5888 DAG.getConstant(0xf, DL, MVT::i64)); 5889 Opc = 5890 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5891 } 5892 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5893 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5894 break; 5895 } 5896 case Intrinsic::riscv_bcompress: 5897 case Intrinsic::riscv_bdecompress: { 5898 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5899 "Unexpected custom legalisation"); 5900 SDValue NewOp1 = 5901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5902 SDValue NewOp2 = 5903 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5904 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5905 ? RISCVISD::BCOMPRESSW 5906 : RISCVISD::BDECOMPRESSW; 5907 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5908 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5909 break; 5910 } 5911 case Intrinsic::riscv_vmv_x_s: { 5912 EVT VT = N->getValueType(0); 5913 MVT XLenVT = Subtarget.getXLenVT(); 5914 if (VT.bitsLT(XLenVT)) { 5915 // Simple case just extract using vmv.x.s and truncate. 5916 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5917 Subtarget.getXLenVT(), N->getOperand(1)); 5918 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5919 return; 5920 } 5921 5922 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5923 "Unexpected custom legalization"); 5924 5925 // We need to do the move in two steps. 5926 SDValue Vec = N->getOperand(1); 5927 MVT VecVT = Vec.getSimpleValueType(); 5928 5929 // First extract the lower XLEN bits of the element. 5930 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5931 5932 // To extract the upper XLEN bits of the vector element, shift the first 5933 // element right by 32 bits and re-extract the lower XLEN bits. 5934 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5935 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5936 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5937 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5938 DAG.getConstant(32, DL, XLenVT), VL); 5939 SDValue LShr32 = 5940 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5941 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5942 5943 Results.push_back( 5944 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5945 break; 5946 } 5947 } 5948 break; 5949 } 5950 case ISD::VECREDUCE_ADD: 5951 case ISD::VECREDUCE_AND: 5952 case ISD::VECREDUCE_OR: 5953 case ISD::VECREDUCE_XOR: 5954 case ISD::VECREDUCE_SMAX: 5955 case ISD::VECREDUCE_UMAX: 5956 case ISD::VECREDUCE_SMIN: 5957 case ISD::VECREDUCE_UMIN: 5958 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5959 Results.push_back(V); 5960 break; 5961 case ISD::VP_REDUCE_ADD: 5962 case ISD::VP_REDUCE_AND: 5963 case ISD::VP_REDUCE_OR: 5964 case ISD::VP_REDUCE_XOR: 5965 case ISD::VP_REDUCE_SMAX: 5966 case ISD::VP_REDUCE_UMAX: 5967 case ISD::VP_REDUCE_SMIN: 5968 case ISD::VP_REDUCE_UMIN: 5969 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5970 Results.push_back(V); 5971 break; 5972 case ISD::FLT_ROUNDS_: { 5973 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5974 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5975 Results.push_back(Res.getValue(0)); 5976 Results.push_back(Res.getValue(1)); 5977 break; 5978 } 5979 } 5980 } 5981 5982 // A structure to hold one of the bit-manipulation patterns below. Together, a 5983 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5984 // (or (and (shl x, 1), 0xAAAAAAAA), 5985 // (and (srl x, 1), 0x55555555)) 5986 struct RISCVBitmanipPat { 5987 SDValue Op; 5988 unsigned ShAmt; 5989 bool IsSHL; 5990 5991 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5992 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5993 } 5994 }; 5995 5996 // Matches patterns of the form 5997 // (and (shl x, C2), (C1 << C2)) 5998 // (and (srl x, C2), C1) 5999 // (shl (and x, C1), C2) 6000 // (srl (and x, (C1 << C2)), C2) 6001 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6002 // The expected masks for each shift amount are specified in BitmanipMasks where 6003 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6004 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6005 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6006 // XLen is 64. 6007 static Optional<RISCVBitmanipPat> 6008 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6009 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6010 "Unexpected number of masks"); 6011 Optional<uint64_t> Mask; 6012 // Optionally consume a mask around the shift operation. 6013 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6014 Mask = Op.getConstantOperandVal(1); 6015 Op = Op.getOperand(0); 6016 } 6017 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6018 return None; 6019 bool IsSHL = Op.getOpcode() == ISD::SHL; 6020 6021 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6022 return None; 6023 uint64_t ShAmt = Op.getConstantOperandVal(1); 6024 6025 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6026 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6027 return None; 6028 // If we don't have enough masks for 64 bit, then we must be trying to 6029 // match SHFL so we're only allowed to shift 1/4 of the width. 6030 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6031 return None; 6032 6033 SDValue Src = Op.getOperand(0); 6034 6035 // The expected mask is shifted left when the AND is found around SHL 6036 // patterns. 6037 // ((x >> 1) & 0x55555555) 6038 // ((x << 1) & 0xAAAAAAAA) 6039 bool SHLExpMask = IsSHL; 6040 6041 if (!Mask) { 6042 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6043 // the mask is all ones: consume that now. 6044 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6045 Mask = Src.getConstantOperandVal(1); 6046 Src = Src.getOperand(0); 6047 // The expected mask is now in fact shifted left for SRL, so reverse the 6048 // decision. 6049 // ((x & 0xAAAAAAAA) >> 1) 6050 // ((x & 0x55555555) << 1) 6051 SHLExpMask = !SHLExpMask; 6052 } else { 6053 // Use a default shifted mask of all-ones if there's no AND, truncated 6054 // down to the expected width. This simplifies the logic later on. 6055 Mask = maskTrailingOnes<uint64_t>(Width); 6056 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6057 } 6058 } 6059 6060 unsigned MaskIdx = Log2_32(ShAmt); 6061 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6062 6063 if (SHLExpMask) 6064 ExpMask <<= ShAmt; 6065 6066 if (Mask != ExpMask) 6067 return None; 6068 6069 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6070 } 6071 6072 // Matches any of the following bit-manipulation patterns: 6073 // (and (shl x, 1), (0x55555555 << 1)) 6074 // (and (srl x, 1), 0x55555555) 6075 // (shl (and x, 0x55555555), 1) 6076 // (srl (and x, (0x55555555 << 1)), 1) 6077 // where the shift amount and mask may vary thus: 6078 // [1] = 0x55555555 / 0xAAAAAAAA 6079 // [2] = 0x33333333 / 0xCCCCCCCC 6080 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6081 // [8] = 0x00FF00FF / 0xFF00FF00 6082 // [16] = 0x0000FFFF / 0xFFFFFFFF 6083 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6084 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6085 // These are the unshifted masks which we use to match bit-manipulation 6086 // patterns. They may be shifted left in certain circumstances. 6087 static const uint64_t BitmanipMasks[] = { 6088 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6089 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6090 6091 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6092 } 6093 6094 // Match the following pattern as a GREVI(W) operation 6095 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6096 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6097 const RISCVSubtarget &Subtarget) { 6098 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6099 EVT VT = Op.getValueType(); 6100 6101 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6102 auto LHS = matchGREVIPat(Op.getOperand(0)); 6103 auto RHS = matchGREVIPat(Op.getOperand(1)); 6104 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6105 SDLoc DL(Op); 6106 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6107 DAG.getConstant(LHS->ShAmt, DL, VT)); 6108 } 6109 } 6110 return SDValue(); 6111 } 6112 6113 // Matches any the following pattern as a GORCI(W) operation 6114 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6115 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6116 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6117 // Note that with the variant of 3., 6118 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6119 // the inner pattern will first be matched as GREVI and then the outer 6120 // pattern will be matched to GORC via the first rule above. 6121 // 4. (or (rotl/rotr x, bitwidth/2), x) 6122 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6123 const RISCVSubtarget &Subtarget) { 6124 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6125 EVT VT = Op.getValueType(); 6126 6127 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6128 SDLoc DL(Op); 6129 SDValue Op0 = Op.getOperand(0); 6130 SDValue Op1 = Op.getOperand(1); 6131 6132 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6133 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6134 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6135 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6136 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6137 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6138 if ((Reverse.getOpcode() == ISD::ROTL || 6139 Reverse.getOpcode() == ISD::ROTR) && 6140 Reverse.getOperand(0) == X && 6141 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6142 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6143 if (RotAmt == (VT.getSizeInBits() / 2)) 6144 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6145 DAG.getConstant(RotAmt, DL, VT)); 6146 } 6147 return SDValue(); 6148 }; 6149 6150 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6151 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6152 return V; 6153 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6154 return V; 6155 6156 // OR is commutable so canonicalize its OR operand to the left 6157 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6158 std::swap(Op0, Op1); 6159 if (Op0.getOpcode() != ISD::OR) 6160 return SDValue(); 6161 SDValue OrOp0 = Op0.getOperand(0); 6162 SDValue OrOp1 = Op0.getOperand(1); 6163 auto LHS = matchGREVIPat(OrOp0); 6164 // OR is commutable so swap the operands and try again: x might have been 6165 // on the left 6166 if (!LHS) { 6167 std::swap(OrOp0, OrOp1); 6168 LHS = matchGREVIPat(OrOp0); 6169 } 6170 auto RHS = matchGREVIPat(Op1); 6171 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6172 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6173 DAG.getConstant(LHS->ShAmt, DL, VT)); 6174 } 6175 } 6176 return SDValue(); 6177 } 6178 6179 // Matches any of the following bit-manipulation patterns: 6180 // (and (shl x, 1), (0x22222222 << 1)) 6181 // (and (srl x, 1), 0x22222222) 6182 // (shl (and x, 0x22222222), 1) 6183 // (srl (and x, (0x22222222 << 1)), 1) 6184 // where the shift amount and mask may vary thus: 6185 // [1] = 0x22222222 / 0x44444444 6186 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6187 // [4] = 0x00F000F0 / 0x0F000F00 6188 // [8] = 0x0000FF00 / 0x00FF0000 6189 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6190 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6191 // These are the unshifted masks which we use to match bit-manipulation 6192 // patterns. They may be shifted left in certain circumstances. 6193 static const uint64_t BitmanipMasks[] = { 6194 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6195 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6196 6197 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6198 } 6199 6200 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6201 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6202 const RISCVSubtarget &Subtarget) { 6203 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6204 EVT VT = Op.getValueType(); 6205 6206 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6207 return SDValue(); 6208 6209 SDValue Op0 = Op.getOperand(0); 6210 SDValue Op1 = Op.getOperand(1); 6211 6212 // Or is commutable so canonicalize the second OR to the LHS. 6213 if (Op0.getOpcode() != ISD::OR) 6214 std::swap(Op0, Op1); 6215 if (Op0.getOpcode() != ISD::OR) 6216 return SDValue(); 6217 6218 // We found an inner OR, so our operands are the operands of the inner OR 6219 // and the other operand of the outer OR. 6220 SDValue A = Op0.getOperand(0); 6221 SDValue B = Op0.getOperand(1); 6222 SDValue C = Op1; 6223 6224 auto Match1 = matchSHFLPat(A); 6225 auto Match2 = matchSHFLPat(B); 6226 6227 // If neither matched, we failed. 6228 if (!Match1 && !Match2) 6229 return SDValue(); 6230 6231 // We had at least one match. if one failed, try the remaining C operand. 6232 if (!Match1) { 6233 std::swap(A, C); 6234 Match1 = matchSHFLPat(A); 6235 if (!Match1) 6236 return SDValue(); 6237 } else if (!Match2) { 6238 std::swap(B, C); 6239 Match2 = matchSHFLPat(B); 6240 if (!Match2) 6241 return SDValue(); 6242 } 6243 assert(Match1 && Match2); 6244 6245 // Make sure our matches pair up. 6246 if (!Match1->formsPairWith(*Match2)) 6247 return SDValue(); 6248 6249 // All the remains is to make sure C is an AND with the same input, that masks 6250 // out the bits that are being shuffled. 6251 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6252 C.getOperand(0) != Match1->Op) 6253 return SDValue(); 6254 6255 uint64_t Mask = C.getConstantOperandVal(1); 6256 6257 static const uint64_t BitmanipMasks[] = { 6258 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6259 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6260 }; 6261 6262 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6263 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6264 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6265 6266 if (Mask != ExpMask) 6267 return SDValue(); 6268 6269 SDLoc DL(Op); 6270 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6271 DAG.getConstant(Match1->ShAmt, DL, VT)); 6272 } 6273 6274 // Optimize (add (shl x, c0), (shl y, c1)) -> 6275 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6276 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6277 const RISCVSubtarget &Subtarget) { 6278 // Perform this optimization only in the zba extension. 6279 if (!Subtarget.hasStdExtZba()) 6280 return SDValue(); 6281 6282 // Skip for vector types and larger types. 6283 EVT VT = N->getValueType(0); 6284 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6285 return SDValue(); 6286 6287 // The two operand nodes must be SHL and have no other use. 6288 SDValue N0 = N->getOperand(0); 6289 SDValue N1 = N->getOperand(1); 6290 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6291 !N0->hasOneUse() || !N1->hasOneUse()) 6292 return SDValue(); 6293 6294 // Check c0 and c1. 6295 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6296 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6297 if (!N0C || !N1C) 6298 return SDValue(); 6299 int64_t C0 = N0C->getSExtValue(); 6300 int64_t C1 = N1C->getSExtValue(); 6301 if (C0 <= 0 || C1 <= 0) 6302 return SDValue(); 6303 6304 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6305 int64_t Bits = std::min(C0, C1); 6306 int64_t Diff = std::abs(C0 - C1); 6307 if (Diff != 1 && Diff != 2 && Diff != 3) 6308 return SDValue(); 6309 6310 // Build nodes. 6311 SDLoc DL(N); 6312 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6313 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6314 SDValue NA0 = 6315 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6316 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6317 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6318 } 6319 6320 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6321 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6322 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6323 // not undo itself, but they are redundant. 6324 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6325 SDValue Src = N->getOperand(0); 6326 6327 if (Src.getOpcode() != N->getOpcode()) 6328 return SDValue(); 6329 6330 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6331 !isa<ConstantSDNode>(Src.getOperand(1))) 6332 return SDValue(); 6333 6334 unsigned ShAmt1 = N->getConstantOperandVal(1); 6335 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6336 Src = Src.getOperand(0); 6337 6338 unsigned CombinedShAmt; 6339 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6340 CombinedShAmt = ShAmt1 | ShAmt2; 6341 else 6342 CombinedShAmt = ShAmt1 ^ ShAmt2; 6343 6344 if (CombinedShAmt == 0) 6345 return Src; 6346 6347 SDLoc DL(N); 6348 return DAG.getNode( 6349 N->getOpcode(), DL, N->getValueType(0), Src, 6350 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6351 } 6352 6353 // Combine a constant select operand into its use: 6354 // 6355 // (and (select cond, -1, c), x) 6356 // -> (select cond, x, (and x, c)) [AllOnes=1] 6357 // (or (select cond, 0, c), x) 6358 // -> (select cond, x, (or x, c)) [AllOnes=0] 6359 // (xor (select cond, 0, c), x) 6360 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6361 // (add (select cond, 0, c), x) 6362 // -> (select cond, x, (add x, c)) [AllOnes=0] 6363 // (sub x, (select cond, 0, c)) 6364 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6365 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6366 SelectionDAG &DAG, bool AllOnes) { 6367 EVT VT = N->getValueType(0); 6368 6369 // Skip vectors. 6370 if (VT.isVector()) 6371 return SDValue(); 6372 6373 if ((Slct.getOpcode() != ISD::SELECT && 6374 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6375 !Slct.hasOneUse()) 6376 return SDValue(); 6377 6378 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6379 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6380 }; 6381 6382 bool SwapSelectOps; 6383 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6384 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6385 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6386 SDValue NonConstantVal; 6387 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6388 SwapSelectOps = false; 6389 NonConstantVal = FalseVal; 6390 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6391 SwapSelectOps = true; 6392 NonConstantVal = TrueVal; 6393 } else 6394 return SDValue(); 6395 6396 // Slct is now know to be the desired identity constant when CC is true. 6397 TrueVal = OtherOp; 6398 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6399 // Unless SwapSelectOps says the condition should be false. 6400 if (SwapSelectOps) 6401 std::swap(TrueVal, FalseVal); 6402 6403 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6404 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6405 {Slct.getOperand(0), Slct.getOperand(1), 6406 Slct.getOperand(2), TrueVal, FalseVal}); 6407 6408 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6409 {Slct.getOperand(0), TrueVal, FalseVal}); 6410 } 6411 6412 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6413 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6414 bool AllOnes) { 6415 SDValue N0 = N->getOperand(0); 6416 SDValue N1 = N->getOperand(1); 6417 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6418 return Result; 6419 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6420 return Result; 6421 return SDValue(); 6422 } 6423 6424 // Transform (add (mul x, c0), c1) -> 6425 // (add (mul (add x, c1/c0), c0), c1%c0). 6426 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6427 // Or transform (add (mul x, c0), c1) -> 6428 // (mul (add x, c1/c0), c0). 6429 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6430 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6431 const RISCVSubtarget &Subtarget) { 6432 // Skip for vector types and larger types. 6433 EVT VT = N->getValueType(0); 6434 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6435 return SDValue(); 6436 // The first operand node must be a MUL and has no other use. 6437 SDValue N0 = N->getOperand(0); 6438 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6439 return SDValue(); 6440 // Check if c0 and c1 match above conditions. 6441 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6442 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6443 if (!N0C || !N1C) 6444 return SDValue(); 6445 int64_t C0 = N0C->getSExtValue(); 6446 int64_t C1 = N1C->getSExtValue(); 6447 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6448 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6449 return SDValue(); 6450 // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed. 6451 if (isInt<12>(C0 * (C1 / C0))) 6452 return SDValue(); 6453 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6454 SDLoc DL(N); 6455 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6456 DAG.getConstant(C1 / C0, DL, VT)); 6457 SDValue New1 = 6458 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6459 if ((C1 % C0) == 0) 6460 return New1; 6461 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6462 } 6463 6464 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6465 const RISCVSubtarget &Subtarget) { 6466 // Transform (add (mul x, c0), c1) -> 6467 // (add (mul (add x, c1/c0), c0), c1%c0). 6468 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6469 // Or transform (add (mul x, c0), c1) -> 6470 // (mul (add x, c1/c0), c0). 6471 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6472 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6473 return V; 6474 // Fold (add (shl x, c0), (shl y, c1)) -> 6475 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6476 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6477 return V; 6478 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6479 // (select lhs, rhs, cc, x, (add x, y)) 6480 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6481 } 6482 6483 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6484 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6485 // (select lhs, rhs, cc, x, (sub x, y)) 6486 SDValue N0 = N->getOperand(0); 6487 SDValue N1 = N->getOperand(1); 6488 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6489 } 6490 6491 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6492 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6493 // (select lhs, rhs, cc, x, (and x, y)) 6494 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6495 } 6496 6497 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6498 const RISCVSubtarget &Subtarget) { 6499 if (Subtarget.hasStdExtZbp()) { 6500 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6501 return GREV; 6502 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6503 return GORC; 6504 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6505 return SHFL; 6506 } 6507 6508 // fold (or (select cond, 0, y), x) -> 6509 // (select cond, x, (or x, y)) 6510 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6511 } 6512 6513 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6514 // fold (xor (select cond, 0, y), x) -> 6515 // (select cond, x, (xor x, y)) 6516 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6517 } 6518 6519 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6520 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6521 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6522 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6523 // ADDW/SUBW/MULW. 6524 static SDValue performANY_EXTENDCombine(SDNode *N, 6525 TargetLowering::DAGCombinerInfo &DCI, 6526 const RISCVSubtarget &Subtarget) { 6527 if (!Subtarget.is64Bit()) 6528 return SDValue(); 6529 6530 SelectionDAG &DAG = DCI.DAG; 6531 6532 SDValue Src = N->getOperand(0); 6533 EVT VT = N->getValueType(0); 6534 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6535 return SDValue(); 6536 6537 // The opcode must be one that can implicitly sign_extend. 6538 // FIXME: Additional opcodes. 6539 switch (Src.getOpcode()) { 6540 default: 6541 return SDValue(); 6542 case ISD::MUL: 6543 if (!Subtarget.hasStdExtM()) 6544 return SDValue(); 6545 LLVM_FALLTHROUGH; 6546 case ISD::ADD: 6547 case ISD::SUB: 6548 break; 6549 } 6550 6551 // Only handle cases where the result is used by a CopyToReg. That likely 6552 // means the value is a liveout of the basic block. This helps prevent 6553 // infinite combine loops like PR51206. 6554 if (none_of(N->uses(), 6555 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6556 return SDValue(); 6557 6558 SmallVector<SDNode *, 4> SetCCs; 6559 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6560 UE = Src.getNode()->use_end(); 6561 UI != UE; ++UI) { 6562 SDNode *User = *UI; 6563 if (User == N) 6564 continue; 6565 if (UI.getUse().getResNo() != Src.getResNo()) 6566 continue; 6567 // All i32 setccs are legalized by sign extending operands. 6568 if (User->getOpcode() == ISD::SETCC) { 6569 SetCCs.push_back(User); 6570 continue; 6571 } 6572 // We don't know if we can extend this user. 6573 break; 6574 } 6575 6576 // If we don't have any SetCCs, this isn't worthwhile. 6577 if (SetCCs.empty()) 6578 return SDValue(); 6579 6580 SDLoc DL(N); 6581 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6582 DCI.CombineTo(N, SExt); 6583 6584 // Promote all the setccs. 6585 for (SDNode *SetCC : SetCCs) { 6586 SmallVector<SDValue, 4> Ops; 6587 6588 for (unsigned j = 0; j != 2; ++j) { 6589 SDValue SOp = SetCC->getOperand(j); 6590 if (SOp == Src) 6591 Ops.push_back(SExt); 6592 else 6593 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6594 } 6595 6596 Ops.push_back(SetCC->getOperand(2)); 6597 DCI.CombineTo(SetCC, 6598 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6599 } 6600 return SDValue(N, 0); 6601 } 6602 6603 // Try to form VWMUL or VWMULU. 6604 // FIXME: Support VWMULSU. 6605 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6606 SelectionDAG &DAG) { 6607 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6608 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6609 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6610 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6611 return SDValue(); 6612 6613 SDValue Mask = N->getOperand(2); 6614 SDValue VL = N->getOperand(3); 6615 6616 // Make sure the mask and VL match. 6617 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6618 return SDValue(); 6619 6620 MVT VT = N->getSimpleValueType(0); 6621 6622 // Determine the narrow size for a widening multiply. 6623 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6624 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6625 VT.getVectorElementCount()); 6626 6627 SDLoc DL(N); 6628 6629 // See if the other operand is the same opcode. 6630 if (Op0.getOpcode() == Op1.getOpcode()) { 6631 if (!Op1.hasOneUse()) 6632 return SDValue(); 6633 6634 // Make sure the mask and VL match. 6635 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6636 return SDValue(); 6637 6638 Op1 = Op1.getOperand(0); 6639 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6640 // The operand is a splat of a scalar. 6641 6642 // The VL must be the same. 6643 if (Op1.getOperand(1) != VL) 6644 return SDValue(); 6645 6646 // Get the scalar value. 6647 Op1 = Op1.getOperand(0); 6648 6649 // See if have enough sign bits or zero bits in the scalar to use a 6650 // widening multiply by splatting to smaller element size. 6651 unsigned EltBits = VT.getScalarSizeInBits(); 6652 unsigned ScalarBits = Op1.getValueSizeInBits(); 6653 // Make sure we're getting all element bits from the scalar register. 6654 // FIXME: Support implicit sign extension of vmv.v.x? 6655 if (ScalarBits < EltBits) 6656 return SDValue(); 6657 6658 if (IsSignExt) { 6659 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6660 return SDValue(); 6661 } else { 6662 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6663 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6664 return SDValue(); 6665 } 6666 6667 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6668 } else 6669 return SDValue(); 6670 6671 Op0 = Op0.getOperand(0); 6672 6673 // Re-introduce narrower extends if needed. 6674 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6675 if (Op0.getValueType() != NarrowVT) 6676 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6677 if (Op1.getValueType() != NarrowVT) 6678 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6679 6680 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6681 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6682 } 6683 6684 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6685 DAGCombinerInfo &DCI) const { 6686 SelectionDAG &DAG = DCI.DAG; 6687 6688 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6689 // bits are demanded. N will be added to the Worklist if it was not deleted. 6690 // Caller should return SDValue(N, 0) if this returns true. 6691 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6692 SDValue Op = N->getOperand(OpNo); 6693 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6694 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6695 return false; 6696 6697 if (N->getOpcode() != ISD::DELETED_NODE) 6698 DCI.AddToWorklist(N); 6699 return true; 6700 }; 6701 6702 switch (N->getOpcode()) { 6703 default: 6704 break; 6705 case RISCVISD::SplitF64: { 6706 SDValue Op0 = N->getOperand(0); 6707 // If the input to SplitF64 is just BuildPairF64 then the operation is 6708 // redundant. Instead, use BuildPairF64's operands directly. 6709 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6710 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6711 6712 SDLoc DL(N); 6713 6714 // It's cheaper to materialise two 32-bit integers than to load a double 6715 // from the constant pool and transfer it to integer registers through the 6716 // stack. 6717 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6718 APInt V = C->getValueAPF().bitcastToAPInt(); 6719 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6720 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6721 return DCI.CombineTo(N, Lo, Hi); 6722 } 6723 6724 // This is a target-specific version of a DAGCombine performed in 6725 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6726 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6727 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6728 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6729 !Op0.getNode()->hasOneUse()) 6730 break; 6731 SDValue NewSplitF64 = 6732 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6733 Op0.getOperand(0)); 6734 SDValue Lo = NewSplitF64.getValue(0); 6735 SDValue Hi = NewSplitF64.getValue(1); 6736 APInt SignBit = APInt::getSignMask(32); 6737 if (Op0.getOpcode() == ISD::FNEG) { 6738 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6739 DAG.getConstant(SignBit, DL, MVT::i32)); 6740 return DCI.CombineTo(N, Lo, NewHi); 6741 } 6742 assert(Op0.getOpcode() == ISD::FABS); 6743 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6744 DAG.getConstant(~SignBit, DL, MVT::i32)); 6745 return DCI.CombineTo(N, Lo, NewHi); 6746 } 6747 case RISCVISD::SLLW: 6748 case RISCVISD::SRAW: 6749 case RISCVISD::SRLW: 6750 case RISCVISD::ROLW: 6751 case RISCVISD::RORW: { 6752 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6753 if (SimplifyDemandedLowBitsHelper(0, 32) || 6754 SimplifyDemandedLowBitsHelper(1, 5)) 6755 return SDValue(N, 0); 6756 break; 6757 } 6758 case RISCVISD::CLZW: 6759 case RISCVISD::CTZW: { 6760 // Only the lower 32 bits of the first operand are read 6761 if (SimplifyDemandedLowBitsHelper(0, 32)) 6762 return SDValue(N, 0); 6763 break; 6764 } 6765 case RISCVISD::FSL: 6766 case RISCVISD::FSR: { 6767 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6768 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6769 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6770 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6771 return SDValue(N, 0); 6772 break; 6773 } 6774 case RISCVISD::FSLW: 6775 case RISCVISD::FSRW: { 6776 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6777 // read. 6778 if (SimplifyDemandedLowBitsHelper(0, 32) || 6779 SimplifyDemandedLowBitsHelper(1, 32) || 6780 SimplifyDemandedLowBitsHelper(2, 6)) 6781 return SDValue(N, 0); 6782 break; 6783 } 6784 case RISCVISD::GREV: 6785 case RISCVISD::GORC: { 6786 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6787 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6788 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6789 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6790 return SDValue(N, 0); 6791 6792 return combineGREVI_GORCI(N, DCI.DAG); 6793 } 6794 case RISCVISD::GREVW: 6795 case RISCVISD::GORCW: { 6796 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6797 if (SimplifyDemandedLowBitsHelper(0, 32) || 6798 SimplifyDemandedLowBitsHelper(1, 5)) 6799 return SDValue(N, 0); 6800 6801 return combineGREVI_GORCI(N, DCI.DAG); 6802 } 6803 case RISCVISD::SHFL: 6804 case RISCVISD::UNSHFL: { 6805 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6806 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6807 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6808 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6809 return SDValue(N, 0); 6810 6811 break; 6812 } 6813 case RISCVISD::SHFLW: 6814 case RISCVISD::UNSHFLW: { 6815 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6816 SDValue LHS = N->getOperand(0); 6817 SDValue RHS = N->getOperand(1); 6818 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6819 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6820 if (SimplifyDemandedLowBitsHelper(0, 32) || 6821 SimplifyDemandedLowBitsHelper(1, 4)) 6822 return SDValue(N, 0); 6823 6824 break; 6825 } 6826 case RISCVISD::BCOMPRESSW: 6827 case RISCVISD::BDECOMPRESSW: { 6828 // Only the lower 32 bits of LHS and RHS are read. 6829 if (SimplifyDemandedLowBitsHelper(0, 32) || 6830 SimplifyDemandedLowBitsHelper(1, 32)) 6831 return SDValue(N, 0); 6832 6833 break; 6834 } 6835 case RISCVISD::FMV_X_ANYEXTH: 6836 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6837 SDLoc DL(N); 6838 SDValue Op0 = N->getOperand(0); 6839 MVT VT = N->getSimpleValueType(0); 6840 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6841 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6842 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6843 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6844 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6845 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6846 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6847 assert(Op0.getOperand(0).getValueType() == VT && 6848 "Unexpected value type!"); 6849 return Op0.getOperand(0); 6850 } 6851 6852 // This is a target-specific version of a DAGCombine performed in 6853 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6854 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6855 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6856 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6857 !Op0.getNode()->hasOneUse()) 6858 break; 6859 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6860 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6861 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6862 if (Op0.getOpcode() == ISD::FNEG) 6863 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6864 DAG.getConstant(SignBit, DL, VT)); 6865 6866 assert(Op0.getOpcode() == ISD::FABS); 6867 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6868 DAG.getConstant(~SignBit, DL, VT)); 6869 } 6870 case ISD::ADD: 6871 return performADDCombine(N, DAG, Subtarget); 6872 case ISD::SUB: 6873 return performSUBCombine(N, DAG); 6874 case ISD::AND: 6875 return performANDCombine(N, DAG); 6876 case ISD::OR: 6877 return performORCombine(N, DAG, Subtarget); 6878 case ISD::XOR: 6879 return performXORCombine(N, DAG); 6880 case ISD::ANY_EXTEND: 6881 return performANY_EXTENDCombine(N, DCI, Subtarget); 6882 case ISD::ZERO_EXTEND: 6883 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6884 // type legalization. This is safe because fp_to_uint produces poison if 6885 // it overflows. 6886 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6887 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6888 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6889 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6890 N->getOperand(0).getOperand(0)); 6891 return SDValue(); 6892 case RISCVISD::SELECT_CC: { 6893 // Transform 6894 SDValue LHS = N->getOperand(0); 6895 SDValue RHS = N->getOperand(1); 6896 SDValue TrueV = N->getOperand(3); 6897 SDValue FalseV = N->getOperand(4); 6898 6899 // If the True and False values are the same, we don't need a select_cc. 6900 if (TrueV == FalseV) 6901 return TrueV; 6902 6903 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6904 if (!ISD::isIntEqualitySetCC(CCVal)) 6905 break; 6906 6907 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6908 // (select_cc X, Y, lt, trueV, falseV) 6909 // Sometimes the setcc is introduced after select_cc has been formed. 6910 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6911 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6912 // If we're looking for eq 0 instead of ne 0, we need to invert the 6913 // condition. 6914 bool Invert = CCVal == ISD::SETEQ; 6915 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6916 if (Invert) 6917 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6918 6919 SDLoc DL(N); 6920 RHS = LHS.getOperand(1); 6921 LHS = LHS.getOperand(0); 6922 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6923 6924 SDValue TargetCC = DAG.getCondCode(CCVal); 6925 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6926 {LHS, RHS, TargetCC, TrueV, FalseV}); 6927 } 6928 6929 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6930 // (select_cc X, Y, eq/ne, trueV, falseV) 6931 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6932 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6933 {LHS.getOperand(0), LHS.getOperand(1), 6934 N->getOperand(2), TrueV, FalseV}); 6935 // (select_cc X, 1, setne, trueV, falseV) -> 6936 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6937 // This can occur when legalizing some floating point comparisons. 6938 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6939 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6940 SDLoc DL(N); 6941 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6942 SDValue TargetCC = DAG.getCondCode(CCVal); 6943 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6944 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6945 {LHS, RHS, TargetCC, TrueV, FalseV}); 6946 } 6947 6948 break; 6949 } 6950 case RISCVISD::BR_CC: { 6951 SDValue LHS = N->getOperand(1); 6952 SDValue RHS = N->getOperand(2); 6953 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6954 if (!ISD::isIntEqualitySetCC(CCVal)) 6955 break; 6956 6957 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6958 // (br_cc X, Y, lt, dest) 6959 // Sometimes the setcc is introduced after br_cc has been formed. 6960 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6961 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6962 // If we're looking for eq 0 instead of ne 0, we need to invert the 6963 // condition. 6964 bool Invert = CCVal == ISD::SETEQ; 6965 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6966 if (Invert) 6967 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6968 6969 SDLoc DL(N); 6970 RHS = LHS.getOperand(1); 6971 LHS = LHS.getOperand(0); 6972 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6973 6974 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6975 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6976 N->getOperand(4)); 6977 } 6978 6979 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6980 // (br_cc X, Y, eq/ne, trueV, falseV) 6981 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6982 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6983 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6984 N->getOperand(3), N->getOperand(4)); 6985 6986 // (br_cc X, 1, setne, br_cc) -> 6987 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6988 // This can occur when legalizing some floating point comparisons. 6989 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6990 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6991 SDLoc DL(N); 6992 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6993 SDValue TargetCC = DAG.getCondCode(CCVal); 6994 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6995 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6996 N->getOperand(0), LHS, RHS, TargetCC, 6997 N->getOperand(4)); 6998 } 6999 break; 7000 } 7001 case ISD::FCOPYSIGN: { 7002 EVT VT = N->getValueType(0); 7003 if (!VT.isVector()) 7004 break; 7005 // There is a form of VFSGNJ which injects the negated sign of its second 7006 // operand. Try and bubble any FNEG up after the extend/round to produce 7007 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7008 // TRUNC=1. 7009 SDValue In2 = N->getOperand(1); 7010 // Avoid cases where the extend/round has multiple uses, as duplicating 7011 // those is typically more expensive than removing a fneg. 7012 if (!In2.hasOneUse()) 7013 break; 7014 if (In2.getOpcode() != ISD::FP_EXTEND && 7015 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7016 break; 7017 In2 = In2.getOperand(0); 7018 if (In2.getOpcode() != ISD::FNEG) 7019 break; 7020 SDLoc DL(N); 7021 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7022 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7023 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7024 } 7025 case ISD::MGATHER: 7026 case ISD::MSCATTER: 7027 case ISD::VP_GATHER: 7028 case ISD::VP_SCATTER: { 7029 if (!DCI.isBeforeLegalize()) 7030 break; 7031 SDValue Index, ScaleOp; 7032 bool IsIndexScaled = false; 7033 bool IsIndexSigned = false; 7034 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7035 Index = VPGSN->getIndex(); 7036 ScaleOp = VPGSN->getScale(); 7037 IsIndexScaled = VPGSN->isIndexScaled(); 7038 IsIndexSigned = VPGSN->isIndexSigned(); 7039 } else { 7040 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7041 Index = MGSN->getIndex(); 7042 ScaleOp = MGSN->getScale(); 7043 IsIndexScaled = MGSN->isIndexScaled(); 7044 IsIndexSigned = MGSN->isIndexSigned(); 7045 } 7046 EVT IndexVT = Index.getValueType(); 7047 MVT XLenVT = Subtarget.getXLenVT(); 7048 // RISCV indexed loads only support the "unsigned unscaled" addressing 7049 // mode, so anything else must be manually legalized. 7050 bool NeedsIdxLegalization = 7051 IsIndexScaled || 7052 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7053 if (!NeedsIdxLegalization) 7054 break; 7055 7056 SDLoc DL(N); 7057 7058 // Any index legalization should first promote to XLenVT, so we don't lose 7059 // bits when scaling. This may create an illegal index type so we let 7060 // LLVM's legalization take care of the splitting. 7061 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7062 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7063 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7064 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7065 DL, IndexVT, Index); 7066 } 7067 7068 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7069 if (IsIndexScaled && Scale != 1) { 7070 // Manually scale the indices by the element size. 7071 // TODO: Sanitize the scale operand here? 7072 // TODO: For VP nodes, should we use VP_SHL here? 7073 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7074 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7075 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7076 } 7077 7078 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7079 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7080 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7081 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7082 VPGN->getScale(), VPGN->getMask(), 7083 VPGN->getVectorLength()}, 7084 VPGN->getMemOperand(), NewIndexTy); 7085 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7086 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7087 {VPSN->getChain(), VPSN->getValue(), 7088 VPSN->getBasePtr(), Index, VPSN->getScale(), 7089 VPSN->getMask(), VPSN->getVectorLength()}, 7090 VPSN->getMemOperand(), NewIndexTy); 7091 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7092 return DAG.getMaskedGather( 7093 N->getVTList(), MGN->getMemoryVT(), DL, 7094 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7095 MGN->getBasePtr(), Index, MGN->getScale()}, 7096 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7097 const auto *MSN = cast<MaskedScatterSDNode>(N); 7098 return DAG.getMaskedScatter( 7099 N->getVTList(), MSN->getMemoryVT(), DL, 7100 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7101 Index, MSN->getScale()}, 7102 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7103 } 7104 case RISCVISD::SRA_VL: 7105 case RISCVISD::SRL_VL: 7106 case RISCVISD::SHL_VL: { 7107 SDValue ShAmt = N->getOperand(1); 7108 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7109 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7110 SDLoc DL(N); 7111 SDValue VL = N->getOperand(3); 7112 EVT VT = N->getValueType(0); 7113 ShAmt = 7114 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7115 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7116 N->getOperand(2), N->getOperand(3)); 7117 } 7118 break; 7119 } 7120 case ISD::SRA: 7121 case ISD::SRL: 7122 case ISD::SHL: { 7123 SDValue ShAmt = N->getOperand(1); 7124 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7125 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7126 SDLoc DL(N); 7127 EVT VT = N->getValueType(0); 7128 ShAmt = 7129 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7130 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7131 } 7132 break; 7133 } 7134 case RISCVISD::MUL_VL: { 7135 SDValue Op0 = N->getOperand(0); 7136 SDValue Op1 = N->getOperand(1); 7137 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7138 return V; 7139 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7140 return V; 7141 return SDValue(); 7142 } 7143 case ISD::STORE: { 7144 auto *Store = cast<StoreSDNode>(N); 7145 SDValue Val = Store->getValue(); 7146 // Combine store of vmv.x.s to vse with VL of 1. 7147 // FIXME: Support FP. 7148 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7149 SDValue Src = Val.getOperand(0); 7150 EVT VecVT = Src.getValueType(); 7151 EVT MemVT = Store->getMemoryVT(); 7152 // The memory VT and the element type must match. 7153 if (VecVT.getVectorElementType() == MemVT) { 7154 SDLoc DL(N); 7155 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7156 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7157 DAG.getConstant(1, DL, MaskVT), 7158 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7159 Store->getPointerInfo(), 7160 Store->getOriginalAlign(), 7161 Store->getMemOperand()->getFlags()); 7162 } 7163 } 7164 7165 break; 7166 } 7167 } 7168 7169 return SDValue(); 7170 } 7171 7172 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7173 const SDNode *N, CombineLevel Level) const { 7174 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7175 // materialised in fewer instructions than `(OP _, c1)`: 7176 // 7177 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7178 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7179 SDValue N0 = N->getOperand(0); 7180 EVT Ty = N0.getValueType(); 7181 if (Ty.isScalarInteger() && 7182 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7183 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7184 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7185 if (C1 && C2) { 7186 const APInt &C1Int = C1->getAPIntValue(); 7187 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7188 7189 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7190 // and the combine should happen, to potentially allow further combines 7191 // later. 7192 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7193 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7194 return true; 7195 7196 // We can materialise `c1` in an add immediate, so it's "free", and the 7197 // combine should be prevented. 7198 if (C1Int.getMinSignedBits() <= 64 && 7199 isLegalAddImmediate(C1Int.getSExtValue())) 7200 return false; 7201 7202 // Neither constant will fit into an immediate, so find materialisation 7203 // costs. 7204 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7205 Subtarget.getFeatureBits(), 7206 /*CompressionCost*/true); 7207 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7208 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7209 /*CompressionCost*/true); 7210 7211 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7212 // combine should be prevented. 7213 if (C1Cost < ShiftedC1Cost) 7214 return false; 7215 } 7216 } 7217 return true; 7218 } 7219 7220 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7221 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7222 TargetLoweringOpt &TLO) const { 7223 // Delay this optimization as late as possible. 7224 if (!TLO.LegalOps) 7225 return false; 7226 7227 EVT VT = Op.getValueType(); 7228 if (VT.isVector()) 7229 return false; 7230 7231 // Only handle AND for now. 7232 if (Op.getOpcode() != ISD::AND) 7233 return false; 7234 7235 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7236 if (!C) 7237 return false; 7238 7239 const APInt &Mask = C->getAPIntValue(); 7240 7241 // Clear all non-demanded bits initially. 7242 APInt ShrunkMask = Mask & DemandedBits; 7243 7244 // Try to make a smaller immediate by setting undemanded bits. 7245 7246 APInt ExpandedMask = Mask | ~DemandedBits; 7247 7248 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7249 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7250 }; 7251 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7252 if (NewMask == Mask) 7253 return true; 7254 SDLoc DL(Op); 7255 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7256 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7257 return TLO.CombineTo(Op, NewOp); 7258 }; 7259 7260 // If the shrunk mask fits in sign extended 12 bits, let the target 7261 // independent code apply it. 7262 if (ShrunkMask.isSignedIntN(12)) 7263 return false; 7264 7265 // Preserve (and X, 0xffff) when zext.h is supported. 7266 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7267 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7268 if (IsLegalMask(NewMask)) 7269 return UseMask(NewMask); 7270 } 7271 7272 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7273 if (VT == MVT::i64) { 7274 APInt NewMask = APInt(64, 0xffffffff); 7275 if (IsLegalMask(NewMask)) 7276 return UseMask(NewMask); 7277 } 7278 7279 // For the remaining optimizations, we need to be able to make a negative 7280 // number through a combination of mask and undemanded bits. 7281 if (!ExpandedMask.isNegative()) 7282 return false; 7283 7284 // What is the fewest number of bits we need to represent the negative number. 7285 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7286 7287 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7288 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7289 APInt NewMask = ShrunkMask; 7290 if (MinSignedBits <= 12) 7291 NewMask.setBitsFrom(11); 7292 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7293 NewMask.setBitsFrom(31); 7294 else 7295 return false; 7296 7297 // Sanity check that our new mask is a subset of the demanded mask. 7298 assert(IsLegalMask(NewMask)); 7299 return UseMask(NewMask); 7300 } 7301 7302 static void computeGREV(APInt &Src, unsigned ShAmt) { 7303 ShAmt &= Src.getBitWidth() - 1; 7304 uint64_t x = Src.getZExtValue(); 7305 if (ShAmt & 1) 7306 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7307 if (ShAmt & 2) 7308 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7309 if (ShAmt & 4) 7310 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7311 if (ShAmt & 8) 7312 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7313 if (ShAmt & 16) 7314 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7315 if (ShAmt & 32) 7316 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7317 Src = x; 7318 } 7319 7320 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7321 KnownBits &Known, 7322 const APInt &DemandedElts, 7323 const SelectionDAG &DAG, 7324 unsigned Depth) const { 7325 unsigned BitWidth = Known.getBitWidth(); 7326 unsigned Opc = Op.getOpcode(); 7327 assert((Opc >= ISD::BUILTIN_OP_END || 7328 Opc == ISD::INTRINSIC_WO_CHAIN || 7329 Opc == ISD::INTRINSIC_W_CHAIN || 7330 Opc == ISD::INTRINSIC_VOID) && 7331 "Should use MaskedValueIsZero if you don't know whether Op" 7332 " is a target node!"); 7333 7334 Known.resetAll(); 7335 switch (Opc) { 7336 default: break; 7337 case RISCVISD::SELECT_CC: { 7338 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7339 // If we don't know any bits, early out. 7340 if (Known.isUnknown()) 7341 break; 7342 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7343 7344 // Only known if known in both the LHS and RHS. 7345 Known = KnownBits::commonBits(Known, Known2); 7346 break; 7347 } 7348 case RISCVISD::REMUW: { 7349 KnownBits Known2; 7350 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7351 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7352 // We only care about the lower 32 bits. 7353 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7354 // Restore the original width by sign extending. 7355 Known = Known.sext(BitWidth); 7356 break; 7357 } 7358 case RISCVISD::DIVUW: { 7359 KnownBits Known2; 7360 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7361 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7362 // We only care about the lower 32 bits. 7363 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7364 // Restore the original width by sign extending. 7365 Known = Known.sext(BitWidth); 7366 break; 7367 } 7368 case RISCVISD::CTZW: { 7369 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7370 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7371 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7372 Known.Zero.setBitsFrom(LowBits); 7373 break; 7374 } 7375 case RISCVISD::CLZW: { 7376 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7377 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7378 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7379 Known.Zero.setBitsFrom(LowBits); 7380 break; 7381 } 7382 case RISCVISD::GREV: 7383 case RISCVISD::GREVW: { 7384 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7385 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7386 if (Opc == RISCVISD::GREVW) 7387 Known = Known.trunc(32); 7388 unsigned ShAmt = C->getZExtValue(); 7389 computeGREV(Known.Zero, ShAmt); 7390 computeGREV(Known.One, ShAmt); 7391 if (Opc == RISCVISD::GREVW) 7392 Known = Known.sext(BitWidth); 7393 } 7394 break; 7395 } 7396 case RISCVISD::READ_VLENB: 7397 // We assume VLENB is at least 16 bytes. 7398 Known.Zero.setLowBits(4); 7399 // We assume VLENB is no more than 65536 / 8 bytes. 7400 Known.Zero.setBitsFrom(14); 7401 break; 7402 case ISD::INTRINSIC_W_CHAIN: { 7403 unsigned IntNo = Op.getConstantOperandVal(1); 7404 switch (IntNo) { 7405 default: 7406 // We can't do anything for most intrinsics. 7407 break; 7408 case Intrinsic::riscv_vsetvli: 7409 case Intrinsic::riscv_vsetvlimax: 7410 // Assume that VL output is positive and would fit in an int32_t. 7411 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7412 if (BitWidth >= 32) 7413 Known.Zero.setBitsFrom(31); 7414 break; 7415 } 7416 break; 7417 } 7418 } 7419 } 7420 7421 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7422 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7423 unsigned Depth) const { 7424 switch (Op.getOpcode()) { 7425 default: 7426 break; 7427 case RISCVISD::SELECT_CC: { 7428 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7429 if (Tmp == 1) return 1; // Early out. 7430 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7431 return std::min(Tmp, Tmp2); 7432 } 7433 case RISCVISD::SLLW: 7434 case RISCVISD::SRAW: 7435 case RISCVISD::SRLW: 7436 case RISCVISD::DIVW: 7437 case RISCVISD::DIVUW: 7438 case RISCVISD::REMUW: 7439 case RISCVISD::ROLW: 7440 case RISCVISD::RORW: 7441 case RISCVISD::GREVW: 7442 case RISCVISD::GORCW: 7443 case RISCVISD::FSLW: 7444 case RISCVISD::FSRW: 7445 case RISCVISD::SHFLW: 7446 case RISCVISD::UNSHFLW: 7447 case RISCVISD::BCOMPRESSW: 7448 case RISCVISD::BDECOMPRESSW: 7449 case RISCVISD::FCVT_W_RTZ_RV64: 7450 case RISCVISD::FCVT_WU_RTZ_RV64: 7451 // TODO: As the result is sign-extended, this is conservatively correct. A 7452 // more precise answer could be calculated for SRAW depending on known 7453 // bits in the shift amount. 7454 return 33; 7455 case RISCVISD::SHFL: 7456 case RISCVISD::UNSHFL: { 7457 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7458 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7459 // will stay within the upper 32 bits. If there were more than 32 sign bits 7460 // before there will be at least 33 sign bits after. 7461 if (Op.getValueType() == MVT::i64 && 7462 isa<ConstantSDNode>(Op.getOperand(1)) && 7463 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7464 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7465 if (Tmp > 32) 7466 return 33; 7467 } 7468 break; 7469 } 7470 case RISCVISD::VMV_X_S: 7471 // The number of sign bits of the scalar result is computed by obtaining the 7472 // element type of the input vector operand, subtracting its width from the 7473 // XLEN, and then adding one (sign bit within the element type). If the 7474 // element type is wider than XLen, the least-significant XLEN bits are 7475 // taken. 7476 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7477 return 1; 7478 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7479 } 7480 7481 return 1; 7482 } 7483 7484 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7485 MachineBasicBlock *BB) { 7486 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7487 7488 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7489 // Should the count have wrapped while it was being read, we need to try 7490 // again. 7491 // ... 7492 // read: 7493 // rdcycleh x3 # load high word of cycle 7494 // rdcycle x2 # load low word of cycle 7495 // rdcycleh x4 # load high word of cycle 7496 // bne x3, x4, read # check if high word reads match, otherwise try again 7497 // ... 7498 7499 MachineFunction &MF = *BB->getParent(); 7500 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7501 MachineFunction::iterator It = ++BB->getIterator(); 7502 7503 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7504 MF.insert(It, LoopMBB); 7505 7506 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7507 MF.insert(It, DoneMBB); 7508 7509 // Transfer the remainder of BB and its successor edges to DoneMBB. 7510 DoneMBB->splice(DoneMBB->begin(), BB, 7511 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7512 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7513 7514 BB->addSuccessor(LoopMBB); 7515 7516 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7517 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7518 Register LoReg = MI.getOperand(0).getReg(); 7519 Register HiReg = MI.getOperand(1).getReg(); 7520 DebugLoc DL = MI.getDebugLoc(); 7521 7522 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7523 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7524 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7525 .addReg(RISCV::X0); 7526 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7527 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7528 .addReg(RISCV::X0); 7529 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7530 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7531 .addReg(RISCV::X0); 7532 7533 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7534 .addReg(HiReg) 7535 .addReg(ReadAgainReg) 7536 .addMBB(LoopMBB); 7537 7538 LoopMBB->addSuccessor(LoopMBB); 7539 LoopMBB->addSuccessor(DoneMBB); 7540 7541 MI.eraseFromParent(); 7542 7543 return DoneMBB; 7544 } 7545 7546 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7547 MachineBasicBlock *BB) { 7548 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7549 7550 MachineFunction &MF = *BB->getParent(); 7551 DebugLoc DL = MI.getDebugLoc(); 7552 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7553 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7554 Register LoReg = MI.getOperand(0).getReg(); 7555 Register HiReg = MI.getOperand(1).getReg(); 7556 Register SrcReg = MI.getOperand(2).getReg(); 7557 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7558 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7559 7560 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7561 RI); 7562 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7563 MachineMemOperand *MMOLo = 7564 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7565 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7566 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7567 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7568 .addFrameIndex(FI) 7569 .addImm(0) 7570 .addMemOperand(MMOLo); 7571 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7572 .addFrameIndex(FI) 7573 .addImm(4) 7574 .addMemOperand(MMOHi); 7575 MI.eraseFromParent(); // The pseudo instruction is gone now. 7576 return BB; 7577 } 7578 7579 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7580 MachineBasicBlock *BB) { 7581 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7582 "Unexpected instruction"); 7583 7584 MachineFunction &MF = *BB->getParent(); 7585 DebugLoc DL = MI.getDebugLoc(); 7586 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7587 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7588 Register DstReg = MI.getOperand(0).getReg(); 7589 Register LoReg = MI.getOperand(1).getReg(); 7590 Register HiReg = MI.getOperand(2).getReg(); 7591 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7592 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7593 7594 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7595 MachineMemOperand *MMOLo = 7596 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7597 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7598 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7599 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7600 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7601 .addFrameIndex(FI) 7602 .addImm(0) 7603 .addMemOperand(MMOLo); 7604 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7605 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7606 .addFrameIndex(FI) 7607 .addImm(4) 7608 .addMemOperand(MMOHi); 7609 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7610 MI.eraseFromParent(); // The pseudo instruction is gone now. 7611 return BB; 7612 } 7613 7614 static bool isSelectPseudo(MachineInstr &MI) { 7615 switch (MI.getOpcode()) { 7616 default: 7617 return false; 7618 case RISCV::Select_GPR_Using_CC_GPR: 7619 case RISCV::Select_FPR16_Using_CC_GPR: 7620 case RISCV::Select_FPR32_Using_CC_GPR: 7621 case RISCV::Select_FPR64_Using_CC_GPR: 7622 return true; 7623 } 7624 } 7625 7626 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7627 MachineBasicBlock *BB, 7628 const RISCVSubtarget &Subtarget) { 7629 // To "insert" Select_* instructions, we actually have to insert the triangle 7630 // control-flow pattern. The incoming instructions know the destination vreg 7631 // to set, the condition code register to branch on, the true/false values to 7632 // select between, and the condcode to use to select the appropriate branch. 7633 // 7634 // We produce the following control flow: 7635 // HeadMBB 7636 // | \ 7637 // | IfFalseMBB 7638 // | / 7639 // TailMBB 7640 // 7641 // When we find a sequence of selects we attempt to optimize their emission 7642 // by sharing the control flow. Currently we only handle cases where we have 7643 // multiple selects with the exact same condition (same LHS, RHS and CC). 7644 // The selects may be interleaved with other instructions if the other 7645 // instructions meet some requirements we deem safe: 7646 // - They are debug instructions. Otherwise, 7647 // - They do not have side-effects, do not access memory and their inputs do 7648 // not depend on the results of the select pseudo-instructions. 7649 // The TrueV/FalseV operands of the selects cannot depend on the result of 7650 // previous selects in the sequence. 7651 // These conditions could be further relaxed. See the X86 target for a 7652 // related approach and more information. 7653 Register LHS = MI.getOperand(1).getReg(); 7654 Register RHS = MI.getOperand(2).getReg(); 7655 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7656 7657 SmallVector<MachineInstr *, 4> SelectDebugValues; 7658 SmallSet<Register, 4> SelectDests; 7659 SelectDests.insert(MI.getOperand(0).getReg()); 7660 7661 MachineInstr *LastSelectPseudo = &MI; 7662 7663 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7664 SequenceMBBI != E; ++SequenceMBBI) { 7665 if (SequenceMBBI->isDebugInstr()) 7666 continue; 7667 else if (isSelectPseudo(*SequenceMBBI)) { 7668 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7669 SequenceMBBI->getOperand(2).getReg() != RHS || 7670 SequenceMBBI->getOperand(3).getImm() != CC || 7671 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7672 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7673 break; 7674 LastSelectPseudo = &*SequenceMBBI; 7675 SequenceMBBI->collectDebugValues(SelectDebugValues); 7676 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7677 } else { 7678 if (SequenceMBBI->hasUnmodeledSideEffects() || 7679 SequenceMBBI->mayLoadOrStore()) 7680 break; 7681 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7682 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7683 })) 7684 break; 7685 } 7686 } 7687 7688 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7689 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7690 DebugLoc DL = MI.getDebugLoc(); 7691 MachineFunction::iterator I = ++BB->getIterator(); 7692 7693 MachineBasicBlock *HeadMBB = BB; 7694 MachineFunction *F = BB->getParent(); 7695 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7696 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7697 7698 F->insert(I, IfFalseMBB); 7699 F->insert(I, TailMBB); 7700 7701 // Transfer debug instructions associated with the selects to TailMBB. 7702 for (MachineInstr *DebugInstr : SelectDebugValues) { 7703 TailMBB->push_back(DebugInstr->removeFromParent()); 7704 } 7705 7706 // Move all instructions after the sequence to TailMBB. 7707 TailMBB->splice(TailMBB->end(), HeadMBB, 7708 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7709 // Update machine-CFG edges by transferring all successors of the current 7710 // block to the new block which will contain the Phi nodes for the selects. 7711 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7712 // Set the successors for HeadMBB. 7713 HeadMBB->addSuccessor(IfFalseMBB); 7714 HeadMBB->addSuccessor(TailMBB); 7715 7716 // Insert appropriate branch. 7717 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7718 .addReg(LHS) 7719 .addReg(RHS) 7720 .addMBB(TailMBB); 7721 7722 // IfFalseMBB just falls through to TailMBB. 7723 IfFalseMBB->addSuccessor(TailMBB); 7724 7725 // Create PHIs for all of the select pseudo-instructions. 7726 auto SelectMBBI = MI.getIterator(); 7727 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7728 auto InsertionPoint = TailMBB->begin(); 7729 while (SelectMBBI != SelectEnd) { 7730 auto Next = std::next(SelectMBBI); 7731 if (isSelectPseudo(*SelectMBBI)) { 7732 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7733 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7734 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7735 .addReg(SelectMBBI->getOperand(4).getReg()) 7736 .addMBB(HeadMBB) 7737 .addReg(SelectMBBI->getOperand(5).getReg()) 7738 .addMBB(IfFalseMBB); 7739 SelectMBBI->eraseFromParent(); 7740 } 7741 SelectMBBI = Next; 7742 } 7743 7744 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7745 return TailMBB; 7746 } 7747 7748 MachineBasicBlock * 7749 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7750 MachineBasicBlock *BB) const { 7751 switch (MI.getOpcode()) { 7752 default: 7753 llvm_unreachable("Unexpected instr type to insert"); 7754 case RISCV::ReadCycleWide: 7755 assert(!Subtarget.is64Bit() && 7756 "ReadCycleWrite is only to be used on riscv32"); 7757 return emitReadCycleWidePseudo(MI, BB); 7758 case RISCV::Select_GPR_Using_CC_GPR: 7759 case RISCV::Select_FPR16_Using_CC_GPR: 7760 case RISCV::Select_FPR32_Using_CC_GPR: 7761 case RISCV::Select_FPR64_Using_CC_GPR: 7762 return emitSelectPseudo(MI, BB, Subtarget); 7763 case RISCV::BuildPairF64Pseudo: 7764 return emitBuildPairF64Pseudo(MI, BB); 7765 case RISCV::SplitF64Pseudo: 7766 return emitSplitF64Pseudo(MI, BB); 7767 } 7768 } 7769 7770 // Calling Convention Implementation. 7771 // The expectations for frontend ABI lowering vary from target to target. 7772 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7773 // details, but this is a longer term goal. For now, we simply try to keep the 7774 // role of the frontend as simple and well-defined as possible. The rules can 7775 // be summarised as: 7776 // * Never split up large scalar arguments. We handle them here. 7777 // * If a hardfloat calling convention is being used, and the struct may be 7778 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7779 // available, then pass as two separate arguments. If either the GPRs or FPRs 7780 // are exhausted, then pass according to the rule below. 7781 // * If a struct could never be passed in registers or directly in a stack 7782 // slot (as it is larger than 2*XLEN and the floating point rules don't 7783 // apply), then pass it using a pointer with the byval attribute. 7784 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7785 // word-sized array or a 2*XLEN scalar (depending on alignment). 7786 // * The frontend can determine whether a struct is returned by reference or 7787 // not based on its size and fields. If it will be returned by reference, the 7788 // frontend must modify the prototype so a pointer with the sret annotation is 7789 // passed as the first argument. This is not necessary for large scalar 7790 // returns. 7791 // * Struct return values and varargs should be coerced to structs containing 7792 // register-size fields in the same situations they would be for fixed 7793 // arguments. 7794 7795 static const MCPhysReg ArgGPRs[] = { 7796 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7797 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7798 }; 7799 static const MCPhysReg ArgFPR16s[] = { 7800 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7801 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7802 }; 7803 static const MCPhysReg ArgFPR32s[] = { 7804 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7805 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7806 }; 7807 static const MCPhysReg ArgFPR64s[] = { 7808 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7809 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7810 }; 7811 // This is an interim calling convention and it may be changed in the future. 7812 static const MCPhysReg ArgVRs[] = { 7813 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7814 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7815 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7816 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7817 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7818 RISCV::V20M2, RISCV::V22M2}; 7819 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7820 RISCV::V20M4}; 7821 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7822 7823 // Pass a 2*XLEN argument that has been split into two XLEN values through 7824 // registers or the stack as necessary. 7825 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7826 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7827 MVT ValVT2, MVT LocVT2, 7828 ISD::ArgFlagsTy ArgFlags2) { 7829 unsigned XLenInBytes = XLen / 8; 7830 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7831 // At least one half can be passed via register. 7832 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7833 VA1.getLocVT(), CCValAssign::Full)); 7834 } else { 7835 // Both halves must be passed on the stack, with proper alignment. 7836 Align StackAlign = 7837 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7838 State.addLoc( 7839 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7840 State.AllocateStack(XLenInBytes, StackAlign), 7841 VA1.getLocVT(), CCValAssign::Full)); 7842 State.addLoc(CCValAssign::getMem( 7843 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7844 LocVT2, CCValAssign::Full)); 7845 return false; 7846 } 7847 7848 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7849 // The second half can also be passed via register. 7850 State.addLoc( 7851 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7852 } else { 7853 // The second half is passed via the stack, without additional alignment. 7854 State.addLoc(CCValAssign::getMem( 7855 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7856 LocVT2, CCValAssign::Full)); 7857 } 7858 7859 return false; 7860 } 7861 7862 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7863 Optional<unsigned> FirstMaskArgument, 7864 CCState &State, const RISCVTargetLowering &TLI) { 7865 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7866 if (RC == &RISCV::VRRegClass) { 7867 // Assign the first mask argument to V0. 7868 // This is an interim calling convention and it may be changed in the 7869 // future. 7870 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7871 return State.AllocateReg(RISCV::V0); 7872 return State.AllocateReg(ArgVRs); 7873 } 7874 if (RC == &RISCV::VRM2RegClass) 7875 return State.AllocateReg(ArgVRM2s); 7876 if (RC == &RISCV::VRM4RegClass) 7877 return State.AllocateReg(ArgVRM4s); 7878 if (RC == &RISCV::VRM8RegClass) 7879 return State.AllocateReg(ArgVRM8s); 7880 llvm_unreachable("Unhandled register class for ValueType"); 7881 } 7882 7883 // Implements the RISC-V calling convention. Returns true upon failure. 7884 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7885 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7886 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7887 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7888 Optional<unsigned> FirstMaskArgument) { 7889 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7890 assert(XLen == 32 || XLen == 64); 7891 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7892 7893 // Any return value split in to more than two values can't be returned 7894 // directly. Vectors are returned via the available vector registers. 7895 if (!LocVT.isVector() && IsRet && ValNo > 1) 7896 return true; 7897 7898 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7899 // variadic argument, or if no F16/F32 argument registers are available. 7900 bool UseGPRForF16_F32 = true; 7901 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7902 // variadic argument, or if no F64 argument registers are available. 7903 bool UseGPRForF64 = true; 7904 7905 switch (ABI) { 7906 default: 7907 llvm_unreachable("Unexpected ABI"); 7908 case RISCVABI::ABI_ILP32: 7909 case RISCVABI::ABI_LP64: 7910 break; 7911 case RISCVABI::ABI_ILP32F: 7912 case RISCVABI::ABI_LP64F: 7913 UseGPRForF16_F32 = !IsFixed; 7914 break; 7915 case RISCVABI::ABI_ILP32D: 7916 case RISCVABI::ABI_LP64D: 7917 UseGPRForF16_F32 = !IsFixed; 7918 UseGPRForF64 = !IsFixed; 7919 break; 7920 } 7921 7922 // FPR16, FPR32, and FPR64 alias each other. 7923 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7924 UseGPRForF16_F32 = true; 7925 UseGPRForF64 = true; 7926 } 7927 7928 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7929 // similar local variables rather than directly checking against the target 7930 // ABI. 7931 7932 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7933 LocVT = XLenVT; 7934 LocInfo = CCValAssign::BCvt; 7935 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7936 LocVT = MVT::i64; 7937 LocInfo = CCValAssign::BCvt; 7938 } 7939 7940 // If this is a variadic argument, the RISC-V calling convention requires 7941 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7942 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7943 // be used regardless of whether the original argument was split during 7944 // legalisation or not. The argument will not be passed by registers if the 7945 // original type is larger than 2*XLEN, so the register alignment rule does 7946 // not apply. 7947 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7948 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7949 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7950 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7951 // Skip 'odd' register if necessary. 7952 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7953 State.AllocateReg(ArgGPRs); 7954 } 7955 7956 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7957 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7958 State.getPendingArgFlags(); 7959 7960 assert(PendingLocs.size() == PendingArgFlags.size() && 7961 "PendingLocs and PendingArgFlags out of sync"); 7962 7963 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7964 // registers are exhausted. 7965 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7966 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7967 "Can't lower f64 if it is split"); 7968 // Depending on available argument GPRS, f64 may be passed in a pair of 7969 // GPRs, split between a GPR and the stack, or passed completely on the 7970 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7971 // cases. 7972 Register Reg = State.AllocateReg(ArgGPRs); 7973 LocVT = MVT::i32; 7974 if (!Reg) { 7975 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7976 State.addLoc( 7977 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7978 return false; 7979 } 7980 if (!State.AllocateReg(ArgGPRs)) 7981 State.AllocateStack(4, Align(4)); 7982 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7983 return false; 7984 } 7985 7986 // Fixed-length vectors are located in the corresponding scalable-vector 7987 // container types. 7988 if (ValVT.isFixedLengthVector()) 7989 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7990 7991 // Split arguments might be passed indirectly, so keep track of the pending 7992 // values. Split vectors are passed via a mix of registers and indirectly, so 7993 // treat them as we would any other argument. 7994 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7995 LocVT = XLenVT; 7996 LocInfo = CCValAssign::Indirect; 7997 PendingLocs.push_back( 7998 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7999 PendingArgFlags.push_back(ArgFlags); 8000 if (!ArgFlags.isSplitEnd()) { 8001 return false; 8002 } 8003 } 8004 8005 // If the split argument only had two elements, it should be passed directly 8006 // in registers or on the stack. 8007 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8008 PendingLocs.size() <= 2) { 8009 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8010 // Apply the normal calling convention rules to the first half of the 8011 // split argument. 8012 CCValAssign VA = PendingLocs[0]; 8013 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8014 PendingLocs.clear(); 8015 PendingArgFlags.clear(); 8016 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8017 ArgFlags); 8018 } 8019 8020 // Allocate to a register if possible, or else a stack slot. 8021 Register Reg; 8022 unsigned StoreSizeBytes = XLen / 8; 8023 Align StackAlign = Align(XLen / 8); 8024 8025 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8026 Reg = State.AllocateReg(ArgFPR16s); 8027 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8028 Reg = State.AllocateReg(ArgFPR32s); 8029 else if (ValVT == MVT::f64 && !UseGPRForF64) 8030 Reg = State.AllocateReg(ArgFPR64s); 8031 else if (ValVT.isVector()) { 8032 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8033 if (!Reg) { 8034 // For return values, the vector must be passed fully via registers or 8035 // via the stack. 8036 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8037 // but we're using all of them. 8038 if (IsRet) 8039 return true; 8040 // Try using a GPR to pass the address 8041 if ((Reg = State.AllocateReg(ArgGPRs))) { 8042 LocVT = XLenVT; 8043 LocInfo = CCValAssign::Indirect; 8044 } else if (ValVT.isScalableVector()) { 8045 report_fatal_error("Unable to pass scalable vector types on the stack"); 8046 } else { 8047 // Pass fixed-length vectors on the stack. 8048 LocVT = ValVT; 8049 StoreSizeBytes = ValVT.getStoreSize(); 8050 // Align vectors to their element sizes, being careful for vXi1 8051 // vectors. 8052 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8053 } 8054 } 8055 } else { 8056 Reg = State.AllocateReg(ArgGPRs); 8057 } 8058 8059 unsigned StackOffset = 8060 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8061 8062 // If we reach this point and PendingLocs is non-empty, we must be at the 8063 // end of a split argument that must be passed indirectly. 8064 if (!PendingLocs.empty()) { 8065 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8066 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8067 8068 for (auto &It : PendingLocs) { 8069 if (Reg) 8070 It.convertToReg(Reg); 8071 else 8072 It.convertToMem(StackOffset); 8073 State.addLoc(It); 8074 } 8075 PendingLocs.clear(); 8076 PendingArgFlags.clear(); 8077 return false; 8078 } 8079 8080 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8081 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8082 "Expected an XLenVT or vector types at this stage"); 8083 8084 if (Reg) { 8085 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8086 return false; 8087 } 8088 8089 // When a floating-point value is passed on the stack, no bit-conversion is 8090 // needed. 8091 if (ValVT.isFloatingPoint()) { 8092 LocVT = ValVT; 8093 LocInfo = CCValAssign::Full; 8094 } 8095 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8096 return false; 8097 } 8098 8099 template <typename ArgTy> 8100 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8101 for (const auto &ArgIdx : enumerate(Args)) { 8102 MVT ArgVT = ArgIdx.value().VT; 8103 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8104 return ArgIdx.index(); 8105 } 8106 return None; 8107 } 8108 8109 void RISCVTargetLowering::analyzeInputArgs( 8110 MachineFunction &MF, CCState &CCInfo, 8111 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8112 RISCVCCAssignFn Fn) const { 8113 unsigned NumArgs = Ins.size(); 8114 FunctionType *FType = MF.getFunction().getFunctionType(); 8115 8116 Optional<unsigned> FirstMaskArgument; 8117 if (Subtarget.hasVInstructions()) 8118 FirstMaskArgument = preAssignMask(Ins); 8119 8120 for (unsigned i = 0; i != NumArgs; ++i) { 8121 MVT ArgVT = Ins[i].VT; 8122 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8123 8124 Type *ArgTy = nullptr; 8125 if (IsRet) 8126 ArgTy = FType->getReturnType(); 8127 else if (Ins[i].isOrigArg()) 8128 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8129 8130 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8131 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8132 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8133 FirstMaskArgument)) { 8134 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8135 << EVT(ArgVT).getEVTString() << '\n'); 8136 llvm_unreachable(nullptr); 8137 } 8138 } 8139 } 8140 8141 void RISCVTargetLowering::analyzeOutputArgs( 8142 MachineFunction &MF, CCState &CCInfo, 8143 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8144 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8145 unsigned NumArgs = Outs.size(); 8146 8147 Optional<unsigned> FirstMaskArgument; 8148 if (Subtarget.hasVInstructions()) 8149 FirstMaskArgument = preAssignMask(Outs); 8150 8151 for (unsigned i = 0; i != NumArgs; i++) { 8152 MVT ArgVT = Outs[i].VT; 8153 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8154 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8155 8156 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8157 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8158 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8159 FirstMaskArgument)) { 8160 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8161 << EVT(ArgVT).getEVTString() << "\n"); 8162 llvm_unreachable(nullptr); 8163 } 8164 } 8165 } 8166 8167 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8168 // values. 8169 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8170 const CCValAssign &VA, const SDLoc &DL, 8171 const RISCVSubtarget &Subtarget) { 8172 switch (VA.getLocInfo()) { 8173 default: 8174 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8175 case CCValAssign::Full: 8176 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8177 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8178 break; 8179 case CCValAssign::BCvt: 8180 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8181 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8182 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8183 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8184 else 8185 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8186 break; 8187 } 8188 return Val; 8189 } 8190 8191 // The caller is responsible for loading the full value if the argument is 8192 // passed with CCValAssign::Indirect. 8193 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8194 const CCValAssign &VA, const SDLoc &DL, 8195 const RISCVTargetLowering &TLI) { 8196 MachineFunction &MF = DAG.getMachineFunction(); 8197 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8198 EVT LocVT = VA.getLocVT(); 8199 SDValue Val; 8200 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8201 Register VReg = RegInfo.createVirtualRegister(RC); 8202 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8203 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8204 8205 if (VA.getLocInfo() == CCValAssign::Indirect) 8206 return Val; 8207 8208 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8209 } 8210 8211 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8212 const CCValAssign &VA, const SDLoc &DL, 8213 const RISCVSubtarget &Subtarget) { 8214 EVT LocVT = VA.getLocVT(); 8215 8216 switch (VA.getLocInfo()) { 8217 default: 8218 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8219 case CCValAssign::Full: 8220 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8221 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8222 break; 8223 case CCValAssign::BCvt: 8224 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8225 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8226 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8227 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8228 else 8229 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8230 break; 8231 } 8232 return Val; 8233 } 8234 8235 // The caller is responsible for loading the full value if the argument is 8236 // passed with CCValAssign::Indirect. 8237 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8238 const CCValAssign &VA, const SDLoc &DL) { 8239 MachineFunction &MF = DAG.getMachineFunction(); 8240 MachineFrameInfo &MFI = MF.getFrameInfo(); 8241 EVT LocVT = VA.getLocVT(); 8242 EVT ValVT = VA.getValVT(); 8243 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8244 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8245 /*Immutable=*/true); 8246 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8247 SDValue Val; 8248 8249 ISD::LoadExtType ExtType; 8250 switch (VA.getLocInfo()) { 8251 default: 8252 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8253 case CCValAssign::Full: 8254 case CCValAssign::Indirect: 8255 case CCValAssign::BCvt: 8256 ExtType = ISD::NON_EXTLOAD; 8257 break; 8258 } 8259 Val = DAG.getExtLoad( 8260 ExtType, DL, LocVT, Chain, FIN, 8261 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8262 return Val; 8263 } 8264 8265 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8266 const CCValAssign &VA, const SDLoc &DL) { 8267 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8268 "Unexpected VA"); 8269 MachineFunction &MF = DAG.getMachineFunction(); 8270 MachineFrameInfo &MFI = MF.getFrameInfo(); 8271 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8272 8273 if (VA.isMemLoc()) { 8274 // f64 is passed on the stack. 8275 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8276 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8277 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8278 MachinePointerInfo::getFixedStack(MF, FI)); 8279 } 8280 8281 assert(VA.isRegLoc() && "Expected register VA assignment"); 8282 8283 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8284 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8285 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8286 SDValue Hi; 8287 if (VA.getLocReg() == RISCV::X17) { 8288 // Second half of f64 is passed on the stack. 8289 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8290 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8291 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8292 MachinePointerInfo::getFixedStack(MF, FI)); 8293 } else { 8294 // Second half of f64 is passed in another GPR. 8295 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8296 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8297 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8298 } 8299 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8300 } 8301 8302 // FastCC has less than 1% performance improvement for some particular 8303 // benchmark. But theoretically, it may has benenfit for some cases. 8304 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8305 unsigned ValNo, MVT ValVT, MVT LocVT, 8306 CCValAssign::LocInfo LocInfo, 8307 ISD::ArgFlagsTy ArgFlags, CCState &State, 8308 bool IsFixed, bool IsRet, Type *OrigTy, 8309 const RISCVTargetLowering &TLI, 8310 Optional<unsigned> FirstMaskArgument) { 8311 8312 // X5 and X6 might be used for save-restore libcall. 8313 static const MCPhysReg GPRList[] = { 8314 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8315 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8316 RISCV::X29, RISCV::X30, RISCV::X31}; 8317 8318 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8319 if (unsigned Reg = State.AllocateReg(GPRList)) { 8320 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8321 return false; 8322 } 8323 } 8324 8325 if (LocVT == MVT::f16) { 8326 static const MCPhysReg FPR16List[] = { 8327 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8328 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8329 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8330 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8331 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8332 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8333 return false; 8334 } 8335 } 8336 8337 if (LocVT == MVT::f32) { 8338 static const MCPhysReg FPR32List[] = { 8339 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8340 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8341 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8342 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8343 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8344 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8345 return false; 8346 } 8347 } 8348 8349 if (LocVT == MVT::f64) { 8350 static const MCPhysReg FPR64List[] = { 8351 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8352 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8353 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8354 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8355 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8356 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8357 return false; 8358 } 8359 } 8360 8361 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8362 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8363 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8364 return false; 8365 } 8366 8367 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8368 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8369 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8370 return false; 8371 } 8372 8373 if (LocVT.isVector()) { 8374 if (unsigned Reg = 8375 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8376 // Fixed-length vectors are located in the corresponding scalable-vector 8377 // container types. 8378 if (ValVT.isFixedLengthVector()) 8379 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8380 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8381 } else { 8382 // Try and pass the address via a "fast" GPR. 8383 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8384 LocInfo = CCValAssign::Indirect; 8385 LocVT = TLI.getSubtarget().getXLenVT(); 8386 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8387 } else if (ValVT.isFixedLengthVector()) { 8388 auto StackAlign = 8389 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8390 unsigned StackOffset = 8391 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8392 State.addLoc( 8393 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8394 } else { 8395 // Can't pass scalable vectors on the stack. 8396 return true; 8397 } 8398 } 8399 8400 return false; 8401 } 8402 8403 return true; // CC didn't match. 8404 } 8405 8406 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8407 CCValAssign::LocInfo LocInfo, 8408 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8409 8410 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8411 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8412 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8413 static const MCPhysReg GPRList[] = { 8414 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8415 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8416 if (unsigned Reg = State.AllocateReg(GPRList)) { 8417 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8418 return false; 8419 } 8420 } 8421 8422 if (LocVT == MVT::f32) { 8423 // Pass in STG registers: F1, ..., F6 8424 // fs0 ... fs5 8425 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8426 RISCV::F18_F, RISCV::F19_F, 8427 RISCV::F20_F, RISCV::F21_F}; 8428 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8429 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8430 return false; 8431 } 8432 } 8433 8434 if (LocVT == MVT::f64) { 8435 // Pass in STG registers: D1, ..., D6 8436 // fs6 ... fs11 8437 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8438 RISCV::F24_D, RISCV::F25_D, 8439 RISCV::F26_D, RISCV::F27_D}; 8440 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8441 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8442 return false; 8443 } 8444 } 8445 8446 report_fatal_error("No registers left in GHC calling convention"); 8447 return true; 8448 } 8449 8450 // Transform physical registers into virtual registers. 8451 SDValue RISCVTargetLowering::LowerFormalArguments( 8452 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8453 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8454 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8455 8456 MachineFunction &MF = DAG.getMachineFunction(); 8457 8458 switch (CallConv) { 8459 default: 8460 report_fatal_error("Unsupported calling convention"); 8461 case CallingConv::C: 8462 case CallingConv::Fast: 8463 break; 8464 case CallingConv::GHC: 8465 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8466 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8467 report_fatal_error( 8468 "GHC calling convention requires the F and D instruction set extensions"); 8469 } 8470 8471 const Function &Func = MF.getFunction(); 8472 if (Func.hasFnAttribute("interrupt")) { 8473 if (!Func.arg_empty()) 8474 report_fatal_error( 8475 "Functions with the interrupt attribute cannot have arguments!"); 8476 8477 StringRef Kind = 8478 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8479 8480 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8481 report_fatal_error( 8482 "Function interrupt attribute argument not supported!"); 8483 } 8484 8485 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8486 MVT XLenVT = Subtarget.getXLenVT(); 8487 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8488 // Used with vargs to acumulate store chains. 8489 std::vector<SDValue> OutChains; 8490 8491 // Assign locations to all of the incoming arguments. 8492 SmallVector<CCValAssign, 16> ArgLocs; 8493 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8494 8495 if (CallConv == CallingConv::GHC) 8496 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8497 else 8498 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8499 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8500 : CC_RISCV); 8501 8502 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8503 CCValAssign &VA = ArgLocs[i]; 8504 SDValue ArgValue; 8505 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8506 // case. 8507 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8508 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8509 else if (VA.isRegLoc()) 8510 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8511 else 8512 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8513 8514 if (VA.getLocInfo() == CCValAssign::Indirect) { 8515 // If the original argument was split and passed by reference (e.g. i128 8516 // on RV32), we need to load all parts of it here (using the same 8517 // address). Vectors may be partly split to registers and partly to the 8518 // stack, in which case the base address is partly offset and subsequent 8519 // stores are relative to that. 8520 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8521 MachinePointerInfo())); 8522 unsigned ArgIndex = Ins[i].OrigArgIndex; 8523 unsigned ArgPartOffset = Ins[i].PartOffset; 8524 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8525 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8526 CCValAssign &PartVA = ArgLocs[i + 1]; 8527 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8528 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8529 if (PartVA.getValVT().isScalableVector()) 8530 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8531 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8532 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8533 MachinePointerInfo())); 8534 ++i; 8535 } 8536 continue; 8537 } 8538 InVals.push_back(ArgValue); 8539 } 8540 8541 if (IsVarArg) { 8542 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8543 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8544 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8545 MachineFrameInfo &MFI = MF.getFrameInfo(); 8546 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8547 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8548 8549 // Offset of the first variable argument from stack pointer, and size of 8550 // the vararg save area. For now, the varargs save area is either zero or 8551 // large enough to hold a0-a7. 8552 int VaArgOffset, VarArgsSaveSize; 8553 8554 // If all registers are allocated, then all varargs must be passed on the 8555 // stack and we don't need to save any argregs. 8556 if (ArgRegs.size() == Idx) { 8557 VaArgOffset = CCInfo.getNextStackOffset(); 8558 VarArgsSaveSize = 0; 8559 } else { 8560 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8561 VaArgOffset = -VarArgsSaveSize; 8562 } 8563 8564 // Record the frame index of the first variable argument 8565 // which is a value necessary to VASTART. 8566 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8567 RVFI->setVarArgsFrameIndex(FI); 8568 8569 // If saving an odd number of registers then create an extra stack slot to 8570 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8571 // offsets to even-numbered registered remain 2*XLEN-aligned. 8572 if (Idx % 2) { 8573 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8574 VarArgsSaveSize += XLenInBytes; 8575 } 8576 8577 // Copy the integer registers that may have been used for passing varargs 8578 // to the vararg save area. 8579 for (unsigned I = Idx; I < ArgRegs.size(); 8580 ++I, VaArgOffset += XLenInBytes) { 8581 const Register Reg = RegInfo.createVirtualRegister(RC); 8582 RegInfo.addLiveIn(ArgRegs[I], Reg); 8583 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8584 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8585 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8586 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8587 MachinePointerInfo::getFixedStack(MF, FI)); 8588 cast<StoreSDNode>(Store.getNode()) 8589 ->getMemOperand() 8590 ->setValue((Value *)nullptr); 8591 OutChains.push_back(Store); 8592 } 8593 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8594 } 8595 8596 // All stores are grouped in one node to allow the matching between 8597 // the size of Ins and InVals. This only happens for vararg functions. 8598 if (!OutChains.empty()) { 8599 OutChains.push_back(Chain); 8600 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8601 } 8602 8603 return Chain; 8604 } 8605 8606 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8607 /// for tail call optimization. 8608 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8609 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8610 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8611 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8612 8613 auto &Callee = CLI.Callee; 8614 auto CalleeCC = CLI.CallConv; 8615 auto &Outs = CLI.Outs; 8616 auto &Caller = MF.getFunction(); 8617 auto CallerCC = Caller.getCallingConv(); 8618 8619 // Exception-handling functions need a special set of instructions to 8620 // indicate a return to the hardware. Tail-calling another function would 8621 // probably break this. 8622 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8623 // should be expanded as new function attributes are introduced. 8624 if (Caller.hasFnAttribute("interrupt")) 8625 return false; 8626 8627 // Do not tail call opt if the stack is used to pass parameters. 8628 if (CCInfo.getNextStackOffset() != 0) 8629 return false; 8630 8631 // Do not tail call opt if any parameters need to be passed indirectly. 8632 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8633 // passed indirectly. So the address of the value will be passed in a 8634 // register, or if not available, then the address is put on the stack. In 8635 // order to pass indirectly, space on the stack often needs to be allocated 8636 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8637 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8638 // are passed CCValAssign::Indirect. 8639 for (auto &VA : ArgLocs) 8640 if (VA.getLocInfo() == CCValAssign::Indirect) 8641 return false; 8642 8643 // Do not tail call opt if either caller or callee uses struct return 8644 // semantics. 8645 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8646 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8647 if (IsCallerStructRet || IsCalleeStructRet) 8648 return false; 8649 8650 // Externally-defined functions with weak linkage should not be 8651 // tail-called. The behaviour of branch instructions in this situation (as 8652 // used for tail calls) is implementation-defined, so we cannot rely on the 8653 // linker replacing the tail call with a return. 8654 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8655 const GlobalValue *GV = G->getGlobal(); 8656 if (GV->hasExternalWeakLinkage()) 8657 return false; 8658 } 8659 8660 // The callee has to preserve all registers the caller needs to preserve. 8661 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8662 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8663 if (CalleeCC != CallerCC) { 8664 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8665 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8666 return false; 8667 } 8668 8669 // Byval parameters hand the function a pointer directly into the stack area 8670 // we want to reuse during a tail call. Working around this *is* possible 8671 // but less efficient and uglier in LowerCall. 8672 for (auto &Arg : Outs) 8673 if (Arg.Flags.isByVal()) 8674 return false; 8675 8676 return true; 8677 } 8678 8679 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8680 return DAG.getDataLayout().getPrefTypeAlign( 8681 VT.getTypeForEVT(*DAG.getContext())); 8682 } 8683 8684 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8685 // and output parameter nodes. 8686 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8687 SmallVectorImpl<SDValue> &InVals) const { 8688 SelectionDAG &DAG = CLI.DAG; 8689 SDLoc &DL = CLI.DL; 8690 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8691 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8692 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8693 SDValue Chain = CLI.Chain; 8694 SDValue Callee = CLI.Callee; 8695 bool &IsTailCall = CLI.IsTailCall; 8696 CallingConv::ID CallConv = CLI.CallConv; 8697 bool IsVarArg = CLI.IsVarArg; 8698 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8699 MVT XLenVT = Subtarget.getXLenVT(); 8700 8701 MachineFunction &MF = DAG.getMachineFunction(); 8702 8703 // Analyze the operands of the call, assigning locations to each operand. 8704 SmallVector<CCValAssign, 16> ArgLocs; 8705 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8706 8707 if (CallConv == CallingConv::GHC) 8708 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8709 else 8710 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8711 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8712 : CC_RISCV); 8713 8714 // Check if it's really possible to do a tail call. 8715 if (IsTailCall) 8716 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8717 8718 if (IsTailCall) 8719 ++NumTailCalls; 8720 else if (CLI.CB && CLI.CB->isMustTailCall()) 8721 report_fatal_error("failed to perform tail call elimination on a call " 8722 "site marked musttail"); 8723 8724 // Get a count of how many bytes are to be pushed on the stack. 8725 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8726 8727 // Create local copies for byval args 8728 SmallVector<SDValue, 8> ByValArgs; 8729 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8730 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8731 if (!Flags.isByVal()) 8732 continue; 8733 8734 SDValue Arg = OutVals[i]; 8735 unsigned Size = Flags.getByValSize(); 8736 Align Alignment = Flags.getNonZeroByValAlign(); 8737 8738 int FI = 8739 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8740 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8741 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8742 8743 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8744 /*IsVolatile=*/false, 8745 /*AlwaysInline=*/false, IsTailCall, 8746 MachinePointerInfo(), MachinePointerInfo()); 8747 ByValArgs.push_back(FIPtr); 8748 } 8749 8750 if (!IsTailCall) 8751 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8752 8753 // Copy argument values to their designated locations. 8754 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8755 SmallVector<SDValue, 8> MemOpChains; 8756 SDValue StackPtr; 8757 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8758 CCValAssign &VA = ArgLocs[i]; 8759 SDValue ArgValue = OutVals[i]; 8760 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8761 8762 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8763 bool IsF64OnRV32DSoftABI = 8764 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8765 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8766 SDValue SplitF64 = DAG.getNode( 8767 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8768 SDValue Lo = SplitF64.getValue(0); 8769 SDValue Hi = SplitF64.getValue(1); 8770 8771 Register RegLo = VA.getLocReg(); 8772 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8773 8774 if (RegLo == RISCV::X17) { 8775 // Second half of f64 is passed on the stack. 8776 // Work out the address of the stack slot. 8777 if (!StackPtr.getNode()) 8778 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8779 // Emit the store. 8780 MemOpChains.push_back( 8781 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8782 } else { 8783 // Second half of f64 is passed in another GPR. 8784 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8785 Register RegHigh = RegLo + 1; 8786 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8787 } 8788 continue; 8789 } 8790 8791 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8792 // as any other MemLoc. 8793 8794 // Promote the value if needed. 8795 // For now, only handle fully promoted and indirect arguments. 8796 if (VA.getLocInfo() == CCValAssign::Indirect) { 8797 // Store the argument in a stack slot and pass its address. 8798 Align StackAlign = 8799 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8800 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8801 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8802 // If the original argument was split (e.g. i128), we need 8803 // to store the required parts of it here (and pass just one address). 8804 // Vectors may be partly split to registers and partly to the stack, in 8805 // which case the base address is partly offset and subsequent stores are 8806 // relative to that. 8807 unsigned ArgIndex = Outs[i].OrigArgIndex; 8808 unsigned ArgPartOffset = Outs[i].PartOffset; 8809 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8810 // Calculate the total size to store. We don't have access to what we're 8811 // actually storing other than performing the loop and collecting the 8812 // info. 8813 SmallVector<std::pair<SDValue, SDValue>> Parts; 8814 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8815 SDValue PartValue = OutVals[i + 1]; 8816 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8817 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8818 EVT PartVT = PartValue.getValueType(); 8819 if (PartVT.isScalableVector()) 8820 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8821 StoredSize += PartVT.getStoreSize(); 8822 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8823 Parts.push_back(std::make_pair(PartValue, Offset)); 8824 ++i; 8825 } 8826 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8827 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8828 MemOpChains.push_back( 8829 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8830 MachinePointerInfo::getFixedStack(MF, FI))); 8831 for (const auto &Part : Parts) { 8832 SDValue PartValue = Part.first; 8833 SDValue PartOffset = Part.second; 8834 SDValue Address = 8835 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8836 MemOpChains.push_back( 8837 DAG.getStore(Chain, DL, PartValue, Address, 8838 MachinePointerInfo::getFixedStack(MF, FI))); 8839 } 8840 ArgValue = SpillSlot; 8841 } else { 8842 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8843 } 8844 8845 // Use local copy if it is a byval arg. 8846 if (Flags.isByVal()) 8847 ArgValue = ByValArgs[j++]; 8848 8849 if (VA.isRegLoc()) { 8850 // Queue up the argument copies and emit them at the end. 8851 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8852 } else { 8853 assert(VA.isMemLoc() && "Argument not register or memory"); 8854 assert(!IsTailCall && "Tail call not allowed if stack is used " 8855 "for passing parameters"); 8856 8857 // Work out the address of the stack slot. 8858 if (!StackPtr.getNode()) 8859 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8860 SDValue Address = 8861 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8862 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8863 8864 // Emit the store. 8865 MemOpChains.push_back( 8866 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8867 } 8868 } 8869 8870 // Join the stores, which are independent of one another. 8871 if (!MemOpChains.empty()) 8872 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8873 8874 SDValue Glue; 8875 8876 // Build a sequence of copy-to-reg nodes, chained and glued together. 8877 for (auto &Reg : RegsToPass) { 8878 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8879 Glue = Chain.getValue(1); 8880 } 8881 8882 // Validate that none of the argument registers have been marked as 8883 // reserved, if so report an error. Do the same for the return address if this 8884 // is not a tailcall. 8885 validateCCReservedRegs(RegsToPass, MF); 8886 if (!IsTailCall && 8887 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8888 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8889 MF.getFunction(), 8890 "Return address register required, but has been reserved."}); 8891 8892 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8893 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8894 // split it and then direct call can be matched by PseudoCALL. 8895 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8896 const GlobalValue *GV = S->getGlobal(); 8897 8898 unsigned OpFlags = RISCVII::MO_CALL; 8899 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8900 OpFlags = RISCVII::MO_PLT; 8901 8902 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8903 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8904 unsigned OpFlags = RISCVII::MO_CALL; 8905 8906 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8907 nullptr)) 8908 OpFlags = RISCVII::MO_PLT; 8909 8910 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8911 } 8912 8913 // The first call operand is the chain and the second is the target address. 8914 SmallVector<SDValue, 8> Ops; 8915 Ops.push_back(Chain); 8916 Ops.push_back(Callee); 8917 8918 // Add argument registers to the end of the list so that they are 8919 // known live into the call. 8920 for (auto &Reg : RegsToPass) 8921 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8922 8923 if (!IsTailCall) { 8924 // Add a register mask operand representing the call-preserved registers. 8925 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8926 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8927 assert(Mask && "Missing call preserved mask for calling convention"); 8928 Ops.push_back(DAG.getRegisterMask(Mask)); 8929 } 8930 8931 // Glue the call to the argument copies, if any. 8932 if (Glue.getNode()) 8933 Ops.push_back(Glue); 8934 8935 // Emit the call. 8936 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8937 8938 if (IsTailCall) { 8939 MF.getFrameInfo().setHasTailCall(); 8940 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8941 } 8942 8943 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8944 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8945 Glue = Chain.getValue(1); 8946 8947 // Mark the end of the call, which is glued to the call itself. 8948 Chain = DAG.getCALLSEQ_END(Chain, 8949 DAG.getConstant(NumBytes, DL, PtrVT, true), 8950 DAG.getConstant(0, DL, PtrVT, true), 8951 Glue, DL); 8952 Glue = Chain.getValue(1); 8953 8954 // Assign locations to each value returned by this call. 8955 SmallVector<CCValAssign, 16> RVLocs; 8956 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8957 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8958 8959 // Copy all of the result registers out of their specified physreg. 8960 for (auto &VA : RVLocs) { 8961 // Copy the value out 8962 SDValue RetValue = 8963 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8964 // Glue the RetValue to the end of the call sequence 8965 Chain = RetValue.getValue(1); 8966 Glue = RetValue.getValue(2); 8967 8968 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8969 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8970 SDValue RetValue2 = 8971 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8972 Chain = RetValue2.getValue(1); 8973 Glue = RetValue2.getValue(2); 8974 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8975 RetValue2); 8976 } 8977 8978 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8979 8980 InVals.push_back(RetValue); 8981 } 8982 8983 return Chain; 8984 } 8985 8986 bool RISCVTargetLowering::CanLowerReturn( 8987 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8988 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8989 SmallVector<CCValAssign, 16> RVLocs; 8990 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8991 8992 Optional<unsigned> FirstMaskArgument; 8993 if (Subtarget.hasVInstructions()) 8994 FirstMaskArgument = preAssignMask(Outs); 8995 8996 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8997 MVT VT = Outs[i].VT; 8998 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8999 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9000 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9001 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9002 *this, FirstMaskArgument)) 9003 return false; 9004 } 9005 return true; 9006 } 9007 9008 SDValue 9009 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9010 bool IsVarArg, 9011 const SmallVectorImpl<ISD::OutputArg> &Outs, 9012 const SmallVectorImpl<SDValue> &OutVals, 9013 const SDLoc &DL, SelectionDAG &DAG) const { 9014 const MachineFunction &MF = DAG.getMachineFunction(); 9015 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9016 9017 // Stores the assignment of the return value to a location. 9018 SmallVector<CCValAssign, 16> RVLocs; 9019 9020 // Info about the registers and stack slot. 9021 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9022 *DAG.getContext()); 9023 9024 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9025 nullptr, CC_RISCV); 9026 9027 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9028 report_fatal_error("GHC functions return void only"); 9029 9030 SDValue Glue; 9031 SmallVector<SDValue, 4> RetOps(1, Chain); 9032 9033 // Copy the result values into the output registers. 9034 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9035 SDValue Val = OutVals[i]; 9036 CCValAssign &VA = RVLocs[i]; 9037 assert(VA.isRegLoc() && "Can only return in registers!"); 9038 9039 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9040 // Handle returning f64 on RV32D with a soft float ABI. 9041 assert(VA.isRegLoc() && "Expected return via registers"); 9042 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9043 DAG.getVTList(MVT::i32, MVT::i32), Val); 9044 SDValue Lo = SplitF64.getValue(0); 9045 SDValue Hi = SplitF64.getValue(1); 9046 Register RegLo = VA.getLocReg(); 9047 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9048 Register RegHi = RegLo + 1; 9049 9050 if (STI.isRegisterReservedByUser(RegLo) || 9051 STI.isRegisterReservedByUser(RegHi)) 9052 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9053 MF.getFunction(), 9054 "Return value register required, but has been reserved."}); 9055 9056 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9057 Glue = Chain.getValue(1); 9058 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9059 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9060 Glue = Chain.getValue(1); 9061 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9062 } else { 9063 // Handle a 'normal' return. 9064 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9065 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9066 9067 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9068 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9069 MF.getFunction(), 9070 "Return value register required, but has been reserved."}); 9071 9072 // Guarantee that all emitted copies are stuck together. 9073 Glue = Chain.getValue(1); 9074 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9075 } 9076 } 9077 9078 RetOps[0] = Chain; // Update chain. 9079 9080 // Add the glue node if we have it. 9081 if (Glue.getNode()) { 9082 RetOps.push_back(Glue); 9083 } 9084 9085 unsigned RetOpc = RISCVISD::RET_FLAG; 9086 // Interrupt service routines use different return instructions. 9087 const Function &Func = DAG.getMachineFunction().getFunction(); 9088 if (Func.hasFnAttribute("interrupt")) { 9089 if (!Func.getReturnType()->isVoidTy()) 9090 report_fatal_error( 9091 "Functions with the interrupt attribute must have void return type!"); 9092 9093 MachineFunction &MF = DAG.getMachineFunction(); 9094 StringRef Kind = 9095 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9096 9097 if (Kind == "user") 9098 RetOpc = RISCVISD::URET_FLAG; 9099 else if (Kind == "supervisor") 9100 RetOpc = RISCVISD::SRET_FLAG; 9101 else 9102 RetOpc = RISCVISD::MRET_FLAG; 9103 } 9104 9105 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9106 } 9107 9108 void RISCVTargetLowering::validateCCReservedRegs( 9109 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9110 MachineFunction &MF) const { 9111 const Function &F = MF.getFunction(); 9112 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9113 9114 if (llvm::any_of(Regs, [&STI](auto Reg) { 9115 return STI.isRegisterReservedByUser(Reg.first); 9116 })) 9117 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9118 F, "Argument register required, but has been reserved."}); 9119 } 9120 9121 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9122 return CI->isTailCall(); 9123 } 9124 9125 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9126 #define NODE_NAME_CASE(NODE) \ 9127 case RISCVISD::NODE: \ 9128 return "RISCVISD::" #NODE; 9129 // clang-format off 9130 switch ((RISCVISD::NodeType)Opcode) { 9131 case RISCVISD::FIRST_NUMBER: 9132 break; 9133 NODE_NAME_CASE(RET_FLAG) 9134 NODE_NAME_CASE(URET_FLAG) 9135 NODE_NAME_CASE(SRET_FLAG) 9136 NODE_NAME_CASE(MRET_FLAG) 9137 NODE_NAME_CASE(CALL) 9138 NODE_NAME_CASE(SELECT_CC) 9139 NODE_NAME_CASE(BR_CC) 9140 NODE_NAME_CASE(BuildPairF64) 9141 NODE_NAME_CASE(SplitF64) 9142 NODE_NAME_CASE(TAIL) 9143 NODE_NAME_CASE(MULHSU) 9144 NODE_NAME_CASE(SLLW) 9145 NODE_NAME_CASE(SRAW) 9146 NODE_NAME_CASE(SRLW) 9147 NODE_NAME_CASE(DIVW) 9148 NODE_NAME_CASE(DIVUW) 9149 NODE_NAME_CASE(REMUW) 9150 NODE_NAME_CASE(ROLW) 9151 NODE_NAME_CASE(RORW) 9152 NODE_NAME_CASE(CLZW) 9153 NODE_NAME_CASE(CTZW) 9154 NODE_NAME_CASE(FSLW) 9155 NODE_NAME_CASE(FSRW) 9156 NODE_NAME_CASE(FSL) 9157 NODE_NAME_CASE(FSR) 9158 NODE_NAME_CASE(FMV_H_X) 9159 NODE_NAME_CASE(FMV_X_ANYEXTH) 9160 NODE_NAME_CASE(FMV_W_X_RV64) 9161 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9162 NODE_NAME_CASE(FCVT_X_RTZ) 9163 NODE_NAME_CASE(FCVT_XU_RTZ) 9164 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9165 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9166 NODE_NAME_CASE(READ_CYCLE_WIDE) 9167 NODE_NAME_CASE(GREV) 9168 NODE_NAME_CASE(GREVW) 9169 NODE_NAME_CASE(GORC) 9170 NODE_NAME_CASE(GORCW) 9171 NODE_NAME_CASE(SHFL) 9172 NODE_NAME_CASE(SHFLW) 9173 NODE_NAME_CASE(UNSHFL) 9174 NODE_NAME_CASE(UNSHFLW) 9175 NODE_NAME_CASE(BCOMPRESS) 9176 NODE_NAME_CASE(BCOMPRESSW) 9177 NODE_NAME_CASE(BDECOMPRESS) 9178 NODE_NAME_CASE(BDECOMPRESSW) 9179 NODE_NAME_CASE(VMV_V_X_VL) 9180 NODE_NAME_CASE(VFMV_V_F_VL) 9181 NODE_NAME_CASE(VMV_X_S) 9182 NODE_NAME_CASE(VMV_S_X_VL) 9183 NODE_NAME_CASE(VFMV_S_F_VL) 9184 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9185 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9186 NODE_NAME_CASE(READ_VLENB) 9187 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9188 NODE_NAME_CASE(VSLIDEUP_VL) 9189 NODE_NAME_CASE(VSLIDE1UP_VL) 9190 NODE_NAME_CASE(VSLIDEDOWN_VL) 9191 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9192 NODE_NAME_CASE(VID_VL) 9193 NODE_NAME_CASE(VFNCVT_ROD_VL) 9194 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9195 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9196 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9197 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9198 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9199 NODE_NAME_CASE(VECREDUCE_AND_VL) 9200 NODE_NAME_CASE(VECREDUCE_OR_VL) 9201 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9202 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9203 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9204 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9205 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9206 NODE_NAME_CASE(ADD_VL) 9207 NODE_NAME_CASE(AND_VL) 9208 NODE_NAME_CASE(MUL_VL) 9209 NODE_NAME_CASE(OR_VL) 9210 NODE_NAME_CASE(SDIV_VL) 9211 NODE_NAME_CASE(SHL_VL) 9212 NODE_NAME_CASE(SREM_VL) 9213 NODE_NAME_CASE(SRA_VL) 9214 NODE_NAME_CASE(SRL_VL) 9215 NODE_NAME_CASE(SUB_VL) 9216 NODE_NAME_CASE(UDIV_VL) 9217 NODE_NAME_CASE(UREM_VL) 9218 NODE_NAME_CASE(XOR_VL) 9219 NODE_NAME_CASE(SADDSAT_VL) 9220 NODE_NAME_CASE(UADDSAT_VL) 9221 NODE_NAME_CASE(SSUBSAT_VL) 9222 NODE_NAME_CASE(USUBSAT_VL) 9223 NODE_NAME_CASE(FADD_VL) 9224 NODE_NAME_CASE(FSUB_VL) 9225 NODE_NAME_CASE(FMUL_VL) 9226 NODE_NAME_CASE(FDIV_VL) 9227 NODE_NAME_CASE(FNEG_VL) 9228 NODE_NAME_CASE(FABS_VL) 9229 NODE_NAME_CASE(FSQRT_VL) 9230 NODE_NAME_CASE(FMA_VL) 9231 NODE_NAME_CASE(FCOPYSIGN_VL) 9232 NODE_NAME_CASE(SMIN_VL) 9233 NODE_NAME_CASE(SMAX_VL) 9234 NODE_NAME_CASE(UMIN_VL) 9235 NODE_NAME_CASE(UMAX_VL) 9236 NODE_NAME_CASE(FMINNUM_VL) 9237 NODE_NAME_CASE(FMAXNUM_VL) 9238 NODE_NAME_CASE(MULHS_VL) 9239 NODE_NAME_CASE(MULHU_VL) 9240 NODE_NAME_CASE(FP_TO_SINT_VL) 9241 NODE_NAME_CASE(FP_TO_UINT_VL) 9242 NODE_NAME_CASE(SINT_TO_FP_VL) 9243 NODE_NAME_CASE(UINT_TO_FP_VL) 9244 NODE_NAME_CASE(FP_EXTEND_VL) 9245 NODE_NAME_CASE(FP_ROUND_VL) 9246 NODE_NAME_CASE(VWMUL_VL) 9247 NODE_NAME_CASE(VWMULU_VL) 9248 NODE_NAME_CASE(SETCC_VL) 9249 NODE_NAME_CASE(VSELECT_VL) 9250 NODE_NAME_CASE(VMAND_VL) 9251 NODE_NAME_CASE(VMOR_VL) 9252 NODE_NAME_CASE(VMXOR_VL) 9253 NODE_NAME_CASE(VMCLR_VL) 9254 NODE_NAME_CASE(VMSET_VL) 9255 NODE_NAME_CASE(VRGATHER_VX_VL) 9256 NODE_NAME_CASE(VRGATHER_VV_VL) 9257 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9258 NODE_NAME_CASE(VSEXT_VL) 9259 NODE_NAME_CASE(VZEXT_VL) 9260 NODE_NAME_CASE(VPOPC_VL) 9261 NODE_NAME_CASE(VLE_VL) 9262 NODE_NAME_CASE(VSE_VL) 9263 NODE_NAME_CASE(READ_CSR) 9264 NODE_NAME_CASE(WRITE_CSR) 9265 NODE_NAME_CASE(SWAP_CSR) 9266 } 9267 // clang-format on 9268 return nullptr; 9269 #undef NODE_NAME_CASE 9270 } 9271 9272 /// getConstraintType - Given a constraint letter, return the type of 9273 /// constraint it is for this target. 9274 RISCVTargetLowering::ConstraintType 9275 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9276 if (Constraint.size() == 1) { 9277 switch (Constraint[0]) { 9278 default: 9279 break; 9280 case 'f': 9281 return C_RegisterClass; 9282 case 'I': 9283 case 'J': 9284 case 'K': 9285 return C_Immediate; 9286 case 'A': 9287 return C_Memory; 9288 case 'S': // A symbolic address 9289 return C_Other; 9290 } 9291 } else { 9292 if (Constraint == "vr" || Constraint == "vm") 9293 return C_RegisterClass; 9294 } 9295 return TargetLowering::getConstraintType(Constraint); 9296 } 9297 9298 std::pair<unsigned, const TargetRegisterClass *> 9299 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9300 StringRef Constraint, 9301 MVT VT) const { 9302 // First, see if this is a constraint that directly corresponds to a 9303 // RISCV register class. 9304 if (Constraint.size() == 1) { 9305 switch (Constraint[0]) { 9306 case 'r': 9307 return std::make_pair(0U, &RISCV::GPRRegClass); 9308 case 'f': 9309 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9310 return std::make_pair(0U, &RISCV::FPR16RegClass); 9311 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9312 return std::make_pair(0U, &RISCV::FPR32RegClass); 9313 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9314 return std::make_pair(0U, &RISCV::FPR64RegClass); 9315 break; 9316 default: 9317 break; 9318 } 9319 } else { 9320 if (Constraint == "vr") { 9321 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9322 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9323 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9324 return std::make_pair(0U, RC); 9325 } 9326 } else if (Constraint == "vm") { 9327 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9328 return std::make_pair(0U, &RISCV::VMRegClass); 9329 } 9330 } 9331 9332 // Clang will correctly decode the usage of register name aliases into their 9333 // official names. However, other frontends like `rustc` do not. This allows 9334 // users of these frontends to use the ABI names for registers in LLVM-style 9335 // register constraints. 9336 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9337 .Case("{zero}", RISCV::X0) 9338 .Case("{ra}", RISCV::X1) 9339 .Case("{sp}", RISCV::X2) 9340 .Case("{gp}", RISCV::X3) 9341 .Case("{tp}", RISCV::X4) 9342 .Case("{t0}", RISCV::X5) 9343 .Case("{t1}", RISCV::X6) 9344 .Case("{t2}", RISCV::X7) 9345 .Cases("{s0}", "{fp}", RISCV::X8) 9346 .Case("{s1}", RISCV::X9) 9347 .Case("{a0}", RISCV::X10) 9348 .Case("{a1}", RISCV::X11) 9349 .Case("{a2}", RISCV::X12) 9350 .Case("{a3}", RISCV::X13) 9351 .Case("{a4}", RISCV::X14) 9352 .Case("{a5}", RISCV::X15) 9353 .Case("{a6}", RISCV::X16) 9354 .Case("{a7}", RISCV::X17) 9355 .Case("{s2}", RISCV::X18) 9356 .Case("{s3}", RISCV::X19) 9357 .Case("{s4}", RISCV::X20) 9358 .Case("{s5}", RISCV::X21) 9359 .Case("{s6}", RISCV::X22) 9360 .Case("{s7}", RISCV::X23) 9361 .Case("{s8}", RISCV::X24) 9362 .Case("{s9}", RISCV::X25) 9363 .Case("{s10}", RISCV::X26) 9364 .Case("{s11}", RISCV::X27) 9365 .Case("{t3}", RISCV::X28) 9366 .Case("{t4}", RISCV::X29) 9367 .Case("{t5}", RISCV::X30) 9368 .Case("{t6}", RISCV::X31) 9369 .Default(RISCV::NoRegister); 9370 if (XRegFromAlias != RISCV::NoRegister) 9371 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9372 9373 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9374 // TableGen record rather than the AsmName to choose registers for InlineAsm 9375 // constraints, plus we want to match those names to the widest floating point 9376 // register type available, manually select floating point registers here. 9377 // 9378 // The second case is the ABI name of the register, so that frontends can also 9379 // use the ABI names in register constraint lists. 9380 if (Subtarget.hasStdExtF()) { 9381 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9382 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9383 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9384 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9385 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9386 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9387 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9388 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9389 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9390 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9391 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9392 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9393 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9394 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9395 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9396 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9397 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9398 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9399 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9400 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9401 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9402 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9403 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9404 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9405 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9406 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9407 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9408 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9409 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9410 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9411 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9412 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9413 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9414 .Default(RISCV::NoRegister); 9415 if (FReg != RISCV::NoRegister) { 9416 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9417 if (Subtarget.hasStdExtD()) { 9418 unsigned RegNo = FReg - RISCV::F0_F; 9419 unsigned DReg = RISCV::F0_D + RegNo; 9420 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9421 } 9422 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9423 } 9424 } 9425 9426 if (Subtarget.hasVInstructions()) { 9427 Register VReg = StringSwitch<Register>(Constraint.lower()) 9428 .Case("{v0}", RISCV::V0) 9429 .Case("{v1}", RISCV::V1) 9430 .Case("{v2}", RISCV::V2) 9431 .Case("{v3}", RISCV::V3) 9432 .Case("{v4}", RISCV::V4) 9433 .Case("{v5}", RISCV::V5) 9434 .Case("{v6}", RISCV::V6) 9435 .Case("{v7}", RISCV::V7) 9436 .Case("{v8}", RISCV::V8) 9437 .Case("{v9}", RISCV::V9) 9438 .Case("{v10}", RISCV::V10) 9439 .Case("{v11}", RISCV::V11) 9440 .Case("{v12}", RISCV::V12) 9441 .Case("{v13}", RISCV::V13) 9442 .Case("{v14}", RISCV::V14) 9443 .Case("{v15}", RISCV::V15) 9444 .Case("{v16}", RISCV::V16) 9445 .Case("{v17}", RISCV::V17) 9446 .Case("{v18}", RISCV::V18) 9447 .Case("{v19}", RISCV::V19) 9448 .Case("{v20}", RISCV::V20) 9449 .Case("{v21}", RISCV::V21) 9450 .Case("{v22}", RISCV::V22) 9451 .Case("{v23}", RISCV::V23) 9452 .Case("{v24}", RISCV::V24) 9453 .Case("{v25}", RISCV::V25) 9454 .Case("{v26}", RISCV::V26) 9455 .Case("{v27}", RISCV::V27) 9456 .Case("{v28}", RISCV::V28) 9457 .Case("{v29}", RISCV::V29) 9458 .Case("{v30}", RISCV::V30) 9459 .Case("{v31}", RISCV::V31) 9460 .Default(RISCV::NoRegister); 9461 if (VReg != RISCV::NoRegister) { 9462 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9463 return std::make_pair(VReg, &RISCV::VMRegClass); 9464 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9465 return std::make_pair(VReg, &RISCV::VRRegClass); 9466 for (const auto *RC : 9467 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9468 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9469 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9470 return std::make_pair(VReg, RC); 9471 } 9472 } 9473 } 9474 } 9475 9476 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9477 } 9478 9479 unsigned 9480 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9481 // Currently only support length 1 constraints. 9482 if (ConstraintCode.size() == 1) { 9483 switch (ConstraintCode[0]) { 9484 case 'A': 9485 return InlineAsm::Constraint_A; 9486 default: 9487 break; 9488 } 9489 } 9490 9491 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9492 } 9493 9494 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9495 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9496 SelectionDAG &DAG) const { 9497 // Currently only support length 1 constraints. 9498 if (Constraint.length() == 1) { 9499 switch (Constraint[0]) { 9500 case 'I': 9501 // Validate & create a 12-bit signed immediate operand. 9502 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9503 uint64_t CVal = C->getSExtValue(); 9504 if (isInt<12>(CVal)) 9505 Ops.push_back( 9506 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9507 } 9508 return; 9509 case 'J': 9510 // Validate & create an integer zero operand. 9511 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9512 if (C->getZExtValue() == 0) 9513 Ops.push_back( 9514 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9515 return; 9516 case 'K': 9517 // Validate & create a 5-bit unsigned immediate operand. 9518 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9519 uint64_t CVal = C->getZExtValue(); 9520 if (isUInt<5>(CVal)) 9521 Ops.push_back( 9522 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9523 } 9524 return; 9525 case 'S': 9526 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9527 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9528 GA->getValueType(0))); 9529 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9530 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9531 BA->getValueType(0))); 9532 } 9533 return; 9534 default: 9535 break; 9536 } 9537 } 9538 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9539 } 9540 9541 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9542 Instruction *Inst, 9543 AtomicOrdering Ord) const { 9544 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9545 return Builder.CreateFence(Ord); 9546 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9547 return Builder.CreateFence(AtomicOrdering::Release); 9548 return nullptr; 9549 } 9550 9551 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9552 Instruction *Inst, 9553 AtomicOrdering Ord) const { 9554 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9555 return Builder.CreateFence(AtomicOrdering::Acquire); 9556 return nullptr; 9557 } 9558 9559 TargetLowering::AtomicExpansionKind 9560 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9561 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9562 // point operations can't be used in an lr/sc sequence without breaking the 9563 // forward-progress guarantee. 9564 if (AI->isFloatingPointOperation()) 9565 return AtomicExpansionKind::CmpXChg; 9566 9567 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9568 if (Size == 8 || Size == 16) 9569 return AtomicExpansionKind::MaskedIntrinsic; 9570 return AtomicExpansionKind::None; 9571 } 9572 9573 static Intrinsic::ID 9574 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9575 if (XLen == 32) { 9576 switch (BinOp) { 9577 default: 9578 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9579 case AtomicRMWInst::Xchg: 9580 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9581 case AtomicRMWInst::Add: 9582 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9583 case AtomicRMWInst::Sub: 9584 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9585 case AtomicRMWInst::Nand: 9586 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9587 case AtomicRMWInst::Max: 9588 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9589 case AtomicRMWInst::Min: 9590 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9591 case AtomicRMWInst::UMax: 9592 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9593 case AtomicRMWInst::UMin: 9594 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9595 } 9596 } 9597 9598 if (XLen == 64) { 9599 switch (BinOp) { 9600 default: 9601 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9602 case AtomicRMWInst::Xchg: 9603 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9604 case AtomicRMWInst::Add: 9605 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9606 case AtomicRMWInst::Sub: 9607 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9608 case AtomicRMWInst::Nand: 9609 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9610 case AtomicRMWInst::Max: 9611 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9612 case AtomicRMWInst::Min: 9613 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9614 case AtomicRMWInst::UMax: 9615 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9616 case AtomicRMWInst::UMin: 9617 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9618 } 9619 } 9620 9621 llvm_unreachable("Unexpected XLen\n"); 9622 } 9623 9624 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9625 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9626 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9627 unsigned XLen = Subtarget.getXLen(); 9628 Value *Ordering = 9629 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9630 Type *Tys[] = {AlignedAddr->getType()}; 9631 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9632 AI->getModule(), 9633 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9634 9635 if (XLen == 64) { 9636 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9637 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9638 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9639 } 9640 9641 Value *Result; 9642 9643 // Must pass the shift amount needed to sign extend the loaded value prior 9644 // to performing a signed comparison for min/max. ShiftAmt is the number of 9645 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9646 // is the number of bits to left+right shift the value in order to 9647 // sign-extend. 9648 if (AI->getOperation() == AtomicRMWInst::Min || 9649 AI->getOperation() == AtomicRMWInst::Max) { 9650 const DataLayout &DL = AI->getModule()->getDataLayout(); 9651 unsigned ValWidth = 9652 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9653 Value *SextShamt = 9654 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9655 Result = Builder.CreateCall(LrwOpScwLoop, 9656 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9657 } else { 9658 Result = 9659 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9660 } 9661 9662 if (XLen == 64) 9663 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9664 return Result; 9665 } 9666 9667 TargetLowering::AtomicExpansionKind 9668 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9669 AtomicCmpXchgInst *CI) const { 9670 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9671 if (Size == 8 || Size == 16) 9672 return AtomicExpansionKind::MaskedIntrinsic; 9673 return AtomicExpansionKind::None; 9674 } 9675 9676 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9677 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9678 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9679 unsigned XLen = Subtarget.getXLen(); 9680 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9681 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9682 if (XLen == 64) { 9683 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9684 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9685 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9686 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9687 } 9688 Type *Tys[] = {AlignedAddr->getType()}; 9689 Function *MaskedCmpXchg = 9690 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9691 Value *Result = Builder.CreateCall( 9692 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9693 if (XLen == 64) 9694 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9695 return Result; 9696 } 9697 9698 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9699 return false; 9700 } 9701 9702 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9703 EVT VT) const { 9704 VT = VT.getScalarType(); 9705 9706 if (!VT.isSimple()) 9707 return false; 9708 9709 switch (VT.getSimpleVT().SimpleTy) { 9710 case MVT::f16: 9711 return Subtarget.hasStdExtZfh(); 9712 case MVT::f32: 9713 return Subtarget.hasStdExtF(); 9714 case MVT::f64: 9715 return Subtarget.hasStdExtD(); 9716 default: 9717 break; 9718 } 9719 9720 return false; 9721 } 9722 9723 Register RISCVTargetLowering::getExceptionPointerRegister( 9724 const Constant *PersonalityFn) const { 9725 return RISCV::X10; 9726 } 9727 9728 Register RISCVTargetLowering::getExceptionSelectorRegister( 9729 const Constant *PersonalityFn) const { 9730 return RISCV::X11; 9731 } 9732 9733 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9734 // Return false to suppress the unnecessary extensions if the LibCall 9735 // arguments or return value is f32 type for LP64 ABI. 9736 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9737 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9738 return false; 9739 9740 return true; 9741 } 9742 9743 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9744 if (Subtarget.is64Bit() && Type == MVT::i32) 9745 return true; 9746 9747 return IsSigned; 9748 } 9749 9750 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9751 SDValue C) const { 9752 // Check integral scalar types. 9753 if (VT.isScalarInteger()) { 9754 // Omit the optimization if the sub target has the M extension and the data 9755 // size exceeds XLen. 9756 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9757 return false; 9758 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9759 // Break the MUL to a SLLI and an ADD/SUB. 9760 const APInt &Imm = ConstNode->getAPIntValue(); 9761 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9762 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9763 return true; 9764 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9765 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9766 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9767 (Imm - 8).isPowerOf2())) 9768 return true; 9769 // Omit the following optimization if the sub target has the M extension 9770 // and the data size >= XLen. 9771 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9772 return false; 9773 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9774 // a pair of LUI/ADDI. 9775 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9776 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9777 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9778 (1 - ImmS).isPowerOf2()) 9779 return true; 9780 } 9781 } 9782 } 9783 9784 return false; 9785 } 9786 9787 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9788 const SDValue &AddNode, const SDValue &ConstNode) const { 9789 // Let the DAGCombiner decide for vectors. 9790 EVT VT = AddNode.getValueType(); 9791 if (VT.isVector()) 9792 return true; 9793 9794 // Let the DAGCombiner decide for larger types. 9795 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9796 return true; 9797 9798 // It is worse if c1 is simm12 while c1*c2 is not. 9799 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9800 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9801 const APInt &C1 = C1Node->getAPIntValue(); 9802 const APInt &C2 = C2Node->getAPIntValue(); 9803 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9804 return false; 9805 9806 // Default to true and let the DAGCombiner decide. 9807 return true; 9808 } 9809 9810 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9811 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9812 bool *Fast) const { 9813 if (!VT.isVector()) 9814 return false; 9815 9816 EVT ElemVT = VT.getVectorElementType(); 9817 if (Alignment >= ElemVT.getStoreSize()) { 9818 if (Fast) 9819 *Fast = true; 9820 return true; 9821 } 9822 9823 return false; 9824 } 9825 9826 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9827 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9828 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9829 bool IsABIRegCopy = CC.hasValue(); 9830 EVT ValueVT = Val.getValueType(); 9831 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9832 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9833 // and cast to f32. 9834 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9835 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9836 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9837 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9838 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9839 Parts[0] = Val; 9840 return true; 9841 } 9842 9843 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9844 LLVMContext &Context = *DAG.getContext(); 9845 EVT ValueEltVT = ValueVT.getVectorElementType(); 9846 EVT PartEltVT = PartVT.getVectorElementType(); 9847 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9848 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9849 if (PartVTBitSize % ValueVTBitSize == 0) { 9850 // If the element types are different, bitcast to the same element type of 9851 // PartVT first. 9852 if (ValueEltVT != PartEltVT) { 9853 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9854 assert(Count != 0 && "The number of element should not be zero."); 9855 EVT SameEltTypeVT = 9856 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9857 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9858 } 9859 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9860 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9861 Parts[0] = Val; 9862 return true; 9863 } 9864 } 9865 return false; 9866 } 9867 9868 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9869 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9870 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9871 bool IsABIRegCopy = CC.hasValue(); 9872 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9873 SDValue Val = Parts[0]; 9874 9875 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9876 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9877 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9878 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9879 return Val; 9880 } 9881 9882 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9883 LLVMContext &Context = *DAG.getContext(); 9884 SDValue Val = Parts[0]; 9885 EVT ValueEltVT = ValueVT.getVectorElementType(); 9886 EVT PartEltVT = PartVT.getVectorElementType(); 9887 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9888 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9889 if (PartVTBitSize % ValueVTBitSize == 0) { 9890 EVT SameEltTypeVT = ValueVT; 9891 // If the element types are different, convert it to the same element type 9892 // of PartVT. 9893 if (ValueEltVT != PartEltVT) { 9894 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9895 assert(Count != 0 && "The number of element should not be zero."); 9896 SameEltTypeVT = 9897 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9898 } 9899 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9900 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9901 if (ValueEltVT != PartEltVT) 9902 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9903 return Val; 9904 } 9905 } 9906 return SDValue(); 9907 } 9908 9909 #define GET_REGISTER_MATCHER 9910 #include "RISCVGenAsmMatcher.inc" 9911 9912 Register 9913 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9914 const MachineFunction &MF) const { 9915 Register Reg = MatchRegisterAltName(RegName); 9916 if (Reg == RISCV::NoRegister) 9917 Reg = MatchRegisterName(RegName); 9918 if (Reg == RISCV::NoRegister) 9919 report_fatal_error( 9920 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9921 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9922 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9923 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9924 StringRef(RegName) + "\".")); 9925 return Reg; 9926 } 9927 9928 namespace llvm { 9929 namespace RISCVVIntrinsicsTable { 9930 9931 #define GET_RISCVVIntrinsicsTable_IMPL 9932 #include "RISCVGenSearchableTables.inc" 9933 9934 } // namespace RISCVVIntrinsicsTable 9935 9936 } // namespace llvm 9937