1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasStdExtV()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) 132 addRegClassForRVV(VT); 133 134 if (Subtarget.hasStdExtZfh()) 135 for (MVT VT : F16VecVTs) 136 addRegClassForRVV(VT); 137 138 if (Subtarget.hasStdExtF()) 139 for (MVT VT : F32VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasStdExtD()) 143 for (MVT VT : F64VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.useRVVForFixedLengthVectors()) { 147 auto addRegClassForFixedVectors = [this](MVT VT) { 148 MVT ContainerVT = getContainerForFixedLengthVector(VT); 149 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 150 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 151 addRegisterClass(VT, TRI.getRegClass(RCID)); 152 }; 153 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 154 if (useRVVForFixedLengthVectorVT(VT)) 155 addRegClassForFixedVectors(VT); 156 157 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 } 161 } 162 163 // Compute derived properties from the register classes. 164 computeRegisterProperties(STI.getRegisterInfo()); 165 166 setStackPointerRegisterToSaveRestore(RISCV::X2); 167 168 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 169 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 170 171 // TODO: add all necessary setOperationAction calls. 172 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 setOperationAction(ISD::BR_CC, XLenVT, Expand); 176 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 177 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 178 179 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 180 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 181 182 setOperationAction(ISD::VASTART, MVT::Other, Custom); 183 setOperationAction(ISD::VAARG, MVT::Other, Expand); 184 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 185 setOperationAction(ISD::VAEND, MVT::Other, Expand); 186 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 if (!Subtarget.hasStdExtZbb()) { 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 191 } 192 193 if (Subtarget.is64Bit()) { 194 setOperationAction(ISD::ADD, MVT::i32, Custom); 195 setOperationAction(ISD::SUB, MVT::i32, Custom); 196 setOperationAction(ISD::SHL, MVT::i32, Custom); 197 setOperationAction(ISD::SRA, MVT::i32, Custom); 198 setOperationAction(ISD::SRL, MVT::i32, Custom); 199 200 setOperationAction(ISD::UADDO, MVT::i32, Custom); 201 setOperationAction(ISD::USUBO, MVT::i32, Custom); 202 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 203 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 204 } else { 205 setLibcallName(RTLIB::SHL_I128, nullptr); 206 setLibcallName(RTLIB::SRL_I128, nullptr); 207 setLibcallName(RTLIB::SRA_I128, nullptr); 208 setLibcallName(RTLIB::MUL_I128, nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction(ISD::MUL, XLenVT, Expand); 214 setOperationAction(ISD::MULHS, XLenVT, Expand); 215 setOperationAction(ISD::MULHU, XLenVT, Expand); 216 setOperationAction(ISD::SDIV, XLenVT, Expand); 217 setOperationAction(ISD::UDIV, XLenVT, Expand); 218 setOperationAction(ISD::SREM, XLenVT, Expand); 219 setOperationAction(ISD::UREM, XLenVT, Expand); 220 } else { 221 if (Subtarget.is64Bit()) { 222 setOperationAction(ISD::MUL, MVT::i32, Custom); 223 setOperationAction(ISD::MUL, MVT::i128, Custom); 224 225 setOperationAction(ISD::SDIV, MVT::i8, Custom); 226 setOperationAction(ISD::UDIV, MVT::i8, Custom); 227 setOperationAction(ISD::UREM, MVT::i8, Custom); 228 setOperationAction(ISD::SDIV, MVT::i16, Custom); 229 setOperationAction(ISD::UDIV, MVT::i16, Custom); 230 setOperationAction(ISD::UREM, MVT::i16, Custom); 231 setOperationAction(ISD::SDIV, MVT::i32, Custom); 232 setOperationAction(ISD::UDIV, MVT::i32, Custom); 233 setOperationAction(ISD::UREM, MVT::i32, Custom); 234 } else { 235 setOperationAction(ISD::MUL, MVT::i64, Custom); 236 } 237 } 238 239 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 241 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 242 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 243 244 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 246 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 247 248 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 249 if (Subtarget.is64Bit()) { 250 setOperationAction(ISD::ROTL, MVT::i32, Custom); 251 setOperationAction(ISD::ROTR, MVT::i32, Custom); 252 } 253 } else { 254 setOperationAction(ISD::ROTL, XLenVT, Expand); 255 setOperationAction(ISD::ROTR, XLenVT, Expand); 256 } 257 258 if (Subtarget.hasStdExtZbp()) { 259 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 260 // more combining. 261 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 262 setOperationAction(ISD::BSWAP, XLenVT, Custom); 263 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 264 // BSWAP i8 doesn't exist. 265 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 266 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 267 268 if (Subtarget.is64Bit()) { 269 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 271 } 272 } else { 273 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 274 // pattern match it directly in isel. 275 setOperationAction(ISD::BSWAP, XLenVT, 276 Subtarget.hasStdExtZbb() ? Legal : Expand); 277 } 278 279 if (Subtarget.hasStdExtZbb()) { 280 setOperationAction(ISD::SMIN, XLenVT, Legal); 281 setOperationAction(ISD::SMAX, XLenVT, Legal); 282 setOperationAction(ISD::UMIN, XLenVT, Legal); 283 setOperationAction(ISD::UMAX, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) { 286 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 287 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 288 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 290 } 291 } else { 292 setOperationAction(ISD::CTTZ, XLenVT, Expand); 293 setOperationAction(ISD::CTLZ, XLenVT, Expand); 294 setOperationAction(ISD::CTPOP, XLenVT, Expand); 295 } 296 297 if (Subtarget.hasStdExtZbt()) { 298 setOperationAction(ISD::FSHL, XLenVT, Custom); 299 setOperationAction(ISD::FSHR, XLenVT, Custom); 300 setOperationAction(ISD::SELECT, XLenVT, Legal); 301 302 if (Subtarget.is64Bit()) { 303 setOperationAction(ISD::FSHL, MVT::i32, Custom); 304 setOperationAction(ISD::FSHR, MVT::i32, Custom); 305 } 306 } else { 307 setOperationAction(ISD::SELECT, XLenVT, Custom); 308 } 309 310 static const ISD::CondCode FPCCToExpand[] = { 311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 314 315 static const ISD::NodeType FPOpToExpand[] = { 316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 318 319 if (Subtarget.hasStdExtZfh()) 320 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 321 322 if (Subtarget.hasStdExtZfh()) { 323 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 325 setOperationAction(ISD::LRINT, MVT::f16, Legal); 326 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 327 setOperationAction(ISD::LROUND, MVT::f16, Legal); 328 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f16, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 332 setOperationAction(ISD::SELECT, MVT::f16, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f16, Expand); 336 } 337 338 if (Subtarget.hasStdExtF()) { 339 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 340 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 341 setOperationAction(ISD::LRINT, MVT::f32, Legal); 342 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 343 setOperationAction(ISD::LROUND, MVT::f32, Legal); 344 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 348 setOperationAction(ISD::SELECT, MVT::f32, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 350 for (auto Op : FPOpToExpand) 351 setOperationAction(Op, MVT::f32, Expand); 352 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 353 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 354 } 355 356 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 357 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 358 359 if (Subtarget.hasStdExtD()) { 360 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 361 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 362 setOperationAction(ISD::LRINT, MVT::f64, Legal); 363 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 364 setOperationAction(ISD::LROUND, MVT::f64, Legal); 365 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 366 for (auto CC : FPCCToExpand) 367 setCondCodeAction(CC, MVT::f64, Expand); 368 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Custom); 370 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 373 for (auto Op : FPOpToExpand) 374 setOperationAction(Op, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 377 } 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 383 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 384 } 385 386 if (Subtarget.hasStdExtF()) { 387 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 388 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 389 390 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 391 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 392 } 393 394 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 395 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 396 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 397 setOperationAction(ISD::JumpTable, XLenVT, Custom); 398 399 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction(ISD::TRAP, MVT::Other, Legal); 407 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 409 if (Subtarget.is64Bit()) 410 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 411 412 if (Subtarget.hasStdExtA()) { 413 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 414 setMinCmpXchgSizeInBits(32); 415 } else { 416 setMaxAtomicSizeInBitsSupported(0); 417 } 418 419 setBooleanContents(ZeroOrOneBooleanContent); 420 421 if (Subtarget.hasStdExtV()) { 422 setBooleanVectorContents(ZeroOrOneBooleanContent); 423 424 setOperationAction(ISD::VSCALE, XLenVT, Custom); 425 426 // RVV intrinsics may have illegal operands. 427 // We also need to custom legalize vmv.x.s. 428 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 429 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 432 if (Subtarget.is64Bit()) { 433 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 434 } else { 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 436 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 437 } 438 439 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 440 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 441 442 static const unsigned IntegerVPOps[] = { 443 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 444 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 445 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 446 447 static const unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 448 ISD::VP_FMUL, ISD::VP_FDIV}; 449 450 if (!Subtarget.is64Bit()) { 451 // We must custom-lower certain vXi64 operations on RV32 due to the vector 452 // element type being illegal. 453 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 454 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 455 456 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 457 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 458 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 459 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 460 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 461 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 462 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 463 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 464 } 465 466 for (MVT VT : BoolVecVTs) { 467 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 468 469 // Mask VTs are custom-expanded into a series of standard nodes 470 setOperationAction(ISD::TRUNCATE, VT, Custom); 471 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 472 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 473 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 474 475 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 476 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 477 478 setOperationAction(ISD::SELECT, VT, Custom); 479 setOperationAction(ISD::SELECT_CC, VT, Expand); 480 setOperationAction(ISD::VSELECT, VT, Expand); 481 482 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 483 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 484 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 485 486 // RVV has native int->float & float->int conversions where the 487 // element type sizes are within one power-of-two of each other. Any 488 // wider distances between type sizes have to be lowered as sequences 489 // which progressively narrow the gap in stages. 490 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 491 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 492 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 493 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 494 495 // Expand all extending loads to types larger than this, and truncating 496 // stores from types larger than this. 497 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 498 setTruncStoreAction(OtherVT, VT, Expand); 499 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 500 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 501 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 502 } 503 } 504 505 for (MVT VT : IntVecVTs) { 506 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 507 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 508 509 setOperationAction(ISD::SMIN, VT, Legal); 510 setOperationAction(ISD::SMAX, VT, Legal); 511 setOperationAction(ISD::UMIN, VT, Legal); 512 setOperationAction(ISD::UMAX, VT, Legal); 513 514 setOperationAction(ISD::ROTL, VT, Expand); 515 setOperationAction(ISD::ROTR, VT, Expand); 516 517 // Custom-lower extensions and truncations from/to mask types. 518 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 519 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 520 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 521 522 // RVV has native int->float & float->int conversions where the 523 // element type sizes are within one power-of-two of each other. Any 524 // wider distances between type sizes have to be lowered as sequences 525 // which progressively narrow the gap in stages. 526 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 527 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 528 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 529 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 530 531 setOperationAction(ISD::SADDSAT, VT, Legal); 532 setOperationAction(ISD::UADDSAT, VT, Legal); 533 setOperationAction(ISD::SSUBSAT, VT, Legal); 534 setOperationAction(ISD::USUBSAT, VT, Legal); 535 536 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 537 // nodes which truncate by one power of two at a time. 538 setOperationAction(ISD::TRUNCATE, VT, Custom); 539 540 // Custom-lower insert/extract operations to simplify patterns. 541 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 542 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 543 544 // Custom-lower reduction operations to set up the corresponding custom 545 // nodes' operands. 546 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 547 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 548 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 551 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 552 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 553 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 554 555 for (unsigned VPOpc : IntegerVPOps) 556 setOperationAction(VPOpc, VT, Custom); 557 558 setOperationAction(ISD::LOAD, VT, Custom); 559 setOperationAction(ISD::STORE, VT, Custom); 560 561 setOperationAction(ISD::MLOAD, VT, Custom); 562 setOperationAction(ISD::MSTORE, VT, Custom); 563 setOperationAction(ISD::MGATHER, VT, Custom); 564 setOperationAction(ISD::MSCATTER, VT, Custom); 565 566 setOperationAction(ISD::VP_LOAD, VT, Custom); 567 setOperationAction(ISD::VP_STORE, VT, Custom); 568 setOperationAction(ISD::VP_GATHER, VT, Custom); 569 setOperationAction(ISD::VP_SCATTER, VT, Custom); 570 571 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 572 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 573 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 574 575 setOperationAction(ISD::SELECT, VT, Custom); 576 setOperationAction(ISD::SELECT_CC, VT, Expand); 577 578 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 579 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 580 581 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 582 setTruncStoreAction(VT, OtherVT, Expand); 583 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 584 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 585 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 586 } 587 } 588 589 // Expand various CCs to best match the RVV ISA, which natively supports UNE 590 // but no other unordered comparisons, and supports all ordered comparisons 591 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 592 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 593 // and we pattern-match those back to the "original", swapping operands once 594 // more. This way we catch both operations and both "vf" and "fv" forms with 595 // fewer patterns. 596 static const ISD::CondCode VFPCCToExpand[] = { 597 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 598 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 599 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 600 }; 601 602 // Sets common operation actions on RVV floating-point vector types. 603 const auto SetCommonVFPActions = [&](MVT VT) { 604 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 605 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 606 // sizes are within one power-of-two of each other. Therefore conversions 607 // between vXf16 and vXf64 must be lowered as sequences which convert via 608 // vXf32. 609 setOperationAction(ISD::FP_ROUND, VT, Custom); 610 setOperationAction(ISD::FP_EXTEND, VT, Custom); 611 // Custom-lower insert/extract operations to simplify patterns. 612 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 613 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 614 // Expand various condition codes (explained above). 615 for (auto CC : VFPCCToExpand) 616 setCondCodeAction(CC, VT, Expand); 617 618 setOperationAction(ISD::FMINNUM, VT, Legal); 619 setOperationAction(ISD::FMAXNUM, VT, Legal); 620 621 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 622 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 623 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 624 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 625 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 626 627 setOperationAction(ISD::LOAD, VT, Custom); 628 setOperationAction(ISD::STORE, VT, Custom); 629 630 setOperationAction(ISD::MLOAD, VT, Custom); 631 setOperationAction(ISD::MSTORE, VT, Custom); 632 setOperationAction(ISD::MGATHER, VT, Custom); 633 setOperationAction(ISD::MSCATTER, VT, Custom); 634 635 setOperationAction(ISD::VP_LOAD, VT, Custom); 636 setOperationAction(ISD::VP_STORE, VT, Custom); 637 setOperationAction(ISD::VP_GATHER, VT, Custom); 638 setOperationAction(ISD::VP_SCATTER, VT, Custom); 639 640 setOperationAction(ISD::SELECT, VT, Custom); 641 setOperationAction(ISD::SELECT_CC, VT, Expand); 642 643 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 644 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 645 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 646 647 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 648 649 for (unsigned VPOpc : FloatingPointVPOps) 650 setOperationAction(VPOpc, VT, Custom); 651 }; 652 653 // Sets common extload/truncstore actions on RVV floating-point vector 654 // types. 655 const auto SetCommonVFPExtLoadTruncStoreActions = 656 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 657 for (auto SmallVT : SmallerVTs) { 658 setTruncStoreAction(VT, SmallVT, Expand); 659 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 660 } 661 }; 662 663 if (Subtarget.hasStdExtZfh()) 664 for (MVT VT : F16VecVTs) 665 SetCommonVFPActions(VT); 666 667 for (MVT VT : F32VecVTs) { 668 if (Subtarget.hasStdExtF()) 669 SetCommonVFPActions(VT); 670 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 671 } 672 673 for (MVT VT : F64VecVTs) { 674 if (Subtarget.hasStdExtD()) 675 SetCommonVFPActions(VT); 676 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 677 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 678 } 679 680 if (Subtarget.useRVVForFixedLengthVectors()) { 681 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 682 if (!useRVVForFixedLengthVectorVT(VT)) 683 continue; 684 685 // By default everything must be expanded. 686 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 687 setOperationAction(Op, VT, Expand); 688 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 689 setTruncStoreAction(VT, OtherVT, Expand); 690 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 691 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 692 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 693 } 694 695 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 696 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 697 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 698 699 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 700 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 701 702 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 703 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 704 705 setOperationAction(ISD::LOAD, VT, Custom); 706 setOperationAction(ISD::STORE, VT, Custom); 707 708 setOperationAction(ISD::SETCC, VT, Custom); 709 710 setOperationAction(ISD::SELECT, VT, Custom); 711 712 setOperationAction(ISD::TRUNCATE, VT, Custom); 713 714 setOperationAction(ISD::BITCAST, VT, Custom); 715 716 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 717 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 718 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 719 720 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 721 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 722 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 723 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 724 725 // Operations below are different for between masks and other vectors. 726 if (VT.getVectorElementType() == MVT::i1) { 727 setOperationAction(ISD::AND, VT, Custom); 728 setOperationAction(ISD::OR, VT, Custom); 729 setOperationAction(ISD::XOR, VT, Custom); 730 continue; 731 } 732 733 // Use SPLAT_VECTOR to prevent type legalization from destroying the 734 // splats when type legalizing i64 scalar on RV32. 735 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 736 // improvements first. 737 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 738 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 739 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 740 } 741 742 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 743 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 744 745 setOperationAction(ISD::MLOAD, VT, Custom); 746 setOperationAction(ISD::MSTORE, VT, Custom); 747 setOperationAction(ISD::MGATHER, VT, Custom); 748 setOperationAction(ISD::MSCATTER, VT, Custom); 749 750 setOperationAction(ISD::VP_LOAD, VT, Custom); 751 setOperationAction(ISD::VP_STORE, VT, Custom); 752 setOperationAction(ISD::VP_GATHER, VT, Custom); 753 setOperationAction(ISD::VP_SCATTER, VT, Custom); 754 755 setOperationAction(ISD::ADD, VT, Custom); 756 setOperationAction(ISD::MUL, VT, Custom); 757 setOperationAction(ISD::SUB, VT, Custom); 758 setOperationAction(ISD::AND, VT, Custom); 759 setOperationAction(ISD::OR, VT, Custom); 760 setOperationAction(ISD::XOR, VT, Custom); 761 setOperationAction(ISD::SDIV, VT, Custom); 762 setOperationAction(ISD::SREM, VT, Custom); 763 setOperationAction(ISD::UDIV, VT, Custom); 764 setOperationAction(ISD::UREM, VT, Custom); 765 setOperationAction(ISD::SHL, VT, Custom); 766 setOperationAction(ISD::SRA, VT, Custom); 767 setOperationAction(ISD::SRL, VT, Custom); 768 769 setOperationAction(ISD::SMIN, VT, Custom); 770 setOperationAction(ISD::SMAX, VT, Custom); 771 setOperationAction(ISD::UMIN, VT, Custom); 772 setOperationAction(ISD::UMAX, VT, Custom); 773 setOperationAction(ISD::ABS, VT, Custom); 774 775 setOperationAction(ISD::MULHS, VT, Custom); 776 setOperationAction(ISD::MULHU, VT, Custom); 777 778 setOperationAction(ISD::SADDSAT, VT, Custom); 779 setOperationAction(ISD::UADDSAT, VT, Custom); 780 setOperationAction(ISD::SSUBSAT, VT, Custom); 781 setOperationAction(ISD::USUBSAT, VT, Custom); 782 783 setOperationAction(ISD::VSELECT, VT, Custom); 784 setOperationAction(ISD::SELECT_CC, VT, Expand); 785 786 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 787 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 788 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 789 790 // Custom-lower reduction operations to set up the corresponding custom 791 // nodes' operands. 792 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 793 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 794 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 795 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 796 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 797 798 for (unsigned VPOpc : IntegerVPOps) 799 setOperationAction(VPOpc, VT, Custom); 800 } 801 802 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 803 if (!useRVVForFixedLengthVectorVT(VT)) 804 continue; 805 806 // By default everything must be expanded. 807 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 808 setOperationAction(Op, VT, Expand); 809 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 810 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 811 setTruncStoreAction(VT, OtherVT, Expand); 812 } 813 814 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 815 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 816 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 817 818 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 819 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 820 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 821 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 822 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 823 824 setOperationAction(ISD::LOAD, VT, Custom); 825 setOperationAction(ISD::STORE, VT, Custom); 826 setOperationAction(ISD::MLOAD, VT, Custom); 827 setOperationAction(ISD::MSTORE, VT, Custom); 828 setOperationAction(ISD::MGATHER, VT, Custom); 829 setOperationAction(ISD::MSCATTER, VT, Custom); 830 831 setOperationAction(ISD::VP_LOAD, VT, Custom); 832 setOperationAction(ISD::VP_STORE, VT, Custom); 833 setOperationAction(ISD::VP_GATHER, VT, Custom); 834 setOperationAction(ISD::VP_SCATTER, VT, Custom); 835 836 setOperationAction(ISD::FADD, VT, Custom); 837 setOperationAction(ISD::FSUB, VT, Custom); 838 setOperationAction(ISD::FMUL, VT, Custom); 839 setOperationAction(ISD::FDIV, VT, Custom); 840 setOperationAction(ISD::FNEG, VT, Custom); 841 setOperationAction(ISD::FABS, VT, Custom); 842 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 843 setOperationAction(ISD::FSQRT, VT, Custom); 844 setOperationAction(ISD::FMA, VT, Custom); 845 setOperationAction(ISD::FMINNUM, VT, Custom); 846 setOperationAction(ISD::FMAXNUM, VT, Custom); 847 848 setOperationAction(ISD::FP_ROUND, VT, Custom); 849 setOperationAction(ISD::FP_EXTEND, VT, Custom); 850 851 for (auto CC : VFPCCToExpand) 852 setCondCodeAction(CC, VT, Expand); 853 854 setOperationAction(ISD::VSELECT, VT, Custom); 855 setOperationAction(ISD::SELECT, VT, Custom); 856 setOperationAction(ISD::SELECT_CC, VT, Expand); 857 858 setOperationAction(ISD::BITCAST, VT, Custom); 859 860 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 861 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 862 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 863 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 864 865 for (unsigned VPOpc : FloatingPointVPOps) 866 setOperationAction(VPOpc, VT, Custom); 867 } 868 869 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 870 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 871 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 872 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 873 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 874 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 875 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 876 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 877 } 878 } 879 880 // Function alignments. 881 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 882 setMinFunctionAlignment(FunctionAlignment); 883 setPrefFunctionAlignment(FunctionAlignment); 884 885 setMinimumJumpTableEntries(5); 886 887 // Jumps are expensive, compared to logic 888 setJumpIsExpensive(); 889 890 // We can use any register for comparisons 891 setHasMultipleConditionRegisters(); 892 893 setTargetDAGCombine(ISD::ADD); 894 setTargetDAGCombine(ISD::SUB); 895 setTargetDAGCombine(ISD::AND); 896 setTargetDAGCombine(ISD::OR); 897 setTargetDAGCombine(ISD::XOR); 898 setTargetDAGCombine(ISD::ANY_EXTEND); 899 setTargetDAGCombine(ISD::ZERO_EXTEND); 900 if (Subtarget.hasStdExtV()) { 901 setTargetDAGCombine(ISD::FCOPYSIGN); 902 setTargetDAGCombine(ISD::MGATHER); 903 setTargetDAGCombine(ISD::MSCATTER); 904 setTargetDAGCombine(ISD::VP_GATHER); 905 setTargetDAGCombine(ISD::VP_SCATTER); 906 setTargetDAGCombine(ISD::SRA); 907 setTargetDAGCombine(ISD::SRL); 908 setTargetDAGCombine(ISD::SHL); 909 } 910 } 911 912 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 913 LLVMContext &Context, 914 EVT VT) const { 915 if (!VT.isVector()) 916 return getPointerTy(DL); 917 if (Subtarget.hasStdExtV() && 918 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 919 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 920 return VT.changeVectorElementTypeToInteger(); 921 } 922 923 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 924 return Subtarget.getXLenVT(); 925 } 926 927 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 928 const CallInst &I, 929 MachineFunction &MF, 930 unsigned Intrinsic) const { 931 switch (Intrinsic) { 932 default: 933 return false; 934 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 935 case Intrinsic::riscv_masked_atomicrmw_add_i32: 936 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 937 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 938 case Intrinsic::riscv_masked_atomicrmw_max_i32: 939 case Intrinsic::riscv_masked_atomicrmw_min_i32: 940 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 941 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 942 case Intrinsic::riscv_masked_cmpxchg_i32: { 943 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 944 Info.opc = ISD::INTRINSIC_W_CHAIN; 945 Info.memVT = MVT::getVT(PtrTy->getElementType()); 946 Info.ptrVal = I.getArgOperand(0); 947 Info.offset = 0; 948 Info.align = Align(4); 949 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 950 MachineMemOperand::MOVolatile; 951 return true; 952 } 953 case Intrinsic::riscv_masked_strided_load: 954 Info.opc = ISD::INTRINSIC_W_CHAIN; 955 Info.ptrVal = I.getArgOperand(1); 956 Info.memVT = MVT::getVT(I.getType()->getScalarType()); 957 Info.align = Align(I.getType()->getScalarSizeInBits() / 8); 958 Info.size = MemoryLocation::UnknownSize; 959 Info.flags |= MachineMemOperand::MOLoad; 960 return true; 961 case Intrinsic::riscv_masked_strided_store: 962 Info.opc = ISD::INTRINSIC_VOID; 963 Info.ptrVal = I.getArgOperand(1); 964 Info.memVT = MVT::getVT(I.getArgOperand(0)->getType()->getScalarType()); 965 Info.align = 966 Align(I.getArgOperand(0)->getType()->getScalarSizeInBits() / 8); 967 Info.size = MemoryLocation::UnknownSize; 968 Info.flags |= MachineMemOperand::MOStore; 969 return true; 970 } 971 } 972 973 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 974 const AddrMode &AM, Type *Ty, 975 unsigned AS, 976 Instruction *I) const { 977 // No global is ever allowed as a base. 978 if (AM.BaseGV) 979 return false; 980 981 // Require a 12-bit signed offset. 982 if (!isInt<12>(AM.BaseOffs)) 983 return false; 984 985 switch (AM.Scale) { 986 case 0: // "r+i" or just "i", depending on HasBaseReg. 987 break; 988 case 1: 989 if (!AM.HasBaseReg) // allow "r+i". 990 break; 991 return false; // disallow "r+r" or "r+r+i". 992 default: 993 return false; 994 } 995 996 return true; 997 } 998 999 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1000 return isInt<12>(Imm); 1001 } 1002 1003 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1004 return isInt<12>(Imm); 1005 } 1006 1007 // On RV32, 64-bit integers are split into their high and low parts and held 1008 // in two different registers, so the trunc is free since the low register can 1009 // just be used. 1010 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1011 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1012 return false; 1013 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1014 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1015 return (SrcBits == 64 && DestBits == 32); 1016 } 1017 1018 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1019 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1020 !SrcVT.isInteger() || !DstVT.isInteger()) 1021 return false; 1022 unsigned SrcBits = SrcVT.getSizeInBits(); 1023 unsigned DestBits = DstVT.getSizeInBits(); 1024 return (SrcBits == 64 && DestBits == 32); 1025 } 1026 1027 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1028 // Zexts are free if they can be combined with a load. 1029 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1030 EVT MemVT = LD->getMemoryVT(); 1031 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1032 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1033 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1034 LD->getExtensionType() == ISD::ZEXTLOAD)) 1035 return true; 1036 } 1037 1038 return TargetLowering::isZExtFree(Val, VT2); 1039 } 1040 1041 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1042 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1043 } 1044 1045 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1046 return Subtarget.hasStdExtZbb(); 1047 } 1048 1049 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1050 return Subtarget.hasStdExtZbb(); 1051 } 1052 1053 /// Check if sinking \p I's operands to I's basic block is profitable, because 1054 /// the operands can be folded into a target instruction, e.g. 1055 /// splats of scalars can fold into vector instructions. 1056 bool RISCVTargetLowering::shouldSinkOperands( 1057 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1058 using namespace llvm::PatternMatch; 1059 1060 if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV()) 1061 return false; 1062 1063 auto IsSinker = [&](Instruction *I, int Operand) { 1064 switch (I->getOpcode()) { 1065 case Instruction::Add: 1066 case Instruction::Sub: 1067 case Instruction::Mul: 1068 case Instruction::And: 1069 case Instruction::Or: 1070 case Instruction::Xor: 1071 case Instruction::FAdd: 1072 case Instruction::FSub: 1073 case Instruction::FMul: 1074 case Instruction::FDiv: 1075 return true; 1076 case Instruction::Shl: 1077 case Instruction::LShr: 1078 case Instruction::AShr: 1079 return Operand == 1; 1080 case Instruction::Call: 1081 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1082 switch (II->getIntrinsicID()) { 1083 case Intrinsic::fma: 1084 return Operand == 0 || Operand == 1; 1085 default: 1086 return false; 1087 } 1088 } 1089 return false; 1090 default: 1091 return false; 1092 } 1093 }; 1094 1095 for (auto OpIdx : enumerate(I->operands())) { 1096 if (!IsSinker(I, OpIdx.index())) 1097 continue; 1098 1099 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1100 // Make sure we are not already sinking this operand 1101 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1102 continue; 1103 1104 // We are looking for a splat that can be sunk. 1105 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1106 m_Undef(), m_ZeroMask()))) 1107 continue; 1108 1109 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1110 // and vector registers 1111 for (Use &U : Op->uses()) { 1112 Instruction *Insn = cast<Instruction>(U.getUser()); 1113 if (!IsSinker(Insn, U.getOperandNo())) 1114 return false; 1115 } 1116 1117 Ops.push_back(&Op->getOperandUse(0)); 1118 Ops.push_back(&OpIdx.value()); 1119 } 1120 return true; 1121 } 1122 1123 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1124 bool ForCodeSize) const { 1125 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1126 return false; 1127 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1128 return false; 1129 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1130 return false; 1131 if (Imm.isNegZero()) 1132 return false; 1133 return Imm.isZero(); 1134 } 1135 1136 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1137 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1138 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1139 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1140 } 1141 1142 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1143 CallingConv::ID CC, 1144 EVT VT) const { 1145 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1146 // end up using a GPR but that will be decided based on ABI. 1147 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1148 return MVT::f32; 1149 1150 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1151 } 1152 1153 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1154 CallingConv::ID CC, 1155 EVT VT) const { 1156 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1157 // end up using a GPR but that will be decided based on ABI. 1158 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1159 return 1; 1160 1161 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1162 } 1163 1164 // Changes the condition code and swaps operands if necessary, so the SetCC 1165 // operation matches one of the comparisons supported directly by branches 1166 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1167 // with 1/-1. 1168 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1169 ISD::CondCode &CC, SelectionDAG &DAG) { 1170 // Convert X > -1 to X >= 0. 1171 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1172 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1173 CC = ISD::SETGE; 1174 return; 1175 } 1176 // Convert X < 1 to 0 >= X. 1177 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1178 RHS = LHS; 1179 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1180 CC = ISD::SETGE; 1181 return; 1182 } 1183 1184 switch (CC) { 1185 default: 1186 break; 1187 case ISD::SETGT: 1188 case ISD::SETLE: 1189 case ISD::SETUGT: 1190 case ISD::SETULE: 1191 CC = ISD::getSetCCSwappedOperands(CC); 1192 std::swap(LHS, RHS); 1193 break; 1194 } 1195 } 1196 1197 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1198 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1199 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1200 if (VT.getVectorElementType() == MVT::i1) 1201 KnownSize *= 8; 1202 1203 switch (KnownSize) { 1204 default: 1205 llvm_unreachable("Invalid LMUL."); 1206 case 8: 1207 return RISCVII::VLMUL::LMUL_F8; 1208 case 16: 1209 return RISCVII::VLMUL::LMUL_F4; 1210 case 32: 1211 return RISCVII::VLMUL::LMUL_F2; 1212 case 64: 1213 return RISCVII::VLMUL::LMUL_1; 1214 case 128: 1215 return RISCVII::VLMUL::LMUL_2; 1216 case 256: 1217 return RISCVII::VLMUL::LMUL_4; 1218 case 512: 1219 return RISCVII::VLMUL::LMUL_8; 1220 } 1221 } 1222 1223 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1224 switch (LMul) { 1225 default: 1226 llvm_unreachable("Invalid LMUL."); 1227 case RISCVII::VLMUL::LMUL_F8: 1228 case RISCVII::VLMUL::LMUL_F4: 1229 case RISCVII::VLMUL::LMUL_F2: 1230 case RISCVII::VLMUL::LMUL_1: 1231 return RISCV::VRRegClassID; 1232 case RISCVII::VLMUL::LMUL_2: 1233 return RISCV::VRM2RegClassID; 1234 case RISCVII::VLMUL::LMUL_4: 1235 return RISCV::VRM4RegClassID; 1236 case RISCVII::VLMUL::LMUL_8: 1237 return RISCV::VRM8RegClassID; 1238 } 1239 } 1240 1241 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1242 RISCVII::VLMUL LMUL = getLMUL(VT); 1243 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1244 LMUL == RISCVII::VLMUL::LMUL_F4 || 1245 LMUL == RISCVII::VLMUL::LMUL_F2 || 1246 LMUL == RISCVII::VLMUL::LMUL_1) { 1247 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1248 "Unexpected subreg numbering"); 1249 return RISCV::sub_vrm1_0 + Index; 1250 } 1251 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1252 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1253 "Unexpected subreg numbering"); 1254 return RISCV::sub_vrm2_0 + Index; 1255 } 1256 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1257 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1258 "Unexpected subreg numbering"); 1259 return RISCV::sub_vrm4_0 + Index; 1260 } 1261 llvm_unreachable("Invalid vector type."); 1262 } 1263 1264 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1265 if (VT.getVectorElementType() == MVT::i1) 1266 return RISCV::VRRegClassID; 1267 return getRegClassIDForLMUL(getLMUL(VT)); 1268 } 1269 1270 // Attempt to decompose a subvector insert/extract between VecVT and 1271 // SubVecVT via subregister indices. Returns the subregister index that 1272 // can perform the subvector insert/extract with the given element index, as 1273 // well as the index corresponding to any leftover subvectors that must be 1274 // further inserted/extracted within the register class for SubVecVT. 1275 std::pair<unsigned, unsigned> 1276 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1277 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1278 const RISCVRegisterInfo *TRI) { 1279 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1280 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1281 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1282 "Register classes not ordered"); 1283 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1284 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1285 // Try to compose a subregister index that takes us from the incoming 1286 // LMUL>1 register class down to the outgoing one. At each step we half 1287 // the LMUL: 1288 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1289 // Note that this is not guaranteed to find a subregister index, such as 1290 // when we are extracting from one VR type to another. 1291 unsigned SubRegIdx = RISCV::NoSubRegister; 1292 for (const unsigned RCID : 1293 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1294 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1295 VecVT = VecVT.getHalfNumVectorElementsVT(); 1296 bool IsHi = 1297 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1298 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1299 getSubregIndexByMVT(VecVT, IsHi)); 1300 if (IsHi) 1301 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1302 } 1303 return {SubRegIdx, InsertExtractIdx}; 1304 } 1305 1306 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1307 // stores for those types. 1308 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1309 return !Subtarget.useRVVForFixedLengthVectors() || 1310 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1311 } 1312 1313 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1314 if (ScalarTy->isPointerTy()) 1315 return true; 1316 1317 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1318 ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64)) 1319 return true; 1320 1321 if (ScalarTy->isHalfTy()) 1322 return Subtarget.hasStdExtZfh(); 1323 if (ScalarTy->isFloatTy()) 1324 return Subtarget.hasStdExtF(); 1325 if (ScalarTy->isDoubleTy()) 1326 return Subtarget.hasStdExtD(); 1327 1328 return false; 1329 } 1330 1331 static bool useRVVForFixedLengthVectorVT(MVT VT, 1332 const RISCVSubtarget &Subtarget) { 1333 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1334 if (!Subtarget.useRVVForFixedLengthVectors()) 1335 return false; 1336 1337 // We only support a set of vector types with a consistent maximum fixed size 1338 // across all supported vector element types to avoid legalization issues. 1339 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1340 // fixed-length vector type we support is 1024 bytes. 1341 if (VT.getFixedSizeInBits() > 1024 * 8) 1342 return false; 1343 1344 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1345 1346 MVT EltVT = VT.getVectorElementType(); 1347 1348 // Don't use RVV for vectors we cannot scalarize if required. 1349 switch (EltVT.SimpleTy) { 1350 // i1 is supported but has different rules. 1351 default: 1352 return false; 1353 case MVT::i1: 1354 // Masks can only use a single register. 1355 if (VT.getVectorNumElements() > MinVLen) 1356 return false; 1357 MinVLen /= 8; 1358 break; 1359 case MVT::i8: 1360 case MVT::i16: 1361 case MVT::i32: 1362 case MVT::i64: 1363 break; 1364 case MVT::f16: 1365 if (!Subtarget.hasStdExtZfh()) 1366 return false; 1367 break; 1368 case MVT::f32: 1369 if (!Subtarget.hasStdExtF()) 1370 return false; 1371 break; 1372 case MVT::f64: 1373 if (!Subtarget.hasStdExtD()) 1374 return false; 1375 break; 1376 } 1377 1378 // Reject elements larger than ELEN. 1379 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1380 return false; 1381 1382 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1383 // Don't use RVV for types that don't fit. 1384 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1385 return false; 1386 1387 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1388 // the base fixed length RVV support in place. 1389 if (!VT.isPow2VectorType()) 1390 return false; 1391 1392 return true; 1393 } 1394 1395 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1396 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1397 } 1398 1399 // Return the largest legal scalable vector type that matches VT's element type. 1400 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1401 const RISCVSubtarget &Subtarget) { 1402 // This may be called before legal types are setup. 1403 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1404 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1405 "Expected legal fixed length vector!"); 1406 1407 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1408 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1409 1410 MVT EltVT = VT.getVectorElementType(); 1411 switch (EltVT.SimpleTy) { 1412 default: 1413 llvm_unreachable("unexpected element type for RVV container"); 1414 case MVT::i1: 1415 case MVT::i8: 1416 case MVT::i16: 1417 case MVT::i32: 1418 case MVT::i64: 1419 case MVT::f16: 1420 case MVT::f32: 1421 case MVT::f64: { 1422 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1423 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1424 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1425 unsigned NumElts = 1426 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1427 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1428 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1429 return MVT::getScalableVectorVT(EltVT, NumElts); 1430 } 1431 } 1432 } 1433 1434 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1435 const RISCVSubtarget &Subtarget) { 1436 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1437 Subtarget); 1438 } 1439 1440 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1441 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1442 } 1443 1444 // Grow V to consume an entire RVV register. 1445 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1446 const RISCVSubtarget &Subtarget) { 1447 assert(VT.isScalableVector() && 1448 "Expected to convert into a scalable vector!"); 1449 assert(V.getValueType().isFixedLengthVector() && 1450 "Expected a fixed length vector operand!"); 1451 SDLoc DL(V); 1452 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1453 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1454 } 1455 1456 // Shrink V so it's just big enough to maintain a VT's worth of data. 1457 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1458 const RISCVSubtarget &Subtarget) { 1459 assert(VT.isFixedLengthVector() && 1460 "Expected to convert into a fixed length vector!"); 1461 assert(V.getValueType().isScalableVector() && 1462 "Expected a scalable vector operand!"); 1463 SDLoc DL(V); 1464 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1465 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1466 } 1467 1468 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1469 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1470 // the vector type that it is contained in. 1471 static std::pair<SDValue, SDValue> 1472 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1473 const RISCVSubtarget &Subtarget) { 1474 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1475 MVT XLenVT = Subtarget.getXLenVT(); 1476 SDValue VL = VecVT.isFixedLengthVector() 1477 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1478 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1479 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1480 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1481 return {Mask, VL}; 1482 } 1483 1484 // As above but assuming the given type is a scalable vector type. 1485 static std::pair<SDValue, SDValue> 1486 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1487 const RISCVSubtarget &Subtarget) { 1488 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1489 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1490 } 1491 1492 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1493 // of either is (currently) supported. This can get us into an infinite loop 1494 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1495 // as a ..., etc. 1496 // Until either (or both) of these can reliably lower any node, reporting that 1497 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1498 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1499 // which is not desirable. 1500 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1501 EVT VT, unsigned DefinedValues) const { 1502 return false; 1503 } 1504 1505 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1506 // Only splats are currently supported. 1507 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1508 return true; 1509 1510 return false; 1511 } 1512 1513 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1514 // RISCV FP-to-int conversions saturate to the destination register size, but 1515 // don't produce 0 for nan. We can use a conversion instruction and fix the 1516 // nan case with a compare and a select. 1517 SDValue Src = Op.getOperand(0); 1518 1519 EVT DstVT = Op.getValueType(); 1520 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1521 1522 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1523 unsigned Opc; 1524 if (SatVT == DstVT) 1525 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1526 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1527 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1528 else 1529 return SDValue(); 1530 // FIXME: Support other SatVTs by clamping before or after the conversion. 1531 1532 SDLoc DL(Op); 1533 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1534 1535 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1536 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1537 } 1538 1539 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1540 const RISCVSubtarget &Subtarget) { 1541 MVT VT = Op.getSimpleValueType(); 1542 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1543 1544 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1545 1546 SDLoc DL(Op); 1547 SDValue Mask, VL; 1548 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1549 1550 unsigned Opc = 1551 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1552 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1553 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1554 } 1555 1556 struct VIDSequence { 1557 int64_t StepNumerator; 1558 unsigned StepDenominator; 1559 int64_t Addend; 1560 }; 1561 1562 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1563 // to the (non-zero) step S and start value X. This can be then lowered as the 1564 // RVV sequence (VID * S) + X, for example. 1565 // The step S is represented as an integer numerator divided by a positive 1566 // denominator. Note that the implementation currently only identifies 1567 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1568 // cannot detect 2/3, for example. 1569 // Note that this method will also match potentially unappealing index 1570 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1571 // determine whether this is worth generating code for. 1572 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1573 unsigned NumElts = Op.getNumOperands(); 1574 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1575 if (!Op.getValueType().isInteger()) 1576 return None; 1577 1578 Optional<unsigned> SeqStepDenom; 1579 Optional<int64_t> SeqStepNum, SeqAddend; 1580 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1581 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1582 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1583 // Assume undef elements match the sequence; we just have to be careful 1584 // when interpolating across them. 1585 if (Op.getOperand(Idx).isUndef()) 1586 continue; 1587 // The BUILD_VECTOR must be all constants. 1588 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1589 return None; 1590 1591 uint64_t Val = Op.getConstantOperandVal(Idx) & 1592 maskTrailingOnes<uint64_t>(EltSizeInBits); 1593 1594 if (PrevElt) { 1595 // Calculate the step since the last non-undef element, and ensure 1596 // it's consistent across the entire sequence. 1597 unsigned IdxDiff = Idx - PrevElt->second; 1598 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1599 1600 // A zero-value value difference means that we're somewhere in the middle 1601 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1602 // step change before evaluating the sequence. 1603 if (ValDiff != 0) { 1604 int64_t Remainder = ValDiff % IdxDiff; 1605 // Normalize the step if it's greater than 1. 1606 if (Remainder != ValDiff) { 1607 // The difference must cleanly divide the element span. 1608 if (Remainder != 0) 1609 return None; 1610 ValDiff /= IdxDiff; 1611 IdxDiff = 1; 1612 } 1613 1614 if (!SeqStepNum) 1615 SeqStepNum = ValDiff; 1616 else if (ValDiff != SeqStepNum) 1617 return None; 1618 1619 if (!SeqStepDenom) 1620 SeqStepDenom = IdxDiff; 1621 else if (IdxDiff != *SeqStepDenom) 1622 return None; 1623 } 1624 } 1625 1626 // Record and/or check any addend. 1627 if (SeqStepNum && SeqStepDenom) { 1628 uint64_t ExpectedVal = 1629 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1630 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1631 if (!SeqAddend) 1632 SeqAddend = Addend; 1633 else if (SeqAddend != Addend) 1634 return None; 1635 } 1636 1637 // Record this non-undef element for later. 1638 if (!PrevElt || PrevElt->first != Val) 1639 PrevElt = std::make_pair(Val, Idx); 1640 } 1641 // We need to have logged both a step and an addend for this to count as 1642 // a legal index sequence. 1643 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1644 return None; 1645 1646 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1647 } 1648 1649 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1650 const RISCVSubtarget &Subtarget) { 1651 MVT VT = Op.getSimpleValueType(); 1652 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1653 1654 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1655 1656 SDLoc DL(Op); 1657 SDValue Mask, VL; 1658 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1659 1660 MVT XLenVT = Subtarget.getXLenVT(); 1661 unsigned NumElts = Op.getNumOperands(); 1662 1663 if (VT.getVectorElementType() == MVT::i1) { 1664 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1665 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1666 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1667 } 1668 1669 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1670 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1671 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1672 } 1673 1674 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1675 // scalar integer chunks whose bit-width depends on the number of mask 1676 // bits and XLEN. 1677 // First, determine the most appropriate scalar integer type to use. This 1678 // is at most XLenVT, but may be shrunk to a smaller vector element type 1679 // according to the size of the final vector - use i8 chunks rather than 1680 // XLenVT if we're producing a v8i1. This results in more consistent 1681 // codegen across RV32 and RV64. 1682 unsigned NumViaIntegerBits = 1683 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1684 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1685 // If we have to use more than one INSERT_VECTOR_ELT then this 1686 // optimization is likely to increase code size; avoid peforming it in 1687 // such a case. We can use a load from a constant pool in this case. 1688 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1689 return SDValue(); 1690 // Now we can create our integer vector type. Note that it may be larger 1691 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1692 MVT IntegerViaVecVT = 1693 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1694 divideCeil(NumElts, NumViaIntegerBits)); 1695 1696 uint64_t Bits = 0; 1697 unsigned BitPos = 0, IntegerEltIdx = 0; 1698 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1699 1700 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1701 // Once we accumulate enough bits to fill our scalar type, insert into 1702 // our vector and clear our accumulated data. 1703 if (I != 0 && I % NumViaIntegerBits == 0) { 1704 if (NumViaIntegerBits <= 32) 1705 Bits = SignExtend64(Bits, 32); 1706 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1707 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1708 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1709 Bits = 0; 1710 BitPos = 0; 1711 IntegerEltIdx++; 1712 } 1713 SDValue V = Op.getOperand(I); 1714 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1715 Bits |= ((uint64_t)BitValue << BitPos); 1716 } 1717 1718 // Insert the (remaining) scalar value into position in our integer 1719 // vector type. 1720 if (NumViaIntegerBits <= 32) 1721 Bits = SignExtend64(Bits, 32); 1722 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1723 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1724 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1725 1726 if (NumElts < NumViaIntegerBits) { 1727 // If we're producing a smaller vector than our minimum legal integer 1728 // type, bitcast to the equivalent (known-legal) mask type, and extract 1729 // our final mask. 1730 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1731 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1732 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1733 DAG.getConstant(0, DL, XLenVT)); 1734 } else { 1735 // Else we must have produced an integer type with the same size as the 1736 // mask type; bitcast for the final result. 1737 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1738 Vec = DAG.getBitcast(VT, Vec); 1739 } 1740 1741 return Vec; 1742 } 1743 1744 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1745 // vector type, we have a legal equivalently-sized i8 type, so we can use 1746 // that. 1747 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1748 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1749 1750 SDValue WideVec; 1751 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1752 // For a splat, perform a scalar truncate before creating the wider 1753 // vector. 1754 assert(Splat.getValueType() == XLenVT && 1755 "Unexpected type for i1 splat value"); 1756 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1757 DAG.getConstant(1, DL, XLenVT)); 1758 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1759 } else { 1760 SmallVector<SDValue, 8> Ops(Op->op_values()); 1761 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1762 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1763 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1764 } 1765 1766 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1767 } 1768 1769 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1770 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1771 : RISCVISD::VMV_V_X_VL; 1772 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1773 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1774 } 1775 1776 // Try and match index sequences, which we can lower to the vid instruction 1777 // with optional modifications. An all-undef vector is matched by 1778 // getSplatValue, above. 1779 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1780 int64_t StepNumerator = SimpleVID->StepNumerator; 1781 unsigned StepDenominator = SimpleVID->StepDenominator; 1782 int64_t Addend = SimpleVID->Addend; 1783 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1784 // threshold since it's the immediate value many RVV instructions accept. 1785 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1786 isInt<5>(Addend)) { 1787 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1788 // Convert right out of the scalable type so we can use standard ISD 1789 // nodes for the rest of the computation. If we used scalable types with 1790 // these, we'd lose the fixed-length vector info and generate worse 1791 // vsetvli code. 1792 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1793 assert(StepNumerator != 0 && "Invalid step"); 1794 bool Negate = false; 1795 if (StepNumerator != 1) { 1796 int64_t SplatStepVal = StepNumerator; 1797 unsigned Opcode = ISD::MUL; 1798 if (isPowerOf2_64(std::abs(StepNumerator))) { 1799 Negate = StepNumerator < 0; 1800 Opcode = ISD::SHL; 1801 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1802 } 1803 SDValue SplatStep = DAG.getSplatVector( 1804 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1805 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1806 } 1807 if (StepDenominator != 1) { 1808 SDValue SplatStep = DAG.getSplatVector( 1809 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1810 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1811 } 1812 if (Addend != 0 || Negate) { 1813 SDValue SplatAddend = 1814 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1815 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1816 } 1817 return VID; 1818 } 1819 } 1820 1821 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1822 // when re-interpreted as a vector with a larger element type. For example, 1823 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1824 // could be instead splat as 1825 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1826 // TODO: This optimization could also work on non-constant splats, but it 1827 // would require bit-manipulation instructions to construct the splat value. 1828 SmallVector<SDValue> Sequence; 1829 unsigned EltBitSize = VT.getScalarSizeInBits(); 1830 const auto *BV = cast<BuildVectorSDNode>(Op); 1831 if (VT.isInteger() && EltBitSize < 64 && 1832 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1833 BV->getRepeatedSequence(Sequence) && 1834 (Sequence.size() * EltBitSize) <= 64) { 1835 unsigned SeqLen = Sequence.size(); 1836 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1837 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1838 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1839 ViaIntVT == MVT::i64) && 1840 "Unexpected sequence type"); 1841 1842 unsigned EltIdx = 0; 1843 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1844 uint64_t SplatValue = 0; 1845 // Construct the amalgamated value which can be splatted as this larger 1846 // vector type. 1847 for (const auto &SeqV : Sequence) { 1848 if (!SeqV.isUndef()) 1849 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1850 << (EltIdx * EltBitSize)); 1851 EltIdx++; 1852 } 1853 1854 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1855 // achieve better constant materializion. 1856 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1857 SplatValue = SignExtend64(SplatValue, 32); 1858 1859 // Since we can't introduce illegal i64 types at this stage, we can only 1860 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1861 // way we can use RVV instructions to splat. 1862 assert((ViaIntVT.bitsLE(XLenVT) || 1863 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1864 "Unexpected bitcast sequence"); 1865 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1866 SDValue ViaVL = 1867 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1868 MVT ViaContainerVT = 1869 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1870 SDValue Splat = 1871 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1872 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1873 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1874 return DAG.getBitcast(VT, Splat); 1875 } 1876 } 1877 1878 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1879 // which constitute a large proportion of the elements. In such cases we can 1880 // splat a vector with the dominant element and make up the shortfall with 1881 // INSERT_VECTOR_ELTs. 1882 // Note that this includes vectors of 2 elements by association. The 1883 // upper-most element is the "dominant" one, allowing us to use a splat to 1884 // "insert" the upper element, and an insert of the lower element at position 1885 // 0, which improves codegen. 1886 SDValue DominantValue; 1887 unsigned MostCommonCount = 0; 1888 DenseMap<SDValue, unsigned> ValueCounts; 1889 unsigned NumUndefElts = 1890 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1891 1892 // Track the number of scalar loads we know we'd be inserting, estimated as 1893 // any non-zero floating-point constant. Other kinds of element are either 1894 // already in registers or are materialized on demand. The threshold at which 1895 // a vector load is more desirable than several scalar materializion and 1896 // vector-insertion instructions is not known. 1897 unsigned NumScalarLoads = 0; 1898 1899 for (SDValue V : Op->op_values()) { 1900 if (V.isUndef()) 1901 continue; 1902 1903 ValueCounts.insert(std::make_pair(V, 0)); 1904 unsigned &Count = ValueCounts[V]; 1905 1906 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1907 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1908 1909 // Is this value dominant? In case of a tie, prefer the highest element as 1910 // it's cheaper to insert near the beginning of a vector than it is at the 1911 // end. 1912 if (++Count >= MostCommonCount) { 1913 DominantValue = V; 1914 MostCommonCount = Count; 1915 } 1916 } 1917 1918 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1919 unsigned NumDefElts = NumElts - NumUndefElts; 1920 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1921 1922 // Don't perform this optimization when optimizing for size, since 1923 // materializing elements and inserting them tends to cause code bloat. 1924 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1925 ((MostCommonCount > DominantValueCountThreshold) || 1926 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1927 // Start by splatting the most common element. 1928 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1929 1930 DenseSet<SDValue> Processed{DominantValue}; 1931 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1932 for (const auto &OpIdx : enumerate(Op->ops())) { 1933 const SDValue &V = OpIdx.value(); 1934 if (V.isUndef() || !Processed.insert(V).second) 1935 continue; 1936 if (ValueCounts[V] == 1) { 1937 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1938 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1939 } else { 1940 // Blend in all instances of this value using a VSELECT, using a 1941 // mask where each bit signals whether that element is the one 1942 // we're after. 1943 SmallVector<SDValue> Ops; 1944 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1945 return DAG.getConstant(V == V1, DL, XLenVT); 1946 }); 1947 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1948 DAG.getBuildVector(SelMaskTy, DL, Ops), 1949 DAG.getSplatBuildVector(VT, DL, V), Vec); 1950 } 1951 } 1952 1953 return Vec; 1954 } 1955 1956 return SDValue(); 1957 } 1958 1959 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1960 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1961 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1962 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1963 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1964 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1965 // node in order to try and match RVV vector/scalar instructions. 1966 if ((LoC >> 31) == HiC) 1967 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1968 } 1969 1970 // Fall back to a stack store and stride x0 vector load. 1971 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1972 } 1973 1974 // Called by type legalization to handle splat of i64 on RV32. 1975 // FIXME: We can optimize this when the type has sign or zero bits in one 1976 // of the halves. 1977 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1978 SDValue VL, SelectionDAG &DAG) { 1979 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1980 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1981 DAG.getConstant(0, DL, MVT::i32)); 1982 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1983 DAG.getConstant(1, DL, MVT::i32)); 1984 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1985 } 1986 1987 // This function lowers a splat of a scalar operand Splat with the vector 1988 // length VL. It ensures the final sequence is type legal, which is useful when 1989 // lowering a splat after type legalization. 1990 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1991 SelectionDAG &DAG, 1992 const RISCVSubtarget &Subtarget) { 1993 if (VT.isFloatingPoint()) 1994 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1995 1996 MVT XLenVT = Subtarget.getXLenVT(); 1997 1998 // Simplest case is that the operand needs to be promoted to XLenVT. 1999 if (Scalar.getValueType().bitsLE(XLenVT)) { 2000 // If the operand is a constant, sign extend to increase our chances 2001 // of being able to use a .vi instruction. ANY_EXTEND would become a 2002 // a zero extend and the simm5 check in isel would fail. 2003 // FIXME: Should we ignore the upper bits in isel instead? 2004 unsigned ExtOpc = 2005 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2006 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2007 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2008 } 2009 2010 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2011 "Unexpected scalar for splat lowering!"); 2012 2013 // Otherwise use the more complicated splatting algorithm. 2014 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2015 } 2016 2017 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2018 const RISCVSubtarget &Subtarget) { 2019 SDValue V1 = Op.getOperand(0); 2020 SDValue V2 = Op.getOperand(1); 2021 SDLoc DL(Op); 2022 MVT XLenVT = Subtarget.getXLenVT(); 2023 MVT VT = Op.getSimpleValueType(); 2024 unsigned NumElts = VT.getVectorNumElements(); 2025 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2026 2027 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2028 2029 SDValue TrueMask, VL; 2030 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2031 2032 if (SVN->isSplat()) { 2033 const int Lane = SVN->getSplatIndex(); 2034 if (Lane >= 0) { 2035 MVT SVT = VT.getVectorElementType(); 2036 2037 // Turn splatted vector load into a strided load with an X0 stride. 2038 SDValue V = V1; 2039 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2040 // with undef. 2041 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2042 int Offset = Lane; 2043 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2044 int OpElements = 2045 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2046 V = V.getOperand(Offset / OpElements); 2047 Offset %= OpElements; 2048 } 2049 2050 // We need to ensure the load isn't atomic or volatile. 2051 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2052 auto *Ld = cast<LoadSDNode>(V); 2053 Offset *= SVT.getStoreSize(); 2054 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2055 TypeSize::Fixed(Offset), DL); 2056 2057 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2058 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2059 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2060 SDValue IntID = 2061 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2062 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2063 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2064 SDValue NewLoad = DAG.getMemIntrinsicNode( 2065 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2066 DAG.getMachineFunction().getMachineMemOperand( 2067 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2068 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2069 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2070 } 2071 2072 // Otherwise use a scalar load and splat. This will give the best 2073 // opportunity to fold a splat into the operation. ISel can turn it into 2074 // the x0 strided load if we aren't able to fold away the select. 2075 if (SVT.isFloatingPoint()) 2076 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2077 Ld->getPointerInfo().getWithOffset(Offset), 2078 Ld->getOriginalAlign(), 2079 Ld->getMemOperand()->getFlags()); 2080 else 2081 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2082 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2083 Ld->getOriginalAlign(), 2084 Ld->getMemOperand()->getFlags()); 2085 DAG.makeEquivalentMemoryOrdering(Ld, V); 2086 2087 unsigned Opc = 2088 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2089 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2090 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2091 } 2092 2093 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2094 assert(Lane < (int)NumElts && "Unexpected lane!"); 2095 SDValue Gather = 2096 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2097 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2098 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2099 } 2100 } 2101 2102 // Detect shuffles which can be re-expressed as vector selects; these are 2103 // shuffles in which each element in the destination is taken from an element 2104 // at the corresponding index in either source vectors. 2105 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2106 int MaskIndex = MaskIdx.value(); 2107 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2108 }); 2109 2110 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2111 2112 SmallVector<SDValue> MaskVals; 2113 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2114 // merged with a second vrgather. 2115 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2116 2117 // By default we preserve the original operand order, and use a mask to 2118 // select LHS as true and RHS as false. However, since RVV vector selects may 2119 // feature splats but only on the LHS, we may choose to invert our mask and 2120 // instead select between RHS and LHS. 2121 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2122 bool InvertMask = IsSelect == SwapOps; 2123 2124 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2125 // half. 2126 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2127 2128 // Now construct the mask that will be used by the vselect or blended 2129 // vrgather operation. For vrgathers, construct the appropriate indices into 2130 // each vector. 2131 for (int MaskIndex : SVN->getMask()) { 2132 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2133 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2134 if (!IsSelect) { 2135 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2136 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2137 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2138 : DAG.getUNDEF(XLenVT)); 2139 GatherIndicesRHS.push_back( 2140 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2141 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2142 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2143 ++LHSIndexCounts[MaskIndex]; 2144 if (!IsLHSOrUndefIndex) 2145 ++RHSIndexCounts[MaskIndex - NumElts]; 2146 } 2147 } 2148 2149 if (SwapOps) { 2150 std::swap(V1, V2); 2151 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2152 } 2153 2154 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2155 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2156 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2157 2158 if (IsSelect) 2159 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2160 2161 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2162 // On such a large vector we're unable to use i8 as the index type. 2163 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2164 // may involve vector splitting if we're already at LMUL=8, or our 2165 // user-supplied maximum fixed-length LMUL. 2166 return SDValue(); 2167 } 2168 2169 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2170 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2171 MVT IndexVT = VT.changeTypeToInteger(); 2172 // Since we can't introduce illegal index types at this stage, use i16 and 2173 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2174 // than XLenVT. 2175 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2176 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2177 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2178 } 2179 2180 MVT IndexContainerVT = 2181 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2182 2183 SDValue Gather; 2184 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2185 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2186 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2187 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2188 } else { 2189 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2190 // If only one index is used, we can use a "splat" vrgather. 2191 // TODO: We can splat the most-common index and fix-up any stragglers, if 2192 // that's beneficial. 2193 if (LHSIndexCounts.size() == 1) { 2194 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2195 Gather = 2196 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2197 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2198 } else { 2199 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2200 LHSIndices = 2201 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2202 2203 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2204 TrueMask, VL); 2205 } 2206 } 2207 2208 // If a second vector operand is used by this shuffle, blend it in with an 2209 // additional vrgather. 2210 if (!V2.isUndef()) { 2211 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2212 // If only one index is used, we can use a "splat" vrgather. 2213 // TODO: We can splat the most-common index and fix-up any stragglers, if 2214 // that's beneficial. 2215 if (RHSIndexCounts.size() == 1) { 2216 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2217 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2218 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2219 } else { 2220 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2221 RHSIndices = 2222 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2223 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2224 VL); 2225 } 2226 2227 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2228 SelectMask = 2229 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2230 2231 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2232 Gather, VL); 2233 } 2234 2235 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2236 } 2237 2238 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2239 SDLoc DL, SelectionDAG &DAG, 2240 const RISCVSubtarget &Subtarget) { 2241 if (VT.isScalableVector()) 2242 return DAG.getFPExtendOrRound(Op, DL, VT); 2243 assert(VT.isFixedLengthVector() && 2244 "Unexpected value type for RVV FP extend/round lowering"); 2245 SDValue Mask, VL; 2246 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2247 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2248 ? RISCVISD::FP_EXTEND_VL 2249 : RISCVISD::FP_ROUND_VL; 2250 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2251 } 2252 2253 // While RVV has alignment restrictions, we should always be able to load as a 2254 // legal equivalently-sized byte-typed vector instead. This method is 2255 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2256 // the load is already correctly-aligned, it returns SDValue(). 2257 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2258 SelectionDAG &DAG) const { 2259 auto *Load = cast<LoadSDNode>(Op); 2260 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2261 2262 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2263 Load->getMemoryVT(), 2264 *Load->getMemOperand())) 2265 return SDValue(); 2266 2267 SDLoc DL(Op); 2268 MVT VT = Op.getSimpleValueType(); 2269 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2270 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2271 "Unexpected unaligned RVV load type"); 2272 MVT NewVT = 2273 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2274 assert(NewVT.isValid() && 2275 "Expecting equally-sized RVV vector types to be legal"); 2276 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2277 Load->getPointerInfo(), Load->getOriginalAlign(), 2278 Load->getMemOperand()->getFlags()); 2279 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2280 } 2281 2282 // While RVV has alignment restrictions, we should always be able to store as a 2283 // legal equivalently-sized byte-typed vector instead. This method is 2284 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2285 // returns SDValue() if the store is already correctly aligned. 2286 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2287 SelectionDAG &DAG) const { 2288 auto *Store = cast<StoreSDNode>(Op); 2289 assert(Store && Store->getValue().getValueType().isVector() && 2290 "Expected vector store"); 2291 2292 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2293 Store->getMemoryVT(), 2294 *Store->getMemOperand())) 2295 return SDValue(); 2296 2297 SDLoc DL(Op); 2298 SDValue StoredVal = Store->getValue(); 2299 MVT VT = StoredVal.getSimpleValueType(); 2300 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2301 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2302 "Unexpected unaligned RVV store type"); 2303 MVT NewVT = 2304 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2305 assert(NewVT.isValid() && 2306 "Expecting equally-sized RVV vector types to be legal"); 2307 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2308 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2309 Store->getPointerInfo(), Store->getOriginalAlign(), 2310 Store->getMemOperand()->getFlags()); 2311 } 2312 2313 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2314 SelectionDAG &DAG) const { 2315 switch (Op.getOpcode()) { 2316 default: 2317 report_fatal_error("unimplemented operand"); 2318 case ISD::GlobalAddress: 2319 return lowerGlobalAddress(Op, DAG); 2320 case ISD::BlockAddress: 2321 return lowerBlockAddress(Op, DAG); 2322 case ISD::ConstantPool: 2323 return lowerConstantPool(Op, DAG); 2324 case ISD::JumpTable: 2325 return lowerJumpTable(Op, DAG); 2326 case ISD::GlobalTLSAddress: 2327 return lowerGlobalTLSAddress(Op, DAG); 2328 case ISD::SELECT: 2329 return lowerSELECT(Op, DAG); 2330 case ISD::BRCOND: 2331 return lowerBRCOND(Op, DAG); 2332 case ISD::VASTART: 2333 return lowerVASTART(Op, DAG); 2334 case ISD::FRAMEADDR: 2335 return lowerFRAMEADDR(Op, DAG); 2336 case ISD::RETURNADDR: 2337 return lowerRETURNADDR(Op, DAG); 2338 case ISD::SHL_PARTS: 2339 return lowerShiftLeftParts(Op, DAG); 2340 case ISD::SRA_PARTS: 2341 return lowerShiftRightParts(Op, DAG, true); 2342 case ISD::SRL_PARTS: 2343 return lowerShiftRightParts(Op, DAG, false); 2344 case ISD::BITCAST: { 2345 SDLoc DL(Op); 2346 EVT VT = Op.getValueType(); 2347 SDValue Op0 = Op.getOperand(0); 2348 EVT Op0VT = Op0.getValueType(); 2349 MVT XLenVT = Subtarget.getXLenVT(); 2350 if (VT.isFixedLengthVector()) { 2351 // We can handle fixed length vector bitcasts with a simple replacement 2352 // in isel. 2353 if (Op0VT.isFixedLengthVector()) 2354 return Op; 2355 // When bitcasting from scalar to fixed-length vector, insert the scalar 2356 // into a one-element vector of the result type, and perform a vector 2357 // bitcast. 2358 if (!Op0VT.isVector()) { 2359 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2360 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2361 DAG.getUNDEF(BVT), Op0, 2362 DAG.getConstant(0, DL, XLenVT))); 2363 } 2364 return SDValue(); 2365 } 2366 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2367 // thus: bitcast the vector to a one-element vector type whose element type 2368 // is the same as the result type, and extract the first element. 2369 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2370 LLVMContext &Context = *DAG.getContext(); 2371 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2372 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2373 DAG.getConstant(0, DL, XLenVT)); 2374 } 2375 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2376 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2377 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2378 return FPConv; 2379 } 2380 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2381 Subtarget.hasStdExtF()) { 2382 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2383 SDValue FPConv = 2384 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2385 return FPConv; 2386 } 2387 return SDValue(); 2388 } 2389 case ISD::INTRINSIC_WO_CHAIN: 2390 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2391 case ISD::INTRINSIC_W_CHAIN: 2392 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2393 case ISD::INTRINSIC_VOID: 2394 return LowerINTRINSIC_VOID(Op, DAG); 2395 case ISD::BSWAP: 2396 case ISD::BITREVERSE: { 2397 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2398 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2399 MVT VT = Op.getSimpleValueType(); 2400 SDLoc DL(Op); 2401 // Start with the maximum immediate value which is the bitwidth - 1. 2402 unsigned Imm = VT.getSizeInBits() - 1; 2403 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2404 if (Op.getOpcode() == ISD::BSWAP) 2405 Imm &= ~0x7U; 2406 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2407 DAG.getConstant(Imm, DL, VT)); 2408 } 2409 case ISD::FSHL: 2410 case ISD::FSHR: { 2411 MVT VT = Op.getSimpleValueType(); 2412 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2413 SDLoc DL(Op); 2414 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2415 return Op; 2416 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2417 // use log(XLen) bits. Mask the shift amount accordingly. 2418 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2419 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2420 DAG.getConstant(ShAmtWidth, DL, VT)); 2421 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2422 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2423 } 2424 case ISD::TRUNCATE: { 2425 SDLoc DL(Op); 2426 MVT VT = Op.getSimpleValueType(); 2427 // Only custom-lower vector truncates 2428 if (!VT.isVector()) 2429 return Op; 2430 2431 // Truncates to mask types are handled differently 2432 if (VT.getVectorElementType() == MVT::i1) 2433 return lowerVectorMaskTrunc(Op, DAG); 2434 2435 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2436 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2437 // truncate by one power of two at a time. 2438 MVT DstEltVT = VT.getVectorElementType(); 2439 2440 SDValue Src = Op.getOperand(0); 2441 MVT SrcVT = Src.getSimpleValueType(); 2442 MVT SrcEltVT = SrcVT.getVectorElementType(); 2443 2444 assert(DstEltVT.bitsLT(SrcEltVT) && 2445 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2446 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2447 "Unexpected vector truncate lowering"); 2448 2449 MVT ContainerVT = SrcVT; 2450 if (SrcVT.isFixedLengthVector()) { 2451 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2452 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2453 } 2454 2455 SDValue Result = Src; 2456 SDValue Mask, VL; 2457 std::tie(Mask, VL) = 2458 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2459 LLVMContext &Context = *DAG.getContext(); 2460 const ElementCount Count = ContainerVT.getVectorElementCount(); 2461 do { 2462 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2463 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2464 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2465 Mask, VL); 2466 } while (SrcEltVT != DstEltVT); 2467 2468 if (SrcVT.isFixedLengthVector()) 2469 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2470 2471 return Result; 2472 } 2473 case ISD::ANY_EXTEND: 2474 case ISD::ZERO_EXTEND: 2475 if (Op.getOperand(0).getValueType().isVector() && 2476 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2477 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2478 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2479 case ISD::SIGN_EXTEND: 2480 if (Op.getOperand(0).getValueType().isVector() && 2481 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2482 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2483 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2484 case ISD::SPLAT_VECTOR_PARTS: 2485 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2486 case ISD::INSERT_VECTOR_ELT: 2487 return lowerINSERT_VECTOR_ELT(Op, DAG); 2488 case ISD::EXTRACT_VECTOR_ELT: 2489 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2490 case ISD::VSCALE: { 2491 MVT VT = Op.getSimpleValueType(); 2492 SDLoc DL(Op); 2493 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2494 // We define our scalable vector types for lmul=1 to use a 64 bit known 2495 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2496 // vscale as VLENB / 8. 2497 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2498 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2499 // We assume VLENB is a multiple of 8. We manually choose the best shift 2500 // here because SimplifyDemandedBits isn't always able to simplify it. 2501 uint64_t Val = Op.getConstantOperandVal(0); 2502 if (isPowerOf2_64(Val)) { 2503 uint64_t Log2 = Log2_64(Val); 2504 if (Log2 < 3) 2505 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2506 DAG.getConstant(3 - Log2, DL, VT)); 2507 if (Log2 > 3) 2508 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2509 DAG.getConstant(Log2 - 3, DL, VT)); 2510 return VLENB; 2511 } 2512 // If the multiplier is a multiple of 8, scale it down to avoid needing 2513 // to shift the VLENB value. 2514 if ((Val % 8) == 0) 2515 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2516 DAG.getConstant(Val / 8, DL, VT)); 2517 } 2518 2519 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2520 DAG.getConstant(3, DL, VT)); 2521 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2522 } 2523 case ISD::FP_EXTEND: { 2524 // RVV can only do fp_extend to types double the size as the source. We 2525 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2526 // via f32. 2527 SDLoc DL(Op); 2528 MVT VT = Op.getSimpleValueType(); 2529 SDValue Src = Op.getOperand(0); 2530 MVT SrcVT = Src.getSimpleValueType(); 2531 2532 // Prepare any fixed-length vector operands. 2533 MVT ContainerVT = VT; 2534 if (SrcVT.isFixedLengthVector()) { 2535 ContainerVT = getContainerForFixedLengthVector(VT); 2536 MVT SrcContainerVT = 2537 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2538 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2539 } 2540 2541 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2542 SrcVT.getVectorElementType() != MVT::f16) { 2543 // For scalable vectors, we only need to close the gap between 2544 // vXf16->vXf64. 2545 if (!VT.isFixedLengthVector()) 2546 return Op; 2547 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2548 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2549 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2550 } 2551 2552 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2553 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2554 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2555 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2556 2557 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2558 DL, DAG, Subtarget); 2559 if (VT.isFixedLengthVector()) 2560 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2561 return Extend; 2562 } 2563 case ISD::FP_ROUND: { 2564 // RVV can only do fp_round to types half the size as the source. We 2565 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2566 // conversion instruction. 2567 SDLoc DL(Op); 2568 MVT VT = Op.getSimpleValueType(); 2569 SDValue Src = Op.getOperand(0); 2570 MVT SrcVT = Src.getSimpleValueType(); 2571 2572 // Prepare any fixed-length vector operands. 2573 MVT ContainerVT = VT; 2574 if (VT.isFixedLengthVector()) { 2575 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2576 ContainerVT = 2577 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2578 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2579 } 2580 2581 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2582 SrcVT.getVectorElementType() != MVT::f64) { 2583 // For scalable vectors, we only need to close the gap between 2584 // vXf64<->vXf16. 2585 if (!VT.isFixedLengthVector()) 2586 return Op; 2587 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2588 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2589 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2590 } 2591 2592 SDValue Mask, VL; 2593 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2594 2595 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2596 SDValue IntermediateRound = 2597 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2598 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2599 DL, DAG, Subtarget); 2600 2601 if (VT.isFixedLengthVector()) 2602 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2603 return Round; 2604 } 2605 case ISD::FP_TO_SINT: 2606 case ISD::FP_TO_UINT: 2607 case ISD::SINT_TO_FP: 2608 case ISD::UINT_TO_FP: { 2609 // RVV can only do fp<->int conversions to types half/double the size as 2610 // the source. We custom-lower any conversions that do two hops into 2611 // sequences. 2612 MVT VT = Op.getSimpleValueType(); 2613 if (!VT.isVector()) 2614 return Op; 2615 SDLoc DL(Op); 2616 SDValue Src = Op.getOperand(0); 2617 MVT EltVT = VT.getVectorElementType(); 2618 MVT SrcVT = Src.getSimpleValueType(); 2619 MVT SrcEltVT = SrcVT.getVectorElementType(); 2620 unsigned EltSize = EltVT.getSizeInBits(); 2621 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2622 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2623 "Unexpected vector element types"); 2624 2625 bool IsInt2FP = SrcEltVT.isInteger(); 2626 // Widening conversions 2627 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2628 if (IsInt2FP) { 2629 // Do a regular integer sign/zero extension then convert to float. 2630 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2631 VT.getVectorElementCount()); 2632 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2633 ? ISD::ZERO_EXTEND 2634 : ISD::SIGN_EXTEND; 2635 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2636 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2637 } 2638 // FP2Int 2639 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2640 // Do one doubling fp_extend then complete the operation by converting 2641 // to int. 2642 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2643 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2644 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2645 } 2646 2647 // Narrowing conversions 2648 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2649 if (IsInt2FP) { 2650 // One narrowing int_to_fp, then an fp_round. 2651 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2652 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2653 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2654 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2655 } 2656 // FP2Int 2657 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2658 // representable by the integer, the result is poison. 2659 MVT IVecVT = 2660 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2661 VT.getVectorElementCount()); 2662 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2663 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2664 } 2665 2666 // Scalable vectors can exit here. Patterns will handle equally-sized 2667 // conversions halving/doubling ones. 2668 if (!VT.isFixedLengthVector()) 2669 return Op; 2670 2671 // For fixed-length vectors we lower to a custom "VL" node. 2672 unsigned RVVOpc = 0; 2673 switch (Op.getOpcode()) { 2674 default: 2675 llvm_unreachable("Impossible opcode"); 2676 case ISD::FP_TO_SINT: 2677 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2678 break; 2679 case ISD::FP_TO_UINT: 2680 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2681 break; 2682 case ISD::SINT_TO_FP: 2683 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2684 break; 2685 case ISD::UINT_TO_FP: 2686 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2687 break; 2688 } 2689 2690 MVT ContainerVT, SrcContainerVT; 2691 // Derive the reference container type from the larger vector type. 2692 if (SrcEltSize > EltSize) { 2693 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2694 ContainerVT = 2695 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2696 } else { 2697 ContainerVT = getContainerForFixedLengthVector(VT); 2698 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2699 } 2700 2701 SDValue Mask, VL; 2702 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2703 2704 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2705 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2706 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2707 } 2708 case ISD::FP_TO_SINT_SAT: 2709 case ISD::FP_TO_UINT_SAT: 2710 return lowerFP_TO_INT_SAT(Op, DAG); 2711 case ISD::VECREDUCE_ADD: 2712 case ISD::VECREDUCE_UMAX: 2713 case ISD::VECREDUCE_SMAX: 2714 case ISD::VECREDUCE_UMIN: 2715 case ISD::VECREDUCE_SMIN: 2716 return lowerVECREDUCE(Op, DAG); 2717 case ISD::VECREDUCE_AND: 2718 case ISD::VECREDUCE_OR: 2719 case ISD::VECREDUCE_XOR: 2720 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2721 return lowerVectorMaskVECREDUCE(Op, DAG); 2722 return lowerVECREDUCE(Op, DAG); 2723 case ISD::VECREDUCE_FADD: 2724 case ISD::VECREDUCE_SEQ_FADD: 2725 case ISD::VECREDUCE_FMIN: 2726 case ISD::VECREDUCE_FMAX: 2727 return lowerFPVECREDUCE(Op, DAG); 2728 case ISD::INSERT_SUBVECTOR: 2729 return lowerINSERT_SUBVECTOR(Op, DAG); 2730 case ISD::EXTRACT_SUBVECTOR: 2731 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2732 case ISD::STEP_VECTOR: 2733 return lowerSTEP_VECTOR(Op, DAG); 2734 case ISD::VECTOR_REVERSE: 2735 return lowerVECTOR_REVERSE(Op, DAG); 2736 case ISD::BUILD_VECTOR: 2737 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2738 case ISD::SPLAT_VECTOR: 2739 if (Op.getValueType().getVectorElementType() == MVT::i1) 2740 return lowerVectorMaskSplat(Op, DAG); 2741 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2742 case ISD::VECTOR_SHUFFLE: 2743 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2744 case ISD::CONCAT_VECTORS: { 2745 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2746 // better than going through the stack, as the default expansion does. 2747 SDLoc DL(Op); 2748 MVT VT = Op.getSimpleValueType(); 2749 unsigned NumOpElts = 2750 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2751 SDValue Vec = DAG.getUNDEF(VT); 2752 for (const auto &OpIdx : enumerate(Op->ops())) 2753 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2754 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2755 return Vec; 2756 } 2757 case ISD::LOAD: 2758 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2759 return V; 2760 if (Op.getValueType().isFixedLengthVector()) 2761 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2762 return Op; 2763 case ISD::STORE: 2764 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2765 return V; 2766 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2767 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2768 return Op; 2769 case ISD::MLOAD: 2770 case ISD::VP_LOAD: 2771 return lowerMaskedLoad(Op, DAG); 2772 case ISD::MSTORE: 2773 case ISD::VP_STORE: 2774 return lowerMaskedStore(Op, DAG); 2775 case ISD::SETCC: 2776 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2777 case ISD::ADD: 2778 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2779 case ISD::SUB: 2780 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2781 case ISD::MUL: 2782 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2783 case ISD::MULHS: 2784 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2785 case ISD::MULHU: 2786 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2787 case ISD::AND: 2788 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2789 RISCVISD::AND_VL); 2790 case ISD::OR: 2791 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2792 RISCVISD::OR_VL); 2793 case ISD::XOR: 2794 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2795 RISCVISD::XOR_VL); 2796 case ISD::SDIV: 2797 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2798 case ISD::SREM: 2799 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2800 case ISD::UDIV: 2801 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2802 case ISD::UREM: 2803 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2804 case ISD::SHL: 2805 case ISD::SRA: 2806 case ISD::SRL: 2807 if (Op.getSimpleValueType().isFixedLengthVector()) 2808 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2809 // This can be called for an i32 shift amount that needs to be promoted. 2810 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2811 "Unexpected custom legalisation"); 2812 return SDValue(); 2813 case ISD::SADDSAT: 2814 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2815 case ISD::UADDSAT: 2816 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2817 case ISD::SSUBSAT: 2818 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2819 case ISD::USUBSAT: 2820 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2821 case ISD::FADD: 2822 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2823 case ISD::FSUB: 2824 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2825 case ISD::FMUL: 2826 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2827 case ISD::FDIV: 2828 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2829 case ISD::FNEG: 2830 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2831 case ISD::FABS: 2832 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2833 case ISD::FSQRT: 2834 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2835 case ISD::FMA: 2836 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2837 case ISD::SMIN: 2838 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2839 case ISD::SMAX: 2840 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2841 case ISD::UMIN: 2842 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2843 case ISD::UMAX: 2844 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2845 case ISD::FMINNUM: 2846 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2847 case ISD::FMAXNUM: 2848 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2849 case ISD::ABS: 2850 return lowerABS(Op, DAG); 2851 case ISD::VSELECT: 2852 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2853 case ISD::FCOPYSIGN: 2854 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2855 case ISD::MGATHER: 2856 case ISD::VP_GATHER: 2857 return lowerMaskedGather(Op, DAG); 2858 case ISD::MSCATTER: 2859 case ISD::VP_SCATTER: 2860 return lowerMaskedScatter(Op, DAG); 2861 case ISD::FLT_ROUNDS_: 2862 return lowerGET_ROUNDING(Op, DAG); 2863 case ISD::SET_ROUNDING: 2864 return lowerSET_ROUNDING(Op, DAG); 2865 case ISD::VP_ADD: 2866 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2867 case ISD::VP_SUB: 2868 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2869 case ISD::VP_MUL: 2870 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2871 case ISD::VP_SDIV: 2872 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2873 case ISD::VP_UDIV: 2874 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2875 case ISD::VP_SREM: 2876 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2877 case ISD::VP_UREM: 2878 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2879 case ISD::VP_AND: 2880 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2881 case ISD::VP_OR: 2882 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2883 case ISD::VP_XOR: 2884 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2885 case ISD::VP_ASHR: 2886 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2887 case ISD::VP_LSHR: 2888 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2889 case ISD::VP_SHL: 2890 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2891 case ISD::VP_FADD: 2892 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2893 case ISD::VP_FSUB: 2894 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2895 case ISD::VP_FMUL: 2896 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2897 case ISD::VP_FDIV: 2898 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2899 } 2900 } 2901 2902 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2903 SelectionDAG &DAG, unsigned Flags) { 2904 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2905 } 2906 2907 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2908 SelectionDAG &DAG, unsigned Flags) { 2909 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2910 Flags); 2911 } 2912 2913 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2914 SelectionDAG &DAG, unsigned Flags) { 2915 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2916 N->getOffset(), Flags); 2917 } 2918 2919 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2920 SelectionDAG &DAG, unsigned Flags) { 2921 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2922 } 2923 2924 template <class NodeTy> 2925 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2926 bool IsLocal) const { 2927 SDLoc DL(N); 2928 EVT Ty = getPointerTy(DAG.getDataLayout()); 2929 2930 if (isPositionIndependent()) { 2931 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2932 if (IsLocal) 2933 // Use PC-relative addressing to access the symbol. This generates the 2934 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2935 // %pcrel_lo(auipc)). 2936 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2937 2938 // Use PC-relative addressing to access the GOT for this symbol, then load 2939 // the address from the GOT. This generates the pattern (PseudoLA sym), 2940 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2941 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2942 } 2943 2944 switch (getTargetMachine().getCodeModel()) { 2945 default: 2946 report_fatal_error("Unsupported code model for lowering"); 2947 case CodeModel::Small: { 2948 // Generate a sequence for accessing addresses within the first 2 GiB of 2949 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2950 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2951 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2952 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2953 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2954 } 2955 case CodeModel::Medium: { 2956 // Generate a sequence for accessing addresses within any 2GiB range within 2957 // the address space. This generates the pattern (PseudoLLA sym), which 2958 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2959 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2960 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2961 } 2962 } 2963 } 2964 2965 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2966 SelectionDAG &DAG) const { 2967 SDLoc DL(Op); 2968 EVT Ty = Op.getValueType(); 2969 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2970 int64_t Offset = N->getOffset(); 2971 MVT XLenVT = Subtarget.getXLenVT(); 2972 2973 const GlobalValue *GV = N->getGlobal(); 2974 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2975 SDValue Addr = getAddr(N, DAG, IsLocal); 2976 2977 // In order to maximise the opportunity for common subexpression elimination, 2978 // emit a separate ADD node for the global address offset instead of folding 2979 // it in the global address node. Later peephole optimisations may choose to 2980 // fold it back in when profitable. 2981 if (Offset != 0) 2982 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2983 DAG.getConstant(Offset, DL, XLenVT)); 2984 return Addr; 2985 } 2986 2987 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2988 SelectionDAG &DAG) const { 2989 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2990 2991 return getAddr(N, DAG); 2992 } 2993 2994 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2995 SelectionDAG &DAG) const { 2996 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2997 2998 return getAddr(N, DAG); 2999 } 3000 3001 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3002 SelectionDAG &DAG) const { 3003 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3004 3005 return getAddr(N, DAG); 3006 } 3007 3008 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3009 SelectionDAG &DAG, 3010 bool UseGOT) const { 3011 SDLoc DL(N); 3012 EVT Ty = getPointerTy(DAG.getDataLayout()); 3013 const GlobalValue *GV = N->getGlobal(); 3014 MVT XLenVT = Subtarget.getXLenVT(); 3015 3016 if (UseGOT) { 3017 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3018 // load the address from the GOT and add the thread pointer. This generates 3019 // the pattern (PseudoLA_TLS_IE sym), which expands to 3020 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3021 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3022 SDValue Load = 3023 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3024 3025 // Add the thread pointer. 3026 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3027 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3028 } 3029 3030 // Generate a sequence for accessing the address relative to the thread 3031 // pointer, with the appropriate adjustment for the thread pointer offset. 3032 // This generates the pattern 3033 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3034 SDValue AddrHi = 3035 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3036 SDValue AddrAdd = 3037 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3038 SDValue AddrLo = 3039 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3040 3041 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3042 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3043 SDValue MNAdd = SDValue( 3044 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3045 0); 3046 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3047 } 3048 3049 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3050 SelectionDAG &DAG) const { 3051 SDLoc DL(N); 3052 EVT Ty = getPointerTy(DAG.getDataLayout()); 3053 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3054 const GlobalValue *GV = N->getGlobal(); 3055 3056 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3057 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3058 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3059 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3060 SDValue Load = 3061 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3062 3063 // Prepare argument list to generate call. 3064 ArgListTy Args; 3065 ArgListEntry Entry; 3066 Entry.Node = Load; 3067 Entry.Ty = CallTy; 3068 Args.push_back(Entry); 3069 3070 // Setup call to __tls_get_addr. 3071 TargetLowering::CallLoweringInfo CLI(DAG); 3072 CLI.setDebugLoc(DL) 3073 .setChain(DAG.getEntryNode()) 3074 .setLibCallee(CallingConv::C, CallTy, 3075 DAG.getExternalSymbol("__tls_get_addr", Ty), 3076 std::move(Args)); 3077 3078 return LowerCallTo(CLI).first; 3079 } 3080 3081 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3082 SelectionDAG &DAG) const { 3083 SDLoc DL(Op); 3084 EVT Ty = Op.getValueType(); 3085 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3086 int64_t Offset = N->getOffset(); 3087 MVT XLenVT = Subtarget.getXLenVT(); 3088 3089 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3090 3091 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3092 CallingConv::GHC) 3093 report_fatal_error("In GHC calling convention TLS is not supported"); 3094 3095 SDValue Addr; 3096 switch (Model) { 3097 case TLSModel::LocalExec: 3098 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3099 break; 3100 case TLSModel::InitialExec: 3101 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3102 break; 3103 case TLSModel::LocalDynamic: 3104 case TLSModel::GeneralDynamic: 3105 Addr = getDynamicTLSAddr(N, DAG); 3106 break; 3107 } 3108 3109 // In order to maximise the opportunity for common subexpression elimination, 3110 // emit a separate ADD node for the global address offset instead of folding 3111 // it in the global address node. Later peephole optimisations may choose to 3112 // fold it back in when profitable. 3113 if (Offset != 0) 3114 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3115 DAG.getConstant(Offset, DL, XLenVT)); 3116 return Addr; 3117 } 3118 3119 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3120 SDValue CondV = Op.getOperand(0); 3121 SDValue TrueV = Op.getOperand(1); 3122 SDValue FalseV = Op.getOperand(2); 3123 SDLoc DL(Op); 3124 MVT VT = Op.getSimpleValueType(); 3125 MVT XLenVT = Subtarget.getXLenVT(); 3126 3127 // Lower vector SELECTs to VSELECTs by splatting the condition. 3128 if (VT.isVector()) { 3129 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3130 SDValue CondSplat = VT.isScalableVector() 3131 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3132 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3133 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3134 } 3135 3136 // If the result type is XLenVT and CondV is the output of a SETCC node 3137 // which also operated on XLenVT inputs, then merge the SETCC node into the 3138 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3139 // compare+branch instructions. i.e.: 3140 // (select (setcc lhs, rhs, cc), truev, falsev) 3141 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3142 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3143 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3144 SDValue LHS = CondV.getOperand(0); 3145 SDValue RHS = CondV.getOperand(1); 3146 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3147 ISD::CondCode CCVal = CC->get(); 3148 3149 // Special case for a select of 2 constants that have a diffence of 1. 3150 // Normally this is done by DAGCombine, but if the select is introduced by 3151 // type legalization or op legalization, we miss it. Restricting to SETLT 3152 // case for now because that is what signed saturating add/sub need. 3153 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3154 // but we would probably want to swap the true/false values if the condition 3155 // is SETGE/SETLE to avoid an XORI. 3156 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3157 CCVal == ISD::SETLT) { 3158 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3159 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3160 if (TrueVal - 1 == FalseVal) 3161 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3162 if (TrueVal + 1 == FalseVal) 3163 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3164 } 3165 3166 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3167 3168 SDValue TargetCC = DAG.getCondCode(CCVal); 3169 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3170 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3171 } 3172 3173 // Otherwise: 3174 // (select condv, truev, falsev) 3175 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3176 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3177 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3178 3179 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3180 3181 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3182 } 3183 3184 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3185 SDValue CondV = Op.getOperand(1); 3186 SDLoc DL(Op); 3187 MVT XLenVT = Subtarget.getXLenVT(); 3188 3189 if (CondV.getOpcode() == ISD::SETCC && 3190 CondV.getOperand(0).getValueType() == XLenVT) { 3191 SDValue LHS = CondV.getOperand(0); 3192 SDValue RHS = CondV.getOperand(1); 3193 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3194 3195 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3196 3197 SDValue TargetCC = DAG.getCondCode(CCVal); 3198 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3199 LHS, RHS, TargetCC, Op.getOperand(2)); 3200 } 3201 3202 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3203 CondV, DAG.getConstant(0, DL, XLenVT), 3204 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3205 } 3206 3207 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3208 MachineFunction &MF = DAG.getMachineFunction(); 3209 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3210 3211 SDLoc DL(Op); 3212 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3213 getPointerTy(MF.getDataLayout())); 3214 3215 // vastart just stores the address of the VarArgsFrameIndex slot into the 3216 // memory location argument. 3217 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3218 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3219 MachinePointerInfo(SV)); 3220 } 3221 3222 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3223 SelectionDAG &DAG) const { 3224 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3225 MachineFunction &MF = DAG.getMachineFunction(); 3226 MachineFrameInfo &MFI = MF.getFrameInfo(); 3227 MFI.setFrameAddressIsTaken(true); 3228 Register FrameReg = RI.getFrameRegister(MF); 3229 int XLenInBytes = Subtarget.getXLen() / 8; 3230 3231 EVT VT = Op.getValueType(); 3232 SDLoc DL(Op); 3233 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3234 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3235 while (Depth--) { 3236 int Offset = -(XLenInBytes * 2); 3237 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3238 DAG.getIntPtrConstant(Offset, DL)); 3239 FrameAddr = 3240 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3241 } 3242 return FrameAddr; 3243 } 3244 3245 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3246 SelectionDAG &DAG) const { 3247 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3248 MachineFunction &MF = DAG.getMachineFunction(); 3249 MachineFrameInfo &MFI = MF.getFrameInfo(); 3250 MFI.setReturnAddressIsTaken(true); 3251 MVT XLenVT = Subtarget.getXLenVT(); 3252 int XLenInBytes = Subtarget.getXLen() / 8; 3253 3254 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3255 return SDValue(); 3256 3257 EVT VT = Op.getValueType(); 3258 SDLoc DL(Op); 3259 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3260 if (Depth) { 3261 int Off = -XLenInBytes; 3262 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3263 SDValue Offset = DAG.getConstant(Off, DL, VT); 3264 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3265 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3266 MachinePointerInfo()); 3267 } 3268 3269 // Return the value of the return address register, marking it an implicit 3270 // live-in. 3271 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3272 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3273 } 3274 3275 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3276 SelectionDAG &DAG) const { 3277 SDLoc DL(Op); 3278 SDValue Lo = Op.getOperand(0); 3279 SDValue Hi = Op.getOperand(1); 3280 SDValue Shamt = Op.getOperand(2); 3281 EVT VT = Lo.getValueType(); 3282 3283 // if Shamt-XLEN < 0: // Shamt < XLEN 3284 // Lo = Lo << Shamt 3285 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3286 // else: 3287 // Lo = 0 3288 // Hi = Lo << (Shamt-XLEN) 3289 3290 SDValue Zero = DAG.getConstant(0, DL, VT); 3291 SDValue One = DAG.getConstant(1, DL, VT); 3292 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3293 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3294 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3295 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3296 3297 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3298 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3299 SDValue ShiftRightLo = 3300 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3301 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3302 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3303 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3304 3305 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3306 3307 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3308 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3309 3310 SDValue Parts[2] = {Lo, Hi}; 3311 return DAG.getMergeValues(Parts, DL); 3312 } 3313 3314 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3315 bool IsSRA) const { 3316 SDLoc DL(Op); 3317 SDValue Lo = Op.getOperand(0); 3318 SDValue Hi = Op.getOperand(1); 3319 SDValue Shamt = Op.getOperand(2); 3320 EVT VT = Lo.getValueType(); 3321 3322 // SRA expansion: 3323 // if Shamt-XLEN < 0: // Shamt < XLEN 3324 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3325 // Hi = Hi >>s Shamt 3326 // else: 3327 // Lo = Hi >>s (Shamt-XLEN); 3328 // Hi = Hi >>s (XLEN-1) 3329 // 3330 // SRL expansion: 3331 // if Shamt-XLEN < 0: // Shamt < XLEN 3332 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3333 // Hi = Hi >>u Shamt 3334 // else: 3335 // Lo = Hi >>u (Shamt-XLEN); 3336 // Hi = 0; 3337 3338 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3339 3340 SDValue Zero = DAG.getConstant(0, DL, VT); 3341 SDValue One = DAG.getConstant(1, DL, VT); 3342 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3343 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3344 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3345 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3346 3347 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3348 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3349 SDValue ShiftLeftHi = 3350 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3351 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3352 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3353 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3354 SDValue HiFalse = 3355 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3356 3357 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3358 3359 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3360 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3361 3362 SDValue Parts[2] = {Lo, Hi}; 3363 return DAG.getMergeValues(Parts, DL); 3364 } 3365 3366 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3367 // legal equivalently-sized i8 type, so we can use that as a go-between. 3368 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3369 SelectionDAG &DAG) const { 3370 SDLoc DL(Op); 3371 MVT VT = Op.getSimpleValueType(); 3372 SDValue SplatVal = Op.getOperand(0); 3373 // All-zeros or all-ones splats are handled specially. 3374 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3375 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3376 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3377 } 3378 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3379 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3380 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3381 } 3382 MVT XLenVT = Subtarget.getXLenVT(); 3383 assert(SplatVal.getValueType() == XLenVT && 3384 "Unexpected type for i1 splat value"); 3385 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3386 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3387 DAG.getConstant(1, DL, XLenVT)); 3388 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3389 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3390 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3391 } 3392 3393 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3394 // illegal (currently only vXi64 RV32). 3395 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3396 // them to SPLAT_VECTOR_I64 3397 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3398 SelectionDAG &DAG) const { 3399 SDLoc DL(Op); 3400 MVT VecVT = Op.getSimpleValueType(); 3401 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3402 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3403 3404 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3405 SDValue Lo = Op.getOperand(0); 3406 SDValue Hi = Op.getOperand(1); 3407 3408 if (VecVT.isFixedLengthVector()) { 3409 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3410 SDLoc DL(Op); 3411 SDValue Mask, VL; 3412 std::tie(Mask, VL) = 3413 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3414 3415 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3416 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3417 } 3418 3419 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3420 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3421 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3422 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3423 // node in order to try and match RVV vector/scalar instructions. 3424 if ((LoC >> 31) == HiC) 3425 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3426 } 3427 3428 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3429 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3430 isa<ConstantSDNode>(Hi.getOperand(1)) && 3431 Hi.getConstantOperandVal(1) == 31) 3432 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3433 3434 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3435 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3436 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3437 } 3438 3439 // Custom-lower extensions from mask vectors by using a vselect either with 1 3440 // for zero/any-extension or -1 for sign-extension: 3441 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3442 // Note that any-extension is lowered identically to zero-extension. 3443 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3444 int64_t ExtTrueVal) const { 3445 SDLoc DL(Op); 3446 MVT VecVT = Op.getSimpleValueType(); 3447 SDValue Src = Op.getOperand(0); 3448 // Only custom-lower extensions from mask types 3449 assert(Src.getValueType().isVector() && 3450 Src.getValueType().getVectorElementType() == MVT::i1); 3451 3452 MVT XLenVT = Subtarget.getXLenVT(); 3453 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3454 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3455 3456 if (VecVT.isScalableVector()) { 3457 // Be careful not to introduce illegal scalar types at this stage, and be 3458 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3459 // illegal and must be expanded. Since we know that the constants are 3460 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3461 bool IsRV32E64 = 3462 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3463 3464 if (!IsRV32E64) { 3465 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3466 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3467 } else { 3468 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3469 SplatTrueVal = 3470 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3471 } 3472 3473 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3474 } 3475 3476 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3477 MVT I1ContainerVT = 3478 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3479 3480 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3481 3482 SDValue Mask, VL; 3483 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3484 3485 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3486 SplatTrueVal = 3487 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3488 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3489 SplatTrueVal, SplatZero, VL); 3490 3491 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3492 } 3493 3494 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3495 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3496 MVT ExtVT = Op.getSimpleValueType(); 3497 // Only custom-lower extensions from fixed-length vector types. 3498 if (!ExtVT.isFixedLengthVector()) 3499 return Op; 3500 MVT VT = Op.getOperand(0).getSimpleValueType(); 3501 // Grab the canonical container type for the extended type. Infer the smaller 3502 // type from that to ensure the same number of vector elements, as we know 3503 // the LMUL will be sufficient to hold the smaller type. 3504 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3505 // Get the extended container type manually to ensure the same number of 3506 // vector elements between source and dest. 3507 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3508 ContainerExtVT.getVectorElementCount()); 3509 3510 SDValue Op1 = 3511 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3512 3513 SDLoc DL(Op); 3514 SDValue Mask, VL; 3515 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3516 3517 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3518 3519 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3520 } 3521 3522 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3523 // setcc operation: 3524 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3525 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3526 SelectionDAG &DAG) const { 3527 SDLoc DL(Op); 3528 EVT MaskVT = Op.getValueType(); 3529 // Only expect to custom-lower truncations to mask types 3530 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3531 "Unexpected type for vector mask lowering"); 3532 SDValue Src = Op.getOperand(0); 3533 MVT VecVT = Src.getSimpleValueType(); 3534 3535 // If this is a fixed vector, we need to convert it to a scalable vector. 3536 MVT ContainerVT = VecVT; 3537 if (VecVT.isFixedLengthVector()) { 3538 ContainerVT = getContainerForFixedLengthVector(VecVT); 3539 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3540 } 3541 3542 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3543 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3544 3545 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3546 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3547 3548 if (VecVT.isScalableVector()) { 3549 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3550 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3551 } 3552 3553 SDValue Mask, VL; 3554 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3555 3556 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3557 SDValue Trunc = 3558 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3559 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3560 DAG.getCondCode(ISD::SETNE), Mask, VL); 3561 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3562 } 3563 3564 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3565 // first position of a vector, and that vector is slid up to the insert index. 3566 // By limiting the active vector length to index+1 and merging with the 3567 // original vector (with an undisturbed tail policy for elements >= VL), we 3568 // achieve the desired result of leaving all elements untouched except the one 3569 // at VL-1, which is replaced with the desired value. 3570 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3571 SelectionDAG &DAG) const { 3572 SDLoc DL(Op); 3573 MVT VecVT = Op.getSimpleValueType(); 3574 SDValue Vec = Op.getOperand(0); 3575 SDValue Val = Op.getOperand(1); 3576 SDValue Idx = Op.getOperand(2); 3577 3578 if (VecVT.getVectorElementType() == MVT::i1) { 3579 // FIXME: For now we just promote to an i8 vector and insert into that, 3580 // but this is probably not optimal. 3581 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3582 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3583 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3584 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3585 } 3586 3587 MVT ContainerVT = VecVT; 3588 // If the operand is a fixed-length vector, convert to a scalable one. 3589 if (VecVT.isFixedLengthVector()) { 3590 ContainerVT = getContainerForFixedLengthVector(VecVT); 3591 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3592 } 3593 3594 MVT XLenVT = Subtarget.getXLenVT(); 3595 3596 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3597 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3598 // Even i64-element vectors on RV32 can be lowered without scalar 3599 // legalization if the most-significant 32 bits of the value are not affected 3600 // by the sign-extension of the lower 32 bits. 3601 // TODO: We could also catch sign extensions of a 32-bit value. 3602 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3603 const auto *CVal = cast<ConstantSDNode>(Val); 3604 if (isInt<32>(CVal->getSExtValue())) { 3605 IsLegalInsert = true; 3606 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3607 } 3608 } 3609 3610 SDValue Mask, VL; 3611 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3612 3613 SDValue ValInVec; 3614 3615 if (IsLegalInsert) { 3616 unsigned Opc = 3617 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3618 if (isNullConstant(Idx)) { 3619 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3620 if (!VecVT.isFixedLengthVector()) 3621 return Vec; 3622 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3623 } 3624 ValInVec = 3625 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3626 } else { 3627 // On RV32, i64-element vectors must be specially handled to place the 3628 // value at element 0, by using two vslide1up instructions in sequence on 3629 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3630 // this. 3631 SDValue One = DAG.getConstant(1, DL, XLenVT); 3632 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3633 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3634 MVT I32ContainerVT = 3635 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3636 SDValue I32Mask = 3637 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3638 // Limit the active VL to two. 3639 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3640 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3641 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3642 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3643 InsertI64VL); 3644 // First slide in the hi value, then the lo in underneath it. 3645 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3646 ValHi, I32Mask, InsertI64VL); 3647 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3648 ValLo, I32Mask, InsertI64VL); 3649 // Bitcast back to the right container type. 3650 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3651 } 3652 3653 // Now that the value is in a vector, slide it into position. 3654 SDValue InsertVL = 3655 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3656 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3657 ValInVec, Idx, Mask, InsertVL); 3658 if (!VecVT.isFixedLengthVector()) 3659 return Slideup; 3660 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3661 } 3662 3663 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3664 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3665 // types this is done using VMV_X_S to allow us to glean information about the 3666 // sign bits of the result. 3667 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3668 SelectionDAG &DAG) const { 3669 SDLoc DL(Op); 3670 SDValue Idx = Op.getOperand(1); 3671 SDValue Vec = Op.getOperand(0); 3672 EVT EltVT = Op.getValueType(); 3673 MVT VecVT = Vec.getSimpleValueType(); 3674 MVT XLenVT = Subtarget.getXLenVT(); 3675 3676 if (VecVT.getVectorElementType() == MVT::i1) { 3677 // FIXME: For now we just promote to an i8 vector and extract from that, 3678 // but this is probably not optimal. 3679 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3680 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3681 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3682 } 3683 3684 // If this is a fixed vector, we need to convert it to a scalable vector. 3685 MVT ContainerVT = VecVT; 3686 if (VecVT.isFixedLengthVector()) { 3687 ContainerVT = getContainerForFixedLengthVector(VecVT); 3688 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3689 } 3690 3691 // If the index is 0, the vector is already in the right position. 3692 if (!isNullConstant(Idx)) { 3693 // Use a VL of 1 to avoid processing more elements than we need. 3694 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3695 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3696 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3697 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3698 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3699 } 3700 3701 if (!EltVT.isInteger()) { 3702 // Floating-point extracts are handled in TableGen. 3703 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3704 DAG.getConstant(0, DL, XLenVT)); 3705 } 3706 3707 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3708 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3709 } 3710 3711 // Some RVV intrinsics may claim that they want an integer operand to be 3712 // promoted or expanded. 3713 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3714 const RISCVSubtarget &Subtarget) { 3715 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3716 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3717 "Unexpected opcode"); 3718 3719 if (!Subtarget.hasStdExtV()) 3720 return SDValue(); 3721 3722 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3723 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3724 SDLoc DL(Op); 3725 3726 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3727 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3728 if (!II || !II->SplatOperand) 3729 return SDValue(); 3730 3731 unsigned SplatOp = II->SplatOperand + HasChain; 3732 assert(SplatOp < Op.getNumOperands()); 3733 3734 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3735 SDValue &ScalarOp = Operands[SplatOp]; 3736 MVT OpVT = ScalarOp.getSimpleValueType(); 3737 MVT XLenVT = Subtarget.getXLenVT(); 3738 3739 // If this isn't a scalar, or its type is XLenVT we're done. 3740 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3741 return SDValue(); 3742 3743 // Simplest case is that the operand needs to be promoted to XLenVT. 3744 if (OpVT.bitsLT(XLenVT)) { 3745 // If the operand is a constant, sign extend to increase our chances 3746 // of being able to use a .vi instruction. ANY_EXTEND would become a 3747 // a zero extend and the simm5 check in isel would fail. 3748 // FIXME: Should we ignore the upper bits in isel instead? 3749 unsigned ExtOpc = 3750 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3751 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3752 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3753 } 3754 3755 // Use the previous operand to get the vXi64 VT. The result might be a mask 3756 // VT for compares. Using the previous operand assumes that the previous 3757 // operand will never have a smaller element size than a scalar operand and 3758 // that a widening operation never uses SEW=64. 3759 // NOTE: If this fails the below assert, we can probably just find the 3760 // element count from any operand or result and use it to construct the VT. 3761 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3762 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3763 3764 // The more complex case is when the scalar is larger than XLenVT. 3765 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3766 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3767 3768 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3769 // on the instruction to sign-extend since SEW>XLEN. 3770 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3771 if (isInt<32>(CVal->getSExtValue())) { 3772 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3773 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3774 } 3775 } 3776 3777 // We need to convert the scalar to a splat vector. 3778 // FIXME: Can we implicitly truncate the scalar if it is known to 3779 // be sign extended? 3780 // VL should be the last operand. 3781 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3782 assert(VL.getValueType() == XLenVT); 3783 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3784 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3785 } 3786 3787 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3788 SelectionDAG &DAG) const { 3789 unsigned IntNo = Op.getConstantOperandVal(0); 3790 SDLoc DL(Op); 3791 MVT XLenVT = Subtarget.getXLenVT(); 3792 3793 switch (IntNo) { 3794 default: 3795 break; // Don't custom lower most intrinsics. 3796 case Intrinsic::thread_pointer: { 3797 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3798 return DAG.getRegister(RISCV::X4, PtrVT); 3799 } 3800 case Intrinsic::riscv_orc_b: 3801 // Lower to the GORCI encoding for orc.b. 3802 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3803 DAG.getConstant(7, DL, XLenVT)); 3804 case Intrinsic::riscv_grev: 3805 case Intrinsic::riscv_gorc: { 3806 unsigned Opc = 3807 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3808 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3809 } 3810 case Intrinsic::riscv_shfl: 3811 case Intrinsic::riscv_unshfl: { 3812 unsigned Opc = 3813 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3814 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3815 } 3816 case Intrinsic::riscv_bcompress: 3817 case Intrinsic::riscv_bdecompress: { 3818 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3819 : RISCVISD::BDECOMPRESS; 3820 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3821 } 3822 case Intrinsic::riscv_vmv_x_s: 3823 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3824 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3825 Op.getOperand(1)); 3826 case Intrinsic::riscv_vmv_v_x: 3827 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3828 Op.getSimpleValueType(), DL, DAG, Subtarget); 3829 case Intrinsic::riscv_vfmv_v_f: 3830 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3831 Op.getOperand(1), Op.getOperand(2)); 3832 case Intrinsic::riscv_vmv_s_x: { 3833 SDValue Scalar = Op.getOperand(2); 3834 3835 if (Scalar.getValueType().bitsLE(XLenVT)) { 3836 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3837 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3838 Op.getOperand(1), Scalar, Op.getOperand(3)); 3839 } 3840 3841 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3842 3843 // This is an i64 value that lives in two scalar registers. We have to 3844 // insert this in a convoluted way. First we build vXi64 splat containing 3845 // the/ two values that we assemble using some bit math. Next we'll use 3846 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3847 // to merge element 0 from our splat into the source vector. 3848 // FIXME: This is probably not the best way to do this, but it is 3849 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3850 // point. 3851 // sw lo, (a0) 3852 // sw hi, 4(a0) 3853 // vlse vX, (a0) 3854 // 3855 // vid.v vVid 3856 // vmseq.vx mMask, vVid, 0 3857 // vmerge.vvm vDest, vSrc, vVal, mMask 3858 MVT VT = Op.getSimpleValueType(); 3859 SDValue Vec = Op.getOperand(1); 3860 SDValue VL = Op.getOperand(3); 3861 3862 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3863 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3864 DAG.getConstant(0, DL, MVT::i32), VL); 3865 3866 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3867 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3868 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3869 SDValue SelectCond = 3870 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3871 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3872 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3873 Vec, VL); 3874 } 3875 case Intrinsic::riscv_vslide1up: 3876 case Intrinsic::riscv_vslide1down: 3877 case Intrinsic::riscv_vslide1up_mask: 3878 case Intrinsic::riscv_vslide1down_mask: { 3879 // We need to special case these when the scalar is larger than XLen. 3880 unsigned NumOps = Op.getNumOperands(); 3881 bool IsMasked = NumOps == 6; 3882 unsigned OpOffset = IsMasked ? 1 : 0; 3883 SDValue Scalar = Op.getOperand(2 + OpOffset); 3884 if (Scalar.getValueType().bitsLE(XLenVT)) 3885 break; 3886 3887 // Splatting a sign extended constant is fine. 3888 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3889 if (isInt<32>(CVal->getSExtValue())) 3890 break; 3891 3892 MVT VT = Op.getSimpleValueType(); 3893 assert(VT.getVectorElementType() == MVT::i64 && 3894 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3895 3896 // Convert the vector source to the equivalent nxvXi32 vector. 3897 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3898 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3899 3900 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3901 DAG.getConstant(0, DL, XLenVT)); 3902 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3903 DAG.getConstant(1, DL, XLenVT)); 3904 3905 // Double the VL since we halved SEW. 3906 SDValue VL = Op.getOperand(NumOps - 1); 3907 SDValue I32VL = 3908 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3909 3910 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3911 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3912 3913 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3914 // instructions. 3915 if (IntNo == Intrinsic::riscv_vslide1up || 3916 IntNo == Intrinsic::riscv_vslide1up_mask) { 3917 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3918 I32Mask, I32VL); 3919 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3920 I32Mask, I32VL); 3921 } else { 3922 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3923 I32Mask, I32VL); 3924 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3925 I32Mask, I32VL); 3926 } 3927 3928 // Convert back to nxvXi64. 3929 Vec = DAG.getBitcast(VT, Vec); 3930 3931 if (!IsMasked) 3932 return Vec; 3933 3934 // Apply mask after the operation. 3935 SDValue Mask = Op.getOperand(NumOps - 2); 3936 SDValue MaskedOff = Op.getOperand(1); 3937 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3938 } 3939 } 3940 3941 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3942 } 3943 3944 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3945 SelectionDAG &DAG) const { 3946 unsigned IntNo = Op.getConstantOperandVal(1); 3947 switch (IntNo) { 3948 default: 3949 break; 3950 case Intrinsic::riscv_masked_strided_load: { 3951 SDLoc DL(Op); 3952 MVT XLenVT = Subtarget.getXLenVT(); 3953 3954 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3955 // the selection of the masked intrinsics doesn't do this for us. 3956 SDValue Mask = Op.getOperand(5); 3957 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3958 3959 MVT VT = Op->getSimpleValueType(0); 3960 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3961 3962 SDValue PassThru = Op.getOperand(2); 3963 if (!IsUnmasked) { 3964 MVT MaskVT = 3965 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3966 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3967 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3968 } 3969 3970 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3971 3972 SDValue IntID = DAG.getTargetConstant( 3973 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 3974 XLenVT); 3975 3976 auto *Load = cast<MemIntrinsicSDNode>(Op); 3977 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 3978 if (!IsUnmasked) 3979 Ops.push_back(PassThru); 3980 Ops.push_back(Op.getOperand(3)); // Ptr 3981 Ops.push_back(Op.getOperand(4)); // Stride 3982 if (!IsUnmasked) 3983 Ops.push_back(Mask); 3984 Ops.push_back(VL); 3985 3986 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3987 SDValue Result = 3988 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3989 Load->getMemoryVT(), Load->getMemOperand()); 3990 SDValue Chain = Result.getValue(1); 3991 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3992 return DAG.getMergeValues({Result, Chain}, DL); 3993 } 3994 } 3995 3996 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3997 } 3998 3999 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4000 SelectionDAG &DAG) const { 4001 unsigned IntNo = Op.getConstantOperandVal(1); 4002 switch (IntNo) { 4003 default: 4004 break; 4005 case Intrinsic::riscv_masked_strided_store: { 4006 SDLoc DL(Op); 4007 MVT XLenVT = Subtarget.getXLenVT(); 4008 4009 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4010 // the selection of the masked intrinsics doesn't do this for us. 4011 SDValue Mask = Op.getOperand(5); 4012 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4013 4014 SDValue Val = Op.getOperand(2); 4015 MVT VT = Val.getSimpleValueType(); 4016 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4017 4018 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4019 if (!IsUnmasked) { 4020 MVT MaskVT = 4021 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4022 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4023 } 4024 4025 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4026 4027 SDValue IntID = DAG.getTargetConstant( 4028 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4029 XLenVT); 4030 4031 auto *Store = cast<MemIntrinsicSDNode>(Op); 4032 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4033 Ops.push_back(Val); 4034 Ops.push_back(Op.getOperand(3)); // Ptr 4035 Ops.push_back(Op.getOperand(4)); // Stride 4036 if (!IsUnmasked) 4037 Ops.push_back(Mask); 4038 Ops.push_back(VL); 4039 4040 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4041 Ops, Store->getMemoryVT(), 4042 Store->getMemOperand()); 4043 } 4044 } 4045 4046 return SDValue(); 4047 } 4048 4049 static MVT getLMUL1VT(MVT VT) { 4050 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4051 "Unexpected vector MVT"); 4052 return MVT::getScalableVectorVT( 4053 VT.getVectorElementType(), 4054 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4055 } 4056 4057 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4058 switch (ISDOpcode) { 4059 default: 4060 llvm_unreachable("Unhandled reduction"); 4061 case ISD::VECREDUCE_ADD: 4062 return RISCVISD::VECREDUCE_ADD_VL; 4063 case ISD::VECREDUCE_UMAX: 4064 return RISCVISD::VECREDUCE_UMAX_VL; 4065 case ISD::VECREDUCE_SMAX: 4066 return RISCVISD::VECREDUCE_SMAX_VL; 4067 case ISD::VECREDUCE_UMIN: 4068 return RISCVISD::VECREDUCE_UMIN_VL; 4069 case ISD::VECREDUCE_SMIN: 4070 return RISCVISD::VECREDUCE_SMIN_VL; 4071 case ISD::VECREDUCE_AND: 4072 return RISCVISD::VECREDUCE_AND_VL; 4073 case ISD::VECREDUCE_OR: 4074 return RISCVISD::VECREDUCE_OR_VL; 4075 case ISD::VECREDUCE_XOR: 4076 return RISCVISD::VECREDUCE_XOR_VL; 4077 } 4078 } 4079 4080 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 4081 SelectionDAG &DAG) const { 4082 SDLoc DL(Op); 4083 SDValue Vec = Op.getOperand(0); 4084 MVT VecVT = Vec.getSimpleValueType(); 4085 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4086 Op.getOpcode() == ISD::VECREDUCE_OR || 4087 Op.getOpcode() == ISD::VECREDUCE_XOR) && 4088 "Unexpected reduction lowering"); 4089 4090 MVT XLenVT = Subtarget.getXLenVT(); 4091 assert(Op.getValueType() == XLenVT && 4092 "Expected reduction output to be legalized to XLenVT"); 4093 4094 MVT ContainerVT = VecVT; 4095 if (VecVT.isFixedLengthVector()) { 4096 ContainerVT = getContainerForFixedLengthVector(VecVT); 4097 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4098 } 4099 4100 SDValue Mask, VL; 4101 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4102 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4103 4104 switch (Op.getOpcode()) { 4105 default: 4106 llvm_unreachable("Unhandled reduction"); 4107 case ISD::VECREDUCE_AND: 4108 // vpopc ~x == 0 4109 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 4110 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4111 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 4112 case ISD::VECREDUCE_OR: 4113 // vpopc x != 0 4114 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4115 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 4116 case ISD::VECREDUCE_XOR: { 4117 // ((vpopc x) & 1) != 0 4118 SDValue One = DAG.getConstant(1, DL, XLenVT); 4119 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4120 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4121 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 4122 } 4123 } 4124 } 4125 4126 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4127 SelectionDAG &DAG) const { 4128 SDLoc DL(Op); 4129 SDValue Vec = Op.getOperand(0); 4130 EVT VecEVT = Vec.getValueType(); 4131 4132 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4133 4134 // Due to ordering in legalize types we may have a vector type that needs to 4135 // be split. Do that manually so we can get down to a legal type. 4136 while (getTypeAction(*DAG.getContext(), VecEVT) == 4137 TargetLowering::TypeSplitVector) { 4138 SDValue Lo, Hi; 4139 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4140 VecEVT = Lo.getValueType(); 4141 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4142 } 4143 4144 // TODO: The type may need to be widened rather than split. Or widened before 4145 // it can be split. 4146 if (!isTypeLegal(VecEVT)) 4147 return SDValue(); 4148 4149 MVT VecVT = VecEVT.getSimpleVT(); 4150 MVT VecEltVT = VecVT.getVectorElementType(); 4151 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4152 4153 MVT ContainerVT = VecVT; 4154 if (VecVT.isFixedLengthVector()) { 4155 ContainerVT = getContainerForFixedLengthVector(VecVT); 4156 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4157 } 4158 4159 MVT M1VT = getLMUL1VT(ContainerVT); 4160 4161 SDValue Mask, VL; 4162 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4163 4164 // FIXME: This is a VLMAX splat which might be too large and can prevent 4165 // vsetvli removal. 4166 SDValue NeutralElem = 4167 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4168 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4169 SDValue Reduction = 4170 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 4171 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4172 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4173 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4174 } 4175 4176 // Given a reduction op, this function returns the matching reduction opcode, 4177 // the vector SDValue and the scalar SDValue required to lower this to a 4178 // RISCVISD node. 4179 static std::tuple<unsigned, SDValue, SDValue> 4180 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4181 SDLoc DL(Op); 4182 auto Flags = Op->getFlags(); 4183 unsigned Opcode = Op.getOpcode(); 4184 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4185 switch (Opcode) { 4186 default: 4187 llvm_unreachable("Unhandled reduction"); 4188 case ISD::VECREDUCE_FADD: 4189 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4190 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4191 case ISD::VECREDUCE_SEQ_FADD: 4192 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4193 Op.getOperand(0)); 4194 case ISD::VECREDUCE_FMIN: 4195 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4196 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4197 case ISD::VECREDUCE_FMAX: 4198 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4199 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4200 } 4201 } 4202 4203 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4204 SelectionDAG &DAG) const { 4205 SDLoc DL(Op); 4206 MVT VecEltVT = Op.getSimpleValueType(); 4207 4208 unsigned RVVOpcode; 4209 SDValue VectorVal, ScalarVal; 4210 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4211 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4212 MVT VecVT = VectorVal.getSimpleValueType(); 4213 4214 MVT ContainerVT = VecVT; 4215 if (VecVT.isFixedLengthVector()) { 4216 ContainerVT = getContainerForFixedLengthVector(VecVT); 4217 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4218 } 4219 4220 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4221 4222 SDValue Mask, VL; 4223 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4224 4225 // FIXME: This is a VLMAX splat which might be too large and can prevent 4226 // vsetvli removal. 4227 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4228 SDValue Reduction = 4229 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 4230 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4231 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4232 } 4233 4234 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4235 SelectionDAG &DAG) const { 4236 SDValue Vec = Op.getOperand(0); 4237 SDValue SubVec = Op.getOperand(1); 4238 MVT VecVT = Vec.getSimpleValueType(); 4239 MVT SubVecVT = SubVec.getSimpleValueType(); 4240 4241 SDLoc DL(Op); 4242 MVT XLenVT = Subtarget.getXLenVT(); 4243 unsigned OrigIdx = Op.getConstantOperandVal(2); 4244 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4245 4246 // We don't have the ability to slide mask vectors up indexed by their i1 4247 // elements; the smallest we can do is i8. Often we are able to bitcast to 4248 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4249 // into a scalable one, we might not necessarily have enough scalable 4250 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4251 if (SubVecVT.getVectorElementType() == MVT::i1 && 4252 (OrigIdx != 0 || !Vec.isUndef())) { 4253 if (VecVT.getVectorMinNumElements() >= 8 && 4254 SubVecVT.getVectorMinNumElements() >= 8) { 4255 assert(OrigIdx % 8 == 0 && "Invalid index"); 4256 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4257 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4258 "Unexpected mask vector lowering"); 4259 OrigIdx /= 8; 4260 SubVecVT = 4261 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4262 SubVecVT.isScalableVector()); 4263 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4264 VecVT.isScalableVector()); 4265 Vec = DAG.getBitcast(VecVT, Vec); 4266 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4267 } else { 4268 // We can't slide this mask vector up indexed by its i1 elements. 4269 // This poses a problem when we wish to insert a scalable vector which 4270 // can't be re-expressed as a larger type. Just choose the slow path and 4271 // extend to a larger type, then truncate back down. 4272 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4273 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4274 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4275 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4276 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4277 Op.getOperand(2)); 4278 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4279 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4280 } 4281 } 4282 4283 // If the subvector vector is a fixed-length type, we cannot use subregister 4284 // manipulation to simplify the codegen; we don't know which register of a 4285 // LMUL group contains the specific subvector as we only know the minimum 4286 // register size. Therefore we must slide the vector group up the full 4287 // amount. 4288 if (SubVecVT.isFixedLengthVector()) { 4289 if (OrigIdx == 0 && Vec.isUndef()) 4290 return Op; 4291 MVT ContainerVT = VecVT; 4292 if (VecVT.isFixedLengthVector()) { 4293 ContainerVT = getContainerForFixedLengthVector(VecVT); 4294 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4295 } 4296 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4297 DAG.getUNDEF(ContainerVT), SubVec, 4298 DAG.getConstant(0, DL, XLenVT)); 4299 SDValue Mask = 4300 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4301 // Set the vector length to only the number of elements we care about. Note 4302 // that for slideup this includes the offset. 4303 SDValue VL = 4304 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4305 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4306 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4307 SubVec, SlideupAmt, Mask, VL); 4308 if (VecVT.isFixedLengthVector()) 4309 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4310 return DAG.getBitcast(Op.getValueType(), Slideup); 4311 } 4312 4313 unsigned SubRegIdx, RemIdx; 4314 std::tie(SubRegIdx, RemIdx) = 4315 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4316 VecVT, SubVecVT, OrigIdx, TRI); 4317 4318 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4319 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4320 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4321 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4322 4323 // 1. If the Idx has been completely eliminated and this subvector's size is 4324 // a vector register or a multiple thereof, or the surrounding elements are 4325 // undef, then this is a subvector insert which naturally aligns to a vector 4326 // register. These can easily be handled using subregister manipulation. 4327 // 2. If the subvector is smaller than a vector register, then the insertion 4328 // must preserve the undisturbed elements of the register. We do this by 4329 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4330 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4331 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4332 // LMUL=1 type back into the larger vector (resolving to another subregister 4333 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4334 // to avoid allocating a large register group to hold our subvector. 4335 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4336 return Op; 4337 4338 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4339 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4340 // (in our case undisturbed). This means we can set up a subvector insertion 4341 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4342 // size of the subvector. 4343 MVT InterSubVT = VecVT; 4344 SDValue AlignedExtract = Vec; 4345 unsigned AlignedIdx = OrigIdx - RemIdx; 4346 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4347 InterSubVT = getLMUL1VT(VecVT); 4348 // Extract a subvector equal to the nearest full vector register type. This 4349 // should resolve to a EXTRACT_SUBREG instruction. 4350 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4351 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4352 } 4353 4354 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4355 // For scalable vectors this must be further multiplied by vscale. 4356 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4357 4358 SDValue Mask, VL; 4359 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4360 4361 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4362 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4363 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4364 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4365 4366 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4367 DAG.getUNDEF(InterSubVT), SubVec, 4368 DAG.getConstant(0, DL, XLenVT)); 4369 4370 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4371 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4372 4373 // If required, insert this subvector back into the correct vector register. 4374 // This should resolve to an INSERT_SUBREG instruction. 4375 if (VecVT.bitsGT(InterSubVT)) 4376 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4377 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4378 4379 // We might have bitcast from a mask type: cast back to the original type if 4380 // required. 4381 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4382 } 4383 4384 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4385 SelectionDAG &DAG) const { 4386 SDValue Vec = Op.getOperand(0); 4387 MVT SubVecVT = Op.getSimpleValueType(); 4388 MVT VecVT = Vec.getSimpleValueType(); 4389 4390 SDLoc DL(Op); 4391 MVT XLenVT = Subtarget.getXLenVT(); 4392 unsigned OrigIdx = Op.getConstantOperandVal(1); 4393 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4394 4395 // We don't have the ability to slide mask vectors down indexed by their i1 4396 // elements; the smallest we can do is i8. Often we are able to bitcast to 4397 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4398 // from a scalable one, we might not necessarily have enough scalable 4399 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4400 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4401 if (VecVT.getVectorMinNumElements() >= 8 && 4402 SubVecVT.getVectorMinNumElements() >= 8) { 4403 assert(OrigIdx % 8 == 0 && "Invalid index"); 4404 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4405 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4406 "Unexpected mask vector lowering"); 4407 OrigIdx /= 8; 4408 SubVecVT = 4409 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4410 SubVecVT.isScalableVector()); 4411 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4412 VecVT.isScalableVector()); 4413 Vec = DAG.getBitcast(VecVT, Vec); 4414 } else { 4415 // We can't slide this mask vector down, indexed by its i1 elements. 4416 // This poses a problem when we wish to extract a scalable vector which 4417 // can't be re-expressed as a larger type. Just choose the slow path and 4418 // extend to a larger type, then truncate back down. 4419 // TODO: We could probably improve this when extracting certain fixed 4420 // from fixed, where we can extract as i8 and shift the correct element 4421 // right to reach the desired subvector? 4422 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4423 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4424 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4425 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4426 Op.getOperand(1)); 4427 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4428 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4429 } 4430 } 4431 4432 // If the subvector vector is a fixed-length type, we cannot use subregister 4433 // manipulation to simplify the codegen; we don't know which register of a 4434 // LMUL group contains the specific subvector as we only know the minimum 4435 // register size. Therefore we must slide the vector group down the full 4436 // amount. 4437 if (SubVecVT.isFixedLengthVector()) { 4438 // With an index of 0 this is a cast-like subvector, which can be performed 4439 // with subregister operations. 4440 if (OrigIdx == 0) 4441 return Op; 4442 MVT ContainerVT = VecVT; 4443 if (VecVT.isFixedLengthVector()) { 4444 ContainerVT = getContainerForFixedLengthVector(VecVT); 4445 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4446 } 4447 SDValue Mask = 4448 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4449 // Set the vector length to only the number of elements we care about. This 4450 // avoids sliding down elements we're going to discard straight away. 4451 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4452 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4453 SDValue Slidedown = 4454 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4455 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4456 // Now we can use a cast-like subvector extract to get the result. 4457 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4458 DAG.getConstant(0, DL, XLenVT)); 4459 return DAG.getBitcast(Op.getValueType(), Slidedown); 4460 } 4461 4462 unsigned SubRegIdx, RemIdx; 4463 std::tie(SubRegIdx, RemIdx) = 4464 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4465 VecVT, SubVecVT, OrigIdx, TRI); 4466 4467 // If the Idx has been completely eliminated then this is a subvector extract 4468 // which naturally aligns to a vector register. These can easily be handled 4469 // using subregister manipulation. 4470 if (RemIdx == 0) 4471 return Op; 4472 4473 // Else we must shift our vector register directly to extract the subvector. 4474 // Do this using VSLIDEDOWN. 4475 4476 // If the vector type is an LMUL-group type, extract a subvector equal to the 4477 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4478 // instruction. 4479 MVT InterSubVT = VecVT; 4480 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4481 InterSubVT = getLMUL1VT(VecVT); 4482 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4483 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4484 } 4485 4486 // Slide this vector register down by the desired number of elements in order 4487 // to place the desired subvector starting at element 0. 4488 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4489 // For scalable vectors this must be further multiplied by vscale. 4490 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4491 4492 SDValue Mask, VL; 4493 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4494 SDValue Slidedown = 4495 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4496 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4497 4498 // Now the vector is in the right position, extract our final subvector. This 4499 // should resolve to a COPY. 4500 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4501 DAG.getConstant(0, DL, XLenVT)); 4502 4503 // We might have bitcast from a mask type: cast back to the original type if 4504 // required. 4505 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4506 } 4507 4508 // Lower step_vector to the vid instruction. Any non-identity step value must 4509 // be accounted for my manual expansion. 4510 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4511 SelectionDAG &DAG) const { 4512 SDLoc DL(Op); 4513 MVT VT = Op.getSimpleValueType(); 4514 MVT XLenVT = Subtarget.getXLenVT(); 4515 SDValue Mask, VL; 4516 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4517 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4518 uint64_t StepValImm = Op.getConstantOperandVal(0); 4519 if (StepValImm != 1) { 4520 if (isPowerOf2_64(StepValImm)) { 4521 SDValue StepVal = 4522 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4523 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4524 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4525 } else { 4526 SDValue StepVal = lowerScalarSplat( 4527 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4528 DL, DAG, Subtarget); 4529 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4530 } 4531 } 4532 return StepVec; 4533 } 4534 4535 // Implement vector_reverse using vrgather.vv with indices determined by 4536 // subtracting the id of each element from (VLMAX-1). This will convert 4537 // the indices like so: 4538 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4539 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4540 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4541 SelectionDAG &DAG) const { 4542 SDLoc DL(Op); 4543 MVT VecVT = Op.getSimpleValueType(); 4544 unsigned EltSize = VecVT.getScalarSizeInBits(); 4545 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4546 4547 unsigned MaxVLMAX = 0; 4548 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4549 if (VectorBitsMax != 0) 4550 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4551 4552 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4553 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4554 4555 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4556 // to use vrgatherei16.vv. 4557 // TODO: It's also possible to use vrgatherei16.vv for other types to 4558 // decrease register width for the index calculation. 4559 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4560 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4561 // Reverse each half, then reassemble them in reverse order. 4562 // NOTE: It's also possible that after splitting that VLMAX no longer 4563 // requires vrgatherei16.vv. 4564 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4565 SDValue Lo, Hi; 4566 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4567 EVT LoVT, HiVT; 4568 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4569 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4570 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4571 // Reassemble the low and high pieces reversed. 4572 // FIXME: This is a CONCAT_VECTORS. 4573 SDValue Res = 4574 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4575 DAG.getIntPtrConstant(0, DL)); 4576 return DAG.getNode( 4577 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4578 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4579 } 4580 4581 // Just promote the int type to i16 which will double the LMUL. 4582 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4583 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4584 } 4585 4586 MVT XLenVT = Subtarget.getXLenVT(); 4587 SDValue Mask, VL; 4588 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4589 4590 // Calculate VLMAX-1 for the desired SEW. 4591 unsigned MinElts = VecVT.getVectorMinNumElements(); 4592 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4593 DAG.getConstant(MinElts, DL, XLenVT)); 4594 SDValue VLMinus1 = 4595 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4596 4597 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4598 bool IsRV32E64 = 4599 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4600 SDValue SplatVL; 4601 if (!IsRV32E64) 4602 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4603 else 4604 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4605 4606 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4607 SDValue Indices = 4608 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4609 4610 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4611 } 4612 4613 SDValue 4614 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4615 SelectionDAG &DAG) const { 4616 SDLoc DL(Op); 4617 auto *Load = cast<LoadSDNode>(Op); 4618 4619 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4620 Load->getMemoryVT(), 4621 *Load->getMemOperand()) && 4622 "Expecting a correctly-aligned load"); 4623 4624 MVT VT = Op.getSimpleValueType(); 4625 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4626 4627 SDValue VL = 4628 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4629 4630 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4631 SDValue NewLoad = DAG.getMemIntrinsicNode( 4632 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4633 Load->getMemoryVT(), Load->getMemOperand()); 4634 4635 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4636 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4637 } 4638 4639 SDValue 4640 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4641 SelectionDAG &DAG) const { 4642 SDLoc DL(Op); 4643 auto *Store = cast<StoreSDNode>(Op); 4644 4645 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4646 Store->getMemoryVT(), 4647 *Store->getMemOperand()) && 4648 "Expecting a correctly-aligned store"); 4649 4650 SDValue StoreVal = Store->getValue(); 4651 MVT VT = StoreVal.getSimpleValueType(); 4652 4653 // If the size less than a byte, we need to pad with zeros to make a byte. 4654 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4655 VT = MVT::v8i1; 4656 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4657 DAG.getConstant(0, DL, VT), StoreVal, 4658 DAG.getIntPtrConstant(0, DL)); 4659 } 4660 4661 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4662 4663 SDValue VL = 4664 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4665 4666 SDValue NewValue = 4667 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4668 return DAG.getMemIntrinsicNode( 4669 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4670 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4671 Store->getMemoryVT(), Store->getMemOperand()); 4672 } 4673 4674 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4675 SelectionDAG &DAG) const { 4676 SDLoc DL(Op); 4677 MVT VT = Op.getSimpleValueType(); 4678 4679 const auto *MemSD = cast<MemSDNode>(Op); 4680 EVT MemVT = MemSD->getMemoryVT(); 4681 MachineMemOperand *MMO = MemSD->getMemOperand(); 4682 SDValue Chain = MemSD->getChain(); 4683 SDValue BasePtr = MemSD->getBasePtr(); 4684 4685 SDValue Mask, PassThru, VL; 4686 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4687 Mask = VPLoad->getMask(); 4688 PassThru = DAG.getUNDEF(VT); 4689 VL = VPLoad->getVectorLength(); 4690 } else { 4691 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4692 Mask = MLoad->getMask(); 4693 PassThru = MLoad->getPassThru(); 4694 } 4695 4696 MVT XLenVT = Subtarget.getXLenVT(); 4697 4698 MVT ContainerVT = VT; 4699 if (VT.isFixedLengthVector()) { 4700 ContainerVT = getContainerForFixedLengthVector(VT); 4701 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4702 4703 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4704 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4705 } 4706 4707 if (!VL) 4708 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4709 4710 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4711 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4712 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL}; 4713 SDValue Result = 4714 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4715 Chain = Result.getValue(1); 4716 4717 if (VT.isFixedLengthVector()) 4718 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4719 4720 return DAG.getMergeValues({Result, Chain}, DL); 4721 } 4722 4723 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4724 SelectionDAG &DAG) const { 4725 SDLoc DL(Op); 4726 4727 const auto *MemSD = cast<MemSDNode>(Op); 4728 EVT MemVT = MemSD->getMemoryVT(); 4729 MachineMemOperand *MMO = MemSD->getMemOperand(); 4730 SDValue Chain = MemSD->getChain(); 4731 SDValue BasePtr = MemSD->getBasePtr(); 4732 SDValue Val, Mask, VL; 4733 4734 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4735 Val = VPStore->getValue(); 4736 Mask = VPStore->getMask(); 4737 VL = VPStore->getVectorLength(); 4738 } else { 4739 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4740 Val = MStore->getValue(); 4741 Mask = MStore->getMask(); 4742 } 4743 4744 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4745 4746 MVT VT = Val.getSimpleValueType(); 4747 MVT XLenVT = Subtarget.getXLenVT(); 4748 4749 MVT ContainerVT = VT; 4750 if (VT.isFixedLengthVector()) { 4751 ContainerVT = getContainerForFixedLengthVector(VT); 4752 4753 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4754 if (!IsUnmasked) { 4755 MVT MaskVT = 4756 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4757 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4758 } 4759 } 4760 4761 if (!VL) 4762 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4763 4764 unsigned IntID = 4765 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4766 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4767 Ops.push_back(Val); 4768 Ops.push_back(BasePtr); 4769 if (!IsUnmasked) 4770 Ops.push_back(Mask); 4771 Ops.push_back(VL); 4772 4773 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4774 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4775 } 4776 4777 SDValue 4778 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4779 SelectionDAG &DAG) const { 4780 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4781 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4782 4783 MVT VT = Op.getSimpleValueType(); 4784 4785 SDValue Op1 = 4786 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4787 SDValue Op2 = 4788 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4789 4790 SDLoc DL(Op); 4791 SDValue VL = 4792 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4793 4794 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4795 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4796 4797 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4798 Op.getOperand(2), Mask, VL); 4799 4800 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4801 } 4802 4803 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4804 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4805 MVT VT = Op.getSimpleValueType(); 4806 4807 if (VT.getVectorElementType() == MVT::i1) 4808 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4809 4810 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4811 } 4812 4813 SDValue 4814 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4815 SelectionDAG &DAG) const { 4816 unsigned Opc; 4817 switch (Op.getOpcode()) { 4818 default: llvm_unreachable("Unexpected opcode!"); 4819 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4820 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4821 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4822 } 4823 4824 return lowerToScalableOp(Op, DAG, Opc); 4825 } 4826 4827 // Lower vector ABS to smax(X, sub(0, X)). 4828 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4829 SDLoc DL(Op); 4830 MVT VT = Op.getSimpleValueType(); 4831 SDValue X = Op.getOperand(0); 4832 4833 assert(VT.isFixedLengthVector() && "Unexpected type"); 4834 4835 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4836 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4837 4838 SDValue Mask, VL; 4839 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4840 4841 SDValue SplatZero = 4842 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4843 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4844 SDValue NegX = 4845 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4846 SDValue Max = 4847 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4848 4849 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4850 } 4851 4852 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4853 SDValue Op, SelectionDAG &DAG) const { 4854 SDLoc DL(Op); 4855 MVT VT = Op.getSimpleValueType(); 4856 SDValue Mag = Op.getOperand(0); 4857 SDValue Sign = Op.getOperand(1); 4858 assert(Mag.getValueType() == Sign.getValueType() && 4859 "Can only handle COPYSIGN with matching types."); 4860 4861 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4862 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4863 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4864 4865 SDValue Mask, VL; 4866 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4867 4868 SDValue CopySign = 4869 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4870 4871 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4872 } 4873 4874 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4875 SDValue Op, SelectionDAG &DAG) const { 4876 MVT VT = Op.getSimpleValueType(); 4877 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4878 4879 MVT I1ContainerVT = 4880 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4881 4882 SDValue CC = 4883 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4884 SDValue Op1 = 4885 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4886 SDValue Op2 = 4887 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4888 4889 SDLoc DL(Op); 4890 SDValue Mask, VL; 4891 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4892 4893 SDValue Select = 4894 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4895 4896 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4897 } 4898 4899 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4900 unsigned NewOpc, 4901 bool HasMask) const { 4902 MVT VT = Op.getSimpleValueType(); 4903 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4904 4905 // Create list of operands by converting existing ones to scalable types. 4906 SmallVector<SDValue, 6> Ops; 4907 for (const SDValue &V : Op->op_values()) { 4908 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4909 4910 // Pass through non-vector operands. 4911 if (!V.getValueType().isVector()) { 4912 Ops.push_back(V); 4913 continue; 4914 } 4915 4916 // "cast" fixed length vector to a scalable vector. 4917 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4918 "Only fixed length vectors are supported!"); 4919 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4920 } 4921 4922 SDLoc DL(Op); 4923 SDValue Mask, VL; 4924 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4925 if (HasMask) 4926 Ops.push_back(Mask); 4927 Ops.push_back(VL); 4928 4929 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4930 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4931 } 4932 4933 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4934 // * Operands of each node are assumed to be in the same order. 4935 // * The EVL operand is promoted from i32 to i64 on RV64. 4936 // * Fixed-length vectors are converted to their scalable-vector container 4937 // types. 4938 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4939 unsigned RISCVISDOpc) const { 4940 SDLoc DL(Op); 4941 MVT VT = Op.getSimpleValueType(); 4942 SmallVector<SDValue, 4> Ops; 4943 4944 for (const auto &OpIdx : enumerate(Op->ops())) { 4945 SDValue V = OpIdx.value(); 4946 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4947 // Pass through operands which aren't fixed-length vectors. 4948 if (!V.getValueType().isFixedLengthVector()) { 4949 Ops.push_back(V); 4950 continue; 4951 } 4952 // "cast" fixed length vector to a scalable vector. 4953 MVT OpVT = V.getSimpleValueType(); 4954 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4955 assert(useRVVForFixedLengthVectorVT(OpVT) && 4956 "Only fixed length vectors are supported!"); 4957 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4958 } 4959 4960 if (!VT.isFixedLengthVector()) 4961 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4962 4963 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4964 4965 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4966 4967 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4968 } 4969 4970 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 4971 // matched to a RVV indexed load. The RVV indexed load instructions only 4972 // support the "unsigned unscaled" addressing mode; indices are implicitly 4973 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 4974 // signed or scaled indexing is extended to the XLEN value type and scaled 4975 // accordingly. 4976 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 4977 SelectionDAG &DAG) const { 4978 SDLoc DL(Op); 4979 MVT VT = Op.getSimpleValueType(); 4980 4981 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 4982 EVT MemVT = MemSD->getMemoryVT(); 4983 MachineMemOperand *MMO = MemSD->getMemOperand(); 4984 SDValue Chain = MemSD->getChain(); 4985 SDValue BasePtr = MemSD->getBasePtr(); 4986 4987 ISD::LoadExtType LoadExtType; 4988 SDValue Index, Mask, PassThru, VL; 4989 4990 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 4991 Index = VPGN->getIndex(); 4992 Mask = VPGN->getMask(); 4993 PassThru = DAG.getUNDEF(VT); 4994 VL = VPGN->getVectorLength(); 4995 // VP doesn't support extending loads. 4996 LoadExtType = ISD::NON_EXTLOAD; 4997 } else { 4998 // Else it must be a MGATHER. 4999 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5000 Index = MGN->getIndex(); 5001 Mask = MGN->getMask(); 5002 PassThru = MGN->getPassThru(); 5003 LoadExtType = MGN->getExtensionType(); 5004 } 5005 5006 MVT IndexVT = Index.getSimpleValueType(); 5007 MVT XLenVT = Subtarget.getXLenVT(); 5008 5009 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5010 "Unexpected VTs!"); 5011 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5012 // Targets have to explicitly opt-in for extending vector loads. 5013 assert(LoadExtType == ISD::NON_EXTLOAD && 5014 "Unexpected extending MGATHER/VP_GATHER"); 5015 (void)LoadExtType; 5016 5017 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5018 // the selection of the masked intrinsics doesn't do this for us. 5019 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5020 5021 MVT ContainerVT = VT; 5022 if (VT.isFixedLengthVector()) { 5023 // We need to use the larger of the result and index type to determine the 5024 // scalable type to use so we don't increase LMUL for any operand/result. 5025 if (VT.bitsGE(IndexVT)) { 5026 ContainerVT = getContainerForFixedLengthVector(VT); 5027 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5028 ContainerVT.getVectorElementCount()); 5029 } else { 5030 IndexVT = getContainerForFixedLengthVector(IndexVT); 5031 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5032 IndexVT.getVectorElementCount()); 5033 } 5034 5035 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5036 5037 if (!IsUnmasked) { 5038 MVT MaskVT = 5039 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5040 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5041 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5042 } 5043 } 5044 5045 if (!VL) 5046 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5047 5048 unsigned IntID = 5049 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5050 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5051 if (!IsUnmasked) 5052 Ops.push_back(PassThru); 5053 Ops.push_back(BasePtr); 5054 Ops.push_back(Index); 5055 if (!IsUnmasked) 5056 Ops.push_back(Mask); 5057 Ops.push_back(VL); 5058 5059 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5060 SDValue Result = 5061 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5062 Chain = Result.getValue(1); 5063 5064 if (VT.isFixedLengthVector()) 5065 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5066 5067 return DAG.getMergeValues({Result, Chain}, DL); 5068 } 5069 5070 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5071 // matched to a RVV indexed store. The RVV indexed store instructions only 5072 // support the "unsigned unscaled" addressing mode; indices are implicitly 5073 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5074 // signed or scaled indexing is extended to the XLEN value type and scaled 5075 // accordingly. 5076 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5077 SelectionDAG &DAG) const { 5078 SDLoc DL(Op); 5079 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5080 EVT MemVT = MemSD->getMemoryVT(); 5081 MachineMemOperand *MMO = MemSD->getMemOperand(); 5082 SDValue Chain = MemSD->getChain(); 5083 SDValue BasePtr = MemSD->getBasePtr(); 5084 5085 bool IsTruncatingStore = false; 5086 SDValue Index, Mask, Val, VL; 5087 5088 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5089 Index = VPSN->getIndex(); 5090 Mask = VPSN->getMask(); 5091 Val = VPSN->getValue(); 5092 VL = VPSN->getVectorLength(); 5093 // VP doesn't support truncating stores. 5094 IsTruncatingStore = false; 5095 } else { 5096 // Else it must be a MSCATTER. 5097 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5098 Index = MSN->getIndex(); 5099 Mask = MSN->getMask(); 5100 Val = MSN->getValue(); 5101 IsTruncatingStore = MSN->isTruncatingStore(); 5102 } 5103 5104 MVT VT = Val.getSimpleValueType(); 5105 MVT IndexVT = Index.getSimpleValueType(); 5106 MVT XLenVT = Subtarget.getXLenVT(); 5107 5108 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5109 "Unexpected VTs!"); 5110 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5111 // Targets have to explicitly opt-in for extending vector loads and 5112 // truncating vector stores. 5113 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5114 (void)IsTruncatingStore; 5115 5116 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5117 // the selection of the masked intrinsics doesn't do this for us. 5118 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5119 5120 MVT ContainerVT = VT; 5121 if (VT.isFixedLengthVector()) { 5122 // We need to use the larger of the value and index type to determine the 5123 // scalable type to use so we don't increase LMUL for any operand/result. 5124 if (VT.bitsGE(IndexVT)) { 5125 ContainerVT = getContainerForFixedLengthVector(VT); 5126 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5127 ContainerVT.getVectorElementCount()); 5128 } else { 5129 IndexVT = getContainerForFixedLengthVector(IndexVT); 5130 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5131 IndexVT.getVectorElementCount()); 5132 } 5133 5134 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5135 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5136 5137 if (!IsUnmasked) { 5138 MVT MaskVT = 5139 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5140 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5141 } 5142 } 5143 5144 if (!VL) 5145 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5146 5147 unsigned IntID = 5148 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5149 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5150 Ops.push_back(Val); 5151 Ops.push_back(BasePtr); 5152 Ops.push_back(Index); 5153 if (!IsUnmasked) 5154 Ops.push_back(Mask); 5155 Ops.push_back(VL); 5156 5157 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5158 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5159 } 5160 5161 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5162 SelectionDAG &DAG) const { 5163 const MVT XLenVT = Subtarget.getXLenVT(); 5164 SDLoc DL(Op); 5165 SDValue Chain = Op->getOperand(0); 5166 SDValue SysRegNo = DAG.getConstant( 5167 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5168 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5169 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5170 5171 // Encoding used for rounding mode in RISCV differs from that used in 5172 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5173 // table, which consists of a sequence of 4-bit fields, each representing 5174 // corresponding FLT_ROUNDS mode. 5175 static const int Table = 5176 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5177 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5178 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5179 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5180 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5181 5182 SDValue Shift = 5183 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5184 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5185 DAG.getConstant(Table, DL, XLenVT), Shift); 5186 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5187 DAG.getConstant(7, DL, XLenVT)); 5188 5189 return DAG.getMergeValues({Masked, Chain}, DL); 5190 } 5191 5192 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5193 SelectionDAG &DAG) const { 5194 const MVT XLenVT = Subtarget.getXLenVT(); 5195 SDLoc DL(Op); 5196 SDValue Chain = Op->getOperand(0); 5197 SDValue RMValue = Op->getOperand(1); 5198 SDValue SysRegNo = DAG.getConstant( 5199 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5200 5201 // Encoding used for rounding mode in RISCV differs from that used in 5202 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5203 // a table, which consists of a sequence of 4-bit fields, each representing 5204 // corresponding RISCV mode. 5205 static const unsigned Table = 5206 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5207 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5208 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5209 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5210 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5211 5212 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5213 DAG.getConstant(2, DL, XLenVT)); 5214 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5215 DAG.getConstant(Table, DL, XLenVT), Shift); 5216 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5217 DAG.getConstant(0x7, DL, XLenVT)); 5218 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5219 RMValue); 5220 } 5221 5222 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5223 // form of the given Opcode. 5224 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5225 switch (Opcode) { 5226 default: 5227 llvm_unreachable("Unexpected opcode"); 5228 case ISD::SHL: 5229 return RISCVISD::SLLW; 5230 case ISD::SRA: 5231 return RISCVISD::SRAW; 5232 case ISD::SRL: 5233 return RISCVISD::SRLW; 5234 case ISD::SDIV: 5235 return RISCVISD::DIVW; 5236 case ISD::UDIV: 5237 return RISCVISD::DIVUW; 5238 case ISD::UREM: 5239 return RISCVISD::REMUW; 5240 case ISD::ROTL: 5241 return RISCVISD::ROLW; 5242 case ISD::ROTR: 5243 return RISCVISD::RORW; 5244 case RISCVISD::GREV: 5245 return RISCVISD::GREVW; 5246 case RISCVISD::GORC: 5247 return RISCVISD::GORCW; 5248 } 5249 } 5250 5251 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5252 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5253 // otherwise be promoted to i64, making it difficult to select the 5254 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5255 // type i8/i16/i32 is lost. 5256 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5257 unsigned ExtOpc = ISD::ANY_EXTEND) { 5258 SDLoc DL(N); 5259 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5260 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5261 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5262 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5263 // ReplaceNodeResults requires we maintain the same type for the return value. 5264 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5265 } 5266 5267 // Converts the given 32-bit operation to a i64 operation with signed extension 5268 // semantic to reduce the signed extension instructions. 5269 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5270 SDLoc DL(N); 5271 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5272 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5273 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5274 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5275 DAG.getValueType(MVT::i32)); 5276 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5277 } 5278 5279 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5280 SmallVectorImpl<SDValue> &Results, 5281 SelectionDAG &DAG) const { 5282 SDLoc DL(N); 5283 switch (N->getOpcode()) { 5284 default: 5285 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5286 case ISD::STRICT_FP_TO_SINT: 5287 case ISD::STRICT_FP_TO_UINT: 5288 case ISD::FP_TO_SINT: 5289 case ISD::FP_TO_UINT: { 5290 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5291 "Unexpected custom legalisation"); 5292 bool IsStrict = N->isStrictFPOpcode(); 5293 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5294 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5295 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5296 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5297 TargetLowering::TypeSoftenFloat) { 5298 // FIXME: Support strict FP. 5299 if (IsStrict) 5300 return; 5301 if (!isTypeLegal(Op0.getValueType())) 5302 return; 5303 unsigned Opc = 5304 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5305 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5306 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5307 return; 5308 } 5309 // If the FP type needs to be softened, emit a library call using the 'si' 5310 // version. If we left it to default legalization we'd end up with 'di'. If 5311 // the FP type doesn't need to be softened just let generic type 5312 // legalization promote the result type. 5313 RTLIB::Libcall LC; 5314 if (IsSigned) 5315 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5316 else 5317 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5318 MakeLibCallOptions CallOptions; 5319 EVT OpVT = Op0.getValueType(); 5320 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5321 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5322 SDValue Result; 5323 std::tie(Result, Chain) = 5324 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5325 Results.push_back(Result); 5326 if (IsStrict) 5327 Results.push_back(Chain); 5328 break; 5329 } 5330 case ISD::READCYCLECOUNTER: { 5331 assert(!Subtarget.is64Bit() && 5332 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5333 5334 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5335 SDValue RCW = 5336 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5337 5338 Results.push_back( 5339 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5340 Results.push_back(RCW.getValue(2)); 5341 break; 5342 } 5343 case ISD::MUL: { 5344 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5345 unsigned XLen = Subtarget.getXLen(); 5346 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5347 if (Size > XLen) { 5348 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5349 SDValue LHS = N->getOperand(0); 5350 SDValue RHS = N->getOperand(1); 5351 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5352 5353 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5354 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5355 // We need exactly one side to be unsigned. 5356 if (LHSIsU == RHSIsU) 5357 return; 5358 5359 auto MakeMULPair = [&](SDValue S, SDValue U) { 5360 MVT XLenVT = Subtarget.getXLenVT(); 5361 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5362 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5363 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5364 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5365 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5366 }; 5367 5368 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5369 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5370 5371 // The other operand should be signed, but still prefer MULH when 5372 // possible. 5373 if (RHSIsU && LHSIsS && !RHSIsS) 5374 Results.push_back(MakeMULPair(LHS, RHS)); 5375 else if (LHSIsU && RHSIsS && !LHSIsS) 5376 Results.push_back(MakeMULPair(RHS, LHS)); 5377 5378 return; 5379 } 5380 LLVM_FALLTHROUGH; 5381 } 5382 case ISD::ADD: 5383 case ISD::SUB: 5384 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5385 "Unexpected custom legalisation"); 5386 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5387 break; 5388 case ISD::SHL: 5389 case ISD::SRA: 5390 case ISD::SRL: 5391 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5392 "Unexpected custom legalisation"); 5393 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5394 Results.push_back(customLegalizeToWOp(N, DAG)); 5395 break; 5396 } 5397 5398 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5399 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5400 // shift amount. 5401 if (N->getOpcode() == ISD::SHL) { 5402 SDLoc DL(N); 5403 SDValue NewOp0 = 5404 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5405 SDValue NewOp1 = 5406 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5407 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5408 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5409 DAG.getValueType(MVT::i32)); 5410 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5411 } 5412 5413 break; 5414 case ISD::ROTL: 5415 case ISD::ROTR: 5416 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5417 "Unexpected custom legalisation"); 5418 Results.push_back(customLegalizeToWOp(N, DAG)); 5419 break; 5420 case ISD::CTTZ: 5421 case ISD::CTTZ_ZERO_UNDEF: 5422 case ISD::CTLZ: 5423 case ISD::CTLZ_ZERO_UNDEF: { 5424 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5425 "Unexpected custom legalisation"); 5426 5427 SDValue NewOp0 = 5428 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5429 bool IsCTZ = 5430 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5431 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5432 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5433 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5434 return; 5435 } 5436 case ISD::SDIV: 5437 case ISD::UDIV: 5438 case ISD::UREM: { 5439 MVT VT = N->getSimpleValueType(0); 5440 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5441 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5442 "Unexpected custom legalisation"); 5443 // Don't promote division/remainder by constant since we should expand those 5444 // to multiply by magic constant. 5445 // FIXME: What if the expansion is disabled for minsize. 5446 if (N->getOperand(1).getOpcode() == ISD::Constant) 5447 return; 5448 5449 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5450 // the upper 32 bits. For other types we need to sign or zero extend 5451 // based on the opcode. 5452 unsigned ExtOpc = ISD::ANY_EXTEND; 5453 if (VT != MVT::i32) 5454 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5455 : ISD::ZERO_EXTEND; 5456 5457 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5458 break; 5459 } 5460 case ISD::UADDO: 5461 case ISD::USUBO: { 5462 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5463 "Unexpected custom legalisation"); 5464 bool IsAdd = N->getOpcode() == ISD::UADDO; 5465 // Create an ADDW or SUBW. 5466 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5467 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5468 SDValue Res = 5469 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5470 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5471 DAG.getValueType(MVT::i32)); 5472 5473 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5474 // Since the inputs are sign extended from i32, this is equivalent to 5475 // comparing the lower 32 bits. 5476 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5477 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5478 IsAdd ? ISD::SETULT : ISD::SETUGT); 5479 5480 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5481 Results.push_back(Overflow); 5482 return; 5483 } 5484 case ISD::UADDSAT: 5485 case ISD::USUBSAT: { 5486 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5487 "Unexpected custom legalisation"); 5488 if (Subtarget.hasStdExtZbb()) { 5489 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5490 // sign extend allows overflow of the lower 32 bits to be detected on 5491 // the promoted size. 5492 SDValue LHS = 5493 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5494 SDValue RHS = 5495 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5496 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5497 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5498 return; 5499 } 5500 5501 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5502 // promotion for UADDO/USUBO. 5503 Results.push_back(expandAddSubSat(N, DAG)); 5504 return; 5505 } 5506 case ISD::BITCAST: { 5507 EVT VT = N->getValueType(0); 5508 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5509 SDValue Op0 = N->getOperand(0); 5510 EVT Op0VT = Op0.getValueType(); 5511 MVT XLenVT = Subtarget.getXLenVT(); 5512 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5513 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5514 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5515 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5516 Subtarget.hasStdExtF()) { 5517 SDValue FPConv = 5518 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5519 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5520 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5521 isTypeLegal(Op0VT)) { 5522 // Custom-legalize bitcasts from fixed-length vector types to illegal 5523 // scalar types in order to improve codegen. Bitcast the vector to a 5524 // one-element vector type whose element type is the same as the result 5525 // type, and extract the first element. 5526 LLVMContext &Context = *DAG.getContext(); 5527 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5528 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5529 DAG.getConstant(0, DL, XLenVT))); 5530 } 5531 break; 5532 } 5533 case RISCVISD::GREV: 5534 case RISCVISD::GORC: { 5535 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5536 "Unexpected custom legalisation"); 5537 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5538 // This is similar to customLegalizeToWOp, except that we pass the second 5539 // operand (a TargetConstant) straight through: it is already of type 5540 // XLenVT. 5541 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5542 SDValue NewOp0 = 5543 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5544 SDValue NewOp1 = 5545 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5546 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5547 // ReplaceNodeResults requires we maintain the same type for the return 5548 // value. 5549 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5550 break; 5551 } 5552 case RISCVISD::SHFL: { 5553 // There is no SHFLIW instruction, but we can just promote the operation. 5554 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5555 "Unexpected custom legalisation"); 5556 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5557 SDValue NewOp0 = 5558 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5559 SDValue NewOp1 = 5560 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5561 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5562 // ReplaceNodeResults requires we maintain the same type for the return 5563 // value. 5564 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5565 break; 5566 } 5567 case ISD::BSWAP: 5568 case ISD::BITREVERSE: { 5569 MVT VT = N->getSimpleValueType(0); 5570 MVT XLenVT = Subtarget.getXLenVT(); 5571 assert((VT == MVT::i8 || VT == MVT::i16 || 5572 (VT == MVT::i32 && Subtarget.is64Bit())) && 5573 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5574 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5575 unsigned Imm = VT.getSizeInBits() - 1; 5576 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5577 if (N->getOpcode() == ISD::BSWAP) 5578 Imm &= ~0x7U; 5579 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5580 SDValue GREVI = 5581 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5582 // ReplaceNodeResults requires we maintain the same type for the return 5583 // value. 5584 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5585 break; 5586 } 5587 case ISD::FSHL: 5588 case ISD::FSHR: { 5589 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5590 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5591 SDValue NewOp0 = 5592 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5593 SDValue NewOp1 = 5594 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5595 SDValue NewOp2 = 5596 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5597 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5598 // Mask the shift amount to 5 bits. 5599 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5600 DAG.getConstant(0x1f, DL, MVT::i64)); 5601 unsigned Opc = 5602 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5603 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5604 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5605 break; 5606 } 5607 case ISD::EXTRACT_VECTOR_ELT: { 5608 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5609 // type is illegal (currently only vXi64 RV32). 5610 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5611 // transferred to the destination register. We issue two of these from the 5612 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5613 // first element. 5614 SDValue Vec = N->getOperand(0); 5615 SDValue Idx = N->getOperand(1); 5616 5617 // The vector type hasn't been legalized yet so we can't issue target 5618 // specific nodes if it needs legalization. 5619 // FIXME: We would manually legalize if it's important. 5620 if (!isTypeLegal(Vec.getValueType())) 5621 return; 5622 5623 MVT VecVT = Vec.getSimpleValueType(); 5624 5625 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5626 VecVT.getVectorElementType() == MVT::i64 && 5627 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5628 5629 // If this is a fixed vector, we need to convert it to a scalable vector. 5630 MVT ContainerVT = VecVT; 5631 if (VecVT.isFixedLengthVector()) { 5632 ContainerVT = getContainerForFixedLengthVector(VecVT); 5633 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5634 } 5635 5636 MVT XLenVT = Subtarget.getXLenVT(); 5637 5638 // Use a VL of 1 to avoid processing more elements than we need. 5639 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5640 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5641 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5642 5643 // Unless the index is known to be 0, we must slide the vector down to get 5644 // the desired element into index 0. 5645 if (!isNullConstant(Idx)) { 5646 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5647 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5648 } 5649 5650 // Extract the lower XLEN bits of the correct vector element. 5651 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5652 5653 // To extract the upper XLEN bits of the vector element, shift the first 5654 // element right by 32 bits and re-extract the lower XLEN bits. 5655 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5656 DAG.getConstant(32, DL, XLenVT), VL); 5657 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5658 ThirtyTwoV, Mask, VL); 5659 5660 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5661 5662 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5663 break; 5664 } 5665 case ISD::INTRINSIC_WO_CHAIN: { 5666 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5667 switch (IntNo) { 5668 default: 5669 llvm_unreachable( 5670 "Don't know how to custom type legalize this intrinsic!"); 5671 case Intrinsic::riscv_orc_b: { 5672 // Lower to the GORCI encoding for orc.b with the operand extended. 5673 SDValue NewOp = 5674 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5675 // If Zbp is enabled, use GORCIW which will sign extend the result. 5676 unsigned Opc = 5677 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5678 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5679 DAG.getConstant(7, DL, MVT::i64)); 5680 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5681 return; 5682 } 5683 case Intrinsic::riscv_grev: 5684 case Intrinsic::riscv_gorc: { 5685 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5686 "Unexpected custom legalisation"); 5687 SDValue NewOp1 = 5688 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5689 SDValue NewOp2 = 5690 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5691 unsigned Opc = 5692 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5693 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5694 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5695 break; 5696 } 5697 case Intrinsic::riscv_shfl: 5698 case Intrinsic::riscv_unshfl: { 5699 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5700 "Unexpected custom legalisation"); 5701 SDValue NewOp1 = 5702 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5703 SDValue NewOp2 = 5704 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5705 unsigned Opc = 5706 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5707 if (isa<ConstantSDNode>(N->getOperand(2))) { 5708 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5709 DAG.getConstant(0xf, DL, MVT::i64)); 5710 Opc = 5711 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5712 } 5713 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5714 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5715 break; 5716 } 5717 case Intrinsic::riscv_bcompress: 5718 case Intrinsic::riscv_bdecompress: { 5719 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5720 "Unexpected custom legalisation"); 5721 SDValue NewOp1 = 5722 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5723 SDValue NewOp2 = 5724 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5725 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5726 ? RISCVISD::BCOMPRESSW 5727 : RISCVISD::BDECOMPRESSW; 5728 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5729 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5730 break; 5731 } 5732 case Intrinsic::riscv_vmv_x_s: { 5733 EVT VT = N->getValueType(0); 5734 MVT XLenVT = Subtarget.getXLenVT(); 5735 if (VT.bitsLT(XLenVT)) { 5736 // Simple case just extract using vmv.x.s and truncate. 5737 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5738 Subtarget.getXLenVT(), N->getOperand(1)); 5739 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5740 return; 5741 } 5742 5743 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5744 "Unexpected custom legalization"); 5745 5746 // We need to do the move in two steps. 5747 SDValue Vec = N->getOperand(1); 5748 MVT VecVT = Vec.getSimpleValueType(); 5749 5750 // First extract the lower XLEN bits of the element. 5751 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5752 5753 // To extract the upper XLEN bits of the vector element, shift the first 5754 // element right by 32 bits and re-extract the lower XLEN bits. 5755 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5756 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5757 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5758 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5759 DAG.getConstant(32, DL, XLenVT), VL); 5760 SDValue LShr32 = 5761 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5762 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5763 5764 Results.push_back( 5765 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5766 break; 5767 } 5768 } 5769 break; 5770 } 5771 case ISD::VECREDUCE_ADD: 5772 case ISD::VECREDUCE_AND: 5773 case ISD::VECREDUCE_OR: 5774 case ISD::VECREDUCE_XOR: 5775 case ISD::VECREDUCE_SMAX: 5776 case ISD::VECREDUCE_UMAX: 5777 case ISD::VECREDUCE_SMIN: 5778 case ISD::VECREDUCE_UMIN: 5779 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5780 Results.push_back(V); 5781 break; 5782 case ISD::FLT_ROUNDS_: { 5783 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5784 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5785 Results.push_back(Res.getValue(0)); 5786 Results.push_back(Res.getValue(1)); 5787 break; 5788 } 5789 } 5790 } 5791 5792 // A structure to hold one of the bit-manipulation patterns below. Together, a 5793 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5794 // (or (and (shl x, 1), 0xAAAAAAAA), 5795 // (and (srl x, 1), 0x55555555)) 5796 struct RISCVBitmanipPat { 5797 SDValue Op; 5798 unsigned ShAmt; 5799 bool IsSHL; 5800 5801 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5802 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5803 } 5804 }; 5805 5806 // Matches patterns of the form 5807 // (and (shl x, C2), (C1 << C2)) 5808 // (and (srl x, C2), C1) 5809 // (shl (and x, C1), C2) 5810 // (srl (and x, (C1 << C2)), C2) 5811 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5812 // The expected masks for each shift amount are specified in BitmanipMasks where 5813 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5814 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5815 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5816 // XLen is 64. 5817 static Optional<RISCVBitmanipPat> 5818 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5819 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5820 "Unexpected number of masks"); 5821 Optional<uint64_t> Mask; 5822 // Optionally consume a mask around the shift operation. 5823 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5824 Mask = Op.getConstantOperandVal(1); 5825 Op = Op.getOperand(0); 5826 } 5827 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5828 return None; 5829 bool IsSHL = Op.getOpcode() == ISD::SHL; 5830 5831 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5832 return None; 5833 uint64_t ShAmt = Op.getConstantOperandVal(1); 5834 5835 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5836 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5837 return None; 5838 // If we don't have enough masks for 64 bit, then we must be trying to 5839 // match SHFL so we're only allowed to shift 1/4 of the width. 5840 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5841 return None; 5842 5843 SDValue Src = Op.getOperand(0); 5844 5845 // The expected mask is shifted left when the AND is found around SHL 5846 // patterns. 5847 // ((x >> 1) & 0x55555555) 5848 // ((x << 1) & 0xAAAAAAAA) 5849 bool SHLExpMask = IsSHL; 5850 5851 if (!Mask) { 5852 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5853 // the mask is all ones: consume that now. 5854 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5855 Mask = Src.getConstantOperandVal(1); 5856 Src = Src.getOperand(0); 5857 // The expected mask is now in fact shifted left for SRL, so reverse the 5858 // decision. 5859 // ((x & 0xAAAAAAAA) >> 1) 5860 // ((x & 0x55555555) << 1) 5861 SHLExpMask = !SHLExpMask; 5862 } else { 5863 // Use a default shifted mask of all-ones if there's no AND, truncated 5864 // down to the expected width. This simplifies the logic later on. 5865 Mask = maskTrailingOnes<uint64_t>(Width); 5866 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5867 } 5868 } 5869 5870 unsigned MaskIdx = Log2_32(ShAmt); 5871 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5872 5873 if (SHLExpMask) 5874 ExpMask <<= ShAmt; 5875 5876 if (Mask != ExpMask) 5877 return None; 5878 5879 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5880 } 5881 5882 // Matches any of the following bit-manipulation patterns: 5883 // (and (shl x, 1), (0x55555555 << 1)) 5884 // (and (srl x, 1), 0x55555555) 5885 // (shl (and x, 0x55555555), 1) 5886 // (srl (and x, (0x55555555 << 1)), 1) 5887 // where the shift amount and mask may vary thus: 5888 // [1] = 0x55555555 / 0xAAAAAAAA 5889 // [2] = 0x33333333 / 0xCCCCCCCC 5890 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5891 // [8] = 0x00FF00FF / 0xFF00FF00 5892 // [16] = 0x0000FFFF / 0xFFFFFFFF 5893 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5894 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5895 // These are the unshifted masks which we use to match bit-manipulation 5896 // patterns. They may be shifted left in certain circumstances. 5897 static const uint64_t BitmanipMasks[] = { 5898 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5899 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5900 5901 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5902 } 5903 5904 // Match the following pattern as a GREVI(W) operation 5905 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5906 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5907 const RISCVSubtarget &Subtarget) { 5908 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5909 EVT VT = Op.getValueType(); 5910 5911 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5912 auto LHS = matchGREVIPat(Op.getOperand(0)); 5913 auto RHS = matchGREVIPat(Op.getOperand(1)); 5914 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5915 SDLoc DL(Op); 5916 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5917 DAG.getConstant(LHS->ShAmt, DL, VT)); 5918 } 5919 } 5920 return SDValue(); 5921 } 5922 5923 // Matches any the following pattern as a GORCI(W) operation 5924 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5925 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5926 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5927 // Note that with the variant of 3., 5928 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5929 // the inner pattern will first be matched as GREVI and then the outer 5930 // pattern will be matched to GORC via the first rule above. 5931 // 4. (or (rotl/rotr x, bitwidth/2), x) 5932 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5933 const RISCVSubtarget &Subtarget) { 5934 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5935 EVT VT = Op.getValueType(); 5936 5937 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5938 SDLoc DL(Op); 5939 SDValue Op0 = Op.getOperand(0); 5940 SDValue Op1 = Op.getOperand(1); 5941 5942 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5943 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5944 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5945 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5946 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5947 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5948 if ((Reverse.getOpcode() == ISD::ROTL || 5949 Reverse.getOpcode() == ISD::ROTR) && 5950 Reverse.getOperand(0) == X && 5951 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5952 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5953 if (RotAmt == (VT.getSizeInBits() / 2)) 5954 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5955 DAG.getConstant(RotAmt, DL, VT)); 5956 } 5957 return SDValue(); 5958 }; 5959 5960 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5961 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5962 return V; 5963 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5964 return V; 5965 5966 // OR is commutable so canonicalize its OR operand to the left 5967 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5968 std::swap(Op0, Op1); 5969 if (Op0.getOpcode() != ISD::OR) 5970 return SDValue(); 5971 SDValue OrOp0 = Op0.getOperand(0); 5972 SDValue OrOp1 = Op0.getOperand(1); 5973 auto LHS = matchGREVIPat(OrOp0); 5974 // OR is commutable so swap the operands and try again: x might have been 5975 // on the left 5976 if (!LHS) { 5977 std::swap(OrOp0, OrOp1); 5978 LHS = matchGREVIPat(OrOp0); 5979 } 5980 auto RHS = matchGREVIPat(Op1); 5981 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5982 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5983 DAG.getConstant(LHS->ShAmt, DL, VT)); 5984 } 5985 } 5986 return SDValue(); 5987 } 5988 5989 // Matches any of the following bit-manipulation patterns: 5990 // (and (shl x, 1), (0x22222222 << 1)) 5991 // (and (srl x, 1), 0x22222222) 5992 // (shl (and x, 0x22222222), 1) 5993 // (srl (and x, (0x22222222 << 1)), 1) 5994 // where the shift amount and mask may vary thus: 5995 // [1] = 0x22222222 / 0x44444444 5996 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5997 // [4] = 0x00F000F0 / 0x0F000F00 5998 // [8] = 0x0000FF00 / 0x00FF0000 5999 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6000 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6001 // These are the unshifted masks which we use to match bit-manipulation 6002 // patterns. They may be shifted left in certain circumstances. 6003 static const uint64_t BitmanipMasks[] = { 6004 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6005 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6006 6007 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6008 } 6009 6010 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6011 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6012 const RISCVSubtarget &Subtarget) { 6013 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6014 EVT VT = Op.getValueType(); 6015 6016 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6017 return SDValue(); 6018 6019 SDValue Op0 = Op.getOperand(0); 6020 SDValue Op1 = Op.getOperand(1); 6021 6022 // Or is commutable so canonicalize the second OR to the LHS. 6023 if (Op0.getOpcode() != ISD::OR) 6024 std::swap(Op0, Op1); 6025 if (Op0.getOpcode() != ISD::OR) 6026 return SDValue(); 6027 6028 // We found an inner OR, so our operands are the operands of the inner OR 6029 // and the other operand of the outer OR. 6030 SDValue A = Op0.getOperand(0); 6031 SDValue B = Op0.getOperand(1); 6032 SDValue C = Op1; 6033 6034 auto Match1 = matchSHFLPat(A); 6035 auto Match2 = matchSHFLPat(B); 6036 6037 // If neither matched, we failed. 6038 if (!Match1 && !Match2) 6039 return SDValue(); 6040 6041 // We had at least one match. if one failed, try the remaining C operand. 6042 if (!Match1) { 6043 std::swap(A, C); 6044 Match1 = matchSHFLPat(A); 6045 if (!Match1) 6046 return SDValue(); 6047 } else if (!Match2) { 6048 std::swap(B, C); 6049 Match2 = matchSHFLPat(B); 6050 if (!Match2) 6051 return SDValue(); 6052 } 6053 assert(Match1 && Match2); 6054 6055 // Make sure our matches pair up. 6056 if (!Match1->formsPairWith(*Match2)) 6057 return SDValue(); 6058 6059 // All the remains is to make sure C is an AND with the same input, that masks 6060 // out the bits that are being shuffled. 6061 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6062 C.getOperand(0) != Match1->Op) 6063 return SDValue(); 6064 6065 uint64_t Mask = C.getConstantOperandVal(1); 6066 6067 static const uint64_t BitmanipMasks[] = { 6068 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6069 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6070 }; 6071 6072 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6073 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6074 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6075 6076 if (Mask != ExpMask) 6077 return SDValue(); 6078 6079 SDLoc DL(Op); 6080 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6081 DAG.getConstant(Match1->ShAmt, DL, VT)); 6082 } 6083 6084 // Optimize (add (shl x, c0), (shl y, c1)) -> 6085 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6086 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6087 const RISCVSubtarget &Subtarget) { 6088 // Perform this optimization only in the zba extension. 6089 if (!Subtarget.hasStdExtZba()) 6090 return SDValue(); 6091 6092 // Skip for vector types and larger types. 6093 EVT VT = N->getValueType(0); 6094 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6095 return SDValue(); 6096 6097 // The two operand nodes must be SHL and have no other use. 6098 SDValue N0 = N->getOperand(0); 6099 SDValue N1 = N->getOperand(1); 6100 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6101 !N0->hasOneUse() || !N1->hasOneUse()) 6102 return SDValue(); 6103 6104 // Check c0 and c1. 6105 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6106 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6107 if (!N0C || !N1C) 6108 return SDValue(); 6109 int64_t C0 = N0C->getSExtValue(); 6110 int64_t C1 = N1C->getSExtValue(); 6111 if (C0 <= 0 || C1 <= 0) 6112 return SDValue(); 6113 6114 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6115 int64_t Bits = std::min(C0, C1); 6116 int64_t Diff = std::abs(C0 - C1); 6117 if (Diff != 1 && Diff != 2 && Diff != 3) 6118 return SDValue(); 6119 6120 // Build nodes. 6121 SDLoc DL(N); 6122 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6123 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6124 SDValue NA0 = 6125 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6126 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6127 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6128 } 6129 6130 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6131 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6132 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6133 // not undo itself, but they are redundant. 6134 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6135 SDValue Src = N->getOperand(0); 6136 6137 if (Src.getOpcode() != N->getOpcode()) 6138 return SDValue(); 6139 6140 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6141 !isa<ConstantSDNode>(Src.getOperand(1))) 6142 return SDValue(); 6143 6144 unsigned ShAmt1 = N->getConstantOperandVal(1); 6145 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6146 Src = Src.getOperand(0); 6147 6148 unsigned CombinedShAmt; 6149 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6150 CombinedShAmt = ShAmt1 | ShAmt2; 6151 else 6152 CombinedShAmt = ShAmt1 ^ ShAmt2; 6153 6154 if (CombinedShAmt == 0) 6155 return Src; 6156 6157 SDLoc DL(N); 6158 return DAG.getNode( 6159 N->getOpcode(), DL, N->getValueType(0), Src, 6160 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6161 } 6162 6163 // Combine a constant select operand into its use: 6164 // 6165 // (and (select cond, -1, c), x) 6166 // -> (select cond, x, (and x, c)) [AllOnes=1] 6167 // (or (select cond, 0, c), x) 6168 // -> (select cond, x, (or x, c)) [AllOnes=0] 6169 // (xor (select cond, 0, c), x) 6170 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6171 // (add (select cond, 0, c), x) 6172 // -> (select cond, x, (add x, c)) [AllOnes=0] 6173 // (sub x, (select cond, 0, c)) 6174 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6175 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6176 SelectionDAG &DAG, bool AllOnes) { 6177 EVT VT = N->getValueType(0); 6178 6179 // Skip vectors. 6180 if (VT.isVector()) 6181 return SDValue(); 6182 6183 if ((Slct.getOpcode() != ISD::SELECT && 6184 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6185 !Slct.hasOneUse()) 6186 return SDValue(); 6187 6188 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6189 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6190 }; 6191 6192 bool SwapSelectOps; 6193 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6194 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6195 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6196 SDValue NonConstantVal; 6197 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6198 SwapSelectOps = false; 6199 NonConstantVal = FalseVal; 6200 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6201 SwapSelectOps = true; 6202 NonConstantVal = TrueVal; 6203 } else 6204 return SDValue(); 6205 6206 // Slct is now know to be the desired identity constant when CC is true. 6207 TrueVal = OtherOp; 6208 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6209 // Unless SwapSelectOps says the condition should be false. 6210 if (SwapSelectOps) 6211 std::swap(TrueVal, FalseVal); 6212 6213 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6214 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6215 {Slct.getOperand(0), Slct.getOperand(1), 6216 Slct.getOperand(2), TrueVal, FalseVal}); 6217 6218 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6219 {Slct.getOperand(0), TrueVal, FalseVal}); 6220 } 6221 6222 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6223 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6224 bool AllOnes) { 6225 SDValue N0 = N->getOperand(0); 6226 SDValue N1 = N->getOperand(1); 6227 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6228 return Result; 6229 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6230 return Result; 6231 return SDValue(); 6232 } 6233 6234 // Transform (add (mul x, c0), c1) -> 6235 // (add (mul (add x, c1/c0), c0), c1%c0). 6236 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6237 // Or transform (add (mul x, c0), c1) -> 6238 // (mul (add x, c1/c0), c0). 6239 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6240 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6241 const RISCVSubtarget &Subtarget) { 6242 // Skip for vector types and larger types. 6243 EVT VT = N->getValueType(0); 6244 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6245 return SDValue(); 6246 // The first operand node must be a MUL and has no other use. 6247 SDValue N0 = N->getOperand(0); 6248 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6249 return SDValue(); 6250 // Check if c0 and c1 match above conditions. 6251 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6252 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6253 if (!N0C || !N1C) 6254 return SDValue(); 6255 int64_t C0 = N0C->getSExtValue(); 6256 int64_t C1 = N1C->getSExtValue(); 6257 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6258 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6259 return SDValue(); 6260 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6261 SDLoc DL(N); 6262 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6263 DAG.getConstant(C1 / C0, DL, VT)); 6264 SDValue New1 = 6265 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6266 if ((C1 % C0) == 0) 6267 return New1; 6268 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6269 } 6270 6271 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6272 const RISCVSubtarget &Subtarget) { 6273 // Transform (add (mul x, c0), c1) -> 6274 // (add (mul (add x, c1/c0), c0), c1%c0). 6275 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6276 // Or transform (add (mul x, c0), c1) -> 6277 // (mul (add x, c1/c0), c0). 6278 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6279 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6280 return V; 6281 // Fold (add (shl x, c0), (shl y, c1)) -> 6282 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6283 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6284 return V; 6285 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6286 // (select lhs, rhs, cc, x, (add x, y)) 6287 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6288 } 6289 6290 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6291 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6292 // (select lhs, rhs, cc, x, (sub x, y)) 6293 SDValue N0 = N->getOperand(0); 6294 SDValue N1 = N->getOperand(1); 6295 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6296 } 6297 6298 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6299 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6300 // (select lhs, rhs, cc, x, (and x, y)) 6301 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6302 } 6303 6304 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6305 const RISCVSubtarget &Subtarget) { 6306 if (Subtarget.hasStdExtZbp()) { 6307 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6308 return GREV; 6309 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6310 return GORC; 6311 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6312 return SHFL; 6313 } 6314 6315 // fold (or (select cond, 0, y), x) -> 6316 // (select cond, x, (or x, y)) 6317 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6318 } 6319 6320 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6321 // fold (xor (select cond, 0, y), x) -> 6322 // (select cond, x, (xor x, y)) 6323 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6324 } 6325 6326 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6327 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6328 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6329 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6330 // ADDW/SUBW/MULW. 6331 static SDValue performANY_EXTENDCombine(SDNode *N, 6332 TargetLowering::DAGCombinerInfo &DCI, 6333 const RISCVSubtarget &Subtarget) { 6334 if (!Subtarget.is64Bit()) 6335 return SDValue(); 6336 6337 SelectionDAG &DAG = DCI.DAG; 6338 6339 SDValue Src = N->getOperand(0); 6340 EVT VT = N->getValueType(0); 6341 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6342 return SDValue(); 6343 6344 // The opcode must be one that can implicitly sign_extend. 6345 // FIXME: Additional opcodes. 6346 switch (Src.getOpcode()) { 6347 default: 6348 return SDValue(); 6349 case ISD::MUL: 6350 if (!Subtarget.hasStdExtM()) 6351 return SDValue(); 6352 LLVM_FALLTHROUGH; 6353 case ISD::ADD: 6354 case ISD::SUB: 6355 break; 6356 } 6357 6358 // Only handle cases where the result is used by a CopyToReg. That likely 6359 // means the value is a liveout of the basic block. This helps prevent 6360 // infinite combine loops like PR51206. 6361 if (none_of(N->uses(), 6362 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6363 return SDValue(); 6364 6365 SmallVector<SDNode *, 4> SetCCs; 6366 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6367 UE = Src.getNode()->use_end(); 6368 UI != UE; ++UI) { 6369 SDNode *User = *UI; 6370 if (User == N) 6371 continue; 6372 if (UI.getUse().getResNo() != Src.getResNo()) 6373 continue; 6374 // All i32 setccs are legalized by sign extending operands. 6375 if (User->getOpcode() == ISD::SETCC) { 6376 SetCCs.push_back(User); 6377 continue; 6378 } 6379 // We don't know if we can extend this user. 6380 break; 6381 } 6382 6383 // If we don't have any SetCCs, this isn't worthwhile. 6384 if (SetCCs.empty()) 6385 return SDValue(); 6386 6387 SDLoc DL(N); 6388 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6389 DCI.CombineTo(N, SExt); 6390 6391 // Promote all the setccs. 6392 for (SDNode *SetCC : SetCCs) { 6393 SmallVector<SDValue, 4> Ops; 6394 6395 for (unsigned j = 0; j != 2; ++j) { 6396 SDValue SOp = SetCC->getOperand(j); 6397 if (SOp == Src) 6398 Ops.push_back(SExt); 6399 else 6400 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6401 } 6402 6403 Ops.push_back(SetCC->getOperand(2)); 6404 DCI.CombineTo(SetCC, 6405 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6406 } 6407 return SDValue(N, 0); 6408 } 6409 6410 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6411 DAGCombinerInfo &DCI) const { 6412 SelectionDAG &DAG = DCI.DAG; 6413 6414 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6415 // bits are demanded. N will be added to the Worklist if it was not deleted. 6416 // Caller should return SDValue(N, 0) if this returns true. 6417 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6418 SDValue Op = N->getOperand(OpNo); 6419 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6420 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6421 return false; 6422 6423 if (N->getOpcode() != ISD::DELETED_NODE) 6424 DCI.AddToWorklist(N); 6425 return true; 6426 }; 6427 6428 switch (N->getOpcode()) { 6429 default: 6430 break; 6431 case RISCVISD::SplitF64: { 6432 SDValue Op0 = N->getOperand(0); 6433 // If the input to SplitF64 is just BuildPairF64 then the operation is 6434 // redundant. Instead, use BuildPairF64's operands directly. 6435 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6436 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6437 6438 SDLoc DL(N); 6439 6440 // It's cheaper to materialise two 32-bit integers than to load a double 6441 // from the constant pool and transfer it to integer registers through the 6442 // stack. 6443 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6444 APInt V = C->getValueAPF().bitcastToAPInt(); 6445 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6446 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6447 return DCI.CombineTo(N, Lo, Hi); 6448 } 6449 6450 // This is a target-specific version of a DAGCombine performed in 6451 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6452 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6453 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6454 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6455 !Op0.getNode()->hasOneUse()) 6456 break; 6457 SDValue NewSplitF64 = 6458 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6459 Op0.getOperand(0)); 6460 SDValue Lo = NewSplitF64.getValue(0); 6461 SDValue Hi = NewSplitF64.getValue(1); 6462 APInt SignBit = APInt::getSignMask(32); 6463 if (Op0.getOpcode() == ISD::FNEG) { 6464 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6465 DAG.getConstant(SignBit, DL, MVT::i32)); 6466 return DCI.CombineTo(N, Lo, NewHi); 6467 } 6468 assert(Op0.getOpcode() == ISD::FABS); 6469 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6470 DAG.getConstant(~SignBit, DL, MVT::i32)); 6471 return DCI.CombineTo(N, Lo, NewHi); 6472 } 6473 case RISCVISD::SLLW: 6474 case RISCVISD::SRAW: 6475 case RISCVISD::SRLW: 6476 case RISCVISD::ROLW: 6477 case RISCVISD::RORW: { 6478 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6479 if (SimplifyDemandedLowBitsHelper(0, 32) || 6480 SimplifyDemandedLowBitsHelper(1, 5)) 6481 return SDValue(N, 0); 6482 break; 6483 } 6484 case RISCVISD::CLZW: 6485 case RISCVISD::CTZW: { 6486 // Only the lower 32 bits of the first operand are read 6487 if (SimplifyDemandedLowBitsHelper(0, 32)) 6488 return SDValue(N, 0); 6489 break; 6490 } 6491 case RISCVISD::FSL: 6492 case RISCVISD::FSR: { 6493 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6494 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6495 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6496 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6497 return SDValue(N, 0); 6498 break; 6499 } 6500 case RISCVISD::FSLW: 6501 case RISCVISD::FSRW: { 6502 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6503 // read. 6504 if (SimplifyDemandedLowBitsHelper(0, 32) || 6505 SimplifyDemandedLowBitsHelper(1, 32) || 6506 SimplifyDemandedLowBitsHelper(2, 6)) 6507 return SDValue(N, 0); 6508 break; 6509 } 6510 case RISCVISD::GREV: 6511 case RISCVISD::GORC: { 6512 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6513 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6514 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6515 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6516 return SDValue(N, 0); 6517 6518 return combineGREVI_GORCI(N, DCI.DAG); 6519 } 6520 case RISCVISD::GREVW: 6521 case RISCVISD::GORCW: { 6522 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6523 if (SimplifyDemandedLowBitsHelper(0, 32) || 6524 SimplifyDemandedLowBitsHelper(1, 5)) 6525 return SDValue(N, 0); 6526 6527 return combineGREVI_GORCI(N, DCI.DAG); 6528 } 6529 case RISCVISD::SHFL: 6530 case RISCVISD::UNSHFL: { 6531 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6532 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6533 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6534 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6535 return SDValue(N, 0); 6536 6537 break; 6538 } 6539 case RISCVISD::SHFLW: 6540 case RISCVISD::UNSHFLW: { 6541 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6542 SDValue LHS = N->getOperand(0); 6543 SDValue RHS = N->getOperand(1); 6544 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6545 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6546 if (SimplifyDemandedLowBitsHelper(0, 32) || 6547 SimplifyDemandedLowBitsHelper(1, 4)) 6548 return SDValue(N, 0); 6549 6550 break; 6551 } 6552 case RISCVISD::BCOMPRESSW: 6553 case RISCVISD::BDECOMPRESSW: { 6554 // Only the lower 32 bits of LHS and RHS are read. 6555 if (SimplifyDemandedLowBitsHelper(0, 32) || 6556 SimplifyDemandedLowBitsHelper(1, 32)) 6557 return SDValue(N, 0); 6558 6559 break; 6560 } 6561 case RISCVISD::FMV_X_ANYEXTH: 6562 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6563 SDLoc DL(N); 6564 SDValue Op0 = N->getOperand(0); 6565 MVT VT = N->getSimpleValueType(0); 6566 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6567 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6568 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6569 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6570 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6571 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6572 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6573 assert(Op0.getOperand(0).getValueType() == VT && 6574 "Unexpected value type!"); 6575 return Op0.getOperand(0); 6576 } 6577 6578 // This is a target-specific version of a DAGCombine performed in 6579 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6580 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6581 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6582 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6583 !Op0.getNode()->hasOneUse()) 6584 break; 6585 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6586 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6587 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6588 if (Op0.getOpcode() == ISD::FNEG) 6589 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6590 DAG.getConstant(SignBit, DL, VT)); 6591 6592 assert(Op0.getOpcode() == ISD::FABS); 6593 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6594 DAG.getConstant(~SignBit, DL, VT)); 6595 } 6596 case ISD::ADD: 6597 return performADDCombine(N, DAG, Subtarget); 6598 case ISD::SUB: 6599 return performSUBCombine(N, DAG); 6600 case ISD::AND: 6601 return performANDCombine(N, DAG); 6602 case ISD::OR: 6603 return performORCombine(N, DAG, Subtarget); 6604 case ISD::XOR: 6605 return performXORCombine(N, DAG); 6606 case ISD::ANY_EXTEND: 6607 return performANY_EXTENDCombine(N, DCI, Subtarget); 6608 case ISD::ZERO_EXTEND: 6609 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6610 // type legalization. This is safe because fp_to_uint produces poison if 6611 // it overflows. 6612 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6613 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6614 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6615 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6616 N->getOperand(0).getOperand(0)); 6617 return SDValue(); 6618 case RISCVISD::SELECT_CC: { 6619 // Transform 6620 SDValue LHS = N->getOperand(0); 6621 SDValue RHS = N->getOperand(1); 6622 SDValue TrueV = N->getOperand(3); 6623 SDValue FalseV = N->getOperand(4); 6624 6625 // If the True and False values are the same, we don't need a select_cc. 6626 if (TrueV == FalseV) 6627 return TrueV; 6628 6629 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6630 if (!ISD::isIntEqualitySetCC(CCVal)) 6631 break; 6632 6633 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6634 // (select_cc X, Y, lt, trueV, falseV) 6635 // Sometimes the setcc is introduced after select_cc has been formed. 6636 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6637 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6638 // If we're looking for eq 0 instead of ne 0, we need to invert the 6639 // condition. 6640 bool Invert = CCVal == ISD::SETEQ; 6641 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6642 if (Invert) 6643 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6644 6645 SDLoc DL(N); 6646 RHS = LHS.getOperand(1); 6647 LHS = LHS.getOperand(0); 6648 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6649 6650 SDValue TargetCC = DAG.getCondCode(CCVal); 6651 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6652 {LHS, RHS, TargetCC, TrueV, FalseV}); 6653 } 6654 6655 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6656 // (select_cc X, Y, eq/ne, trueV, falseV) 6657 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6658 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6659 {LHS.getOperand(0), LHS.getOperand(1), 6660 N->getOperand(2), TrueV, FalseV}); 6661 // (select_cc X, 1, setne, trueV, falseV) -> 6662 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6663 // This can occur when legalizing some floating point comparisons. 6664 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6665 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6666 SDLoc DL(N); 6667 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6668 SDValue TargetCC = DAG.getCondCode(CCVal); 6669 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6670 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6671 {LHS, RHS, TargetCC, TrueV, FalseV}); 6672 } 6673 6674 break; 6675 } 6676 case RISCVISD::BR_CC: { 6677 SDValue LHS = N->getOperand(1); 6678 SDValue RHS = N->getOperand(2); 6679 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6680 if (!ISD::isIntEqualitySetCC(CCVal)) 6681 break; 6682 6683 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6684 // (br_cc X, Y, lt, dest) 6685 // Sometimes the setcc is introduced after br_cc has been formed. 6686 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6687 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6688 // If we're looking for eq 0 instead of ne 0, we need to invert the 6689 // condition. 6690 bool Invert = CCVal == ISD::SETEQ; 6691 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6692 if (Invert) 6693 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6694 6695 SDLoc DL(N); 6696 RHS = LHS.getOperand(1); 6697 LHS = LHS.getOperand(0); 6698 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6699 6700 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6701 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6702 N->getOperand(4)); 6703 } 6704 6705 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6706 // (br_cc X, Y, eq/ne, trueV, falseV) 6707 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6708 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6709 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6710 N->getOperand(3), N->getOperand(4)); 6711 6712 // (br_cc X, 1, setne, br_cc) -> 6713 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6714 // This can occur when legalizing some floating point comparisons. 6715 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6716 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6717 SDLoc DL(N); 6718 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6719 SDValue TargetCC = DAG.getCondCode(CCVal); 6720 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6721 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6722 N->getOperand(0), LHS, RHS, TargetCC, 6723 N->getOperand(4)); 6724 } 6725 break; 6726 } 6727 case ISD::FCOPYSIGN: { 6728 EVT VT = N->getValueType(0); 6729 if (!VT.isVector()) 6730 break; 6731 // There is a form of VFSGNJ which injects the negated sign of its second 6732 // operand. Try and bubble any FNEG up after the extend/round to produce 6733 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6734 // TRUNC=1. 6735 SDValue In2 = N->getOperand(1); 6736 // Avoid cases where the extend/round has multiple uses, as duplicating 6737 // those is typically more expensive than removing a fneg. 6738 if (!In2.hasOneUse()) 6739 break; 6740 if (In2.getOpcode() != ISD::FP_EXTEND && 6741 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6742 break; 6743 In2 = In2.getOperand(0); 6744 if (In2.getOpcode() != ISD::FNEG) 6745 break; 6746 SDLoc DL(N); 6747 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6748 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6749 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6750 } 6751 case ISD::MGATHER: 6752 case ISD::MSCATTER: 6753 case ISD::VP_GATHER: 6754 case ISD::VP_SCATTER: { 6755 if (!DCI.isBeforeLegalize()) 6756 break; 6757 SDValue Index, ScaleOp; 6758 bool IsIndexScaled = false; 6759 bool IsIndexSigned = false; 6760 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 6761 Index = VPGSN->getIndex(); 6762 ScaleOp = VPGSN->getScale(); 6763 IsIndexScaled = VPGSN->isIndexScaled(); 6764 IsIndexSigned = VPGSN->isIndexSigned(); 6765 } else { 6766 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 6767 Index = MGSN->getIndex(); 6768 ScaleOp = MGSN->getScale(); 6769 IsIndexScaled = MGSN->isIndexScaled(); 6770 IsIndexSigned = MGSN->isIndexSigned(); 6771 } 6772 EVT IndexVT = Index.getValueType(); 6773 MVT XLenVT = Subtarget.getXLenVT(); 6774 // RISCV indexed loads only support the "unsigned unscaled" addressing 6775 // mode, so anything else must be manually legalized. 6776 bool NeedsIdxLegalization = 6777 IsIndexScaled || 6778 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 6779 if (!NeedsIdxLegalization) 6780 break; 6781 6782 SDLoc DL(N); 6783 6784 // Any index legalization should first promote to XLenVT, so we don't lose 6785 // bits when scaling. This may create an illegal index type so we let 6786 // LLVM's legalization take care of the splitting. 6787 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 6788 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6789 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6790 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6791 DL, IndexVT, Index); 6792 } 6793 6794 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 6795 if (IsIndexScaled && Scale != 1) { 6796 // Manually scale the indices by the element size. 6797 // TODO: Sanitize the scale operand here? 6798 // TODO: For VP nodes, should we use VP_SHL here? 6799 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6800 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6801 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6802 } 6803 6804 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6805 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 6806 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 6807 {VPGN->getChain(), VPGN->getBasePtr(), Index, 6808 VPGN->getScale(), VPGN->getMask(), 6809 VPGN->getVectorLength()}, 6810 VPGN->getMemOperand(), NewIndexTy); 6811 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 6812 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 6813 {VPSN->getChain(), VPSN->getValue(), 6814 VPSN->getBasePtr(), Index, VPSN->getScale(), 6815 VPSN->getMask(), VPSN->getVectorLength()}, 6816 VPSN->getMemOperand(), NewIndexTy); 6817 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 6818 return DAG.getMaskedGather( 6819 N->getVTList(), MGN->getMemoryVT(), DL, 6820 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 6821 MGN->getBasePtr(), Index, MGN->getScale()}, 6822 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6823 const auto *MSN = cast<MaskedScatterSDNode>(N); 6824 return DAG.getMaskedScatter( 6825 N->getVTList(), MSN->getMemoryVT(), DL, 6826 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 6827 Index, MSN->getScale()}, 6828 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6829 } 6830 case RISCVISD::SRA_VL: 6831 case RISCVISD::SRL_VL: 6832 case RISCVISD::SHL_VL: { 6833 SDValue ShAmt = N->getOperand(1); 6834 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6835 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6836 SDLoc DL(N); 6837 SDValue VL = N->getOperand(3); 6838 EVT VT = N->getValueType(0); 6839 ShAmt = 6840 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6841 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6842 N->getOperand(2), N->getOperand(3)); 6843 } 6844 break; 6845 } 6846 case ISD::SRA: 6847 case ISD::SRL: 6848 case ISD::SHL: { 6849 SDValue ShAmt = N->getOperand(1); 6850 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6851 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6852 SDLoc DL(N); 6853 EVT VT = N->getValueType(0); 6854 ShAmt = 6855 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6856 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6857 } 6858 break; 6859 } 6860 case RISCVISD::MUL_VL: { 6861 // Try to form VWMUL or VWMULU. 6862 // FIXME: Look for splat of extended scalar as well. 6863 // FIXME: Support VWMULSU. 6864 SDValue Op0 = N->getOperand(0); 6865 SDValue Op1 = N->getOperand(1); 6866 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6867 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6868 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6869 return SDValue(); 6870 6871 // Make sure the extends have a single use. 6872 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6873 return SDValue(); 6874 6875 SDValue Mask = N->getOperand(2); 6876 SDValue VL = N->getOperand(3); 6877 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6878 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6879 return SDValue(); 6880 6881 Op0 = Op0.getOperand(0); 6882 Op1 = Op1.getOperand(0); 6883 6884 MVT VT = N->getSimpleValueType(0); 6885 MVT NarrowVT = 6886 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6887 VT.getVectorElementCount()); 6888 6889 SDLoc DL(N); 6890 6891 // Re-introduce narrower extends if needed. 6892 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6893 if (Op0.getValueType() != NarrowVT) 6894 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6895 if (Op1.getValueType() != NarrowVT) 6896 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6897 6898 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6899 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6900 } 6901 } 6902 6903 return SDValue(); 6904 } 6905 6906 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6907 const SDNode *N, CombineLevel Level) const { 6908 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6909 // materialised in fewer instructions than `(OP _, c1)`: 6910 // 6911 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6912 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6913 SDValue N0 = N->getOperand(0); 6914 EVT Ty = N0.getValueType(); 6915 if (Ty.isScalarInteger() && 6916 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6917 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6918 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6919 if (C1 && C2) { 6920 const APInt &C1Int = C1->getAPIntValue(); 6921 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6922 6923 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6924 // and the combine should happen, to potentially allow further combines 6925 // later. 6926 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6927 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6928 return true; 6929 6930 // We can materialise `c1` in an add immediate, so it's "free", and the 6931 // combine should be prevented. 6932 if (C1Int.getMinSignedBits() <= 64 && 6933 isLegalAddImmediate(C1Int.getSExtValue())) 6934 return false; 6935 6936 // Neither constant will fit into an immediate, so find materialisation 6937 // costs. 6938 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6939 Subtarget.getFeatureBits(), 6940 /*CompressionCost*/true); 6941 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6942 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 6943 /*CompressionCost*/true); 6944 6945 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6946 // combine should be prevented. 6947 if (C1Cost < ShiftedC1Cost) 6948 return false; 6949 } 6950 } 6951 return true; 6952 } 6953 6954 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6955 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6956 TargetLoweringOpt &TLO) const { 6957 // Delay this optimization as late as possible. 6958 if (!TLO.LegalOps) 6959 return false; 6960 6961 EVT VT = Op.getValueType(); 6962 if (VT.isVector()) 6963 return false; 6964 6965 // Only handle AND for now. 6966 if (Op.getOpcode() != ISD::AND) 6967 return false; 6968 6969 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6970 if (!C) 6971 return false; 6972 6973 const APInt &Mask = C->getAPIntValue(); 6974 6975 // Clear all non-demanded bits initially. 6976 APInt ShrunkMask = Mask & DemandedBits; 6977 6978 // Try to make a smaller immediate by setting undemanded bits. 6979 6980 APInt ExpandedMask = Mask | ~DemandedBits; 6981 6982 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6983 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6984 }; 6985 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6986 if (NewMask == Mask) 6987 return true; 6988 SDLoc DL(Op); 6989 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6990 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6991 return TLO.CombineTo(Op, NewOp); 6992 }; 6993 6994 // If the shrunk mask fits in sign extended 12 bits, let the target 6995 // independent code apply it. 6996 if (ShrunkMask.isSignedIntN(12)) 6997 return false; 6998 6999 // Preserve (and X, 0xffff) when zext.h is supported. 7000 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7001 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7002 if (IsLegalMask(NewMask)) 7003 return UseMask(NewMask); 7004 } 7005 7006 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7007 if (VT == MVT::i64) { 7008 APInt NewMask = APInt(64, 0xffffffff); 7009 if (IsLegalMask(NewMask)) 7010 return UseMask(NewMask); 7011 } 7012 7013 // For the remaining optimizations, we need to be able to make a negative 7014 // number through a combination of mask and undemanded bits. 7015 if (!ExpandedMask.isNegative()) 7016 return false; 7017 7018 // What is the fewest number of bits we need to represent the negative number. 7019 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7020 7021 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7022 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7023 APInt NewMask = ShrunkMask; 7024 if (MinSignedBits <= 12) 7025 NewMask.setBitsFrom(11); 7026 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7027 NewMask.setBitsFrom(31); 7028 else 7029 return false; 7030 7031 // Sanity check that our new mask is a subset of the demanded mask. 7032 assert(IsLegalMask(NewMask)); 7033 return UseMask(NewMask); 7034 } 7035 7036 static void computeGREV(APInt &Src, unsigned ShAmt) { 7037 ShAmt &= Src.getBitWidth() - 1; 7038 uint64_t x = Src.getZExtValue(); 7039 if (ShAmt & 1) 7040 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7041 if (ShAmt & 2) 7042 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7043 if (ShAmt & 4) 7044 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7045 if (ShAmt & 8) 7046 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7047 if (ShAmt & 16) 7048 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7049 if (ShAmt & 32) 7050 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7051 Src = x; 7052 } 7053 7054 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7055 KnownBits &Known, 7056 const APInt &DemandedElts, 7057 const SelectionDAG &DAG, 7058 unsigned Depth) const { 7059 unsigned BitWidth = Known.getBitWidth(); 7060 unsigned Opc = Op.getOpcode(); 7061 assert((Opc >= ISD::BUILTIN_OP_END || 7062 Opc == ISD::INTRINSIC_WO_CHAIN || 7063 Opc == ISD::INTRINSIC_W_CHAIN || 7064 Opc == ISD::INTRINSIC_VOID) && 7065 "Should use MaskedValueIsZero if you don't know whether Op" 7066 " is a target node!"); 7067 7068 Known.resetAll(); 7069 switch (Opc) { 7070 default: break; 7071 case RISCVISD::SELECT_CC: { 7072 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7073 // If we don't know any bits, early out. 7074 if (Known.isUnknown()) 7075 break; 7076 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7077 7078 // Only known if known in both the LHS and RHS. 7079 Known = KnownBits::commonBits(Known, Known2); 7080 break; 7081 } 7082 case RISCVISD::REMUW: { 7083 KnownBits Known2; 7084 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7085 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7086 // We only care about the lower 32 bits. 7087 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7088 // Restore the original width by sign extending. 7089 Known = Known.sext(BitWidth); 7090 break; 7091 } 7092 case RISCVISD::DIVUW: { 7093 KnownBits Known2; 7094 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7095 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7096 // We only care about the lower 32 bits. 7097 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7098 // Restore the original width by sign extending. 7099 Known = Known.sext(BitWidth); 7100 break; 7101 } 7102 case RISCVISD::CTZW: { 7103 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7104 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7105 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7106 Known.Zero.setBitsFrom(LowBits); 7107 break; 7108 } 7109 case RISCVISD::CLZW: { 7110 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7111 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7112 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7113 Known.Zero.setBitsFrom(LowBits); 7114 break; 7115 } 7116 case RISCVISD::GREV: 7117 case RISCVISD::GREVW: { 7118 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7119 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7120 if (Opc == RISCVISD::GREVW) 7121 Known = Known.trunc(32); 7122 unsigned ShAmt = C->getZExtValue(); 7123 computeGREV(Known.Zero, ShAmt); 7124 computeGREV(Known.One, ShAmt); 7125 if (Opc == RISCVISD::GREVW) 7126 Known = Known.sext(BitWidth); 7127 } 7128 break; 7129 } 7130 case RISCVISD::READ_VLENB: 7131 // We assume VLENB is at least 16 bytes. 7132 Known.Zero.setLowBits(4); 7133 // We assume VLENB is no more than 65536 / 8 bytes. 7134 Known.Zero.setBitsFrom(14); 7135 break; 7136 case ISD::INTRINSIC_W_CHAIN: { 7137 unsigned IntNo = Op.getConstantOperandVal(1); 7138 switch (IntNo) { 7139 default: 7140 // We can't do anything for most intrinsics. 7141 break; 7142 case Intrinsic::riscv_vsetvli: 7143 case Intrinsic::riscv_vsetvlimax: 7144 // Assume that VL output is positive and would fit in an int32_t. 7145 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7146 if (BitWidth >= 32) 7147 Known.Zero.setBitsFrom(31); 7148 break; 7149 } 7150 break; 7151 } 7152 } 7153 } 7154 7155 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7156 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7157 unsigned Depth) const { 7158 switch (Op.getOpcode()) { 7159 default: 7160 break; 7161 case RISCVISD::SELECT_CC: { 7162 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7163 if (Tmp == 1) return 1; // Early out. 7164 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7165 return std::min(Tmp, Tmp2); 7166 } 7167 case RISCVISD::SLLW: 7168 case RISCVISD::SRAW: 7169 case RISCVISD::SRLW: 7170 case RISCVISD::DIVW: 7171 case RISCVISD::DIVUW: 7172 case RISCVISD::REMUW: 7173 case RISCVISD::ROLW: 7174 case RISCVISD::RORW: 7175 case RISCVISD::GREVW: 7176 case RISCVISD::GORCW: 7177 case RISCVISD::FSLW: 7178 case RISCVISD::FSRW: 7179 case RISCVISD::SHFLW: 7180 case RISCVISD::UNSHFLW: 7181 case RISCVISD::BCOMPRESSW: 7182 case RISCVISD::BDECOMPRESSW: 7183 case RISCVISD::FCVT_W_RTZ_RV64: 7184 case RISCVISD::FCVT_WU_RTZ_RV64: 7185 // TODO: As the result is sign-extended, this is conservatively correct. A 7186 // more precise answer could be calculated for SRAW depending on known 7187 // bits in the shift amount. 7188 return 33; 7189 case RISCVISD::SHFL: 7190 case RISCVISD::UNSHFL: { 7191 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7192 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7193 // will stay within the upper 32 bits. If there were more than 32 sign bits 7194 // before there will be at least 33 sign bits after. 7195 if (Op.getValueType() == MVT::i64 && 7196 isa<ConstantSDNode>(Op.getOperand(1)) && 7197 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7198 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7199 if (Tmp > 32) 7200 return 33; 7201 } 7202 break; 7203 } 7204 case RISCVISD::VMV_X_S: 7205 // The number of sign bits of the scalar result is computed by obtaining the 7206 // element type of the input vector operand, subtracting its width from the 7207 // XLEN, and then adding one (sign bit within the element type). If the 7208 // element type is wider than XLen, the least-significant XLEN bits are 7209 // taken. 7210 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7211 return 1; 7212 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7213 } 7214 7215 return 1; 7216 } 7217 7218 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7219 MachineBasicBlock *BB) { 7220 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7221 7222 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7223 // Should the count have wrapped while it was being read, we need to try 7224 // again. 7225 // ... 7226 // read: 7227 // rdcycleh x3 # load high word of cycle 7228 // rdcycle x2 # load low word of cycle 7229 // rdcycleh x4 # load high word of cycle 7230 // bne x3, x4, read # check if high word reads match, otherwise try again 7231 // ... 7232 7233 MachineFunction &MF = *BB->getParent(); 7234 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7235 MachineFunction::iterator It = ++BB->getIterator(); 7236 7237 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7238 MF.insert(It, LoopMBB); 7239 7240 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7241 MF.insert(It, DoneMBB); 7242 7243 // Transfer the remainder of BB and its successor edges to DoneMBB. 7244 DoneMBB->splice(DoneMBB->begin(), BB, 7245 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7246 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7247 7248 BB->addSuccessor(LoopMBB); 7249 7250 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7251 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7252 Register LoReg = MI.getOperand(0).getReg(); 7253 Register HiReg = MI.getOperand(1).getReg(); 7254 DebugLoc DL = MI.getDebugLoc(); 7255 7256 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7257 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7258 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7259 .addReg(RISCV::X0); 7260 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7261 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7262 .addReg(RISCV::X0); 7263 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7264 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7265 .addReg(RISCV::X0); 7266 7267 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7268 .addReg(HiReg) 7269 .addReg(ReadAgainReg) 7270 .addMBB(LoopMBB); 7271 7272 LoopMBB->addSuccessor(LoopMBB); 7273 LoopMBB->addSuccessor(DoneMBB); 7274 7275 MI.eraseFromParent(); 7276 7277 return DoneMBB; 7278 } 7279 7280 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7281 MachineBasicBlock *BB) { 7282 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7283 7284 MachineFunction &MF = *BB->getParent(); 7285 DebugLoc DL = MI.getDebugLoc(); 7286 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7287 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7288 Register LoReg = MI.getOperand(0).getReg(); 7289 Register HiReg = MI.getOperand(1).getReg(); 7290 Register SrcReg = MI.getOperand(2).getReg(); 7291 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7292 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7293 7294 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7295 RI); 7296 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7297 MachineMemOperand *MMOLo = 7298 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7299 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7300 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7301 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7302 .addFrameIndex(FI) 7303 .addImm(0) 7304 .addMemOperand(MMOLo); 7305 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7306 .addFrameIndex(FI) 7307 .addImm(4) 7308 .addMemOperand(MMOHi); 7309 MI.eraseFromParent(); // The pseudo instruction is gone now. 7310 return BB; 7311 } 7312 7313 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7314 MachineBasicBlock *BB) { 7315 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7316 "Unexpected instruction"); 7317 7318 MachineFunction &MF = *BB->getParent(); 7319 DebugLoc DL = MI.getDebugLoc(); 7320 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7321 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7322 Register DstReg = MI.getOperand(0).getReg(); 7323 Register LoReg = MI.getOperand(1).getReg(); 7324 Register HiReg = MI.getOperand(2).getReg(); 7325 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7326 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7327 7328 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7329 MachineMemOperand *MMOLo = 7330 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7331 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7332 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7333 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7334 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7335 .addFrameIndex(FI) 7336 .addImm(0) 7337 .addMemOperand(MMOLo); 7338 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7339 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7340 .addFrameIndex(FI) 7341 .addImm(4) 7342 .addMemOperand(MMOHi); 7343 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7344 MI.eraseFromParent(); // The pseudo instruction is gone now. 7345 return BB; 7346 } 7347 7348 static bool isSelectPseudo(MachineInstr &MI) { 7349 switch (MI.getOpcode()) { 7350 default: 7351 return false; 7352 case RISCV::Select_GPR_Using_CC_GPR: 7353 case RISCV::Select_FPR16_Using_CC_GPR: 7354 case RISCV::Select_FPR32_Using_CC_GPR: 7355 case RISCV::Select_FPR64_Using_CC_GPR: 7356 return true; 7357 } 7358 } 7359 7360 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7361 MachineBasicBlock *BB, 7362 const RISCVSubtarget &Subtarget) { 7363 // To "insert" Select_* instructions, we actually have to insert the triangle 7364 // control-flow pattern. The incoming instructions know the destination vreg 7365 // to set, the condition code register to branch on, the true/false values to 7366 // select between, and the condcode to use to select the appropriate branch. 7367 // 7368 // We produce the following control flow: 7369 // HeadMBB 7370 // | \ 7371 // | IfFalseMBB 7372 // | / 7373 // TailMBB 7374 // 7375 // When we find a sequence of selects we attempt to optimize their emission 7376 // by sharing the control flow. Currently we only handle cases where we have 7377 // multiple selects with the exact same condition (same LHS, RHS and CC). 7378 // The selects may be interleaved with other instructions if the other 7379 // instructions meet some requirements we deem safe: 7380 // - They are debug instructions. Otherwise, 7381 // - They do not have side-effects, do not access memory and their inputs do 7382 // not depend on the results of the select pseudo-instructions. 7383 // The TrueV/FalseV operands of the selects cannot depend on the result of 7384 // previous selects in the sequence. 7385 // These conditions could be further relaxed. See the X86 target for a 7386 // related approach and more information. 7387 Register LHS = MI.getOperand(1).getReg(); 7388 Register RHS = MI.getOperand(2).getReg(); 7389 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7390 7391 SmallVector<MachineInstr *, 4> SelectDebugValues; 7392 SmallSet<Register, 4> SelectDests; 7393 SelectDests.insert(MI.getOperand(0).getReg()); 7394 7395 MachineInstr *LastSelectPseudo = &MI; 7396 7397 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7398 SequenceMBBI != E; ++SequenceMBBI) { 7399 if (SequenceMBBI->isDebugInstr()) 7400 continue; 7401 else if (isSelectPseudo(*SequenceMBBI)) { 7402 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7403 SequenceMBBI->getOperand(2).getReg() != RHS || 7404 SequenceMBBI->getOperand(3).getImm() != CC || 7405 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7406 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7407 break; 7408 LastSelectPseudo = &*SequenceMBBI; 7409 SequenceMBBI->collectDebugValues(SelectDebugValues); 7410 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7411 } else { 7412 if (SequenceMBBI->hasUnmodeledSideEffects() || 7413 SequenceMBBI->mayLoadOrStore()) 7414 break; 7415 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7416 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7417 })) 7418 break; 7419 } 7420 } 7421 7422 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7423 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7424 DebugLoc DL = MI.getDebugLoc(); 7425 MachineFunction::iterator I = ++BB->getIterator(); 7426 7427 MachineBasicBlock *HeadMBB = BB; 7428 MachineFunction *F = BB->getParent(); 7429 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7430 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7431 7432 F->insert(I, IfFalseMBB); 7433 F->insert(I, TailMBB); 7434 7435 // Transfer debug instructions associated with the selects to TailMBB. 7436 for (MachineInstr *DebugInstr : SelectDebugValues) { 7437 TailMBB->push_back(DebugInstr->removeFromParent()); 7438 } 7439 7440 // Move all instructions after the sequence to TailMBB. 7441 TailMBB->splice(TailMBB->end(), HeadMBB, 7442 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7443 // Update machine-CFG edges by transferring all successors of the current 7444 // block to the new block which will contain the Phi nodes for the selects. 7445 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7446 // Set the successors for HeadMBB. 7447 HeadMBB->addSuccessor(IfFalseMBB); 7448 HeadMBB->addSuccessor(TailMBB); 7449 7450 // Insert appropriate branch. 7451 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7452 .addReg(LHS) 7453 .addReg(RHS) 7454 .addMBB(TailMBB); 7455 7456 // IfFalseMBB just falls through to TailMBB. 7457 IfFalseMBB->addSuccessor(TailMBB); 7458 7459 // Create PHIs for all of the select pseudo-instructions. 7460 auto SelectMBBI = MI.getIterator(); 7461 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7462 auto InsertionPoint = TailMBB->begin(); 7463 while (SelectMBBI != SelectEnd) { 7464 auto Next = std::next(SelectMBBI); 7465 if (isSelectPseudo(*SelectMBBI)) { 7466 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7467 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7468 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7469 .addReg(SelectMBBI->getOperand(4).getReg()) 7470 .addMBB(HeadMBB) 7471 .addReg(SelectMBBI->getOperand(5).getReg()) 7472 .addMBB(IfFalseMBB); 7473 SelectMBBI->eraseFromParent(); 7474 } 7475 SelectMBBI = Next; 7476 } 7477 7478 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7479 return TailMBB; 7480 } 7481 7482 MachineBasicBlock * 7483 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7484 MachineBasicBlock *BB) const { 7485 switch (MI.getOpcode()) { 7486 default: 7487 llvm_unreachable("Unexpected instr type to insert"); 7488 case RISCV::ReadCycleWide: 7489 assert(!Subtarget.is64Bit() && 7490 "ReadCycleWrite is only to be used on riscv32"); 7491 return emitReadCycleWidePseudo(MI, BB); 7492 case RISCV::Select_GPR_Using_CC_GPR: 7493 case RISCV::Select_FPR16_Using_CC_GPR: 7494 case RISCV::Select_FPR32_Using_CC_GPR: 7495 case RISCV::Select_FPR64_Using_CC_GPR: 7496 return emitSelectPseudo(MI, BB, Subtarget); 7497 case RISCV::BuildPairF64Pseudo: 7498 return emitBuildPairF64Pseudo(MI, BB); 7499 case RISCV::SplitF64Pseudo: 7500 return emitSplitF64Pseudo(MI, BB); 7501 } 7502 } 7503 7504 // Calling Convention Implementation. 7505 // The expectations for frontend ABI lowering vary from target to target. 7506 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7507 // details, but this is a longer term goal. For now, we simply try to keep the 7508 // role of the frontend as simple and well-defined as possible. The rules can 7509 // be summarised as: 7510 // * Never split up large scalar arguments. We handle them here. 7511 // * If a hardfloat calling convention is being used, and the struct may be 7512 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7513 // available, then pass as two separate arguments. If either the GPRs or FPRs 7514 // are exhausted, then pass according to the rule below. 7515 // * If a struct could never be passed in registers or directly in a stack 7516 // slot (as it is larger than 2*XLEN and the floating point rules don't 7517 // apply), then pass it using a pointer with the byval attribute. 7518 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7519 // word-sized array or a 2*XLEN scalar (depending on alignment). 7520 // * The frontend can determine whether a struct is returned by reference or 7521 // not based on its size and fields. If it will be returned by reference, the 7522 // frontend must modify the prototype so a pointer with the sret annotation is 7523 // passed as the first argument. This is not necessary for large scalar 7524 // returns. 7525 // * Struct return values and varargs should be coerced to structs containing 7526 // register-size fields in the same situations they would be for fixed 7527 // arguments. 7528 7529 static const MCPhysReg ArgGPRs[] = { 7530 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7531 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7532 }; 7533 static const MCPhysReg ArgFPR16s[] = { 7534 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7535 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7536 }; 7537 static const MCPhysReg ArgFPR32s[] = { 7538 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7539 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7540 }; 7541 static const MCPhysReg ArgFPR64s[] = { 7542 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7543 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7544 }; 7545 // This is an interim calling convention and it may be changed in the future. 7546 static const MCPhysReg ArgVRs[] = { 7547 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7548 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7549 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7550 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7551 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7552 RISCV::V20M2, RISCV::V22M2}; 7553 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7554 RISCV::V20M4}; 7555 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7556 7557 // Pass a 2*XLEN argument that has been split into two XLEN values through 7558 // registers or the stack as necessary. 7559 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7560 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7561 MVT ValVT2, MVT LocVT2, 7562 ISD::ArgFlagsTy ArgFlags2) { 7563 unsigned XLenInBytes = XLen / 8; 7564 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7565 // At least one half can be passed via register. 7566 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7567 VA1.getLocVT(), CCValAssign::Full)); 7568 } else { 7569 // Both halves must be passed on the stack, with proper alignment. 7570 Align StackAlign = 7571 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7572 State.addLoc( 7573 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7574 State.AllocateStack(XLenInBytes, StackAlign), 7575 VA1.getLocVT(), CCValAssign::Full)); 7576 State.addLoc(CCValAssign::getMem( 7577 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7578 LocVT2, CCValAssign::Full)); 7579 return false; 7580 } 7581 7582 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7583 // The second half can also be passed via register. 7584 State.addLoc( 7585 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7586 } else { 7587 // The second half is passed via the stack, without additional alignment. 7588 State.addLoc(CCValAssign::getMem( 7589 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7590 LocVT2, CCValAssign::Full)); 7591 } 7592 7593 return false; 7594 } 7595 7596 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7597 Optional<unsigned> FirstMaskArgument, 7598 CCState &State, const RISCVTargetLowering &TLI) { 7599 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7600 if (RC == &RISCV::VRRegClass) { 7601 // Assign the first mask argument to V0. 7602 // This is an interim calling convention and it may be changed in the 7603 // future. 7604 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7605 return State.AllocateReg(RISCV::V0); 7606 return State.AllocateReg(ArgVRs); 7607 } 7608 if (RC == &RISCV::VRM2RegClass) 7609 return State.AllocateReg(ArgVRM2s); 7610 if (RC == &RISCV::VRM4RegClass) 7611 return State.AllocateReg(ArgVRM4s); 7612 if (RC == &RISCV::VRM8RegClass) 7613 return State.AllocateReg(ArgVRM8s); 7614 llvm_unreachable("Unhandled register class for ValueType"); 7615 } 7616 7617 // Implements the RISC-V calling convention. Returns true upon failure. 7618 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7619 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7620 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7621 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7622 Optional<unsigned> FirstMaskArgument) { 7623 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7624 assert(XLen == 32 || XLen == 64); 7625 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7626 7627 // Any return value split in to more than two values can't be returned 7628 // directly. Vectors are returned via the available vector registers. 7629 if (!LocVT.isVector() && IsRet && ValNo > 1) 7630 return true; 7631 7632 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7633 // variadic argument, or if no F16/F32 argument registers are available. 7634 bool UseGPRForF16_F32 = true; 7635 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7636 // variadic argument, or if no F64 argument registers are available. 7637 bool UseGPRForF64 = true; 7638 7639 switch (ABI) { 7640 default: 7641 llvm_unreachable("Unexpected ABI"); 7642 case RISCVABI::ABI_ILP32: 7643 case RISCVABI::ABI_LP64: 7644 break; 7645 case RISCVABI::ABI_ILP32F: 7646 case RISCVABI::ABI_LP64F: 7647 UseGPRForF16_F32 = !IsFixed; 7648 break; 7649 case RISCVABI::ABI_ILP32D: 7650 case RISCVABI::ABI_LP64D: 7651 UseGPRForF16_F32 = !IsFixed; 7652 UseGPRForF64 = !IsFixed; 7653 break; 7654 } 7655 7656 // FPR16, FPR32, and FPR64 alias each other. 7657 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7658 UseGPRForF16_F32 = true; 7659 UseGPRForF64 = true; 7660 } 7661 7662 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7663 // similar local variables rather than directly checking against the target 7664 // ABI. 7665 7666 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7667 LocVT = XLenVT; 7668 LocInfo = CCValAssign::BCvt; 7669 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7670 LocVT = MVT::i64; 7671 LocInfo = CCValAssign::BCvt; 7672 } 7673 7674 // If this is a variadic argument, the RISC-V calling convention requires 7675 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7676 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7677 // be used regardless of whether the original argument was split during 7678 // legalisation or not. The argument will not be passed by registers if the 7679 // original type is larger than 2*XLEN, so the register alignment rule does 7680 // not apply. 7681 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7682 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7683 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7684 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7685 // Skip 'odd' register if necessary. 7686 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7687 State.AllocateReg(ArgGPRs); 7688 } 7689 7690 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7691 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7692 State.getPendingArgFlags(); 7693 7694 assert(PendingLocs.size() == PendingArgFlags.size() && 7695 "PendingLocs and PendingArgFlags out of sync"); 7696 7697 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7698 // registers are exhausted. 7699 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7700 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7701 "Can't lower f64 if it is split"); 7702 // Depending on available argument GPRS, f64 may be passed in a pair of 7703 // GPRs, split between a GPR and the stack, or passed completely on the 7704 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7705 // cases. 7706 Register Reg = State.AllocateReg(ArgGPRs); 7707 LocVT = MVT::i32; 7708 if (!Reg) { 7709 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7710 State.addLoc( 7711 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7712 return false; 7713 } 7714 if (!State.AllocateReg(ArgGPRs)) 7715 State.AllocateStack(4, Align(4)); 7716 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7717 return false; 7718 } 7719 7720 // Fixed-length vectors are located in the corresponding scalable-vector 7721 // container types. 7722 if (ValVT.isFixedLengthVector()) 7723 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7724 7725 // Split arguments might be passed indirectly, so keep track of the pending 7726 // values. Split vectors are passed via a mix of registers and indirectly, so 7727 // treat them as we would any other argument. 7728 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7729 LocVT = XLenVT; 7730 LocInfo = CCValAssign::Indirect; 7731 PendingLocs.push_back( 7732 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7733 PendingArgFlags.push_back(ArgFlags); 7734 if (!ArgFlags.isSplitEnd()) { 7735 return false; 7736 } 7737 } 7738 7739 // If the split argument only had two elements, it should be passed directly 7740 // in registers or on the stack. 7741 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7742 PendingLocs.size() <= 2) { 7743 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7744 // Apply the normal calling convention rules to the first half of the 7745 // split argument. 7746 CCValAssign VA = PendingLocs[0]; 7747 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7748 PendingLocs.clear(); 7749 PendingArgFlags.clear(); 7750 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7751 ArgFlags); 7752 } 7753 7754 // Allocate to a register if possible, or else a stack slot. 7755 Register Reg; 7756 unsigned StoreSizeBytes = XLen / 8; 7757 Align StackAlign = Align(XLen / 8); 7758 7759 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7760 Reg = State.AllocateReg(ArgFPR16s); 7761 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7762 Reg = State.AllocateReg(ArgFPR32s); 7763 else if (ValVT == MVT::f64 && !UseGPRForF64) 7764 Reg = State.AllocateReg(ArgFPR64s); 7765 else if (ValVT.isVector()) { 7766 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7767 if (!Reg) { 7768 // For return values, the vector must be passed fully via registers or 7769 // via the stack. 7770 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7771 // but we're using all of them. 7772 if (IsRet) 7773 return true; 7774 // Try using a GPR to pass the address 7775 if ((Reg = State.AllocateReg(ArgGPRs))) { 7776 LocVT = XLenVT; 7777 LocInfo = CCValAssign::Indirect; 7778 } else if (ValVT.isScalableVector()) { 7779 report_fatal_error("Unable to pass scalable vector types on the stack"); 7780 } else { 7781 // Pass fixed-length vectors on the stack. 7782 LocVT = ValVT; 7783 StoreSizeBytes = ValVT.getStoreSize(); 7784 // Align vectors to their element sizes, being careful for vXi1 7785 // vectors. 7786 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7787 } 7788 } 7789 } else { 7790 Reg = State.AllocateReg(ArgGPRs); 7791 } 7792 7793 unsigned StackOffset = 7794 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7795 7796 // If we reach this point and PendingLocs is non-empty, we must be at the 7797 // end of a split argument that must be passed indirectly. 7798 if (!PendingLocs.empty()) { 7799 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7800 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7801 7802 for (auto &It : PendingLocs) { 7803 if (Reg) 7804 It.convertToReg(Reg); 7805 else 7806 It.convertToMem(StackOffset); 7807 State.addLoc(It); 7808 } 7809 PendingLocs.clear(); 7810 PendingArgFlags.clear(); 7811 return false; 7812 } 7813 7814 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7815 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7816 "Expected an XLenVT or vector types at this stage"); 7817 7818 if (Reg) { 7819 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7820 return false; 7821 } 7822 7823 // When a floating-point value is passed on the stack, no bit-conversion is 7824 // needed. 7825 if (ValVT.isFloatingPoint()) { 7826 LocVT = ValVT; 7827 LocInfo = CCValAssign::Full; 7828 } 7829 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7830 return false; 7831 } 7832 7833 template <typename ArgTy> 7834 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7835 for (const auto &ArgIdx : enumerate(Args)) { 7836 MVT ArgVT = ArgIdx.value().VT; 7837 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7838 return ArgIdx.index(); 7839 } 7840 return None; 7841 } 7842 7843 void RISCVTargetLowering::analyzeInputArgs( 7844 MachineFunction &MF, CCState &CCInfo, 7845 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7846 RISCVCCAssignFn Fn) const { 7847 unsigned NumArgs = Ins.size(); 7848 FunctionType *FType = MF.getFunction().getFunctionType(); 7849 7850 Optional<unsigned> FirstMaskArgument; 7851 if (Subtarget.hasStdExtV()) 7852 FirstMaskArgument = preAssignMask(Ins); 7853 7854 for (unsigned i = 0; i != NumArgs; ++i) { 7855 MVT ArgVT = Ins[i].VT; 7856 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7857 7858 Type *ArgTy = nullptr; 7859 if (IsRet) 7860 ArgTy = FType->getReturnType(); 7861 else if (Ins[i].isOrigArg()) 7862 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7863 7864 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7865 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7866 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7867 FirstMaskArgument)) { 7868 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7869 << EVT(ArgVT).getEVTString() << '\n'); 7870 llvm_unreachable(nullptr); 7871 } 7872 } 7873 } 7874 7875 void RISCVTargetLowering::analyzeOutputArgs( 7876 MachineFunction &MF, CCState &CCInfo, 7877 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7878 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7879 unsigned NumArgs = Outs.size(); 7880 7881 Optional<unsigned> FirstMaskArgument; 7882 if (Subtarget.hasStdExtV()) 7883 FirstMaskArgument = preAssignMask(Outs); 7884 7885 for (unsigned i = 0; i != NumArgs; i++) { 7886 MVT ArgVT = Outs[i].VT; 7887 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7888 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7889 7890 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7891 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7892 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7893 FirstMaskArgument)) { 7894 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7895 << EVT(ArgVT).getEVTString() << "\n"); 7896 llvm_unreachable(nullptr); 7897 } 7898 } 7899 } 7900 7901 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7902 // values. 7903 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7904 const CCValAssign &VA, const SDLoc &DL, 7905 const RISCVSubtarget &Subtarget) { 7906 switch (VA.getLocInfo()) { 7907 default: 7908 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7909 case CCValAssign::Full: 7910 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7911 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7912 break; 7913 case CCValAssign::BCvt: 7914 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7915 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7916 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7917 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7918 else 7919 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7920 break; 7921 } 7922 return Val; 7923 } 7924 7925 // The caller is responsible for loading the full value if the argument is 7926 // passed with CCValAssign::Indirect. 7927 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7928 const CCValAssign &VA, const SDLoc &DL, 7929 const RISCVTargetLowering &TLI) { 7930 MachineFunction &MF = DAG.getMachineFunction(); 7931 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7932 EVT LocVT = VA.getLocVT(); 7933 SDValue Val; 7934 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7935 Register VReg = RegInfo.createVirtualRegister(RC); 7936 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7937 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7938 7939 if (VA.getLocInfo() == CCValAssign::Indirect) 7940 return Val; 7941 7942 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7943 } 7944 7945 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7946 const CCValAssign &VA, const SDLoc &DL, 7947 const RISCVSubtarget &Subtarget) { 7948 EVT LocVT = VA.getLocVT(); 7949 7950 switch (VA.getLocInfo()) { 7951 default: 7952 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7953 case CCValAssign::Full: 7954 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7955 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7956 break; 7957 case CCValAssign::BCvt: 7958 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7959 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7960 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7961 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7962 else 7963 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7964 break; 7965 } 7966 return Val; 7967 } 7968 7969 // The caller is responsible for loading the full value if the argument is 7970 // passed with CCValAssign::Indirect. 7971 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7972 const CCValAssign &VA, const SDLoc &DL) { 7973 MachineFunction &MF = DAG.getMachineFunction(); 7974 MachineFrameInfo &MFI = MF.getFrameInfo(); 7975 EVT LocVT = VA.getLocVT(); 7976 EVT ValVT = VA.getValVT(); 7977 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7978 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7979 /*Immutable=*/true); 7980 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7981 SDValue Val; 7982 7983 ISD::LoadExtType ExtType; 7984 switch (VA.getLocInfo()) { 7985 default: 7986 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7987 case CCValAssign::Full: 7988 case CCValAssign::Indirect: 7989 case CCValAssign::BCvt: 7990 ExtType = ISD::NON_EXTLOAD; 7991 break; 7992 } 7993 Val = DAG.getExtLoad( 7994 ExtType, DL, LocVT, Chain, FIN, 7995 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7996 return Val; 7997 } 7998 7999 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8000 const CCValAssign &VA, const SDLoc &DL) { 8001 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8002 "Unexpected VA"); 8003 MachineFunction &MF = DAG.getMachineFunction(); 8004 MachineFrameInfo &MFI = MF.getFrameInfo(); 8005 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8006 8007 if (VA.isMemLoc()) { 8008 // f64 is passed on the stack. 8009 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8010 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8011 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8012 MachinePointerInfo::getFixedStack(MF, FI)); 8013 } 8014 8015 assert(VA.isRegLoc() && "Expected register VA assignment"); 8016 8017 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8018 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8019 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8020 SDValue Hi; 8021 if (VA.getLocReg() == RISCV::X17) { 8022 // Second half of f64 is passed on the stack. 8023 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8024 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8025 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8026 MachinePointerInfo::getFixedStack(MF, FI)); 8027 } else { 8028 // Second half of f64 is passed in another GPR. 8029 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8030 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8031 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8032 } 8033 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8034 } 8035 8036 // FastCC has less than 1% performance improvement for some particular 8037 // benchmark. But theoretically, it may has benenfit for some cases. 8038 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8039 unsigned ValNo, MVT ValVT, MVT LocVT, 8040 CCValAssign::LocInfo LocInfo, 8041 ISD::ArgFlagsTy ArgFlags, CCState &State, 8042 bool IsFixed, bool IsRet, Type *OrigTy, 8043 const RISCVTargetLowering &TLI, 8044 Optional<unsigned> FirstMaskArgument) { 8045 8046 // X5 and X6 might be used for save-restore libcall. 8047 static const MCPhysReg GPRList[] = { 8048 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8049 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8050 RISCV::X29, RISCV::X30, RISCV::X31}; 8051 8052 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8053 if (unsigned Reg = State.AllocateReg(GPRList)) { 8054 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8055 return false; 8056 } 8057 } 8058 8059 if (LocVT == MVT::f16) { 8060 static const MCPhysReg FPR16List[] = { 8061 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8062 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8063 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8064 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8065 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8066 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8067 return false; 8068 } 8069 } 8070 8071 if (LocVT == MVT::f32) { 8072 static const MCPhysReg FPR32List[] = { 8073 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8074 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8075 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8076 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8077 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8078 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8079 return false; 8080 } 8081 } 8082 8083 if (LocVT == MVT::f64) { 8084 static const MCPhysReg FPR64List[] = { 8085 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8086 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8087 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8088 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8089 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8090 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8091 return false; 8092 } 8093 } 8094 8095 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8096 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8097 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8098 return false; 8099 } 8100 8101 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8102 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8103 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8104 return false; 8105 } 8106 8107 if (LocVT.isVector()) { 8108 if (unsigned Reg = 8109 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8110 // Fixed-length vectors are located in the corresponding scalable-vector 8111 // container types. 8112 if (ValVT.isFixedLengthVector()) 8113 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8114 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8115 } else { 8116 // Try and pass the address via a "fast" GPR. 8117 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8118 LocInfo = CCValAssign::Indirect; 8119 LocVT = TLI.getSubtarget().getXLenVT(); 8120 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8121 } else if (ValVT.isFixedLengthVector()) { 8122 auto StackAlign = 8123 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8124 unsigned StackOffset = 8125 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8126 State.addLoc( 8127 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8128 } else { 8129 // Can't pass scalable vectors on the stack. 8130 return true; 8131 } 8132 } 8133 8134 return false; 8135 } 8136 8137 return true; // CC didn't match. 8138 } 8139 8140 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8141 CCValAssign::LocInfo LocInfo, 8142 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8143 8144 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8145 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8146 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8147 static const MCPhysReg GPRList[] = { 8148 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8149 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8150 if (unsigned Reg = State.AllocateReg(GPRList)) { 8151 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8152 return false; 8153 } 8154 } 8155 8156 if (LocVT == MVT::f32) { 8157 // Pass in STG registers: F1, ..., F6 8158 // fs0 ... fs5 8159 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8160 RISCV::F18_F, RISCV::F19_F, 8161 RISCV::F20_F, RISCV::F21_F}; 8162 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8163 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8164 return false; 8165 } 8166 } 8167 8168 if (LocVT == MVT::f64) { 8169 // Pass in STG registers: D1, ..., D6 8170 // fs6 ... fs11 8171 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8172 RISCV::F24_D, RISCV::F25_D, 8173 RISCV::F26_D, RISCV::F27_D}; 8174 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8175 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8176 return false; 8177 } 8178 } 8179 8180 report_fatal_error("No registers left in GHC calling convention"); 8181 return true; 8182 } 8183 8184 // Transform physical registers into virtual registers. 8185 SDValue RISCVTargetLowering::LowerFormalArguments( 8186 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8187 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8188 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8189 8190 MachineFunction &MF = DAG.getMachineFunction(); 8191 8192 switch (CallConv) { 8193 default: 8194 report_fatal_error("Unsupported calling convention"); 8195 case CallingConv::C: 8196 case CallingConv::Fast: 8197 break; 8198 case CallingConv::GHC: 8199 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8200 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8201 report_fatal_error( 8202 "GHC calling convention requires the F and D instruction set extensions"); 8203 } 8204 8205 const Function &Func = MF.getFunction(); 8206 if (Func.hasFnAttribute("interrupt")) { 8207 if (!Func.arg_empty()) 8208 report_fatal_error( 8209 "Functions with the interrupt attribute cannot have arguments!"); 8210 8211 StringRef Kind = 8212 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8213 8214 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8215 report_fatal_error( 8216 "Function interrupt attribute argument not supported!"); 8217 } 8218 8219 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8220 MVT XLenVT = Subtarget.getXLenVT(); 8221 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8222 // Used with vargs to acumulate store chains. 8223 std::vector<SDValue> OutChains; 8224 8225 // Assign locations to all of the incoming arguments. 8226 SmallVector<CCValAssign, 16> ArgLocs; 8227 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8228 8229 if (CallConv == CallingConv::GHC) 8230 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8231 else 8232 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8233 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8234 : CC_RISCV); 8235 8236 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8237 CCValAssign &VA = ArgLocs[i]; 8238 SDValue ArgValue; 8239 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8240 // case. 8241 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8242 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8243 else if (VA.isRegLoc()) 8244 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8245 else 8246 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8247 8248 if (VA.getLocInfo() == CCValAssign::Indirect) { 8249 // If the original argument was split and passed by reference (e.g. i128 8250 // on RV32), we need to load all parts of it here (using the same 8251 // address). Vectors may be partly split to registers and partly to the 8252 // stack, in which case the base address is partly offset and subsequent 8253 // stores are relative to that. 8254 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8255 MachinePointerInfo())); 8256 unsigned ArgIndex = Ins[i].OrigArgIndex; 8257 unsigned ArgPartOffset = Ins[i].PartOffset; 8258 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8259 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8260 CCValAssign &PartVA = ArgLocs[i + 1]; 8261 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8262 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8263 if (PartVA.getValVT().isScalableVector()) 8264 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8265 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8266 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8267 MachinePointerInfo())); 8268 ++i; 8269 } 8270 continue; 8271 } 8272 InVals.push_back(ArgValue); 8273 } 8274 8275 if (IsVarArg) { 8276 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8277 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8278 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8279 MachineFrameInfo &MFI = MF.getFrameInfo(); 8280 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8281 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8282 8283 // Offset of the first variable argument from stack pointer, and size of 8284 // the vararg save area. For now, the varargs save area is either zero or 8285 // large enough to hold a0-a7. 8286 int VaArgOffset, VarArgsSaveSize; 8287 8288 // If all registers are allocated, then all varargs must be passed on the 8289 // stack and we don't need to save any argregs. 8290 if (ArgRegs.size() == Idx) { 8291 VaArgOffset = CCInfo.getNextStackOffset(); 8292 VarArgsSaveSize = 0; 8293 } else { 8294 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8295 VaArgOffset = -VarArgsSaveSize; 8296 } 8297 8298 // Record the frame index of the first variable argument 8299 // which is a value necessary to VASTART. 8300 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8301 RVFI->setVarArgsFrameIndex(FI); 8302 8303 // If saving an odd number of registers then create an extra stack slot to 8304 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8305 // offsets to even-numbered registered remain 2*XLEN-aligned. 8306 if (Idx % 2) { 8307 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8308 VarArgsSaveSize += XLenInBytes; 8309 } 8310 8311 // Copy the integer registers that may have been used for passing varargs 8312 // to the vararg save area. 8313 for (unsigned I = Idx; I < ArgRegs.size(); 8314 ++I, VaArgOffset += XLenInBytes) { 8315 const Register Reg = RegInfo.createVirtualRegister(RC); 8316 RegInfo.addLiveIn(ArgRegs[I], Reg); 8317 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8318 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8319 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8320 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8321 MachinePointerInfo::getFixedStack(MF, FI)); 8322 cast<StoreSDNode>(Store.getNode()) 8323 ->getMemOperand() 8324 ->setValue((Value *)nullptr); 8325 OutChains.push_back(Store); 8326 } 8327 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8328 } 8329 8330 // All stores are grouped in one node to allow the matching between 8331 // the size of Ins and InVals. This only happens for vararg functions. 8332 if (!OutChains.empty()) { 8333 OutChains.push_back(Chain); 8334 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8335 } 8336 8337 return Chain; 8338 } 8339 8340 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8341 /// for tail call optimization. 8342 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8343 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8344 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8345 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8346 8347 auto &Callee = CLI.Callee; 8348 auto CalleeCC = CLI.CallConv; 8349 auto &Outs = CLI.Outs; 8350 auto &Caller = MF.getFunction(); 8351 auto CallerCC = Caller.getCallingConv(); 8352 8353 // Exception-handling functions need a special set of instructions to 8354 // indicate a return to the hardware. Tail-calling another function would 8355 // probably break this. 8356 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8357 // should be expanded as new function attributes are introduced. 8358 if (Caller.hasFnAttribute("interrupt")) 8359 return false; 8360 8361 // Do not tail call opt if the stack is used to pass parameters. 8362 if (CCInfo.getNextStackOffset() != 0) 8363 return false; 8364 8365 // Do not tail call opt if any parameters need to be passed indirectly. 8366 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8367 // passed indirectly. So the address of the value will be passed in a 8368 // register, or if not available, then the address is put on the stack. In 8369 // order to pass indirectly, space on the stack often needs to be allocated 8370 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8371 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8372 // are passed CCValAssign::Indirect. 8373 for (auto &VA : ArgLocs) 8374 if (VA.getLocInfo() == CCValAssign::Indirect) 8375 return false; 8376 8377 // Do not tail call opt if either caller or callee uses struct return 8378 // semantics. 8379 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8380 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8381 if (IsCallerStructRet || IsCalleeStructRet) 8382 return false; 8383 8384 // Externally-defined functions with weak linkage should not be 8385 // tail-called. The behaviour of branch instructions in this situation (as 8386 // used for tail calls) is implementation-defined, so we cannot rely on the 8387 // linker replacing the tail call with a return. 8388 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8389 const GlobalValue *GV = G->getGlobal(); 8390 if (GV->hasExternalWeakLinkage()) 8391 return false; 8392 } 8393 8394 // The callee has to preserve all registers the caller needs to preserve. 8395 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8396 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8397 if (CalleeCC != CallerCC) { 8398 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8399 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8400 return false; 8401 } 8402 8403 // Byval parameters hand the function a pointer directly into the stack area 8404 // we want to reuse during a tail call. Working around this *is* possible 8405 // but less efficient and uglier in LowerCall. 8406 for (auto &Arg : Outs) 8407 if (Arg.Flags.isByVal()) 8408 return false; 8409 8410 return true; 8411 } 8412 8413 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8414 return DAG.getDataLayout().getPrefTypeAlign( 8415 VT.getTypeForEVT(*DAG.getContext())); 8416 } 8417 8418 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8419 // and output parameter nodes. 8420 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8421 SmallVectorImpl<SDValue> &InVals) const { 8422 SelectionDAG &DAG = CLI.DAG; 8423 SDLoc &DL = CLI.DL; 8424 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8425 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8426 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8427 SDValue Chain = CLI.Chain; 8428 SDValue Callee = CLI.Callee; 8429 bool &IsTailCall = CLI.IsTailCall; 8430 CallingConv::ID CallConv = CLI.CallConv; 8431 bool IsVarArg = CLI.IsVarArg; 8432 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8433 MVT XLenVT = Subtarget.getXLenVT(); 8434 8435 MachineFunction &MF = DAG.getMachineFunction(); 8436 8437 // Analyze the operands of the call, assigning locations to each operand. 8438 SmallVector<CCValAssign, 16> ArgLocs; 8439 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8440 8441 if (CallConv == CallingConv::GHC) 8442 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8443 else 8444 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8445 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8446 : CC_RISCV); 8447 8448 // Check if it's really possible to do a tail call. 8449 if (IsTailCall) 8450 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8451 8452 if (IsTailCall) 8453 ++NumTailCalls; 8454 else if (CLI.CB && CLI.CB->isMustTailCall()) 8455 report_fatal_error("failed to perform tail call elimination on a call " 8456 "site marked musttail"); 8457 8458 // Get a count of how many bytes are to be pushed on the stack. 8459 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8460 8461 // Create local copies for byval args 8462 SmallVector<SDValue, 8> ByValArgs; 8463 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8464 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8465 if (!Flags.isByVal()) 8466 continue; 8467 8468 SDValue Arg = OutVals[i]; 8469 unsigned Size = Flags.getByValSize(); 8470 Align Alignment = Flags.getNonZeroByValAlign(); 8471 8472 int FI = 8473 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8474 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8475 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8476 8477 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8478 /*IsVolatile=*/false, 8479 /*AlwaysInline=*/false, IsTailCall, 8480 MachinePointerInfo(), MachinePointerInfo()); 8481 ByValArgs.push_back(FIPtr); 8482 } 8483 8484 if (!IsTailCall) 8485 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8486 8487 // Copy argument values to their designated locations. 8488 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8489 SmallVector<SDValue, 8> MemOpChains; 8490 SDValue StackPtr; 8491 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8492 CCValAssign &VA = ArgLocs[i]; 8493 SDValue ArgValue = OutVals[i]; 8494 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8495 8496 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8497 bool IsF64OnRV32DSoftABI = 8498 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8499 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8500 SDValue SplitF64 = DAG.getNode( 8501 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8502 SDValue Lo = SplitF64.getValue(0); 8503 SDValue Hi = SplitF64.getValue(1); 8504 8505 Register RegLo = VA.getLocReg(); 8506 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8507 8508 if (RegLo == RISCV::X17) { 8509 // Second half of f64 is passed on the stack. 8510 // Work out the address of the stack slot. 8511 if (!StackPtr.getNode()) 8512 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8513 // Emit the store. 8514 MemOpChains.push_back( 8515 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8516 } else { 8517 // Second half of f64 is passed in another GPR. 8518 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8519 Register RegHigh = RegLo + 1; 8520 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8521 } 8522 continue; 8523 } 8524 8525 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8526 // as any other MemLoc. 8527 8528 // Promote the value if needed. 8529 // For now, only handle fully promoted and indirect arguments. 8530 if (VA.getLocInfo() == CCValAssign::Indirect) { 8531 // Store the argument in a stack slot and pass its address. 8532 Align StackAlign = 8533 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8534 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8535 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8536 // If the original argument was split (e.g. i128), we need 8537 // to store the required parts of it here (and pass just one address). 8538 // Vectors may be partly split to registers and partly to the stack, in 8539 // which case the base address is partly offset and subsequent stores are 8540 // relative to that. 8541 unsigned ArgIndex = Outs[i].OrigArgIndex; 8542 unsigned ArgPartOffset = Outs[i].PartOffset; 8543 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8544 // Calculate the total size to store. We don't have access to what we're 8545 // actually storing other than performing the loop and collecting the 8546 // info. 8547 SmallVector<std::pair<SDValue, SDValue>> Parts; 8548 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8549 SDValue PartValue = OutVals[i + 1]; 8550 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8551 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8552 EVT PartVT = PartValue.getValueType(); 8553 if (PartVT.isScalableVector()) 8554 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8555 StoredSize += PartVT.getStoreSize(); 8556 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8557 Parts.push_back(std::make_pair(PartValue, Offset)); 8558 ++i; 8559 } 8560 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8561 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8562 MemOpChains.push_back( 8563 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8564 MachinePointerInfo::getFixedStack(MF, FI))); 8565 for (const auto &Part : Parts) { 8566 SDValue PartValue = Part.first; 8567 SDValue PartOffset = Part.second; 8568 SDValue Address = 8569 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8570 MemOpChains.push_back( 8571 DAG.getStore(Chain, DL, PartValue, Address, 8572 MachinePointerInfo::getFixedStack(MF, FI))); 8573 } 8574 ArgValue = SpillSlot; 8575 } else { 8576 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8577 } 8578 8579 // Use local copy if it is a byval arg. 8580 if (Flags.isByVal()) 8581 ArgValue = ByValArgs[j++]; 8582 8583 if (VA.isRegLoc()) { 8584 // Queue up the argument copies and emit them at the end. 8585 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8586 } else { 8587 assert(VA.isMemLoc() && "Argument not register or memory"); 8588 assert(!IsTailCall && "Tail call not allowed if stack is used " 8589 "for passing parameters"); 8590 8591 // Work out the address of the stack slot. 8592 if (!StackPtr.getNode()) 8593 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8594 SDValue Address = 8595 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8596 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8597 8598 // Emit the store. 8599 MemOpChains.push_back( 8600 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8601 } 8602 } 8603 8604 // Join the stores, which are independent of one another. 8605 if (!MemOpChains.empty()) 8606 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8607 8608 SDValue Glue; 8609 8610 // Build a sequence of copy-to-reg nodes, chained and glued together. 8611 for (auto &Reg : RegsToPass) { 8612 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8613 Glue = Chain.getValue(1); 8614 } 8615 8616 // Validate that none of the argument registers have been marked as 8617 // reserved, if so report an error. Do the same for the return address if this 8618 // is not a tailcall. 8619 validateCCReservedRegs(RegsToPass, MF); 8620 if (!IsTailCall && 8621 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8622 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8623 MF.getFunction(), 8624 "Return address register required, but has been reserved."}); 8625 8626 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8627 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8628 // split it and then direct call can be matched by PseudoCALL. 8629 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8630 const GlobalValue *GV = S->getGlobal(); 8631 8632 unsigned OpFlags = RISCVII::MO_CALL; 8633 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8634 OpFlags = RISCVII::MO_PLT; 8635 8636 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8637 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8638 unsigned OpFlags = RISCVII::MO_CALL; 8639 8640 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8641 nullptr)) 8642 OpFlags = RISCVII::MO_PLT; 8643 8644 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8645 } 8646 8647 // The first call operand is the chain and the second is the target address. 8648 SmallVector<SDValue, 8> Ops; 8649 Ops.push_back(Chain); 8650 Ops.push_back(Callee); 8651 8652 // Add argument registers to the end of the list so that they are 8653 // known live into the call. 8654 for (auto &Reg : RegsToPass) 8655 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8656 8657 if (!IsTailCall) { 8658 // Add a register mask operand representing the call-preserved registers. 8659 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8660 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8661 assert(Mask && "Missing call preserved mask for calling convention"); 8662 Ops.push_back(DAG.getRegisterMask(Mask)); 8663 } 8664 8665 // Glue the call to the argument copies, if any. 8666 if (Glue.getNode()) 8667 Ops.push_back(Glue); 8668 8669 // Emit the call. 8670 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8671 8672 if (IsTailCall) { 8673 MF.getFrameInfo().setHasTailCall(); 8674 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8675 } 8676 8677 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8678 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8679 Glue = Chain.getValue(1); 8680 8681 // Mark the end of the call, which is glued to the call itself. 8682 Chain = DAG.getCALLSEQ_END(Chain, 8683 DAG.getConstant(NumBytes, DL, PtrVT, true), 8684 DAG.getConstant(0, DL, PtrVT, true), 8685 Glue, DL); 8686 Glue = Chain.getValue(1); 8687 8688 // Assign locations to each value returned by this call. 8689 SmallVector<CCValAssign, 16> RVLocs; 8690 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8691 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8692 8693 // Copy all of the result registers out of their specified physreg. 8694 for (auto &VA : RVLocs) { 8695 // Copy the value out 8696 SDValue RetValue = 8697 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8698 // Glue the RetValue to the end of the call sequence 8699 Chain = RetValue.getValue(1); 8700 Glue = RetValue.getValue(2); 8701 8702 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8703 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8704 SDValue RetValue2 = 8705 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8706 Chain = RetValue2.getValue(1); 8707 Glue = RetValue2.getValue(2); 8708 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8709 RetValue2); 8710 } 8711 8712 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8713 8714 InVals.push_back(RetValue); 8715 } 8716 8717 return Chain; 8718 } 8719 8720 bool RISCVTargetLowering::CanLowerReturn( 8721 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8722 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8723 SmallVector<CCValAssign, 16> RVLocs; 8724 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8725 8726 Optional<unsigned> FirstMaskArgument; 8727 if (Subtarget.hasStdExtV()) 8728 FirstMaskArgument = preAssignMask(Outs); 8729 8730 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8731 MVT VT = Outs[i].VT; 8732 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8733 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8734 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8735 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8736 *this, FirstMaskArgument)) 8737 return false; 8738 } 8739 return true; 8740 } 8741 8742 SDValue 8743 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8744 bool IsVarArg, 8745 const SmallVectorImpl<ISD::OutputArg> &Outs, 8746 const SmallVectorImpl<SDValue> &OutVals, 8747 const SDLoc &DL, SelectionDAG &DAG) const { 8748 const MachineFunction &MF = DAG.getMachineFunction(); 8749 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8750 8751 // Stores the assignment of the return value to a location. 8752 SmallVector<CCValAssign, 16> RVLocs; 8753 8754 // Info about the registers and stack slot. 8755 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8756 *DAG.getContext()); 8757 8758 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8759 nullptr, CC_RISCV); 8760 8761 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8762 report_fatal_error("GHC functions return void only"); 8763 8764 SDValue Glue; 8765 SmallVector<SDValue, 4> RetOps(1, Chain); 8766 8767 // Copy the result values into the output registers. 8768 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8769 SDValue Val = OutVals[i]; 8770 CCValAssign &VA = RVLocs[i]; 8771 assert(VA.isRegLoc() && "Can only return in registers!"); 8772 8773 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8774 // Handle returning f64 on RV32D with a soft float ABI. 8775 assert(VA.isRegLoc() && "Expected return via registers"); 8776 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8777 DAG.getVTList(MVT::i32, MVT::i32), Val); 8778 SDValue Lo = SplitF64.getValue(0); 8779 SDValue Hi = SplitF64.getValue(1); 8780 Register RegLo = VA.getLocReg(); 8781 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8782 Register RegHi = RegLo + 1; 8783 8784 if (STI.isRegisterReservedByUser(RegLo) || 8785 STI.isRegisterReservedByUser(RegHi)) 8786 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8787 MF.getFunction(), 8788 "Return value register required, but has been reserved."}); 8789 8790 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8791 Glue = Chain.getValue(1); 8792 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8793 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8794 Glue = Chain.getValue(1); 8795 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8796 } else { 8797 // Handle a 'normal' return. 8798 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8799 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8800 8801 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8802 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8803 MF.getFunction(), 8804 "Return value register required, but has been reserved."}); 8805 8806 // Guarantee that all emitted copies are stuck together. 8807 Glue = Chain.getValue(1); 8808 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8809 } 8810 } 8811 8812 RetOps[0] = Chain; // Update chain. 8813 8814 // Add the glue node if we have it. 8815 if (Glue.getNode()) { 8816 RetOps.push_back(Glue); 8817 } 8818 8819 unsigned RetOpc = RISCVISD::RET_FLAG; 8820 // Interrupt service routines use different return instructions. 8821 const Function &Func = DAG.getMachineFunction().getFunction(); 8822 if (Func.hasFnAttribute("interrupt")) { 8823 if (!Func.getReturnType()->isVoidTy()) 8824 report_fatal_error( 8825 "Functions with the interrupt attribute must have void return type!"); 8826 8827 MachineFunction &MF = DAG.getMachineFunction(); 8828 StringRef Kind = 8829 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8830 8831 if (Kind == "user") 8832 RetOpc = RISCVISD::URET_FLAG; 8833 else if (Kind == "supervisor") 8834 RetOpc = RISCVISD::SRET_FLAG; 8835 else 8836 RetOpc = RISCVISD::MRET_FLAG; 8837 } 8838 8839 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8840 } 8841 8842 void RISCVTargetLowering::validateCCReservedRegs( 8843 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8844 MachineFunction &MF) const { 8845 const Function &F = MF.getFunction(); 8846 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8847 8848 if (llvm::any_of(Regs, [&STI](auto Reg) { 8849 return STI.isRegisterReservedByUser(Reg.first); 8850 })) 8851 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8852 F, "Argument register required, but has been reserved."}); 8853 } 8854 8855 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8856 return CI->isTailCall(); 8857 } 8858 8859 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8860 #define NODE_NAME_CASE(NODE) \ 8861 case RISCVISD::NODE: \ 8862 return "RISCVISD::" #NODE; 8863 // clang-format off 8864 switch ((RISCVISD::NodeType)Opcode) { 8865 case RISCVISD::FIRST_NUMBER: 8866 break; 8867 NODE_NAME_CASE(RET_FLAG) 8868 NODE_NAME_CASE(URET_FLAG) 8869 NODE_NAME_CASE(SRET_FLAG) 8870 NODE_NAME_CASE(MRET_FLAG) 8871 NODE_NAME_CASE(CALL) 8872 NODE_NAME_CASE(SELECT_CC) 8873 NODE_NAME_CASE(BR_CC) 8874 NODE_NAME_CASE(BuildPairF64) 8875 NODE_NAME_CASE(SplitF64) 8876 NODE_NAME_CASE(TAIL) 8877 NODE_NAME_CASE(MULHSU) 8878 NODE_NAME_CASE(SLLW) 8879 NODE_NAME_CASE(SRAW) 8880 NODE_NAME_CASE(SRLW) 8881 NODE_NAME_CASE(DIVW) 8882 NODE_NAME_CASE(DIVUW) 8883 NODE_NAME_CASE(REMUW) 8884 NODE_NAME_CASE(ROLW) 8885 NODE_NAME_CASE(RORW) 8886 NODE_NAME_CASE(CLZW) 8887 NODE_NAME_CASE(CTZW) 8888 NODE_NAME_CASE(FSLW) 8889 NODE_NAME_CASE(FSRW) 8890 NODE_NAME_CASE(FSL) 8891 NODE_NAME_CASE(FSR) 8892 NODE_NAME_CASE(FMV_H_X) 8893 NODE_NAME_CASE(FMV_X_ANYEXTH) 8894 NODE_NAME_CASE(FMV_W_X_RV64) 8895 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8896 NODE_NAME_CASE(FCVT_X_RTZ) 8897 NODE_NAME_CASE(FCVT_XU_RTZ) 8898 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 8899 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 8900 NODE_NAME_CASE(READ_CYCLE_WIDE) 8901 NODE_NAME_CASE(GREV) 8902 NODE_NAME_CASE(GREVW) 8903 NODE_NAME_CASE(GORC) 8904 NODE_NAME_CASE(GORCW) 8905 NODE_NAME_CASE(SHFL) 8906 NODE_NAME_CASE(SHFLW) 8907 NODE_NAME_CASE(UNSHFL) 8908 NODE_NAME_CASE(UNSHFLW) 8909 NODE_NAME_CASE(BCOMPRESS) 8910 NODE_NAME_CASE(BCOMPRESSW) 8911 NODE_NAME_CASE(BDECOMPRESS) 8912 NODE_NAME_CASE(BDECOMPRESSW) 8913 NODE_NAME_CASE(VMV_V_X_VL) 8914 NODE_NAME_CASE(VFMV_V_F_VL) 8915 NODE_NAME_CASE(VMV_X_S) 8916 NODE_NAME_CASE(VMV_S_X_VL) 8917 NODE_NAME_CASE(VFMV_S_F_VL) 8918 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8919 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8920 NODE_NAME_CASE(READ_VLENB) 8921 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8922 NODE_NAME_CASE(VSLIDEUP_VL) 8923 NODE_NAME_CASE(VSLIDE1UP_VL) 8924 NODE_NAME_CASE(VSLIDEDOWN_VL) 8925 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8926 NODE_NAME_CASE(VID_VL) 8927 NODE_NAME_CASE(VFNCVT_ROD_VL) 8928 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8929 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8930 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8931 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8932 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8933 NODE_NAME_CASE(VECREDUCE_AND_VL) 8934 NODE_NAME_CASE(VECREDUCE_OR_VL) 8935 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8936 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8937 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8938 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8939 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8940 NODE_NAME_CASE(ADD_VL) 8941 NODE_NAME_CASE(AND_VL) 8942 NODE_NAME_CASE(MUL_VL) 8943 NODE_NAME_CASE(OR_VL) 8944 NODE_NAME_CASE(SDIV_VL) 8945 NODE_NAME_CASE(SHL_VL) 8946 NODE_NAME_CASE(SREM_VL) 8947 NODE_NAME_CASE(SRA_VL) 8948 NODE_NAME_CASE(SRL_VL) 8949 NODE_NAME_CASE(SUB_VL) 8950 NODE_NAME_CASE(UDIV_VL) 8951 NODE_NAME_CASE(UREM_VL) 8952 NODE_NAME_CASE(XOR_VL) 8953 NODE_NAME_CASE(SADDSAT_VL) 8954 NODE_NAME_CASE(UADDSAT_VL) 8955 NODE_NAME_CASE(SSUBSAT_VL) 8956 NODE_NAME_CASE(USUBSAT_VL) 8957 NODE_NAME_CASE(FADD_VL) 8958 NODE_NAME_CASE(FSUB_VL) 8959 NODE_NAME_CASE(FMUL_VL) 8960 NODE_NAME_CASE(FDIV_VL) 8961 NODE_NAME_CASE(FNEG_VL) 8962 NODE_NAME_CASE(FABS_VL) 8963 NODE_NAME_CASE(FSQRT_VL) 8964 NODE_NAME_CASE(FMA_VL) 8965 NODE_NAME_CASE(FCOPYSIGN_VL) 8966 NODE_NAME_CASE(SMIN_VL) 8967 NODE_NAME_CASE(SMAX_VL) 8968 NODE_NAME_CASE(UMIN_VL) 8969 NODE_NAME_CASE(UMAX_VL) 8970 NODE_NAME_CASE(FMINNUM_VL) 8971 NODE_NAME_CASE(FMAXNUM_VL) 8972 NODE_NAME_CASE(MULHS_VL) 8973 NODE_NAME_CASE(MULHU_VL) 8974 NODE_NAME_CASE(FP_TO_SINT_VL) 8975 NODE_NAME_CASE(FP_TO_UINT_VL) 8976 NODE_NAME_CASE(SINT_TO_FP_VL) 8977 NODE_NAME_CASE(UINT_TO_FP_VL) 8978 NODE_NAME_CASE(FP_EXTEND_VL) 8979 NODE_NAME_CASE(FP_ROUND_VL) 8980 NODE_NAME_CASE(VWMUL_VL) 8981 NODE_NAME_CASE(VWMULU_VL) 8982 NODE_NAME_CASE(SETCC_VL) 8983 NODE_NAME_CASE(VSELECT_VL) 8984 NODE_NAME_CASE(VMAND_VL) 8985 NODE_NAME_CASE(VMOR_VL) 8986 NODE_NAME_CASE(VMXOR_VL) 8987 NODE_NAME_CASE(VMCLR_VL) 8988 NODE_NAME_CASE(VMSET_VL) 8989 NODE_NAME_CASE(VRGATHER_VX_VL) 8990 NODE_NAME_CASE(VRGATHER_VV_VL) 8991 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8992 NODE_NAME_CASE(VSEXT_VL) 8993 NODE_NAME_CASE(VZEXT_VL) 8994 NODE_NAME_CASE(VPOPC_VL) 8995 NODE_NAME_CASE(VLE_VL) 8996 NODE_NAME_CASE(VSE_VL) 8997 NODE_NAME_CASE(READ_CSR) 8998 NODE_NAME_CASE(WRITE_CSR) 8999 NODE_NAME_CASE(SWAP_CSR) 9000 } 9001 // clang-format on 9002 return nullptr; 9003 #undef NODE_NAME_CASE 9004 } 9005 9006 /// getConstraintType - Given a constraint letter, return the type of 9007 /// constraint it is for this target. 9008 RISCVTargetLowering::ConstraintType 9009 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9010 if (Constraint.size() == 1) { 9011 switch (Constraint[0]) { 9012 default: 9013 break; 9014 case 'f': 9015 return C_RegisterClass; 9016 case 'I': 9017 case 'J': 9018 case 'K': 9019 return C_Immediate; 9020 case 'A': 9021 return C_Memory; 9022 case 'S': // A symbolic address 9023 return C_Other; 9024 } 9025 } else { 9026 if (Constraint == "vr" || Constraint == "vm") 9027 return C_RegisterClass; 9028 } 9029 return TargetLowering::getConstraintType(Constraint); 9030 } 9031 9032 std::pair<unsigned, const TargetRegisterClass *> 9033 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9034 StringRef Constraint, 9035 MVT VT) const { 9036 // First, see if this is a constraint that directly corresponds to a 9037 // RISCV register class. 9038 if (Constraint.size() == 1) { 9039 switch (Constraint[0]) { 9040 case 'r': 9041 return std::make_pair(0U, &RISCV::GPRRegClass); 9042 case 'f': 9043 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9044 return std::make_pair(0U, &RISCV::FPR16RegClass); 9045 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9046 return std::make_pair(0U, &RISCV::FPR32RegClass); 9047 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9048 return std::make_pair(0U, &RISCV::FPR64RegClass); 9049 break; 9050 default: 9051 break; 9052 } 9053 } else { 9054 if (Constraint == "vr") { 9055 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9056 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9057 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9058 return std::make_pair(0U, RC); 9059 } 9060 } else if (Constraint == "vm") { 9061 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9062 return std::make_pair(0U, &RISCV::VMRegClass); 9063 } 9064 } 9065 9066 // Clang will correctly decode the usage of register name aliases into their 9067 // official names. However, other frontends like `rustc` do not. This allows 9068 // users of these frontends to use the ABI names for registers in LLVM-style 9069 // register constraints. 9070 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9071 .Case("{zero}", RISCV::X0) 9072 .Case("{ra}", RISCV::X1) 9073 .Case("{sp}", RISCV::X2) 9074 .Case("{gp}", RISCV::X3) 9075 .Case("{tp}", RISCV::X4) 9076 .Case("{t0}", RISCV::X5) 9077 .Case("{t1}", RISCV::X6) 9078 .Case("{t2}", RISCV::X7) 9079 .Cases("{s0}", "{fp}", RISCV::X8) 9080 .Case("{s1}", RISCV::X9) 9081 .Case("{a0}", RISCV::X10) 9082 .Case("{a1}", RISCV::X11) 9083 .Case("{a2}", RISCV::X12) 9084 .Case("{a3}", RISCV::X13) 9085 .Case("{a4}", RISCV::X14) 9086 .Case("{a5}", RISCV::X15) 9087 .Case("{a6}", RISCV::X16) 9088 .Case("{a7}", RISCV::X17) 9089 .Case("{s2}", RISCV::X18) 9090 .Case("{s3}", RISCV::X19) 9091 .Case("{s4}", RISCV::X20) 9092 .Case("{s5}", RISCV::X21) 9093 .Case("{s6}", RISCV::X22) 9094 .Case("{s7}", RISCV::X23) 9095 .Case("{s8}", RISCV::X24) 9096 .Case("{s9}", RISCV::X25) 9097 .Case("{s10}", RISCV::X26) 9098 .Case("{s11}", RISCV::X27) 9099 .Case("{t3}", RISCV::X28) 9100 .Case("{t4}", RISCV::X29) 9101 .Case("{t5}", RISCV::X30) 9102 .Case("{t6}", RISCV::X31) 9103 .Default(RISCV::NoRegister); 9104 if (XRegFromAlias != RISCV::NoRegister) 9105 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9106 9107 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9108 // TableGen record rather than the AsmName to choose registers for InlineAsm 9109 // constraints, plus we want to match those names to the widest floating point 9110 // register type available, manually select floating point registers here. 9111 // 9112 // The second case is the ABI name of the register, so that frontends can also 9113 // use the ABI names in register constraint lists. 9114 if (Subtarget.hasStdExtF()) { 9115 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9116 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9117 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9118 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9119 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9120 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9121 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9122 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9123 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9124 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9125 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9126 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9127 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9128 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9129 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9130 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9131 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9132 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9133 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9134 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9135 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9136 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9137 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9138 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9139 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9140 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9141 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9142 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9143 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9144 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9145 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9146 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9147 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9148 .Default(RISCV::NoRegister); 9149 if (FReg != RISCV::NoRegister) { 9150 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9151 if (Subtarget.hasStdExtD()) { 9152 unsigned RegNo = FReg - RISCV::F0_F; 9153 unsigned DReg = RISCV::F0_D + RegNo; 9154 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9155 } 9156 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9157 } 9158 } 9159 9160 if (Subtarget.hasStdExtV()) { 9161 Register VReg = StringSwitch<Register>(Constraint.lower()) 9162 .Case("{v0}", RISCV::V0) 9163 .Case("{v1}", RISCV::V1) 9164 .Case("{v2}", RISCV::V2) 9165 .Case("{v3}", RISCV::V3) 9166 .Case("{v4}", RISCV::V4) 9167 .Case("{v5}", RISCV::V5) 9168 .Case("{v6}", RISCV::V6) 9169 .Case("{v7}", RISCV::V7) 9170 .Case("{v8}", RISCV::V8) 9171 .Case("{v9}", RISCV::V9) 9172 .Case("{v10}", RISCV::V10) 9173 .Case("{v11}", RISCV::V11) 9174 .Case("{v12}", RISCV::V12) 9175 .Case("{v13}", RISCV::V13) 9176 .Case("{v14}", RISCV::V14) 9177 .Case("{v15}", RISCV::V15) 9178 .Case("{v16}", RISCV::V16) 9179 .Case("{v17}", RISCV::V17) 9180 .Case("{v18}", RISCV::V18) 9181 .Case("{v19}", RISCV::V19) 9182 .Case("{v20}", RISCV::V20) 9183 .Case("{v21}", RISCV::V21) 9184 .Case("{v22}", RISCV::V22) 9185 .Case("{v23}", RISCV::V23) 9186 .Case("{v24}", RISCV::V24) 9187 .Case("{v25}", RISCV::V25) 9188 .Case("{v26}", RISCV::V26) 9189 .Case("{v27}", RISCV::V27) 9190 .Case("{v28}", RISCV::V28) 9191 .Case("{v29}", RISCV::V29) 9192 .Case("{v30}", RISCV::V30) 9193 .Case("{v31}", RISCV::V31) 9194 .Default(RISCV::NoRegister); 9195 if (VReg != RISCV::NoRegister) { 9196 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9197 return std::make_pair(VReg, &RISCV::VMRegClass); 9198 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9199 return std::make_pair(VReg, &RISCV::VRRegClass); 9200 for (const auto *RC : 9201 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9202 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9203 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9204 return std::make_pair(VReg, RC); 9205 } 9206 } 9207 } 9208 } 9209 9210 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9211 } 9212 9213 unsigned 9214 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9215 // Currently only support length 1 constraints. 9216 if (ConstraintCode.size() == 1) { 9217 switch (ConstraintCode[0]) { 9218 case 'A': 9219 return InlineAsm::Constraint_A; 9220 default: 9221 break; 9222 } 9223 } 9224 9225 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9226 } 9227 9228 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9229 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9230 SelectionDAG &DAG) const { 9231 // Currently only support length 1 constraints. 9232 if (Constraint.length() == 1) { 9233 switch (Constraint[0]) { 9234 case 'I': 9235 // Validate & create a 12-bit signed immediate operand. 9236 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9237 uint64_t CVal = C->getSExtValue(); 9238 if (isInt<12>(CVal)) 9239 Ops.push_back( 9240 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9241 } 9242 return; 9243 case 'J': 9244 // Validate & create an integer zero operand. 9245 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9246 if (C->getZExtValue() == 0) 9247 Ops.push_back( 9248 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9249 return; 9250 case 'K': 9251 // Validate & create a 5-bit unsigned immediate operand. 9252 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9253 uint64_t CVal = C->getZExtValue(); 9254 if (isUInt<5>(CVal)) 9255 Ops.push_back( 9256 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9257 } 9258 return; 9259 case 'S': 9260 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9261 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9262 GA->getValueType(0))); 9263 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9264 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9265 BA->getValueType(0))); 9266 } 9267 return; 9268 default: 9269 break; 9270 } 9271 } 9272 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9273 } 9274 9275 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9276 Instruction *Inst, 9277 AtomicOrdering Ord) const { 9278 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9279 return Builder.CreateFence(Ord); 9280 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9281 return Builder.CreateFence(AtomicOrdering::Release); 9282 return nullptr; 9283 } 9284 9285 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9286 Instruction *Inst, 9287 AtomicOrdering Ord) const { 9288 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9289 return Builder.CreateFence(AtomicOrdering::Acquire); 9290 return nullptr; 9291 } 9292 9293 TargetLowering::AtomicExpansionKind 9294 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9295 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9296 // point operations can't be used in an lr/sc sequence without breaking the 9297 // forward-progress guarantee. 9298 if (AI->isFloatingPointOperation()) 9299 return AtomicExpansionKind::CmpXChg; 9300 9301 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9302 if (Size == 8 || Size == 16) 9303 return AtomicExpansionKind::MaskedIntrinsic; 9304 return AtomicExpansionKind::None; 9305 } 9306 9307 static Intrinsic::ID 9308 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9309 if (XLen == 32) { 9310 switch (BinOp) { 9311 default: 9312 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9313 case AtomicRMWInst::Xchg: 9314 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9315 case AtomicRMWInst::Add: 9316 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9317 case AtomicRMWInst::Sub: 9318 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9319 case AtomicRMWInst::Nand: 9320 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9321 case AtomicRMWInst::Max: 9322 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9323 case AtomicRMWInst::Min: 9324 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9325 case AtomicRMWInst::UMax: 9326 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9327 case AtomicRMWInst::UMin: 9328 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9329 } 9330 } 9331 9332 if (XLen == 64) { 9333 switch (BinOp) { 9334 default: 9335 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9336 case AtomicRMWInst::Xchg: 9337 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9338 case AtomicRMWInst::Add: 9339 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9340 case AtomicRMWInst::Sub: 9341 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9342 case AtomicRMWInst::Nand: 9343 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9344 case AtomicRMWInst::Max: 9345 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9346 case AtomicRMWInst::Min: 9347 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9348 case AtomicRMWInst::UMax: 9349 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9350 case AtomicRMWInst::UMin: 9351 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9352 } 9353 } 9354 9355 llvm_unreachable("Unexpected XLen\n"); 9356 } 9357 9358 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9359 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9360 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9361 unsigned XLen = Subtarget.getXLen(); 9362 Value *Ordering = 9363 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9364 Type *Tys[] = {AlignedAddr->getType()}; 9365 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9366 AI->getModule(), 9367 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9368 9369 if (XLen == 64) { 9370 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9371 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9372 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9373 } 9374 9375 Value *Result; 9376 9377 // Must pass the shift amount needed to sign extend the loaded value prior 9378 // to performing a signed comparison for min/max. ShiftAmt is the number of 9379 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9380 // is the number of bits to left+right shift the value in order to 9381 // sign-extend. 9382 if (AI->getOperation() == AtomicRMWInst::Min || 9383 AI->getOperation() == AtomicRMWInst::Max) { 9384 const DataLayout &DL = AI->getModule()->getDataLayout(); 9385 unsigned ValWidth = 9386 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9387 Value *SextShamt = 9388 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9389 Result = Builder.CreateCall(LrwOpScwLoop, 9390 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9391 } else { 9392 Result = 9393 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9394 } 9395 9396 if (XLen == 64) 9397 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9398 return Result; 9399 } 9400 9401 TargetLowering::AtomicExpansionKind 9402 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9403 AtomicCmpXchgInst *CI) const { 9404 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9405 if (Size == 8 || Size == 16) 9406 return AtomicExpansionKind::MaskedIntrinsic; 9407 return AtomicExpansionKind::None; 9408 } 9409 9410 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9411 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9412 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9413 unsigned XLen = Subtarget.getXLen(); 9414 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9415 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9416 if (XLen == 64) { 9417 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9418 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9419 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9420 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9421 } 9422 Type *Tys[] = {AlignedAddr->getType()}; 9423 Function *MaskedCmpXchg = 9424 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9425 Value *Result = Builder.CreateCall( 9426 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9427 if (XLen == 64) 9428 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9429 return Result; 9430 } 9431 9432 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9433 return false; 9434 } 9435 9436 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9437 EVT VT) const { 9438 VT = VT.getScalarType(); 9439 9440 if (!VT.isSimple()) 9441 return false; 9442 9443 switch (VT.getSimpleVT().SimpleTy) { 9444 case MVT::f16: 9445 return Subtarget.hasStdExtZfh(); 9446 case MVT::f32: 9447 return Subtarget.hasStdExtF(); 9448 case MVT::f64: 9449 return Subtarget.hasStdExtD(); 9450 default: 9451 break; 9452 } 9453 9454 return false; 9455 } 9456 9457 Register RISCVTargetLowering::getExceptionPointerRegister( 9458 const Constant *PersonalityFn) const { 9459 return RISCV::X10; 9460 } 9461 9462 Register RISCVTargetLowering::getExceptionSelectorRegister( 9463 const Constant *PersonalityFn) const { 9464 return RISCV::X11; 9465 } 9466 9467 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9468 // Return false to suppress the unnecessary extensions if the LibCall 9469 // arguments or return value is f32 type for LP64 ABI. 9470 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9471 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9472 return false; 9473 9474 return true; 9475 } 9476 9477 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9478 if (Subtarget.is64Bit() && Type == MVT::i32) 9479 return true; 9480 9481 return IsSigned; 9482 } 9483 9484 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9485 SDValue C) const { 9486 // Check integral scalar types. 9487 if (VT.isScalarInteger()) { 9488 // Omit the optimization if the sub target has the M extension and the data 9489 // size exceeds XLen. 9490 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9491 return false; 9492 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9493 // Break the MUL to a SLLI and an ADD/SUB. 9494 const APInt &Imm = ConstNode->getAPIntValue(); 9495 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9496 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9497 return true; 9498 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9499 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9500 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9501 (Imm - 8).isPowerOf2())) 9502 return true; 9503 // Omit the following optimization if the sub target has the M extension 9504 // and the data size >= XLen. 9505 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9506 return false; 9507 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9508 // a pair of LUI/ADDI. 9509 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9510 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9511 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9512 (1 - ImmS).isPowerOf2()) 9513 return true; 9514 } 9515 } 9516 } 9517 9518 return false; 9519 } 9520 9521 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9522 const SDValue &AddNode, const SDValue &ConstNode) const { 9523 // Let the DAGCombiner decide for vectors. 9524 EVT VT = AddNode.getValueType(); 9525 if (VT.isVector()) 9526 return true; 9527 9528 // Let the DAGCombiner decide for larger types. 9529 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9530 return true; 9531 9532 // It is worse if c1 is simm12 while c1*c2 is not. 9533 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9534 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9535 const APInt &C1 = C1Node->getAPIntValue(); 9536 const APInt &C2 = C2Node->getAPIntValue(); 9537 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9538 return false; 9539 9540 // Default to true and let the DAGCombiner decide. 9541 return true; 9542 } 9543 9544 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9545 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9546 bool *Fast) const { 9547 if (!VT.isVector()) 9548 return false; 9549 9550 EVT ElemVT = VT.getVectorElementType(); 9551 if (Alignment >= ElemVT.getStoreSize()) { 9552 if (Fast) 9553 *Fast = true; 9554 return true; 9555 } 9556 9557 return false; 9558 } 9559 9560 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9561 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9562 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9563 bool IsABIRegCopy = CC.hasValue(); 9564 EVT ValueVT = Val.getValueType(); 9565 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9566 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9567 // and cast to f32. 9568 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9569 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9570 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9571 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9572 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9573 Parts[0] = Val; 9574 return true; 9575 } 9576 9577 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9578 LLVMContext &Context = *DAG.getContext(); 9579 EVT ValueEltVT = ValueVT.getVectorElementType(); 9580 EVT PartEltVT = PartVT.getVectorElementType(); 9581 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9582 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9583 if (PartVTBitSize % ValueVTBitSize == 0) { 9584 // If the element types are different, bitcast to the same element type of 9585 // PartVT first. 9586 if (ValueEltVT != PartEltVT) { 9587 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9588 assert(Count != 0 && "The number of element should not be zero."); 9589 EVT SameEltTypeVT = 9590 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9591 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9592 } 9593 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9594 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9595 Parts[0] = Val; 9596 return true; 9597 } 9598 } 9599 return false; 9600 } 9601 9602 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9603 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9604 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9605 bool IsABIRegCopy = CC.hasValue(); 9606 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9607 SDValue Val = Parts[0]; 9608 9609 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9610 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9611 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9612 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9613 return Val; 9614 } 9615 9616 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9617 LLVMContext &Context = *DAG.getContext(); 9618 SDValue Val = Parts[0]; 9619 EVT ValueEltVT = ValueVT.getVectorElementType(); 9620 EVT PartEltVT = PartVT.getVectorElementType(); 9621 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9622 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9623 if (PartVTBitSize % ValueVTBitSize == 0) { 9624 EVT SameEltTypeVT = ValueVT; 9625 // If the element types are different, convert it to the same element type 9626 // of PartVT. 9627 if (ValueEltVT != PartEltVT) { 9628 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9629 assert(Count != 0 && "The number of element should not be zero."); 9630 SameEltTypeVT = 9631 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9632 } 9633 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9634 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9635 if (ValueEltVT != PartEltVT) 9636 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9637 return Val; 9638 } 9639 } 9640 return SDValue(); 9641 } 9642 9643 #define GET_REGISTER_MATCHER 9644 #include "RISCVGenAsmMatcher.inc" 9645 9646 Register 9647 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9648 const MachineFunction &MF) const { 9649 Register Reg = MatchRegisterAltName(RegName); 9650 if (Reg == RISCV::NoRegister) 9651 Reg = MatchRegisterName(RegName); 9652 if (Reg == RISCV::NoRegister) 9653 report_fatal_error( 9654 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9655 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9656 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9657 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9658 StringRef(RegName) + "\".")); 9659 return Reg; 9660 } 9661 9662 namespace llvm { 9663 namespace RISCVVIntrinsicsTable { 9664 9665 #define GET_RISCVVIntrinsicsTable_IMPL 9666 #include "RISCVGenSearchableTables.inc" 9667 9668 } // namespace RISCVVIntrinsicsTable 9669 9670 } // namespace llvm 9671