1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that RISCV uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RISCVISelLowering.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAGISel.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "riscv-lower"
39 
40 STATISTIC(NumTailCalls, "Number of tail calls");
41 
42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
43                                          const RISCVSubtarget &STI)
44     : TargetLowering(TM), Subtarget(STI) {
45 
46   MVT XLenVT = Subtarget.getXLenVT();
47 
48   // Set up the register classes.
49   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
50 
51   if (Subtarget.hasStdExtF())
52     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
53   if (Subtarget.hasStdExtD())
54     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
55 
56   // Compute derived properties from the register classes.
57   computeRegisterProperties(STI.getRegisterInfo());
58 
59   setStackPointerRegisterToSaveRestore(RISCV::X2);
60 
61   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
62     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
63 
64   // TODO: add all necessary setOperationAction calls.
65   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
66 
67   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
68   setOperationAction(ISD::BR_CC, XLenVT, Expand);
69   setOperationAction(ISD::SELECT, XLenVT, Custom);
70   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
71 
72   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
73   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
74 
75   setOperationAction(ISD::VASTART, MVT::Other, Custom);
76   setOperationAction(ISD::VAARG, MVT::Other, Expand);
77   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
78   setOperationAction(ISD::VAEND, MVT::Other, Expand);
79 
80   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
81     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
82 
83   if (!Subtarget.hasStdExtM()) {
84     setOperationAction(ISD::MUL, XLenVT, Expand);
85     setOperationAction(ISD::MULHS, XLenVT, Expand);
86     setOperationAction(ISD::MULHU, XLenVT, Expand);
87     setOperationAction(ISD::SDIV, XLenVT, Expand);
88     setOperationAction(ISD::UDIV, XLenVT, Expand);
89     setOperationAction(ISD::SREM, XLenVT, Expand);
90     setOperationAction(ISD::UREM, XLenVT, Expand);
91   }
92 
93   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
94   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
95   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
96   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
97 
98   setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
99   setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
100   setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
101 
102   setOperationAction(ISD::ROTL, XLenVT, Expand);
103   setOperationAction(ISD::ROTR, XLenVT, Expand);
104   setOperationAction(ISD::BSWAP, XLenVT, Expand);
105   setOperationAction(ISD::CTTZ, XLenVT, Expand);
106   setOperationAction(ISD::CTLZ, XLenVT, Expand);
107   setOperationAction(ISD::CTPOP, XLenVT, Expand);
108 
109   ISD::CondCode FPCCToExtend[] = {
110       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO,   ISD::SETUEQ,
111       ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE,
112       ISD::SETGT,  ISD::SETGE,  ISD::SETNE};
113 
114   if (Subtarget.hasStdExtF()) {
115     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
116     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
117     for (auto CC : FPCCToExtend)
118       setCondCodeAction(CC, MVT::f32, Expand);
119     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
120     setOperationAction(ISD::SELECT, MVT::f32, Custom);
121     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
122   }
123 
124   if (Subtarget.hasStdExtD()) {
125     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
126     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
127     for (auto CC : FPCCToExtend)
128       setCondCodeAction(CC, MVT::f64, Expand);
129     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
130     setOperationAction(ISD::SELECT, MVT::f64, Custom);
131     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
132     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
133     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
134   }
135 
136   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
137   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
138   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
139 
140   if (Subtarget.hasStdExtA())
141     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
142   else
143     setMaxAtomicSizeInBitsSupported(0);
144 
145   setBooleanContents(ZeroOrOneBooleanContent);
146 
147   // Function alignments (log2).
148   unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
149   setMinFunctionAlignment(FunctionAlignment);
150   setPrefFunctionAlignment(FunctionAlignment);
151 
152   // Effectively disable jump table generation.
153   setMinimumJumpTableEntries(INT_MAX);
154 }
155 
156 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
157                                             EVT VT) const {
158   if (!VT.isVector())
159     return getPointerTy(DL);
160   return VT.changeVectorElementTypeToInteger();
161 }
162 
163 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
164                                                 const AddrMode &AM, Type *Ty,
165                                                 unsigned AS,
166                                                 Instruction *I) const {
167   // No global is ever allowed as a base.
168   if (AM.BaseGV)
169     return false;
170 
171   // Require a 12-bit signed offset.
172   if (!isInt<12>(AM.BaseOffs))
173     return false;
174 
175   switch (AM.Scale) {
176   case 0: // "r+i" or just "i", depending on HasBaseReg.
177     break;
178   case 1:
179     if (!AM.HasBaseReg) // allow "r+i".
180       break;
181     return false; // disallow "r+r" or "r+r+i".
182   default:
183     return false;
184   }
185 
186   return true;
187 }
188 
189 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
190   return isInt<12>(Imm);
191 }
192 
193 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
194   return isInt<12>(Imm);
195 }
196 
197 // On RV32, 64-bit integers are split into their high and low parts and held
198 // in two different registers, so the trunc is free since the low register can
199 // just be used.
200 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
201   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
202     return false;
203   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
204   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
205   return (SrcBits == 64 && DestBits == 32);
206 }
207 
208 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
209   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
210       !SrcVT.isInteger() || !DstVT.isInteger())
211     return false;
212   unsigned SrcBits = SrcVT.getSizeInBits();
213   unsigned DestBits = DstVT.getSizeInBits();
214   return (SrcBits == 64 && DestBits == 32);
215 }
216 
217 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
218   // Zexts are free if they can be combined with a load.
219   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
220     EVT MemVT = LD->getMemoryVT();
221     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
222          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
223         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
224          LD->getExtensionType() == ISD::ZEXTLOAD))
225       return true;
226   }
227 
228   return TargetLowering::isZExtFree(Val, VT2);
229 }
230 
231 // Changes the condition code and swaps operands if necessary, so the SetCC
232 // operation matches one of the comparisons supported directly in the RISC-V
233 // ISA.
234 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
235   switch (CC) {
236   default:
237     break;
238   case ISD::SETGT:
239   case ISD::SETLE:
240   case ISD::SETUGT:
241   case ISD::SETULE:
242     CC = ISD::getSetCCSwappedOperands(CC);
243     std::swap(LHS, RHS);
244     break;
245   }
246 }
247 
248 // Return the RISC-V branch opcode that matches the given DAG integer
249 // condition code. The CondCode must be one of those supported by the RISC-V
250 // ISA (see normaliseSetCC).
251 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
252   switch (CC) {
253   default:
254     llvm_unreachable("Unsupported CondCode");
255   case ISD::SETEQ:
256     return RISCV::BEQ;
257   case ISD::SETNE:
258     return RISCV::BNE;
259   case ISD::SETLT:
260     return RISCV::BLT;
261   case ISD::SETGE:
262     return RISCV::BGE;
263   case ISD::SETULT:
264     return RISCV::BLTU;
265   case ISD::SETUGE:
266     return RISCV::BGEU;
267   }
268 }
269 
270 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
271                                             SelectionDAG &DAG) const {
272   switch (Op.getOpcode()) {
273   default:
274     report_fatal_error("unimplemented operand");
275   case ISD::GlobalAddress:
276     return lowerGlobalAddress(Op, DAG);
277   case ISD::BlockAddress:
278     return lowerBlockAddress(Op, DAG);
279   case ISD::ConstantPool:
280     return lowerConstantPool(Op, DAG);
281   case ISD::SELECT:
282     return lowerSELECT(Op, DAG);
283   case ISD::VASTART:
284     return lowerVASTART(Op, DAG);
285   case ISD::FRAMEADDR:
286     return LowerFRAMEADDR(Op, DAG);
287   case ISD::RETURNADDR:
288     return LowerRETURNADDR(Op, DAG);
289   }
290 }
291 
292 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
293                                                 SelectionDAG &DAG) const {
294   SDLoc DL(Op);
295   EVT Ty = Op.getValueType();
296   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
297   const GlobalValue *GV = N->getGlobal();
298   int64_t Offset = N->getOffset();
299   MVT XLenVT = Subtarget.getXLenVT();
300 
301   if (isPositionIndependent() || Subtarget.is64Bit())
302     report_fatal_error("Unable to lowerGlobalAddress");
303   // In order to maximise the opportunity for common subexpression elimination,
304   // emit a separate ADD node for the global address offset instead of folding
305   // it in the global address node. Later peephole optimisations may choose to
306   // fold it back in when profitable.
307   SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI);
308   SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO);
309   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
310   SDValue MNLo =
311     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
312   if (Offset != 0)
313     return DAG.getNode(ISD::ADD, DL, Ty, MNLo,
314                        DAG.getConstant(Offset, DL, XLenVT));
315   return MNLo;
316 }
317 
318 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
319                                                SelectionDAG &DAG) const {
320   SDLoc DL(Op);
321   EVT Ty = Op.getValueType();
322   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
323   const BlockAddress *BA = N->getBlockAddress();
324   int64_t Offset = N->getOffset();
325 
326   if (isPositionIndependent() || Subtarget.is64Bit())
327     report_fatal_error("Unable to lowerBlockAddress");
328 
329   SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
330   SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
331   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
332   SDValue MNLo =
333     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
334   return MNLo;
335 }
336 
337 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
338                                                SelectionDAG &DAG) const {
339   SDLoc DL(Op);
340   EVT Ty = Op.getValueType();
341   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
342   const Constant *CPA = N->getConstVal();
343   int64_t Offset = N->getOffset();
344   unsigned Alignment = N->getAlignment();
345 
346   if (!isPositionIndependent()) {
347     SDValue CPAHi =
348         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI);
349     SDValue CPALo =
350         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO);
351     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0);
352     SDValue MNLo =
353         SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0);
354     return MNLo;
355   } else {
356     report_fatal_error("Unable to lowerConstantPool");
357   }
358 }
359 
360 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
361   SDValue CondV = Op.getOperand(0);
362   SDValue TrueV = Op.getOperand(1);
363   SDValue FalseV = Op.getOperand(2);
364   SDLoc DL(Op);
365   MVT XLenVT = Subtarget.getXLenVT();
366 
367   // If the result type is XLenVT and CondV is the output of a SETCC node
368   // which also operated on XLenVT inputs, then merge the SETCC node into the
369   // lowered RISCVISD::SELECT_CC to take advantage of the integer
370   // compare+branch instructions. i.e.:
371   // (select (setcc lhs, rhs, cc), truev, falsev)
372   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
373   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
374       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
375     SDValue LHS = CondV.getOperand(0);
376     SDValue RHS = CondV.getOperand(1);
377     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
378     ISD::CondCode CCVal = CC->get();
379 
380     normaliseSetCC(LHS, RHS, CCVal);
381 
382     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
383     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
384     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
385     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
386   }
387 
388   // Otherwise:
389   // (select condv, truev, falsev)
390   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
391   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
392   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
393 
394   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
395   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
396 
397   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
398 }
399 
400 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
401   MachineFunction &MF = DAG.getMachineFunction();
402   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
403 
404   SDLoc DL(Op);
405   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
406                                  getPointerTy(MF.getDataLayout()));
407 
408   // vastart just stores the address of the VarArgsFrameIndex slot into the
409   // memory location argument.
410   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
411   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
412                       MachinePointerInfo(SV));
413 }
414 
415 SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op,
416                                             SelectionDAG &DAG) const {
417   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
418   MachineFunction &MF = DAG.getMachineFunction();
419   MachineFrameInfo &MFI = MF.getFrameInfo();
420   MFI.setFrameAddressIsTaken(true);
421   unsigned FrameReg = RI.getFrameRegister(MF);
422   int XLenInBytes = Subtarget.getXLen() / 8;
423 
424   EVT VT = Op.getValueType();
425   SDLoc DL(Op);
426   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
427   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
428   while (Depth--) {
429     int Offset = -(XLenInBytes * 2);
430     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
431                               DAG.getIntPtrConstant(Offset, DL));
432     FrameAddr =
433         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
434   }
435   return FrameAddr;
436 }
437 
438 SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op,
439                                              SelectionDAG &DAG) const {
440   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
441   MachineFunction &MF = DAG.getMachineFunction();
442   MachineFrameInfo &MFI = MF.getFrameInfo();
443   MFI.setReturnAddressIsTaken(true);
444   MVT XLenVT = Subtarget.getXLenVT();
445   int XLenInBytes = Subtarget.getXLen() / 8;
446 
447   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
448     return SDValue();
449 
450   EVT VT = Op.getValueType();
451   SDLoc DL(Op);
452   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
453   if (Depth) {
454     int Off = -XLenInBytes;
455     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
456     SDValue Offset = DAG.getConstant(Off, DL, VT);
457     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
458                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
459                        MachinePointerInfo());
460   }
461 
462   // Return the value of the return address register, marking it an implicit
463   // live-in.
464   unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
465   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
466 }
467 
468 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
469                                              MachineBasicBlock *BB) {
470   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
471 
472   MachineFunction &MF = *BB->getParent();
473   DebugLoc DL = MI.getDebugLoc();
474   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
475   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
476   unsigned LoReg = MI.getOperand(0).getReg();
477   unsigned HiReg = MI.getOperand(1).getReg();
478   unsigned SrcReg = MI.getOperand(2).getReg();
479   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
480   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
481 
482   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
483                           RI);
484   MachineMemOperand *MMO =
485       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
486                               MachineMemOperand::MOLoad, 8, 8);
487   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
488       .addFrameIndex(FI)
489       .addImm(0)
490       .addMemOperand(MMO);
491   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
492       .addFrameIndex(FI)
493       .addImm(4)
494       .addMemOperand(MMO);
495   MI.eraseFromParent(); // The pseudo instruction is gone now.
496   return BB;
497 }
498 
499 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
500                                                  MachineBasicBlock *BB) {
501   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
502          "Unexpected instruction");
503 
504   MachineFunction &MF = *BB->getParent();
505   DebugLoc DL = MI.getDebugLoc();
506   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
507   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
508   unsigned DstReg = MI.getOperand(0).getReg();
509   unsigned LoReg = MI.getOperand(1).getReg();
510   unsigned HiReg = MI.getOperand(2).getReg();
511   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
512   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
513 
514   MachineMemOperand *MMO =
515       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
516                               MachineMemOperand::MOStore, 8, 8);
517   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
518       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
519       .addFrameIndex(FI)
520       .addImm(0)
521       .addMemOperand(MMO);
522   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
523       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
524       .addFrameIndex(FI)
525       .addImm(4)
526       .addMemOperand(MMO);
527   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
528   MI.eraseFromParent(); // The pseudo instruction is gone now.
529   return BB;
530 }
531 
532 MachineBasicBlock *
533 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
534                                                  MachineBasicBlock *BB) const {
535   switch (MI.getOpcode()) {
536   default:
537     llvm_unreachable("Unexpected instr type to insert");
538   case RISCV::Select_GPR_Using_CC_GPR:
539   case RISCV::Select_FPR32_Using_CC_GPR:
540   case RISCV::Select_FPR64_Using_CC_GPR:
541     break;
542   case RISCV::BuildPairF64Pseudo:
543     return emitBuildPairF64Pseudo(MI, BB);
544   case RISCV::SplitF64Pseudo:
545     return emitSplitF64Pseudo(MI, BB);
546   }
547 
548   // To "insert" a SELECT instruction, we actually have to insert the triangle
549   // control-flow pattern.  The incoming instruction knows the destination vreg
550   // to set, the condition code register to branch on, the true/false values to
551   // select between, and the condcode to use to select the appropriate branch.
552   //
553   // We produce the following control flow:
554   //     HeadMBB
555   //     |  \
556   //     |  IfFalseMBB
557   //     | /
558   //    TailMBB
559   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
560   const BasicBlock *LLVM_BB = BB->getBasicBlock();
561   DebugLoc DL = MI.getDebugLoc();
562   MachineFunction::iterator I = ++BB->getIterator();
563 
564   MachineBasicBlock *HeadMBB = BB;
565   MachineFunction *F = BB->getParent();
566   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
567   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
568 
569   F->insert(I, IfFalseMBB);
570   F->insert(I, TailMBB);
571   // Move all remaining instructions to TailMBB.
572   TailMBB->splice(TailMBB->begin(), HeadMBB,
573                   std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
574   // Update machine-CFG edges by transferring all successors of the current
575   // block to the new block which will contain the Phi node for the select.
576   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
577   // Set the successors for HeadMBB.
578   HeadMBB->addSuccessor(IfFalseMBB);
579   HeadMBB->addSuccessor(TailMBB);
580 
581   // Insert appropriate branch.
582   unsigned LHS = MI.getOperand(1).getReg();
583   unsigned RHS = MI.getOperand(2).getReg();
584   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
585   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
586 
587   BuildMI(HeadMBB, DL, TII.get(Opcode))
588     .addReg(LHS)
589     .addReg(RHS)
590     .addMBB(TailMBB);
591 
592   // IfFalseMBB just falls through to TailMBB.
593   IfFalseMBB->addSuccessor(TailMBB);
594 
595   // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
596   BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
597           MI.getOperand(0).getReg())
598       .addReg(MI.getOperand(4).getReg())
599       .addMBB(HeadMBB)
600       .addReg(MI.getOperand(5).getReg())
601       .addMBB(IfFalseMBB);
602 
603   MI.eraseFromParent(); // The pseudo instruction is gone now.
604   return TailMBB;
605 }
606 
607 // Calling Convention Implementation.
608 // The expectations for frontend ABI lowering vary from target to target.
609 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
610 // details, but this is a longer term goal. For now, we simply try to keep the
611 // role of the frontend as simple and well-defined as possible. The rules can
612 // be summarised as:
613 // * Never split up large scalar arguments. We handle them here.
614 // * If a hardfloat calling convention is being used, and the struct may be
615 // passed in a pair of registers (fp+fp, int+fp), and both registers are
616 // available, then pass as two separate arguments. If either the GPRs or FPRs
617 // are exhausted, then pass according to the rule below.
618 // * If a struct could never be passed in registers or directly in a stack
619 // slot (as it is larger than 2*XLEN and the floating point rules don't
620 // apply), then pass it using a pointer with the byval attribute.
621 // * If a struct is less than 2*XLEN, then coerce to either a two-element
622 // word-sized array or a 2*XLEN scalar (depending on alignment).
623 // * The frontend can determine whether a struct is returned by reference or
624 // not based on its size and fields. If it will be returned by reference, the
625 // frontend must modify the prototype so a pointer with the sret annotation is
626 // passed as the first argument. This is not necessary for large scalar
627 // returns.
628 // * Struct return values and varargs should be coerced to structs containing
629 // register-size fields in the same situations they would be for fixed
630 // arguments.
631 
632 static const MCPhysReg ArgGPRs[] = {
633   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
634   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
635 };
636 
637 // Pass a 2*XLEN argument that has been split into two XLEN values through
638 // registers or the stack as necessary.
639 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
640                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
641                                 MVT ValVT2, MVT LocVT2,
642                                 ISD::ArgFlagsTy ArgFlags2) {
643   unsigned XLenInBytes = XLen / 8;
644   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
645     // At least one half can be passed via register.
646     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
647                                      VA1.getLocVT(), CCValAssign::Full));
648   } else {
649     // Both halves must be passed on the stack, with proper alignment.
650     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
651     State.addLoc(
652         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
653                             State.AllocateStack(XLenInBytes, StackAlign),
654                             VA1.getLocVT(), CCValAssign::Full));
655     State.addLoc(CCValAssign::getMem(
656         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
657         CCValAssign::Full));
658     return false;
659   }
660 
661   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
662     // The second half can also be passed via register.
663     State.addLoc(
664         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
665   } else {
666     // The second half is passed via the stack, without additional alignment.
667     State.addLoc(CCValAssign::getMem(
668         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
669         CCValAssign::Full));
670   }
671 
672   return false;
673 }
674 
675 // Implements the RISC-V calling convention. Returns true upon failure.
676 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
677                      CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
678                      CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
679   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
680   assert(XLen == 32 || XLen == 64);
681   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
682   if (ValVT == MVT::f32) {
683     LocVT = MVT::i32;
684     LocInfo = CCValAssign::BCvt;
685   }
686 
687   // Any return value split in to more than two values can't be returned
688   // directly.
689   if (IsRet && ValNo > 1)
690     return true;
691 
692   // If this is a variadic argument, the RISC-V calling convention requires
693   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
694   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
695   // be used regardless of whether the original argument was split during
696   // legalisation or not. The argument will not be passed by registers if the
697   // original type is larger than 2*XLEN, so the register alignment rule does
698   // not apply.
699   unsigned TwoXLenInBytes = (2 * XLen) / 8;
700   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
701       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
702     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
703     // Skip 'odd' register if necessary.
704     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
705       State.AllocateReg(ArgGPRs);
706   }
707 
708   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
709   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
710       State.getPendingArgFlags();
711 
712   assert(PendingLocs.size() == PendingArgFlags.size() &&
713          "PendingLocs and PendingArgFlags out of sync");
714 
715   // Handle passing f64 on RV32D with a soft float ABI.
716   if (XLen == 32 && ValVT == MVT::f64) {
717     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
718            "Can't lower f64 if it is split");
719     // Depending on available argument GPRS, f64 may be passed in a pair of
720     // GPRs, split between a GPR and the stack, or passed completely on the
721     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
722     // cases.
723     unsigned Reg = State.AllocateReg(ArgGPRs);
724     LocVT = MVT::i32;
725     if (!Reg) {
726       unsigned StackOffset = State.AllocateStack(8, 8);
727       State.addLoc(
728           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
729       return false;
730     }
731     if (!State.AllocateReg(ArgGPRs))
732       State.AllocateStack(4, 4);
733     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
734     return false;
735   }
736 
737   // Split arguments might be passed indirectly, so keep track of the pending
738   // values.
739   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
740     LocVT = XLenVT;
741     LocInfo = CCValAssign::Indirect;
742     PendingLocs.push_back(
743         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
744     PendingArgFlags.push_back(ArgFlags);
745     if (!ArgFlags.isSplitEnd()) {
746       return false;
747     }
748   }
749 
750   // If the split argument only had two elements, it should be passed directly
751   // in registers or on the stack.
752   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
753     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
754     // Apply the normal calling convention rules to the first half of the
755     // split argument.
756     CCValAssign VA = PendingLocs[0];
757     ISD::ArgFlagsTy AF = PendingArgFlags[0];
758     PendingLocs.clear();
759     PendingArgFlags.clear();
760     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
761                                ArgFlags);
762   }
763 
764   // Allocate to a register if possible, or else a stack slot.
765   unsigned Reg = State.AllocateReg(ArgGPRs);
766   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
767 
768   // If we reach this point and PendingLocs is non-empty, we must be at the
769   // end of a split argument that must be passed indirectly.
770   if (!PendingLocs.empty()) {
771     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
772     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
773 
774     for (auto &It : PendingLocs) {
775       if (Reg)
776         It.convertToReg(Reg);
777       else
778         It.convertToMem(StackOffset);
779       State.addLoc(It);
780     }
781     PendingLocs.clear();
782     PendingArgFlags.clear();
783     return false;
784   }
785 
786   assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
787 
788   if (Reg) {
789     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
790   } else {
791     State.addLoc(
792         CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
793   }
794   return false;
795 }
796 
797 void RISCVTargetLowering::analyzeInputArgs(
798     MachineFunction &MF, CCState &CCInfo,
799     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
800   unsigned NumArgs = Ins.size();
801   FunctionType *FType = MF.getFunction().getFunctionType();
802 
803   for (unsigned i = 0; i != NumArgs; ++i) {
804     MVT ArgVT = Ins[i].VT;
805     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
806 
807     Type *ArgTy = nullptr;
808     if (IsRet)
809       ArgTy = FType->getReturnType();
810     else if (Ins[i].isOrigArg())
811       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
812 
813     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
814                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
815       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
816                         << EVT(ArgVT).getEVTString() << '\n');
817       llvm_unreachable(nullptr);
818     }
819   }
820 }
821 
822 void RISCVTargetLowering::analyzeOutputArgs(
823     MachineFunction &MF, CCState &CCInfo,
824     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
825     CallLoweringInfo *CLI) const {
826   unsigned NumArgs = Outs.size();
827 
828   for (unsigned i = 0; i != NumArgs; i++) {
829     MVT ArgVT = Outs[i].VT;
830     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
831     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
832 
833     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
834                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
835       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
836                         << EVT(ArgVT).getEVTString() << "\n");
837       llvm_unreachable(nullptr);
838     }
839   }
840 }
841 
842 // The caller is responsible for loading the full value if the argument is
843 // passed with CCValAssign::Indirect.
844 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
845                                 const CCValAssign &VA, const SDLoc &DL) {
846   MachineFunction &MF = DAG.getMachineFunction();
847   MachineRegisterInfo &RegInfo = MF.getRegInfo();
848   EVT LocVT = VA.getLocVT();
849   EVT ValVT = VA.getValVT();
850   SDValue Val;
851 
852   unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
853   RegInfo.addLiveIn(VA.getLocReg(), VReg);
854   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
855 
856   switch (VA.getLocInfo()) {
857   default:
858     llvm_unreachable("Unexpected CCValAssign::LocInfo");
859   case CCValAssign::Full:
860   case CCValAssign::Indirect:
861     break;
862   case CCValAssign::BCvt:
863     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
864     break;
865   }
866   return Val;
867 }
868 
869 // The caller is responsible for loading the full value if the argument is
870 // passed with CCValAssign::Indirect.
871 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
872                                 const CCValAssign &VA, const SDLoc &DL) {
873   MachineFunction &MF = DAG.getMachineFunction();
874   MachineFrameInfo &MFI = MF.getFrameInfo();
875   EVT LocVT = VA.getLocVT();
876   EVT ValVT = VA.getValVT();
877   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
878   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
879                                  VA.getLocMemOffset(), /*Immutable=*/true);
880   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
881   SDValue Val;
882 
883   ISD::LoadExtType ExtType;
884   switch (VA.getLocInfo()) {
885   default:
886     llvm_unreachable("Unexpected CCValAssign::LocInfo");
887   case CCValAssign::Full:
888   case CCValAssign::Indirect:
889     ExtType = ISD::NON_EXTLOAD;
890     break;
891   }
892   Val = DAG.getExtLoad(
893       ExtType, DL, LocVT, Chain, FIN,
894       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
895   return Val;
896 }
897 
898 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
899                                        const CCValAssign &VA, const SDLoc &DL) {
900   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
901          "Unexpected VA");
902   MachineFunction &MF = DAG.getMachineFunction();
903   MachineFrameInfo &MFI = MF.getFrameInfo();
904   MachineRegisterInfo &RegInfo = MF.getRegInfo();
905 
906   if (VA.isMemLoc()) {
907     // f64 is passed on the stack.
908     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
909     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
910     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
911                        MachinePointerInfo::getFixedStack(MF, FI));
912   }
913 
914   assert(VA.isRegLoc() && "Expected register VA assignment");
915 
916   unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
917   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
918   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
919   SDValue Hi;
920   if (VA.getLocReg() == RISCV::X17) {
921     // Second half of f64 is passed on the stack.
922     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
923     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
924     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
925                      MachinePointerInfo::getFixedStack(MF, FI));
926   } else {
927     // Second half of f64 is passed in another GPR.
928     unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
929     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
930     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
931   }
932   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
933 }
934 
935 // Transform physical registers into virtual registers.
936 SDValue RISCVTargetLowering::LowerFormalArguments(
937     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
938     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
939     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
940 
941   switch (CallConv) {
942   default:
943     report_fatal_error("Unsupported calling convention");
944   case CallingConv::C:
945   case CallingConv::Fast:
946     break;
947   }
948 
949   MachineFunction &MF = DAG.getMachineFunction();
950 
951   const Function &Func = MF.getFunction();
952   if (Func.hasFnAttribute("interrupt")) {
953     if (!Func.arg_empty())
954       report_fatal_error(
955         "Functions with the interrupt attribute cannot have arguments!");
956 
957     StringRef Kind =
958       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
959 
960     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
961       report_fatal_error(
962         "Function interrupt attribute argument not supported!");
963   }
964 
965   EVT PtrVT = getPointerTy(DAG.getDataLayout());
966   MVT XLenVT = Subtarget.getXLenVT();
967   unsigned XLenInBytes = Subtarget.getXLen() / 8;
968   // Used with vargs to acumulate store chains.
969   std::vector<SDValue> OutChains;
970 
971   // Assign locations to all of the incoming arguments.
972   SmallVector<CCValAssign, 16> ArgLocs;
973   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
974   analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
975 
976   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
977     CCValAssign &VA = ArgLocs[i];
978     assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
979     SDValue ArgValue;
980     // Passing f64 on RV32D with a soft float ABI must be handled as a special
981     // case.
982     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
983       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
984     else if (VA.isRegLoc())
985       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
986     else
987       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
988 
989     if (VA.getLocInfo() == CCValAssign::Indirect) {
990       // If the original argument was split and passed by reference (e.g. i128
991       // on RV32), we need to load all parts of it here (using the same
992       // address).
993       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
994                                    MachinePointerInfo()));
995       unsigned ArgIndex = Ins[i].OrigArgIndex;
996       assert(Ins[i].PartOffset == 0);
997       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
998         CCValAssign &PartVA = ArgLocs[i + 1];
999         unsigned PartOffset = Ins[i + 1].PartOffset;
1000         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1001                                       DAG.getIntPtrConstant(PartOffset, DL));
1002         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1003                                      MachinePointerInfo()));
1004         ++i;
1005       }
1006       continue;
1007     }
1008     InVals.push_back(ArgValue);
1009   }
1010 
1011   if (IsVarArg) {
1012     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1013     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1014     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1015     MachineFrameInfo &MFI = MF.getFrameInfo();
1016     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1017     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1018 
1019     // Offset of the first variable argument from stack pointer, and size of
1020     // the vararg save area. For now, the varargs save area is either zero or
1021     // large enough to hold a0-a7.
1022     int VaArgOffset, VarArgsSaveSize;
1023 
1024     // If all registers are allocated, then all varargs must be passed on the
1025     // stack and we don't need to save any argregs.
1026     if (ArgRegs.size() == Idx) {
1027       VaArgOffset = CCInfo.getNextStackOffset();
1028       VarArgsSaveSize = 0;
1029     } else {
1030       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1031       VaArgOffset = -VarArgsSaveSize;
1032     }
1033 
1034     // Record the frame index of the first variable argument
1035     // which is a value necessary to VASTART.
1036     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1037     RVFI->setVarArgsFrameIndex(FI);
1038 
1039     // If saving an odd number of registers then create an extra stack slot to
1040     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1041     // offsets to even-numbered registered remain 2*XLEN-aligned.
1042     if (Idx % 2) {
1043       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
1044                                  true);
1045       VarArgsSaveSize += XLenInBytes;
1046     }
1047 
1048     // Copy the integer registers that may have been used for passing varargs
1049     // to the vararg save area.
1050     for (unsigned I = Idx; I < ArgRegs.size();
1051          ++I, VaArgOffset += XLenInBytes) {
1052       const unsigned Reg = RegInfo.createVirtualRegister(RC);
1053       RegInfo.addLiveIn(ArgRegs[I], Reg);
1054       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1055       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1056       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1057       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1058                                    MachinePointerInfo::getFixedStack(MF, FI));
1059       cast<StoreSDNode>(Store.getNode())
1060           ->getMemOperand()
1061           ->setValue((Value *)nullptr);
1062       OutChains.push_back(Store);
1063     }
1064     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1065   }
1066 
1067   // All stores are grouped in one node to allow the matching between
1068   // the size of Ins and InVals. This only happens for vararg functions.
1069   if (!OutChains.empty()) {
1070     OutChains.push_back(Chain);
1071     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1072   }
1073 
1074   return Chain;
1075 }
1076 
1077 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1078 /// for tail call optimization.
1079 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
1080 bool RISCVTargetLowering::IsEligibleForTailCallOptimization(
1081   CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
1082   const SmallVector<CCValAssign, 16> &ArgLocs) const {
1083 
1084   auto &Callee = CLI.Callee;
1085   auto CalleeCC = CLI.CallConv;
1086   auto IsVarArg = CLI.IsVarArg;
1087   auto &Outs = CLI.Outs;
1088   auto &Caller = MF.getFunction();
1089   auto CallerCC = Caller.getCallingConv();
1090 
1091   // Do not tail call opt functions with "disable-tail-calls" attribute.
1092   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
1093     return false;
1094 
1095   // Exception-handling functions need a special set of instructions to
1096   // indicate a return to the hardware. Tail-calling another function would
1097   // probably break this.
1098   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
1099   // should be expanded as new function attributes are introduced.
1100   if (Caller.hasFnAttribute("interrupt"))
1101     return false;
1102 
1103   // Do not tail call opt functions with varargs.
1104   if (IsVarArg)
1105     return false;
1106 
1107   // Do not tail call opt if the stack is used to pass parameters.
1108   if (CCInfo.getNextStackOffset() != 0)
1109     return false;
1110 
1111   // Do not tail call opt if any parameters need to be passed indirectly.
1112   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
1113   // passed indirectly. So the address of the value will be passed in a
1114   // register, or if not available, then the address is put on the stack. In
1115   // order to pass indirectly, space on the stack often needs to be allocated
1116   // in order to store the value. In this case the CCInfo.getNextStackOffset()
1117   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
1118   // are passed CCValAssign::Indirect.
1119   for (auto &VA : ArgLocs)
1120     if (VA.getLocInfo() == CCValAssign::Indirect)
1121       return false;
1122 
1123   // Do not tail call opt if either caller or callee uses struct return
1124   // semantics.
1125   auto IsCallerStructRet = Caller.hasStructRetAttr();
1126   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
1127   if (IsCallerStructRet || IsCalleeStructRet)
1128     return false;
1129 
1130   // Externally-defined functions with weak linkage should not be
1131   // tail-called. The behaviour of branch instructions in this situation (as
1132   // used for tail calls) is implementation-defined, so we cannot rely on the
1133   // linker replacing the tail call with a return.
1134   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1135     const GlobalValue *GV = G->getGlobal();
1136     if (GV->hasExternalWeakLinkage())
1137       return false;
1138   }
1139 
1140   // The callee has to preserve all registers the caller needs to preserve.
1141   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
1142   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1143   if (CalleeCC != CallerCC) {
1144     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1145     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1146       return false;
1147   }
1148 
1149   // Byval parameters hand the function a pointer directly into the stack area
1150   // we want to reuse during a tail call. Working around this *is* possible
1151   // but less efficient and uglier in LowerCall.
1152   for (auto &Arg : Outs)
1153     if (Arg.Flags.isByVal())
1154       return false;
1155 
1156   return true;
1157 }
1158 
1159 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
1160 // and output parameter nodes.
1161 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
1162                                        SmallVectorImpl<SDValue> &InVals) const {
1163   SelectionDAG &DAG = CLI.DAG;
1164   SDLoc &DL = CLI.DL;
1165   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1166   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1167   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1168   SDValue Chain = CLI.Chain;
1169   SDValue Callee = CLI.Callee;
1170   bool &IsTailCall = CLI.IsTailCall;
1171   CallingConv::ID CallConv = CLI.CallConv;
1172   bool IsVarArg = CLI.IsVarArg;
1173   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1174   MVT XLenVT = Subtarget.getXLenVT();
1175 
1176   MachineFunction &MF = DAG.getMachineFunction();
1177 
1178   // Analyze the operands of the call, assigning locations to each operand.
1179   SmallVector<CCValAssign, 16> ArgLocs;
1180   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1181   analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
1182 
1183   // Check if it's really possible to do a tail call.
1184   if (IsTailCall)
1185     IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF,
1186                                                    ArgLocs);
1187 
1188   if (IsTailCall)
1189     ++NumTailCalls;
1190   else if (CLI.CS && CLI.CS.isMustTailCall())
1191     report_fatal_error("failed to perform tail call elimination on a call "
1192                        "site marked musttail");
1193 
1194   // Get a count of how many bytes are to be pushed on the stack.
1195   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1196 
1197   // Create local copies for byval args
1198   SmallVector<SDValue, 8> ByValArgs;
1199   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1200     ISD::ArgFlagsTy Flags = Outs[i].Flags;
1201     if (!Flags.isByVal())
1202       continue;
1203 
1204     SDValue Arg = OutVals[i];
1205     unsigned Size = Flags.getByValSize();
1206     unsigned Align = Flags.getByValAlign();
1207 
1208     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
1209     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1210     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
1211 
1212     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
1213                           /*IsVolatile=*/false,
1214                           /*AlwaysInline=*/false,
1215                           IsTailCall, MachinePointerInfo(),
1216                           MachinePointerInfo());
1217     ByValArgs.push_back(FIPtr);
1218   }
1219 
1220   if (!IsTailCall)
1221     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
1222 
1223   // Copy argument values to their designated locations.
1224   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1225   SmallVector<SDValue, 8> MemOpChains;
1226   SDValue StackPtr;
1227   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
1228     CCValAssign &VA = ArgLocs[i];
1229     SDValue ArgValue = OutVals[i];
1230     ISD::ArgFlagsTy Flags = Outs[i].Flags;
1231 
1232     // Handle passing f64 on RV32D with a soft float ABI as a special case.
1233     bool IsF64OnRV32DSoftABI =
1234         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
1235     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
1236       SDValue SplitF64 = DAG.getNode(
1237           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
1238       SDValue Lo = SplitF64.getValue(0);
1239       SDValue Hi = SplitF64.getValue(1);
1240 
1241       unsigned RegLo = VA.getLocReg();
1242       RegsToPass.push_back(std::make_pair(RegLo, Lo));
1243 
1244       if (RegLo == RISCV::X17) {
1245         // Second half of f64 is passed on the stack.
1246         // Work out the address of the stack slot.
1247         if (!StackPtr.getNode())
1248           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
1249         // Emit the store.
1250         MemOpChains.push_back(
1251             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
1252       } else {
1253         // Second half of f64 is passed in another GPR.
1254         unsigned RegHigh = RegLo + 1;
1255         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
1256       }
1257       continue;
1258     }
1259 
1260     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
1261     // as any other MemLoc.
1262 
1263     // Promote the value if needed.
1264     // For now, only handle fully promoted and indirect arguments.
1265     switch (VA.getLocInfo()) {
1266     case CCValAssign::Full:
1267       break;
1268     case CCValAssign::BCvt:
1269       ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue);
1270       break;
1271     case CCValAssign::Indirect: {
1272       // Store the argument in a stack slot and pass its address.
1273       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
1274       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1275       MemOpChains.push_back(
1276           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1277                        MachinePointerInfo::getFixedStack(MF, FI)));
1278       // If the original argument was split (e.g. i128), we need
1279       // to store all parts of it here (and pass just one address).
1280       unsigned ArgIndex = Outs[i].OrigArgIndex;
1281       assert(Outs[i].PartOffset == 0);
1282       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
1283         SDValue PartValue = OutVals[i + 1];
1284         unsigned PartOffset = Outs[i + 1].PartOffset;
1285         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1286                                       DAG.getIntPtrConstant(PartOffset, DL));
1287         MemOpChains.push_back(
1288             DAG.getStore(Chain, DL, PartValue, Address,
1289                          MachinePointerInfo::getFixedStack(MF, FI)));
1290         ++i;
1291       }
1292       ArgValue = SpillSlot;
1293       break;
1294     }
1295     default:
1296       llvm_unreachable("Unknown loc info!");
1297     }
1298 
1299     // Use local copy if it is a byval arg.
1300     if (Flags.isByVal())
1301       ArgValue = ByValArgs[j++];
1302 
1303     if (VA.isRegLoc()) {
1304       // Queue up the argument copies and emit them at the end.
1305       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1306     } else {
1307       assert(VA.isMemLoc() && "Argument not register or memory");
1308       assert(!IsTailCall && "Tail call not allowed if stack is used "
1309                             "for passing parameters");
1310 
1311       // Work out the address of the stack slot.
1312       if (!StackPtr.getNode())
1313         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
1314       SDValue Address =
1315           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1316                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
1317 
1318       // Emit the store.
1319       MemOpChains.push_back(
1320           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1321     }
1322   }
1323 
1324   // Join the stores, which are independent of one another.
1325   if (!MemOpChains.empty())
1326     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1327 
1328   SDValue Glue;
1329 
1330   // Build a sequence of copy-to-reg nodes, chained and glued together.
1331   for (auto &Reg : RegsToPass) {
1332     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
1333     Glue = Chain.getValue(1);
1334   }
1335 
1336   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
1337   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
1338   // split it and then direct call can be matched by PseudoCALL.
1339   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
1340     Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0);
1341   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1342     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0);
1343   }
1344 
1345   // The first call operand is the chain and the second is the target address.
1346   SmallVector<SDValue, 8> Ops;
1347   Ops.push_back(Chain);
1348   Ops.push_back(Callee);
1349 
1350   // Add argument registers to the end of the list so that they are
1351   // known live into the call.
1352   for (auto &Reg : RegsToPass)
1353     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1354 
1355   if (!IsTailCall) {
1356     // Add a register mask operand representing the call-preserved registers.
1357     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1358     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1359     assert(Mask && "Missing call preserved mask for calling convention");
1360     Ops.push_back(DAG.getRegisterMask(Mask));
1361   }
1362 
1363   // Glue the call to the argument copies, if any.
1364   if (Glue.getNode())
1365     Ops.push_back(Glue);
1366 
1367   // Emit the call.
1368   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1369 
1370   if (IsTailCall) {
1371     MF.getFrameInfo().setHasTailCall();
1372     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
1373   }
1374 
1375   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
1376   Glue = Chain.getValue(1);
1377 
1378   // Mark the end of the call, which is glued to the call itself.
1379   Chain = DAG.getCALLSEQ_END(Chain,
1380                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1381                              DAG.getConstant(0, DL, PtrVT, true),
1382                              Glue, DL);
1383   Glue = Chain.getValue(1);
1384 
1385   // Assign locations to each value returned by this call.
1386   SmallVector<CCValAssign, 16> RVLocs;
1387   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
1388   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
1389 
1390   // Copy all of the result registers out of their specified physreg.
1391   for (auto &VA : RVLocs) {
1392     // Copy the value out
1393     SDValue RetValue =
1394         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
1395     // Glue the RetValue to the end of the call sequence
1396     Chain = RetValue.getValue(1);
1397     Glue = RetValue.getValue(2);
1398     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
1399       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
1400       SDValue RetValue2 =
1401           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
1402       Chain = RetValue2.getValue(1);
1403       Glue = RetValue2.getValue(2);
1404       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
1405                              RetValue2);
1406     }
1407 
1408     switch (VA.getLocInfo()) {
1409     default:
1410       llvm_unreachable("Unknown loc info!");
1411     case CCValAssign::Full:
1412       break;
1413     case CCValAssign::BCvt:
1414       RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue);
1415       break;
1416     }
1417 
1418     InVals.push_back(RetValue);
1419   }
1420 
1421   return Chain;
1422 }
1423 
1424 bool RISCVTargetLowering::CanLowerReturn(
1425     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
1426     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1427   SmallVector<CCValAssign, 16> RVLocs;
1428   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
1429   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1430     MVT VT = Outs[i].VT;
1431     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1432     if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
1433                  CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
1434       return false;
1435   }
1436   return true;
1437 }
1438 
1439 static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val,
1440                               const CCValAssign &VA, const SDLoc &DL) {
1441   EVT LocVT = VA.getLocVT();
1442 
1443   switch (VA.getLocInfo()) {
1444   default:
1445     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1446   case CCValAssign::Full:
1447     break;
1448   case CCValAssign::BCvt:
1449     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1450     break;
1451   }
1452   return Val;
1453 }
1454 
1455 SDValue
1456 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1457                                  bool IsVarArg,
1458                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1459                                  const SmallVectorImpl<SDValue> &OutVals,
1460                                  const SDLoc &DL, SelectionDAG &DAG) const {
1461   // Stores the assignment of the return value to a location.
1462   SmallVector<CCValAssign, 16> RVLocs;
1463 
1464   // Info about the registers and stack slot.
1465   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
1466                  *DAG.getContext());
1467 
1468   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
1469                     nullptr);
1470 
1471   SDValue Glue;
1472   SmallVector<SDValue, 4> RetOps(1, Chain);
1473 
1474   // Copy the result values into the output registers.
1475   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
1476     SDValue Val = OutVals[i];
1477     CCValAssign &VA = RVLocs[i];
1478     assert(VA.isRegLoc() && "Can only return in registers!");
1479 
1480     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
1481       // Handle returning f64 on RV32D with a soft float ABI.
1482       assert(VA.isRegLoc() && "Expected return via registers");
1483       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
1484                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
1485       SDValue Lo = SplitF64.getValue(0);
1486       SDValue Hi = SplitF64.getValue(1);
1487       unsigned RegLo = VA.getLocReg();
1488       unsigned RegHi = RegLo + 1;
1489       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
1490       Glue = Chain.getValue(1);
1491       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
1492       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
1493       Glue = Chain.getValue(1);
1494       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
1495     } else {
1496       // Handle a 'normal' return.
1497       Val = packIntoRegLoc(DAG, Val, VA, DL);
1498       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
1499 
1500       // Guarantee that all emitted copies are stuck together.
1501       Glue = Chain.getValue(1);
1502       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1503     }
1504   }
1505 
1506   RetOps[0] = Chain; // Update chain.
1507 
1508   // Add the glue node if we have it.
1509   if (Glue.getNode()) {
1510     RetOps.push_back(Glue);
1511   }
1512 
1513   // Interrupt service routines use different return instructions.
1514   const Function &Func = DAG.getMachineFunction().getFunction();
1515   if (Func.hasFnAttribute("interrupt")) {
1516     if (!Func.getReturnType()->isVoidTy())
1517       report_fatal_error(
1518           "Functions with the interrupt attribute must have void return type!");
1519 
1520     MachineFunction &MF = DAG.getMachineFunction();
1521     StringRef Kind =
1522       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1523 
1524     unsigned RetOpc;
1525     if (Kind == "user")
1526       RetOpc = RISCVISD::URET_FLAG;
1527     else if (Kind == "supervisor")
1528       RetOpc = RISCVISD::SRET_FLAG;
1529     else
1530       RetOpc = RISCVISD::MRET_FLAG;
1531 
1532     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
1533   }
1534 
1535   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
1536 }
1537 
1538 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
1539   switch ((RISCVISD::NodeType)Opcode) {
1540   case RISCVISD::FIRST_NUMBER:
1541     break;
1542   case RISCVISD::RET_FLAG:
1543     return "RISCVISD::RET_FLAG";
1544   case RISCVISD::URET_FLAG:
1545     return "RISCVISD::URET_FLAG";
1546   case RISCVISD::SRET_FLAG:
1547     return "RISCVISD::SRET_FLAG";
1548   case RISCVISD::MRET_FLAG:
1549     return "RISCVISD::MRET_FLAG";
1550   case RISCVISD::CALL:
1551     return "RISCVISD::CALL";
1552   case RISCVISD::SELECT_CC:
1553     return "RISCVISD::SELECT_CC";
1554   case RISCVISD::BuildPairF64:
1555     return "RISCVISD::BuildPairF64";
1556   case RISCVISD::SplitF64:
1557     return "RISCVISD::SplitF64";
1558   case RISCVISD::TAIL:
1559     return "RISCVISD::TAIL";
1560   }
1561   return nullptr;
1562 }
1563 
1564 std::pair<unsigned, const TargetRegisterClass *>
1565 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1566                                                   StringRef Constraint,
1567                                                   MVT VT) const {
1568   // First, see if this is a constraint that directly corresponds to a
1569   // RISCV register class.
1570   if (Constraint.size() == 1) {
1571     switch (Constraint[0]) {
1572     case 'r':
1573       return std::make_pair(0U, &RISCV::GPRRegClass);
1574     default:
1575       break;
1576     }
1577   }
1578 
1579   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1580 }
1581 
1582 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
1583                                                    Instruction *Inst,
1584                                                    AtomicOrdering Ord) const {
1585   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
1586     return Builder.CreateFence(Ord);
1587   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
1588     return Builder.CreateFence(AtomicOrdering::Release);
1589   return nullptr;
1590 }
1591 
1592 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
1593                                                     Instruction *Inst,
1594                                                     AtomicOrdering Ord) const {
1595   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
1596     return Builder.CreateFence(AtomicOrdering::Acquire);
1597   return nullptr;
1598 }
1599