1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 147 const TargetRegisterClass *RC; 148 if (LMul == 1 || VT.getVectorElementType() == MVT::i1) 149 RC = &RISCV::VRRegClass; 150 else if (LMul == 2) 151 RC = &RISCV::VRM2RegClass; 152 else if (LMul == 4) 153 RC = &RISCV::VRM4RegClass; 154 else if (LMul == 8) 155 RC = &RISCV::VRM8RegClass; 156 else 157 llvm_unreachable("Unexpected LMul!"); 158 159 addRegisterClass(VT, RC); 160 }; 161 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 165 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 } 169 } 170 171 // Compute derived properties from the register classes. 172 computeRegisterProperties(STI.getRegisterInfo()); 173 174 setStackPointerRegisterToSaveRestore(RISCV::X2); 175 176 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 177 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 178 179 // TODO: add all necessary setOperationAction calls. 180 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 181 182 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 183 setOperationAction(ISD::BR_CC, XLenVT, Expand); 184 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 185 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 186 187 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 188 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 189 190 setOperationAction(ISD::VASTART, MVT::Other, Custom); 191 setOperationAction(ISD::VAARG, MVT::Other, Expand); 192 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 193 setOperationAction(ISD::VAEND, MVT::Other, Expand); 194 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 196 if (!Subtarget.hasStdExtZbb()) { 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 199 } 200 201 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit()) 202 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 203 204 if (Subtarget.is64Bit()) { 205 setOperationAction(ISD::ADD, MVT::i32, Custom); 206 setOperationAction(ISD::SUB, MVT::i32, Custom); 207 setOperationAction(ISD::SHL, MVT::i32, Custom); 208 setOperationAction(ISD::SRA, MVT::i32, Custom); 209 setOperationAction(ISD::SRL, MVT::i32, Custom); 210 211 setOperationAction(ISD::UADDO, MVT::i32, Custom); 212 setOperationAction(ISD::USUBO, MVT::i32, Custom); 213 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 214 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 269 if (Subtarget.is64Bit()) { 270 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 272 } 273 } else { 274 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 275 // pattern match it directly in isel. 276 setOperationAction(ISD::BSWAP, XLenVT, 277 Subtarget.hasStdExtZbb() ? Legal : Expand); 278 } 279 280 if (Subtarget.hasStdExtZbb()) { 281 setOperationAction(ISD::SMIN, XLenVT, Legal); 282 setOperationAction(ISD::SMAX, XLenVT, Legal); 283 setOperationAction(ISD::UMIN, XLenVT, Legal); 284 setOperationAction(ISD::UMAX, XLenVT, Legal); 285 286 if (Subtarget.is64Bit()) { 287 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 288 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 290 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 291 } 292 } else { 293 setOperationAction(ISD::CTTZ, XLenVT, Expand); 294 setOperationAction(ISD::CTLZ, XLenVT, Expand); 295 setOperationAction(ISD::CTPOP, XLenVT, Expand); 296 } 297 298 if (Subtarget.hasStdExtZbt()) { 299 setOperationAction(ISD::FSHL, XLenVT, Custom); 300 setOperationAction(ISD::FSHR, XLenVT, Custom); 301 setOperationAction(ISD::SELECT, XLenVT, Legal); 302 303 if (Subtarget.is64Bit()) { 304 setOperationAction(ISD::FSHL, MVT::i32, Custom); 305 setOperationAction(ISD::FSHR, MVT::i32, Custom); 306 } 307 } else { 308 setOperationAction(ISD::SELECT, XLenVT, Custom); 309 } 310 311 ISD::CondCode FPCCToExpand[] = { 312 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 313 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 314 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 315 316 ISD::NodeType FPOpToExpand[] = { 317 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 318 ISD::FP_TO_FP16}; 319 320 if (Subtarget.hasStdExtZfh()) 321 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 322 323 if (Subtarget.hasStdExtZfh()) { 324 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 325 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 326 for (auto CC : FPCCToExpand) 327 setCondCodeAction(CC, MVT::f16, Expand); 328 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 329 setOperationAction(ISD::SELECT, MVT::f16, Custom); 330 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 331 for (auto Op : FPOpToExpand) 332 setOperationAction(Op, MVT::f16, Expand); 333 } 334 335 if (Subtarget.hasStdExtF()) { 336 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 337 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 338 for (auto CC : FPCCToExpand) 339 setCondCodeAction(CC, MVT::f32, Expand); 340 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 341 setOperationAction(ISD::SELECT, MVT::f32, Custom); 342 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 343 for (auto Op : FPOpToExpand) 344 setOperationAction(Op, MVT::f32, Expand); 345 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 346 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 347 } 348 349 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 350 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 351 352 if (Subtarget.hasStdExtD()) { 353 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 354 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 355 for (auto CC : FPCCToExpand) 356 setCondCodeAction(CC, MVT::f64, Expand); 357 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 358 setOperationAction(ISD::SELECT, MVT::f64, Custom); 359 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 360 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 361 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 362 for (auto Op : FPOpToExpand) 363 setOperationAction(Op, MVT::f64, Expand); 364 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 365 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 366 } 367 368 if (Subtarget.is64Bit()) { 369 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 370 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 371 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 372 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 373 } 374 375 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 376 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 377 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 378 setOperationAction(ISD::JumpTable, XLenVT, Custom); 379 380 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 381 382 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 383 // Unfortunately this can't be determined just from the ISA naming string. 384 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 385 Subtarget.is64Bit() ? Legal : Custom); 386 387 setOperationAction(ISD::TRAP, MVT::Other, Legal); 388 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 389 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 390 391 if (Subtarget.hasStdExtA()) { 392 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 393 setMinCmpXchgSizeInBits(32); 394 } else { 395 setMaxAtomicSizeInBitsSupported(0); 396 } 397 398 setBooleanContents(ZeroOrOneBooleanContent); 399 400 if (Subtarget.hasStdExtV()) { 401 setBooleanVectorContents(ZeroOrOneBooleanContent); 402 403 setOperationAction(ISD::VSCALE, XLenVT, Custom); 404 405 // RVV intrinsics may have illegal operands. 406 // We also need to custom legalize vmv.x.s. 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 411 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 413 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 414 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 415 416 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 417 418 if (!Subtarget.is64Bit()) { 419 // We must custom-lower certain vXi64 operations on RV32 due to the vector 420 // element type being illegal. 421 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 422 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 423 424 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 425 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 428 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 429 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 432 } 433 434 for (MVT VT : BoolVecVTs) { 435 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 436 437 // Mask VTs are custom-expanded into a series of standard nodes 438 setOperationAction(ISD::TRUNCATE, VT, Custom); 439 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 440 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 441 442 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 443 444 // Expand all extending loads to types larger than this, and truncating 445 // stores from types larger than this. 446 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 447 setTruncStoreAction(OtherVT, VT, Expand); 448 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 449 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 450 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 451 } 452 } 453 454 for (MVT VT : IntVecVTs) { 455 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 456 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 457 458 setOperationAction(ISD::SMIN, VT, Legal); 459 setOperationAction(ISD::SMAX, VT, Legal); 460 setOperationAction(ISD::UMIN, VT, Legal); 461 setOperationAction(ISD::UMAX, VT, Legal); 462 463 setOperationAction(ISD::ROTL, VT, Expand); 464 setOperationAction(ISD::ROTR, VT, Expand); 465 466 // Custom-lower extensions and truncations from/to mask types. 467 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 468 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 469 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 470 471 // RVV has native int->float & float->int conversions where the 472 // element type sizes are within one power-of-two of each other. Any 473 // wider distances between type sizes have to be lowered as sequences 474 // which progressively narrow the gap in stages. 475 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 476 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 477 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 478 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 479 480 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 481 // nodes which truncate by one power of two at a time. 482 setOperationAction(ISD::TRUNCATE, VT, Custom); 483 484 // Custom-lower insert/extract operations to simplify patterns. 485 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 486 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 487 488 // Custom-lower reduction operations to set up the corresponding custom 489 // nodes' operands. 490 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 491 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 492 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 493 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 494 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 495 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 496 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 497 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 498 499 setOperationAction(ISD::MLOAD, VT, Custom); 500 setOperationAction(ISD::MSTORE, VT, Custom); 501 setOperationAction(ISD::MGATHER, VT, Custom); 502 setOperationAction(ISD::MSCATTER, VT, Custom); 503 504 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 505 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 506 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 507 508 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 509 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 510 511 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 512 setTruncStoreAction(VT, OtherVT, Expand); 513 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 514 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 515 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 516 } 517 } 518 519 // Expand various CCs to best match the RVV ISA, which natively supports UNE 520 // but no other unordered comparisons, and supports all ordered comparisons 521 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 522 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 523 // and we pattern-match those back to the "original", swapping operands once 524 // more. This way we catch both operations and both "vf" and "fv" forms with 525 // fewer patterns. 526 ISD::CondCode VFPCCToExpand[] = { 527 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 528 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 529 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 530 }; 531 532 // Sets common operation actions on RVV floating-point vector types. 533 const auto SetCommonVFPActions = [&](MVT VT) { 534 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 535 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 536 // sizes are within one power-of-two of each other. Therefore conversions 537 // between vXf16 and vXf64 must be lowered as sequences which convert via 538 // vXf32. 539 setOperationAction(ISD::FP_ROUND, VT, Custom); 540 setOperationAction(ISD::FP_EXTEND, VT, Custom); 541 // Custom-lower insert/extract operations to simplify patterns. 542 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 543 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 544 // Expand various condition codes (explained above). 545 for (auto CC : VFPCCToExpand) 546 setCondCodeAction(CC, VT, Expand); 547 548 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 550 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 551 552 setOperationAction(ISD::MLOAD, VT, Custom); 553 setOperationAction(ISD::MSTORE, VT, Custom); 554 setOperationAction(ISD::MGATHER, VT, Custom); 555 setOperationAction(ISD::MSCATTER, VT, Custom); 556 557 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 558 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 559 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 560 561 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 562 }; 563 564 // Sets common extload/truncstore actions on RVV floating-point vector 565 // types. 566 const auto SetCommonVFPExtLoadTruncStoreActions = 567 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 568 for (auto SmallVT : SmallerVTs) { 569 setTruncStoreAction(VT, SmallVT, Expand); 570 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 571 } 572 }; 573 574 if (Subtarget.hasStdExtZfh()) 575 for (MVT VT : F16VecVTs) 576 SetCommonVFPActions(VT); 577 578 for (MVT VT : F32VecVTs) { 579 if (Subtarget.hasStdExtF()) 580 SetCommonVFPActions(VT); 581 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 582 } 583 584 for (MVT VT : F64VecVTs) { 585 if (Subtarget.hasStdExtD()) 586 SetCommonVFPActions(VT); 587 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 588 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 589 } 590 591 if (Subtarget.useRVVForFixedLengthVectors()) { 592 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 593 if (!useRVVForFixedLengthVectorVT(VT)) 594 continue; 595 596 // By default everything must be expanded. 597 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 598 setOperationAction(Op, VT, Expand); 599 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 600 setTruncStoreAction(VT, OtherVT, Expand); 601 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 602 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 603 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 604 } 605 606 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 607 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 608 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 609 610 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 611 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 612 613 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 614 615 setOperationAction(ISD::LOAD, VT, Custom); 616 setOperationAction(ISD::STORE, VT, Custom); 617 618 setOperationAction(ISD::SETCC, VT, Custom); 619 620 setOperationAction(ISD::TRUNCATE, VT, Custom); 621 622 setOperationAction(ISD::BITCAST, VT, Custom); 623 624 // Operations below are different for between masks and other vectors. 625 if (VT.getVectorElementType() == MVT::i1) { 626 setOperationAction(ISD::AND, VT, Custom); 627 setOperationAction(ISD::OR, VT, Custom); 628 setOperationAction(ISD::XOR, VT, Custom); 629 continue; 630 } 631 632 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 633 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 634 635 setOperationAction(ISD::MLOAD, VT, Custom); 636 setOperationAction(ISD::MSTORE, VT, Custom); 637 setOperationAction(ISD::MGATHER, VT, Custom); 638 setOperationAction(ISD::MSCATTER, VT, Custom); 639 setOperationAction(ISD::ADD, VT, Custom); 640 setOperationAction(ISD::MUL, VT, Custom); 641 setOperationAction(ISD::SUB, VT, Custom); 642 setOperationAction(ISD::AND, VT, Custom); 643 setOperationAction(ISD::OR, VT, Custom); 644 setOperationAction(ISD::XOR, VT, Custom); 645 setOperationAction(ISD::SDIV, VT, Custom); 646 setOperationAction(ISD::SREM, VT, Custom); 647 setOperationAction(ISD::UDIV, VT, Custom); 648 setOperationAction(ISD::UREM, VT, Custom); 649 setOperationAction(ISD::SHL, VT, Custom); 650 setOperationAction(ISD::SRA, VT, Custom); 651 setOperationAction(ISD::SRL, VT, Custom); 652 653 setOperationAction(ISD::SMIN, VT, Custom); 654 setOperationAction(ISD::SMAX, VT, Custom); 655 setOperationAction(ISD::UMIN, VT, Custom); 656 setOperationAction(ISD::UMAX, VT, Custom); 657 setOperationAction(ISD::ABS, VT, Custom); 658 659 setOperationAction(ISD::MULHS, VT, Custom); 660 setOperationAction(ISD::MULHU, VT, Custom); 661 662 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 663 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 664 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 665 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 666 667 setOperationAction(ISD::VSELECT, VT, Custom); 668 669 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 670 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 671 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 672 673 // Custom-lower reduction operations to set up the corresponding custom 674 // nodes' operands. 675 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 676 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 677 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 680 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 681 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 682 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 683 } 684 685 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 686 if (!useRVVForFixedLengthVectorVT(VT)) 687 continue; 688 689 // By default everything must be expanded. 690 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 691 setOperationAction(Op, VT, Expand); 692 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 693 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 694 setTruncStoreAction(VT, OtherVT, Expand); 695 } 696 697 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 698 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 699 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 700 701 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 702 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 703 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 704 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 705 706 setOperationAction(ISD::LOAD, VT, Custom); 707 setOperationAction(ISD::STORE, VT, Custom); 708 setOperationAction(ISD::MLOAD, VT, Custom); 709 setOperationAction(ISD::MSTORE, VT, Custom); 710 setOperationAction(ISD::MGATHER, VT, Custom); 711 setOperationAction(ISD::MSCATTER, VT, Custom); 712 setOperationAction(ISD::FADD, VT, Custom); 713 setOperationAction(ISD::FSUB, VT, Custom); 714 setOperationAction(ISD::FMUL, VT, Custom); 715 setOperationAction(ISD::FDIV, VT, Custom); 716 setOperationAction(ISD::FNEG, VT, Custom); 717 setOperationAction(ISD::FABS, VT, Custom); 718 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 719 setOperationAction(ISD::FSQRT, VT, Custom); 720 setOperationAction(ISD::FMA, VT, Custom); 721 722 setOperationAction(ISD::FP_ROUND, VT, Custom); 723 setOperationAction(ISD::FP_EXTEND, VT, Custom); 724 725 for (auto CC : VFPCCToExpand) 726 setCondCodeAction(CC, VT, Expand); 727 728 setOperationAction(ISD::VSELECT, VT, Custom); 729 730 setOperationAction(ISD::BITCAST, VT, Custom); 731 732 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 733 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 734 } 735 736 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 737 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 738 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 739 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 740 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 741 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 742 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 743 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 744 } 745 } 746 747 // Function alignments. 748 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 749 setMinFunctionAlignment(FunctionAlignment); 750 setPrefFunctionAlignment(FunctionAlignment); 751 752 setMinimumJumpTableEntries(5); 753 754 // Jumps are expensive, compared to logic 755 setJumpIsExpensive(); 756 757 // We can use any register for comparisons 758 setHasMultipleConditionRegisters(); 759 760 if (Subtarget.hasStdExtZbp()) { 761 setTargetDAGCombine(ISD::OR); 762 } 763 if (Subtarget.hasStdExtV()) { 764 setTargetDAGCombine(ISD::FCOPYSIGN); 765 setTargetDAGCombine(ISD::MGATHER); 766 setTargetDAGCombine(ISD::MSCATTER); 767 } 768 } 769 770 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 771 LLVMContext &Context, 772 EVT VT) const { 773 if (!VT.isVector()) 774 return getPointerTy(DL); 775 if (Subtarget.hasStdExtV() && 776 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 777 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 778 return VT.changeVectorElementTypeToInteger(); 779 } 780 781 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 782 const CallInst &I, 783 MachineFunction &MF, 784 unsigned Intrinsic) const { 785 switch (Intrinsic) { 786 default: 787 return false; 788 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 789 case Intrinsic::riscv_masked_atomicrmw_add_i32: 790 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 791 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 792 case Intrinsic::riscv_masked_atomicrmw_max_i32: 793 case Intrinsic::riscv_masked_atomicrmw_min_i32: 794 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 795 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 796 case Intrinsic::riscv_masked_cmpxchg_i32: 797 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 798 Info.opc = ISD::INTRINSIC_W_CHAIN; 799 Info.memVT = MVT::getVT(PtrTy->getElementType()); 800 Info.ptrVal = I.getArgOperand(0); 801 Info.offset = 0; 802 Info.align = Align(4); 803 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 804 MachineMemOperand::MOVolatile; 805 return true; 806 } 807 } 808 809 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 810 const AddrMode &AM, Type *Ty, 811 unsigned AS, 812 Instruction *I) const { 813 // No global is ever allowed as a base. 814 if (AM.BaseGV) 815 return false; 816 817 // Require a 12-bit signed offset. 818 if (!isInt<12>(AM.BaseOffs)) 819 return false; 820 821 switch (AM.Scale) { 822 case 0: // "r+i" or just "i", depending on HasBaseReg. 823 break; 824 case 1: 825 if (!AM.HasBaseReg) // allow "r+i". 826 break; 827 return false; // disallow "r+r" or "r+r+i". 828 default: 829 return false; 830 } 831 832 return true; 833 } 834 835 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 836 return isInt<12>(Imm); 837 } 838 839 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 840 return isInt<12>(Imm); 841 } 842 843 // On RV32, 64-bit integers are split into their high and low parts and held 844 // in two different registers, so the trunc is free since the low register can 845 // just be used. 846 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 847 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 848 return false; 849 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 850 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 851 return (SrcBits == 64 && DestBits == 32); 852 } 853 854 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 855 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 856 !SrcVT.isInteger() || !DstVT.isInteger()) 857 return false; 858 unsigned SrcBits = SrcVT.getSizeInBits(); 859 unsigned DestBits = DstVT.getSizeInBits(); 860 return (SrcBits == 64 && DestBits == 32); 861 } 862 863 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 864 // Zexts are free if they can be combined with a load. 865 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 866 EVT MemVT = LD->getMemoryVT(); 867 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 868 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 869 (LD->getExtensionType() == ISD::NON_EXTLOAD || 870 LD->getExtensionType() == ISD::ZEXTLOAD)) 871 return true; 872 } 873 874 return TargetLowering::isZExtFree(Val, VT2); 875 } 876 877 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 878 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 879 } 880 881 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 882 return Subtarget.hasStdExtZbb(); 883 } 884 885 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 886 return Subtarget.hasStdExtZbb(); 887 } 888 889 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 890 bool ForCodeSize) const { 891 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 892 return false; 893 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 894 return false; 895 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 896 return false; 897 if (Imm.isNegZero()) 898 return false; 899 return Imm.isZero(); 900 } 901 902 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 903 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 904 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 905 (VT == MVT::f64 && Subtarget.hasStdExtD()); 906 } 907 908 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 909 CallingConv::ID CC, 910 EVT VT) const { 911 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 912 // end up using a GPR but that will be decided based on ABI. 913 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 914 return MVT::f32; 915 916 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 917 } 918 919 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 920 CallingConv::ID CC, 921 EVT VT) const { 922 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 923 // end up using a GPR but that will be decided based on ABI. 924 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 925 return 1; 926 927 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 928 } 929 930 // Changes the condition code and swaps operands if necessary, so the SetCC 931 // operation matches one of the comparisons supported directly by branches 932 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 933 // with 1/-1. 934 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 935 ISD::CondCode &CC, SelectionDAG &DAG) { 936 // Convert X > -1 to X >= 0. 937 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 938 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 939 CC = ISD::SETGE; 940 return; 941 } 942 // Convert X < 1 to 0 >= X. 943 if (CC == ISD::SETLT && isOneConstant(RHS)) { 944 RHS = LHS; 945 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 946 CC = ISD::SETGE; 947 return; 948 } 949 950 switch (CC) { 951 default: 952 break; 953 case ISD::SETGT: 954 case ISD::SETLE: 955 case ISD::SETUGT: 956 case ISD::SETULE: 957 CC = ISD::getSetCCSwappedOperands(CC); 958 std::swap(LHS, RHS); 959 break; 960 } 961 } 962 963 // Return the RISC-V branch opcode that matches the given DAG integer 964 // condition code. The CondCode must be one of those supported by the RISC-V 965 // ISA (see translateSetCCForBranch). 966 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 967 switch (CC) { 968 default: 969 llvm_unreachable("Unsupported CondCode"); 970 case ISD::SETEQ: 971 return RISCV::BEQ; 972 case ISD::SETNE: 973 return RISCV::BNE; 974 case ISD::SETLT: 975 return RISCV::BLT; 976 case ISD::SETGE: 977 return RISCV::BGE; 978 case ISD::SETULT: 979 return RISCV::BLTU; 980 case ISD::SETUGE: 981 return RISCV::BGEU; 982 } 983 } 984 985 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 986 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 987 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 988 if (VT.getVectorElementType() == MVT::i1) 989 KnownSize *= 8; 990 991 switch (KnownSize) { 992 default: 993 llvm_unreachable("Invalid LMUL."); 994 case 8: 995 return RISCVVLMUL::LMUL_F8; 996 case 16: 997 return RISCVVLMUL::LMUL_F4; 998 case 32: 999 return RISCVVLMUL::LMUL_F2; 1000 case 64: 1001 return RISCVVLMUL::LMUL_1; 1002 case 128: 1003 return RISCVVLMUL::LMUL_2; 1004 case 256: 1005 return RISCVVLMUL::LMUL_4; 1006 case 512: 1007 return RISCVVLMUL::LMUL_8; 1008 } 1009 } 1010 1011 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 1012 switch (LMul) { 1013 default: 1014 llvm_unreachable("Invalid LMUL."); 1015 case RISCVVLMUL::LMUL_F8: 1016 case RISCVVLMUL::LMUL_F4: 1017 case RISCVVLMUL::LMUL_F2: 1018 case RISCVVLMUL::LMUL_1: 1019 return RISCV::VRRegClassID; 1020 case RISCVVLMUL::LMUL_2: 1021 return RISCV::VRM2RegClassID; 1022 case RISCVVLMUL::LMUL_4: 1023 return RISCV::VRM4RegClassID; 1024 case RISCVVLMUL::LMUL_8: 1025 return RISCV::VRM8RegClassID; 1026 } 1027 } 1028 1029 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1030 RISCVVLMUL LMUL = getLMUL(VT); 1031 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 1032 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 1033 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1034 "Unexpected subreg numbering"); 1035 return RISCV::sub_vrm1_0 + Index; 1036 } 1037 if (LMUL == RISCVVLMUL::LMUL_2) { 1038 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1039 "Unexpected subreg numbering"); 1040 return RISCV::sub_vrm2_0 + Index; 1041 } 1042 if (LMUL == RISCVVLMUL::LMUL_4) { 1043 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1044 "Unexpected subreg numbering"); 1045 return RISCV::sub_vrm4_0 + Index; 1046 } 1047 llvm_unreachable("Invalid vector type."); 1048 } 1049 1050 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1051 if (VT.getVectorElementType() == MVT::i1) 1052 return RISCV::VRRegClassID; 1053 return getRegClassIDForLMUL(getLMUL(VT)); 1054 } 1055 1056 // Attempt to decompose a subvector insert/extract between VecVT and 1057 // SubVecVT via subregister indices. Returns the subregister index that 1058 // can perform the subvector insert/extract with the given element index, as 1059 // well as the index corresponding to any leftover subvectors that must be 1060 // further inserted/extracted within the register class for SubVecVT. 1061 std::pair<unsigned, unsigned> 1062 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1063 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1064 const RISCVRegisterInfo *TRI) { 1065 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1066 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1067 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1068 "Register classes not ordered"); 1069 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1070 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1071 // Try to compose a subregister index that takes us from the incoming 1072 // LMUL>1 register class down to the outgoing one. At each step we half 1073 // the LMUL: 1074 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1075 // Note that this is not guaranteed to find a subregister index, such as 1076 // when we are extracting from one VR type to another. 1077 unsigned SubRegIdx = RISCV::NoSubRegister; 1078 for (const unsigned RCID : 1079 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1080 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1081 VecVT = VecVT.getHalfNumVectorElementsVT(); 1082 bool IsHi = 1083 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1084 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1085 getSubregIndexByMVT(VecVT, IsHi)); 1086 if (IsHi) 1087 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1088 } 1089 return {SubRegIdx, InsertExtractIdx}; 1090 } 1091 1092 // Return the largest legal scalable vector type that matches VT's element type. 1093 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 1094 const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) { 1095 assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) && 1096 "Expected legal fixed length vector!"); 1097 1098 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 1099 assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!"); 1100 1101 MVT EltVT = VT.getVectorElementType(); 1102 switch (EltVT.SimpleTy) { 1103 default: 1104 llvm_unreachable("unexpected element type for RVV container"); 1105 case MVT::i1: { 1106 // Masks are calculated assuming 8-bit elements since that's when we need 1107 // the most elements. 1108 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 1109 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 1110 } 1111 case MVT::i8: 1112 case MVT::i16: 1113 case MVT::i32: 1114 case MVT::i64: 1115 case MVT::f16: 1116 case MVT::f32: 1117 case MVT::f64: { 1118 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 1119 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 1120 } 1121 } 1122 } 1123 1124 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 1125 SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) { 1126 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1127 Subtarget); 1128 } 1129 1130 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1131 return getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1132 } 1133 1134 // Grow V to consume an entire RVV register. 1135 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1136 const RISCVSubtarget &Subtarget) { 1137 assert(VT.isScalableVector() && 1138 "Expected to convert into a scalable vector!"); 1139 assert(V.getValueType().isFixedLengthVector() && 1140 "Expected a fixed length vector operand!"); 1141 SDLoc DL(V); 1142 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1143 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1144 } 1145 1146 // Shrink V so it's just big enough to maintain a VT's worth of data. 1147 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1148 const RISCVSubtarget &Subtarget) { 1149 assert(VT.isFixedLengthVector() && 1150 "Expected to convert into a fixed length vector!"); 1151 assert(V.getValueType().isScalableVector() && 1152 "Expected a scalable vector operand!"); 1153 SDLoc DL(V); 1154 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1155 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1156 } 1157 1158 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1159 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1160 // the vector type that it is contained in. 1161 static std::pair<SDValue, SDValue> 1162 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1163 const RISCVSubtarget &Subtarget) { 1164 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1165 MVT XLenVT = Subtarget.getXLenVT(); 1166 SDValue VL = VecVT.isFixedLengthVector() 1167 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1168 : DAG.getRegister(RISCV::X0, XLenVT); 1169 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1170 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1171 return {Mask, VL}; 1172 } 1173 1174 // As above but assuming the given type is a scalable vector type. 1175 static std::pair<SDValue, SDValue> 1176 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1177 const RISCVSubtarget &Subtarget) { 1178 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1179 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1180 } 1181 1182 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1183 // of either is (currently) supported. This can get us into an infinite loop 1184 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1185 // as a ..., etc. 1186 // Until either (or both) of these can reliably lower any node, reporting that 1187 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1188 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1189 // which is not desirable. 1190 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1191 EVT VT, unsigned DefinedValues) const { 1192 return false; 1193 } 1194 1195 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1196 // Only splats are currently supported. 1197 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1198 return true; 1199 1200 return false; 1201 } 1202 1203 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1204 const RISCVSubtarget &Subtarget) { 1205 MVT VT = Op.getSimpleValueType(); 1206 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1207 1208 MVT ContainerVT = 1209 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 1210 1211 SDLoc DL(Op); 1212 SDValue Mask, VL; 1213 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1214 1215 MVT XLenVT = Subtarget.getXLenVT(); 1216 unsigned NumElts = Op.getNumOperands(); 1217 1218 if (VT.getVectorElementType() == MVT::i1) { 1219 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1220 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1221 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1222 } 1223 1224 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1225 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1226 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1227 } 1228 1229 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1230 // scalar integer chunks whose bit-width depends on the number of mask 1231 // bits and XLEN. 1232 // First, determine the most appropriate scalar integer type to use. This 1233 // is at most XLenVT, but may be shrunk to a smaller vector element type 1234 // according to the size of the final vector - use i8 chunks rather than 1235 // XLenVT if we're producing a v8i1. This results in more consistent 1236 // codegen across RV32 and RV64. 1237 // If we have to use more than one INSERT_VECTOR_ELT then this optimization 1238 // is likely to increase code size; avoid peforming it in such a case. 1239 unsigned NumViaIntegerBits = 1240 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1241 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1242 (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) { 1243 // Now we can create our integer vector type. Note that it may be larger 1244 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1245 MVT IntegerViaVecVT = 1246 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1247 divideCeil(NumElts, NumViaIntegerBits)); 1248 1249 uint64_t Bits = 0; 1250 unsigned BitPos = 0, IntegerEltIdx = 0; 1251 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1252 1253 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1254 // Once we accumulate enough bits to fill our scalar type, insert into 1255 // our vector and clear our accumulated data. 1256 if (I != 0 && I % NumViaIntegerBits == 0) { 1257 if (NumViaIntegerBits <= 32) 1258 Bits = SignExtend64(Bits, 32); 1259 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1260 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1261 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1262 Bits = 0; 1263 BitPos = 0; 1264 IntegerEltIdx++; 1265 } 1266 SDValue V = Op.getOperand(I); 1267 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1268 Bits |= ((uint64_t)BitValue << BitPos); 1269 } 1270 1271 // Insert the (remaining) scalar value into position in our integer 1272 // vector type. 1273 if (NumViaIntegerBits <= 32) 1274 Bits = SignExtend64(Bits, 32); 1275 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1276 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1277 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1278 1279 if (NumElts < NumViaIntegerBits) { 1280 // If we're producing a smaller vector than our minimum legal integer 1281 // type, bitcast to the equivalent (known-legal) mask type, and extract 1282 // our final mask. 1283 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1284 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1285 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1286 DAG.getConstant(0, DL, XLenVT)); 1287 } else { 1288 // Else we must have produced an integer type with the same size as the 1289 // mask type; bitcast for the final result. 1290 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1291 Vec = DAG.getBitcast(VT, Vec); 1292 } 1293 1294 return Vec; 1295 } 1296 1297 return SDValue(); 1298 } 1299 1300 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1301 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1302 : RISCVISD::VMV_V_X_VL; 1303 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1304 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1305 } 1306 1307 // Try and match an index sequence, which we can lower directly to the vid 1308 // instruction. An all-undef vector is matched by getSplatValue, above. 1309 if (VT.isInteger()) { 1310 bool IsVID = true; 1311 for (unsigned I = 0; I < NumElts && IsVID; I++) 1312 IsVID &= Op.getOperand(I).isUndef() || 1313 (isa<ConstantSDNode>(Op.getOperand(I)) && 1314 Op.getConstantOperandVal(I) == I); 1315 1316 if (IsVID) { 1317 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1318 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1319 } 1320 } 1321 1322 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1323 // when re-interpreted as a vector with a larger element type. For example, 1324 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1325 // could be instead splat as 1326 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1327 // TODO: This optimization could also work on non-constant splats, but it 1328 // would require bit-manipulation instructions to construct the splat value. 1329 SmallVector<SDValue> Sequence; 1330 unsigned EltBitSize = VT.getScalarSizeInBits(); 1331 const auto *BV = cast<BuildVectorSDNode>(Op); 1332 if (VT.isInteger() && EltBitSize < 64 && 1333 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1334 BV->getRepeatedSequence(Sequence) && 1335 (Sequence.size() * EltBitSize) <= 64) { 1336 unsigned SeqLen = Sequence.size(); 1337 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1338 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1339 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1340 ViaIntVT == MVT::i64) && 1341 "Unexpected sequence type"); 1342 1343 unsigned EltIdx = 0; 1344 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1345 uint64_t SplatValue = 0; 1346 // Construct the amalgamated value which can be splatted as this larger 1347 // vector type. 1348 for (const auto &SeqV : Sequence) { 1349 if (!SeqV.isUndef()) 1350 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1351 << (EltIdx * EltBitSize)); 1352 EltIdx++; 1353 } 1354 1355 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1356 // achieve better constant materializion. 1357 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1358 SplatValue = SignExtend64(SplatValue, 32); 1359 1360 // Since we can't introduce illegal i64 types at this stage, we can only 1361 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1362 // way we can use RVV instructions to splat. 1363 assert((ViaIntVT.bitsLE(XLenVT) || 1364 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1365 "Unexpected bitcast sequence"); 1366 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1367 SDValue ViaVL = 1368 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1369 MVT ViaContainerVT = 1370 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, ViaVecVT, 1371 Subtarget); 1372 SDValue Splat = 1373 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1374 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1375 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1376 return DAG.getBitcast(VT, Splat); 1377 } 1378 } 1379 1380 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1381 // which constitute a large proportion of the elements. In such cases we can 1382 // splat a vector with the dominant element and make up the shortfall with 1383 // INSERT_VECTOR_ELTs. 1384 // Note that this includes vectors of 2 elements by association. The 1385 // upper-most element is the "dominant" one, allowing us to use a splat to 1386 // "insert" the upper element, and an insert of the lower element at position 1387 // 0, which improves codegen. 1388 SDValue DominantValue; 1389 unsigned MostCommonCount = 0; 1390 DenseMap<SDValue, unsigned> ValueCounts; 1391 unsigned NumUndefElts = 1392 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1393 1394 for (SDValue V : Op->op_values()) { 1395 if (V.isUndef()) 1396 continue; 1397 1398 ValueCounts.insert(std::make_pair(V, 0)); 1399 unsigned &Count = ValueCounts[V]; 1400 1401 // Is this value dominant? In case of a tie, prefer the highest element as 1402 // it's cheaper to insert near the beginning of a vector than it is at the 1403 // end. 1404 if (++Count >= MostCommonCount) { 1405 DominantValue = V; 1406 MostCommonCount = Count; 1407 } 1408 } 1409 1410 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1411 unsigned NumDefElts = NumElts - NumUndefElts; 1412 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1413 1414 // Don't perform this optimization when optimizing for size, since 1415 // materializing elements and inserting them tends to cause code bloat. 1416 if (!DAG.shouldOptForSize() && 1417 ((MostCommonCount > DominantValueCountThreshold) || 1418 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1419 // Start by splatting the most common element. 1420 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1421 1422 DenseSet<SDValue> Processed{DominantValue}; 1423 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1424 for (const auto &OpIdx : enumerate(Op->ops())) { 1425 const SDValue &V = OpIdx.value(); 1426 if (V.isUndef() || !Processed.insert(V).second) 1427 continue; 1428 if (ValueCounts[V] == 1) { 1429 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1430 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1431 } else { 1432 // Blend in all instances of this value using a VSELECT, using a 1433 // mask where each bit signals whether that element is the one 1434 // we're after. 1435 SmallVector<SDValue> Ops; 1436 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1437 return DAG.getConstant(V == V1, DL, XLenVT); 1438 }); 1439 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1440 DAG.getBuildVector(SelMaskTy, DL, Ops), 1441 DAG.getSplatBuildVector(VT, DL, V), Vec); 1442 } 1443 } 1444 1445 return Vec; 1446 } 1447 1448 return SDValue(); 1449 } 1450 1451 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1452 const RISCVSubtarget &Subtarget) { 1453 SDValue V1 = Op.getOperand(0); 1454 SDValue V2 = Op.getOperand(1); 1455 SDLoc DL(Op); 1456 MVT XLenVT = Subtarget.getXLenVT(); 1457 MVT VT = Op.getSimpleValueType(); 1458 unsigned NumElts = VT.getVectorNumElements(); 1459 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1460 1461 if (SVN->isSplat()) { 1462 int Lane = SVN->getSplatIndex(); 1463 if (Lane >= 0) { 1464 MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1465 DAG, VT, Subtarget); 1466 1467 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1468 assert(Lane < (int)NumElts && "Unexpected lane!"); 1469 1470 SDValue Mask, VL; 1471 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1472 SDValue Gather = 1473 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1474 DAG.getConstant(Lane, DL, XLenVT), Mask, VL); 1475 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1476 } 1477 } 1478 1479 // Detect shuffles which can be re-expressed as vector selects. 1480 SmallVector<SDValue> MaskVals; 1481 // By default we preserve the original operand order, and select LHS as true 1482 // and RHS as false. However, since RVV vector selects may feature splats but 1483 // only on the LHS, we may choose to invert our mask and instead select 1484 // between RHS and LHS. 1485 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1486 1487 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1488 int MaskIndex = MaskIdx.value(); 1489 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ SwapOps; 1490 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1491 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1492 }); 1493 1494 if (IsSelect) { 1495 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1496 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1497 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1498 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SwapOps ? V2 : V1, 1499 SwapOps ? V1 : V2); 1500 } 1501 1502 return SDValue(); 1503 } 1504 1505 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1506 SDLoc DL, SelectionDAG &DAG, 1507 const RISCVSubtarget &Subtarget) { 1508 if (VT.isScalableVector()) 1509 return DAG.getFPExtendOrRound(Op, DL, VT); 1510 assert(VT.isFixedLengthVector() && 1511 "Unexpected value type for RVV FP extend/round lowering"); 1512 SDValue Mask, VL; 1513 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1514 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1515 ? RISCVISD::FP_EXTEND_VL 1516 : RISCVISD::FP_ROUND_VL; 1517 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1518 } 1519 1520 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1521 SelectionDAG &DAG) const { 1522 switch (Op.getOpcode()) { 1523 default: 1524 report_fatal_error("unimplemented operand"); 1525 case ISD::GlobalAddress: 1526 return lowerGlobalAddress(Op, DAG); 1527 case ISD::BlockAddress: 1528 return lowerBlockAddress(Op, DAG); 1529 case ISD::ConstantPool: 1530 return lowerConstantPool(Op, DAG); 1531 case ISD::JumpTable: 1532 return lowerJumpTable(Op, DAG); 1533 case ISD::GlobalTLSAddress: 1534 return lowerGlobalTLSAddress(Op, DAG); 1535 case ISD::SELECT: 1536 return lowerSELECT(Op, DAG); 1537 case ISD::BRCOND: 1538 return lowerBRCOND(Op, DAG); 1539 case ISD::VASTART: 1540 return lowerVASTART(Op, DAG); 1541 case ISD::FRAMEADDR: 1542 return lowerFRAMEADDR(Op, DAG); 1543 case ISD::RETURNADDR: 1544 return lowerRETURNADDR(Op, DAG); 1545 case ISD::SHL_PARTS: 1546 return lowerShiftLeftParts(Op, DAG); 1547 case ISD::SRA_PARTS: 1548 return lowerShiftRightParts(Op, DAG, true); 1549 case ISD::SRL_PARTS: 1550 return lowerShiftRightParts(Op, DAG, false); 1551 case ISD::BITCAST: { 1552 SDLoc DL(Op); 1553 EVT VT = Op.getValueType(); 1554 SDValue Op0 = Op.getOperand(0); 1555 EVT Op0VT = Op0.getValueType(); 1556 MVT XLenVT = Subtarget.getXLenVT(); 1557 if (VT.isFixedLengthVector()) { 1558 // We can handle fixed length vector bitcasts with a simple replacement 1559 // in isel. 1560 if (Op0VT.isFixedLengthVector()) 1561 return Op; 1562 // When bitcasting from scalar to fixed-length vector, insert the scalar 1563 // into a one-element vector of the result type, and perform a vector 1564 // bitcast. 1565 if (!Op0VT.isVector()) { 1566 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1567 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1568 DAG.getUNDEF(BVT), Op0, 1569 DAG.getConstant(0, DL, XLenVT))); 1570 } 1571 return SDValue(); 1572 } 1573 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1574 // thus: bitcast the vector to a one-element vector type whose element type 1575 // is the same as the result type, and extract the first element. 1576 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1577 LLVMContext &Context = *DAG.getContext(); 1578 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1579 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1580 DAG.getConstant(0, DL, XLenVT)); 1581 } 1582 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1583 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1584 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1585 return FPConv; 1586 } 1587 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1588 Subtarget.hasStdExtF()) { 1589 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1590 SDValue FPConv = 1591 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1592 return FPConv; 1593 } 1594 return SDValue(); 1595 } 1596 case ISD::INTRINSIC_WO_CHAIN: 1597 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1598 case ISD::INTRINSIC_W_CHAIN: 1599 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1600 case ISD::BSWAP: 1601 case ISD::BITREVERSE: { 1602 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1603 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1604 MVT VT = Op.getSimpleValueType(); 1605 SDLoc DL(Op); 1606 // Start with the maximum immediate value which is the bitwidth - 1. 1607 unsigned Imm = VT.getSizeInBits() - 1; 1608 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1609 if (Op.getOpcode() == ISD::BSWAP) 1610 Imm &= ~0x7U; 1611 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 1612 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 1613 } 1614 case ISD::FSHL: 1615 case ISD::FSHR: { 1616 MVT VT = Op.getSimpleValueType(); 1617 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1618 SDLoc DL(Op); 1619 if (Op.getOperand(2).getOpcode() == ISD::Constant) 1620 return Op; 1621 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1622 // use log(XLen) bits. Mask the shift amount accordingly. 1623 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1624 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1625 DAG.getConstant(ShAmtWidth, DL, VT)); 1626 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1627 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1628 } 1629 case ISD::TRUNCATE: { 1630 SDLoc DL(Op); 1631 MVT VT = Op.getSimpleValueType(); 1632 // Only custom-lower vector truncates 1633 if (!VT.isVector()) 1634 return Op; 1635 1636 // Truncates to mask types are handled differently 1637 if (VT.getVectorElementType() == MVT::i1) 1638 return lowerVectorMaskTrunc(Op, DAG); 1639 1640 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 1641 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 1642 // truncate by one power of two at a time. 1643 MVT DstEltVT = VT.getVectorElementType(); 1644 1645 SDValue Src = Op.getOperand(0); 1646 MVT SrcVT = Src.getSimpleValueType(); 1647 MVT SrcEltVT = SrcVT.getVectorElementType(); 1648 1649 assert(DstEltVT.bitsLT(SrcEltVT) && 1650 isPowerOf2_64(DstEltVT.getSizeInBits()) && 1651 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 1652 "Unexpected vector truncate lowering"); 1653 1654 MVT ContainerVT = SrcVT; 1655 if (SrcVT.isFixedLengthVector()) { 1656 ContainerVT = getContainerForFixedLengthVector(SrcVT); 1657 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 1658 } 1659 1660 SDValue Result = Src; 1661 SDValue Mask, VL; 1662 std::tie(Mask, VL) = 1663 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 1664 LLVMContext &Context = *DAG.getContext(); 1665 const ElementCount Count = ContainerVT.getVectorElementCount(); 1666 do { 1667 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 1668 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 1669 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 1670 Mask, VL); 1671 } while (SrcEltVT != DstEltVT); 1672 1673 if (SrcVT.isFixedLengthVector()) 1674 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 1675 1676 return Result; 1677 } 1678 case ISD::ANY_EXTEND: 1679 case ISD::ZERO_EXTEND: 1680 if (Op.getOperand(0).getValueType().isVector() && 1681 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1682 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 1683 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 1684 case ISD::SIGN_EXTEND: 1685 if (Op.getOperand(0).getValueType().isVector() && 1686 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1687 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 1688 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 1689 case ISD::SPLAT_VECTOR_PARTS: 1690 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 1691 case ISD::INSERT_VECTOR_ELT: 1692 return lowerINSERT_VECTOR_ELT(Op, DAG); 1693 case ISD::EXTRACT_VECTOR_ELT: 1694 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1695 case ISD::VSCALE: { 1696 MVT VT = Op.getSimpleValueType(); 1697 SDLoc DL(Op); 1698 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 1699 // We define our scalable vector types for lmul=1 to use a 64 bit known 1700 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 1701 // vscale as VLENB / 8. 1702 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 1703 DAG.getConstant(3, DL, VT)); 1704 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 1705 } 1706 case ISD::FP_EXTEND: { 1707 // RVV can only do fp_extend to types double the size as the source. We 1708 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 1709 // via f32. 1710 SDLoc DL(Op); 1711 MVT VT = Op.getSimpleValueType(); 1712 SDValue Src = Op.getOperand(0); 1713 MVT SrcVT = Src.getSimpleValueType(); 1714 1715 // Prepare any fixed-length vector operands. 1716 MVT ContainerVT = VT; 1717 if (SrcVT.isFixedLengthVector()) { 1718 ContainerVT = getContainerForFixedLengthVector(VT); 1719 MVT SrcContainerVT = 1720 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 1721 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1722 } 1723 1724 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 1725 SrcVT.getVectorElementType() != MVT::f16) { 1726 // For scalable vectors, we only need to close the gap between 1727 // vXf16->vXf64. 1728 if (!VT.isFixedLengthVector()) 1729 return Op; 1730 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 1731 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1732 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1733 } 1734 1735 MVT InterVT = VT.changeVectorElementType(MVT::f32); 1736 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 1737 SDValue IntermediateExtend = getRVVFPExtendOrRound( 1738 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 1739 1740 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 1741 DL, DAG, Subtarget); 1742 if (VT.isFixedLengthVector()) 1743 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 1744 return Extend; 1745 } 1746 case ISD::FP_ROUND: { 1747 // RVV can only do fp_round to types half the size as the source. We 1748 // custom-lower f64->f16 rounds via RVV's round-to-odd float 1749 // conversion instruction. 1750 SDLoc DL(Op); 1751 MVT VT = Op.getSimpleValueType(); 1752 SDValue Src = Op.getOperand(0); 1753 MVT SrcVT = Src.getSimpleValueType(); 1754 1755 // Prepare any fixed-length vector operands. 1756 MVT ContainerVT = VT; 1757 if (VT.isFixedLengthVector()) { 1758 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 1759 ContainerVT = 1760 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1761 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1762 } 1763 1764 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 1765 SrcVT.getVectorElementType() != MVT::f64) { 1766 // For scalable vectors, we only need to close the gap between 1767 // vXf64<->vXf16. 1768 if (!VT.isFixedLengthVector()) 1769 return Op; 1770 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 1771 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1772 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1773 } 1774 1775 SDValue Mask, VL; 1776 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1777 1778 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 1779 SDValue IntermediateRound = 1780 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 1781 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 1782 DL, DAG, Subtarget); 1783 1784 if (VT.isFixedLengthVector()) 1785 return convertFromScalableVector(VT, Round, DAG, Subtarget); 1786 return Round; 1787 } 1788 case ISD::FP_TO_SINT: 1789 case ISD::FP_TO_UINT: 1790 case ISD::SINT_TO_FP: 1791 case ISD::UINT_TO_FP: { 1792 // RVV can only do fp<->int conversions to types half/double the size as 1793 // the source. We custom-lower any conversions that do two hops into 1794 // sequences. 1795 MVT VT = Op.getSimpleValueType(); 1796 if (!VT.isVector()) 1797 return Op; 1798 SDLoc DL(Op); 1799 SDValue Src = Op.getOperand(0); 1800 MVT EltVT = VT.getVectorElementType(); 1801 MVT SrcVT = Src.getSimpleValueType(); 1802 MVT SrcEltVT = SrcVT.getVectorElementType(); 1803 unsigned EltSize = EltVT.getSizeInBits(); 1804 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 1805 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 1806 "Unexpected vector element types"); 1807 1808 bool IsInt2FP = SrcEltVT.isInteger(); 1809 // Widening conversions 1810 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 1811 if (IsInt2FP) { 1812 // Do a regular integer sign/zero extension then convert to float. 1813 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 1814 VT.getVectorElementCount()); 1815 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 1816 ? ISD::ZERO_EXTEND 1817 : ISD::SIGN_EXTEND; 1818 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 1819 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 1820 } 1821 // FP2Int 1822 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 1823 // Do one doubling fp_extend then complete the operation by converting 1824 // to int. 1825 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1826 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 1827 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 1828 } 1829 1830 // Narrowing conversions 1831 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 1832 if (IsInt2FP) { 1833 // One narrowing int_to_fp, then an fp_round. 1834 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 1835 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1836 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 1837 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 1838 } 1839 // FP2Int 1840 // One narrowing fp_to_int, then truncate the integer. If the float isn't 1841 // representable by the integer, the result is poison. 1842 MVT IVecVT = 1843 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 1844 VT.getVectorElementCount()); 1845 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 1846 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 1847 } 1848 1849 // Scalable vectors can exit here. Patterns will handle equally-sized 1850 // conversions halving/doubling ones. 1851 if (!VT.isFixedLengthVector()) 1852 return Op; 1853 1854 // For fixed-length vectors we lower to a custom "VL" node. 1855 unsigned RVVOpc = 0; 1856 switch (Op.getOpcode()) { 1857 default: 1858 llvm_unreachable("Impossible opcode"); 1859 case ISD::FP_TO_SINT: 1860 RVVOpc = RISCVISD::FP_TO_SINT_VL; 1861 break; 1862 case ISD::FP_TO_UINT: 1863 RVVOpc = RISCVISD::FP_TO_UINT_VL; 1864 break; 1865 case ISD::SINT_TO_FP: 1866 RVVOpc = RISCVISD::SINT_TO_FP_VL; 1867 break; 1868 case ISD::UINT_TO_FP: 1869 RVVOpc = RISCVISD::UINT_TO_FP_VL; 1870 break; 1871 } 1872 1873 MVT ContainerVT, SrcContainerVT; 1874 // Derive the reference container type from the larger vector type. 1875 if (SrcEltSize > EltSize) { 1876 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 1877 ContainerVT = 1878 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1879 } else { 1880 ContainerVT = getContainerForFixedLengthVector(VT); 1881 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 1882 } 1883 1884 SDValue Mask, VL; 1885 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1886 1887 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1888 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 1889 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1890 } 1891 case ISD::VECREDUCE_ADD: 1892 case ISD::VECREDUCE_UMAX: 1893 case ISD::VECREDUCE_SMAX: 1894 case ISD::VECREDUCE_UMIN: 1895 case ISD::VECREDUCE_SMIN: 1896 case ISD::VECREDUCE_AND: 1897 case ISD::VECREDUCE_OR: 1898 case ISD::VECREDUCE_XOR: 1899 return lowerVECREDUCE(Op, DAG); 1900 case ISD::VECREDUCE_FADD: 1901 case ISD::VECREDUCE_SEQ_FADD: 1902 return lowerFPVECREDUCE(Op, DAG); 1903 case ISD::INSERT_SUBVECTOR: 1904 return lowerINSERT_SUBVECTOR(Op, DAG); 1905 case ISD::EXTRACT_SUBVECTOR: 1906 return lowerEXTRACT_SUBVECTOR(Op, DAG); 1907 case ISD::STEP_VECTOR: 1908 return lowerSTEP_VECTOR(Op, DAG); 1909 case ISD::VECTOR_REVERSE: 1910 return lowerVECTOR_REVERSE(Op, DAG); 1911 case ISD::BUILD_VECTOR: 1912 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 1913 case ISD::VECTOR_SHUFFLE: 1914 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 1915 case ISD::CONCAT_VECTORS: { 1916 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 1917 // better than going through the stack, as the default expansion does. 1918 SDLoc DL(Op); 1919 MVT VT = Op.getSimpleValueType(); 1920 unsigned NumOpElts = 1921 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 1922 SDValue Vec = DAG.getUNDEF(VT); 1923 for (const auto &OpIdx : enumerate(Op->ops())) 1924 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 1925 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 1926 return Vec; 1927 } 1928 case ISD::LOAD: 1929 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 1930 case ISD::STORE: 1931 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 1932 case ISD::MLOAD: 1933 return lowerMLOAD(Op, DAG); 1934 case ISD::MSTORE: 1935 return lowerMSTORE(Op, DAG); 1936 case ISD::SETCC: 1937 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 1938 case ISD::ADD: 1939 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 1940 case ISD::SUB: 1941 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 1942 case ISD::MUL: 1943 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 1944 case ISD::MULHS: 1945 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 1946 case ISD::MULHU: 1947 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 1948 case ISD::AND: 1949 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 1950 RISCVISD::AND_VL); 1951 case ISD::OR: 1952 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 1953 RISCVISD::OR_VL); 1954 case ISD::XOR: 1955 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 1956 RISCVISD::XOR_VL); 1957 case ISD::SDIV: 1958 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 1959 case ISD::SREM: 1960 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 1961 case ISD::UDIV: 1962 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 1963 case ISD::UREM: 1964 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 1965 case ISD::SHL: 1966 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 1967 case ISD::SRA: 1968 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 1969 case ISD::SRL: 1970 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 1971 case ISD::FADD: 1972 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 1973 case ISD::FSUB: 1974 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 1975 case ISD::FMUL: 1976 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 1977 case ISD::FDIV: 1978 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 1979 case ISD::FNEG: 1980 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 1981 case ISD::FABS: 1982 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 1983 case ISD::FSQRT: 1984 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 1985 case ISD::FMA: 1986 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 1987 case ISD::SMIN: 1988 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 1989 case ISD::SMAX: 1990 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 1991 case ISD::UMIN: 1992 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 1993 case ISD::UMAX: 1994 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 1995 case ISD::ABS: 1996 return lowerABS(Op, DAG); 1997 case ISD::VSELECT: 1998 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 1999 case ISD::FCOPYSIGN: 2000 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2001 case ISD::MGATHER: 2002 return lowerMGATHER(Op, DAG); 2003 case ISD::MSCATTER: 2004 return lowerMSCATTER(Op, DAG); 2005 } 2006 } 2007 2008 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2009 SelectionDAG &DAG, unsigned Flags) { 2010 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2011 } 2012 2013 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2014 SelectionDAG &DAG, unsigned Flags) { 2015 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2016 Flags); 2017 } 2018 2019 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2020 SelectionDAG &DAG, unsigned Flags) { 2021 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2022 N->getOffset(), Flags); 2023 } 2024 2025 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2026 SelectionDAG &DAG, unsigned Flags) { 2027 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2028 } 2029 2030 template <class NodeTy> 2031 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2032 bool IsLocal) const { 2033 SDLoc DL(N); 2034 EVT Ty = getPointerTy(DAG.getDataLayout()); 2035 2036 if (isPositionIndependent()) { 2037 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2038 if (IsLocal) 2039 // Use PC-relative addressing to access the symbol. This generates the 2040 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2041 // %pcrel_lo(auipc)). 2042 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2043 2044 // Use PC-relative addressing to access the GOT for this symbol, then load 2045 // the address from the GOT. This generates the pattern (PseudoLA sym), 2046 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2047 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2048 } 2049 2050 switch (getTargetMachine().getCodeModel()) { 2051 default: 2052 report_fatal_error("Unsupported code model for lowering"); 2053 case CodeModel::Small: { 2054 // Generate a sequence for accessing addresses within the first 2 GiB of 2055 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2056 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2057 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2058 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2059 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2060 } 2061 case CodeModel::Medium: { 2062 // Generate a sequence for accessing addresses within any 2GiB range within 2063 // the address space. This generates the pattern (PseudoLLA sym), which 2064 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2065 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2066 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2067 } 2068 } 2069 } 2070 2071 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2072 SelectionDAG &DAG) const { 2073 SDLoc DL(Op); 2074 EVT Ty = Op.getValueType(); 2075 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2076 int64_t Offset = N->getOffset(); 2077 MVT XLenVT = Subtarget.getXLenVT(); 2078 2079 const GlobalValue *GV = N->getGlobal(); 2080 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2081 SDValue Addr = getAddr(N, DAG, IsLocal); 2082 2083 // In order to maximise the opportunity for common subexpression elimination, 2084 // emit a separate ADD node for the global address offset instead of folding 2085 // it in the global address node. Later peephole optimisations may choose to 2086 // fold it back in when profitable. 2087 if (Offset != 0) 2088 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2089 DAG.getConstant(Offset, DL, XLenVT)); 2090 return Addr; 2091 } 2092 2093 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2094 SelectionDAG &DAG) const { 2095 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2096 2097 return getAddr(N, DAG); 2098 } 2099 2100 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2101 SelectionDAG &DAG) const { 2102 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2103 2104 return getAddr(N, DAG); 2105 } 2106 2107 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2108 SelectionDAG &DAG) const { 2109 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2110 2111 return getAddr(N, DAG); 2112 } 2113 2114 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2115 SelectionDAG &DAG, 2116 bool UseGOT) const { 2117 SDLoc DL(N); 2118 EVT Ty = getPointerTy(DAG.getDataLayout()); 2119 const GlobalValue *GV = N->getGlobal(); 2120 MVT XLenVT = Subtarget.getXLenVT(); 2121 2122 if (UseGOT) { 2123 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2124 // load the address from the GOT and add the thread pointer. This generates 2125 // the pattern (PseudoLA_TLS_IE sym), which expands to 2126 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2127 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2128 SDValue Load = 2129 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2130 2131 // Add the thread pointer. 2132 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2133 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2134 } 2135 2136 // Generate a sequence for accessing the address relative to the thread 2137 // pointer, with the appropriate adjustment for the thread pointer offset. 2138 // This generates the pattern 2139 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2140 SDValue AddrHi = 2141 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2142 SDValue AddrAdd = 2143 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2144 SDValue AddrLo = 2145 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2146 2147 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2148 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2149 SDValue MNAdd = SDValue( 2150 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2151 0); 2152 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2153 } 2154 2155 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2156 SelectionDAG &DAG) const { 2157 SDLoc DL(N); 2158 EVT Ty = getPointerTy(DAG.getDataLayout()); 2159 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2160 const GlobalValue *GV = N->getGlobal(); 2161 2162 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2163 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2164 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2165 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2166 SDValue Load = 2167 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2168 2169 // Prepare argument list to generate call. 2170 ArgListTy Args; 2171 ArgListEntry Entry; 2172 Entry.Node = Load; 2173 Entry.Ty = CallTy; 2174 Args.push_back(Entry); 2175 2176 // Setup call to __tls_get_addr. 2177 TargetLowering::CallLoweringInfo CLI(DAG); 2178 CLI.setDebugLoc(DL) 2179 .setChain(DAG.getEntryNode()) 2180 .setLibCallee(CallingConv::C, CallTy, 2181 DAG.getExternalSymbol("__tls_get_addr", Ty), 2182 std::move(Args)); 2183 2184 return LowerCallTo(CLI).first; 2185 } 2186 2187 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2188 SelectionDAG &DAG) const { 2189 SDLoc DL(Op); 2190 EVT Ty = Op.getValueType(); 2191 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2192 int64_t Offset = N->getOffset(); 2193 MVT XLenVT = Subtarget.getXLenVT(); 2194 2195 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2196 2197 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2198 CallingConv::GHC) 2199 report_fatal_error("In GHC calling convention TLS is not supported"); 2200 2201 SDValue Addr; 2202 switch (Model) { 2203 case TLSModel::LocalExec: 2204 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2205 break; 2206 case TLSModel::InitialExec: 2207 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2208 break; 2209 case TLSModel::LocalDynamic: 2210 case TLSModel::GeneralDynamic: 2211 Addr = getDynamicTLSAddr(N, DAG); 2212 break; 2213 } 2214 2215 // In order to maximise the opportunity for common subexpression elimination, 2216 // emit a separate ADD node for the global address offset instead of folding 2217 // it in the global address node. Later peephole optimisations may choose to 2218 // fold it back in when profitable. 2219 if (Offset != 0) 2220 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2221 DAG.getConstant(Offset, DL, XLenVT)); 2222 return Addr; 2223 } 2224 2225 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2226 SDValue CondV = Op.getOperand(0); 2227 SDValue TrueV = Op.getOperand(1); 2228 SDValue FalseV = Op.getOperand(2); 2229 SDLoc DL(Op); 2230 MVT XLenVT = Subtarget.getXLenVT(); 2231 2232 // If the result type is XLenVT and CondV is the output of a SETCC node 2233 // which also operated on XLenVT inputs, then merge the SETCC node into the 2234 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2235 // compare+branch instructions. i.e.: 2236 // (select (setcc lhs, rhs, cc), truev, falsev) 2237 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2238 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2239 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2240 SDValue LHS = CondV.getOperand(0); 2241 SDValue RHS = CondV.getOperand(1); 2242 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2243 ISD::CondCode CCVal = CC->get(); 2244 2245 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2246 2247 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 2248 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2249 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2250 } 2251 2252 // Otherwise: 2253 // (select condv, truev, falsev) 2254 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2255 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2256 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 2257 2258 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2259 2260 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2261 } 2262 2263 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2264 SDValue CondV = Op.getOperand(1); 2265 SDLoc DL(Op); 2266 MVT XLenVT = Subtarget.getXLenVT(); 2267 2268 if (CondV.getOpcode() == ISD::SETCC && 2269 CondV.getOperand(0).getValueType() == XLenVT) { 2270 SDValue LHS = CondV.getOperand(0); 2271 SDValue RHS = CondV.getOperand(1); 2272 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2273 2274 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2275 2276 SDValue TargetCC = DAG.getCondCode(CCVal); 2277 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2278 LHS, RHS, TargetCC, Op.getOperand(2)); 2279 } 2280 2281 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2282 CondV, DAG.getConstant(0, DL, XLenVT), 2283 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2284 } 2285 2286 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2287 MachineFunction &MF = DAG.getMachineFunction(); 2288 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2289 2290 SDLoc DL(Op); 2291 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2292 getPointerTy(MF.getDataLayout())); 2293 2294 // vastart just stores the address of the VarArgsFrameIndex slot into the 2295 // memory location argument. 2296 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2297 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2298 MachinePointerInfo(SV)); 2299 } 2300 2301 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2302 SelectionDAG &DAG) const { 2303 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2304 MachineFunction &MF = DAG.getMachineFunction(); 2305 MachineFrameInfo &MFI = MF.getFrameInfo(); 2306 MFI.setFrameAddressIsTaken(true); 2307 Register FrameReg = RI.getFrameRegister(MF); 2308 int XLenInBytes = Subtarget.getXLen() / 8; 2309 2310 EVT VT = Op.getValueType(); 2311 SDLoc DL(Op); 2312 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2313 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2314 while (Depth--) { 2315 int Offset = -(XLenInBytes * 2); 2316 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2317 DAG.getIntPtrConstant(Offset, DL)); 2318 FrameAddr = 2319 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2320 } 2321 return FrameAddr; 2322 } 2323 2324 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2325 SelectionDAG &DAG) const { 2326 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2327 MachineFunction &MF = DAG.getMachineFunction(); 2328 MachineFrameInfo &MFI = MF.getFrameInfo(); 2329 MFI.setReturnAddressIsTaken(true); 2330 MVT XLenVT = Subtarget.getXLenVT(); 2331 int XLenInBytes = Subtarget.getXLen() / 8; 2332 2333 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2334 return SDValue(); 2335 2336 EVT VT = Op.getValueType(); 2337 SDLoc DL(Op); 2338 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2339 if (Depth) { 2340 int Off = -XLenInBytes; 2341 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2342 SDValue Offset = DAG.getConstant(Off, DL, VT); 2343 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2344 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2345 MachinePointerInfo()); 2346 } 2347 2348 // Return the value of the return address register, marking it an implicit 2349 // live-in. 2350 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2351 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2352 } 2353 2354 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2355 SelectionDAG &DAG) const { 2356 SDLoc DL(Op); 2357 SDValue Lo = Op.getOperand(0); 2358 SDValue Hi = Op.getOperand(1); 2359 SDValue Shamt = Op.getOperand(2); 2360 EVT VT = Lo.getValueType(); 2361 2362 // if Shamt-XLEN < 0: // Shamt < XLEN 2363 // Lo = Lo << Shamt 2364 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2365 // else: 2366 // Lo = 0 2367 // Hi = Lo << (Shamt-XLEN) 2368 2369 SDValue Zero = DAG.getConstant(0, DL, VT); 2370 SDValue One = DAG.getConstant(1, DL, VT); 2371 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2372 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2373 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2374 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2375 2376 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2377 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2378 SDValue ShiftRightLo = 2379 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2380 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2381 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2382 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2383 2384 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2385 2386 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2387 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2388 2389 SDValue Parts[2] = {Lo, Hi}; 2390 return DAG.getMergeValues(Parts, DL); 2391 } 2392 2393 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2394 bool IsSRA) const { 2395 SDLoc DL(Op); 2396 SDValue Lo = Op.getOperand(0); 2397 SDValue Hi = Op.getOperand(1); 2398 SDValue Shamt = Op.getOperand(2); 2399 EVT VT = Lo.getValueType(); 2400 2401 // SRA expansion: 2402 // if Shamt-XLEN < 0: // Shamt < XLEN 2403 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2404 // Hi = Hi >>s Shamt 2405 // else: 2406 // Lo = Hi >>s (Shamt-XLEN); 2407 // Hi = Hi >>s (XLEN-1) 2408 // 2409 // SRL expansion: 2410 // if Shamt-XLEN < 0: // Shamt < XLEN 2411 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2412 // Hi = Hi >>u Shamt 2413 // else: 2414 // Lo = Hi >>u (Shamt-XLEN); 2415 // Hi = 0; 2416 2417 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2418 2419 SDValue Zero = DAG.getConstant(0, DL, VT); 2420 SDValue One = DAG.getConstant(1, DL, VT); 2421 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2422 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2423 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2424 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2425 2426 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2427 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2428 SDValue ShiftLeftHi = 2429 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2430 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2431 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2432 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2433 SDValue HiFalse = 2434 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2435 2436 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2437 2438 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2439 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2440 2441 SDValue Parts[2] = {Lo, Hi}; 2442 return DAG.getMergeValues(Parts, DL); 2443 } 2444 2445 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2446 // illegal (currently only vXi64 RV32). 2447 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2448 // them to SPLAT_VECTOR_I64 2449 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2450 SelectionDAG &DAG) const { 2451 SDLoc DL(Op); 2452 EVT VecVT = Op.getValueType(); 2453 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2454 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2455 2456 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2457 SDValue Lo = Op.getOperand(0); 2458 SDValue Hi = Op.getOperand(1); 2459 2460 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2461 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2462 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2463 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2464 // node in order to try and match RVV vector/scalar instructions. 2465 if ((LoC >> 31) == HiC) 2466 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2467 } 2468 2469 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 2470 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 2471 // vmv.v.x vX, hi 2472 // vsll.vx vX, vX, /*32*/ 2473 // vmv.v.x vY, lo 2474 // vsll.vx vY, vY, /*32*/ 2475 // vsrl.vx vY, vY, /*32*/ 2476 // vor.vv vX, vX, vY 2477 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 2478 2479 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2480 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 2481 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 2482 2483 if (isNullConstant(Hi)) 2484 return Lo; 2485 2486 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 2487 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 2488 2489 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 2490 } 2491 2492 // Custom-lower extensions from mask vectors by using a vselect either with 1 2493 // for zero/any-extension or -1 for sign-extension: 2494 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2495 // Note that any-extension is lowered identically to zero-extension. 2496 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2497 int64_t ExtTrueVal) const { 2498 SDLoc DL(Op); 2499 MVT VecVT = Op.getSimpleValueType(); 2500 SDValue Src = Op.getOperand(0); 2501 // Only custom-lower extensions from mask types 2502 assert(Src.getValueType().isVector() && 2503 Src.getValueType().getVectorElementType() == MVT::i1); 2504 2505 MVT XLenVT = Subtarget.getXLenVT(); 2506 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2507 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2508 2509 if (VecVT.isScalableVector()) { 2510 // Be careful not to introduce illegal scalar types at this stage, and be 2511 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2512 // illegal and must be expanded. Since we know that the constants are 2513 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2514 bool IsRV32E64 = 2515 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2516 2517 if (!IsRV32E64) { 2518 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2519 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2520 } else { 2521 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2522 SplatTrueVal = 2523 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2524 } 2525 2526 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2527 } 2528 2529 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2530 MVT I1ContainerVT = 2531 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2532 2533 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2534 2535 SDValue Mask, VL; 2536 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2537 2538 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2539 SplatTrueVal = 2540 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2541 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2542 SplatTrueVal, SplatZero, VL); 2543 2544 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2545 } 2546 2547 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 2548 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 2549 MVT ExtVT = Op.getSimpleValueType(); 2550 // Only custom-lower extensions from fixed-length vector types. 2551 if (!ExtVT.isFixedLengthVector()) 2552 return Op; 2553 MVT VT = Op.getOperand(0).getSimpleValueType(); 2554 // Grab the canonical container type for the extended type. Infer the smaller 2555 // type from that to ensure the same number of vector elements, as we know 2556 // the LMUL will be sufficient to hold the smaller type. 2557 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 2558 // Get the extended container type manually to ensure the same number of 2559 // vector elements between source and dest. 2560 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 2561 ContainerExtVT.getVectorElementCount()); 2562 2563 SDValue Op1 = 2564 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2565 2566 SDLoc DL(Op); 2567 SDValue Mask, VL; 2568 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2569 2570 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 2571 2572 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 2573 } 2574 2575 // Custom-lower truncations from vectors to mask vectors by using a mask and a 2576 // setcc operation: 2577 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 2578 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 2579 SelectionDAG &DAG) const { 2580 SDLoc DL(Op); 2581 EVT MaskVT = Op.getValueType(); 2582 // Only expect to custom-lower truncations to mask types 2583 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 2584 "Unexpected type for vector mask lowering"); 2585 SDValue Src = Op.getOperand(0); 2586 MVT VecVT = Src.getSimpleValueType(); 2587 2588 // If this is a fixed vector, we need to convert it to a scalable vector. 2589 MVT ContainerVT = VecVT; 2590 if (VecVT.isFixedLengthVector()) { 2591 ContainerVT = getContainerForFixedLengthVector(VecVT); 2592 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2593 } 2594 2595 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 2596 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 2597 2598 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 2599 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 2600 2601 if (VecVT.isScalableVector()) { 2602 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 2603 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 2604 } 2605 2606 SDValue Mask, VL; 2607 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2608 2609 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2610 SDValue Trunc = 2611 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 2612 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 2613 DAG.getCondCode(ISD::SETNE), Mask, VL); 2614 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 2615 } 2616 2617 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 2618 // first position of a vector, and that vector is slid up to the insert index. 2619 // By limiting the active vector length to index+1 and merging with the 2620 // original vector (with an undisturbed tail policy for elements >= VL), we 2621 // achieve the desired result of leaving all elements untouched except the one 2622 // at VL-1, which is replaced with the desired value. 2623 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2624 SelectionDAG &DAG) const { 2625 SDLoc DL(Op); 2626 MVT VecVT = Op.getSimpleValueType(); 2627 SDValue Vec = Op.getOperand(0); 2628 SDValue Val = Op.getOperand(1); 2629 SDValue Idx = Op.getOperand(2); 2630 2631 MVT ContainerVT = VecVT; 2632 // If the operand is a fixed-length vector, convert to a scalable one. 2633 if (VecVT.isFixedLengthVector()) { 2634 ContainerVT = getContainerForFixedLengthVector(VecVT); 2635 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2636 } 2637 2638 MVT XLenVT = Subtarget.getXLenVT(); 2639 2640 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2641 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 2642 // Even i64-element vectors on RV32 can be lowered without scalar 2643 // legalization if the most-significant 32 bits of the value are not affected 2644 // by the sign-extension of the lower 32 bits. 2645 // TODO: We could also catch sign extensions of a 32-bit value. 2646 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 2647 const auto *CVal = cast<ConstantSDNode>(Val); 2648 if (isInt<32>(CVal->getSExtValue())) { 2649 IsLegalInsert = true; 2650 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 2651 } 2652 } 2653 2654 SDValue Mask, VL; 2655 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2656 2657 SDValue ValInVec; 2658 2659 if (IsLegalInsert) { 2660 if (isNullConstant(Idx)) { 2661 Vec = DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, Vec, Val, VL); 2662 if (!VecVT.isFixedLengthVector()) 2663 return Vec; 2664 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 2665 } 2666 ValInVec = DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, 2667 DAG.getUNDEF(ContainerVT), Val, VL); 2668 } else { 2669 // On RV32, i64-element vectors must be specially handled to place the 2670 // value at element 0, by using two vslide1up instructions in sequence on 2671 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 2672 // this. 2673 SDValue One = DAG.getConstant(1, DL, XLenVT); 2674 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 2675 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 2676 MVT I32ContainerVT = 2677 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 2678 SDValue I32Mask = 2679 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 2680 // Limit the active VL to two. 2681 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 2682 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 2683 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 2684 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 2685 InsertI64VL); 2686 // First slide in the hi value, then the lo in underneath it. 2687 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 2688 ValHi, I32Mask, InsertI64VL); 2689 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 2690 ValLo, I32Mask, InsertI64VL); 2691 // Bitcast back to the right container type. 2692 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 2693 } 2694 2695 // Now that the value is in a vector, slide it into position. 2696 SDValue InsertVL = 2697 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 2698 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 2699 ValInVec, Idx, Mask, InsertVL); 2700 if (!VecVT.isFixedLengthVector()) 2701 return Slideup; 2702 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 2703 } 2704 2705 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 2706 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 2707 // types this is done using VMV_X_S to allow us to glean information about the 2708 // sign bits of the result. 2709 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2710 SelectionDAG &DAG) const { 2711 SDLoc DL(Op); 2712 SDValue Idx = Op.getOperand(1); 2713 SDValue Vec = Op.getOperand(0); 2714 EVT EltVT = Op.getValueType(); 2715 MVT VecVT = Vec.getSimpleValueType(); 2716 MVT XLenVT = Subtarget.getXLenVT(); 2717 2718 if (VecVT.getVectorElementType() == MVT::i1) { 2719 // FIXME: For now we just promote to an i8 vector and extract from that, 2720 // but this is probably not optimal. 2721 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 2722 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 2723 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 2724 } 2725 2726 // If this is a fixed vector, we need to convert it to a scalable vector. 2727 MVT ContainerVT = VecVT; 2728 if (VecVT.isFixedLengthVector()) { 2729 ContainerVT = getContainerForFixedLengthVector(VecVT); 2730 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2731 } 2732 2733 // If the index is 0, the vector is already in the right position. 2734 if (!isNullConstant(Idx)) { 2735 // Use a VL of 1 to avoid processing more elements than we need. 2736 SDValue VL = DAG.getConstant(1, DL, XLenVT); 2737 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2738 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2739 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2740 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 2741 } 2742 2743 if (!EltVT.isInteger()) { 2744 // Floating-point extracts are handled in TableGen. 2745 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 2746 DAG.getConstant(0, DL, XLenVT)); 2747 } 2748 2749 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 2750 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 2751 } 2752 2753 // Called by type legalization to handle splat of i64 on RV32. 2754 // FIXME: We can optimize this when the type has sign or zero bits in one 2755 // of the halves. 2756 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2757 SDValue VL, SelectionDAG &DAG) { 2758 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT); 2759 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2760 DAG.getConstant(0, DL, MVT::i32)); 2761 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2762 DAG.getConstant(1, DL, MVT::i32)); 2763 2764 // vmv.v.x vX, hi 2765 // vsll.vx vX, vX, /*32*/ 2766 // vmv.v.x vY, lo 2767 // vsll.vx vY, vY, /*32*/ 2768 // vsrl.vx vY, vY, /*32*/ 2769 // vor.vv vX, vX, vY 2770 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 2771 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2772 Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2773 Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL); 2774 Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL); 2775 2776 Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL); 2777 Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL); 2778 2779 return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL); 2780 } 2781 2782 // Some RVV intrinsics may claim that they want an integer operand to be 2783 // promoted or expanded. 2784 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 2785 const RISCVSubtarget &Subtarget) { 2786 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2787 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 2788 "Unexpected opcode"); 2789 2790 if (!Subtarget.hasStdExtV()) 2791 return SDValue(); 2792 2793 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 2794 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 2795 SDLoc DL(Op); 2796 2797 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2798 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 2799 if (!II || !II->SplatOperand) 2800 return SDValue(); 2801 2802 unsigned SplatOp = II->SplatOperand + HasChain; 2803 assert(SplatOp < Op.getNumOperands()); 2804 2805 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2806 SDValue &ScalarOp = Operands[SplatOp]; 2807 MVT OpVT = ScalarOp.getSimpleValueType(); 2808 MVT XLenVT = Subtarget.getXLenVT(); 2809 2810 // If this isn't a scalar, or its type is XLenVT we're done. 2811 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 2812 return SDValue(); 2813 2814 // Simplest case is that the operand needs to be promoted to XLenVT. 2815 if (OpVT.bitsLT(XLenVT)) { 2816 // If the operand is a constant, sign extend to increase our chances 2817 // of being able to use a .vi instruction. ANY_EXTEND would become a 2818 // a zero extend and the simm5 check in isel would fail. 2819 // FIXME: Should we ignore the upper bits in isel instead? 2820 unsigned ExtOpc = 2821 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2822 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 2823 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2824 } 2825 2826 // Use the previous operand to get the vXi64 VT. The result might be a mask 2827 // VT for compares. Using the previous operand assumes that the previous 2828 // operand will never have a smaller element size than a scalar operand and 2829 // that a widening operation never uses SEW=64. 2830 // NOTE: If this fails the below assert, we can probably just find the 2831 // element count from any operand or result and use it to construct the VT. 2832 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 2833 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 2834 2835 // The more complex case is when the scalar is larger than XLenVT. 2836 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 2837 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 2838 2839 // If this is a sign-extended 32-bit constant, we can truncate it and rely 2840 // on the instruction to sign-extend since SEW>XLEN. 2841 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 2842 if (isInt<32>(CVal->getSExtValue())) { 2843 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 2844 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2845 } 2846 } 2847 2848 // We need to convert the scalar to a splat vector. 2849 // FIXME: Can we implicitly truncate the scalar if it is known to 2850 // be sign extended? 2851 // VL should be the last operand. 2852 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 2853 assert(VL.getValueType() == XLenVT); 2854 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 2855 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2856 } 2857 2858 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2859 SelectionDAG &DAG) const { 2860 unsigned IntNo = Op.getConstantOperandVal(0); 2861 SDLoc DL(Op); 2862 MVT XLenVT = Subtarget.getXLenVT(); 2863 2864 switch (IntNo) { 2865 default: 2866 break; // Don't custom lower most intrinsics. 2867 case Intrinsic::thread_pointer: { 2868 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2869 return DAG.getRegister(RISCV::X4, PtrVT); 2870 } 2871 case Intrinsic::riscv_orc_b: 2872 // Lower to the GORCI encoding for orc.b. 2873 return DAG.getNode(RISCVISD::GORCI, DL, XLenVT, Op.getOperand(1), 2874 DAG.getTargetConstant(7, DL, XLenVT)); 2875 case Intrinsic::riscv_vmv_x_s: 2876 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 2877 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 2878 Op.getOperand(1)); 2879 case Intrinsic::riscv_vmv_v_x: { 2880 SDValue Scalar = Op.getOperand(1); 2881 if (Scalar.getValueType().bitsLE(XLenVT)) { 2882 unsigned ExtOpc = 2883 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2884 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2885 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), Scalar, 2886 Op.getOperand(2)); 2887 } 2888 2889 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 2890 2891 // If this is a sign-extended 32-bit constant, we can truncate it and rely 2892 // on the instruction to sign-extend since SEW>XLEN. 2893 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) { 2894 if (isInt<32>(CVal->getSExtValue())) 2895 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), 2896 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32), 2897 Op.getOperand(2)); 2898 } 2899 2900 // Otherwise use the more complicated splatting algorithm. 2901 return splatSplitI64WithVL(DL, Op.getSimpleValueType(), Scalar, 2902 Op.getOperand(2), DAG); 2903 } 2904 case Intrinsic::riscv_vfmv_v_f: 2905 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 2906 Op.getOperand(1), Op.getOperand(2)); 2907 case Intrinsic::riscv_vmv_s_x: { 2908 SDValue Scalar = Op.getOperand(2); 2909 2910 if (Scalar.getValueType().bitsLE(XLenVT)) { 2911 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 2912 return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, Op.getValueType(), 2913 Op.getOperand(1), Scalar, Op.getOperand(3)); 2914 } 2915 2916 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 2917 2918 // This is an i64 value that lives in two scalar registers. We have to 2919 // insert this in a convoluted way. First we build vXi64 splat containing 2920 // the/ two values that we assemble using some bit math. Next we'll use 2921 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 2922 // to merge element 0 from our splat into the source vector. 2923 // FIXME: This is probably not the best way to do this, but it is 2924 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 2925 // point. 2926 // vmv.v.x vX, hi 2927 // vsll.vx vX, vX, /*32*/ 2928 // vmv.v.x vY, lo 2929 // vsll.vx vY, vY, /*32*/ 2930 // vsrl.vx vY, vY, /*32*/ 2931 // vor.vv vX, vX, vY 2932 // 2933 // vid.v vVid 2934 // vmseq.vx mMask, vVid, 0 2935 // vmerge.vvm vDest, vSrc, vVal, mMask 2936 MVT VT = Op.getSimpleValueType(); 2937 SDValue Vec = Op.getOperand(1); 2938 SDValue VL = Op.getOperand(3); 2939 2940 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2941 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 2942 DAG.getConstant(0, DL, MVT::i32), VL); 2943 2944 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 2945 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2946 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 2947 SDValue SelectCond = 2948 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 2949 DAG.getCondCode(ISD::SETEQ), Mask, VL); 2950 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 2951 Vec, VL); 2952 } 2953 } 2954 2955 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 2956 } 2957 2958 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 2959 SelectionDAG &DAG) const { 2960 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 2961 } 2962 2963 static MVT getLMUL1VT(MVT VT) { 2964 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 2965 "Unexpected vector MVT"); 2966 return MVT::getScalableVectorVT( 2967 VT.getVectorElementType(), 2968 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 2969 } 2970 2971 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 2972 switch (ISDOpcode) { 2973 default: 2974 llvm_unreachable("Unhandled reduction"); 2975 case ISD::VECREDUCE_ADD: 2976 return RISCVISD::VECREDUCE_ADD_VL; 2977 case ISD::VECREDUCE_UMAX: 2978 return RISCVISD::VECREDUCE_UMAX_VL; 2979 case ISD::VECREDUCE_SMAX: 2980 return RISCVISD::VECREDUCE_SMAX_VL; 2981 case ISD::VECREDUCE_UMIN: 2982 return RISCVISD::VECREDUCE_UMIN_VL; 2983 case ISD::VECREDUCE_SMIN: 2984 return RISCVISD::VECREDUCE_SMIN_VL; 2985 case ISD::VECREDUCE_AND: 2986 return RISCVISD::VECREDUCE_AND_VL; 2987 case ISD::VECREDUCE_OR: 2988 return RISCVISD::VECREDUCE_OR_VL; 2989 case ISD::VECREDUCE_XOR: 2990 return RISCVISD::VECREDUCE_XOR_VL; 2991 } 2992 } 2993 2994 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 2995 SelectionDAG &DAG) const { 2996 SDLoc DL(Op); 2997 SDValue Vec = Op.getOperand(0); 2998 EVT VecEVT = Vec.getValueType(); 2999 3000 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3001 3002 // Due to ordering in legalize types we may have a vector type that needs to 3003 // be split. Do that manually so we can get down to a legal type. 3004 while (getTypeAction(*DAG.getContext(), VecEVT) == 3005 TargetLowering::TypeSplitVector) { 3006 SDValue Lo, Hi; 3007 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3008 VecEVT = Lo.getValueType(); 3009 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3010 } 3011 3012 // TODO: The type may need to be widened rather than split. Or widened before 3013 // it can be split. 3014 if (!isTypeLegal(VecEVT)) 3015 return SDValue(); 3016 3017 MVT VecVT = VecEVT.getSimpleVT(); 3018 MVT VecEltVT = VecVT.getVectorElementType(); 3019 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3020 3021 MVT ContainerVT = VecVT; 3022 if (VecVT.isFixedLengthVector()) { 3023 ContainerVT = getContainerForFixedLengthVector(VecVT); 3024 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3025 } 3026 3027 MVT M1VT = getLMUL1VT(ContainerVT); 3028 3029 SDValue Mask, VL; 3030 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3031 3032 // FIXME: This is a VLMAX splat which might be too large and can prevent 3033 // vsetvli removal. 3034 SDValue NeutralElem = 3035 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3036 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3037 SDValue Reduction = 3038 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3039 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3040 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3041 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3042 } 3043 3044 // Given a reduction op, this function returns the matching reduction opcode, 3045 // the vector SDValue and the scalar SDValue required to lower this to a 3046 // RISCVISD node. 3047 static std::tuple<unsigned, SDValue, SDValue> 3048 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3049 SDLoc DL(Op); 3050 switch (Op.getOpcode()) { 3051 default: 3052 llvm_unreachable("Unhandled reduction"); 3053 case ISD::VECREDUCE_FADD: 3054 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3055 DAG.getConstantFP(0.0, DL, EltVT)); 3056 case ISD::VECREDUCE_SEQ_FADD: 3057 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3058 Op.getOperand(0)); 3059 } 3060 } 3061 3062 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3063 SelectionDAG &DAG) const { 3064 SDLoc DL(Op); 3065 MVT VecEltVT = Op.getSimpleValueType(); 3066 3067 unsigned RVVOpcode; 3068 SDValue VectorVal, ScalarVal; 3069 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3070 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3071 MVT VecVT = VectorVal.getSimpleValueType(); 3072 3073 MVT ContainerVT = VecVT; 3074 if (VecVT.isFixedLengthVector()) { 3075 ContainerVT = getContainerForFixedLengthVector(VecVT); 3076 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3077 } 3078 3079 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3080 3081 SDValue Mask, VL; 3082 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3083 3084 // FIXME: This is a VLMAX splat which might be too large and can prevent 3085 // vsetvli removal. 3086 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3087 SDValue Reduction = 3088 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3089 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3090 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3091 } 3092 3093 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3094 SelectionDAG &DAG) const { 3095 SDValue Vec = Op.getOperand(0); 3096 SDValue SubVec = Op.getOperand(1); 3097 MVT VecVT = Vec.getSimpleValueType(); 3098 MVT SubVecVT = SubVec.getSimpleValueType(); 3099 3100 SDLoc DL(Op); 3101 MVT XLenVT = Subtarget.getXLenVT(); 3102 unsigned OrigIdx = Op.getConstantOperandVal(2); 3103 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3104 3105 // We don't have the ability to slide mask vectors up indexed by their i1 3106 // elements; the smallest we can do is i8. Often we are able to bitcast to 3107 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3108 // into a scalable one, we might not necessarily have enough scalable 3109 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3110 if (SubVecVT.getVectorElementType() == MVT::i1 && 3111 (OrigIdx != 0 || !Vec.isUndef())) { 3112 if (VecVT.getVectorMinNumElements() >= 8 && 3113 SubVecVT.getVectorMinNumElements() >= 8) { 3114 assert(OrigIdx % 8 == 0 && "Invalid index"); 3115 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3116 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3117 "Unexpected mask vector lowering"); 3118 OrigIdx /= 8; 3119 SubVecVT = 3120 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3121 SubVecVT.isScalableVector()); 3122 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3123 VecVT.isScalableVector()); 3124 Vec = DAG.getBitcast(VecVT, Vec); 3125 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3126 } else { 3127 // We can't slide this mask vector up indexed by its i1 elements. 3128 // This poses a problem when we wish to insert a scalable vector which 3129 // can't be re-expressed as a larger type. Just choose the slow path and 3130 // extend to a larger type, then truncate back down. 3131 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3132 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3133 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3134 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3135 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3136 Op.getOperand(2)); 3137 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3138 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3139 } 3140 } 3141 3142 // If the subvector vector is a fixed-length type, we cannot use subregister 3143 // manipulation to simplify the codegen; we don't know which register of a 3144 // LMUL group contains the specific subvector as we only know the minimum 3145 // register size. Therefore we must slide the vector group up the full 3146 // amount. 3147 if (SubVecVT.isFixedLengthVector()) { 3148 if (OrigIdx == 0 && Vec.isUndef()) 3149 return Op; 3150 MVT ContainerVT = VecVT; 3151 if (VecVT.isFixedLengthVector()) { 3152 ContainerVT = getContainerForFixedLengthVector(VecVT); 3153 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3154 } 3155 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3156 DAG.getUNDEF(ContainerVT), SubVec, 3157 DAG.getConstant(0, DL, XLenVT)); 3158 SDValue Mask = 3159 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3160 // Set the vector length to only the number of elements we care about. Note 3161 // that for slideup this includes the offset. 3162 SDValue VL = 3163 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3164 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3165 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3166 SubVec, SlideupAmt, Mask, VL); 3167 if (VecVT.isFixedLengthVector()) 3168 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3169 return DAG.getBitcast(Op.getValueType(), Slideup); 3170 } 3171 3172 unsigned SubRegIdx, RemIdx; 3173 std::tie(SubRegIdx, RemIdx) = 3174 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3175 VecVT, SubVecVT, OrigIdx, TRI); 3176 3177 RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3178 bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 || 3179 SubVecLMUL == RISCVVLMUL::LMUL_F4 || 3180 SubVecLMUL == RISCVVLMUL::LMUL_F8; 3181 3182 // 1. If the Idx has been completely eliminated and this subvector's size is 3183 // a vector register or a multiple thereof, or the surrounding elements are 3184 // undef, then this is a subvector insert which naturally aligns to a vector 3185 // register. These can easily be handled using subregister manipulation. 3186 // 2. If the subvector is smaller than a vector register, then the insertion 3187 // must preserve the undisturbed elements of the register. We do this by 3188 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3189 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3190 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3191 // LMUL=1 type back into the larger vector (resolving to another subregister 3192 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3193 // to avoid allocating a large register group to hold our subvector. 3194 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3195 return Op; 3196 3197 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3198 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3199 // (in our case undisturbed). This means we can set up a subvector insertion 3200 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3201 // size of the subvector. 3202 MVT InterSubVT = VecVT; 3203 SDValue AlignedExtract = Vec; 3204 unsigned AlignedIdx = OrigIdx - RemIdx; 3205 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3206 InterSubVT = getLMUL1VT(VecVT); 3207 // Extract a subvector equal to the nearest full vector register type. This 3208 // should resolve to a EXTRACT_SUBREG instruction. 3209 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3210 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3211 } 3212 3213 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3214 // For scalable vectors this must be further multiplied by vscale. 3215 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3216 3217 SDValue Mask, VL; 3218 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3219 3220 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3221 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3222 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3223 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3224 3225 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3226 DAG.getUNDEF(InterSubVT), SubVec, 3227 DAG.getConstant(0, DL, XLenVT)); 3228 3229 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3230 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3231 3232 // If required, insert this subvector back into the correct vector register. 3233 // This should resolve to an INSERT_SUBREG instruction. 3234 if (VecVT.bitsGT(InterSubVT)) 3235 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3236 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3237 3238 // We might have bitcast from a mask type: cast back to the original type if 3239 // required. 3240 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3241 } 3242 3243 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3244 SelectionDAG &DAG) const { 3245 SDValue Vec = Op.getOperand(0); 3246 MVT SubVecVT = Op.getSimpleValueType(); 3247 MVT VecVT = Vec.getSimpleValueType(); 3248 3249 SDLoc DL(Op); 3250 MVT XLenVT = Subtarget.getXLenVT(); 3251 unsigned OrigIdx = Op.getConstantOperandVal(1); 3252 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3253 3254 // We don't have the ability to slide mask vectors down indexed by their i1 3255 // elements; the smallest we can do is i8. Often we are able to bitcast to 3256 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3257 // from a scalable one, we might not necessarily have enough scalable 3258 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3259 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3260 if (VecVT.getVectorMinNumElements() >= 8 && 3261 SubVecVT.getVectorMinNumElements() >= 8) { 3262 assert(OrigIdx % 8 == 0 && "Invalid index"); 3263 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3264 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3265 "Unexpected mask vector lowering"); 3266 OrigIdx /= 8; 3267 SubVecVT = 3268 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3269 SubVecVT.isScalableVector()); 3270 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3271 VecVT.isScalableVector()); 3272 Vec = DAG.getBitcast(VecVT, Vec); 3273 } else { 3274 // We can't slide this mask vector down, indexed by its i1 elements. 3275 // This poses a problem when we wish to extract a scalable vector which 3276 // can't be re-expressed as a larger type. Just choose the slow path and 3277 // extend to a larger type, then truncate back down. 3278 // TODO: We could probably improve this when extracting certain fixed 3279 // from fixed, where we can extract as i8 and shift the correct element 3280 // right to reach the desired subvector? 3281 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3282 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3283 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3284 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3285 Op.getOperand(1)); 3286 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3287 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3288 } 3289 } 3290 3291 // If the subvector vector is a fixed-length type, we cannot use subregister 3292 // manipulation to simplify the codegen; we don't know which register of a 3293 // LMUL group contains the specific subvector as we only know the minimum 3294 // register size. Therefore we must slide the vector group down the full 3295 // amount. 3296 if (SubVecVT.isFixedLengthVector()) { 3297 // With an index of 0 this is a cast-like subvector, which can be performed 3298 // with subregister operations. 3299 if (OrigIdx == 0) 3300 return Op; 3301 MVT ContainerVT = VecVT; 3302 if (VecVT.isFixedLengthVector()) { 3303 ContainerVT = getContainerForFixedLengthVector(VecVT); 3304 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3305 } 3306 SDValue Mask = 3307 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3308 // Set the vector length to only the number of elements we care about. This 3309 // avoids sliding down elements we're going to discard straight away. 3310 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3311 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3312 SDValue Slidedown = 3313 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3314 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3315 // Now we can use a cast-like subvector extract to get the result. 3316 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3317 DAG.getConstant(0, DL, XLenVT)); 3318 return DAG.getBitcast(Op.getValueType(), Slidedown); 3319 } 3320 3321 unsigned SubRegIdx, RemIdx; 3322 std::tie(SubRegIdx, RemIdx) = 3323 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3324 VecVT, SubVecVT, OrigIdx, TRI); 3325 3326 // If the Idx has been completely eliminated then this is a subvector extract 3327 // which naturally aligns to a vector register. These can easily be handled 3328 // using subregister manipulation. 3329 if (RemIdx == 0) 3330 return Op; 3331 3332 // Else we must shift our vector register directly to extract the subvector. 3333 // Do this using VSLIDEDOWN. 3334 3335 // If the vector type is an LMUL-group type, extract a subvector equal to the 3336 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3337 // instruction. 3338 MVT InterSubVT = VecVT; 3339 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3340 InterSubVT = getLMUL1VT(VecVT); 3341 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3342 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3343 } 3344 3345 // Slide this vector register down by the desired number of elements in order 3346 // to place the desired subvector starting at element 0. 3347 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3348 // For scalable vectors this must be further multiplied by vscale. 3349 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3350 3351 SDValue Mask, VL; 3352 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3353 SDValue Slidedown = 3354 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3355 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3356 3357 // Now the vector is in the right position, extract our final subvector. This 3358 // should resolve to a COPY. 3359 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3360 DAG.getConstant(0, DL, XLenVT)); 3361 3362 // We might have bitcast from a mask type: cast back to the original type if 3363 // required. 3364 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3365 } 3366 3367 // Implement step_vector to the vid instruction. 3368 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3369 SelectionDAG &DAG) const { 3370 SDLoc DL(Op); 3371 assert(Op.getConstantOperandAPInt(0) == 1 && "Unexpected step value"); 3372 MVT VT = Op.getSimpleValueType(); 3373 SDValue Mask, VL; 3374 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3375 return DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3376 } 3377 3378 // Implement vector_reverse using vrgather.vv with indices determined by 3379 // subtracting the id of each element from (VLMAX-1). This will convert 3380 // the indices like so: 3381 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3382 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3383 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3384 SelectionDAG &DAG) const { 3385 SDLoc DL(Op); 3386 MVT VecVT = Op.getSimpleValueType(); 3387 unsigned EltSize = VecVT.getScalarSizeInBits(); 3388 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3389 3390 unsigned MaxVLMAX = 0; 3391 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3392 if (VectorBitsMax != 0) 3393 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3394 3395 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3396 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3397 3398 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3399 // to use vrgatherei16.vv. 3400 // TODO: It's also possible to use vrgatherei16.vv for other types to 3401 // decrease register width for the index calculation. 3402 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3403 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3404 // Reverse each half, then reassemble them in reverse order. 3405 // NOTE: It's also possible that after splitting that VLMAX no longer 3406 // requires vrgatherei16.vv. 3407 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3408 SDValue Lo, Hi; 3409 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3410 EVT LoVT, HiVT; 3411 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 3412 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 3413 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 3414 // Reassemble the low and high pieces reversed. 3415 // FIXME: This is a CONCAT_VECTORS. 3416 SDValue Res = 3417 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 3418 DAG.getIntPtrConstant(0, DL)); 3419 return DAG.getNode( 3420 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 3421 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 3422 } 3423 3424 // Just promote the int type to i16 which will double the LMUL. 3425 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 3426 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 3427 } 3428 3429 MVT XLenVT = Subtarget.getXLenVT(); 3430 SDValue Mask, VL; 3431 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3432 3433 // Calculate VLMAX-1 for the desired SEW. 3434 unsigned MinElts = VecVT.getVectorMinNumElements(); 3435 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 3436 DAG.getConstant(MinElts, DL, XLenVT)); 3437 SDValue VLMinus1 = 3438 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 3439 3440 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 3441 bool IsRV32E64 = 3442 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 3443 SDValue SplatVL; 3444 if (!IsRV32E64) 3445 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 3446 else 3447 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 3448 3449 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 3450 SDValue Indices = 3451 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 3452 3453 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 3454 } 3455 3456 SDValue 3457 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 3458 SelectionDAG &DAG) const { 3459 auto *Load = cast<LoadSDNode>(Op); 3460 3461 SDLoc DL(Op); 3462 MVT VT = Op.getSimpleValueType(); 3463 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3464 3465 SDValue VL = 3466 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3467 3468 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3469 SDValue NewLoad = DAG.getMemIntrinsicNode( 3470 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 3471 Load->getMemoryVT(), Load->getMemOperand()); 3472 3473 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 3474 return DAG.getMergeValues({Result, Load->getChain()}, DL); 3475 } 3476 3477 SDValue 3478 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 3479 SelectionDAG &DAG) const { 3480 auto *Store = cast<StoreSDNode>(Op); 3481 3482 SDLoc DL(Op); 3483 MVT VT = Store->getValue().getSimpleValueType(); 3484 3485 // FIXME: We probably need to zero any extra bits in a byte for mask stores. 3486 // This is tricky to do. 3487 3488 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3489 3490 SDValue VL = 3491 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3492 3493 SDValue NewValue = 3494 convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget); 3495 return DAG.getMemIntrinsicNode( 3496 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 3497 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 3498 Store->getMemoryVT(), Store->getMemOperand()); 3499 } 3500 3501 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 3502 auto *Load = cast<MaskedLoadSDNode>(Op); 3503 3504 SDLoc DL(Op); 3505 MVT VT = Op.getSimpleValueType(); 3506 MVT XLenVT = Subtarget.getXLenVT(); 3507 3508 SDValue Mask = Load->getMask(); 3509 SDValue PassThru = Load->getPassThru(); 3510 SDValue VL; 3511 3512 MVT ContainerVT = VT; 3513 if (VT.isFixedLengthVector()) { 3514 ContainerVT = getContainerForFixedLengthVector(VT); 3515 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3516 3517 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3518 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3519 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3520 } else 3521 VL = DAG.getRegister(RISCV::X0, XLenVT); 3522 3523 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3524 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 3525 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 3526 Load->getBasePtr(), Mask, VL}; 3527 SDValue Result = 3528 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3529 Load->getMemoryVT(), Load->getMemOperand()); 3530 SDValue Chain = Result.getValue(1); 3531 3532 if (VT.isFixedLengthVector()) 3533 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3534 3535 return DAG.getMergeValues({Result, Chain}, DL); 3536 } 3537 3538 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 3539 auto *Store = cast<MaskedStoreSDNode>(Op); 3540 3541 SDLoc DL(Op); 3542 SDValue Val = Store->getValue(); 3543 SDValue Mask = Store->getMask(); 3544 MVT VT = Val.getSimpleValueType(); 3545 MVT XLenVT = Subtarget.getXLenVT(); 3546 SDValue VL; 3547 3548 MVT ContainerVT = VT; 3549 if (VT.isFixedLengthVector()) { 3550 ContainerVT = getContainerForFixedLengthVector(VT); 3551 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3552 3553 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 3554 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3555 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3556 } else 3557 VL = DAG.getRegister(RISCV::X0, XLenVT); 3558 3559 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 3560 return DAG.getMemIntrinsicNode( 3561 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 3562 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 3563 Store->getMemoryVT(), Store->getMemOperand()); 3564 } 3565 3566 SDValue 3567 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 3568 SelectionDAG &DAG) const { 3569 MVT InVT = Op.getOperand(0).getSimpleValueType(); 3570 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 3571 3572 MVT VT = Op.getSimpleValueType(); 3573 3574 SDValue Op1 = 3575 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3576 SDValue Op2 = 3577 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 3578 3579 SDLoc DL(Op); 3580 SDValue VL = 3581 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3582 3583 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3584 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3585 3586 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 3587 Op.getOperand(2), Mask, VL); 3588 3589 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 3590 } 3591 3592 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 3593 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 3594 MVT VT = Op.getSimpleValueType(); 3595 3596 if (VT.getVectorElementType() == MVT::i1) 3597 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 3598 3599 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 3600 } 3601 3602 // Lower vector ABS to smax(X, sub(0, X)). 3603 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 3604 SDLoc DL(Op); 3605 MVT VT = Op.getSimpleValueType(); 3606 SDValue X = Op.getOperand(0); 3607 3608 assert(VT.isFixedLengthVector() && "Unexpected type"); 3609 3610 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3611 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 3612 3613 SDValue Mask, VL; 3614 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3615 3616 SDValue SplatZero = 3617 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 3618 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3619 SDValue NegX = 3620 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 3621 SDValue Max = 3622 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 3623 3624 return convertFromScalableVector(VT, Max, DAG, Subtarget); 3625 } 3626 3627 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 3628 SDValue Op, SelectionDAG &DAG) const { 3629 SDLoc DL(Op); 3630 MVT VT = Op.getSimpleValueType(); 3631 SDValue Mag = Op.getOperand(0); 3632 SDValue Sign = Op.getOperand(1); 3633 assert(Mag.getValueType() == Sign.getValueType() && 3634 "Can only handle COPYSIGN with matching types."); 3635 3636 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3637 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 3638 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 3639 3640 SDValue Mask, VL; 3641 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3642 3643 SDValue CopySign = 3644 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 3645 3646 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 3647 } 3648 3649 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 3650 SDValue Op, SelectionDAG &DAG) const { 3651 MVT VT = Op.getSimpleValueType(); 3652 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3653 3654 MVT I1ContainerVT = 3655 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3656 3657 SDValue CC = 3658 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 3659 SDValue Op1 = 3660 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 3661 SDValue Op2 = 3662 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 3663 3664 SDLoc DL(Op); 3665 SDValue Mask, VL; 3666 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3667 3668 SDValue Select = 3669 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 3670 3671 return convertFromScalableVector(VT, Select, DAG, Subtarget); 3672 } 3673 3674 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 3675 unsigned NewOpc, 3676 bool HasMask) const { 3677 MVT VT = Op.getSimpleValueType(); 3678 assert(useRVVForFixedLengthVectorVT(VT) && 3679 "Only expected to lower fixed length vector operation!"); 3680 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3681 3682 // Create list of operands by converting existing ones to scalable types. 3683 SmallVector<SDValue, 6> Ops; 3684 for (const SDValue &V : Op->op_values()) { 3685 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 3686 3687 // Pass through non-vector operands. 3688 if (!V.getValueType().isVector()) { 3689 Ops.push_back(V); 3690 continue; 3691 } 3692 3693 // "cast" fixed length vector to a scalable vector. 3694 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 3695 "Only fixed length vectors are supported!"); 3696 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 3697 } 3698 3699 SDLoc DL(Op); 3700 SDValue Mask, VL; 3701 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3702 if (HasMask) 3703 Ops.push_back(Mask); 3704 Ops.push_back(VL); 3705 3706 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 3707 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 3708 } 3709 3710 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 3711 // a RVV indexed load. The RVV indexed load instructions only support the 3712 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 3713 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 3714 // indexing is extended to the XLEN value type and scaled accordingly. 3715 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 3716 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 3717 SDLoc DL(Op); 3718 3719 SDValue Index = MGN->getIndex(); 3720 SDValue Mask = MGN->getMask(); 3721 SDValue PassThru = MGN->getPassThru(); 3722 3723 MVT VT = Op.getSimpleValueType(); 3724 MVT IndexVT = Index.getSimpleValueType(); 3725 MVT XLenVT = Subtarget.getXLenVT(); 3726 3727 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 3728 "Unexpected VTs!"); 3729 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 3730 "Unexpected pointer type"); 3731 // Targets have to explicitly opt-in for extending vector loads. 3732 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 3733 "Unexpected extending MGATHER"); 3734 3735 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3736 // the selection of the masked intrinsics doesn't do this for us. 3737 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3738 3739 SDValue VL; 3740 MVT ContainerVT = VT; 3741 if (VT.isFixedLengthVector()) { 3742 // We need to use the larger of the result and index type to determine the 3743 // scalable type to use so we don't increase LMUL for any operand/result. 3744 if (VT.bitsGE(IndexVT)) { 3745 ContainerVT = getContainerForFixedLengthVector(VT); 3746 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 3747 ContainerVT.getVectorElementCount()); 3748 } else { 3749 IndexVT = getContainerForFixedLengthVector(IndexVT); 3750 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 3751 IndexVT.getVectorElementCount()); 3752 } 3753 3754 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 3755 3756 if (!IsUnmasked) { 3757 MVT MaskVT = 3758 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3759 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3760 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3761 } 3762 3763 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3764 } else 3765 VL = DAG.getRegister(RISCV::X0, XLenVT); 3766 3767 unsigned IntID = 3768 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 3769 SmallVector<SDValue, 8> Ops{MGN->getChain(), 3770 DAG.getTargetConstant(IntID, DL, XLenVT)}; 3771 if (!IsUnmasked) 3772 Ops.push_back(PassThru); 3773 Ops.push_back(MGN->getBasePtr()); 3774 Ops.push_back(Index); 3775 if (!IsUnmasked) 3776 Ops.push_back(Mask); 3777 Ops.push_back(VL); 3778 3779 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3780 SDValue Result = 3781 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3782 MGN->getMemoryVT(), MGN->getMemOperand()); 3783 SDValue Chain = Result.getValue(1); 3784 3785 if (VT.isFixedLengthVector()) 3786 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3787 3788 return DAG.getMergeValues({Result, Chain}, DL); 3789 } 3790 3791 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 3792 // a RVV indexed store. The RVV indexed store instructions only support the 3793 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 3794 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 3795 // indexing is extended to the XLEN value type and scaled accordingly. 3796 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 3797 SelectionDAG &DAG) const { 3798 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 3799 SDLoc DL(Op); 3800 SDValue Index = MSN->getIndex(); 3801 SDValue Mask = MSN->getMask(); 3802 SDValue Val = MSN->getValue(); 3803 3804 MVT VT = Val.getSimpleValueType(); 3805 MVT IndexVT = Index.getSimpleValueType(); 3806 MVT XLenVT = Subtarget.getXLenVT(); 3807 3808 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 3809 "Unexpected VTs!"); 3810 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 3811 "Unexpected pointer type"); 3812 // Targets have to explicitly opt-in for extending vector loads and 3813 // truncating vector stores. 3814 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 3815 3816 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3817 // the selection of the masked intrinsics doesn't do this for us. 3818 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3819 3820 SDValue VL; 3821 if (VT.isFixedLengthVector()) { 3822 // We need to use the larger of the value and index type to determine the 3823 // scalable type to use so we don't increase LMUL for any operand/result. 3824 if (VT.bitsGE(IndexVT)) { 3825 VT = getContainerForFixedLengthVector(VT); 3826 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 3827 VT.getVectorElementCount()); 3828 } else { 3829 IndexVT = getContainerForFixedLengthVector(IndexVT); 3830 VT = MVT::getVectorVT(VT.getVectorElementType(), 3831 IndexVT.getVectorElementCount()); 3832 } 3833 3834 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 3835 Val = convertToScalableVector(VT, Val, DAG, Subtarget); 3836 3837 if (!IsUnmasked) { 3838 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3839 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3840 } 3841 3842 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3843 } else 3844 VL = DAG.getRegister(RISCV::X0, XLenVT); 3845 3846 unsigned IntID = 3847 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 3848 SmallVector<SDValue, 8> Ops{MSN->getChain(), 3849 DAG.getTargetConstant(IntID, DL, XLenVT)}; 3850 Ops.push_back(Val); 3851 Ops.push_back(MSN->getBasePtr()); 3852 Ops.push_back(Index); 3853 if (!IsUnmasked) 3854 Ops.push_back(Mask); 3855 Ops.push_back(VL); 3856 3857 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 3858 MSN->getMemoryVT(), MSN->getMemOperand()); 3859 } 3860 3861 // Returns the opcode of the target-specific SDNode that implements the 32-bit 3862 // form of the given Opcode. 3863 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 3864 switch (Opcode) { 3865 default: 3866 llvm_unreachable("Unexpected opcode"); 3867 case ISD::SHL: 3868 return RISCVISD::SLLW; 3869 case ISD::SRA: 3870 return RISCVISD::SRAW; 3871 case ISD::SRL: 3872 return RISCVISD::SRLW; 3873 case ISD::SDIV: 3874 return RISCVISD::DIVW; 3875 case ISD::UDIV: 3876 return RISCVISD::DIVUW; 3877 case ISD::UREM: 3878 return RISCVISD::REMUW; 3879 case ISD::ROTL: 3880 return RISCVISD::ROLW; 3881 case ISD::ROTR: 3882 return RISCVISD::RORW; 3883 case RISCVISD::GREVI: 3884 return RISCVISD::GREVIW; 3885 case RISCVISD::GORCI: 3886 return RISCVISD::GORCIW; 3887 } 3888 } 3889 3890 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 3891 // Because i32 isn't a legal type for RV64, these operations would otherwise 3892 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 3893 // later one because the fact the operation was originally of type i32 is 3894 // lost. 3895 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 3896 unsigned ExtOpc = ISD::ANY_EXTEND) { 3897 SDLoc DL(N); 3898 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 3899 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 3900 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 3901 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 3902 // ReplaceNodeResults requires we maintain the same type for the return value. 3903 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 3904 } 3905 3906 // Converts the given 32-bit operation to a i64 operation with signed extension 3907 // semantic to reduce the signed extension instructions. 3908 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 3909 SDLoc DL(N); 3910 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3911 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 3912 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 3913 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 3914 DAG.getValueType(MVT::i32)); 3915 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 3916 } 3917 3918 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 3919 SmallVectorImpl<SDValue> &Results, 3920 SelectionDAG &DAG) const { 3921 SDLoc DL(N); 3922 switch (N->getOpcode()) { 3923 default: 3924 llvm_unreachable("Don't know how to custom type legalize this operation!"); 3925 case ISD::STRICT_FP_TO_SINT: 3926 case ISD::STRICT_FP_TO_UINT: 3927 case ISD::FP_TO_SINT: 3928 case ISD::FP_TO_UINT: { 3929 bool IsStrict = N->isStrictFPOpcode(); 3930 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3931 "Unexpected custom legalisation"); 3932 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 3933 // If the FP type needs to be softened, emit a library call using the 'si' 3934 // version. If we left it to default legalization we'd end up with 'di'. If 3935 // the FP type doesn't need to be softened just let generic type 3936 // legalization promote the result type. 3937 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 3938 TargetLowering::TypeSoftenFloat) 3939 return; 3940 RTLIB::Libcall LC; 3941 if (N->getOpcode() == ISD::FP_TO_SINT || 3942 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 3943 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 3944 else 3945 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 3946 MakeLibCallOptions CallOptions; 3947 EVT OpVT = Op0.getValueType(); 3948 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 3949 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 3950 SDValue Result; 3951 std::tie(Result, Chain) = 3952 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 3953 Results.push_back(Result); 3954 if (IsStrict) 3955 Results.push_back(Chain); 3956 break; 3957 } 3958 case ISD::READCYCLECOUNTER: { 3959 assert(!Subtarget.is64Bit() && 3960 "READCYCLECOUNTER only has custom type legalization on riscv32"); 3961 3962 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 3963 SDValue RCW = 3964 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 3965 3966 Results.push_back( 3967 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 3968 Results.push_back(RCW.getValue(2)); 3969 break; 3970 } 3971 case ISD::MUL: { 3972 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 3973 unsigned XLen = Subtarget.getXLen(); 3974 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 3975 if (Size > XLen) { 3976 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 3977 SDValue LHS = N->getOperand(0); 3978 SDValue RHS = N->getOperand(1); 3979 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 3980 3981 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 3982 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 3983 // We need exactly one side to be unsigned. 3984 if (LHSIsU == RHSIsU) 3985 return; 3986 3987 auto MakeMULPair = [&](SDValue S, SDValue U) { 3988 MVT XLenVT = Subtarget.getXLenVT(); 3989 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 3990 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 3991 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 3992 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 3993 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 3994 }; 3995 3996 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 3997 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 3998 3999 // The other operand should be signed, but still prefer MULH when 4000 // possible. 4001 if (RHSIsU && LHSIsS && !RHSIsS) 4002 Results.push_back(MakeMULPair(LHS, RHS)); 4003 else if (LHSIsU && RHSIsS && !LHSIsS) 4004 Results.push_back(MakeMULPair(RHS, LHS)); 4005 4006 return; 4007 } 4008 LLVM_FALLTHROUGH; 4009 } 4010 case ISD::ADD: 4011 case ISD::SUB: 4012 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4013 "Unexpected custom legalisation"); 4014 if (N->getOperand(1).getOpcode() == ISD::Constant) 4015 return; 4016 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4017 break; 4018 case ISD::SHL: 4019 case ISD::SRA: 4020 case ISD::SRL: 4021 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4022 "Unexpected custom legalisation"); 4023 if (N->getOperand(1).getOpcode() == ISD::Constant) 4024 return; 4025 Results.push_back(customLegalizeToWOp(N, DAG)); 4026 break; 4027 case ISD::ROTL: 4028 case ISD::ROTR: 4029 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4030 "Unexpected custom legalisation"); 4031 Results.push_back(customLegalizeToWOp(N, DAG)); 4032 break; 4033 case ISD::CTTZ: 4034 case ISD::CTTZ_ZERO_UNDEF: 4035 case ISD::CTLZ: 4036 case ISD::CTLZ_ZERO_UNDEF: { 4037 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4038 "Unexpected custom legalisation"); 4039 4040 SDValue NewOp0 = 4041 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4042 bool IsCTZ = 4043 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4044 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4045 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4046 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4047 return; 4048 } 4049 case ISD::SDIV: 4050 case ISD::UDIV: 4051 case ISD::UREM: { 4052 MVT VT = N->getSimpleValueType(0); 4053 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4054 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4055 "Unexpected custom legalisation"); 4056 if (N->getOperand(0).getOpcode() == ISD::Constant || 4057 N->getOperand(1).getOpcode() == ISD::Constant) 4058 return; 4059 4060 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4061 // the upper 32 bits. For other types we need to sign or zero extend 4062 // based on the opcode. 4063 unsigned ExtOpc = ISD::ANY_EXTEND; 4064 if (VT != MVT::i32) 4065 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4066 : ISD::ZERO_EXTEND; 4067 4068 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4069 break; 4070 } 4071 case ISD::UADDO: 4072 case ISD::USUBO: { 4073 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4074 "Unexpected custom legalisation"); 4075 bool IsAdd = N->getOpcode() == ISD::UADDO; 4076 // Create an ADDW or SUBW. 4077 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4078 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4079 SDValue Res = 4080 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4081 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4082 DAG.getValueType(MVT::i32)); 4083 4084 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4085 // Since the inputs are sign extended from i32, this is equivalent to 4086 // comparing the lower 32 bits. 4087 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4088 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4089 IsAdd ? ISD::SETULT : ISD::SETUGT); 4090 4091 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4092 Results.push_back(Overflow); 4093 return; 4094 } 4095 case ISD::UADDSAT: 4096 case ISD::USUBSAT: { 4097 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4098 "Unexpected custom legalisation"); 4099 if (Subtarget.hasStdExtZbb()) { 4100 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4101 // sign extend allows overflow of the lower 32 bits to be detected on 4102 // the promoted size. 4103 SDValue LHS = 4104 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4105 SDValue RHS = 4106 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4107 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4108 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4109 return; 4110 } 4111 4112 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4113 // promotion for UADDO/USUBO. 4114 Results.push_back(expandAddSubSat(N, DAG)); 4115 return; 4116 } 4117 case ISD::BITCAST: { 4118 EVT VT = N->getValueType(0); 4119 SDValue Op0 = N->getOperand(0); 4120 EVT Op0VT = Op0.getValueType(); 4121 MVT XLenVT = Subtarget.getXLenVT(); 4122 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4123 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4124 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4125 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4126 Subtarget.hasStdExtF()) { 4127 SDValue FPConv = 4128 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4129 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4130 } else if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 4131 // Custom-legalize bitcasts from fixed-length vector types to illegal 4132 // scalar types in order to improve codegen. Bitcast the vector to a 4133 // one-element vector type whose element type is the same as the result 4134 // type, and extract the first element. 4135 LLVMContext &Context = *DAG.getContext(); 4136 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4137 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4138 DAG.getConstant(0, DL, XLenVT))); 4139 } 4140 break; 4141 } 4142 case RISCVISD::GREVI: 4143 case RISCVISD::GORCI: { 4144 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4145 "Unexpected custom legalisation"); 4146 // This is similar to customLegalizeToWOp, except that we pass the second 4147 // operand (a TargetConstant) straight through: it is already of type 4148 // XLenVT. 4149 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4150 SDValue NewOp0 = 4151 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4152 SDValue NewRes = 4153 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 4154 // ReplaceNodeResults requires we maintain the same type for the return 4155 // value. 4156 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4157 break; 4158 } 4159 case RISCVISD::SHFLI: { 4160 // There is no SHFLIW instruction, but we can just promote the operation. 4161 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4162 "Unexpected custom legalisation"); 4163 SDValue NewOp0 = 4164 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4165 SDValue NewRes = 4166 DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1)); 4167 // ReplaceNodeResults requires we maintain the same type for the return 4168 // value. 4169 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4170 break; 4171 } 4172 case ISD::BSWAP: 4173 case ISD::BITREVERSE: { 4174 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4175 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4176 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4177 N->getOperand(0)); 4178 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4179 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 4180 DAG.getTargetConstant(Imm, DL, 4181 Subtarget.getXLenVT())); 4182 // ReplaceNodeResults requires we maintain the same type for the return 4183 // value. 4184 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4185 break; 4186 } 4187 case ISD::FSHL: 4188 case ISD::FSHR: { 4189 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4190 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4191 SDValue NewOp0 = 4192 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4193 SDValue NewOp1 = 4194 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4195 SDValue NewOp2 = 4196 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4197 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4198 // Mask the shift amount to 5 bits. 4199 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4200 DAG.getConstant(0x1f, DL, MVT::i64)); 4201 unsigned Opc = 4202 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4203 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4204 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4205 break; 4206 } 4207 case ISD::EXTRACT_VECTOR_ELT: { 4208 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4209 // type is illegal (currently only vXi64 RV32). 4210 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4211 // transferred to the destination register. We issue two of these from the 4212 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4213 // first element. 4214 SDValue Vec = N->getOperand(0); 4215 SDValue Idx = N->getOperand(1); 4216 4217 // The vector type hasn't been legalized yet so we can't issue target 4218 // specific nodes if it needs legalization. 4219 // FIXME: We would manually legalize if it's important. 4220 if (!isTypeLegal(Vec.getValueType())) 4221 return; 4222 4223 MVT VecVT = Vec.getSimpleValueType(); 4224 4225 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4226 VecVT.getVectorElementType() == MVT::i64 && 4227 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4228 4229 // If this is a fixed vector, we need to convert it to a scalable vector. 4230 MVT ContainerVT = VecVT; 4231 if (VecVT.isFixedLengthVector()) { 4232 ContainerVT = getContainerForFixedLengthVector(VecVT); 4233 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4234 } 4235 4236 MVT XLenVT = Subtarget.getXLenVT(); 4237 4238 // Use a VL of 1 to avoid processing more elements than we need. 4239 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4240 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4241 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4242 4243 // Unless the index is known to be 0, we must slide the vector down to get 4244 // the desired element into index 0. 4245 if (!isNullConstant(Idx)) { 4246 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4247 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4248 } 4249 4250 // Extract the lower XLEN bits of the correct vector element. 4251 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4252 4253 // To extract the upper XLEN bits of the vector element, shift the first 4254 // element right by 32 bits and re-extract the lower XLEN bits. 4255 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4256 DAG.getConstant(32, DL, XLenVT), VL); 4257 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4258 ThirtyTwoV, Mask, VL); 4259 4260 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4261 4262 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4263 break; 4264 } 4265 case ISD::INTRINSIC_WO_CHAIN: { 4266 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4267 switch (IntNo) { 4268 default: 4269 llvm_unreachable( 4270 "Don't know how to custom type legalize this intrinsic!"); 4271 case Intrinsic::riscv_orc_b: { 4272 // Lower to the GORCI encoding for orc.b with the operand extended. 4273 SDValue NewOp = 4274 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4275 // If Zbp is enabled, use GORCIW which will sign extend the result. 4276 unsigned Opc = 4277 Subtarget.hasStdExtZbp() ? RISCVISD::GORCIW : RISCVISD::GORCI; 4278 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4279 DAG.getTargetConstant(7, DL, MVT::i64)); 4280 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4281 return; 4282 } 4283 case Intrinsic::riscv_vmv_x_s: { 4284 EVT VT = N->getValueType(0); 4285 MVT XLenVT = Subtarget.getXLenVT(); 4286 if (VT.bitsLT(XLenVT)) { 4287 // Simple case just extract using vmv.x.s and truncate. 4288 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 4289 Subtarget.getXLenVT(), N->getOperand(1)); 4290 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 4291 return; 4292 } 4293 4294 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 4295 "Unexpected custom legalization"); 4296 4297 // We need to do the move in two steps. 4298 SDValue Vec = N->getOperand(1); 4299 MVT VecVT = Vec.getSimpleValueType(); 4300 4301 // First extract the lower XLEN bits of the element. 4302 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4303 4304 // To extract the upper XLEN bits of the vector element, shift the first 4305 // element right by 32 bits and re-extract the lower XLEN bits. 4306 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4307 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4308 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4309 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 4310 DAG.getConstant(32, DL, XLenVT), VL); 4311 SDValue LShr32 = 4312 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 4313 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4314 4315 Results.push_back( 4316 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4317 break; 4318 } 4319 } 4320 break; 4321 } 4322 case ISD::VECREDUCE_ADD: 4323 case ISD::VECREDUCE_AND: 4324 case ISD::VECREDUCE_OR: 4325 case ISD::VECREDUCE_XOR: 4326 case ISD::VECREDUCE_SMAX: 4327 case ISD::VECREDUCE_UMAX: 4328 case ISD::VECREDUCE_SMIN: 4329 case ISD::VECREDUCE_UMIN: 4330 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 4331 Results.push_back(V); 4332 break; 4333 } 4334 } 4335 4336 // A structure to hold one of the bit-manipulation patterns below. Together, a 4337 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 4338 // (or (and (shl x, 1), 0xAAAAAAAA), 4339 // (and (srl x, 1), 0x55555555)) 4340 struct RISCVBitmanipPat { 4341 SDValue Op; 4342 unsigned ShAmt; 4343 bool IsSHL; 4344 4345 bool formsPairWith(const RISCVBitmanipPat &Other) const { 4346 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 4347 } 4348 }; 4349 4350 // Matches patterns of the form 4351 // (and (shl x, C2), (C1 << C2)) 4352 // (and (srl x, C2), C1) 4353 // (shl (and x, C1), C2) 4354 // (srl (and x, (C1 << C2)), C2) 4355 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 4356 // The expected masks for each shift amount are specified in BitmanipMasks where 4357 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 4358 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 4359 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 4360 // XLen is 64. 4361 static Optional<RISCVBitmanipPat> 4362 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 4363 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 4364 "Unexpected number of masks"); 4365 Optional<uint64_t> Mask; 4366 // Optionally consume a mask around the shift operation. 4367 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 4368 Mask = Op.getConstantOperandVal(1); 4369 Op = Op.getOperand(0); 4370 } 4371 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 4372 return None; 4373 bool IsSHL = Op.getOpcode() == ISD::SHL; 4374 4375 if (!isa<ConstantSDNode>(Op.getOperand(1))) 4376 return None; 4377 uint64_t ShAmt = Op.getConstantOperandVal(1); 4378 4379 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4380 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 4381 return None; 4382 // If we don't have enough masks for 64 bit, then we must be trying to 4383 // match SHFL so we're only allowed to shift 1/4 of the width. 4384 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 4385 return None; 4386 4387 SDValue Src = Op.getOperand(0); 4388 4389 // The expected mask is shifted left when the AND is found around SHL 4390 // patterns. 4391 // ((x >> 1) & 0x55555555) 4392 // ((x << 1) & 0xAAAAAAAA) 4393 bool SHLExpMask = IsSHL; 4394 4395 if (!Mask) { 4396 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 4397 // the mask is all ones: consume that now. 4398 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 4399 Mask = Src.getConstantOperandVal(1); 4400 Src = Src.getOperand(0); 4401 // The expected mask is now in fact shifted left for SRL, so reverse the 4402 // decision. 4403 // ((x & 0xAAAAAAAA) >> 1) 4404 // ((x & 0x55555555) << 1) 4405 SHLExpMask = !SHLExpMask; 4406 } else { 4407 // Use a default shifted mask of all-ones if there's no AND, truncated 4408 // down to the expected width. This simplifies the logic later on. 4409 Mask = maskTrailingOnes<uint64_t>(Width); 4410 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 4411 } 4412 } 4413 4414 unsigned MaskIdx = Log2_32(ShAmt); 4415 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 4416 4417 if (SHLExpMask) 4418 ExpMask <<= ShAmt; 4419 4420 if (Mask != ExpMask) 4421 return None; 4422 4423 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 4424 } 4425 4426 // Matches any of the following bit-manipulation patterns: 4427 // (and (shl x, 1), (0x55555555 << 1)) 4428 // (and (srl x, 1), 0x55555555) 4429 // (shl (and x, 0x55555555), 1) 4430 // (srl (and x, (0x55555555 << 1)), 1) 4431 // where the shift amount and mask may vary thus: 4432 // [1] = 0x55555555 / 0xAAAAAAAA 4433 // [2] = 0x33333333 / 0xCCCCCCCC 4434 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 4435 // [8] = 0x00FF00FF / 0xFF00FF00 4436 // [16] = 0x0000FFFF / 0xFFFFFFFF 4437 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 4438 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 4439 // These are the unshifted masks which we use to match bit-manipulation 4440 // patterns. They may be shifted left in certain circumstances. 4441 static const uint64_t BitmanipMasks[] = { 4442 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 4443 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 4444 4445 return matchRISCVBitmanipPat(Op, BitmanipMasks); 4446 } 4447 4448 // Match the following pattern as a GREVI(W) operation 4449 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 4450 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 4451 const RISCVSubtarget &Subtarget) { 4452 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4453 EVT VT = Op.getValueType(); 4454 4455 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 4456 auto LHS = matchGREVIPat(Op.getOperand(0)); 4457 auto RHS = matchGREVIPat(Op.getOperand(1)); 4458 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 4459 SDLoc DL(Op); 4460 return DAG.getNode( 4461 RISCVISD::GREVI, DL, VT, LHS->Op, 4462 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 4463 } 4464 } 4465 return SDValue(); 4466 } 4467 4468 // Matches any the following pattern as a GORCI(W) operation 4469 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 4470 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 4471 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 4472 // Note that with the variant of 3., 4473 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 4474 // the inner pattern will first be matched as GREVI and then the outer 4475 // pattern will be matched to GORC via the first rule above. 4476 // 4. (or (rotl/rotr x, bitwidth/2), x) 4477 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 4478 const RISCVSubtarget &Subtarget) { 4479 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4480 EVT VT = Op.getValueType(); 4481 4482 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 4483 SDLoc DL(Op); 4484 SDValue Op0 = Op.getOperand(0); 4485 SDValue Op1 = Op.getOperand(1); 4486 4487 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 4488 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 4489 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 4490 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 4491 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 4492 if ((Reverse.getOpcode() == ISD::ROTL || 4493 Reverse.getOpcode() == ISD::ROTR) && 4494 Reverse.getOperand(0) == X && 4495 isa<ConstantSDNode>(Reverse.getOperand(1))) { 4496 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 4497 if (RotAmt == (VT.getSizeInBits() / 2)) 4498 return DAG.getNode( 4499 RISCVISD::GORCI, DL, VT, X, 4500 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 4501 } 4502 return SDValue(); 4503 }; 4504 4505 // Check for either commutable permutation of (or (GREVI x, shamt), x) 4506 if (SDValue V = MatchOROfReverse(Op0, Op1)) 4507 return V; 4508 if (SDValue V = MatchOROfReverse(Op1, Op0)) 4509 return V; 4510 4511 // OR is commutable so canonicalize its OR operand to the left 4512 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 4513 std::swap(Op0, Op1); 4514 if (Op0.getOpcode() != ISD::OR) 4515 return SDValue(); 4516 SDValue OrOp0 = Op0.getOperand(0); 4517 SDValue OrOp1 = Op0.getOperand(1); 4518 auto LHS = matchGREVIPat(OrOp0); 4519 // OR is commutable so swap the operands and try again: x might have been 4520 // on the left 4521 if (!LHS) { 4522 std::swap(OrOp0, OrOp1); 4523 LHS = matchGREVIPat(OrOp0); 4524 } 4525 auto RHS = matchGREVIPat(Op1); 4526 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 4527 return DAG.getNode( 4528 RISCVISD::GORCI, DL, VT, LHS->Op, 4529 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 4530 } 4531 } 4532 return SDValue(); 4533 } 4534 4535 // Matches any of the following bit-manipulation patterns: 4536 // (and (shl x, 1), (0x22222222 << 1)) 4537 // (and (srl x, 1), 0x22222222) 4538 // (shl (and x, 0x22222222), 1) 4539 // (srl (and x, (0x22222222 << 1)), 1) 4540 // where the shift amount and mask may vary thus: 4541 // [1] = 0x22222222 / 0x44444444 4542 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 4543 // [4] = 0x00F000F0 / 0x0F000F00 4544 // [8] = 0x0000FF00 / 0x00FF0000 4545 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 4546 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 4547 // These are the unshifted masks which we use to match bit-manipulation 4548 // patterns. They may be shifted left in certain circumstances. 4549 static const uint64_t BitmanipMasks[] = { 4550 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 4551 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 4552 4553 return matchRISCVBitmanipPat(Op, BitmanipMasks); 4554 } 4555 4556 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 4557 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 4558 const RISCVSubtarget &Subtarget) { 4559 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4560 EVT VT = Op.getValueType(); 4561 4562 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 4563 return SDValue(); 4564 4565 SDValue Op0 = Op.getOperand(0); 4566 SDValue Op1 = Op.getOperand(1); 4567 4568 // Or is commutable so canonicalize the second OR to the LHS. 4569 if (Op0.getOpcode() != ISD::OR) 4570 std::swap(Op0, Op1); 4571 if (Op0.getOpcode() != ISD::OR) 4572 return SDValue(); 4573 4574 // We found an inner OR, so our operands are the operands of the inner OR 4575 // and the other operand of the outer OR. 4576 SDValue A = Op0.getOperand(0); 4577 SDValue B = Op0.getOperand(1); 4578 SDValue C = Op1; 4579 4580 auto Match1 = matchSHFLPat(A); 4581 auto Match2 = matchSHFLPat(B); 4582 4583 // If neither matched, we failed. 4584 if (!Match1 && !Match2) 4585 return SDValue(); 4586 4587 // We had at least one match. if one failed, try the remaining C operand. 4588 if (!Match1) { 4589 std::swap(A, C); 4590 Match1 = matchSHFLPat(A); 4591 if (!Match1) 4592 return SDValue(); 4593 } else if (!Match2) { 4594 std::swap(B, C); 4595 Match2 = matchSHFLPat(B); 4596 if (!Match2) 4597 return SDValue(); 4598 } 4599 assert(Match1 && Match2); 4600 4601 // Make sure our matches pair up. 4602 if (!Match1->formsPairWith(*Match2)) 4603 return SDValue(); 4604 4605 // All the remains is to make sure C is an AND with the same input, that masks 4606 // out the bits that are being shuffled. 4607 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 4608 C.getOperand(0) != Match1->Op) 4609 return SDValue(); 4610 4611 uint64_t Mask = C.getConstantOperandVal(1); 4612 4613 static const uint64_t BitmanipMasks[] = { 4614 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 4615 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 4616 }; 4617 4618 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4619 unsigned MaskIdx = Log2_32(Match1->ShAmt); 4620 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 4621 4622 if (Mask != ExpMask) 4623 return SDValue(); 4624 4625 SDLoc DL(Op); 4626 return DAG.getNode( 4627 RISCVISD::SHFLI, DL, VT, Match1->Op, 4628 DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT())); 4629 } 4630 4631 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 4632 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 4633 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 4634 // not undo itself, but they are redundant. 4635 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 4636 unsigned ShAmt1 = N->getConstantOperandVal(1); 4637 SDValue Src = N->getOperand(0); 4638 4639 if (Src.getOpcode() != N->getOpcode()) 4640 return SDValue(); 4641 4642 unsigned ShAmt2 = Src.getConstantOperandVal(1); 4643 Src = Src.getOperand(0); 4644 4645 unsigned CombinedShAmt; 4646 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 4647 CombinedShAmt = ShAmt1 | ShAmt2; 4648 else 4649 CombinedShAmt = ShAmt1 ^ ShAmt2; 4650 4651 if (CombinedShAmt == 0) 4652 return Src; 4653 4654 SDLoc DL(N); 4655 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 4656 DAG.getTargetConstant(CombinedShAmt, DL, 4657 N->getOperand(1).getValueType())); 4658 } 4659 4660 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 4661 DAGCombinerInfo &DCI) const { 4662 SelectionDAG &DAG = DCI.DAG; 4663 4664 switch (N->getOpcode()) { 4665 default: 4666 break; 4667 case RISCVISD::SplitF64: { 4668 SDValue Op0 = N->getOperand(0); 4669 // If the input to SplitF64 is just BuildPairF64 then the operation is 4670 // redundant. Instead, use BuildPairF64's operands directly. 4671 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 4672 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 4673 4674 SDLoc DL(N); 4675 4676 // It's cheaper to materialise two 32-bit integers than to load a double 4677 // from the constant pool and transfer it to integer registers through the 4678 // stack. 4679 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 4680 APInt V = C->getValueAPF().bitcastToAPInt(); 4681 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 4682 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 4683 return DCI.CombineTo(N, Lo, Hi); 4684 } 4685 4686 // This is a target-specific version of a DAGCombine performed in 4687 // DAGCombiner::visitBITCAST. It performs the equivalent of: 4688 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 4689 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 4690 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 4691 !Op0.getNode()->hasOneUse()) 4692 break; 4693 SDValue NewSplitF64 = 4694 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 4695 Op0.getOperand(0)); 4696 SDValue Lo = NewSplitF64.getValue(0); 4697 SDValue Hi = NewSplitF64.getValue(1); 4698 APInt SignBit = APInt::getSignMask(32); 4699 if (Op0.getOpcode() == ISD::FNEG) { 4700 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 4701 DAG.getConstant(SignBit, DL, MVT::i32)); 4702 return DCI.CombineTo(N, Lo, NewHi); 4703 } 4704 assert(Op0.getOpcode() == ISD::FABS); 4705 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 4706 DAG.getConstant(~SignBit, DL, MVT::i32)); 4707 return DCI.CombineTo(N, Lo, NewHi); 4708 } 4709 case RISCVISD::SLLW: 4710 case RISCVISD::SRAW: 4711 case RISCVISD::SRLW: 4712 case RISCVISD::ROLW: 4713 case RISCVISD::RORW: { 4714 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 4715 SDValue LHS = N->getOperand(0); 4716 SDValue RHS = N->getOperand(1); 4717 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 4718 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 4719 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 4720 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 4721 if (N->getOpcode() != ISD::DELETED_NODE) 4722 DCI.AddToWorklist(N); 4723 return SDValue(N, 0); 4724 } 4725 break; 4726 } 4727 case RISCVISD::CLZW: 4728 case RISCVISD::CTZW: { 4729 // Only the lower 32 bits of the first operand are read 4730 SDValue Op0 = N->getOperand(0); 4731 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4732 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 4733 if (N->getOpcode() != ISD::DELETED_NODE) 4734 DCI.AddToWorklist(N); 4735 return SDValue(N, 0); 4736 } 4737 break; 4738 } 4739 case RISCVISD::FSL: 4740 case RISCVISD::FSR: { 4741 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 4742 SDValue ShAmt = N->getOperand(2); 4743 unsigned BitWidth = ShAmt.getValueSizeInBits(); 4744 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 4745 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 4746 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 4747 if (N->getOpcode() != ISD::DELETED_NODE) 4748 DCI.AddToWorklist(N); 4749 return SDValue(N, 0); 4750 } 4751 break; 4752 } 4753 case RISCVISD::FSLW: 4754 case RISCVISD::FSRW: { 4755 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 4756 // read. 4757 SDValue Op0 = N->getOperand(0); 4758 SDValue Op1 = N->getOperand(1); 4759 SDValue ShAmt = N->getOperand(2); 4760 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4761 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 4762 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 4763 SimplifyDemandedBits(Op1, OpMask, DCI) || 4764 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 4765 if (N->getOpcode() != ISD::DELETED_NODE) 4766 DCI.AddToWorklist(N); 4767 return SDValue(N, 0); 4768 } 4769 break; 4770 } 4771 case RISCVISD::GREVIW: 4772 case RISCVISD::GORCIW: { 4773 // Only the lower 32 bits of the first operand are read 4774 SDValue Op0 = N->getOperand(0); 4775 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4776 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 4777 if (N->getOpcode() != ISD::DELETED_NODE) 4778 DCI.AddToWorklist(N); 4779 return SDValue(N, 0); 4780 } 4781 4782 return combineGREVI_GORCI(N, DCI.DAG); 4783 } 4784 case RISCVISD::FMV_X_ANYEXTW_RV64: { 4785 SDLoc DL(N); 4786 SDValue Op0 = N->getOperand(0); 4787 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 4788 // conversion is unnecessary and can be replaced with an ANY_EXTEND 4789 // of the FMV_W_X_RV64 operand. 4790 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 4791 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 4792 "Unexpected value type!"); 4793 return Op0.getOperand(0); 4794 } 4795 4796 // This is a target-specific version of a DAGCombine performed in 4797 // DAGCombiner::visitBITCAST. It performs the equivalent of: 4798 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 4799 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 4800 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 4801 !Op0.getNode()->hasOneUse()) 4802 break; 4803 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 4804 Op0.getOperand(0)); 4805 APInt SignBit = APInt::getSignMask(32).sext(64); 4806 if (Op0.getOpcode() == ISD::FNEG) 4807 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 4808 DAG.getConstant(SignBit, DL, MVT::i64)); 4809 4810 assert(Op0.getOpcode() == ISD::FABS); 4811 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 4812 DAG.getConstant(~SignBit, DL, MVT::i64)); 4813 } 4814 case RISCVISD::GREVI: 4815 case RISCVISD::GORCI: 4816 return combineGREVI_GORCI(N, DCI.DAG); 4817 case ISD::OR: 4818 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 4819 return GREV; 4820 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 4821 return GORC; 4822 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget)) 4823 return SHFL; 4824 break; 4825 case RISCVISD::SELECT_CC: { 4826 // Transform 4827 SDValue LHS = N->getOperand(0); 4828 SDValue RHS = N->getOperand(1); 4829 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 4830 if (!ISD::isIntEqualitySetCC(CCVal)) 4831 break; 4832 4833 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 4834 // (select_cc X, Y, lt, trueV, falseV) 4835 // Sometimes the setcc is introduced after select_cc has been formed. 4836 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 4837 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 4838 // If we're looking for eq 0 instead of ne 0, we need to invert the 4839 // condition. 4840 bool Invert = CCVal == ISD::SETEQ; 4841 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 4842 if (Invert) 4843 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4844 4845 SDLoc DL(N); 4846 RHS = LHS.getOperand(1); 4847 LHS = LHS.getOperand(0); 4848 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4849 4850 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 4851 return DAG.getNode( 4852 RISCVISD::SELECT_CC, DL, N->getValueType(0), 4853 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 4854 } 4855 4856 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 4857 // (select_cc X, Y, eq/ne, trueV, falseV) 4858 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 4859 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 4860 {LHS.getOperand(0), LHS.getOperand(1), 4861 N->getOperand(2), N->getOperand(3), 4862 N->getOperand(4)}); 4863 // (select_cc X, 1, setne, trueV, falseV) -> 4864 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 4865 // This can occur when legalizing some floating point comparisons. 4866 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 4867 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 4868 SDLoc DL(N); 4869 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4870 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 4871 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 4872 return DAG.getNode( 4873 RISCVISD::SELECT_CC, DL, N->getValueType(0), 4874 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 4875 } 4876 4877 break; 4878 } 4879 case RISCVISD::BR_CC: { 4880 SDValue LHS = N->getOperand(1); 4881 SDValue RHS = N->getOperand(2); 4882 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 4883 if (!ISD::isIntEqualitySetCC(CCVal)) 4884 break; 4885 4886 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 4887 // (br_cc X, Y, lt, dest) 4888 // Sometimes the setcc is introduced after br_cc has been formed. 4889 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 4890 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 4891 // If we're looking for eq 0 instead of ne 0, we need to invert the 4892 // condition. 4893 bool Invert = CCVal == ISD::SETEQ; 4894 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 4895 if (Invert) 4896 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4897 4898 SDLoc DL(N); 4899 RHS = LHS.getOperand(1); 4900 LHS = LHS.getOperand(0); 4901 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4902 4903 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 4904 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 4905 N->getOperand(4)); 4906 } 4907 4908 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 4909 // (br_cc X, Y, eq/ne, trueV, falseV) 4910 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 4911 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 4912 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 4913 N->getOperand(3), N->getOperand(4)); 4914 4915 // (br_cc X, 1, setne, br_cc) -> 4916 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 4917 // This can occur when legalizing some floating point comparisons. 4918 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 4919 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 4920 SDLoc DL(N); 4921 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4922 SDValue TargetCC = DAG.getCondCode(CCVal); 4923 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 4924 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 4925 N->getOperand(0), LHS, RHS, TargetCC, 4926 N->getOperand(4)); 4927 } 4928 break; 4929 } 4930 case ISD::FCOPYSIGN: { 4931 EVT VT = N->getValueType(0); 4932 if (!VT.isVector()) 4933 break; 4934 // There is a form of VFSGNJ which injects the negated sign of its second 4935 // operand. Try and bubble any FNEG up after the extend/round to produce 4936 // this optimized pattern. Avoid modifying cases where FP_ROUND and 4937 // TRUNC=1. 4938 SDValue In2 = N->getOperand(1); 4939 // Avoid cases where the extend/round has multiple uses, as duplicating 4940 // those is typically more expensive than removing a fneg. 4941 if (!In2.hasOneUse()) 4942 break; 4943 if (In2.getOpcode() != ISD::FP_EXTEND && 4944 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 4945 break; 4946 In2 = In2.getOperand(0); 4947 if (In2.getOpcode() != ISD::FNEG) 4948 break; 4949 SDLoc DL(N); 4950 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 4951 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 4952 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 4953 } 4954 case ISD::MGATHER: 4955 case ISD::MSCATTER: { 4956 if (!DCI.isBeforeLegalize()) 4957 break; 4958 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 4959 SDValue Index = MGSN->getIndex(); 4960 EVT IndexVT = Index.getValueType(); 4961 MVT XLenVT = Subtarget.getXLenVT(); 4962 // RISCV indexed loads only support the "unsigned unscaled" addressing 4963 // mode, so anything else must be manually legalized. 4964 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 4965 (MGSN->isIndexSigned() && 4966 IndexVT.getVectorElementType().bitsLT(XLenVT)); 4967 if (!NeedsIdxLegalization) 4968 break; 4969 4970 SDLoc DL(N); 4971 4972 // Any index legalization should first promote to XLenVT, so we don't lose 4973 // bits when scaling. This may create an illegal index type so we let 4974 // LLVM's legalization take care of the splitting. 4975 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 4976 IndexVT = IndexVT.changeVectorElementType(XLenVT); 4977 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 4978 : ISD::ZERO_EXTEND, 4979 DL, IndexVT, Index); 4980 } 4981 4982 unsigned Scale = N->getConstantOperandVal(5); 4983 if (MGSN->isIndexScaled() && Scale != 1) { 4984 // Manually scale the indices by the element size. 4985 // TODO: Sanitize the scale operand here? 4986 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 4987 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 4988 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 4989 } 4990 4991 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 4992 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 4993 return DAG.getMaskedGather( 4994 N->getVTList(), MGSN->getMemoryVT(), DL, 4995 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 4996 MGSN->getBasePtr(), Index, MGN->getScale()}, 4997 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 4998 } 4999 const auto *MSN = cast<MaskedScatterSDNode>(N); 5000 return DAG.getMaskedScatter( 5001 N->getVTList(), MGSN->getMemoryVT(), DL, 5002 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5003 Index, MGSN->getScale()}, 5004 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5005 } 5006 } 5007 5008 return SDValue(); 5009 } 5010 5011 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5012 const SDNode *N, CombineLevel Level) const { 5013 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5014 // materialised in fewer instructions than `(OP _, c1)`: 5015 // 5016 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5017 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5018 SDValue N0 = N->getOperand(0); 5019 EVT Ty = N0.getValueType(); 5020 if (Ty.isScalarInteger() && 5021 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5022 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5023 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5024 if (C1 && C2) { 5025 const APInt &C1Int = C1->getAPIntValue(); 5026 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5027 5028 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5029 // and the combine should happen, to potentially allow further combines 5030 // later. 5031 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5032 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5033 return true; 5034 5035 // We can materialise `c1` in an add immediate, so it's "free", and the 5036 // combine should be prevented. 5037 if (C1Int.getMinSignedBits() <= 64 && 5038 isLegalAddImmediate(C1Int.getSExtValue())) 5039 return false; 5040 5041 // Neither constant will fit into an immediate, so find materialisation 5042 // costs. 5043 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5044 Subtarget.is64Bit()); 5045 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5046 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5047 5048 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5049 // combine should be prevented. 5050 if (C1Cost < ShiftedC1Cost) 5051 return false; 5052 } 5053 } 5054 return true; 5055 } 5056 5057 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5058 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5059 TargetLoweringOpt &TLO) const { 5060 // Delay this optimization as late as possible. 5061 if (!TLO.LegalOps) 5062 return false; 5063 5064 EVT VT = Op.getValueType(); 5065 if (VT.isVector()) 5066 return false; 5067 5068 // Only handle AND for now. 5069 if (Op.getOpcode() != ISD::AND) 5070 return false; 5071 5072 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5073 if (!C) 5074 return false; 5075 5076 const APInt &Mask = C->getAPIntValue(); 5077 5078 // Clear all non-demanded bits initially. 5079 APInt ShrunkMask = Mask & DemandedBits; 5080 5081 // Try to make a smaller immediate by setting undemanded bits. 5082 5083 APInt ExpandedMask = Mask | ~DemandedBits; 5084 5085 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 5086 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 5087 }; 5088 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 5089 if (NewMask == Mask) 5090 return true; 5091 SDLoc DL(Op); 5092 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 5093 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 5094 return TLO.CombineTo(Op, NewOp); 5095 }; 5096 5097 // If the shrunk mask fits in sign extended 12 bits, let the target 5098 // independent code apply it. 5099 if (ShrunkMask.isSignedIntN(12)) 5100 return false; 5101 5102 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 5103 if (VT == MVT::i64) { 5104 APInt NewMask = APInt(64, 0xffffffff); 5105 if (IsLegalMask(NewMask)) 5106 return UseMask(NewMask); 5107 } 5108 5109 // For the remaining optimizations, we need to be able to make a negative 5110 // number through a combination of mask and undemanded bits. 5111 if (!ExpandedMask.isNegative()) 5112 return false; 5113 5114 // What is the fewest number of bits we need to represent the negative number. 5115 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 5116 5117 // Try to make a 12 bit negative immediate. If that fails try to make a 32 5118 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 5119 APInt NewMask = ShrunkMask; 5120 if (MinSignedBits <= 12) 5121 NewMask.setBitsFrom(11); 5122 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 5123 NewMask.setBitsFrom(31); 5124 else 5125 return false; 5126 5127 // Sanity check that our new mask is a subset of the demanded mask. 5128 assert(IsLegalMask(NewMask)); 5129 return UseMask(NewMask); 5130 } 5131 5132 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5133 KnownBits &Known, 5134 const APInt &DemandedElts, 5135 const SelectionDAG &DAG, 5136 unsigned Depth) const { 5137 unsigned BitWidth = Known.getBitWidth(); 5138 unsigned Opc = Op.getOpcode(); 5139 assert((Opc >= ISD::BUILTIN_OP_END || 5140 Opc == ISD::INTRINSIC_WO_CHAIN || 5141 Opc == ISD::INTRINSIC_W_CHAIN || 5142 Opc == ISD::INTRINSIC_VOID) && 5143 "Should use MaskedValueIsZero if you don't know whether Op" 5144 " is a target node!"); 5145 5146 Known.resetAll(); 5147 switch (Opc) { 5148 default: break; 5149 case RISCVISD::SELECT_CC: { 5150 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 5151 // If we don't know any bits, early out. 5152 if (Known.isUnknown()) 5153 break; 5154 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 5155 5156 // Only known if known in both the LHS and RHS. 5157 Known = KnownBits::commonBits(Known, Known2); 5158 break; 5159 } 5160 case RISCVISD::REMUW: { 5161 KnownBits Known2; 5162 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5163 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5164 // We only care about the lower 32 bits. 5165 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 5166 // Restore the original width by sign extending. 5167 Known = Known.sext(BitWidth); 5168 break; 5169 } 5170 case RISCVISD::DIVUW: { 5171 KnownBits Known2; 5172 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5173 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5174 // We only care about the lower 32 bits. 5175 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 5176 // Restore the original width by sign extending. 5177 Known = Known.sext(BitWidth); 5178 break; 5179 } 5180 case RISCVISD::CTZW: { 5181 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5182 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 5183 unsigned LowBits = Log2_32(PossibleTZ) + 1; 5184 Known.Zero.setBitsFrom(LowBits); 5185 break; 5186 } 5187 case RISCVISD::CLZW: { 5188 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5189 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 5190 unsigned LowBits = Log2_32(PossibleLZ) + 1; 5191 Known.Zero.setBitsFrom(LowBits); 5192 break; 5193 } 5194 case RISCVISD::READ_VLENB: 5195 // We assume VLENB is at least 8 bytes. 5196 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 5197 Known.Zero.setLowBits(3); 5198 break; 5199 } 5200 } 5201 5202 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 5203 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 5204 unsigned Depth) const { 5205 switch (Op.getOpcode()) { 5206 default: 5207 break; 5208 case RISCVISD::SLLW: 5209 case RISCVISD::SRAW: 5210 case RISCVISD::SRLW: 5211 case RISCVISD::DIVW: 5212 case RISCVISD::DIVUW: 5213 case RISCVISD::REMUW: 5214 case RISCVISD::ROLW: 5215 case RISCVISD::RORW: 5216 case RISCVISD::GREVIW: 5217 case RISCVISD::GORCIW: 5218 case RISCVISD::FSLW: 5219 case RISCVISD::FSRW: 5220 // TODO: As the result is sign-extended, this is conservatively correct. A 5221 // more precise answer could be calculated for SRAW depending on known 5222 // bits in the shift amount. 5223 return 33; 5224 case RISCVISD::SHFLI: { 5225 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 5226 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 5227 // will stay within the upper 32 bits. If there were more than 32 sign bits 5228 // before there will be at least 33 sign bits after. 5229 if (Op.getValueType() == MVT::i64 && 5230 (Op.getConstantOperandVal(1) & 0x10) == 0) { 5231 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 5232 if (Tmp > 32) 5233 return 33; 5234 } 5235 break; 5236 } 5237 case RISCVISD::VMV_X_S: 5238 // The number of sign bits of the scalar result is computed by obtaining the 5239 // element type of the input vector operand, subtracting its width from the 5240 // XLEN, and then adding one (sign bit within the element type). If the 5241 // element type is wider than XLen, the least-significant XLEN bits are 5242 // taken. 5243 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 5244 return 1; 5245 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 5246 } 5247 5248 return 1; 5249 } 5250 5251 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 5252 MachineBasicBlock *BB) { 5253 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 5254 5255 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 5256 // Should the count have wrapped while it was being read, we need to try 5257 // again. 5258 // ... 5259 // read: 5260 // rdcycleh x3 # load high word of cycle 5261 // rdcycle x2 # load low word of cycle 5262 // rdcycleh x4 # load high word of cycle 5263 // bne x3, x4, read # check if high word reads match, otherwise try again 5264 // ... 5265 5266 MachineFunction &MF = *BB->getParent(); 5267 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5268 MachineFunction::iterator It = ++BB->getIterator(); 5269 5270 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 5271 MF.insert(It, LoopMBB); 5272 5273 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 5274 MF.insert(It, DoneMBB); 5275 5276 // Transfer the remainder of BB and its successor edges to DoneMBB. 5277 DoneMBB->splice(DoneMBB->begin(), BB, 5278 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 5279 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 5280 5281 BB->addSuccessor(LoopMBB); 5282 5283 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5284 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 5285 Register LoReg = MI.getOperand(0).getReg(); 5286 Register HiReg = MI.getOperand(1).getReg(); 5287 DebugLoc DL = MI.getDebugLoc(); 5288 5289 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 5290 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 5291 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 5292 .addReg(RISCV::X0); 5293 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 5294 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 5295 .addReg(RISCV::X0); 5296 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 5297 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 5298 .addReg(RISCV::X0); 5299 5300 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 5301 .addReg(HiReg) 5302 .addReg(ReadAgainReg) 5303 .addMBB(LoopMBB); 5304 5305 LoopMBB->addSuccessor(LoopMBB); 5306 LoopMBB->addSuccessor(DoneMBB); 5307 5308 MI.eraseFromParent(); 5309 5310 return DoneMBB; 5311 } 5312 5313 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 5314 MachineBasicBlock *BB) { 5315 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 5316 5317 MachineFunction &MF = *BB->getParent(); 5318 DebugLoc DL = MI.getDebugLoc(); 5319 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5320 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 5321 Register LoReg = MI.getOperand(0).getReg(); 5322 Register HiReg = MI.getOperand(1).getReg(); 5323 Register SrcReg = MI.getOperand(2).getReg(); 5324 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 5325 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 5326 5327 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 5328 RI); 5329 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 5330 MachineMemOperand *MMOLo = 5331 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 5332 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 5333 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 5334 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 5335 .addFrameIndex(FI) 5336 .addImm(0) 5337 .addMemOperand(MMOLo); 5338 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 5339 .addFrameIndex(FI) 5340 .addImm(4) 5341 .addMemOperand(MMOHi); 5342 MI.eraseFromParent(); // The pseudo instruction is gone now. 5343 return BB; 5344 } 5345 5346 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 5347 MachineBasicBlock *BB) { 5348 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 5349 "Unexpected instruction"); 5350 5351 MachineFunction &MF = *BB->getParent(); 5352 DebugLoc DL = MI.getDebugLoc(); 5353 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5354 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 5355 Register DstReg = MI.getOperand(0).getReg(); 5356 Register LoReg = MI.getOperand(1).getReg(); 5357 Register HiReg = MI.getOperand(2).getReg(); 5358 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 5359 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 5360 5361 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 5362 MachineMemOperand *MMOLo = 5363 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 5364 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 5365 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 5366 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 5367 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 5368 .addFrameIndex(FI) 5369 .addImm(0) 5370 .addMemOperand(MMOLo); 5371 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 5372 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 5373 .addFrameIndex(FI) 5374 .addImm(4) 5375 .addMemOperand(MMOHi); 5376 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 5377 MI.eraseFromParent(); // The pseudo instruction is gone now. 5378 return BB; 5379 } 5380 5381 static bool isSelectPseudo(MachineInstr &MI) { 5382 switch (MI.getOpcode()) { 5383 default: 5384 return false; 5385 case RISCV::Select_GPR_Using_CC_GPR: 5386 case RISCV::Select_FPR16_Using_CC_GPR: 5387 case RISCV::Select_FPR32_Using_CC_GPR: 5388 case RISCV::Select_FPR64_Using_CC_GPR: 5389 return true; 5390 } 5391 } 5392 5393 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 5394 MachineBasicBlock *BB) { 5395 // To "insert" Select_* instructions, we actually have to insert the triangle 5396 // control-flow pattern. The incoming instructions know the destination vreg 5397 // to set, the condition code register to branch on, the true/false values to 5398 // select between, and the condcode to use to select the appropriate branch. 5399 // 5400 // We produce the following control flow: 5401 // HeadMBB 5402 // | \ 5403 // | IfFalseMBB 5404 // | / 5405 // TailMBB 5406 // 5407 // When we find a sequence of selects we attempt to optimize their emission 5408 // by sharing the control flow. Currently we only handle cases where we have 5409 // multiple selects with the exact same condition (same LHS, RHS and CC). 5410 // The selects may be interleaved with other instructions if the other 5411 // instructions meet some requirements we deem safe: 5412 // - They are debug instructions. Otherwise, 5413 // - They do not have side-effects, do not access memory and their inputs do 5414 // not depend on the results of the select pseudo-instructions. 5415 // The TrueV/FalseV operands of the selects cannot depend on the result of 5416 // previous selects in the sequence. 5417 // These conditions could be further relaxed. See the X86 target for a 5418 // related approach and more information. 5419 Register LHS = MI.getOperand(1).getReg(); 5420 Register RHS = MI.getOperand(2).getReg(); 5421 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 5422 5423 SmallVector<MachineInstr *, 4> SelectDebugValues; 5424 SmallSet<Register, 4> SelectDests; 5425 SelectDests.insert(MI.getOperand(0).getReg()); 5426 5427 MachineInstr *LastSelectPseudo = &MI; 5428 5429 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 5430 SequenceMBBI != E; ++SequenceMBBI) { 5431 if (SequenceMBBI->isDebugInstr()) 5432 continue; 5433 else if (isSelectPseudo(*SequenceMBBI)) { 5434 if (SequenceMBBI->getOperand(1).getReg() != LHS || 5435 SequenceMBBI->getOperand(2).getReg() != RHS || 5436 SequenceMBBI->getOperand(3).getImm() != CC || 5437 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 5438 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 5439 break; 5440 LastSelectPseudo = &*SequenceMBBI; 5441 SequenceMBBI->collectDebugValues(SelectDebugValues); 5442 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 5443 } else { 5444 if (SequenceMBBI->hasUnmodeledSideEffects() || 5445 SequenceMBBI->mayLoadOrStore()) 5446 break; 5447 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 5448 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 5449 })) 5450 break; 5451 } 5452 } 5453 5454 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 5455 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5456 DebugLoc DL = MI.getDebugLoc(); 5457 MachineFunction::iterator I = ++BB->getIterator(); 5458 5459 MachineBasicBlock *HeadMBB = BB; 5460 MachineFunction *F = BB->getParent(); 5461 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 5462 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 5463 5464 F->insert(I, IfFalseMBB); 5465 F->insert(I, TailMBB); 5466 5467 // Transfer debug instructions associated with the selects to TailMBB. 5468 for (MachineInstr *DebugInstr : SelectDebugValues) { 5469 TailMBB->push_back(DebugInstr->removeFromParent()); 5470 } 5471 5472 // Move all instructions after the sequence to TailMBB. 5473 TailMBB->splice(TailMBB->end(), HeadMBB, 5474 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 5475 // Update machine-CFG edges by transferring all successors of the current 5476 // block to the new block which will contain the Phi nodes for the selects. 5477 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 5478 // Set the successors for HeadMBB. 5479 HeadMBB->addSuccessor(IfFalseMBB); 5480 HeadMBB->addSuccessor(TailMBB); 5481 5482 // Insert appropriate branch. 5483 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 5484 5485 BuildMI(HeadMBB, DL, TII.get(Opcode)) 5486 .addReg(LHS) 5487 .addReg(RHS) 5488 .addMBB(TailMBB); 5489 5490 // IfFalseMBB just falls through to TailMBB. 5491 IfFalseMBB->addSuccessor(TailMBB); 5492 5493 // Create PHIs for all of the select pseudo-instructions. 5494 auto SelectMBBI = MI.getIterator(); 5495 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 5496 auto InsertionPoint = TailMBB->begin(); 5497 while (SelectMBBI != SelectEnd) { 5498 auto Next = std::next(SelectMBBI); 5499 if (isSelectPseudo(*SelectMBBI)) { 5500 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 5501 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 5502 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 5503 .addReg(SelectMBBI->getOperand(4).getReg()) 5504 .addMBB(HeadMBB) 5505 .addReg(SelectMBBI->getOperand(5).getReg()) 5506 .addMBB(IfFalseMBB); 5507 SelectMBBI->eraseFromParent(); 5508 } 5509 SelectMBBI = Next; 5510 } 5511 5512 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 5513 return TailMBB; 5514 } 5515 5516 static MachineInstr *elideCopies(MachineInstr *MI, 5517 const MachineRegisterInfo &MRI) { 5518 while (true) { 5519 if (!MI->isFullCopy()) 5520 return MI; 5521 if (!Register::isVirtualRegister(MI->getOperand(1).getReg())) 5522 return nullptr; 5523 MI = MRI.getVRegDef(MI->getOperand(1).getReg()); 5524 if (!MI) 5525 return nullptr; 5526 } 5527 } 5528 5529 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 5530 int VLIndex, unsigned SEWIndex, 5531 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 5532 MachineFunction &MF = *BB->getParent(); 5533 DebugLoc DL = MI.getDebugLoc(); 5534 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5535 5536 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 5537 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 5538 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 5539 5540 MachineRegisterInfo &MRI = MF.getRegInfo(); 5541 5542 auto BuildVSETVLI = [&]() { 5543 if (VLIndex >= 0) { 5544 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 5545 Register VLReg = MI.getOperand(VLIndex).getReg(); 5546 5547 // VL might be a compile time constant, but isel would have to put it 5548 // in a register. See if VL comes from an ADDI X0, imm. 5549 if (VLReg.isVirtual()) { 5550 MachineInstr *Def = MRI.getVRegDef(VLReg); 5551 if (Def && Def->getOpcode() == RISCV::ADDI && 5552 Def->getOperand(1).getReg() == RISCV::X0 && 5553 Def->getOperand(2).isImm()) { 5554 uint64_t Imm = Def->getOperand(2).getImm(); 5555 // VSETIVLI allows a 5-bit zero extended immediate. 5556 if (isUInt<5>(Imm)) 5557 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 5558 .addReg(DestReg, RegState::Define | RegState::Dead) 5559 .addImm(Imm); 5560 } 5561 } 5562 5563 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 5564 .addReg(DestReg, RegState::Define | RegState::Dead) 5565 .addReg(VLReg); 5566 } 5567 5568 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 5569 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 5570 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 5571 .addReg(RISCV::X0, RegState::Kill); 5572 }; 5573 5574 MachineInstrBuilder MIB = BuildVSETVLI(); 5575 5576 // Default to tail agnostic unless the destination is tied to a source. In 5577 // that case the user would have some control over the tail values. The tail 5578 // policy is also ignored on instructions that only update element 0 like 5579 // vmv.s.x or reductions so use agnostic there to match the common case. 5580 // FIXME: This is conservatively correct, but we might want to detect that 5581 // the input is undefined. 5582 bool TailAgnostic = true; 5583 unsigned UseOpIdx; 5584 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 5585 TailAgnostic = false; 5586 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 5587 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 5588 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 5589 if (UseMI) { 5590 UseMI = elideCopies(UseMI, MRI); 5591 if (UseMI && UseMI->isImplicitDef()) 5592 TailAgnostic = true; 5593 } 5594 } 5595 5596 // For simplicity we reuse the vtype representation here. 5597 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 5598 /*TailAgnostic*/ TailAgnostic, 5599 /*MaskAgnostic*/ false)); 5600 5601 // Remove (now) redundant operands from pseudo 5602 if (VLIndex >= 0) { 5603 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 5604 MI.getOperand(VLIndex).setIsKill(false); 5605 } 5606 5607 return BB; 5608 } 5609 5610 MachineBasicBlock * 5611 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 5612 MachineBasicBlock *BB) const { 5613 uint64_t TSFlags = MI.getDesc().TSFlags; 5614 5615 if (TSFlags & RISCVII::HasSEWOpMask) { 5616 unsigned NumOperands = MI.getNumExplicitOperands(); 5617 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 5618 unsigned SEWIndex = NumOperands - 1; 5619 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 5620 5621 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 5622 RISCVII::VLMulShift); 5623 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 5624 } 5625 5626 switch (MI.getOpcode()) { 5627 default: 5628 llvm_unreachable("Unexpected instr type to insert"); 5629 case RISCV::ReadCycleWide: 5630 assert(!Subtarget.is64Bit() && 5631 "ReadCycleWrite is only to be used on riscv32"); 5632 return emitReadCycleWidePseudo(MI, BB); 5633 case RISCV::Select_GPR_Using_CC_GPR: 5634 case RISCV::Select_FPR16_Using_CC_GPR: 5635 case RISCV::Select_FPR32_Using_CC_GPR: 5636 case RISCV::Select_FPR64_Using_CC_GPR: 5637 return emitSelectPseudo(MI, BB); 5638 case RISCV::BuildPairF64Pseudo: 5639 return emitBuildPairF64Pseudo(MI, BB); 5640 case RISCV::SplitF64Pseudo: 5641 return emitSplitF64Pseudo(MI, BB); 5642 } 5643 } 5644 5645 // Calling Convention Implementation. 5646 // The expectations for frontend ABI lowering vary from target to target. 5647 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 5648 // details, but this is a longer term goal. For now, we simply try to keep the 5649 // role of the frontend as simple and well-defined as possible. The rules can 5650 // be summarised as: 5651 // * Never split up large scalar arguments. We handle them here. 5652 // * If a hardfloat calling convention is being used, and the struct may be 5653 // passed in a pair of registers (fp+fp, int+fp), and both registers are 5654 // available, then pass as two separate arguments. If either the GPRs or FPRs 5655 // are exhausted, then pass according to the rule below. 5656 // * If a struct could never be passed in registers or directly in a stack 5657 // slot (as it is larger than 2*XLEN and the floating point rules don't 5658 // apply), then pass it using a pointer with the byval attribute. 5659 // * If a struct is less than 2*XLEN, then coerce to either a two-element 5660 // word-sized array or a 2*XLEN scalar (depending on alignment). 5661 // * The frontend can determine whether a struct is returned by reference or 5662 // not based on its size and fields. If it will be returned by reference, the 5663 // frontend must modify the prototype so a pointer with the sret annotation is 5664 // passed as the first argument. This is not necessary for large scalar 5665 // returns. 5666 // * Struct return values and varargs should be coerced to structs containing 5667 // register-size fields in the same situations they would be for fixed 5668 // arguments. 5669 5670 static const MCPhysReg ArgGPRs[] = { 5671 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 5672 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 5673 }; 5674 static const MCPhysReg ArgFPR16s[] = { 5675 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 5676 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 5677 }; 5678 static const MCPhysReg ArgFPR32s[] = { 5679 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 5680 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 5681 }; 5682 static const MCPhysReg ArgFPR64s[] = { 5683 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 5684 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 5685 }; 5686 // This is an interim calling convention and it may be changed in the future. 5687 static const MCPhysReg ArgVRs[] = { 5688 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 5689 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 5690 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 5691 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 5692 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 5693 RISCV::V20M2, RISCV::V22M2}; 5694 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 5695 RISCV::V20M4}; 5696 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 5697 5698 // Pass a 2*XLEN argument that has been split into two XLEN values through 5699 // registers or the stack as necessary. 5700 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 5701 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 5702 MVT ValVT2, MVT LocVT2, 5703 ISD::ArgFlagsTy ArgFlags2) { 5704 unsigned XLenInBytes = XLen / 8; 5705 if (Register Reg = State.AllocateReg(ArgGPRs)) { 5706 // At least one half can be passed via register. 5707 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 5708 VA1.getLocVT(), CCValAssign::Full)); 5709 } else { 5710 // Both halves must be passed on the stack, with proper alignment. 5711 Align StackAlign = 5712 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 5713 State.addLoc( 5714 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 5715 State.AllocateStack(XLenInBytes, StackAlign), 5716 VA1.getLocVT(), CCValAssign::Full)); 5717 State.addLoc(CCValAssign::getMem( 5718 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 5719 LocVT2, CCValAssign::Full)); 5720 return false; 5721 } 5722 5723 if (Register Reg = State.AllocateReg(ArgGPRs)) { 5724 // The second half can also be passed via register. 5725 State.addLoc( 5726 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 5727 } else { 5728 // The second half is passed via the stack, without additional alignment. 5729 State.addLoc(CCValAssign::getMem( 5730 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 5731 LocVT2, CCValAssign::Full)); 5732 } 5733 5734 return false; 5735 } 5736 5737 // Implements the RISC-V calling convention. Returns true upon failure. 5738 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 5739 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 5740 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 5741 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 5742 Optional<unsigned> FirstMaskArgument) { 5743 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 5744 assert(XLen == 32 || XLen == 64); 5745 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 5746 5747 // Any return value split in to more than two values can't be returned 5748 // directly. Vectors are returned via the available vector registers. 5749 if (!LocVT.isVector() && IsRet && ValNo > 1) 5750 return true; 5751 5752 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 5753 // variadic argument, or if no F16/F32 argument registers are available. 5754 bool UseGPRForF16_F32 = true; 5755 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 5756 // variadic argument, or if no F64 argument registers are available. 5757 bool UseGPRForF64 = true; 5758 5759 switch (ABI) { 5760 default: 5761 llvm_unreachable("Unexpected ABI"); 5762 case RISCVABI::ABI_ILP32: 5763 case RISCVABI::ABI_LP64: 5764 break; 5765 case RISCVABI::ABI_ILP32F: 5766 case RISCVABI::ABI_LP64F: 5767 UseGPRForF16_F32 = !IsFixed; 5768 break; 5769 case RISCVABI::ABI_ILP32D: 5770 case RISCVABI::ABI_LP64D: 5771 UseGPRForF16_F32 = !IsFixed; 5772 UseGPRForF64 = !IsFixed; 5773 break; 5774 } 5775 5776 // FPR16, FPR32, and FPR64 alias each other. 5777 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 5778 UseGPRForF16_F32 = true; 5779 UseGPRForF64 = true; 5780 } 5781 5782 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 5783 // similar local variables rather than directly checking against the target 5784 // ABI. 5785 5786 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 5787 LocVT = XLenVT; 5788 LocInfo = CCValAssign::BCvt; 5789 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 5790 LocVT = MVT::i64; 5791 LocInfo = CCValAssign::BCvt; 5792 } 5793 5794 // If this is a variadic argument, the RISC-V calling convention requires 5795 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 5796 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 5797 // be used regardless of whether the original argument was split during 5798 // legalisation or not. The argument will not be passed by registers if the 5799 // original type is larger than 2*XLEN, so the register alignment rule does 5800 // not apply. 5801 unsigned TwoXLenInBytes = (2 * XLen) / 8; 5802 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 5803 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 5804 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 5805 // Skip 'odd' register if necessary. 5806 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 5807 State.AllocateReg(ArgGPRs); 5808 } 5809 5810 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 5811 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 5812 State.getPendingArgFlags(); 5813 5814 assert(PendingLocs.size() == PendingArgFlags.size() && 5815 "PendingLocs and PendingArgFlags out of sync"); 5816 5817 // Handle passing f64 on RV32D with a soft float ABI or when floating point 5818 // registers are exhausted. 5819 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 5820 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 5821 "Can't lower f64 if it is split"); 5822 // Depending on available argument GPRS, f64 may be passed in a pair of 5823 // GPRs, split between a GPR and the stack, or passed completely on the 5824 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 5825 // cases. 5826 Register Reg = State.AllocateReg(ArgGPRs); 5827 LocVT = MVT::i32; 5828 if (!Reg) { 5829 unsigned StackOffset = State.AllocateStack(8, Align(8)); 5830 State.addLoc( 5831 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 5832 return false; 5833 } 5834 if (!State.AllocateReg(ArgGPRs)) 5835 State.AllocateStack(4, Align(4)); 5836 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5837 return false; 5838 } 5839 5840 // Fixed-length vectors are located in the corresponding scalable-vector 5841 // container types. 5842 if (ValVT.isFixedLengthVector()) 5843 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 5844 5845 // Split arguments might be passed indirectly, so keep track of the pending 5846 // values. Split vectors are passed via a mix of registers and indirectly, so 5847 // treat them as we would any other argument. 5848 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 5849 LocVT = XLenVT; 5850 LocInfo = CCValAssign::Indirect; 5851 PendingLocs.push_back( 5852 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 5853 PendingArgFlags.push_back(ArgFlags); 5854 if (!ArgFlags.isSplitEnd()) { 5855 return false; 5856 } 5857 } 5858 5859 // If the split argument only had two elements, it should be passed directly 5860 // in registers or on the stack. 5861 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 5862 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 5863 // Apply the normal calling convention rules to the first half of the 5864 // split argument. 5865 CCValAssign VA = PendingLocs[0]; 5866 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 5867 PendingLocs.clear(); 5868 PendingArgFlags.clear(); 5869 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 5870 ArgFlags); 5871 } 5872 5873 // Allocate to a register if possible, or else a stack slot. 5874 Register Reg; 5875 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 5876 Reg = State.AllocateReg(ArgFPR16s); 5877 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 5878 Reg = State.AllocateReg(ArgFPR32s); 5879 else if (ValVT == MVT::f64 && !UseGPRForF64) 5880 Reg = State.AllocateReg(ArgFPR64s); 5881 else if (ValVT.isVector()) { 5882 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 5883 if (RC == &RISCV::VRRegClass) { 5884 // Assign the first mask argument to V0. 5885 // This is an interim calling convention and it may be changed in the 5886 // future. 5887 if (FirstMaskArgument.hasValue() && 5888 ValNo == FirstMaskArgument.getValue()) { 5889 Reg = State.AllocateReg(RISCV::V0); 5890 } else { 5891 Reg = State.AllocateReg(ArgVRs); 5892 } 5893 } else if (RC == &RISCV::VRM2RegClass) { 5894 Reg = State.AllocateReg(ArgVRM2s); 5895 } else if (RC == &RISCV::VRM4RegClass) { 5896 Reg = State.AllocateReg(ArgVRM4s); 5897 } else if (RC == &RISCV::VRM8RegClass) { 5898 Reg = State.AllocateReg(ArgVRM8s); 5899 } else { 5900 llvm_unreachable("Unhandled class register for ValueType"); 5901 } 5902 if (!Reg) { 5903 // For return values, the vector must be passed fully via registers or 5904 // via the stack. 5905 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 5906 // but we're using all of them. 5907 if (IsRet) 5908 return true; 5909 LocInfo = CCValAssign::Indirect; 5910 // Try using a GPR to pass the address 5911 Reg = State.AllocateReg(ArgGPRs); 5912 LocVT = XLenVT; 5913 } 5914 } else 5915 Reg = State.AllocateReg(ArgGPRs); 5916 unsigned StackOffset = 5917 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 5918 5919 // If we reach this point and PendingLocs is non-empty, we must be at the 5920 // end of a split argument that must be passed indirectly. 5921 if (!PendingLocs.empty()) { 5922 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 5923 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 5924 5925 for (auto &It : PendingLocs) { 5926 if (Reg) 5927 It.convertToReg(Reg); 5928 else 5929 It.convertToMem(StackOffset); 5930 State.addLoc(It); 5931 } 5932 PendingLocs.clear(); 5933 PendingArgFlags.clear(); 5934 return false; 5935 } 5936 5937 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 5938 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 5939 "Expected an XLenVT or vector types at this stage"); 5940 5941 if (Reg) { 5942 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5943 return false; 5944 } 5945 5946 // When a floating-point value is passed on the stack, no bit-conversion is 5947 // needed. 5948 if (ValVT.isFloatingPoint()) { 5949 LocVT = ValVT; 5950 LocInfo = CCValAssign::Full; 5951 } 5952 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 5953 return false; 5954 } 5955 5956 template <typename ArgTy> 5957 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 5958 for (const auto &ArgIdx : enumerate(Args)) { 5959 MVT ArgVT = ArgIdx.value().VT; 5960 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 5961 return ArgIdx.index(); 5962 } 5963 return None; 5964 } 5965 5966 void RISCVTargetLowering::analyzeInputArgs( 5967 MachineFunction &MF, CCState &CCInfo, 5968 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 5969 unsigned NumArgs = Ins.size(); 5970 FunctionType *FType = MF.getFunction().getFunctionType(); 5971 5972 Optional<unsigned> FirstMaskArgument; 5973 if (Subtarget.hasStdExtV()) 5974 FirstMaskArgument = preAssignMask(Ins); 5975 5976 for (unsigned i = 0; i != NumArgs; ++i) { 5977 MVT ArgVT = Ins[i].VT; 5978 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 5979 5980 Type *ArgTy = nullptr; 5981 if (IsRet) 5982 ArgTy = FType->getReturnType(); 5983 else if (Ins[i].isOrigArg()) 5984 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 5985 5986 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 5987 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 5988 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 5989 FirstMaskArgument)) { 5990 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 5991 << EVT(ArgVT).getEVTString() << '\n'); 5992 llvm_unreachable(nullptr); 5993 } 5994 } 5995 } 5996 5997 void RISCVTargetLowering::analyzeOutputArgs( 5998 MachineFunction &MF, CCState &CCInfo, 5999 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6000 CallLoweringInfo *CLI) const { 6001 unsigned NumArgs = Outs.size(); 6002 6003 Optional<unsigned> FirstMaskArgument; 6004 if (Subtarget.hasStdExtV()) 6005 FirstMaskArgument = preAssignMask(Outs); 6006 6007 for (unsigned i = 0; i != NumArgs; i++) { 6008 MVT ArgVT = Outs[i].VT; 6009 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6010 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6011 6012 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6013 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6014 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6015 FirstMaskArgument)) { 6016 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6017 << EVT(ArgVT).getEVTString() << "\n"); 6018 llvm_unreachable(nullptr); 6019 } 6020 } 6021 } 6022 6023 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6024 // values. 6025 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6026 const CCValAssign &VA, const SDLoc &DL, 6027 const RISCVSubtarget &Subtarget) { 6028 switch (VA.getLocInfo()) { 6029 default: 6030 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6031 case CCValAssign::Full: 6032 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6033 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6034 break; 6035 case CCValAssign::BCvt: 6036 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6037 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6038 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6039 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6040 else 6041 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6042 break; 6043 } 6044 return Val; 6045 } 6046 6047 // The caller is responsible for loading the full value if the argument is 6048 // passed with CCValAssign::Indirect. 6049 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6050 const CCValAssign &VA, const SDLoc &DL, 6051 const RISCVTargetLowering &TLI) { 6052 MachineFunction &MF = DAG.getMachineFunction(); 6053 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6054 EVT LocVT = VA.getLocVT(); 6055 SDValue Val; 6056 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6057 Register VReg = RegInfo.createVirtualRegister(RC); 6058 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6059 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6060 6061 if (VA.getLocInfo() == CCValAssign::Indirect) 6062 return Val; 6063 6064 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 6065 } 6066 6067 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 6068 const CCValAssign &VA, const SDLoc &DL, 6069 const RISCVSubtarget &Subtarget) { 6070 EVT LocVT = VA.getLocVT(); 6071 6072 switch (VA.getLocInfo()) { 6073 default: 6074 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6075 case CCValAssign::Full: 6076 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 6077 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 6078 break; 6079 case CCValAssign::BCvt: 6080 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6081 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 6082 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6083 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 6084 else 6085 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 6086 break; 6087 } 6088 return Val; 6089 } 6090 6091 // The caller is responsible for loading the full value if the argument is 6092 // passed with CCValAssign::Indirect. 6093 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 6094 const CCValAssign &VA, const SDLoc &DL) { 6095 MachineFunction &MF = DAG.getMachineFunction(); 6096 MachineFrameInfo &MFI = MF.getFrameInfo(); 6097 EVT LocVT = VA.getLocVT(); 6098 EVT ValVT = VA.getValVT(); 6099 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 6100 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 6101 VA.getLocMemOffset(), /*Immutable=*/true); 6102 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6103 SDValue Val; 6104 6105 ISD::LoadExtType ExtType; 6106 switch (VA.getLocInfo()) { 6107 default: 6108 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6109 case CCValAssign::Full: 6110 case CCValAssign::Indirect: 6111 case CCValAssign::BCvt: 6112 ExtType = ISD::NON_EXTLOAD; 6113 break; 6114 } 6115 Val = DAG.getExtLoad( 6116 ExtType, DL, LocVT, Chain, FIN, 6117 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 6118 return Val; 6119 } 6120 6121 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 6122 const CCValAssign &VA, const SDLoc &DL) { 6123 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 6124 "Unexpected VA"); 6125 MachineFunction &MF = DAG.getMachineFunction(); 6126 MachineFrameInfo &MFI = MF.getFrameInfo(); 6127 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6128 6129 if (VA.isMemLoc()) { 6130 // f64 is passed on the stack. 6131 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 6132 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6133 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 6134 MachinePointerInfo::getFixedStack(MF, FI)); 6135 } 6136 6137 assert(VA.isRegLoc() && "Expected register VA assignment"); 6138 6139 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6140 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 6141 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 6142 SDValue Hi; 6143 if (VA.getLocReg() == RISCV::X17) { 6144 // Second half of f64 is passed on the stack. 6145 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 6146 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6147 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 6148 MachinePointerInfo::getFixedStack(MF, FI)); 6149 } else { 6150 // Second half of f64 is passed in another GPR. 6151 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6152 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 6153 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 6154 } 6155 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 6156 } 6157 6158 // FastCC has less than 1% performance improvement for some particular 6159 // benchmark. But theoretically, it may has benenfit for some cases. 6160 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 6161 CCValAssign::LocInfo LocInfo, 6162 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6163 6164 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6165 // X5 and X6 might be used for save-restore libcall. 6166 static const MCPhysReg GPRList[] = { 6167 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 6168 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 6169 RISCV::X29, RISCV::X30, RISCV::X31}; 6170 if (unsigned Reg = State.AllocateReg(GPRList)) { 6171 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6172 return false; 6173 } 6174 } 6175 6176 if (LocVT == MVT::f16) { 6177 static const MCPhysReg FPR16List[] = { 6178 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 6179 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 6180 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 6181 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 6182 if (unsigned Reg = State.AllocateReg(FPR16List)) { 6183 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6184 return false; 6185 } 6186 } 6187 6188 if (LocVT == MVT::f32) { 6189 static const MCPhysReg FPR32List[] = { 6190 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 6191 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 6192 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 6193 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 6194 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6195 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6196 return false; 6197 } 6198 } 6199 6200 if (LocVT == MVT::f64) { 6201 static const MCPhysReg FPR64List[] = { 6202 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 6203 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 6204 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 6205 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 6206 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6207 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6208 return false; 6209 } 6210 } 6211 6212 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 6213 unsigned Offset4 = State.AllocateStack(4, Align(4)); 6214 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 6215 return false; 6216 } 6217 6218 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 6219 unsigned Offset5 = State.AllocateStack(8, Align(8)); 6220 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 6221 return false; 6222 } 6223 6224 return true; // CC didn't match. 6225 } 6226 6227 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 6228 CCValAssign::LocInfo LocInfo, 6229 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6230 6231 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6232 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 6233 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 6234 static const MCPhysReg GPRList[] = { 6235 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 6236 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 6237 if (unsigned Reg = State.AllocateReg(GPRList)) { 6238 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6239 return false; 6240 } 6241 } 6242 6243 if (LocVT == MVT::f32) { 6244 // Pass in STG registers: F1, ..., F6 6245 // fs0 ... fs5 6246 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 6247 RISCV::F18_F, RISCV::F19_F, 6248 RISCV::F20_F, RISCV::F21_F}; 6249 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6250 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6251 return false; 6252 } 6253 } 6254 6255 if (LocVT == MVT::f64) { 6256 // Pass in STG registers: D1, ..., D6 6257 // fs6 ... fs11 6258 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 6259 RISCV::F24_D, RISCV::F25_D, 6260 RISCV::F26_D, RISCV::F27_D}; 6261 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6262 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6263 return false; 6264 } 6265 } 6266 6267 report_fatal_error("No registers left in GHC calling convention"); 6268 return true; 6269 } 6270 6271 // Transform physical registers into virtual registers. 6272 SDValue RISCVTargetLowering::LowerFormalArguments( 6273 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 6274 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 6275 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6276 6277 MachineFunction &MF = DAG.getMachineFunction(); 6278 6279 switch (CallConv) { 6280 default: 6281 report_fatal_error("Unsupported calling convention"); 6282 case CallingConv::C: 6283 case CallingConv::Fast: 6284 break; 6285 case CallingConv::GHC: 6286 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 6287 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 6288 report_fatal_error( 6289 "GHC calling convention requires the F and D instruction set extensions"); 6290 } 6291 6292 const Function &Func = MF.getFunction(); 6293 if (Func.hasFnAttribute("interrupt")) { 6294 if (!Func.arg_empty()) 6295 report_fatal_error( 6296 "Functions with the interrupt attribute cannot have arguments!"); 6297 6298 StringRef Kind = 6299 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 6300 6301 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 6302 report_fatal_error( 6303 "Function interrupt attribute argument not supported!"); 6304 } 6305 6306 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6307 MVT XLenVT = Subtarget.getXLenVT(); 6308 unsigned XLenInBytes = Subtarget.getXLen() / 8; 6309 // Used with vargs to acumulate store chains. 6310 std::vector<SDValue> OutChains; 6311 6312 // Assign locations to all of the incoming arguments. 6313 SmallVector<CCValAssign, 16> ArgLocs; 6314 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6315 6316 if (CallConv == CallingConv::Fast) 6317 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 6318 else if (CallConv == CallingConv::GHC) 6319 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 6320 else 6321 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 6322 6323 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 6324 CCValAssign &VA = ArgLocs[i]; 6325 SDValue ArgValue; 6326 // Passing f64 on RV32D with a soft float ABI must be handled as a special 6327 // case. 6328 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 6329 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 6330 else if (VA.isRegLoc()) 6331 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 6332 else 6333 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 6334 6335 if (VA.getLocInfo() == CCValAssign::Indirect) { 6336 // If the original argument was split and passed by reference (e.g. i128 6337 // on RV32), we need to load all parts of it here (using the same 6338 // address). Vectors may be partly split to registers and partly to the 6339 // stack, in which case the base address is partly offset and subsequent 6340 // stores are relative to that. 6341 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 6342 MachinePointerInfo())); 6343 unsigned ArgIndex = Ins[i].OrigArgIndex; 6344 unsigned ArgPartOffset = Ins[i].PartOffset; 6345 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 6346 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 6347 CCValAssign &PartVA = ArgLocs[i + 1]; 6348 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 6349 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 6350 DAG.getIntPtrConstant(PartOffset, DL)); 6351 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 6352 MachinePointerInfo())); 6353 ++i; 6354 } 6355 continue; 6356 } 6357 InVals.push_back(ArgValue); 6358 } 6359 6360 if (IsVarArg) { 6361 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 6362 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 6363 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 6364 MachineFrameInfo &MFI = MF.getFrameInfo(); 6365 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6366 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 6367 6368 // Offset of the first variable argument from stack pointer, and size of 6369 // the vararg save area. For now, the varargs save area is either zero or 6370 // large enough to hold a0-a7. 6371 int VaArgOffset, VarArgsSaveSize; 6372 6373 // If all registers are allocated, then all varargs must be passed on the 6374 // stack and we don't need to save any argregs. 6375 if (ArgRegs.size() == Idx) { 6376 VaArgOffset = CCInfo.getNextStackOffset(); 6377 VarArgsSaveSize = 0; 6378 } else { 6379 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 6380 VaArgOffset = -VarArgsSaveSize; 6381 } 6382 6383 // Record the frame index of the first variable argument 6384 // which is a value necessary to VASTART. 6385 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 6386 RVFI->setVarArgsFrameIndex(FI); 6387 6388 // If saving an odd number of registers then create an extra stack slot to 6389 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 6390 // offsets to even-numbered registered remain 2*XLEN-aligned. 6391 if (Idx % 2) { 6392 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 6393 VarArgsSaveSize += XLenInBytes; 6394 } 6395 6396 // Copy the integer registers that may have been used for passing varargs 6397 // to the vararg save area. 6398 for (unsigned I = Idx; I < ArgRegs.size(); 6399 ++I, VaArgOffset += XLenInBytes) { 6400 const Register Reg = RegInfo.createVirtualRegister(RC); 6401 RegInfo.addLiveIn(ArgRegs[I], Reg); 6402 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 6403 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 6404 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 6405 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 6406 MachinePointerInfo::getFixedStack(MF, FI)); 6407 cast<StoreSDNode>(Store.getNode()) 6408 ->getMemOperand() 6409 ->setValue((Value *)nullptr); 6410 OutChains.push_back(Store); 6411 } 6412 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 6413 } 6414 6415 // All stores are grouped in one node to allow the matching between 6416 // the size of Ins and InVals. This only happens for vararg functions. 6417 if (!OutChains.empty()) { 6418 OutChains.push_back(Chain); 6419 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 6420 } 6421 6422 return Chain; 6423 } 6424 6425 /// isEligibleForTailCallOptimization - Check whether the call is eligible 6426 /// for tail call optimization. 6427 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 6428 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 6429 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 6430 const SmallVector<CCValAssign, 16> &ArgLocs) const { 6431 6432 auto &Callee = CLI.Callee; 6433 auto CalleeCC = CLI.CallConv; 6434 auto &Outs = CLI.Outs; 6435 auto &Caller = MF.getFunction(); 6436 auto CallerCC = Caller.getCallingConv(); 6437 6438 // Exception-handling functions need a special set of instructions to 6439 // indicate a return to the hardware. Tail-calling another function would 6440 // probably break this. 6441 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 6442 // should be expanded as new function attributes are introduced. 6443 if (Caller.hasFnAttribute("interrupt")) 6444 return false; 6445 6446 // Do not tail call opt if the stack is used to pass parameters. 6447 if (CCInfo.getNextStackOffset() != 0) 6448 return false; 6449 6450 // Do not tail call opt if any parameters need to be passed indirectly. 6451 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 6452 // passed indirectly. So the address of the value will be passed in a 6453 // register, or if not available, then the address is put on the stack. In 6454 // order to pass indirectly, space on the stack often needs to be allocated 6455 // in order to store the value. In this case the CCInfo.getNextStackOffset() 6456 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 6457 // are passed CCValAssign::Indirect. 6458 for (auto &VA : ArgLocs) 6459 if (VA.getLocInfo() == CCValAssign::Indirect) 6460 return false; 6461 6462 // Do not tail call opt if either caller or callee uses struct return 6463 // semantics. 6464 auto IsCallerStructRet = Caller.hasStructRetAttr(); 6465 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 6466 if (IsCallerStructRet || IsCalleeStructRet) 6467 return false; 6468 6469 // Externally-defined functions with weak linkage should not be 6470 // tail-called. The behaviour of branch instructions in this situation (as 6471 // used for tail calls) is implementation-defined, so we cannot rely on the 6472 // linker replacing the tail call with a return. 6473 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 6474 const GlobalValue *GV = G->getGlobal(); 6475 if (GV->hasExternalWeakLinkage()) 6476 return false; 6477 } 6478 6479 // The callee has to preserve all registers the caller needs to preserve. 6480 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6481 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 6482 if (CalleeCC != CallerCC) { 6483 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 6484 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 6485 return false; 6486 } 6487 6488 // Byval parameters hand the function a pointer directly into the stack area 6489 // we want to reuse during a tail call. Working around this *is* possible 6490 // but less efficient and uglier in LowerCall. 6491 for (auto &Arg : Outs) 6492 if (Arg.Flags.isByVal()) 6493 return false; 6494 6495 return true; 6496 } 6497 6498 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 6499 // and output parameter nodes. 6500 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 6501 SmallVectorImpl<SDValue> &InVals) const { 6502 SelectionDAG &DAG = CLI.DAG; 6503 SDLoc &DL = CLI.DL; 6504 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 6505 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 6506 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 6507 SDValue Chain = CLI.Chain; 6508 SDValue Callee = CLI.Callee; 6509 bool &IsTailCall = CLI.IsTailCall; 6510 CallingConv::ID CallConv = CLI.CallConv; 6511 bool IsVarArg = CLI.IsVarArg; 6512 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6513 MVT XLenVT = Subtarget.getXLenVT(); 6514 6515 MachineFunction &MF = DAG.getMachineFunction(); 6516 6517 // Analyze the operands of the call, assigning locations to each operand. 6518 SmallVector<CCValAssign, 16> ArgLocs; 6519 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6520 6521 if (CallConv == CallingConv::Fast) 6522 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 6523 else if (CallConv == CallingConv::GHC) 6524 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 6525 else 6526 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 6527 6528 // Check if it's really possible to do a tail call. 6529 if (IsTailCall) 6530 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 6531 6532 if (IsTailCall) 6533 ++NumTailCalls; 6534 else if (CLI.CB && CLI.CB->isMustTailCall()) 6535 report_fatal_error("failed to perform tail call elimination on a call " 6536 "site marked musttail"); 6537 6538 // Get a count of how many bytes are to be pushed on the stack. 6539 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 6540 6541 // Create local copies for byval args 6542 SmallVector<SDValue, 8> ByValArgs; 6543 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 6544 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6545 if (!Flags.isByVal()) 6546 continue; 6547 6548 SDValue Arg = OutVals[i]; 6549 unsigned Size = Flags.getByValSize(); 6550 Align Alignment = Flags.getNonZeroByValAlign(); 6551 6552 int FI = 6553 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 6554 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 6555 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 6556 6557 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 6558 /*IsVolatile=*/false, 6559 /*AlwaysInline=*/false, IsTailCall, 6560 MachinePointerInfo(), MachinePointerInfo()); 6561 ByValArgs.push_back(FIPtr); 6562 } 6563 6564 if (!IsTailCall) 6565 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 6566 6567 // Copy argument values to their designated locations. 6568 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 6569 SmallVector<SDValue, 8> MemOpChains; 6570 SDValue StackPtr; 6571 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 6572 CCValAssign &VA = ArgLocs[i]; 6573 SDValue ArgValue = OutVals[i]; 6574 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6575 6576 // Handle passing f64 on RV32D with a soft float ABI as a special case. 6577 bool IsF64OnRV32DSoftABI = 6578 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 6579 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 6580 SDValue SplitF64 = DAG.getNode( 6581 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 6582 SDValue Lo = SplitF64.getValue(0); 6583 SDValue Hi = SplitF64.getValue(1); 6584 6585 Register RegLo = VA.getLocReg(); 6586 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 6587 6588 if (RegLo == RISCV::X17) { 6589 // Second half of f64 is passed on the stack. 6590 // Work out the address of the stack slot. 6591 if (!StackPtr.getNode()) 6592 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 6593 // Emit the store. 6594 MemOpChains.push_back( 6595 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 6596 } else { 6597 // Second half of f64 is passed in another GPR. 6598 assert(RegLo < RISCV::X31 && "Invalid register pair"); 6599 Register RegHigh = RegLo + 1; 6600 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 6601 } 6602 continue; 6603 } 6604 6605 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 6606 // as any other MemLoc. 6607 6608 // Promote the value if needed. 6609 // For now, only handle fully promoted and indirect arguments. 6610 if (VA.getLocInfo() == CCValAssign::Indirect) { 6611 // Store the argument in a stack slot and pass its address. 6612 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 6613 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 6614 MemOpChains.push_back( 6615 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 6616 MachinePointerInfo::getFixedStack(MF, FI))); 6617 // If the original argument was split (e.g. i128), we need 6618 // to store the required parts of it here (and pass just one address). 6619 // Vectors may be partly split to registers and partly to the stack, in 6620 // which case the base address is partly offset and subsequent stores are 6621 // relative to that. 6622 unsigned ArgIndex = Outs[i].OrigArgIndex; 6623 unsigned ArgPartOffset = Outs[i].PartOffset; 6624 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 6625 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 6626 SDValue PartValue = OutVals[i + 1]; 6627 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 6628 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 6629 DAG.getIntPtrConstant(PartOffset, DL)); 6630 MemOpChains.push_back( 6631 DAG.getStore(Chain, DL, PartValue, Address, 6632 MachinePointerInfo::getFixedStack(MF, FI))); 6633 ++i; 6634 } 6635 ArgValue = SpillSlot; 6636 } else { 6637 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 6638 } 6639 6640 // Use local copy if it is a byval arg. 6641 if (Flags.isByVal()) 6642 ArgValue = ByValArgs[j++]; 6643 6644 if (VA.isRegLoc()) { 6645 // Queue up the argument copies and emit them at the end. 6646 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 6647 } else { 6648 assert(VA.isMemLoc() && "Argument not register or memory"); 6649 assert(!IsTailCall && "Tail call not allowed if stack is used " 6650 "for passing parameters"); 6651 6652 // Work out the address of the stack slot. 6653 if (!StackPtr.getNode()) 6654 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 6655 SDValue Address = 6656 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 6657 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 6658 6659 // Emit the store. 6660 MemOpChains.push_back( 6661 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 6662 } 6663 } 6664 6665 // Join the stores, which are independent of one another. 6666 if (!MemOpChains.empty()) 6667 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 6668 6669 SDValue Glue; 6670 6671 // Build a sequence of copy-to-reg nodes, chained and glued together. 6672 for (auto &Reg : RegsToPass) { 6673 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 6674 Glue = Chain.getValue(1); 6675 } 6676 6677 // Validate that none of the argument registers have been marked as 6678 // reserved, if so report an error. Do the same for the return address if this 6679 // is not a tailcall. 6680 validateCCReservedRegs(RegsToPass, MF); 6681 if (!IsTailCall && 6682 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 6683 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6684 MF.getFunction(), 6685 "Return address register required, but has been reserved."}); 6686 6687 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 6688 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 6689 // split it and then direct call can be matched by PseudoCALL. 6690 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 6691 const GlobalValue *GV = S->getGlobal(); 6692 6693 unsigned OpFlags = RISCVII::MO_CALL; 6694 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 6695 OpFlags = RISCVII::MO_PLT; 6696 6697 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 6698 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 6699 unsigned OpFlags = RISCVII::MO_CALL; 6700 6701 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 6702 nullptr)) 6703 OpFlags = RISCVII::MO_PLT; 6704 6705 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 6706 } 6707 6708 // The first call operand is the chain and the second is the target address. 6709 SmallVector<SDValue, 8> Ops; 6710 Ops.push_back(Chain); 6711 Ops.push_back(Callee); 6712 6713 // Add argument registers to the end of the list so that they are 6714 // known live into the call. 6715 for (auto &Reg : RegsToPass) 6716 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 6717 6718 if (!IsTailCall) { 6719 // Add a register mask operand representing the call-preserved registers. 6720 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6721 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 6722 assert(Mask && "Missing call preserved mask for calling convention"); 6723 Ops.push_back(DAG.getRegisterMask(Mask)); 6724 } 6725 6726 // Glue the call to the argument copies, if any. 6727 if (Glue.getNode()) 6728 Ops.push_back(Glue); 6729 6730 // Emit the call. 6731 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6732 6733 if (IsTailCall) { 6734 MF.getFrameInfo().setHasTailCall(); 6735 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 6736 } 6737 6738 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 6739 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 6740 Glue = Chain.getValue(1); 6741 6742 // Mark the end of the call, which is glued to the call itself. 6743 Chain = DAG.getCALLSEQ_END(Chain, 6744 DAG.getConstant(NumBytes, DL, PtrVT, true), 6745 DAG.getConstant(0, DL, PtrVT, true), 6746 Glue, DL); 6747 Glue = Chain.getValue(1); 6748 6749 // Assign locations to each value returned by this call. 6750 SmallVector<CCValAssign, 16> RVLocs; 6751 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 6752 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 6753 6754 // Copy all of the result registers out of their specified physreg. 6755 for (auto &VA : RVLocs) { 6756 // Copy the value out 6757 SDValue RetValue = 6758 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 6759 // Glue the RetValue to the end of the call sequence 6760 Chain = RetValue.getValue(1); 6761 Glue = RetValue.getValue(2); 6762 6763 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 6764 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 6765 SDValue RetValue2 = 6766 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 6767 Chain = RetValue2.getValue(1); 6768 Glue = RetValue2.getValue(2); 6769 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 6770 RetValue2); 6771 } 6772 6773 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 6774 6775 InVals.push_back(RetValue); 6776 } 6777 6778 return Chain; 6779 } 6780 6781 bool RISCVTargetLowering::CanLowerReturn( 6782 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 6783 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 6784 SmallVector<CCValAssign, 16> RVLocs; 6785 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 6786 6787 Optional<unsigned> FirstMaskArgument; 6788 if (Subtarget.hasStdExtV()) 6789 FirstMaskArgument = preAssignMask(Outs); 6790 6791 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 6792 MVT VT = Outs[i].VT; 6793 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6794 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6795 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 6796 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 6797 *this, FirstMaskArgument)) 6798 return false; 6799 } 6800 return true; 6801 } 6802 6803 SDValue 6804 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6805 bool IsVarArg, 6806 const SmallVectorImpl<ISD::OutputArg> &Outs, 6807 const SmallVectorImpl<SDValue> &OutVals, 6808 const SDLoc &DL, SelectionDAG &DAG) const { 6809 const MachineFunction &MF = DAG.getMachineFunction(); 6810 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 6811 6812 // Stores the assignment of the return value to a location. 6813 SmallVector<CCValAssign, 16> RVLocs; 6814 6815 // Info about the registers and stack slot. 6816 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 6817 *DAG.getContext()); 6818 6819 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 6820 nullptr); 6821 6822 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 6823 report_fatal_error("GHC functions return void only"); 6824 6825 SDValue Glue; 6826 SmallVector<SDValue, 4> RetOps(1, Chain); 6827 6828 // Copy the result values into the output registers. 6829 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 6830 SDValue Val = OutVals[i]; 6831 CCValAssign &VA = RVLocs[i]; 6832 assert(VA.isRegLoc() && "Can only return in registers!"); 6833 6834 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 6835 // Handle returning f64 on RV32D with a soft float ABI. 6836 assert(VA.isRegLoc() && "Expected return via registers"); 6837 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 6838 DAG.getVTList(MVT::i32, MVT::i32), Val); 6839 SDValue Lo = SplitF64.getValue(0); 6840 SDValue Hi = SplitF64.getValue(1); 6841 Register RegLo = VA.getLocReg(); 6842 assert(RegLo < RISCV::X31 && "Invalid register pair"); 6843 Register RegHi = RegLo + 1; 6844 6845 if (STI.isRegisterReservedByUser(RegLo) || 6846 STI.isRegisterReservedByUser(RegHi)) 6847 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6848 MF.getFunction(), 6849 "Return value register required, but has been reserved."}); 6850 6851 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 6852 Glue = Chain.getValue(1); 6853 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 6854 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 6855 Glue = Chain.getValue(1); 6856 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 6857 } else { 6858 // Handle a 'normal' return. 6859 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 6860 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 6861 6862 if (STI.isRegisterReservedByUser(VA.getLocReg())) 6863 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6864 MF.getFunction(), 6865 "Return value register required, but has been reserved."}); 6866 6867 // Guarantee that all emitted copies are stuck together. 6868 Glue = Chain.getValue(1); 6869 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6870 } 6871 } 6872 6873 RetOps[0] = Chain; // Update chain. 6874 6875 // Add the glue node if we have it. 6876 if (Glue.getNode()) { 6877 RetOps.push_back(Glue); 6878 } 6879 6880 // Interrupt service routines use different return instructions. 6881 const Function &Func = DAG.getMachineFunction().getFunction(); 6882 if (Func.hasFnAttribute("interrupt")) { 6883 if (!Func.getReturnType()->isVoidTy()) 6884 report_fatal_error( 6885 "Functions with the interrupt attribute must have void return type!"); 6886 6887 MachineFunction &MF = DAG.getMachineFunction(); 6888 StringRef Kind = 6889 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 6890 6891 unsigned RetOpc; 6892 if (Kind == "user") 6893 RetOpc = RISCVISD::URET_FLAG; 6894 else if (Kind == "supervisor") 6895 RetOpc = RISCVISD::SRET_FLAG; 6896 else 6897 RetOpc = RISCVISD::MRET_FLAG; 6898 6899 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 6900 } 6901 6902 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 6903 } 6904 6905 void RISCVTargetLowering::validateCCReservedRegs( 6906 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 6907 MachineFunction &MF) const { 6908 const Function &F = MF.getFunction(); 6909 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 6910 6911 if (llvm::any_of(Regs, [&STI](auto Reg) { 6912 return STI.isRegisterReservedByUser(Reg.first); 6913 })) 6914 F.getContext().diagnose(DiagnosticInfoUnsupported{ 6915 F, "Argument register required, but has been reserved."}); 6916 } 6917 6918 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 6919 return CI->isTailCall(); 6920 } 6921 6922 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 6923 #define NODE_NAME_CASE(NODE) \ 6924 case RISCVISD::NODE: \ 6925 return "RISCVISD::" #NODE; 6926 // clang-format off 6927 switch ((RISCVISD::NodeType)Opcode) { 6928 case RISCVISD::FIRST_NUMBER: 6929 break; 6930 NODE_NAME_CASE(RET_FLAG) 6931 NODE_NAME_CASE(URET_FLAG) 6932 NODE_NAME_CASE(SRET_FLAG) 6933 NODE_NAME_CASE(MRET_FLAG) 6934 NODE_NAME_CASE(CALL) 6935 NODE_NAME_CASE(SELECT_CC) 6936 NODE_NAME_CASE(BR_CC) 6937 NODE_NAME_CASE(BuildPairF64) 6938 NODE_NAME_CASE(SplitF64) 6939 NODE_NAME_CASE(TAIL) 6940 NODE_NAME_CASE(MULHSU) 6941 NODE_NAME_CASE(SLLW) 6942 NODE_NAME_CASE(SRAW) 6943 NODE_NAME_CASE(SRLW) 6944 NODE_NAME_CASE(DIVW) 6945 NODE_NAME_CASE(DIVUW) 6946 NODE_NAME_CASE(REMUW) 6947 NODE_NAME_CASE(ROLW) 6948 NODE_NAME_CASE(RORW) 6949 NODE_NAME_CASE(CLZW) 6950 NODE_NAME_CASE(CTZW) 6951 NODE_NAME_CASE(FSLW) 6952 NODE_NAME_CASE(FSRW) 6953 NODE_NAME_CASE(FSL) 6954 NODE_NAME_CASE(FSR) 6955 NODE_NAME_CASE(FMV_H_X) 6956 NODE_NAME_CASE(FMV_X_ANYEXTH) 6957 NODE_NAME_CASE(FMV_W_X_RV64) 6958 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 6959 NODE_NAME_CASE(READ_CYCLE_WIDE) 6960 NODE_NAME_CASE(GREVI) 6961 NODE_NAME_CASE(GREVIW) 6962 NODE_NAME_CASE(GORCI) 6963 NODE_NAME_CASE(GORCIW) 6964 NODE_NAME_CASE(SHFLI) 6965 NODE_NAME_CASE(VMV_V_X_VL) 6966 NODE_NAME_CASE(VFMV_V_F_VL) 6967 NODE_NAME_CASE(VMV_X_S) 6968 NODE_NAME_CASE(VMV_S_XF_VL) 6969 NODE_NAME_CASE(SPLAT_VECTOR_I64) 6970 NODE_NAME_CASE(READ_VLENB) 6971 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 6972 NODE_NAME_CASE(VLEFF) 6973 NODE_NAME_CASE(VLEFF_MASK) 6974 NODE_NAME_CASE(VSLIDEUP_VL) 6975 NODE_NAME_CASE(VSLIDE1UP_VL) 6976 NODE_NAME_CASE(VSLIDEDOWN_VL) 6977 NODE_NAME_CASE(VID_VL) 6978 NODE_NAME_CASE(VFNCVT_ROD_VL) 6979 NODE_NAME_CASE(VECREDUCE_ADD_VL) 6980 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 6981 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 6982 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 6983 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 6984 NODE_NAME_CASE(VECREDUCE_AND_VL) 6985 NODE_NAME_CASE(VECREDUCE_OR_VL) 6986 NODE_NAME_CASE(VECREDUCE_XOR_VL) 6987 NODE_NAME_CASE(VECREDUCE_FADD_VL) 6988 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 6989 NODE_NAME_CASE(ADD_VL) 6990 NODE_NAME_CASE(AND_VL) 6991 NODE_NAME_CASE(MUL_VL) 6992 NODE_NAME_CASE(OR_VL) 6993 NODE_NAME_CASE(SDIV_VL) 6994 NODE_NAME_CASE(SHL_VL) 6995 NODE_NAME_CASE(SREM_VL) 6996 NODE_NAME_CASE(SRA_VL) 6997 NODE_NAME_CASE(SRL_VL) 6998 NODE_NAME_CASE(SUB_VL) 6999 NODE_NAME_CASE(UDIV_VL) 7000 NODE_NAME_CASE(UREM_VL) 7001 NODE_NAME_CASE(XOR_VL) 7002 NODE_NAME_CASE(FADD_VL) 7003 NODE_NAME_CASE(FSUB_VL) 7004 NODE_NAME_CASE(FMUL_VL) 7005 NODE_NAME_CASE(FDIV_VL) 7006 NODE_NAME_CASE(FNEG_VL) 7007 NODE_NAME_CASE(FABS_VL) 7008 NODE_NAME_CASE(FSQRT_VL) 7009 NODE_NAME_CASE(FMA_VL) 7010 NODE_NAME_CASE(FCOPYSIGN_VL) 7011 NODE_NAME_CASE(SMIN_VL) 7012 NODE_NAME_CASE(SMAX_VL) 7013 NODE_NAME_CASE(UMIN_VL) 7014 NODE_NAME_CASE(UMAX_VL) 7015 NODE_NAME_CASE(MULHS_VL) 7016 NODE_NAME_CASE(MULHU_VL) 7017 NODE_NAME_CASE(FP_TO_SINT_VL) 7018 NODE_NAME_CASE(FP_TO_UINT_VL) 7019 NODE_NAME_CASE(SINT_TO_FP_VL) 7020 NODE_NAME_CASE(UINT_TO_FP_VL) 7021 NODE_NAME_CASE(FP_EXTEND_VL) 7022 NODE_NAME_CASE(FP_ROUND_VL) 7023 NODE_NAME_CASE(SETCC_VL) 7024 NODE_NAME_CASE(VSELECT_VL) 7025 NODE_NAME_CASE(VMAND_VL) 7026 NODE_NAME_CASE(VMOR_VL) 7027 NODE_NAME_CASE(VMXOR_VL) 7028 NODE_NAME_CASE(VMCLR_VL) 7029 NODE_NAME_CASE(VMSET_VL) 7030 NODE_NAME_CASE(VRGATHER_VX_VL) 7031 NODE_NAME_CASE(VRGATHER_VV_VL) 7032 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 7033 NODE_NAME_CASE(VSEXT_VL) 7034 NODE_NAME_CASE(VZEXT_VL) 7035 NODE_NAME_CASE(VLE_VL) 7036 NODE_NAME_CASE(VSE_VL) 7037 } 7038 // clang-format on 7039 return nullptr; 7040 #undef NODE_NAME_CASE 7041 } 7042 7043 /// getConstraintType - Given a constraint letter, return the type of 7044 /// constraint it is for this target. 7045 RISCVTargetLowering::ConstraintType 7046 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 7047 if (Constraint.size() == 1) { 7048 switch (Constraint[0]) { 7049 default: 7050 break; 7051 case 'f': 7052 case 'v': 7053 return C_RegisterClass; 7054 case 'I': 7055 case 'J': 7056 case 'K': 7057 return C_Immediate; 7058 case 'A': 7059 return C_Memory; 7060 } 7061 } 7062 return TargetLowering::getConstraintType(Constraint); 7063 } 7064 7065 std::pair<unsigned, const TargetRegisterClass *> 7066 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 7067 StringRef Constraint, 7068 MVT VT) const { 7069 // First, see if this is a constraint that directly corresponds to a 7070 // RISCV register class. 7071 if (Constraint.size() == 1) { 7072 switch (Constraint[0]) { 7073 case 'r': 7074 return std::make_pair(0U, &RISCV::GPRRegClass); 7075 case 'f': 7076 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 7077 return std::make_pair(0U, &RISCV::FPR16RegClass); 7078 if (Subtarget.hasStdExtF() && VT == MVT::f32) 7079 return std::make_pair(0U, &RISCV::FPR32RegClass); 7080 if (Subtarget.hasStdExtD() && VT == MVT::f64) 7081 return std::make_pair(0U, &RISCV::FPR64RegClass); 7082 break; 7083 case 'v': 7084 for (const auto *RC : 7085 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 7086 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7087 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 7088 return std::make_pair(0U, RC); 7089 } 7090 break; 7091 default: 7092 break; 7093 } 7094 } 7095 7096 // Clang will correctly decode the usage of register name aliases into their 7097 // official names. However, other frontends like `rustc` do not. This allows 7098 // users of these frontends to use the ABI names for registers in LLVM-style 7099 // register constraints. 7100 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 7101 .Case("{zero}", RISCV::X0) 7102 .Case("{ra}", RISCV::X1) 7103 .Case("{sp}", RISCV::X2) 7104 .Case("{gp}", RISCV::X3) 7105 .Case("{tp}", RISCV::X4) 7106 .Case("{t0}", RISCV::X5) 7107 .Case("{t1}", RISCV::X6) 7108 .Case("{t2}", RISCV::X7) 7109 .Cases("{s0}", "{fp}", RISCV::X8) 7110 .Case("{s1}", RISCV::X9) 7111 .Case("{a0}", RISCV::X10) 7112 .Case("{a1}", RISCV::X11) 7113 .Case("{a2}", RISCV::X12) 7114 .Case("{a3}", RISCV::X13) 7115 .Case("{a4}", RISCV::X14) 7116 .Case("{a5}", RISCV::X15) 7117 .Case("{a6}", RISCV::X16) 7118 .Case("{a7}", RISCV::X17) 7119 .Case("{s2}", RISCV::X18) 7120 .Case("{s3}", RISCV::X19) 7121 .Case("{s4}", RISCV::X20) 7122 .Case("{s5}", RISCV::X21) 7123 .Case("{s6}", RISCV::X22) 7124 .Case("{s7}", RISCV::X23) 7125 .Case("{s8}", RISCV::X24) 7126 .Case("{s9}", RISCV::X25) 7127 .Case("{s10}", RISCV::X26) 7128 .Case("{s11}", RISCV::X27) 7129 .Case("{t3}", RISCV::X28) 7130 .Case("{t4}", RISCV::X29) 7131 .Case("{t5}", RISCV::X30) 7132 .Case("{t6}", RISCV::X31) 7133 .Default(RISCV::NoRegister); 7134 if (XRegFromAlias != RISCV::NoRegister) 7135 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 7136 7137 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 7138 // TableGen record rather than the AsmName to choose registers for InlineAsm 7139 // constraints, plus we want to match those names to the widest floating point 7140 // register type available, manually select floating point registers here. 7141 // 7142 // The second case is the ABI name of the register, so that frontends can also 7143 // use the ABI names in register constraint lists. 7144 if (Subtarget.hasStdExtF()) { 7145 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 7146 .Cases("{f0}", "{ft0}", RISCV::F0_F) 7147 .Cases("{f1}", "{ft1}", RISCV::F1_F) 7148 .Cases("{f2}", "{ft2}", RISCV::F2_F) 7149 .Cases("{f3}", "{ft3}", RISCV::F3_F) 7150 .Cases("{f4}", "{ft4}", RISCV::F4_F) 7151 .Cases("{f5}", "{ft5}", RISCV::F5_F) 7152 .Cases("{f6}", "{ft6}", RISCV::F6_F) 7153 .Cases("{f7}", "{ft7}", RISCV::F7_F) 7154 .Cases("{f8}", "{fs0}", RISCV::F8_F) 7155 .Cases("{f9}", "{fs1}", RISCV::F9_F) 7156 .Cases("{f10}", "{fa0}", RISCV::F10_F) 7157 .Cases("{f11}", "{fa1}", RISCV::F11_F) 7158 .Cases("{f12}", "{fa2}", RISCV::F12_F) 7159 .Cases("{f13}", "{fa3}", RISCV::F13_F) 7160 .Cases("{f14}", "{fa4}", RISCV::F14_F) 7161 .Cases("{f15}", "{fa5}", RISCV::F15_F) 7162 .Cases("{f16}", "{fa6}", RISCV::F16_F) 7163 .Cases("{f17}", "{fa7}", RISCV::F17_F) 7164 .Cases("{f18}", "{fs2}", RISCV::F18_F) 7165 .Cases("{f19}", "{fs3}", RISCV::F19_F) 7166 .Cases("{f20}", "{fs4}", RISCV::F20_F) 7167 .Cases("{f21}", "{fs5}", RISCV::F21_F) 7168 .Cases("{f22}", "{fs6}", RISCV::F22_F) 7169 .Cases("{f23}", "{fs7}", RISCV::F23_F) 7170 .Cases("{f24}", "{fs8}", RISCV::F24_F) 7171 .Cases("{f25}", "{fs9}", RISCV::F25_F) 7172 .Cases("{f26}", "{fs10}", RISCV::F26_F) 7173 .Cases("{f27}", "{fs11}", RISCV::F27_F) 7174 .Cases("{f28}", "{ft8}", RISCV::F28_F) 7175 .Cases("{f29}", "{ft9}", RISCV::F29_F) 7176 .Cases("{f30}", "{ft10}", RISCV::F30_F) 7177 .Cases("{f31}", "{ft11}", RISCV::F31_F) 7178 .Default(RISCV::NoRegister); 7179 if (FReg != RISCV::NoRegister) { 7180 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 7181 if (Subtarget.hasStdExtD()) { 7182 unsigned RegNo = FReg - RISCV::F0_F; 7183 unsigned DReg = RISCV::F0_D + RegNo; 7184 return std::make_pair(DReg, &RISCV::FPR64RegClass); 7185 } 7186 return std::make_pair(FReg, &RISCV::FPR32RegClass); 7187 } 7188 } 7189 7190 if (Subtarget.hasStdExtV()) { 7191 Register VReg = StringSwitch<Register>(Constraint.lower()) 7192 .Case("{v0}", RISCV::V0) 7193 .Case("{v1}", RISCV::V1) 7194 .Case("{v2}", RISCV::V2) 7195 .Case("{v3}", RISCV::V3) 7196 .Case("{v4}", RISCV::V4) 7197 .Case("{v5}", RISCV::V5) 7198 .Case("{v6}", RISCV::V6) 7199 .Case("{v7}", RISCV::V7) 7200 .Case("{v8}", RISCV::V8) 7201 .Case("{v9}", RISCV::V9) 7202 .Case("{v10}", RISCV::V10) 7203 .Case("{v11}", RISCV::V11) 7204 .Case("{v12}", RISCV::V12) 7205 .Case("{v13}", RISCV::V13) 7206 .Case("{v14}", RISCV::V14) 7207 .Case("{v15}", RISCV::V15) 7208 .Case("{v16}", RISCV::V16) 7209 .Case("{v17}", RISCV::V17) 7210 .Case("{v18}", RISCV::V18) 7211 .Case("{v19}", RISCV::V19) 7212 .Case("{v20}", RISCV::V20) 7213 .Case("{v21}", RISCV::V21) 7214 .Case("{v22}", RISCV::V22) 7215 .Case("{v23}", RISCV::V23) 7216 .Case("{v24}", RISCV::V24) 7217 .Case("{v25}", RISCV::V25) 7218 .Case("{v26}", RISCV::V26) 7219 .Case("{v27}", RISCV::V27) 7220 .Case("{v28}", RISCV::V28) 7221 .Case("{v29}", RISCV::V29) 7222 .Case("{v30}", RISCV::V30) 7223 .Case("{v31}", RISCV::V31) 7224 .Default(RISCV::NoRegister); 7225 if (VReg != RISCV::NoRegister) { 7226 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 7227 return std::make_pair(VReg, &RISCV::VMRegClass); 7228 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 7229 return std::make_pair(VReg, &RISCV::VRRegClass); 7230 for (const auto *RC : 7231 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7232 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 7233 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 7234 return std::make_pair(VReg, RC); 7235 } 7236 } 7237 } 7238 } 7239 7240 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 7241 } 7242 7243 unsigned 7244 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 7245 // Currently only support length 1 constraints. 7246 if (ConstraintCode.size() == 1) { 7247 switch (ConstraintCode[0]) { 7248 case 'A': 7249 return InlineAsm::Constraint_A; 7250 default: 7251 break; 7252 } 7253 } 7254 7255 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 7256 } 7257 7258 void RISCVTargetLowering::LowerAsmOperandForConstraint( 7259 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 7260 SelectionDAG &DAG) const { 7261 // Currently only support length 1 constraints. 7262 if (Constraint.length() == 1) { 7263 switch (Constraint[0]) { 7264 case 'I': 7265 // Validate & create a 12-bit signed immediate operand. 7266 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 7267 uint64_t CVal = C->getSExtValue(); 7268 if (isInt<12>(CVal)) 7269 Ops.push_back( 7270 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 7271 } 7272 return; 7273 case 'J': 7274 // Validate & create an integer zero operand. 7275 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 7276 if (C->getZExtValue() == 0) 7277 Ops.push_back( 7278 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 7279 return; 7280 case 'K': 7281 // Validate & create a 5-bit unsigned immediate operand. 7282 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 7283 uint64_t CVal = C->getZExtValue(); 7284 if (isUInt<5>(CVal)) 7285 Ops.push_back( 7286 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 7287 } 7288 return; 7289 default: 7290 break; 7291 } 7292 } 7293 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 7294 } 7295 7296 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 7297 Instruction *Inst, 7298 AtomicOrdering Ord) const { 7299 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 7300 return Builder.CreateFence(Ord); 7301 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 7302 return Builder.CreateFence(AtomicOrdering::Release); 7303 return nullptr; 7304 } 7305 7306 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 7307 Instruction *Inst, 7308 AtomicOrdering Ord) const { 7309 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 7310 return Builder.CreateFence(AtomicOrdering::Acquire); 7311 return nullptr; 7312 } 7313 7314 TargetLowering::AtomicExpansionKind 7315 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 7316 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 7317 // point operations can't be used in an lr/sc sequence without breaking the 7318 // forward-progress guarantee. 7319 if (AI->isFloatingPointOperation()) 7320 return AtomicExpansionKind::CmpXChg; 7321 7322 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 7323 if (Size == 8 || Size == 16) 7324 return AtomicExpansionKind::MaskedIntrinsic; 7325 return AtomicExpansionKind::None; 7326 } 7327 7328 static Intrinsic::ID 7329 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 7330 if (XLen == 32) { 7331 switch (BinOp) { 7332 default: 7333 llvm_unreachable("Unexpected AtomicRMW BinOp"); 7334 case AtomicRMWInst::Xchg: 7335 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 7336 case AtomicRMWInst::Add: 7337 return Intrinsic::riscv_masked_atomicrmw_add_i32; 7338 case AtomicRMWInst::Sub: 7339 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 7340 case AtomicRMWInst::Nand: 7341 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 7342 case AtomicRMWInst::Max: 7343 return Intrinsic::riscv_masked_atomicrmw_max_i32; 7344 case AtomicRMWInst::Min: 7345 return Intrinsic::riscv_masked_atomicrmw_min_i32; 7346 case AtomicRMWInst::UMax: 7347 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 7348 case AtomicRMWInst::UMin: 7349 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 7350 } 7351 } 7352 7353 if (XLen == 64) { 7354 switch (BinOp) { 7355 default: 7356 llvm_unreachable("Unexpected AtomicRMW BinOp"); 7357 case AtomicRMWInst::Xchg: 7358 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 7359 case AtomicRMWInst::Add: 7360 return Intrinsic::riscv_masked_atomicrmw_add_i64; 7361 case AtomicRMWInst::Sub: 7362 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 7363 case AtomicRMWInst::Nand: 7364 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 7365 case AtomicRMWInst::Max: 7366 return Intrinsic::riscv_masked_atomicrmw_max_i64; 7367 case AtomicRMWInst::Min: 7368 return Intrinsic::riscv_masked_atomicrmw_min_i64; 7369 case AtomicRMWInst::UMax: 7370 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 7371 case AtomicRMWInst::UMin: 7372 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 7373 } 7374 } 7375 7376 llvm_unreachable("Unexpected XLen\n"); 7377 } 7378 7379 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 7380 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 7381 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 7382 unsigned XLen = Subtarget.getXLen(); 7383 Value *Ordering = 7384 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 7385 Type *Tys[] = {AlignedAddr->getType()}; 7386 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 7387 AI->getModule(), 7388 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 7389 7390 if (XLen == 64) { 7391 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 7392 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 7393 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 7394 } 7395 7396 Value *Result; 7397 7398 // Must pass the shift amount needed to sign extend the loaded value prior 7399 // to performing a signed comparison for min/max. ShiftAmt is the number of 7400 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 7401 // is the number of bits to left+right shift the value in order to 7402 // sign-extend. 7403 if (AI->getOperation() == AtomicRMWInst::Min || 7404 AI->getOperation() == AtomicRMWInst::Max) { 7405 const DataLayout &DL = AI->getModule()->getDataLayout(); 7406 unsigned ValWidth = 7407 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 7408 Value *SextShamt = 7409 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 7410 Result = Builder.CreateCall(LrwOpScwLoop, 7411 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 7412 } else { 7413 Result = 7414 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 7415 } 7416 7417 if (XLen == 64) 7418 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 7419 return Result; 7420 } 7421 7422 TargetLowering::AtomicExpansionKind 7423 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 7424 AtomicCmpXchgInst *CI) const { 7425 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 7426 if (Size == 8 || Size == 16) 7427 return AtomicExpansionKind::MaskedIntrinsic; 7428 return AtomicExpansionKind::None; 7429 } 7430 7431 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 7432 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 7433 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 7434 unsigned XLen = Subtarget.getXLen(); 7435 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 7436 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 7437 if (XLen == 64) { 7438 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 7439 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 7440 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 7441 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 7442 } 7443 Type *Tys[] = {AlignedAddr->getType()}; 7444 Function *MaskedCmpXchg = 7445 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 7446 Value *Result = Builder.CreateCall( 7447 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 7448 if (XLen == 64) 7449 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 7450 return Result; 7451 } 7452 7453 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 7454 return false; 7455 } 7456 7457 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 7458 EVT VT) const { 7459 VT = VT.getScalarType(); 7460 7461 if (!VT.isSimple()) 7462 return false; 7463 7464 switch (VT.getSimpleVT().SimpleTy) { 7465 case MVT::f16: 7466 return Subtarget.hasStdExtZfh(); 7467 case MVT::f32: 7468 return Subtarget.hasStdExtF(); 7469 case MVT::f64: 7470 return Subtarget.hasStdExtD(); 7471 default: 7472 break; 7473 } 7474 7475 return false; 7476 } 7477 7478 Register RISCVTargetLowering::getExceptionPointerRegister( 7479 const Constant *PersonalityFn) const { 7480 return RISCV::X10; 7481 } 7482 7483 Register RISCVTargetLowering::getExceptionSelectorRegister( 7484 const Constant *PersonalityFn) const { 7485 return RISCV::X11; 7486 } 7487 7488 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 7489 // Return false to suppress the unnecessary extensions if the LibCall 7490 // arguments or return value is f32 type for LP64 ABI. 7491 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 7492 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 7493 return false; 7494 7495 return true; 7496 } 7497 7498 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 7499 if (Subtarget.is64Bit() && Type == MVT::i32) 7500 return true; 7501 7502 return IsSigned; 7503 } 7504 7505 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 7506 SDValue C) const { 7507 // Check integral scalar types. 7508 if (VT.isScalarInteger()) { 7509 // Omit the optimization if the sub target has the M extension and the data 7510 // size exceeds XLen. 7511 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 7512 return false; 7513 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 7514 // Break the MUL to a SLLI and an ADD/SUB. 7515 const APInt &Imm = ConstNode->getAPIntValue(); 7516 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 7517 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 7518 return true; 7519 // Omit the following optimization if the sub target has the M extension 7520 // and the data size >= XLen. 7521 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 7522 return false; 7523 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 7524 // a pair of LUI/ADDI. 7525 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 7526 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 7527 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 7528 (1 - ImmS).isPowerOf2()) 7529 return true; 7530 } 7531 } 7532 } 7533 7534 return false; 7535 } 7536 7537 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 7538 if (!Subtarget.useRVVForFixedLengthVectors()) 7539 return false; 7540 7541 if (!VT.isFixedLengthVector()) 7542 return false; 7543 7544 // Don't use RVV for vectors we cannot scalarize if required. 7545 switch (VT.getVectorElementType().SimpleTy) { 7546 // i1 is supported but has different rules. 7547 default: 7548 return false; 7549 case MVT::i1: 7550 // Masks can only use a single register. 7551 if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits()) 7552 return false; 7553 break; 7554 case MVT::i8: 7555 case MVT::i16: 7556 case MVT::i32: 7557 case MVT::i64: 7558 break; 7559 case MVT::f16: 7560 if (!Subtarget.hasStdExtZfh()) 7561 return false; 7562 break; 7563 case MVT::f32: 7564 if (!Subtarget.hasStdExtF()) 7565 return false; 7566 break; 7567 case MVT::f64: 7568 if (!Subtarget.hasStdExtD()) 7569 return false; 7570 break; 7571 } 7572 7573 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 7574 // Don't use RVV for types that don't fit. 7575 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 7576 return false; 7577 7578 // TODO: Perhaps an artificial restriction, but worth having whilst getting 7579 // the base fixed length RVV support in place. 7580 if (!VT.isPow2VectorType()) 7581 return false; 7582 7583 return true; 7584 } 7585 7586 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 7587 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 7588 bool *Fast) const { 7589 if (!VT.isScalableVector()) 7590 return false; 7591 7592 EVT ElemVT = VT.getVectorElementType(); 7593 if (Alignment >= ElemVT.getStoreSize()) { 7594 if (Fast) 7595 *Fast = true; 7596 return true; 7597 } 7598 7599 return false; 7600 } 7601 7602 bool RISCVTargetLowering::splitValueIntoRegisterParts( 7603 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 7604 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 7605 bool IsABIRegCopy = CC.hasValue(); 7606 EVT ValueVT = Val.getValueType(); 7607 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 7608 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 7609 // and cast to f32. 7610 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 7611 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 7612 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 7613 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 7614 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 7615 Parts[0] = Val; 7616 return true; 7617 } 7618 7619 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 7620 LLVMContext &Context = *DAG.getContext(); 7621 EVT ValueEltVT = ValueVT.getVectorElementType(); 7622 EVT PartEltVT = PartVT.getVectorElementType(); 7623 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 7624 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 7625 if (PartVTBitSize % ValueVTBitSize == 0) { 7626 // If the element types are different, bitcast to the same element type of 7627 // PartVT first. 7628 if (ValueEltVT != PartEltVT) { 7629 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 7630 assert(Count != 0 && "The number of element should not be zero."); 7631 EVT SameEltTypeVT = 7632 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 7633 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 7634 } 7635 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 7636 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 7637 Parts[0] = Val; 7638 return true; 7639 } 7640 } 7641 return false; 7642 } 7643 7644 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 7645 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 7646 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 7647 bool IsABIRegCopy = CC.hasValue(); 7648 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 7649 SDValue Val = Parts[0]; 7650 7651 // Cast the f32 to i32, truncate to i16, and cast back to f16. 7652 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 7653 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 7654 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 7655 return Val; 7656 } 7657 7658 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 7659 LLVMContext &Context = *DAG.getContext(); 7660 SDValue Val = Parts[0]; 7661 EVT ValueEltVT = ValueVT.getVectorElementType(); 7662 EVT PartEltVT = PartVT.getVectorElementType(); 7663 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 7664 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 7665 if (PartVTBitSize % ValueVTBitSize == 0) { 7666 EVT SameEltTypeVT = ValueVT; 7667 // If the element types are different, convert it to the same element type 7668 // of PartVT. 7669 if (ValueEltVT != PartEltVT) { 7670 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 7671 assert(Count != 0 && "The number of element should not be zero."); 7672 SameEltTypeVT = 7673 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 7674 } 7675 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 7676 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 7677 if (ValueEltVT != PartEltVT) 7678 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 7679 return Val; 7680 } 7681 } 7682 return SDValue(); 7683 } 7684 7685 #define GET_REGISTER_MATCHER 7686 #include "RISCVGenAsmMatcher.inc" 7687 7688 Register 7689 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 7690 const MachineFunction &MF) const { 7691 Register Reg = MatchRegisterAltName(RegName); 7692 if (Reg == RISCV::NoRegister) 7693 Reg = MatchRegisterName(RegName); 7694 if (Reg == RISCV::NoRegister) 7695 report_fatal_error( 7696 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 7697 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 7698 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 7699 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 7700 StringRef(RegName) + "\".")); 7701 return Reg; 7702 } 7703 7704 namespace llvm { 7705 namespace RISCVVIntrinsicsTable { 7706 7707 #define GET_RISCVVIntrinsicsTable_IMPL 7708 #include "RISCVGenSearchableTables.inc" 7709 7710 } // namespace RISCVVIntrinsicsTable 7711 7712 } // namespace llvm 7713