1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that RISCV uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RISCVISelLowering.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "riscv-lower" 39 40 STATISTIC(NumTailCalls, "Number of tail calls"); 41 42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 43 const RISCVSubtarget &STI) 44 : TargetLowering(TM), Subtarget(STI) { 45 46 MVT XLenVT = Subtarget.getXLenVT(); 47 48 // Set up the register classes. 49 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 50 51 if (Subtarget.hasStdExtF()) 52 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 53 if (Subtarget.hasStdExtD()) 54 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 55 56 // Compute derived properties from the register classes. 57 computeRegisterProperties(STI.getRegisterInfo()); 58 59 setStackPointerRegisterToSaveRestore(RISCV::X2); 60 61 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 62 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 63 64 // TODO: add all necessary setOperationAction calls. 65 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 66 67 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 68 setOperationAction(ISD::BR_CC, XLenVT, Expand); 69 setOperationAction(ISD::SELECT, XLenVT, Custom); 70 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 71 72 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 73 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 74 75 setOperationAction(ISD::VASTART, MVT::Other, Custom); 76 setOperationAction(ISD::VAARG, MVT::Other, Expand); 77 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 78 setOperationAction(ISD::VAEND, MVT::Other, Expand); 79 80 for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) 81 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 82 83 if (!Subtarget.hasStdExtM()) { 84 setOperationAction(ISD::MUL, XLenVT, Expand); 85 setOperationAction(ISD::MULHS, XLenVT, Expand); 86 setOperationAction(ISD::MULHU, XLenVT, Expand); 87 setOperationAction(ISD::SDIV, XLenVT, Expand); 88 setOperationAction(ISD::UDIV, XLenVT, Expand); 89 setOperationAction(ISD::SREM, XLenVT, Expand); 90 setOperationAction(ISD::UREM, XLenVT, Expand); 91 } 92 93 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 94 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 95 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 96 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 97 98 setOperationAction(ISD::SHL_PARTS, XLenVT, Expand); 99 setOperationAction(ISD::SRL_PARTS, XLenVT, Expand); 100 setOperationAction(ISD::SRA_PARTS, XLenVT, Expand); 101 102 setOperationAction(ISD::ROTL, XLenVT, Expand); 103 setOperationAction(ISD::ROTR, XLenVT, Expand); 104 setOperationAction(ISD::BSWAP, XLenVT, Expand); 105 setOperationAction(ISD::CTTZ, XLenVT, Expand); 106 setOperationAction(ISD::CTLZ, XLenVT, Expand); 107 setOperationAction(ISD::CTPOP, XLenVT, Expand); 108 109 ISD::CondCode FPCCToExtend[] = { 110 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO, ISD::SETUEQ, 111 ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, 112 ISD::SETGT, ISD::SETGE, ISD::SETNE}; 113 114 if (Subtarget.hasStdExtF()) { 115 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 116 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 117 for (auto CC : FPCCToExtend) 118 setCondCodeAction(CC, MVT::f32, Expand); 119 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 120 setOperationAction(ISD::SELECT, MVT::f32, Custom); 121 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 122 } 123 124 if (Subtarget.hasStdExtD()) { 125 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 126 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 127 for (auto CC : FPCCToExtend) 128 setCondCodeAction(CC, MVT::f64, Expand); 129 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 130 setOperationAction(ISD::SELECT, MVT::f64, Custom); 131 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 132 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 133 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 134 } 135 136 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 137 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 138 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 139 140 if (Subtarget.hasStdExtA()) 141 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 142 else 143 setMaxAtomicSizeInBitsSupported(0); 144 145 setBooleanContents(ZeroOrOneBooleanContent); 146 147 // Function alignments (log2). 148 unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2; 149 setMinFunctionAlignment(FunctionAlignment); 150 setPrefFunctionAlignment(FunctionAlignment); 151 152 // Effectively disable jump table generation. 153 setMinimumJumpTableEntries(INT_MAX); 154 } 155 156 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 157 EVT VT) const { 158 if (!VT.isVector()) 159 return getPointerTy(DL); 160 return VT.changeVectorElementTypeToInteger(); 161 } 162 163 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 164 const AddrMode &AM, Type *Ty, 165 unsigned AS, 166 Instruction *I) const { 167 // No global is ever allowed as a base. 168 if (AM.BaseGV) 169 return false; 170 171 // Require a 12-bit signed offset. 172 if (!isInt<12>(AM.BaseOffs)) 173 return false; 174 175 switch (AM.Scale) { 176 case 0: // "r+i" or just "i", depending on HasBaseReg. 177 break; 178 case 1: 179 if (!AM.HasBaseReg) // allow "r+i". 180 break; 181 return false; // disallow "r+r" or "r+r+i". 182 default: 183 return false; 184 } 185 186 return true; 187 } 188 189 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 190 return isInt<12>(Imm); 191 } 192 193 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 194 return isInt<12>(Imm); 195 } 196 197 // On RV32, 64-bit integers are split into their high and low parts and held 198 // in two different registers, so the trunc is free since the low register can 199 // just be used. 200 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 201 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 202 return false; 203 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 204 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 205 return (SrcBits == 64 && DestBits == 32); 206 } 207 208 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 209 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 210 !SrcVT.isInteger() || !DstVT.isInteger()) 211 return false; 212 unsigned SrcBits = SrcVT.getSizeInBits(); 213 unsigned DestBits = DstVT.getSizeInBits(); 214 return (SrcBits == 64 && DestBits == 32); 215 } 216 217 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 218 // Zexts are free if they can be combined with a load. 219 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 220 EVT MemVT = LD->getMemoryVT(); 221 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 222 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 223 (LD->getExtensionType() == ISD::NON_EXTLOAD || 224 LD->getExtensionType() == ISD::ZEXTLOAD)) 225 return true; 226 } 227 228 return TargetLowering::isZExtFree(Val, VT2); 229 } 230 231 // Changes the condition code and swaps operands if necessary, so the SetCC 232 // operation matches one of the comparisons supported directly in the RISC-V 233 // ISA. 234 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 235 switch (CC) { 236 default: 237 break; 238 case ISD::SETGT: 239 case ISD::SETLE: 240 case ISD::SETUGT: 241 case ISD::SETULE: 242 CC = ISD::getSetCCSwappedOperands(CC); 243 std::swap(LHS, RHS); 244 break; 245 } 246 } 247 248 // Return the RISC-V branch opcode that matches the given DAG integer 249 // condition code. The CondCode must be one of those supported by the RISC-V 250 // ISA (see normaliseSetCC). 251 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 252 switch (CC) { 253 default: 254 llvm_unreachable("Unsupported CondCode"); 255 case ISD::SETEQ: 256 return RISCV::BEQ; 257 case ISD::SETNE: 258 return RISCV::BNE; 259 case ISD::SETLT: 260 return RISCV::BLT; 261 case ISD::SETGE: 262 return RISCV::BGE; 263 case ISD::SETULT: 264 return RISCV::BLTU; 265 case ISD::SETUGE: 266 return RISCV::BGEU; 267 } 268 } 269 270 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 271 SelectionDAG &DAG) const { 272 switch (Op.getOpcode()) { 273 default: 274 report_fatal_error("unimplemented operand"); 275 case ISD::GlobalAddress: 276 return lowerGlobalAddress(Op, DAG); 277 case ISD::BlockAddress: 278 return lowerBlockAddress(Op, DAG); 279 case ISD::ConstantPool: 280 return lowerConstantPool(Op, DAG); 281 case ISD::SELECT: 282 return lowerSELECT(Op, DAG); 283 case ISD::VASTART: 284 return lowerVASTART(Op, DAG); 285 case ISD::FRAMEADDR: 286 return LowerFRAMEADDR(Op, DAG); 287 case ISD::RETURNADDR: 288 return LowerRETURNADDR(Op, DAG); 289 } 290 } 291 292 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 293 SelectionDAG &DAG) const { 294 SDLoc DL(Op); 295 EVT Ty = Op.getValueType(); 296 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 297 const GlobalValue *GV = N->getGlobal(); 298 int64_t Offset = N->getOffset(); 299 MVT XLenVT = Subtarget.getXLenVT(); 300 301 if (isPositionIndependent() || Subtarget.is64Bit()) 302 report_fatal_error("Unable to lowerGlobalAddress"); 303 // In order to maximise the opportunity for common subexpression elimination, 304 // emit a separate ADD node for the global address offset instead of folding 305 // it in the global address node. Later peephole optimisations may choose to 306 // fold it back in when profitable. 307 SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI); 308 SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO); 309 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0); 310 SDValue MNLo = 311 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0); 312 if (Offset != 0) 313 return DAG.getNode(ISD::ADD, DL, Ty, MNLo, 314 DAG.getConstant(Offset, DL, XLenVT)); 315 return MNLo; 316 } 317 318 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 319 SelectionDAG &DAG) const { 320 SDLoc DL(Op); 321 EVT Ty = Op.getValueType(); 322 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 323 const BlockAddress *BA = N->getBlockAddress(); 324 int64_t Offset = N->getOffset(); 325 326 if (isPositionIndependent() || Subtarget.is64Bit()) 327 report_fatal_error("Unable to lowerBlockAddress"); 328 329 SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI); 330 SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO); 331 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0); 332 SDValue MNLo = 333 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0); 334 return MNLo; 335 } 336 337 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 338 SelectionDAG &DAG) const { 339 SDLoc DL(Op); 340 EVT Ty = Op.getValueType(); 341 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 342 const Constant *CPA = N->getConstVal(); 343 int64_t Offset = N->getOffset(); 344 unsigned Alignment = N->getAlignment(); 345 346 if (!isPositionIndependent()) { 347 SDValue CPAHi = 348 DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI); 349 SDValue CPALo = 350 DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO); 351 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0); 352 SDValue MNLo = 353 SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0); 354 return MNLo; 355 } else { 356 report_fatal_error("Unable to lowerConstantPool"); 357 } 358 } 359 360 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 361 SDValue CondV = Op.getOperand(0); 362 SDValue TrueV = Op.getOperand(1); 363 SDValue FalseV = Op.getOperand(2); 364 SDLoc DL(Op); 365 MVT XLenVT = Subtarget.getXLenVT(); 366 367 // If the result type is XLenVT and CondV is the output of a SETCC node 368 // which also operated on XLenVT inputs, then merge the SETCC node into the 369 // lowered RISCVISD::SELECT_CC to take advantage of the integer 370 // compare+branch instructions. i.e.: 371 // (select (setcc lhs, rhs, cc), truev, falsev) 372 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 373 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 374 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 375 SDValue LHS = CondV.getOperand(0); 376 SDValue RHS = CondV.getOperand(1); 377 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 378 ISD::CondCode CCVal = CC->get(); 379 380 normaliseSetCC(LHS, RHS, CCVal); 381 382 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 383 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 384 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 385 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 386 } 387 388 // Otherwise: 389 // (select condv, truev, falsev) 390 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 391 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 392 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 393 394 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 395 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 396 397 return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); 398 } 399 400 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 401 MachineFunction &MF = DAG.getMachineFunction(); 402 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 403 404 SDLoc DL(Op); 405 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 406 getPointerTy(MF.getDataLayout())); 407 408 // vastart just stores the address of the VarArgsFrameIndex slot into the 409 // memory location argument. 410 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 411 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 412 MachinePointerInfo(SV)); 413 } 414 415 SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op, 416 SelectionDAG &DAG) const { 417 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 418 MachineFunction &MF = DAG.getMachineFunction(); 419 MachineFrameInfo &MFI = MF.getFrameInfo(); 420 MFI.setFrameAddressIsTaken(true); 421 unsigned FrameReg = RI.getFrameRegister(MF); 422 int XLenInBytes = Subtarget.getXLen() / 8; 423 424 EVT VT = Op.getValueType(); 425 SDLoc DL(Op); 426 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 427 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 428 while (Depth--) { 429 int Offset = -(XLenInBytes * 2); 430 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 431 DAG.getIntPtrConstant(Offset, DL)); 432 FrameAddr = 433 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 434 } 435 return FrameAddr; 436 } 437 438 SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op, 439 SelectionDAG &DAG) const { 440 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 441 MachineFunction &MF = DAG.getMachineFunction(); 442 MachineFrameInfo &MFI = MF.getFrameInfo(); 443 MFI.setReturnAddressIsTaken(true); 444 MVT XLenVT = Subtarget.getXLenVT(); 445 int XLenInBytes = Subtarget.getXLen() / 8; 446 447 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 448 return SDValue(); 449 450 EVT VT = Op.getValueType(); 451 SDLoc DL(Op); 452 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 453 if (Depth) { 454 int Off = -XLenInBytes; 455 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 456 SDValue Offset = DAG.getConstant(Off, DL, VT); 457 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 458 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 459 MachinePointerInfo()); 460 } 461 462 // Return the value of the return address register, marking it an implicit 463 // live-in. 464 unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 465 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 466 } 467 468 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 469 MachineBasicBlock *BB) { 470 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 471 472 MachineFunction &MF = *BB->getParent(); 473 DebugLoc DL = MI.getDebugLoc(); 474 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 475 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 476 unsigned LoReg = MI.getOperand(0).getReg(); 477 unsigned HiReg = MI.getOperand(1).getReg(); 478 unsigned SrcReg = MI.getOperand(2).getReg(); 479 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 480 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 481 482 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 483 RI); 484 MachineMemOperand *MMO = 485 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 486 MachineMemOperand::MOLoad, 8, 8); 487 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 488 .addFrameIndex(FI) 489 .addImm(0) 490 .addMemOperand(MMO); 491 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 492 .addFrameIndex(FI) 493 .addImm(4) 494 .addMemOperand(MMO); 495 MI.eraseFromParent(); // The pseudo instruction is gone now. 496 return BB; 497 } 498 499 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 500 MachineBasicBlock *BB) { 501 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 502 "Unexpected instruction"); 503 504 MachineFunction &MF = *BB->getParent(); 505 DebugLoc DL = MI.getDebugLoc(); 506 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 507 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 508 unsigned DstReg = MI.getOperand(0).getReg(); 509 unsigned LoReg = MI.getOperand(1).getReg(); 510 unsigned HiReg = MI.getOperand(2).getReg(); 511 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 512 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(); 513 514 MachineMemOperand *MMO = 515 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 516 MachineMemOperand::MOStore, 8, 8); 517 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 518 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 519 .addFrameIndex(FI) 520 .addImm(0) 521 .addMemOperand(MMO); 522 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 523 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 524 .addFrameIndex(FI) 525 .addImm(4) 526 .addMemOperand(MMO); 527 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 528 MI.eraseFromParent(); // The pseudo instruction is gone now. 529 return BB; 530 } 531 532 MachineBasicBlock * 533 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 534 MachineBasicBlock *BB) const { 535 switch (MI.getOpcode()) { 536 default: 537 llvm_unreachable("Unexpected instr type to insert"); 538 case RISCV::Select_GPR_Using_CC_GPR: 539 case RISCV::Select_FPR32_Using_CC_GPR: 540 case RISCV::Select_FPR64_Using_CC_GPR: 541 break; 542 case RISCV::BuildPairF64Pseudo: 543 return emitBuildPairF64Pseudo(MI, BB); 544 case RISCV::SplitF64Pseudo: 545 return emitSplitF64Pseudo(MI, BB); 546 } 547 548 // To "insert" a SELECT instruction, we actually have to insert the triangle 549 // control-flow pattern. The incoming instruction knows the destination vreg 550 // to set, the condition code register to branch on, the true/false values to 551 // select between, and the condcode to use to select the appropriate branch. 552 // 553 // We produce the following control flow: 554 // HeadMBB 555 // | \ 556 // | IfFalseMBB 557 // | / 558 // TailMBB 559 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 560 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 561 DebugLoc DL = MI.getDebugLoc(); 562 MachineFunction::iterator I = ++BB->getIterator(); 563 564 MachineBasicBlock *HeadMBB = BB; 565 MachineFunction *F = BB->getParent(); 566 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 567 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 568 569 F->insert(I, IfFalseMBB); 570 F->insert(I, TailMBB); 571 // Move all remaining instructions to TailMBB. 572 TailMBB->splice(TailMBB->begin(), HeadMBB, 573 std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end()); 574 // Update machine-CFG edges by transferring all successors of the current 575 // block to the new block which will contain the Phi node for the select. 576 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 577 // Set the successors for HeadMBB. 578 HeadMBB->addSuccessor(IfFalseMBB); 579 HeadMBB->addSuccessor(TailMBB); 580 581 // Insert appropriate branch. 582 unsigned LHS = MI.getOperand(1).getReg(); 583 unsigned RHS = MI.getOperand(2).getReg(); 584 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 585 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 586 587 BuildMI(HeadMBB, DL, TII.get(Opcode)) 588 .addReg(LHS) 589 .addReg(RHS) 590 .addMBB(TailMBB); 591 592 // IfFalseMBB just falls through to TailMBB. 593 IfFalseMBB->addSuccessor(TailMBB); 594 595 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 596 BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI), 597 MI.getOperand(0).getReg()) 598 .addReg(MI.getOperand(4).getReg()) 599 .addMBB(HeadMBB) 600 .addReg(MI.getOperand(5).getReg()) 601 .addMBB(IfFalseMBB); 602 603 MI.eraseFromParent(); // The pseudo instruction is gone now. 604 return TailMBB; 605 } 606 607 // Calling Convention Implementation. 608 // The expectations for frontend ABI lowering vary from target to target. 609 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 610 // details, but this is a longer term goal. For now, we simply try to keep the 611 // role of the frontend as simple and well-defined as possible. The rules can 612 // be summarised as: 613 // * Never split up large scalar arguments. We handle them here. 614 // * If a hardfloat calling convention is being used, and the struct may be 615 // passed in a pair of registers (fp+fp, int+fp), and both registers are 616 // available, then pass as two separate arguments. If either the GPRs or FPRs 617 // are exhausted, then pass according to the rule below. 618 // * If a struct could never be passed in registers or directly in a stack 619 // slot (as it is larger than 2*XLEN and the floating point rules don't 620 // apply), then pass it using a pointer with the byval attribute. 621 // * If a struct is less than 2*XLEN, then coerce to either a two-element 622 // word-sized array or a 2*XLEN scalar (depending on alignment). 623 // * The frontend can determine whether a struct is returned by reference or 624 // not based on its size and fields. If it will be returned by reference, the 625 // frontend must modify the prototype so a pointer with the sret annotation is 626 // passed as the first argument. This is not necessary for large scalar 627 // returns. 628 // * Struct return values and varargs should be coerced to structs containing 629 // register-size fields in the same situations they would be for fixed 630 // arguments. 631 632 static const MCPhysReg ArgGPRs[] = { 633 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 634 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 635 }; 636 637 // Pass a 2*XLEN argument that has been split into two XLEN values through 638 // registers or the stack as necessary. 639 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 640 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 641 MVT ValVT2, MVT LocVT2, 642 ISD::ArgFlagsTy ArgFlags2) { 643 unsigned XLenInBytes = XLen / 8; 644 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 645 // At least one half can be passed via register. 646 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 647 VA1.getLocVT(), CCValAssign::Full)); 648 } else { 649 // Both halves must be passed on the stack, with proper alignment. 650 unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); 651 State.addLoc( 652 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 653 State.AllocateStack(XLenInBytes, StackAlign), 654 VA1.getLocVT(), CCValAssign::Full)); 655 State.addLoc(CCValAssign::getMem( 656 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 657 CCValAssign::Full)); 658 return false; 659 } 660 661 if (unsigned Reg = State.AllocateReg(ArgGPRs)) { 662 // The second half can also be passed via register. 663 State.addLoc( 664 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 665 } else { 666 // The second half is passed via the stack, without additional alignment. 667 State.addLoc(CCValAssign::getMem( 668 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, 669 CCValAssign::Full)); 670 } 671 672 return false; 673 } 674 675 // Implements the RISC-V calling convention. Returns true upon failure. 676 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT, 677 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 678 CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) { 679 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 680 assert(XLen == 32 || XLen == 64); 681 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 682 if (ValVT == MVT::f32) { 683 LocVT = MVT::i32; 684 LocInfo = CCValAssign::BCvt; 685 } 686 687 // Any return value split in to more than two values can't be returned 688 // directly. 689 if (IsRet && ValNo > 1) 690 return true; 691 692 // If this is a variadic argument, the RISC-V calling convention requires 693 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 694 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 695 // be used regardless of whether the original argument was split during 696 // legalisation or not. The argument will not be passed by registers if the 697 // original type is larger than 2*XLEN, so the register alignment rule does 698 // not apply. 699 unsigned TwoXLenInBytes = (2 * XLen) / 8; 700 if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes && 701 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 702 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 703 // Skip 'odd' register if necessary. 704 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 705 State.AllocateReg(ArgGPRs); 706 } 707 708 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 709 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 710 State.getPendingArgFlags(); 711 712 assert(PendingLocs.size() == PendingArgFlags.size() && 713 "PendingLocs and PendingArgFlags out of sync"); 714 715 // Handle passing f64 on RV32D with a soft float ABI. 716 if (XLen == 32 && ValVT == MVT::f64) { 717 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 718 "Can't lower f64 if it is split"); 719 // Depending on available argument GPRS, f64 may be passed in a pair of 720 // GPRs, split between a GPR and the stack, or passed completely on the 721 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 722 // cases. 723 unsigned Reg = State.AllocateReg(ArgGPRs); 724 LocVT = MVT::i32; 725 if (!Reg) { 726 unsigned StackOffset = State.AllocateStack(8, 8); 727 State.addLoc( 728 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 729 return false; 730 } 731 if (!State.AllocateReg(ArgGPRs)) 732 State.AllocateStack(4, 4); 733 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 734 return false; 735 } 736 737 // Split arguments might be passed indirectly, so keep track of the pending 738 // values. 739 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 740 LocVT = XLenVT; 741 LocInfo = CCValAssign::Indirect; 742 PendingLocs.push_back( 743 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 744 PendingArgFlags.push_back(ArgFlags); 745 if (!ArgFlags.isSplitEnd()) { 746 return false; 747 } 748 } 749 750 // If the split argument only had two elements, it should be passed directly 751 // in registers or on the stack. 752 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 753 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 754 // Apply the normal calling convention rules to the first half of the 755 // split argument. 756 CCValAssign VA = PendingLocs[0]; 757 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 758 PendingLocs.clear(); 759 PendingArgFlags.clear(); 760 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 761 ArgFlags); 762 } 763 764 // Allocate to a register if possible, or else a stack slot. 765 unsigned Reg = State.AllocateReg(ArgGPRs); 766 unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); 767 768 // If we reach this point and PendingLocs is non-empty, we must be at the 769 // end of a split argument that must be passed indirectly. 770 if (!PendingLocs.empty()) { 771 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 772 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 773 774 for (auto &It : PendingLocs) { 775 if (Reg) 776 It.convertToReg(Reg); 777 else 778 It.convertToMem(StackOffset); 779 State.addLoc(It); 780 } 781 PendingLocs.clear(); 782 PendingArgFlags.clear(); 783 return false; 784 } 785 786 assert(LocVT == XLenVT && "Expected an XLenVT at this stage"); 787 788 if (Reg) { 789 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 790 } else { 791 State.addLoc( 792 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 793 } 794 return false; 795 } 796 797 void RISCVTargetLowering::analyzeInputArgs( 798 MachineFunction &MF, CCState &CCInfo, 799 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 800 unsigned NumArgs = Ins.size(); 801 FunctionType *FType = MF.getFunction().getFunctionType(); 802 803 for (unsigned i = 0; i != NumArgs; ++i) { 804 MVT ArgVT = Ins[i].VT; 805 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 806 807 Type *ArgTy = nullptr; 808 if (IsRet) 809 ArgTy = FType->getReturnType(); 810 else if (Ins[i].isOrigArg()) 811 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 812 813 if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, 814 ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) { 815 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 816 << EVT(ArgVT).getEVTString() << '\n'); 817 llvm_unreachable(nullptr); 818 } 819 } 820 } 821 822 void RISCVTargetLowering::analyzeOutputArgs( 823 MachineFunction &MF, CCState &CCInfo, 824 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 825 CallLoweringInfo *CLI) const { 826 unsigned NumArgs = Outs.size(); 827 828 for (unsigned i = 0; i != NumArgs; i++) { 829 MVT ArgVT = Outs[i].VT; 830 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 831 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 832 833 if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, 834 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) { 835 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 836 << EVT(ArgVT).getEVTString() << "\n"); 837 llvm_unreachable(nullptr); 838 } 839 } 840 } 841 842 // The caller is responsible for loading the full value if the argument is 843 // passed with CCValAssign::Indirect. 844 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 845 const CCValAssign &VA, const SDLoc &DL) { 846 MachineFunction &MF = DAG.getMachineFunction(); 847 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 848 EVT LocVT = VA.getLocVT(); 849 EVT ValVT = VA.getValVT(); 850 SDValue Val; 851 852 unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 853 RegInfo.addLiveIn(VA.getLocReg(), VReg); 854 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 855 856 switch (VA.getLocInfo()) { 857 default: 858 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 859 case CCValAssign::Full: 860 case CCValAssign::Indirect: 861 break; 862 case CCValAssign::BCvt: 863 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 864 break; 865 } 866 return Val; 867 } 868 869 // The caller is responsible for loading the full value if the argument is 870 // passed with CCValAssign::Indirect. 871 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 872 const CCValAssign &VA, const SDLoc &DL) { 873 MachineFunction &MF = DAG.getMachineFunction(); 874 MachineFrameInfo &MFI = MF.getFrameInfo(); 875 EVT LocVT = VA.getLocVT(); 876 EVT ValVT = VA.getValVT(); 877 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 878 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 879 VA.getLocMemOffset(), /*Immutable=*/true); 880 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 881 SDValue Val; 882 883 ISD::LoadExtType ExtType; 884 switch (VA.getLocInfo()) { 885 default: 886 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 887 case CCValAssign::Full: 888 case CCValAssign::Indirect: 889 ExtType = ISD::NON_EXTLOAD; 890 break; 891 } 892 Val = DAG.getExtLoad( 893 ExtType, DL, LocVT, Chain, FIN, 894 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 895 return Val; 896 } 897 898 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 899 const CCValAssign &VA, const SDLoc &DL) { 900 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 901 "Unexpected VA"); 902 MachineFunction &MF = DAG.getMachineFunction(); 903 MachineFrameInfo &MFI = MF.getFrameInfo(); 904 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 905 906 if (VA.isMemLoc()) { 907 // f64 is passed on the stack. 908 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 909 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 910 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 911 MachinePointerInfo::getFixedStack(MF, FI)); 912 } 913 914 assert(VA.isRegLoc() && "Expected register VA assignment"); 915 916 unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 917 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 918 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 919 SDValue Hi; 920 if (VA.getLocReg() == RISCV::X17) { 921 // Second half of f64 is passed on the stack. 922 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 923 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 924 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 925 MachinePointerInfo::getFixedStack(MF, FI)); 926 } else { 927 // Second half of f64 is passed in another GPR. 928 unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 929 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 930 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 931 } 932 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 933 } 934 935 // Transform physical registers into virtual registers. 936 SDValue RISCVTargetLowering::LowerFormalArguments( 937 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 938 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 939 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 940 941 switch (CallConv) { 942 default: 943 report_fatal_error("Unsupported calling convention"); 944 case CallingConv::C: 945 case CallingConv::Fast: 946 break; 947 } 948 949 MachineFunction &MF = DAG.getMachineFunction(); 950 951 const Function &Func = MF.getFunction(); 952 if (Func.hasFnAttribute("interrupt")) { 953 if (!Func.arg_empty()) 954 report_fatal_error( 955 "Functions with the interrupt attribute cannot have arguments!"); 956 957 StringRef Kind = 958 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 959 960 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 961 report_fatal_error( 962 "Function interrupt attribute argument not supported!"); 963 } 964 965 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 966 MVT XLenVT = Subtarget.getXLenVT(); 967 unsigned XLenInBytes = Subtarget.getXLen() / 8; 968 // Used with vargs to acumulate store chains. 969 std::vector<SDValue> OutChains; 970 971 // Assign locations to all of the incoming arguments. 972 SmallVector<CCValAssign, 16> ArgLocs; 973 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 974 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 975 976 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 977 CCValAssign &VA = ArgLocs[i]; 978 assert(VA.getLocVT() == XLenVT && "Unhandled argument type"); 979 SDValue ArgValue; 980 // Passing f64 on RV32D with a soft float ABI must be handled as a special 981 // case. 982 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 983 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 984 else if (VA.isRegLoc()) 985 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); 986 else 987 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 988 989 if (VA.getLocInfo() == CCValAssign::Indirect) { 990 // If the original argument was split and passed by reference (e.g. i128 991 // on RV32), we need to load all parts of it here (using the same 992 // address). 993 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 994 MachinePointerInfo())); 995 unsigned ArgIndex = Ins[i].OrigArgIndex; 996 assert(Ins[i].PartOffset == 0); 997 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 998 CCValAssign &PartVA = ArgLocs[i + 1]; 999 unsigned PartOffset = Ins[i + 1].PartOffset; 1000 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1001 DAG.getIntPtrConstant(PartOffset, DL)); 1002 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1003 MachinePointerInfo())); 1004 ++i; 1005 } 1006 continue; 1007 } 1008 InVals.push_back(ArgValue); 1009 } 1010 1011 if (IsVarArg) { 1012 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 1013 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 1014 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 1015 MachineFrameInfo &MFI = MF.getFrameInfo(); 1016 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1017 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 1018 1019 // Offset of the first variable argument from stack pointer, and size of 1020 // the vararg save area. For now, the varargs save area is either zero or 1021 // large enough to hold a0-a7. 1022 int VaArgOffset, VarArgsSaveSize; 1023 1024 // If all registers are allocated, then all varargs must be passed on the 1025 // stack and we don't need to save any argregs. 1026 if (ArgRegs.size() == Idx) { 1027 VaArgOffset = CCInfo.getNextStackOffset(); 1028 VarArgsSaveSize = 0; 1029 } else { 1030 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 1031 VaArgOffset = -VarArgsSaveSize; 1032 } 1033 1034 // Record the frame index of the first variable argument 1035 // which is a value necessary to VASTART. 1036 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1037 RVFI->setVarArgsFrameIndex(FI); 1038 1039 // If saving an odd number of registers then create an extra stack slot to 1040 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 1041 // offsets to even-numbered registered remain 2*XLEN-aligned. 1042 if (Idx % 2) { 1043 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, 1044 true); 1045 VarArgsSaveSize += XLenInBytes; 1046 } 1047 1048 // Copy the integer registers that may have been used for passing varargs 1049 // to the vararg save area. 1050 for (unsigned I = Idx; I < ArgRegs.size(); 1051 ++I, VaArgOffset += XLenInBytes) { 1052 const unsigned Reg = RegInfo.createVirtualRegister(RC); 1053 RegInfo.addLiveIn(ArgRegs[I], Reg); 1054 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 1055 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 1056 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1057 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 1058 MachinePointerInfo::getFixedStack(MF, FI)); 1059 cast<StoreSDNode>(Store.getNode()) 1060 ->getMemOperand() 1061 ->setValue((Value *)nullptr); 1062 OutChains.push_back(Store); 1063 } 1064 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 1065 } 1066 1067 // All stores are grouped in one node to allow the matching between 1068 // the size of Ins and InVals. This only happens for vararg functions. 1069 if (!OutChains.empty()) { 1070 OutChains.push_back(Chain); 1071 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1072 } 1073 1074 return Chain; 1075 } 1076 1077 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 1078 /// for tail call optimization. 1079 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 1080 bool RISCVTargetLowering::IsEligibleForTailCallOptimization( 1081 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 1082 const SmallVector<CCValAssign, 16> &ArgLocs) const { 1083 1084 auto &Callee = CLI.Callee; 1085 auto CalleeCC = CLI.CallConv; 1086 auto IsVarArg = CLI.IsVarArg; 1087 auto &Outs = CLI.Outs; 1088 auto &Caller = MF.getFunction(); 1089 auto CallerCC = Caller.getCallingConv(); 1090 1091 // Do not tail call opt functions with "disable-tail-calls" attribute. 1092 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 1093 return false; 1094 1095 // Exception-handling functions need a special set of instructions to 1096 // indicate a return to the hardware. Tail-calling another function would 1097 // probably break this. 1098 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 1099 // should be expanded as new function attributes are introduced. 1100 if (Caller.hasFnAttribute("interrupt")) 1101 return false; 1102 1103 // Do not tail call opt functions with varargs. 1104 if (IsVarArg) 1105 return false; 1106 1107 // Do not tail call opt if the stack is used to pass parameters. 1108 if (CCInfo.getNextStackOffset() != 0) 1109 return false; 1110 1111 // Do not tail call opt if any parameters need to be passed indirectly. 1112 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 1113 // passed indirectly. So the address of the value will be passed in a 1114 // register, or if not available, then the address is put on the stack. In 1115 // order to pass indirectly, space on the stack often needs to be allocated 1116 // in order to store the value. In this case the CCInfo.getNextStackOffset() 1117 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 1118 // are passed CCValAssign::Indirect. 1119 for (auto &VA : ArgLocs) 1120 if (VA.getLocInfo() == CCValAssign::Indirect) 1121 return false; 1122 1123 // Do not tail call opt if either caller or callee uses struct return 1124 // semantics. 1125 auto IsCallerStructRet = Caller.hasStructRetAttr(); 1126 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 1127 if (IsCallerStructRet || IsCalleeStructRet) 1128 return false; 1129 1130 // Externally-defined functions with weak linkage should not be 1131 // tail-called. The behaviour of branch instructions in this situation (as 1132 // used for tail calls) is implementation-defined, so we cannot rely on the 1133 // linker replacing the tail call with a return. 1134 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1135 const GlobalValue *GV = G->getGlobal(); 1136 if (GV->hasExternalWeakLinkage()) 1137 return false; 1138 } 1139 1140 // The callee has to preserve all registers the caller needs to preserve. 1141 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1142 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1143 if (CalleeCC != CallerCC) { 1144 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1145 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1146 return false; 1147 } 1148 1149 // Byval parameters hand the function a pointer directly into the stack area 1150 // we want to reuse during a tail call. Working around this *is* possible 1151 // but less efficient and uglier in LowerCall. 1152 for (auto &Arg : Outs) 1153 if (Arg.Flags.isByVal()) 1154 return false; 1155 1156 return true; 1157 } 1158 1159 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 1160 // and output parameter nodes. 1161 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 1162 SmallVectorImpl<SDValue> &InVals) const { 1163 SelectionDAG &DAG = CLI.DAG; 1164 SDLoc &DL = CLI.DL; 1165 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1166 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1167 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1168 SDValue Chain = CLI.Chain; 1169 SDValue Callee = CLI.Callee; 1170 bool &IsTailCall = CLI.IsTailCall; 1171 CallingConv::ID CallConv = CLI.CallConv; 1172 bool IsVarArg = CLI.IsVarArg; 1173 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1174 MVT XLenVT = Subtarget.getXLenVT(); 1175 1176 MachineFunction &MF = DAG.getMachineFunction(); 1177 1178 // Analyze the operands of the call, assigning locations to each operand. 1179 SmallVector<CCValAssign, 16> ArgLocs; 1180 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1181 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 1182 1183 // Check if it's really possible to do a tail call. 1184 if (IsTailCall) 1185 IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, 1186 ArgLocs); 1187 1188 if (IsTailCall) 1189 ++NumTailCalls; 1190 else if (CLI.CS && CLI.CS.isMustTailCall()) 1191 report_fatal_error("failed to perform tail call elimination on a call " 1192 "site marked musttail"); 1193 1194 // Get a count of how many bytes are to be pushed on the stack. 1195 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1196 1197 // Create local copies for byval args 1198 SmallVector<SDValue, 8> ByValArgs; 1199 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1200 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1201 if (!Flags.isByVal()) 1202 continue; 1203 1204 SDValue Arg = OutVals[i]; 1205 unsigned Size = Flags.getByValSize(); 1206 unsigned Align = Flags.getByValAlign(); 1207 1208 int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); 1209 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1210 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 1211 1212 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, 1213 /*IsVolatile=*/false, 1214 /*AlwaysInline=*/false, 1215 IsTailCall, MachinePointerInfo(), 1216 MachinePointerInfo()); 1217 ByValArgs.push_back(FIPtr); 1218 } 1219 1220 if (!IsTailCall) 1221 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 1222 1223 // Copy argument values to their designated locations. 1224 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1225 SmallVector<SDValue, 8> MemOpChains; 1226 SDValue StackPtr; 1227 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 1228 CCValAssign &VA = ArgLocs[i]; 1229 SDValue ArgValue = OutVals[i]; 1230 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1231 1232 // Handle passing f64 on RV32D with a soft float ABI as a special case. 1233 bool IsF64OnRV32DSoftABI = 1234 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 1235 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 1236 SDValue SplitF64 = DAG.getNode( 1237 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 1238 SDValue Lo = SplitF64.getValue(0); 1239 SDValue Hi = SplitF64.getValue(1); 1240 1241 unsigned RegLo = VA.getLocReg(); 1242 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 1243 1244 if (RegLo == RISCV::X17) { 1245 // Second half of f64 is passed on the stack. 1246 // Work out the address of the stack slot. 1247 if (!StackPtr.getNode()) 1248 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1249 // Emit the store. 1250 MemOpChains.push_back( 1251 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 1252 } else { 1253 // Second half of f64 is passed in another GPR. 1254 unsigned RegHigh = RegLo + 1; 1255 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 1256 } 1257 continue; 1258 } 1259 1260 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 1261 // as any other MemLoc. 1262 1263 // Promote the value if needed. 1264 // For now, only handle fully promoted and indirect arguments. 1265 switch (VA.getLocInfo()) { 1266 case CCValAssign::Full: 1267 break; 1268 case CCValAssign::BCvt: 1269 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue); 1270 break; 1271 case CCValAssign::Indirect: { 1272 // Store the argument in a stack slot and pass its address. 1273 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 1274 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1275 MemOpChains.push_back( 1276 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1277 MachinePointerInfo::getFixedStack(MF, FI))); 1278 // If the original argument was split (e.g. i128), we need 1279 // to store all parts of it here (and pass just one address). 1280 unsigned ArgIndex = Outs[i].OrigArgIndex; 1281 assert(Outs[i].PartOffset == 0); 1282 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 1283 SDValue PartValue = OutVals[i + 1]; 1284 unsigned PartOffset = Outs[i + 1].PartOffset; 1285 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1286 DAG.getIntPtrConstant(PartOffset, DL)); 1287 MemOpChains.push_back( 1288 DAG.getStore(Chain, DL, PartValue, Address, 1289 MachinePointerInfo::getFixedStack(MF, FI))); 1290 ++i; 1291 } 1292 ArgValue = SpillSlot; 1293 break; 1294 } 1295 default: 1296 llvm_unreachable("Unknown loc info!"); 1297 } 1298 1299 // Use local copy if it is a byval arg. 1300 if (Flags.isByVal()) 1301 ArgValue = ByValArgs[j++]; 1302 1303 if (VA.isRegLoc()) { 1304 // Queue up the argument copies and emit them at the end. 1305 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1306 } else { 1307 assert(VA.isMemLoc() && "Argument not register or memory"); 1308 assert(!IsTailCall && "Tail call not allowed if stack is used " 1309 "for passing parameters"); 1310 1311 // Work out the address of the stack slot. 1312 if (!StackPtr.getNode()) 1313 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 1314 SDValue Address = 1315 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1316 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 1317 1318 // Emit the store. 1319 MemOpChains.push_back( 1320 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1321 } 1322 } 1323 1324 // Join the stores, which are independent of one another. 1325 if (!MemOpChains.empty()) 1326 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1327 1328 SDValue Glue; 1329 1330 // Build a sequence of copy-to-reg nodes, chained and glued together. 1331 for (auto &Reg : RegsToPass) { 1332 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 1333 Glue = Chain.getValue(1); 1334 } 1335 1336 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 1337 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 1338 // split it and then direct call can be matched by PseudoCALL. 1339 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 1340 Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0); 1341 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1342 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0); 1343 } 1344 1345 // The first call operand is the chain and the second is the target address. 1346 SmallVector<SDValue, 8> Ops; 1347 Ops.push_back(Chain); 1348 Ops.push_back(Callee); 1349 1350 // Add argument registers to the end of the list so that they are 1351 // known live into the call. 1352 for (auto &Reg : RegsToPass) 1353 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 1354 1355 if (!IsTailCall) { 1356 // Add a register mask operand representing the call-preserved registers. 1357 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1358 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1359 assert(Mask && "Missing call preserved mask for calling convention"); 1360 Ops.push_back(DAG.getRegisterMask(Mask)); 1361 } 1362 1363 // Glue the call to the argument copies, if any. 1364 if (Glue.getNode()) 1365 Ops.push_back(Glue); 1366 1367 // Emit the call. 1368 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1369 1370 if (IsTailCall) { 1371 MF.getFrameInfo().setHasTailCall(); 1372 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 1373 } 1374 1375 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 1376 Glue = Chain.getValue(1); 1377 1378 // Mark the end of the call, which is glued to the call itself. 1379 Chain = DAG.getCALLSEQ_END(Chain, 1380 DAG.getConstant(NumBytes, DL, PtrVT, true), 1381 DAG.getConstant(0, DL, PtrVT, true), 1382 Glue, DL); 1383 Glue = Chain.getValue(1); 1384 1385 // Assign locations to each value returned by this call. 1386 SmallVector<CCValAssign, 16> RVLocs; 1387 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 1388 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 1389 1390 // Copy all of the result registers out of their specified physreg. 1391 for (auto &VA : RVLocs) { 1392 // Copy the value out 1393 SDValue RetValue = 1394 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 1395 // Glue the RetValue to the end of the call sequence 1396 Chain = RetValue.getValue(1); 1397 Glue = RetValue.getValue(2); 1398 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1399 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 1400 SDValue RetValue2 = 1401 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 1402 Chain = RetValue2.getValue(1); 1403 Glue = RetValue2.getValue(2); 1404 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 1405 RetValue2); 1406 } 1407 1408 switch (VA.getLocInfo()) { 1409 default: 1410 llvm_unreachable("Unknown loc info!"); 1411 case CCValAssign::Full: 1412 break; 1413 case CCValAssign::BCvt: 1414 RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue); 1415 break; 1416 } 1417 1418 InVals.push_back(RetValue); 1419 } 1420 1421 return Chain; 1422 } 1423 1424 bool RISCVTargetLowering::CanLowerReturn( 1425 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 1426 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 1427 SmallVector<CCValAssign, 16> RVLocs; 1428 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 1429 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 1430 MVT VT = Outs[i].VT; 1431 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 1432 if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags, 1433 CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr)) 1434 return false; 1435 } 1436 return true; 1437 } 1438 1439 static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val, 1440 const CCValAssign &VA, const SDLoc &DL) { 1441 EVT LocVT = VA.getLocVT(); 1442 1443 switch (VA.getLocInfo()) { 1444 default: 1445 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 1446 case CCValAssign::Full: 1447 break; 1448 case CCValAssign::BCvt: 1449 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 1450 break; 1451 } 1452 return Val; 1453 } 1454 1455 SDValue 1456 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1457 bool IsVarArg, 1458 const SmallVectorImpl<ISD::OutputArg> &Outs, 1459 const SmallVectorImpl<SDValue> &OutVals, 1460 const SDLoc &DL, SelectionDAG &DAG) const { 1461 // Stores the assignment of the return value to a location. 1462 SmallVector<CCValAssign, 16> RVLocs; 1463 1464 // Info about the registers and stack slot. 1465 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 1466 *DAG.getContext()); 1467 1468 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 1469 nullptr); 1470 1471 SDValue Glue; 1472 SmallVector<SDValue, 4> RetOps(1, Chain); 1473 1474 // Copy the result values into the output registers. 1475 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 1476 SDValue Val = OutVals[i]; 1477 CCValAssign &VA = RVLocs[i]; 1478 assert(VA.isRegLoc() && "Can only return in registers!"); 1479 1480 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 1481 // Handle returning f64 on RV32D with a soft float ABI. 1482 assert(VA.isRegLoc() && "Expected return via registers"); 1483 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 1484 DAG.getVTList(MVT::i32, MVT::i32), Val); 1485 SDValue Lo = SplitF64.getValue(0); 1486 SDValue Hi = SplitF64.getValue(1); 1487 unsigned RegLo = VA.getLocReg(); 1488 unsigned RegHi = RegLo + 1; 1489 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 1490 Glue = Chain.getValue(1); 1491 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 1492 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 1493 Glue = Chain.getValue(1); 1494 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 1495 } else { 1496 // Handle a 'normal' return. 1497 Val = packIntoRegLoc(DAG, Val, VA, DL); 1498 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 1499 1500 // Guarantee that all emitted copies are stuck together. 1501 Glue = Chain.getValue(1); 1502 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1503 } 1504 } 1505 1506 RetOps[0] = Chain; // Update chain. 1507 1508 // Add the glue node if we have it. 1509 if (Glue.getNode()) { 1510 RetOps.push_back(Glue); 1511 } 1512 1513 // Interrupt service routines use different return instructions. 1514 const Function &Func = DAG.getMachineFunction().getFunction(); 1515 if (Func.hasFnAttribute("interrupt")) { 1516 if (!Func.getReturnType()->isVoidTy()) 1517 report_fatal_error( 1518 "Functions with the interrupt attribute must have void return type!"); 1519 1520 MachineFunction &MF = DAG.getMachineFunction(); 1521 StringRef Kind = 1522 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 1523 1524 unsigned RetOpc; 1525 if (Kind == "user") 1526 RetOpc = RISCVISD::URET_FLAG; 1527 else if (Kind == "supervisor") 1528 RetOpc = RISCVISD::SRET_FLAG; 1529 else 1530 RetOpc = RISCVISD::MRET_FLAG; 1531 1532 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 1533 } 1534 1535 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 1536 } 1537 1538 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 1539 switch ((RISCVISD::NodeType)Opcode) { 1540 case RISCVISD::FIRST_NUMBER: 1541 break; 1542 case RISCVISD::RET_FLAG: 1543 return "RISCVISD::RET_FLAG"; 1544 case RISCVISD::URET_FLAG: 1545 return "RISCVISD::URET_FLAG"; 1546 case RISCVISD::SRET_FLAG: 1547 return "RISCVISD::SRET_FLAG"; 1548 case RISCVISD::MRET_FLAG: 1549 return "RISCVISD::MRET_FLAG"; 1550 case RISCVISD::CALL: 1551 return "RISCVISD::CALL"; 1552 case RISCVISD::SELECT_CC: 1553 return "RISCVISD::SELECT_CC"; 1554 case RISCVISD::BuildPairF64: 1555 return "RISCVISD::BuildPairF64"; 1556 case RISCVISD::SplitF64: 1557 return "RISCVISD::SplitF64"; 1558 case RISCVISD::TAIL: 1559 return "RISCVISD::TAIL"; 1560 } 1561 return nullptr; 1562 } 1563 1564 std::pair<unsigned, const TargetRegisterClass *> 1565 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1566 StringRef Constraint, 1567 MVT VT) const { 1568 // First, see if this is a constraint that directly corresponds to a 1569 // RISCV register class. 1570 if (Constraint.size() == 1) { 1571 switch (Constraint[0]) { 1572 case 'r': 1573 return std::make_pair(0U, &RISCV::GPRRegClass); 1574 default: 1575 break; 1576 } 1577 } 1578 1579 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1580 } 1581 1582 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 1583 Instruction *Inst, 1584 AtomicOrdering Ord) const { 1585 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 1586 return Builder.CreateFence(Ord); 1587 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 1588 return Builder.CreateFence(AtomicOrdering::Release); 1589 return nullptr; 1590 } 1591 1592 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 1593 Instruction *Inst, 1594 AtomicOrdering Ord) const { 1595 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 1596 return Builder.CreateFence(AtomicOrdering::Acquire); 1597 return nullptr; 1598 } 1599