1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 344 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f16, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 348 setOperationAction(ISD::SELECT, MVT::f16, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 350 351 setOperationAction(ISD::FREM, MVT::f16, Promote); 352 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 353 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 354 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 355 setOperationAction(ISD::FRINT, MVT::f16, Promote); 356 setOperationAction(ISD::FROUND, MVT::f16, Promote); 357 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 358 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 359 setOperationAction(ISD::FPOW, MVT::f16, Promote); 360 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 361 setOperationAction(ISD::FCOS, MVT::f16, Promote); 362 setOperationAction(ISD::FSIN, MVT::f16, Promote); 363 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 364 setOperationAction(ISD::FEXP, MVT::f16, Promote); 365 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 366 setOperationAction(ISD::FLOG, MVT::f16, Promote); 367 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 368 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 369 370 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 371 // complete support for all operations in LegalizeDAG. 372 373 // We need to custom promote this. 374 if (Subtarget.is64Bit()) 375 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 376 } 377 378 if (Subtarget.hasStdExtF()) { 379 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 380 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 381 setOperationAction(ISD::LRINT, MVT::f32, Legal); 382 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 383 setOperationAction(ISD::LROUND, MVT::f32, Legal); 384 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 385 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 386 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 387 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 395 for (auto CC : FPCCToExpand) 396 setCondCodeAction(CC, MVT::f32, Expand); 397 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 398 setOperationAction(ISD::SELECT, MVT::f32, Custom); 399 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 400 for (auto Op : FPOpToExpand) 401 setOperationAction(Op, MVT::f32, Expand); 402 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 403 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 404 } 405 406 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 407 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 408 409 if (Subtarget.hasStdExtD()) { 410 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 411 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 412 setOperationAction(ISD::LRINT, MVT::f64, Legal); 413 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 414 setOperationAction(ISD::LROUND, MVT::f64, Legal); 415 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 416 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 417 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 418 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 419 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 420 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 426 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 428 for (auto CC : FPCCToExpand) 429 setCondCodeAction(CC, MVT::f64, Expand); 430 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 431 setOperationAction(ISD::SELECT, MVT::f64, Custom); 432 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 433 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 434 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 435 for (auto Op : FPOpToExpand) 436 setOperationAction(Op, MVT::f64, Expand); 437 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 438 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 439 } 440 441 if (Subtarget.is64Bit()) { 442 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 443 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 444 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 445 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 446 } 447 448 if (Subtarget.hasStdExtF()) { 449 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 450 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 451 452 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 453 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 454 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 455 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 456 457 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 458 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 459 } 460 461 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 462 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 463 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 464 setOperationAction(ISD::JumpTable, XLenVT, Custom); 465 466 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 467 468 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 469 // Unfortunately this can't be determined just from the ISA naming string. 470 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 471 Subtarget.is64Bit() ? Legal : Custom); 472 473 setOperationAction(ISD::TRAP, MVT::Other, Legal); 474 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 475 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 476 if (Subtarget.is64Bit()) 477 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 478 479 if (Subtarget.hasStdExtA()) { 480 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 481 setMinCmpXchgSizeInBits(32); 482 } else { 483 setMaxAtomicSizeInBitsSupported(0); 484 } 485 486 setBooleanContents(ZeroOrOneBooleanContent); 487 488 if (Subtarget.hasVInstructions()) { 489 setBooleanVectorContents(ZeroOrOneBooleanContent); 490 491 setOperationAction(ISD::VSCALE, XLenVT, Custom); 492 493 // RVV intrinsics may have illegal operands. 494 // We also need to custom legalize vmv.x.s. 495 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 496 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 497 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 498 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 499 if (Subtarget.is64Bit()) { 500 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 501 } else { 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 503 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 504 } 505 506 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 507 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 508 509 static const unsigned IntegerVPOps[] = { 510 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 511 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 512 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 513 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 514 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 515 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 516 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 517 ISD::VP_SELECT}; 518 519 static const unsigned FloatingPointVPOps[] = { 520 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 521 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 522 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 523 524 if (!Subtarget.is64Bit()) { 525 // We must custom-lower certain vXi64 operations on RV32 due to the vector 526 // element type being illegal. 527 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 528 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 529 530 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 531 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 532 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 533 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 534 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 535 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 536 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 537 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 538 539 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 540 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 541 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 542 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 543 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 544 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 545 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 546 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 547 } 548 549 for (MVT VT : BoolVecVTs) { 550 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 551 552 // Mask VTs are custom-expanded into a series of standard nodes 553 setOperationAction(ISD::TRUNCATE, VT, Custom); 554 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 555 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 556 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 557 558 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 559 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 560 561 setOperationAction(ISD::SELECT, VT, Custom); 562 setOperationAction(ISD::SELECT_CC, VT, Expand); 563 setOperationAction(ISD::VSELECT, VT, Expand); 564 setOperationAction(ISD::VP_SELECT, VT, Expand); 565 566 setOperationAction(ISD::VP_AND, VT, Custom); 567 setOperationAction(ISD::VP_OR, VT, Custom); 568 setOperationAction(ISD::VP_XOR, VT, Custom); 569 570 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 573 574 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 575 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 576 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 577 578 // RVV has native int->float & float->int conversions where the 579 // element type sizes are within one power-of-two of each other. Any 580 // wider distances between type sizes have to be lowered as sequences 581 // which progressively narrow the gap in stages. 582 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 583 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 584 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 585 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 586 587 // Expand all extending loads to types larger than this, and truncating 588 // stores from types larger than this. 589 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 590 setTruncStoreAction(OtherVT, VT, Expand); 591 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 592 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 593 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 594 } 595 } 596 597 for (MVT VT : IntVecVTs) { 598 if (VT.getVectorElementType() == MVT::i64 && 599 !Subtarget.hasVInstructionsI64()) 600 continue; 601 602 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 603 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 604 605 // Vectors implement MULHS/MULHU. 606 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 607 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 608 609 setOperationAction(ISD::SMIN, VT, Legal); 610 setOperationAction(ISD::SMAX, VT, Legal); 611 setOperationAction(ISD::UMIN, VT, Legal); 612 setOperationAction(ISD::UMAX, VT, Legal); 613 614 setOperationAction(ISD::ROTL, VT, Expand); 615 setOperationAction(ISD::ROTR, VT, Expand); 616 617 setOperationAction(ISD::CTTZ, VT, Expand); 618 setOperationAction(ISD::CTLZ, VT, Expand); 619 setOperationAction(ISD::CTPOP, VT, Expand); 620 621 setOperationAction(ISD::BSWAP, VT, Expand); 622 623 // Custom-lower extensions and truncations from/to mask types. 624 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 625 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 626 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 627 628 // RVV has native int->float & float->int conversions where the 629 // element type sizes are within one power-of-two of each other. Any 630 // wider distances between type sizes have to be lowered as sequences 631 // which progressively narrow the gap in stages. 632 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 633 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 634 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 635 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 636 637 setOperationAction(ISD::SADDSAT, VT, Legal); 638 setOperationAction(ISD::UADDSAT, VT, Legal); 639 setOperationAction(ISD::SSUBSAT, VT, Legal); 640 setOperationAction(ISD::USUBSAT, VT, Legal); 641 642 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 643 // nodes which truncate by one power of two at a time. 644 setOperationAction(ISD::TRUNCATE, VT, Custom); 645 646 // Custom-lower insert/extract operations to simplify patterns. 647 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 648 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 649 650 // Custom-lower reduction operations to set up the corresponding custom 651 // nodes' operands. 652 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 654 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 655 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 656 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 657 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 658 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 659 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 660 661 for (unsigned VPOpc : IntegerVPOps) 662 setOperationAction(VPOpc, VT, Custom); 663 664 setOperationAction(ISD::LOAD, VT, Custom); 665 setOperationAction(ISD::STORE, VT, Custom); 666 667 setOperationAction(ISD::MLOAD, VT, Custom); 668 setOperationAction(ISD::MSTORE, VT, Custom); 669 setOperationAction(ISD::MGATHER, VT, Custom); 670 setOperationAction(ISD::MSCATTER, VT, Custom); 671 672 setOperationAction(ISD::VP_LOAD, VT, Custom); 673 setOperationAction(ISD::VP_STORE, VT, Custom); 674 setOperationAction(ISD::VP_GATHER, VT, Custom); 675 setOperationAction(ISD::VP_SCATTER, VT, Custom); 676 677 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 678 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 679 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 680 681 setOperationAction(ISD::SELECT, VT, Custom); 682 setOperationAction(ISD::SELECT_CC, VT, Expand); 683 684 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 685 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 686 687 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 688 setTruncStoreAction(VT, OtherVT, Expand); 689 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 690 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 691 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 692 } 693 694 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 695 // type that can represent the value exactly. 696 if (VT.getVectorElementType() != MVT::i64) { 697 MVT FloatEltVT = 698 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 699 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 700 if (isTypeLegal(FloatVT)) { 701 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 702 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 703 } 704 } 705 } 706 707 // Expand various CCs to best match the RVV ISA, which natively supports UNE 708 // but no other unordered comparisons, and supports all ordered comparisons 709 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 710 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 711 // and we pattern-match those back to the "original", swapping operands once 712 // more. This way we catch both operations and both "vf" and "fv" forms with 713 // fewer patterns. 714 static const ISD::CondCode VFPCCToExpand[] = { 715 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 716 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 717 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 718 }; 719 720 // Sets common operation actions on RVV floating-point vector types. 721 const auto SetCommonVFPActions = [&](MVT VT) { 722 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 723 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 724 // sizes are within one power-of-two of each other. Therefore conversions 725 // between vXf16 and vXf64 must be lowered as sequences which convert via 726 // vXf32. 727 setOperationAction(ISD::FP_ROUND, VT, Custom); 728 setOperationAction(ISD::FP_EXTEND, VT, Custom); 729 // Custom-lower insert/extract operations to simplify patterns. 730 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 731 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 732 // Expand various condition codes (explained above). 733 for (auto CC : VFPCCToExpand) 734 setCondCodeAction(CC, VT, Expand); 735 736 setOperationAction(ISD::FMINNUM, VT, Legal); 737 setOperationAction(ISD::FMAXNUM, VT, Legal); 738 739 setOperationAction(ISD::FTRUNC, VT, Custom); 740 setOperationAction(ISD::FCEIL, VT, Custom); 741 setOperationAction(ISD::FFLOOR, VT, Custom); 742 743 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 744 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 745 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 746 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 747 748 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 749 750 setOperationAction(ISD::LOAD, VT, Custom); 751 setOperationAction(ISD::STORE, VT, Custom); 752 753 setOperationAction(ISD::MLOAD, VT, Custom); 754 setOperationAction(ISD::MSTORE, VT, Custom); 755 setOperationAction(ISD::MGATHER, VT, Custom); 756 setOperationAction(ISD::MSCATTER, VT, Custom); 757 758 setOperationAction(ISD::VP_LOAD, VT, Custom); 759 setOperationAction(ISD::VP_STORE, VT, Custom); 760 setOperationAction(ISD::VP_GATHER, VT, Custom); 761 setOperationAction(ISD::VP_SCATTER, VT, Custom); 762 763 setOperationAction(ISD::SELECT, VT, Custom); 764 setOperationAction(ISD::SELECT_CC, VT, Expand); 765 766 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 767 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 768 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 769 770 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 771 772 for (unsigned VPOpc : FloatingPointVPOps) 773 setOperationAction(VPOpc, VT, Custom); 774 }; 775 776 // Sets common extload/truncstore actions on RVV floating-point vector 777 // types. 778 const auto SetCommonVFPExtLoadTruncStoreActions = 779 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 780 for (auto SmallVT : SmallerVTs) { 781 setTruncStoreAction(VT, SmallVT, Expand); 782 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 783 } 784 }; 785 786 if (Subtarget.hasVInstructionsF16()) 787 for (MVT VT : F16VecVTs) 788 SetCommonVFPActions(VT); 789 790 for (MVT VT : F32VecVTs) { 791 if (Subtarget.hasVInstructionsF32()) 792 SetCommonVFPActions(VT); 793 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 794 } 795 796 for (MVT VT : F64VecVTs) { 797 if (Subtarget.hasVInstructionsF64()) 798 SetCommonVFPActions(VT); 799 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 800 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 801 } 802 803 if (Subtarget.useRVVForFixedLengthVectors()) { 804 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 805 if (!useRVVForFixedLengthVectorVT(VT)) 806 continue; 807 808 // By default everything must be expanded. 809 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 810 setOperationAction(Op, VT, Expand); 811 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 812 setTruncStoreAction(VT, OtherVT, Expand); 813 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 814 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 815 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 816 } 817 818 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 819 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 820 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 821 822 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 823 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 824 825 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 826 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 827 828 setOperationAction(ISD::LOAD, VT, Custom); 829 setOperationAction(ISD::STORE, VT, Custom); 830 831 setOperationAction(ISD::SETCC, VT, Custom); 832 833 setOperationAction(ISD::SELECT, VT, Custom); 834 835 setOperationAction(ISD::TRUNCATE, VT, Custom); 836 837 setOperationAction(ISD::BITCAST, VT, Custom); 838 839 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 840 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 841 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 842 843 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 844 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 845 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 846 847 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 848 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 849 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 850 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 851 852 // Operations below are different for between masks and other vectors. 853 if (VT.getVectorElementType() == MVT::i1) { 854 setOperationAction(ISD::VP_AND, VT, Custom); 855 setOperationAction(ISD::VP_OR, VT, Custom); 856 setOperationAction(ISD::VP_XOR, VT, Custom); 857 setOperationAction(ISD::AND, VT, Custom); 858 setOperationAction(ISD::OR, VT, Custom); 859 setOperationAction(ISD::XOR, VT, Custom); 860 continue; 861 } 862 863 // Use SPLAT_VECTOR to prevent type legalization from destroying the 864 // splats when type legalizing i64 scalar on RV32. 865 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 866 // improvements first. 867 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 868 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 869 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 870 } 871 872 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 873 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 874 875 setOperationAction(ISD::MLOAD, VT, Custom); 876 setOperationAction(ISD::MSTORE, VT, Custom); 877 setOperationAction(ISD::MGATHER, VT, Custom); 878 setOperationAction(ISD::MSCATTER, VT, Custom); 879 880 setOperationAction(ISD::VP_LOAD, VT, Custom); 881 setOperationAction(ISD::VP_STORE, VT, Custom); 882 setOperationAction(ISD::VP_GATHER, VT, Custom); 883 setOperationAction(ISD::VP_SCATTER, VT, Custom); 884 885 setOperationAction(ISD::ADD, VT, Custom); 886 setOperationAction(ISD::MUL, VT, Custom); 887 setOperationAction(ISD::SUB, VT, Custom); 888 setOperationAction(ISD::AND, VT, Custom); 889 setOperationAction(ISD::OR, VT, Custom); 890 setOperationAction(ISD::XOR, VT, Custom); 891 setOperationAction(ISD::SDIV, VT, Custom); 892 setOperationAction(ISD::SREM, VT, Custom); 893 setOperationAction(ISD::UDIV, VT, Custom); 894 setOperationAction(ISD::UREM, VT, Custom); 895 setOperationAction(ISD::SHL, VT, Custom); 896 setOperationAction(ISD::SRA, VT, Custom); 897 setOperationAction(ISD::SRL, VT, Custom); 898 899 setOperationAction(ISD::SMIN, VT, Custom); 900 setOperationAction(ISD::SMAX, VT, Custom); 901 setOperationAction(ISD::UMIN, VT, Custom); 902 setOperationAction(ISD::UMAX, VT, Custom); 903 setOperationAction(ISD::ABS, VT, Custom); 904 905 setOperationAction(ISD::MULHS, VT, Custom); 906 setOperationAction(ISD::MULHU, VT, Custom); 907 908 setOperationAction(ISD::SADDSAT, VT, Custom); 909 setOperationAction(ISD::UADDSAT, VT, Custom); 910 setOperationAction(ISD::SSUBSAT, VT, Custom); 911 setOperationAction(ISD::USUBSAT, VT, Custom); 912 913 setOperationAction(ISD::VSELECT, VT, Custom); 914 setOperationAction(ISD::SELECT_CC, VT, Expand); 915 916 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 917 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 918 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 919 920 // Custom-lower reduction operations to set up the corresponding custom 921 // nodes' operands. 922 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 923 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 924 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 925 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 926 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 927 928 for (unsigned VPOpc : IntegerVPOps) 929 setOperationAction(VPOpc, VT, Custom); 930 931 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 932 // type that can represent the value exactly. 933 if (VT.getVectorElementType() != MVT::i64) { 934 MVT FloatEltVT = 935 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 936 EVT FloatVT = 937 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 938 if (isTypeLegal(FloatVT)) { 939 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 940 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 941 } 942 } 943 } 944 945 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 946 if (!useRVVForFixedLengthVectorVT(VT)) 947 continue; 948 949 // By default everything must be expanded. 950 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 951 setOperationAction(Op, VT, Expand); 952 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 953 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 954 setTruncStoreAction(VT, OtherVT, Expand); 955 } 956 957 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 958 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 959 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 960 961 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 962 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 963 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 964 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 965 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 966 967 setOperationAction(ISD::LOAD, VT, Custom); 968 setOperationAction(ISD::STORE, VT, Custom); 969 setOperationAction(ISD::MLOAD, VT, Custom); 970 setOperationAction(ISD::MSTORE, VT, Custom); 971 setOperationAction(ISD::MGATHER, VT, Custom); 972 setOperationAction(ISD::MSCATTER, VT, Custom); 973 974 setOperationAction(ISD::VP_LOAD, VT, Custom); 975 setOperationAction(ISD::VP_STORE, VT, Custom); 976 setOperationAction(ISD::VP_GATHER, VT, Custom); 977 setOperationAction(ISD::VP_SCATTER, VT, Custom); 978 979 setOperationAction(ISD::FADD, VT, Custom); 980 setOperationAction(ISD::FSUB, VT, Custom); 981 setOperationAction(ISD::FMUL, VT, Custom); 982 setOperationAction(ISD::FDIV, VT, Custom); 983 setOperationAction(ISD::FNEG, VT, Custom); 984 setOperationAction(ISD::FABS, VT, Custom); 985 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 986 setOperationAction(ISD::FSQRT, VT, Custom); 987 setOperationAction(ISD::FMA, VT, Custom); 988 setOperationAction(ISD::FMINNUM, VT, Custom); 989 setOperationAction(ISD::FMAXNUM, VT, Custom); 990 991 setOperationAction(ISD::FP_ROUND, VT, Custom); 992 setOperationAction(ISD::FP_EXTEND, VT, Custom); 993 994 setOperationAction(ISD::FTRUNC, VT, Custom); 995 setOperationAction(ISD::FCEIL, VT, Custom); 996 setOperationAction(ISD::FFLOOR, VT, Custom); 997 998 for (auto CC : VFPCCToExpand) 999 setCondCodeAction(CC, VT, Expand); 1000 1001 setOperationAction(ISD::VSELECT, VT, Custom); 1002 setOperationAction(ISD::SELECT, VT, Custom); 1003 setOperationAction(ISD::SELECT_CC, VT, Expand); 1004 1005 setOperationAction(ISD::BITCAST, VT, Custom); 1006 1007 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1008 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1009 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1010 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1011 1012 for (unsigned VPOpc : FloatingPointVPOps) 1013 setOperationAction(VPOpc, VT, Custom); 1014 } 1015 1016 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1017 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1018 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1019 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1020 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1021 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1022 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1023 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1024 } 1025 } 1026 1027 // Function alignments. 1028 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1029 setMinFunctionAlignment(FunctionAlignment); 1030 setPrefFunctionAlignment(FunctionAlignment); 1031 1032 setMinimumJumpTableEntries(5); 1033 1034 // Jumps are expensive, compared to logic 1035 setJumpIsExpensive(); 1036 1037 setTargetDAGCombine(ISD::ADD); 1038 setTargetDAGCombine(ISD::SUB); 1039 setTargetDAGCombine(ISD::AND); 1040 setTargetDAGCombine(ISD::OR); 1041 setTargetDAGCombine(ISD::XOR); 1042 setTargetDAGCombine(ISD::ANY_EXTEND); 1043 setTargetDAGCombine(ISD::ZERO_EXTEND); 1044 if (Subtarget.hasVInstructions()) { 1045 setTargetDAGCombine(ISD::FCOPYSIGN); 1046 setTargetDAGCombine(ISD::MGATHER); 1047 setTargetDAGCombine(ISD::MSCATTER); 1048 setTargetDAGCombine(ISD::VP_GATHER); 1049 setTargetDAGCombine(ISD::VP_SCATTER); 1050 setTargetDAGCombine(ISD::SRA); 1051 setTargetDAGCombine(ISD::SRL); 1052 setTargetDAGCombine(ISD::SHL); 1053 setTargetDAGCombine(ISD::STORE); 1054 } 1055 } 1056 1057 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1058 LLVMContext &Context, 1059 EVT VT) const { 1060 if (!VT.isVector()) 1061 return getPointerTy(DL); 1062 if (Subtarget.hasVInstructions() && 1063 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1064 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1065 return VT.changeVectorElementTypeToInteger(); 1066 } 1067 1068 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1069 return Subtarget.getXLenVT(); 1070 } 1071 1072 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1073 const CallInst &I, 1074 MachineFunction &MF, 1075 unsigned Intrinsic) const { 1076 auto &DL = I.getModule()->getDataLayout(); 1077 switch (Intrinsic) { 1078 default: 1079 return false; 1080 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1081 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1082 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1083 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1084 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1085 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1086 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1087 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1088 case Intrinsic::riscv_masked_cmpxchg_i32: { 1089 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1090 Info.opc = ISD::INTRINSIC_W_CHAIN; 1091 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1092 Info.ptrVal = I.getArgOperand(0); 1093 Info.offset = 0; 1094 Info.align = Align(4); 1095 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1096 MachineMemOperand::MOVolatile; 1097 return true; 1098 } 1099 case Intrinsic::riscv_masked_strided_load: 1100 Info.opc = ISD::INTRINSIC_W_CHAIN; 1101 Info.ptrVal = I.getArgOperand(1); 1102 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1103 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1104 Info.size = MemoryLocation::UnknownSize; 1105 Info.flags |= MachineMemOperand::MOLoad; 1106 return true; 1107 case Intrinsic::riscv_masked_strided_store: 1108 Info.opc = ISD::INTRINSIC_VOID; 1109 Info.ptrVal = I.getArgOperand(1); 1110 Info.memVT = 1111 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1112 Info.align = Align( 1113 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1114 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOStore; 1117 return true; 1118 } 1119 } 1120 1121 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1122 const AddrMode &AM, Type *Ty, 1123 unsigned AS, 1124 Instruction *I) const { 1125 // No global is ever allowed as a base. 1126 if (AM.BaseGV) 1127 return false; 1128 1129 // Require a 12-bit signed offset. 1130 if (!isInt<12>(AM.BaseOffs)) 1131 return false; 1132 1133 switch (AM.Scale) { 1134 case 0: // "r+i" or just "i", depending on HasBaseReg. 1135 break; 1136 case 1: 1137 if (!AM.HasBaseReg) // allow "r+i". 1138 break; 1139 return false; // disallow "r+r" or "r+r+i". 1140 default: 1141 return false; 1142 } 1143 1144 return true; 1145 } 1146 1147 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1148 return isInt<12>(Imm); 1149 } 1150 1151 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1152 return isInt<12>(Imm); 1153 } 1154 1155 // On RV32, 64-bit integers are split into their high and low parts and held 1156 // in two different registers, so the trunc is free since the low register can 1157 // just be used. 1158 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1159 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1160 return false; 1161 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1162 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1163 return (SrcBits == 64 && DestBits == 32); 1164 } 1165 1166 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1167 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1168 !SrcVT.isInteger() || !DstVT.isInteger()) 1169 return false; 1170 unsigned SrcBits = SrcVT.getSizeInBits(); 1171 unsigned DestBits = DstVT.getSizeInBits(); 1172 return (SrcBits == 64 && DestBits == 32); 1173 } 1174 1175 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1176 // Zexts are free if they can be combined with a load. 1177 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1178 EVT MemVT = LD->getMemoryVT(); 1179 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1180 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1181 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1182 LD->getExtensionType() == ISD::ZEXTLOAD)) 1183 return true; 1184 } 1185 1186 return TargetLowering::isZExtFree(Val, VT2); 1187 } 1188 1189 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1190 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1191 } 1192 1193 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1194 return Subtarget.hasStdExtZbb(); 1195 } 1196 1197 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1198 return Subtarget.hasStdExtZbb(); 1199 } 1200 1201 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1202 EVT VT = Y.getValueType(); 1203 1204 // FIXME: Support vectors once we have tests. 1205 if (VT.isVector()) 1206 return false; 1207 1208 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1209 } 1210 1211 /// Check if sinking \p I's operands to I's basic block is profitable, because 1212 /// the operands can be folded into a target instruction, e.g. 1213 /// splats of scalars can fold into vector instructions. 1214 bool RISCVTargetLowering::shouldSinkOperands( 1215 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1216 using namespace llvm::PatternMatch; 1217 1218 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1219 return false; 1220 1221 auto IsSinker = [&](Instruction *I, int Operand) { 1222 switch (I->getOpcode()) { 1223 case Instruction::Add: 1224 case Instruction::Sub: 1225 case Instruction::Mul: 1226 case Instruction::And: 1227 case Instruction::Or: 1228 case Instruction::Xor: 1229 case Instruction::FAdd: 1230 case Instruction::FSub: 1231 case Instruction::FMul: 1232 case Instruction::FDiv: 1233 case Instruction::ICmp: 1234 case Instruction::FCmp: 1235 return true; 1236 case Instruction::Shl: 1237 case Instruction::LShr: 1238 case Instruction::AShr: 1239 case Instruction::UDiv: 1240 case Instruction::SDiv: 1241 case Instruction::URem: 1242 case Instruction::SRem: 1243 return Operand == 1; 1244 case Instruction::Call: 1245 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1246 switch (II->getIntrinsicID()) { 1247 case Intrinsic::fma: 1248 return Operand == 0 || Operand == 1; 1249 default: 1250 return false; 1251 } 1252 } 1253 return false; 1254 default: 1255 return false; 1256 } 1257 }; 1258 1259 for (auto OpIdx : enumerate(I->operands())) { 1260 if (!IsSinker(I, OpIdx.index())) 1261 continue; 1262 1263 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1264 // Make sure we are not already sinking this operand 1265 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1266 continue; 1267 1268 // We are looking for a splat that can be sunk. 1269 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1270 m_Undef(), m_ZeroMask()))) 1271 continue; 1272 1273 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1274 // and vector registers 1275 for (Use &U : Op->uses()) { 1276 Instruction *Insn = cast<Instruction>(U.getUser()); 1277 if (!IsSinker(Insn, U.getOperandNo())) 1278 return false; 1279 } 1280 1281 Ops.push_back(&Op->getOperandUse(0)); 1282 Ops.push_back(&OpIdx.value()); 1283 } 1284 return true; 1285 } 1286 1287 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1288 bool ForCodeSize) const { 1289 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1290 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1291 return false; 1292 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1293 return false; 1294 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1295 return false; 1296 if (Imm.isNegZero()) 1297 return false; 1298 return Imm.isZero(); 1299 } 1300 1301 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1302 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1303 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1304 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1305 } 1306 1307 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1308 CallingConv::ID CC, 1309 EVT VT) const { 1310 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1311 // We might still end up using a GPR but that will be decided based on ABI. 1312 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1313 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1314 return MVT::f32; 1315 1316 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1317 } 1318 1319 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1320 CallingConv::ID CC, 1321 EVT VT) const { 1322 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1323 // We might still end up using a GPR but that will be decided based on ABI. 1324 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1325 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1326 return 1; 1327 1328 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1329 } 1330 1331 // Changes the condition code and swaps operands if necessary, so the SetCC 1332 // operation matches one of the comparisons supported directly by branches 1333 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1334 // with 1/-1. 1335 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1336 ISD::CondCode &CC, SelectionDAG &DAG) { 1337 // Convert X > -1 to X >= 0. 1338 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1339 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1340 CC = ISD::SETGE; 1341 return; 1342 } 1343 // Convert X < 1 to 0 >= X. 1344 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1345 RHS = LHS; 1346 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1347 CC = ISD::SETGE; 1348 return; 1349 } 1350 1351 switch (CC) { 1352 default: 1353 break; 1354 case ISD::SETGT: 1355 case ISD::SETLE: 1356 case ISD::SETUGT: 1357 case ISD::SETULE: 1358 CC = ISD::getSetCCSwappedOperands(CC); 1359 std::swap(LHS, RHS); 1360 break; 1361 } 1362 } 1363 1364 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1365 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1366 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1367 if (VT.getVectorElementType() == MVT::i1) 1368 KnownSize *= 8; 1369 1370 switch (KnownSize) { 1371 default: 1372 llvm_unreachable("Invalid LMUL."); 1373 case 8: 1374 return RISCVII::VLMUL::LMUL_F8; 1375 case 16: 1376 return RISCVII::VLMUL::LMUL_F4; 1377 case 32: 1378 return RISCVII::VLMUL::LMUL_F2; 1379 case 64: 1380 return RISCVII::VLMUL::LMUL_1; 1381 case 128: 1382 return RISCVII::VLMUL::LMUL_2; 1383 case 256: 1384 return RISCVII::VLMUL::LMUL_4; 1385 case 512: 1386 return RISCVII::VLMUL::LMUL_8; 1387 } 1388 } 1389 1390 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1391 switch (LMul) { 1392 default: 1393 llvm_unreachable("Invalid LMUL."); 1394 case RISCVII::VLMUL::LMUL_F8: 1395 case RISCVII::VLMUL::LMUL_F4: 1396 case RISCVII::VLMUL::LMUL_F2: 1397 case RISCVII::VLMUL::LMUL_1: 1398 return RISCV::VRRegClassID; 1399 case RISCVII::VLMUL::LMUL_2: 1400 return RISCV::VRM2RegClassID; 1401 case RISCVII::VLMUL::LMUL_4: 1402 return RISCV::VRM4RegClassID; 1403 case RISCVII::VLMUL::LMUL_8: 1404 return RISCV::VRM8RegClassID; 1405 } 1406 } 1407 1408 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1409 RISCVII::VLMUL LMUL = getLMUL(VT); 1410 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1411 LMUL == RISCVII::VLMUL::LMUL_F4 || 1412 LMUL == RISCVII::VLMUL::LMUL_F2 || 1413 LMUL == RISCVII::VLMUL::LMUL_1) { 1414 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1415 "Unexpected subreg numbering"); 1416 return RISCV::sub_vrm1_0 + Index; 1417 } 1418 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1419 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1420 "Unexpected subreg numbering"); 1421 return RISCV::sub_vrm2_0 + Index; 1422 } 1423 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1424 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1425 "Unexpected subreg numbering"); 1426 return RISCV::sub_vrm4_0 + Index; 1427 } 1428 llvm_unreachable("Invalid vector type."); 1429 } 1430 1431 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1432 if (VT.getVectorElementType() == MVT::i1) 1433 return RISCV::VRRegClassID; 1434 return getRegClassIDForLMUL(getLMUL(VT)); 1435 } 1436 1437 // Attempt to decompose a subvector insert/extract between VecVT and 1438 // SubVecVT via subregister indices. Returns the subregister index that 1439 // can perform the subvector insert/extract with the given element index, as 1440 // well as the index corresponding to any leftover subvectors that must be 1441 // further inserted/extracted within the register class for SubVecVT. 1442 std::pair<unsigned, unsigned> 1443 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1444 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1445 const RISCVRegisterInfo *TRI) { 1446 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1447 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1448 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1449 "Register classes not ordered"); 1450 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1451 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1452 // Try to compose a subregister index that takes us from the incoming 1453 // LMUL>1 register class down to the outgoing one. At each step we half 1454 // the LMUL: 1455 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1456 // Note that this is not guaranteed to find a subregister index, such as 1457 // when we are extracting from one VR type to another. 1458 unsigned SubRegIdx = RISCV::NoSubRegister; 1459 for (const unsigned RCID : 1460 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1461 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1462 VecVT = VecVT.getHalfNumVectorElementsVT(); 1463 bool IsHi = 1464 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1465 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1466 getSubregIndexByMVT(VecVT, IsHi)); 1467 if (IsHi) 1468 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1469 } 1470 return {SubRegIdx, InsertExtractIdx}; 1471 } 1472 1473 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1474 // stores for those types. 1475 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1476 return !Subtarget.useRVVForFixedLengthVectors() || 1477 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1478 } 1479 1480 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1481 if (ScalarTy->isPointerTy()) 1482 return true; 1483 1484 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1485 ScalarTy->isIntegerTy(32)) 1486 return true; 1487 1488 if (ScalarTy->isIntegerTy(64)) 1489 return Subtarget.hasVInstructionsI64(); 1490 1491 if (ScalarTy->isHalfTy()) 1492 return Subtarget.hasVInstructionsF16(); 1493 if (ScalarTy->isFloatTy()) 1494 return Subtarget.hasVInstructionsF32(); 1495 if (ScalarTy->isDoubleTy()) 1496 return Subtarget.hasVInstructionsF64(); 1497 1498 return false; 1499 } 1500 1501 static bool useRVVForFixedLengthVectorVT(MVT VT, 1502 const RISCVSubtarget &Subtarget) { 1503 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1504 if (!Subtarget.useRVVForFixedLengthVectors()) 1505 return false; 1506 1507 // We only support a set of vector types with a consistent maximum fixed size 1508 // across all supported vector element types to avoid legalization issues. 1509 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1510 // fixed-length vector type we support is 1024 bytes. 1511 if (VT.getFixedSizeInBits() > 1024 * 8) 1512 return false; 1513 1514 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1515 1516 MVT EltVT = VT.getVectorElementType(); 1517 1518 // Don't use RVV for vectors we cannot scalarize if required. 1519 switch (EltVT.SimpleTy) { 1520 // i1 is supported but has different rules. 1521 default: 1522 return false; 1523 case MVT::i1: 1524 // Masks can only use a single register. 1525 if (VT.getVectorNumElements() > MinVLen) 1526 return false; 1527 MinVLen /= 8; 1528 break; 1529 case MVT::i8: 1530 case MVT::i16: 1531 case MVT::i32: 1532 break; 1533 case MVT::i64: 1534 if (!Subtarget.hasVInstructionsI64()) 1535 return false; 1536 break; 1537 case MVT::f16: 1538 if (!Subtarget.hasVInstructionsF16()) 1539 return false; 1540 break; 1541 case MVT::f32: 1542 if (!Subtarget.hasVInstructionsF32()) 1543 return false; 1544 break; 1545 case MVT::f64: 1546 if (!Subtarget.hasVInstructionsF64()) 1547 return false; 1548 break; 1549 } 1550 1551 // Reject elements larger than ELEN. 1552 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1553 return false; 1554 1555 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1556 // Don't use RVV for types that don't fit. 1557 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1558 return false; 1559 1560 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1561 // the base fixed length RVV support in place. 1562 if (!VT.isPow2VectorType()) 1563 return false; 1564 1565 return true; 1566 } 1567 1568 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1569 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1570 } 1571 1572 // Return the largest legal scalable vector type that matches VT's element type. 1573 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1574 const RISCVSubtarget &Subtarget) { 1575 // This may be called before legal types are setup. 1576 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1577 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1578 "Expected legal fixed length vector!"); 1579 1580 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1581 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1582 1583 MVT EltVT = VT.getVectorElementType(); 1584 switch (EltVT.SimpleTy) { 1585 default: 1586 llvm_unreachable("unexpected element type for RVV container"); 1587 case MVT::i1: 1588 case MVT::i8: 1589 case MVT::i16: 1590 case MVT::i32: 1591 case MVT::i64: 1592 case MVT::f16: 1593 case MVT::f32: 1594 case MVT::f64: { 1595 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1596 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1597 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1598 unsigned NumElts = 1599 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1600 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1601 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1602 return MVT::getScalableVectorVT(EltVT, NumElts); 1603 } 1604 } 1605 } 1606 1607 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1608 const RISCVSubtarget &Subtarget) { 1609 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1610 Subtarget); 1611 } 1612 1613 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1614 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1615 } 1616 1617 // Grow V to consume an entire RVV register. 1618 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1619 const RISCVSubtarget &Subtarget) { 1620 assert(VT.isScalableVector() && 1621 "Expected to convert into a scalable vector!"); 1622 assert(V.getValueType().isFixedLengthVector() && 1623 "Expected a fixed length vector operand!"); 1624 SDLoc DL(V); 1625 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1626 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1627 } 1628 1629 // Shrink V so it's just big enough to maintain a VT's worth of data. 1630 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1631 const RISCVSubtarget &Subtarget) { 1632 assert(VT.isFixedLengthVector() && 1633 "Expected to convert into a fixed length vector!"); 1634 assert(V.getValueType().isScalableVector() && 1635 "Expected a scalable vector operand!"); 1636 SDLoc DL(V); 1637 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1638 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1639 } 1640 1641 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1642 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1643 // the vector type that it is contained in. 1644 static std::pair<SDValue, SDValue> 1645 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1646 const RISCVSubtarget &Subtarget) { 1647 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1648 MVT XLenVT = Subtarget.getXLenVT(); 1649 SDValue VL = VecVT.isFixedLengthVector() 1650 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1651 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1652 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1653 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1654 return {Mask, VL}; 1655 } 1656 1657 // As above but assuming the given type is a scalable vector type. 1658 static std::pair<SDValue, SDValue> 1659 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1660 const RISCVSubtarget &Subtarget) { 1661 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1662 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1663 } 1664 1665 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1666 // of either is (currently) supported. This can get us into an infinite loop 1667 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1668 // as a ..., etc. 1669 // Until either (or both) of these can reliably lower any node, reporting that 1670 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1671 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1672 // which is not desirable. 1673 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1674 EVT VT, unsigned DefinedValues) const { 1675 return false; 1676 } 1677 1678 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1679 // Only splats are currently supported. 1680 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1681 return true; 1682 1683 return false; 1684 } 1685 1686 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1687 // RISCV FP-to-int conversions saturate to the destination register size, but 1688 // don't produce 0 for nan. We can use a conversion instruction and fix the 1689 // nan case with a compare and a select. 1690 SDValue Src = Op.getOperand(0); 1691 1692 EVT DstVT = Op.getValueType(); 1693 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1694 1695 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1696 unsigned Opc; 1697 if (SatVT == DstVT) 1698 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1699 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1700 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1701 else 1702 return SDValue(); 1703 // FIXME: Support other SatVTs by clamping before or after the conversion. 1704 1705 SDLoc DL(Op); 1706 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1707 1708 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1709 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1710 } 1711 1712 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1713 // and back. Taking care to avoid converting values that are nan or already 1714 // correct. 1715 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1716 // have FRM dependencies modeled yet. 1717 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1718 MVT VT = Op.getSimpleValueType(); 1719 assert(VT.isVector() && "Unexpected type"); 1720 1721 SDLoc DL(Op); 1722 1723 // Freeze the source since we are increasing the number of uses. 1724 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1725 1726 // Truncate to integer and convert back to FP. 1727 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1728 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1729 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1730 1731 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1732 1733 if (Op.getOpcode() == ISD::FCEIL) { 1734 // If the truncated value is the greater than or equal to the original 1735 // value, we've computed the ceil. Otherwise, we went the wrong way and 1736 // need to increase by 1. 1737 // FIXME: This should use a masked operation. Handle here or in isel? 1738 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1739 DAG.getConstantFP(1.0, DL, VT)); 1740 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1741 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1742 } else if (Op.getOpcode() == ISD::FFLOOR) { 1743 // If the truncated value is the less than or equal to the original value, 1744 // we've computed the floor. Otherwise, we went the wrong way and need to 1745 // decrease by 1. 1746 // FIXME: This should use a masked operation. Handle here or in isel? 1747 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1748 DAG.getConstantFP(1.0, DL, VT)); 1749 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1750 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1751 } 1752 1753 // Restore the original sign so that -0.0 is preserved. 1754 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1755 1756 // Determine the largest integer that can be represented exactly. This and 1757 // values larger than it don't have any fractional bits so don't need to 1758 // be converted. 1759 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1760 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1761 APFloat MaxVal = APFloat(FltSem); 1762 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1763 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1764 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1765 1766 // If abs(Src) was larger than MaxVal or nan, keep it. 1767 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1768 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1769 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1770 } 1771 1772 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1773 const RISCVSubtarget &Subtarget) { 1774 MVT VT = Op.getSimpleValueType(); 1775 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1776 1777 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1778 1779 SDLoc DL(Op); 1780 SDValue Mask, VL; 1781 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1782 1783 unsigned Opc = 1784 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1785 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1786 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1787 } 1788 1789 struct VIDSequence { 1790 int64_t StepNumerator; 1791 unsigned StepDenominator; 1792 int64_t Addend; 1793 }; 1794 1795 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1796 // to the (non-zero) step S and start value X. This can be then lowered as the 1797 // RVV sequence (VID * S) + X, for example. 1798 // The step S is represented as an integer numerator divided by a positive 1799 // denominator. Note that the implementation currently only identifies 1800 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1801 // cannot detect 2/3, for example. 1802 // Note that this method will also match potentially unappealing index 1803 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1804 // determine whether this is worth generating code for. 1805 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1806 unsigned NumElts = Op.getNumOperands(); 1807 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1808 if (!Op.getValueType().isInteger()) 1809 return None; 1810 1811 Optional<unsigned> SeqStepDenom; 1812 Optional<int64_t> SeqStepNum, SeqAddend; 1813 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1814 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1815 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1816 // Assume undef elements match the sequence; we just have to be careful 1817 // when interpolating across them. 1818 if (Op.getOperand(Idx).isUndef()) 1819 continue; 1820 // The BUILD_VECTOR must be all constants. 1821 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1822 return None; 1823 1824 uint64_t Val = Op.getConstantOperandVal(Idx) & 1825 maskTrailingOnes<uint64_t>(EltSizeInBits); 1826 1827 if (PrevElt) { 1828 // Calculate the step since the last non-undef element, and ensure 1829 // it's consistent across the entire sequence. 1830 unsigned IdxDiff = Idx - PrevElt->second; 1831 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1832 1833 // A zero-value value difference means that we're somewhere in the middle 1834 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1835 // step change before evaluating the sequence. 1836 if (ValDiff != 0) { 1837 int64_t Remainder = ValDiff % IdxDiff; 1838 // Normalize the step if it's greater than 1. 1839 if (Remainder != ValDiff) { 1840 // The difference must cleanly divide the element span. 1841 if (Remainder != 0) 1842 return None; 1843 ValDiff /= IdxDiff; 1844 IdxDiff = 1; 1845 } 1846 1847 if (!SeqStepNum) 1848 SeqStepNum = ValDiff; 1849 else if (ValDiff != SeqStepNum) 1850 return None; 1851 1852 if (!SeqStepDenom) 1853 SeqStepDenom = IdxDiff; 1854 else if (IdxDiff != *SeqStepDenom) 1855 return None; 1856 } 1857 } 1858 1859 // Record and/or check any addend. 1860 if (SeqStepNum && SeqStepDenom) { 1861 uint64_t ExpectedVal = 1862 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1863 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1864 if (!SeqAddend) 1865 SeqAddend = Addend; 1866 else if (SeqAddend != Addend) 1867 return None; 1868 } 1869 1870 // Record this non-undef element for later. 1871 if (!PrevElt || PrevElt->first != Val) 1872 PrevElt = std::make_pair(Val, Idx); 1873 } 1874 // We need to have logged both a step and an addend for this to count as 1875 // a legal index sequence. 1876 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1877 return None; 1878 1879 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1880 } 1881 1882 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1883 const RISCVSubtarget &Subtarget) { 1884 MVT VT = Op.getSimpleValueType(); 1885 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1886 1887 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1888 1889 SDLoc DL(Op); 1890 SDValue Mask, VL; 1891 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1892 1893 MVT XLenVT = Subtarget.getXLenVT(); 1894 unsigned NumElts = Op.getNumOperands(); 1895 1896 if (VT.getVectorElementType() == MVT::i1) { 1897 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1898 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1899 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1900 } 1901 1902 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1903 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1904 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1905 } 1906 1907 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1908 // scalar integer chunks whose bit-width depends on the number of mask 1909 // bits and XLEN. 1910 // First, determine the most appropriate scalar integer type to use. This 1911 // is at most XLenVT, but may be shrunk to a smaller vector element type 1912 // according to the size of the final vector - use i8 chunks rather than 1913 // XLenVT if we're producing a v8i1. This results in more consistent 1914 // codegen across RV32 and RV64. 1915 unsigned NumViaIntegerBits = 1916 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1917 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1918 // If we have to use more than one INSERT_VECTOR_ELT then this 1919 // optimization is likely to increase code size; avoid peforming it in 1920 // such a case. We can use a load from a constant pool in this case. 1921 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1922 return SDValue(); 1923 // Now we can create our integer vector type. Note that it may be larger 1924 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1925 MVT IntegerViaVecVT = 1926 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1927 divideCeil(NumElts, NumViaIntegerBits)); 1928 1929 uint64_t Bits = 0; 1930 unsigned BitPos = 0, IntegerEltIdx = 0; 1931 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1932 1933 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1934 // Once we accumulate enough bits to fill our scalar type, insert into 1935 // our vector and clear our accumulated data. 1936 if (I != 0 && I % NumViaIntegerBits == 0) { 1937 if (NumViaIntegerBits <= 32) 1938 Bits = SignExtend64(Bits, 32); 1939 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1940 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1941 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1942 Bits = 0; 1943 BitPos = 0; 1944 IntegerEltIdx++; 1945 } 1946 SDValue V = Op.getOperand(I); 1947 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1948 Bits |= ((uint64_t)BitValue << BitPos); 1949 } 1950 1951 // Insert the (remaining) scalar value into position in our integer 1952 // vector type. 1953 if (NumViaIntegerBits <= 32) 1954 Bits = SignExtend64(Bits, 32); 1955 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1956 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1957 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1958 1959 if (NumElts < NumViaIntegerBits) { 1960 // If we're producing a smaller vector than our minimum legal integer 1961 // type, bitcast to the equivalent (known-legal) mask type, and extract 1962 // our final mask. 1963 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1964 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1965 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1966 DAG.getConstant(0, DL, XLenVT)); 1967 } else { 1968 // Else we must have produced an integer type with the same size as the 1969 // mask type; bitcast for the final result. 1970 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1971 Vec = DAG.getBitcast(VT, Vec); 1972 } 1973 1974 return Vec; 1975 } 1976 1977 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1978 // vector type, we have a legal equivalently-sized i8 type, so we can use 1979 // that. 1980 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1981 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1982 1983 SDValue WideVec; 1984 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1985 // For a splat, perform a scalar truncate before creating the wider 1986 // vector. 1987 assert(Splat.getValueType() == XLenVT && 1988 "Unexpected type for i1 splat value"); 1989 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1990 DAG.getConstant(1, DL, XLenVT)); 1991 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1992 } else { 1993 SmallVector<SDValue, 8> Ops(Op->op_values()); 1994 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1995 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1996 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1997 } 1998 1999 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2000 } 2001 2002 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2003 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2004 : RISCVISD::VMV_V_X_VL; 2005 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2006 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2007 } 2008 2009 // Try and match index sequences, which we can lower to the vid instruction 2010 // with optional modifications. An all-undef vector is matched by 2011 // getSplatValue, above. 2012 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2013 int64_t StepNumerator = SimpleVID->StepNumerator; 2014 unsigned StepDenominator = SimpleVID->StepDenominator; 2015 int64_t Addend = SimpleVID->Addend; 2016 2017 assert(StepNumerator != 0 && "Invalid step"); 2018 bool Negate = false; 2019 int64_t SplatStepVal = StepNumerator; 2020 unsigned StepOpcode = ISD::MUL; 2021 if (StepNumerator != 1) { 2022 if (isPowerOf2_64(std::abs(StepNumerator))) { 2023 Negate = StepNumerator < 0; 2024 StepOpcode = ISD::SHL; 2025 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2026 } 2027 } 2028 2029 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2030 // threshold since it's the immediate value many RVV instructions accept. 2031 // There is no vmul.vi instruction so ensure multiply constant can fit in 2032 // a single addi instruction. 2033 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2034 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2035 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2036 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2037 // Convert right out of the scalable type so we can use standard ISD 2038 // nodes for the rest of the computation. If we used scalable types with 2039 // these, we'd lose the fixed-length vector info and generate worse 2040 // vsetvli code. 2041 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2042 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2043 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2044 SDValue SplatStep = DAG.getSplatVector( 2045 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2046 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2047 } 2048 if (StepDenominator != 1) { 2049 SDValue SplatStep = DAG.getSplatVector( 2050 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2051 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2052 } 2053 if (Addend != 0 || Negate) { 2054 SDValue SplatAddend = 2055 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2056 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2057 } 2058 return VID; 2059 } 2060 } 2061 2062 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2063 // when re-interpreted as a vector with a larger element type. For example, 2064 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2065 // could be instead splat as 2066 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2067 // TODO: This optimization could also work on non-constant splats, but it 2068 // would require bit-manipulation instructions to construct the splat value. 2069 SmallVector<SDValue> Sequence; 2070 unsigned EltBitSize = VT.getScalarSizeInBits(); 2071 const auto *BV = cast<BuildVectorSDNode>(Op); 2072 if (VT.isInteger() && EltBitSize < 64 && 2073 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2074 BV->getRepeatedSequence(Sequence) && 2075 (Sequence.size() * EltBitSize) <= 64) { 2076 unsigned SeqLen = Sequence.size(); 2077 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2078 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2079 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2080 ViaIntVT == MVT::i64) && 2081 "Unexpected sequence type"); 2082 2083 unsigned EltIdx = 0; 2084 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2085 uint64_t SplatValue = 0; 2086 // Construct the amalgamated value which can be splatted as this larger 2087 // vector type. 2088 for (const auto &SeqV : Sequence) { 2089 if (!SeqV.isUndef()) 2090 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2091 << (EltIdx * EltBitSize)); 2092 EltIdx++; 2093 } 2094 2095 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2096 // achieve better constant materializion. 2097 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2098 SplatValue = SignExtend64(SplatValue, 32); 2099 2100 // Since we can't introduce illegal i64 types at this stage, we can only 2101 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2102 // way we can use RVV instructions to splat. 2103 assert((ViaIntVT.bitsLE(XLenVT) || 2104 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2105 "Unexpected bitcast sequence"); 2106 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2107 SDValue ViaVL = 2108 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2109 MVT ViaContainerVT = 2110 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2111 SDValue Splat = 2112 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2113 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2114 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2115 return DAG.getBitcast(VT, Splat); 2116 } 2117 } 2118 2119 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2120 // which constitute a large proportion of the elements. In such cases we can 2121 // splat a vector with the dominant element and make up the shortfall with 2122 // INSERT_VECTOR_ELTs. 2123 // Note that this includes vectors of 2 elements by association. The 2124 // upper-most element is the "dominant" one, allowing us to use a splat to 2125 // "insert" the upper element, and an insert of the lower element at position 2126 // 0, which improves codegen. 2127 SDValue DominantValue; 2128 unsigned MostCommonCount = 0; 2129 DenseMap<SDValue, unsigned> ValueCounts; 2130 unsigned NumUndefElts = 2131 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2132 2133 // Track the number of scalar loads we know we'd be inserting, estimated as 2134 // any non-zero floating-point constant. Other kinds of element are either 2135 // already in registers or are materialized on demand. The threshold at which 2136 // a vector load is more desirable than several scalar materializion and 2137 // vector-insertion instructions is not known. 2138 unsigned NumScalarLoads = 0; 2139 2140 for (SDValue V : Op->op_values()) { 2141 if (V.isUndef()) 2142 continue; 2143 2144 ValueCounts.insert(std::make_pair(V, 0)); 2145 unsigned &Count = ValueCounts[V]; 2146 2147 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2148 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2149 2150 // Is this value dominant? In case of a tie, prefer the highest element as 2151 // it's cheaper to insert near the beginning of a vector than it is at the 2152 // end. 2153 if (++Count >= MostCommonCount) { 2154 DominantValue = V; 2155 MostCommonCount = Count; 2156 } 2157 } 2158 2159 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2160 unsigned NumDefElts = NumElts - NumUndefElts; 2161 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2162 2163 // Don't perform this optimization when optimizing for size, since 2164 // materializing elements and inserting them tends to cause code bloat. 2165 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2166 ((MostCommonCount > DominantValueCountThreshold) || 2167 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2168 // Start by splatting the most common element. 2169 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2170 2171 DenseSet<SDValue> Processed{DominantValue}; 2172 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2173 for (const auto &OpIdx : enumerate(Op->ops())) { 2174 const SDValue &V = OpIdx.value(); 2175 if (V.isUndef() || !Processed.insert(V).second) 2176 continue; 2177 if (ValueCounts[V] == 1) { 2178 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2179 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2180 } else { 2181 // Blend in all instances of this value using a VSELECT, using a 2182 // mask where each bit signals whether that element is the one 2183 // we're after. 2184 SmallVector<SDValue> Ops; 2185 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2186 return DAG.getConstant(V == V1, DL, XLenVT); 2187 }); 2188 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2189 DAG.getBuildVector(SelMaskTy, DL, Ops), 2190 DAG.getSplatBuildVector(VT, DL, V), Vec); 2191 } 2192 } 2193 2194 return Vec; 2195 } 2196 2197 return SDValue(); 2198 } 2199 2200 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2201 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2202 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2203 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2204 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2205 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2206 // node in order to try and match RVV vector/scalar instructions. 2207 if ((LoC >> 31) == HiC) 2208 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2209 } 2210 2211 // Fall back to a stack store and stride x0 vector load. 2212 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2213 } 2214 2215 // Called by type legalization to handle splat of i64 on RV32. 2216 // FIXME: We can optimize this when the type has sign or zero bits in one 2217 // of the halves. 2218 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2219 SDValue VL, SelectionDAG &DAG) { 2220 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2221 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2222 DAG.getConstant(0, DL, MVT::i32)); 2223 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2224 DAG.getConstant(1, DL, MVT::i32)); 2225 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2226 } 2227 2228 // This function lowers a splat of a scalar operand Splat with the vector 2229 // length VL. It ensures the final sequence is type legal, which is useful when 2230 // lowering a splat after type legalization. 2231 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2232 SelectionDAG &DAG, 2233 const RISCVSubtarget &Subtarget) { 2234 if (VT.isFloatingPoint()) 2235 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2236 2237 MVT XLenVT = Subtarget.getXLenVT(); 2238 2239 // Simplest case is that the operand needs to be promoted to XLenVT. 2240 if (Scalar.getValueType().bitsLE(XLenVT)) { 2241 // If the operand is a constant, sign extend to increase our chances 2242 // of being able to use a .vi instruction. ANY_EXTEND would become a 2243 // a zero extend and the simm5 check in isel would fail. 2244 // FIXME: Should we ignore the upper bits in isel instead? 2245 unsigned ExtOpc = 2246 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2247 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2248 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2249 } 2250 2251 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2252 "Unexpected scalar for splat lowering!"); 2253 2254 // Otherwise use the more complicated splatting algorithm. 2255 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2256 } 2257 2258 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2259 const RISCVSubtarget &Subtarget) { 2260 SDValue V1 = Op.getOperand(0); 2261 SDValue V2 = Op.getOperand(1); 2262 SDLoc DL(Op); 2263 MVT XLenVT = Subtarget.getXLenVT(); 2264 MVT VT = Op.getSimpleValueType(); 2265 unsigned NumElts = VT.getVectorNumElements(); 2266 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2267 2268 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2269 2270 SDValue TrueMask, VL; 2271 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2272 2273 if (SVN->isSplat()) { 2274 const int Lane = SVN->getSplatIndex(); 2275 if (Lane >= 0) { 2276 MVT SVT = VT.getVectorElementType(); 2277 2278 // Turn splatted vector load into a strided load with an X0 stride. 2279 SDValue V = V1; 2280 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2281 // with undef. 2282 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2283 int Offset = Lane; 2284 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2285 int OpElements = 2286 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2287 V = V.getOperand(Offset / OpElements); 2288 Offset %= OpElements; 2289 } 2290 2291 // We need to ensure the load isn't atomic or volatile. 2292 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2293 auto *Ld = cast<LoadSDNode>(V); 2294 Offset *= SVT.getStoreSize(); 2295 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2296 TypeSize::Fixed(Offset), DL); 2297 2298 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2299 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2300 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2301 SDValue IntID = 2302 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2303 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2304 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2305 SDValue NewLoad = DAG.getMemIntrinsicNode( 2306 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2307 DAG.getMachineFunction().getMachineMemOperand( 2308 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2309 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2310 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2311 } 2312 2313 // Otherwise use a scalar load and splat. This will give the best 2314 // opportunity to fold a splat into the operation. ISel can turn it into 2315 // the x0 strided load if we aren't able to fold away the select. 2316 if (SVT.isFloatingPoint()) 2317 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2318 Ld->getPointerInfo().getWithOffset(Offset), 2319 Ld->getOriginalAlign(), 2320 Ld->getMemOperand()->getFlags()); 2321 else 2322 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2323 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2324 Ld->getOriginalAlign(), 2325 Ld->getMemOperand()->getFlags()); 2326 DAG.makeEquivalentMemoryOrdering(Ld, V); 2327 2328 unsigned Opc = 2329 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2330 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2331 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2332 } 2333 2334 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2335 assert(Lane < (int)NumElts && "Unexpected lane!"); 2336 SDValue Gather = 2337 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2338 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2339 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2340 } 2341 } 2342 2343 // Detect shuffles which can be re-expressed as vector selects; these are 2344 // shuffles in which each element in the destination is taken from an element 2345 // at the corresponding index in either source vectors. 2346 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2347 int MaskIndex = MaskIdx.value(); 2348 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2349 }); 2350 2351 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2352 2353 SmallVector<SDValue> MaskVals; 2354 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2355 // merged with a second vrgather. 2356 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2357 2358 // By default we preserve the original operand order, and use a mask to 2359 // select LHS as true and RHS as false. However, since RVV vector selects may 2360 // feature splats but only on the LHS, we may choose to invert our mask and 2361 // instead select between RHS and LHS. 2362 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2363 bool InvertMask = IsSelect == SwapOps; 2364 2365 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2366 // half. 2367 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2368 2369 // Now construct the mask that will be used by the vselect or blended 2370 // vrgather operation. For vrgathers, construct the appropriate indices into 2371 // each vector. 2372 for (int MaskIndex : SVN->getMask()) { 2373 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2374 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2375 if (!IsSelect) { 2376 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2377 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2378 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2379 : DAG.getUNDEF(XLenVT)); 2380 GatherIndicesRHS.push_back( 2381 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2382 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2383 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2384 ++LHSIndexCounts[MaskIndex]; 2385 if (!IsLHSOrUndefIndex) 2386 ++RHSIndexCounts[MaskIndex - NumElts]; 2387 } 2388 } 2389 2390 if (SwapOps) { 2391 std::swap(V1, V2); 2392 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2393 } 2394 2395 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2396 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2397 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2398 2399 if (IsSelect) 2400 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2401 2402 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2403 // On such a large vector we're unable to use i8 as the index type. 2404 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2405 // may involve vector splitting if we're already at LMUL=8, or our 2406 // user-supplied maximum fixed-length LMUL. 2407 return SDValue(); 2408 } 2409 2410 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2411 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2412 MVT IndexVT = VT.changeTypeToInteger(); 2413 // Since we can't introduce illegal index types at this stage, use i16 and 2414 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2415 // than XLenVT. 2416 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2417 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2418 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2419 } 2420 2421 MVT IndexContainerVT = 2422 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2423 2424 SDValue Gather; 2425 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2426 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2427 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2428 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2429 } else { 2430 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2431 // If only one index is used, we can use a "splat" vrgather. 2432 // TODO: We can splat the most-common index and fix-up any stragglers, if 2433 // that's beneficial. 2434 if (LHSIndexCounts.size() == 1) { 2435 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2436 Gather = 2437 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2438 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2439 } else { 2440 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2441 LHSIndices = 2442 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2443 2444 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2445 TrueMask, VL); 2446 } 2447 } 2448 2449 // If a second vector operand is used by this shuffle, blend it in with an 2450 // additional vrgather. 2451 if (!V2.isUndef()) { 2452 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2453 // If only one index is used, we can use a "splat" vrgather. 2454 // TODO: We can splat the most-common index and fix-up any stragglers, if 2455 // that's beneficial. 2456 if (RHSIndexCounts.size() == 1) { 2457 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2458 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2459 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2460 } else { 2461 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2462 RHSIndices = 2463 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2464 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2465 VL); 2466 } 2467 2468 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2469 SelectMask = 2470 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2471 2472 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2473 Gather, VL); 2474 } 2475 2476 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2477 } 2478 2479 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2480 SDLoc DL, SelectionDAG &DAG, 2481 const RISCVSubtarget &Subtarget) { 2482 if (VT.isScalableVector()) 2483 return DAG.getFPExtendOrRound(Op, DL, VT); 2484 assert(VT.isFixedLengthVector() && 2485 "Unexpected value type for RVV FP extend/round lowering"); 2486 SDValue Mask, VL; 2487 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2488 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2489 ? RISCVISD::FP_EXTEND_VL 2490 : RISCVISD::FP_ROUND_VL; 2491 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2492 } 2493 2494 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2495 // the exponent. 2496 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2497 MVT VT = Op.getSimpleValueType(); 2498 unsigned EltSize = VT.getScalarSizeInBits(); 2499 SDValue Src = Op.getOperand(0); 2500 SDLoc DL(Op); 2501 2502 // We need a FP type that can represent the value. 2503 // TODO: Use f16 for i8 when possible? 2504 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2505 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2506 2507 // Legal types should have been checked in the RISCVTargetLowering 2508 // constructor. 2509 // TODO: Splitting may make sense in some cases. 2510 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2511 "Expected legal float type!"); 2512 2513 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2514 // The trailing zero count is equal to log2 of this single bit value. 2515 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2516 SDValue Neg = 2517 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2518 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2519 } 2520 2521 // We have a legal FP type, convert to it. 2522 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2523 // Bitcast to integer and shift the exponent to the LSB. 2524 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2525 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2526 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2527 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2528 DAG.getConstant(ShiftAmt, DL, IntVT)); 2529 // Truncate back to original type to allow vnsrl. 2530 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2531 // The exponent contains log2 of the value in biased form. 2532 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2533 2534 // For trailing zeros, we just need to subtract the bias. 2535 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2536 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2537 DAG.getConstant(ExponentBias, DL, VT)); 2538 2539 // For leading zeros, we need to remove the bias and convert from log2 to 2540 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2541 unsigned Adjust = ExponentBias + (EltSize - 1); 2542 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2543 } 2544 2545 // While RVV has alignment restrictions, we should always be able to load as a 2546 // legal equivalently-sized byte-typed vector instead. This method is 2547 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2548 // the load is already correctly-aligned, it returns SDValue(). 2549 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2550 SelectionDAG &DAG) const { 2551 auto *Load = cast<LoadSDNode>(Op); 2552 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2553 2554 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2555 Load->getMemoryVT(), 2556 *Load->getMemOperand())) 2557 return SDValue(); 2558 2559 SDLoc DL(Op); 2560 MVT VT = Op.getSimpleValueType(); 2561 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2562 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2563 "Unexpected unaligned RVV load type"); 2564 MVT NewVT = 2565 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2566 assert(NewVT.isValid() && 2567 "Expecting equally-sized RVV vector types to be legal"); 2568 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2569 Load->getPointerInfo(), Load->getOriginalAlign(), 2570 Load->getMemOperand()->getFlags()); 2571 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2572 } 2573 2574 // While RVV has alignment restrictions, we should always be able to store as a 2575 // legal equivalently-sized byte-typed vector instead. This method is 2576 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2577 // returns SDValue() if the store is already correctly aligned. 2578 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2579 SelectionDAG &DAG) const { 2580 auto *Store = cast<StoreSDNode>(Op); 2581 assert(Store && Store->getValue().getValueType().isVector() && 2582 "Expected vector store"); 2583 2584 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2585 Store->getMemoryVT(), 2586 *Store->getMemOperand())) 2587 return SDValue(); 2588 2589 SDLoc DL(Op); 2590 SDValue StoredVal = Store->getValue(); 2591 MVT VT = StoredVal.getSimpleValueType(); 2592 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2593 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2594 "Unexpected unaligned RVV store type"); 2595 MVT NewVT = 2596 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2597 assert(NewVT.isValid() && 2598 "Expecting equally-sized RVV vector types to be legal"); 2599 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2600 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2601 Store->getPointerInfo(), Store->getOriginalAlign(), 2602 Store->getMemOperand()->getFlags()); 2603 } 2604 2605 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2606 SelectionDAG &DAG) const { 2607 switch (Op.getOpcode()) { 2608 default: 2609 report_fatal_error("unimplemented operand"); 2610 case ISD::GlobalAddress: 2611 return lowerGlobalAddress(Op, DAG); 2612 case ISD::BlockAddress: 2613 return lowerBlockAddress(Op, DAG); 2614 case ISD::ConstantPool: 2615 return lowerConstantPool(Op, DAG); 2616 case ISD::JumpTable: 2617 return lowerJumpTable(Op, DAG); 2618 case ISD::GlobalTLSAddress: 2619 return lowerGlobalTLSAddress(Op, DAG); 2620 case ISD::SELECT: 2621 return lowerSELECT(Op, DAG); 2622 case ISD::BRCOND: 2623 return lowerBRCOND(Op, DAG); 2624 case ISD::VASTART: 2625 return lowerVASTART(Op, DAG); 2626 case ISD::FRAMEADDR: 2627 return lowerFRAMEADDR(Op, DAG); 2628 case ISD::RETURNADDR: 2629 return lowerRETURNADDR(Op, DAG); 2630 case ISD::SHL_PARTS: 2631 return lowerShiftLeftParts(Op, DAG); 2632 case ISD::SRA_PARTS: 2633 return lowerShiftRightParts(Op, DAG, true); 2634 case ISD::SRL_PARTS: 2635 return lowerShiftRightParts(Op, DAG, false); 2636 case ISD::BITCAST: { 2637 SDLoc DL(Op); 2638 EVT VT = Op.getValueType(); 2639 SDValue Op0 = Op.getOperand(0); 2640 EVT Op0VT = Op0.getValueType(); 2641 MVT XLenVT = Subtarget.getXLenVT(); 2642 if (VT.isFixedLengthVector()) { 2643 // We can handle fixed length vector bitcasts with a simple replacement 2644 // in isel. 2645 if (Op0VT.isFixedLengthVector()) 2646 return Op; 2647 // When bitcasting from scalar to fixed-length vector, insert the scalar 2648 // into a one-element vector of the result type, and perform a vector 2649 // bitcast. 2650 if (!Op0VT.isVector()) { 2651 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2652 if (!isTypeLegal(BVT)) 2653 return SDValue(); 2654 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2655 DAG.getUNDEF(BVT), Op0, 2656 DAG.getConstant(0, DL, XLenVT))); 2657 } 2658 return SDValue(); 2659 } 2660 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2661 // thus: bitcast the vector to a one-element vector type whose element type 2662 // is the same as the result type, and extract the first element. 2663 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2664 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2665 if (!isTypeLegal(BVT)) 2666 return SDValue(); 2667 SDValue BVec = DAG.getBitcast(BVT, Op0); 2668 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2669 DAG.getConstant(0, DL, XLenVT)); 2670 } 2671 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2672 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2673 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2674 return FPConv; 2675 } 2676 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2677 Subtarget.hasStdExtF()) { 2678 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2679 SDValue FPConv = 2680 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2681 return FPConv; 2682 } 2683 return SDValue(); 2684 } 2685 case ISD::INTRINSIC_WO_CHAIN: 2686 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2687 case ISD::INTRINSIC_W_CHAIN: 2688 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2689 case ISD::INTRINSIC_VOID: 2690 return LowerINTRINSIC_VOID(Op, DAG); 2691 case ISD::BSWAP: 2692 case ISD::BITREVERSE: { 2693 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2694 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2695 MVT VT = Op.getSimpleValueType(); 2696 SDLoc DL(Op); 2697 // Start with the maximum immediate value which is the bitwidth - 1. 2698 unsigned Imm = VT.getSizeInBits() - 1; 2699 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2700 if (Op.getOpcode() == ISD::BSWAP) 2701 Imm &= ~0x7U; 2702 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2703 DAG.getConstant(Imm, DL, VT)); 2704 } 2705 case ISD::FSHL: 2706 case ISD::FSHR: { 2707 MVT VT = Op.getSimpleValueType(); 2708 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2709 SDLoc DL(Op); 2710 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2711 return Op; 2712 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2713 // use log(XLen) bits. Mask the shift amount accordingly. 2714 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2715 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2716 DAG.getConstant(ShAmtWidth, DL, VT)); 2717 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2718 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2719 } 2720 case ISD::TRUNCATE: { 2721 SDLoc DL(Op); 2722 MVT VT = Op.getSimpleValueType(); 2723 // Only custom-lower vector truncates 2724 if (!VT.isVector()) 2725 return Op; 2726 2727 // Truncates to mask types are handled differently 2728 if (VT.getVectorElementType() == MVT::i1) 2729 return lowerVectorMaskTrunc(Op, DAG); 2730 2731 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2732 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2733 // truncate by one power of two at a time. 2734 MVT DstEltVT = VT.getVectorElementType(); 2735 2736 SDValue Src = Op.getOperand(0); 2737 MVT SrcVT = Src.getSimpleValueType(); 2738 MVT SrcEltVT = SrcVT.getVectorElementType(); 2739 2740 assert(DstEltVT.bitsLT(SrcEltVT) && 2741 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2742 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2743 "Unexpected vector truncate lowering"); 2744 2745 MVT ContainerVT = SrcVT; 2746 if (SrcVT.isFixedLengthVector()) { 2747 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2748 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2749 } 2750 2751 SDValue Result = Src; 2752 SDValue Mask, VL; 2753 std::tie(Mask, VL) = 2754 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2755 LLVMContext &Context = *DAG.getContext(); 2756 const ElementCount Count = ContainerVT.getVectorElementCount(); 2757 do { 2758 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2759 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2760 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2761 Mask, VL); 2762 } while (SrcEltVT != DstEltVT); 2763 2764 if (SrcVT.isFixedLengthVector()) 2765 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2766 2767 return Result; 2768 } 2769 case ISD::ANY_EXTEND: 2770 case ISD::ZERO_EXTEND: 2771 if (Op.getOperand(0).getValueType().isVector() && 2772 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2773 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2774 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2775 case ISD::SIGN_EXTEND: 2776 if (Op.getOperand(0).getValueType().isVector() && 2777 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2778 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2779 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2780 case ISD::SPLAT_VECTOR_PARTS: 2781 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2782 case ISD::INSERT_VECTOR_ELT: 2783 return lowerINSERT_VECTOR_ELT(Op, DAG); 2784 case ISD::EXTRACT_VECTOR_ELT: 2785 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2786 case ISD::VSCALE: { 2787 MVT VT = Op.getSimpleValueType(); 2788 SDLoc DL(Op); 2789 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2790 // We define our scalable vector types for lmul=1 to use a 64 bit known 2791 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2792 // vscale as VLENB / 8. 2793 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 2794 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2795 // We assume VLENB is a multiple of 8. We manually choose the best shift 2796 // here because SimplifyDemandedBits isn't always able to simplify it. 2797 uint64_t Val = Op.getConstantOperandVal(0); 2798 if (isPowerOf2_64(Val)) { 2799 uint64_t Log2 = Log2_64(Val); 2800 if (Log2 < 3) 2801 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2802 DAG.getConstant(3 - Log2, DL, VT)); 2803 if (Log2 > 3) 2804 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2805 DAG.getConstant(Log2 - 3, DL, VT)); 2806 return VLENB; 2807 } 2808 // If the multiplier is a multiple of 8, scale it down to avoid needing 2809 // to shift the VLENB value. 2810 if ((Val % 8) == 0) 2811 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2812 DAG.getConstant(Val / 8, DL, VT)); 2813 } 2814 2815 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2816 DAG.getConstant(3, DL, VT)); 2817 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2818 } 2819 case ISD::FPOWI: { 2820 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2821 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2822 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2823 Op.getOperand(1).getValueType() == MVT::i32) { 2824 SDLoc DL(Op); 2825 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2826 SDValue Powi = 2827 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2828 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2829 DAG.getIntPtrConstant(0, DL)); 2830 } 2831 return SDValue(); 2832 } 2833 case ISD::FP_EXTEND: { 2834 // RVV can only do fp_extend to types double the size as the source. We 2835 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2836 // via f32. 2837 SDLoc DL(Op); 2838 MVT VT = Op.getSimpleValueType(); 2839 SDValue Src = Op.getOperand(0); 2840 MVT SrcVT = Src.getSimpleValueType(); 2841 2842 // Prepare any fixed-length vector operands. 2843 MVT ContainerVT = VT; 2844 if (SrcVT.isFixedLengthVector()) { 2845 ContainerVT = getContainerForFixedLengthVector(VT); 2846 MVT SrcContainerVT = 2847 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2848 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2849 } 2850 2851 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2852 SrcVT.getVectorElementType() != MVT::f16) { 2853 // For scalable vectors, we only need to close the gap between 2854 // vXf16->vXf64. 2855 if (!VT.isFixedLengthVector()) 2856 return Op; 2857 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2858 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2859 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2860 } 2861 2862 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2863 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2864 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2865 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2866 2867 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2868 DL, DAG, Subtarget); 2869 if (VT.isFixedLengthVector()) 2870 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2871 return Extend; 2872 } 2873 case ISD::FP_ROUND: { 2874 // RVV can only do fp_round to types half the size as the source. We 2875 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2876 // conversion instruction. 2877 SDLoc DL(Op); 2878 MVT VT = Op.getSimpleValueType(); 2879 SDValue Src = Op.getOperand(0); 2880 MVT SrcVT = Src.getSimpleValueType(); 2881 2882 // Prepare any fixed-length vector operands. 2883 MVT ContainerVT = VT; 2884 if (VT.isFixedLengthVector()) { 2885 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2886 ContainerVT = 2887 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2888 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2889 } 2890 2891 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2892 SrcVT.getVectorElementType() != MVT::f64) { 2893 // For scalable vectors, we only need to close the gap between 2894 // vXf64<->vXf16. 2895 if (!VT.isFixedLengthVector()) 2896 return Op; 2897 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2898 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2899 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2900 } 2901 2902 SDValue Mask, VL; 2903 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2904 2905 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2906 SDValue IntermediateRound = 2907 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2908 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2909 DL, DAG, Subtarget); 2910 2911 if (VT.isFixedLengthVector()) 2912 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2913 return Round; 2914 } 2915 case ISD::FP_TO_SINT: 2916 case ISD::FP_TO_UINT: 2917 case ISD::SINT_TO_FP: 2918 case ISD::UINT_TO_FP: { 2919 // RVV can only do fp<->int conversions to types half/double the size as 2920 // the source. We custom-lower any conversions that do two hops into 2921 // sequences. 2922 MVT VT = Op.getSimpleValueType(); 2923 if (!VT.isVector()) 2924 return Op; 2925 SDLoc DL(Op); 2926 SDValue Src = Op.getOperand(0); 2927 MVT EltVT = VT.getVectorElementType(); 2928 MVT SrcVT = Src.getSimpleValueType(); 2929 MVT SrcEltVT = SrcVT.getVectorElementType(); 2930 unsigned EltSize = EltVT.getSizeInBits(); 2931 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2932 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2933 "Unexpected vector element types"); 2934 2935 bool IsInt2FP = SrcEltVT.isInteger(); 2936 // Widening conversions 2937 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2938 if (IsInt2FP) { 2939 // Do a regular integer sign/zero extension then convert to float. 2940 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2941 VT.getVectorElementCount()); 2942 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2943 ? ISD::ZERO_EXTEND 2944 : ISD::SIGN_EXTEND; 2945 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2946 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2947 } 2948 // FP2Int 2949 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2950 // Do one doubling fp_extend then complete the operation by converting 2951 // to int. 2952 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2953 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2954 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2955 } 2956 2957 // Narrowing conversions 2958 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2959 if (IsInt2FP) { 2960 // One narrowing int_to_fp, then an fp_round. 2961 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2962 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2963 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2964 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2965 } 2966 // FP2Int 2967 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2968 // representable by the integer, the result is poison. 2969 MVT IVecVT = 2970 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2971 VT.getVectorElementCount()); 2972 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2973 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2974 } 2975 2976 // Scalable vectors can exit here. Patterns will handle equally-sized 2977 // conversions halving/doubling ones. 2978 if (!VT.isFixedLengthVector()) 2979 return Op; 2980 2981 // For fixed-length vectors we lower to a custom "VL" node. 2982 unsigned RVVOpc = 0; 2983 switch (Op.getOpcode()) { 2984 default: 2985 llvm_unreachable("Impossible opcode"); 2986 case ISD::FP_TO_SINT: 2987 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2988 break; 2989 case ISD::FP_TO_UINT: 2990 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2991 break; 2992 case ISD::SINT_TO_FP: 2993 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2994 break; 2995 case ISD::UINT_TO_FP: 2996 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2997 break; 2998 } 2999 3000 MVT ContainerVT, SrcContainerVT; 3001 // Derive the reference container type from the larger vector type. 3002 if (SrcEltSize > EltSize) { 3003 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3004 ContainerVT = 3005 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3006 } else { 3007 ContainerVT = getContainerForFixedLengthVector(VT); 3008 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3009 } 3010 3011 SDValue Mask, VL; 3012 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3013 3014 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3015 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3016 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3017 } 3018 case ISD::FP_TO_SINT_SAT: 3019 case ISD::FP_TO_UINT_SAT: 3020 return lowerFP_TO_INT_SAT(Op, DAG); 3021 case ISD::FTRUNC: 3022 case ISD::FCEIL: 3023 case ISD::FFLOOR: 3024 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3025 case ISD::VECREDUCE_ADD: 3026 case ISD::VECREDUCE_UMAX: 3027 case ISD::VECREDUCE_SMAX: 3028 case ISD::VECREDUCE_UMIN: 3029 case ISD::VECREDUCE_SMIN: 3030 return lowerVECREDUCE(Op, DAG); 3031 case ISD::VECREDUCE_AND: 3032 case ISD::VECREDUCE_OR: 3033 case ISD::VECREDUCE_XOR: 3034 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3035 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3036 return lowerVECREDUCE(Op, DAG); 3037 case ISD::VECREDUCE_FADD: 3038 case ISD::VECREDUCE_SEQ_FADD: 3039 case ISD::VECREDUCE_FMIN: 3040 case ISD::VECREDUCE_FMAX: 3041 return lowerFPVECREDUCE(Op, DAG); 3042 case ISD::VP_REDUCE_ADD: 3043 case ISD::VP_REDUCE_UMAX: 3044 case ISD::VP_REDUCE_SMAX: 3045 case ISD::VP_REDUCE_UMIN: 3046 case ISD::VP_REDUCE_SMIN: 3047 case ISD::VP_REDUCE_FADD: 3048 case ISD::VP_REDUCE_SEQ_FADD: 3049 case ISD::VP_REDUCE_FMIN: 3050 case ISD::VP_REDUCE_FMAX: 3051 return lowerVPREDUCE(Op, DAG); 3052 case ISD::VP_REDUCE_AND: 3053 case ISD::VP_REDUCE_OR: 3054 case ISD::VP_REDUCE_XOR: 3055 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3056 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3057 return lowerVPREDUCE(Op, DAG); 3058 case ISD::INSERT_SUBVECTOR: 3059 return lowerINSERT_SUBVECTOR(Op, DAG); 3060 case ISD::EXTRACT_SUBVECTOR: 3061 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3062 case ISD::STEP_VECTOR: 3063 return lowerSTEP_VECTOR(Op, DAG); 3064 case ISD::VECTOR_REVERSE: 3065 return lowerVECTOR_REVERSE(Op, DAG); 3066 case ISD::BUILD_VECTOR: 3067 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3068 case ISD::SPLAT_VECTOR: 3069 if (Op.getValueType().getVectorElementType() == MVT::i1) 3070 return lowerVectorMaskSplat(Op, DAG); 3071 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3072 case ISD::VECTOR_SHUFFLE: 3073 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3074 case ISD::CONCAT_VECTORS: { 3075 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3076 // better than going through the stack, as the default expansion does. 3077 SDLoc DL(Op); 3078 MVT VT = Op.getSimpleValueType(); 3079 unsigned NumOpElts = 3080 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3081 SDValue Vec = DAG.getUNDEF(VT); 3082 for (const auto &OpIdx : enumerate(Op->ops())) 3083 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3084 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3085 return Vec; 3086 } 3087 case ISD::LOAD: 3088 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3089 return V; 3090 if (Op.getValueType().isFixedLengthVector()) 3091 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3092 return Op; 3093 case ISD::STORE: 3094 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3095 return V; 3096 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3097 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3098 return Op; 3099 case ISD::MLOAD: 3100 case ISD::VP_LOAD: 3101 return lowerMaskedLoad(Op, DAG); 3102 case ISD::MSTORE: 3103 case ISD::VP_STORE: 3104 return lowerMaskedStore(Op, DAG); 3105 case ISD::SETCC: 3106 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3107 case ISD::ADD: 3108 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3109 case ISD::SUB: 3110 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3111 case ISD::MUL: 3112 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3113 case ISD::MULHS: 3114 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3115 case ISD::MULHU: 3116 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3117 case ISD::AND: 3118 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3119 RISCVISD::AND_VL); 3120 case ISD::OR: 3121 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3122 RISCVISD::OR_VL); 3123 case ISD::XOR: 3124 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3125 RISCVISD::XOR_VL); 3126 case ISD::SDIV: 3127 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3128 case ISD::SREM: 3129 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3130 case ISD::UDIV: 3131 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3132 case ISD::UREM: 3133 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3134 case ISD::SHL: 3135 case ISD::SRA: 3136 case ISD::SRL: 3137 if (Op.getSimpleValueType().isFixedLengthVector()) 3138 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3139 // This can be called for an i32 shift amount that needs to be promoted. 3140 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3141 "Unexpected custom legalisation"); 3142 return SDValue(); 3143 case ISD::SADDSAT: 3144 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3145 case ISD::UADDSAT: 3146 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3147 case ISD::SSUBSAT: 3148 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3149 case ISD::USUBSAT: 3150 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3151 case ISD::FADD: 3152 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3153 case ISD::FSUB: 3154 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3155 case ISD::FMUL: 3156 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3157 case ISD::FDIV: 3158 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3159 case ISD::FNEG: 3160 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3161 case ISD::FABS: 3162 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3163 case ISD::FSQRT: 3164 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3165 case ISD::FMA: 3166 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3167 case ISD::SMIN: 3168 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3169 case ISD::SMAX: 3170 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3171 case ISD::UMIN: 3172 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3173 case ISD::UMAX: 3174 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3175 case ISD::FMINNUM: 3176 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3177 case ISD::FMAXNUM: 3178 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3179 case ISD::ABS: 3180 return lowerABS(Op, DAG); 3181 case ISD::CTLZ_ZERO_UNDEF: 3182 case ISD::CTTZ_ZERO_UNDEF: 3183 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3184 case ISD::VSELECT: 3185 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3186 case ISD::FCOPYSIGN: 3187 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3188 case ISD::MGATHER: 3189 case ISD::VP_GATHER: 3190 return lowerMaskedGather(Op, DAG); 3191 case ISD::MSCATTER: 3192 case ISD::VP_SCATTER: 3193 return lowerMaskedScatter(Op, DAG); 3194 case ISD::FLT_ROUNDS_: 3195 return lowerGET_ROUNDING(Op, DAG); 3196 case ISD::SET_ROUNDING: 3197 return lowerSET_ROUNDING(Op, DAG); 3198 case ISD::VP_SELECT: 3199 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3200 case ISD::VP_ADD: 3201 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3202 case ISD::VP_SUB: 3203 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3204 case ISD::VP_MUL: 3205 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3206 case ISD::VP_SDIV: 3207 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3208 case ISD::VP_UDIV: 3209 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3210 case ISD::VP_SREM: 3211 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3212 case ISD::VP_UREM: 3213 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3214 case ISD::VP_AND: 3215 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3216 case ISD::VP_OR: 3217 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3218 case ISD::VP_XOR: 3219 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3220 case ISD::VP_ASHR: 3221 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3222 case ISD::VP_LSHR: 3223 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3224 case ISD::VP_SHL: 3225 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3226 case ISD::VP_FADD: 3227 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3228 case ISD::VP_FSUB: 3229 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3230 case ISD::VP_FMUL: 3231 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3232 case ISD::VP_FDIV: 3233 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3234 } 3235 } 3236 3237 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3238 SelectionDAG &DAG, unsigned Flags) { 3239 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3240 } 3241 3242 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3243 SelectionDAG &DAG, unsigned Flags) { 3244 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3245 Flags); 3246 } 3247 3248 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3249 SelectionDAG &DAG, unsigned Flags) { 3250 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3251 N->getOffset(), Flags); 3252 } 3253 3254 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3255 SelectionDAG &DAG, unsigned Flags) { 3256 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3257 } 3258 3259 template <class NodeTy> 3260 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3261 bool IsLocal) const { 3262 SDLoc DL(N); 3263 EVT Ty = getPointerTy(DAG.getDataLayout()); 3264 3265 if (isPositionIndependent()) { 3266 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3267 if (IsLocal) 3268 // Use PC-relative addressing to access the symbol. This generates the 3269 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3270 // %pcrel_lo(auipc)). 3271 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3272 3273 // Use PC-relative addressing to access the GOT for this symbol, then load 3274 // the address from the GOT. This generates the pattern (PseudoLA sym), 3275 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3276 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3277 } 3278 3279 switch (getTargetMachine().getCodeModel()) { 3280 default: 3281 report_fatal_error("Unsupported code model for lowering"); 3282 case CodeModel::Small: { 3283 // Generate a sequence for accessing addresses within the first 2 GiB of 3284 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3285 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3286 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3287 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3288 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3289 } 3290 case CodeModel::Medium: { 3291 // Generate a sequence for accessing addresses within any 2GiB range within 3292 // the address space. This generates the pattern (PseudoLLA sym), which 3293 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3294 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3295 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3296 } 3297 } 3298 } 3299 3300 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3301 SelectionDAG &DAG) const { 3302 SDLoc DL(Op); 3303 EVT Ty = Op.getValueType(); 3304 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3305 int64_t Offset = N->getOffset(); 3306 MVT XLenVT = Subtarget.getXLenVT(); 3307 3308 const GlobalValue *GV = N->getGlobal(); 3309 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3310 SDValue Addr = getAddr(N, DAG, IsLocal); 3311 3312 // In order to maximise the opportunity for common subexpression elimination, 3313 // emit a separate ADD node for the global address offset instead of folding 3314 // it in the global address node. Later peephole optimisations may choose to 3315 // fold it back in when profitable. 3316 if (Offset != 0) 3317 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3318 DAG.getConstant(Offset, DL, XLenVT)); 3319 return Addr; 3320 } 3321 3322 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3323 SelectionDAG &DAG) const { 3324 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3325 3326 return getAddr(N, DAG); 3327 } 3328 3329 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3330 SelectionDAG &DAG) const { 3331 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3332 3333 return getAddr(N, DAG); 3334 } 3335 3336 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3337 SelectionDAG &DAG) const { 3338 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3339 3340 return getAddr(N, DAG); 3341 } 3342 3343 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3344 SelectionDAG &DAG, 3345 bool UseGOT) const { 3346 SDLoc DL(N); 3347 EVT Ty = getPointerTy(DAG.getDataLayout()); 3348 const GlobalValue *GV = N->getGlobal(); 3349 MVT XLenVT = Subtarget.getXLenVT(); 3350 3351 if (UseGOT) { 3352 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3353 // load the address from the GOT and add the thread pointer. This generates 3354 // the pattern (PseudoLA_TLS_IE sym), which expands to 3355 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3356 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3357 SDValue Load = 3358 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3359 3360 // Add the thread pointer. 3361 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3362 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3363 } 3364 3365 // Generate a sequence for accessing the address relative to the thread 3366 // pointer, with the appropriate adjustment for the thread pointer offset. 3367 // This generates the pattern 3368 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3369 SDValue AddrHi = 3370 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3371 SDValue AddrAdd = 3372 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3373 SDValue AddrLo = 3374 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3375 3376 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3377 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3378 SDValue MNAdd = SDValue( 3379 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3380 0); 3381 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3382 } 3383 3384 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3385 SelectionDAG &DAG) const { 3386 SDLoc DL(N); 3387 EVT Ty = getPointerTy(DAG.getDataLayout()); 3388 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3389 const GlobalValue *GV = N->getGlobal(); 3390 3391 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3392 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3393 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3394 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3395 SDValue Load = 3396 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3397 3398 // Prepare argument list to generate call. 3399 ArgListTy Args; 3400 ArgListEntry Entry; 3401 Entry.Node = Load; 3402 Entry.Ty = CallTy; 3403 Args.push_back(Entry); 3404 3405 // Setup call to __tls_get_addr. 3406 TargetLowering::CallLoweringInfo CLI(DAG); 3407 CLI.setDebugLoc(DL) 3408 .setChain(DAG.getEntryNode()) 3409 .setLibCallee(CallingConv::C, CallTy, 3410 DAG.getExternalSymbol("__tls_get_addr", Ty), 3411 std::move(Args)); 3412 3413 return LowerCallTo(CLI).first; 3414 } 3415 3416 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3417 SelectionDAG &DAG) const { 3418 SDLoc DL(Op); 3419 EVT Ty = Op.getValueType(); 3420 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3421 int64_t Offset = N->getOffset(); 3422 MVT XLenVT = Subtarget.getXLenVT(); 3423 3424 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3425 3426 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3427 CallingConv::GHC) 3428 report_fatal_error("In GHC calling convention TLS is not supported"); 3429 3430 SDValue Addr; 3431 switch (Model) { 3432 case TLSModel::LocalExec: 3433 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3434 break; 3435 case TLSModel::InitialExec: 3436 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3437 break; 3438 case TLSModel::LocalDynamic: 3439 case TLSModel::GeneralDynamic: 3440 Addr = getDynamicTLSAddr(N, DAG); 3441 break; 3442 } 3443 3444 // In order to maximise the opportunity for common subexpression elimination, 3445 // emit a separate ADD node for the global address offset instead of folding 3446 // it in the global address node. Later peephole optimisations may choose to 3447 // fold it back in when profitable. 3448 if (Offset != 0) 3449 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3450 DAG.getConstant(Offset, DL, XLenVT)); 3451 return Addr; 3452 } 3453 3454 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3455 SDValue CondV = Op.getOperand(0); 3456 SDValue TrueV = Op.getOperand(1); 3457 SDValue FalseV = Op.getOperand(2); 3458 SDLoc DL(Op); 3459 MVT VT = Op.getSimpleValueType(); 3460 MVT XLenVT = Subtarget.getXLenVT(); 3461 3462 // Lower vector SELECTs to VSELECTs by splatting the condition. 3463 if (VT.isVector()) { 3464 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3465 SDValue CondSplat = VT.isScalableVector() 3466 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3467 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3468 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3469 } 3470 3471 // If the result type is XLenVT and CondV is the output of a SETCC node 3472 // which also operated on XLenVT inputs, then merge the SETCC node into the 3473 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3474 // compare+branch instructions. i.e.: 3475 // (select (setcc lhs, rhs, cc), truev, falsev) 3476 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3477 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3478 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3479 SDValue LHS = CondV.getOperand(0); 3480 SDValue RHS = CondV.getOperand(1); 3481 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3482 ISD::CondCode CCVal = CC->get(); 3483 3484 // Special case for a select of 2 constants that have a diffence of 1. 3485 // Normally this is done by DAGCombine, but if the select is introduced by 3486 // type legalization or op legalization, we miss it. Restricting to SETLT 3487 // case for now because that is what signed saturating add/sub need. 3488 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3489 // but we would probably want to swap the true/false values if the condition 3490 // is SETGE/SETLE to avoid an XORI. 3491 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3492 CCVal == ISD::SETLT) { 3493 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3494 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3495 if (TrueVal - 1 == FalseVal) 3496 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3497 if (TrueVal + 1 == FalseVal) 3498 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3499 } 3500 3501 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3502 3503 SDValue TargetCC = DAG.getCondCode(CCVal); 3504 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3505 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3506 } 3507 3508 // Otherwise: 3509 // (select condv, truev, falsev) 3510 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3511 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3512 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3513 3514 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3515 3516 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3517 } 3518 3519 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3520 SDValue CondV = Op.getOperand(1); 3521 SDLoc DL(Op); 3522 MVT XLenVT = Subtarget.getXLenVT(); 3523 3524 if (CondV.getOpcode() == ISD::SETCC && 3525 CondV.getOperand(0).getValueType() == XLenVT) { 3526 SDValue LHS = CondV.getOperand(0); 3527 SDValue RHS = CondV.getOperand(1); 3528 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3529 3530 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3531 3532 SDValue TargetCC = DAG.getCondCode(CCVal); 3533 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3534 LHS, RHS, TargetCC, Op.getOperand(2)); 3535 } 3536 3537 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3538 CondV, DAG.getConstant(0, DL, XLenVT), 3539 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3540 } 3541 3542 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3543 MachineFunction &MF = DAG.getMachineFunction(); 3544 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3545 3546 SDLoc DL(Op); 3547 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3548 getPointerTy(MF.getDataLayout())); 3549 3550 // vastart just stores the address of the VarArgsFrameIndex slot into the 3551 // memory location argument. 3552 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3553 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3554 MachinePointerInfo(SV)); 3555 } 3556 3557 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3558 SelectionDAG &DAG) const { 3559 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3560 MachineFunction &MF = DAG.getMachineFunction(); 3561 MachineFrameInfo &MFI = MF.getFrameInfo(); 3562 MFI.setFrameAddressIsTaken(true); 3563 Register FrameReg = RI.getFrameRegister(MF); 3564 int XLenInBytes = Subtarget.getXLen() / 8; 3565 3566 EVT VT = Op.getValueType(); 3567 SDLoc DL(Op); 3568 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3569 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3570 while (Depth--) { 3571 int Offset = -(XLenInBytes * 2); 3572 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3573 DAG.getIntPtrConstant(Offset, DL)); 3574 FrameAddr = 3575 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3576 } 3577 return FrameAddr; 3578 } 3579 3580 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3581 SelectionDAG &DAG) const { 3582 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3583 MachineFunction &MF = DAG.getMachineFunction(); 3584 MachineFrameInfo &MFI = MF.getFrameInfo(); 3585 MFI.setReturnAddressIsTaken(true); 3586 MVT XLenVT = Subtarget.getXLenVT(); 3587 int XLenInBytes = Subtarget.getXLen() / 8; 3588 3589 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3590 return SDValue(); 3591 3592 EVT VT = Op.getValueType(); 3593 SDLoc DL(Op); 3594 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3595 if (Depth) { 3596 int Off = -XLenInBytes; 3597 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3598 SDValue Offset = DAG.getConstant(Off, DL, VT); 3599 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3600 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3601 MachinePointerInfo()); 3602 } 3603 3604 // Return the value of the return address register, marking it an implicit 3605 // live-in. 3606 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3607 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3608 } 3609 3610 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3611 SelectionDAG &DAG) const { 3612 SDLoc DL(Op); 3613 SDValue Lo = Op.getOperand(0); 3614 SDValue Hi = Op.getOperand(1); 3615 SDValue Shamt = Op.getOperand(2); 3616 EVT VT = Lo.getValueType(); 3617 3618 // if Shamt-XLEN < 0: // Shamt < XLEN 3619 // Lo = Lo << Shamt 3620 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3621 // else: 3622 // Lo = 0 3623 // Hi = Lo << (Shamt-XLEN) 3624 3625 SDValue Zero = DAG.getConstant(0, DL, VT); 3626 SDValue One = DAG.getConstant(1, DL, VT); 3627 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3628 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3629 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3630 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3631 3632 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3633 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3634 SDValue ShiftRightLo = 3635 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3636 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3637 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3638 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3639 3640 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3641 3642 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3643 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3644 3645 SDValue Parts[2] = {Lo, Hi}; 3646 return DAG.getMergeValues(Parts, DL); 3647 } 3648 3649 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3650 bool IsSRA) const { 3651 SDLoc DL(Op); 3652 SDValue Lo = Op.getOperand(0); 3653 SDValue Hi = Op.getOperand(1); 3654 SDValue Shamt = Op.getOperand(2); 3655 EVT VT = Lo.getValueType(); 3656 3657 // SRA expansion: 3658 // if Shamt-XLEN < 0: // Shamt < XLEN 3659 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3660 // Hi = Hi >>s Shamt 3661 // else: 3662 // Lo = Hi >>s (Shamt-XLEN); 3663 // Hi = Hi >>s (XLEN-1) 3664 // 3665 // SRL expansion: 3666 // if Shamt-XLEN < 0: // Shamt < XLEN 3667 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3668 // Hi = Hi >>u Shamt 3669 // else: 3670 // Lo = Hi >>u (Shamt-XLEN); 3671 // Hi = 0; 3672 3673 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3674 3675 SDValue Zero = DAG.getConstant(0, DL, VT); 3676 SDValue One = DAG.getConstant(1, DL, VT); 3677 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3678 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3679 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3680 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3681 3682 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3683 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3684 SDValue ShiftLeftHi = 3685 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3686 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3687 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3688 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3689 SDValue HiFalse = 3690 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3691 3692 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3693 3694 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3695 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3696 3697 SDValue Parts[2] = {Lo, Hi}; 3698 return DAG.getMergeValues(Parts, DL); 3699 } 3700 3701 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3702 // legal equivalently-sized i8 type, so we can use that as a go-between. 3703 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3704 SelectionDAG &DAG) const { 3705 SDLoc DL(Op); 3706 MVT VT = Op.getSimpleValueType(); 3707 SDValue SplatVal = Op.getOperand(0); 3708 // All-zeros or all-ones splats are handled specially. 3709 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3710 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3711 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3712 } 3713 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3714 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3715 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3716 } 3717 MVT XLenVT = Subtarget.getXLenVT(); 3718 assert(SplatVal.getValueType() == XLenVT && 3719 "Unexpected type for i1 splat value"); 3720 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3721 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3722 DAG.getConstant(1, DL, XLenVT)); 3723 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3724 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3725 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3726 } 3727 3728 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3729 // illegal (currently only vXi64 RV32). 3730 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3731 // them to SPLAT_VECTOR_I64 3732 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3733 SelectionDAG &DAG) const { 3734 SDLoc DL(Op); 3735 MVT VecVT = Op.getSimpleValueType(); 3736 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3737 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3738 3739 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3740 SDValue Lo = Op.getOperand(0); 3741 SDValue Hi = Op.getOperand(1); 3742 3743 if (VecVT.isFixedLengthVector()) { 3744 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3745 SDLoc DL(Op); 3746 SDValue Mask, VL; 3747 std::tie(Mask, VL) = 3748 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3749 3750 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3751 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3752 } 3753 3754 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3755 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3756 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3757 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3758 // node in order to try and match RVV vector/scalar instructions. 3759 if ((LoC >> 31) == HiC) 3760 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3761 } 3762 3763 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3764 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3765 isa<ConstantSDNode>(Hi.getOperand(1)) && 3766 Hi.getConstantOperandVal(1) == 31) 3767 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3768 3769 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3770 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3771 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3772 } 3773 3774 // Custom-lower extensions from mask vectors by using a vselect either with 1 3775 // for zero/any-extension or -1 for sign-extension: 3776 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3777 // Note that any-extension is lowered identically to zero-extension. 3778 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3779 int64_t ExtTrueVal) const { 3780 SDLoc DL(Op); 3781 MVT VecVT = Op.getSimpleValueType(); 3782 SDValue Src = Op.getOperand(0); 3783 // Only custom-lower extensions from mask types 3784 assert(Src.getValueType().isVector() && 3785 Src.getValueType().getVectorElementType() == MVT::i1); 3786 3787 MVT XLenVT = Subtarget.getXLenVT(); 3788 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3789 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3790 3791 if (VecVT.isScalableVector()) { 3792 // Be careful not to introduce illegal scalar types at this stage, and be 3793 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3794 // illegal and must be expanded. Since we know that the constants are 3795 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3796 bool IsRV32E64 = 3797 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3798 3799 if (!IsRV32E64) { 3800 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3801 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3802 } else { 3803 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3804 SplatTrueVal = 3805 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3806 } 3807 3808 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3809 } 3810 3811 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3812 MVT I1ContainerVT = 3813 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3814 3815 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3816 3817 SDValue Mask, VL; 3818 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3819 3820 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3821 SplatTrueVal = 3822 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3823 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3824 SplatTrueVal, SplatZero, VL); 3825 3826 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3827 } 3828 3829 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3830 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3831 MVT ExtVT = Op.getSimpleValueType(); 3832 // Only custom-lower extensions from fixed-length vector types. 3833 if (!ExtVT.isFixedLengthVector()) 3834 return Op; 3835 MVT VT = Op.getOperand(0).getSimpleValueType(); 3836 // Grab the canonical container type for the extended type. Infer the smaller 3837 // type from that to ensure the same number of vector elements, as we know 3838 // the LMUL will be sufficient to hold the smaller type. 3839 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3840 // Get the extended container type manually to ensure the same number of 3841 // vector elements between source and dest. 3842 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3843 ContainerExtVT.getVectorElementCount()); 3844 3845 SDValue Op1 = 3846 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3847 3848 SDLoc DL(Op); 3849 SDValue Mask, VL; 3850 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3851 3852 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3853 3854 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3855 } 3856 3857 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3858 // setcc operation: 3859 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3860 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3861 SelectionDAG &DAG) const { 3862 SDLoc DL(Op); 3863 EVT MaskVT = Op.getValueType(); 3864 // Only expect to custom-lower truncations to mask types 3865 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3866 "Unexpected type for vector mask lowering"); 3867 SDValue Src = Op.getOperand(0); 3868 MVT VecVT = Src.getSimpleValueType(); 3869 3870 // If this is a fixed vector, we need to convert it to a scalable vector. 3871 MVT ContainerVT = VecVT; 3872 if (VecVT.isFixedLengthVector()) { 3873 ContainerVT = getContainerForFixedLengthVector(VecVT); 3874 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3875 } 3876 3877 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3878 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3879 3880 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3881 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3882 3883 if (VecVT.isScalableVector()) { 3884 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3885 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3886 } 3887 3888 SDValue Mask, VL; 3889 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3890 3891 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3892 SDValue Trunc = 3893 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3894 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3895 DAG.getCondCode(ISD::SETNE), Mask, VL); 3896 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3897 } 3898 3899 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3900 // first position of a vector, and that vector is slid up to the insert index. 3901 // By limiting the active vector length to index+1 and merging with the 3902 // original vector (with an undisturbed tail policy for elements >= VL), we 3903 // achieve the desired result of leaving all elements untouched except the one 3904 // at VL-1, which is replaced with the desired value. 3905 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3906 SelectionDAG &DAG) const { 3907 SDLoc DL(Op); 3908 MVT VecVT = Op.getSimpleValueType(); 3909 SDValue Vec = Op.getOperand(0); 3910 SDValue Val = Op.getOperand(1); 3911 SDValue Idx = Op.getOperand(2); 3912 3913 if (VecVT.getVectorElementType() == MVT::i1) { 3914 // FIXME: For now we just promote to an i8 vector and insert into that, 3915 // but this is probably not optimal. 3916 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3917 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3918 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3919 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3920 } 3921 3922 MVT ContainerVT = VecVT; 3923 // If the operand is a fixed-length vector, convert to a scalable one. 3924 if (VecVT.isFixedLengthVector()) { 3925 ContainerVT = getContainerForFixedLengthVector(VecVT); 3926 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3927 } 3928 3929 MVT XLenVT = Subtarget.getXLenVT(); 3930 3931 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3932 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3933 // Even i64-element vectors on RV32 can be lowered without scalar 3934 // legalization if the most-significant 32 bits of the value are not affected 3935 // by the sign-extension of the lower 32 bits. 3936 // TODO: We could also catch sign extensions of a 32-bit value. 3937 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3938 const auto *CVal = cast<ConstantSDNode>(Val); 3939 if (isInt<32>(CVal->getSExtValue())) { 3940 IsLegalInsert = true; 3941 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3942 } 3943 } 3944 3945 SDValue Mask, VL; 3946 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3947 3948 SDValue ValInVec; 3949 3950 if (IsLegalInsert) { 3951 unsigned Opc = 3952 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3953 if (isNullConstant(Idx)) { 3954 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3955 if (!VecVT.isFixedLengthVector()) 3956 return Vec; 3957 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3958 } 3959 ValInVec = 3960 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3961 } else { 3962 // On RV32, i64-element vectors must be specially handled to place the 3963 // value at element 0, by using two vslide1up instructions in sequence on 3964 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3965 // this. 3966 SDValue One = DAG.getConstant(1, DL, XLenVT); 3967 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3968 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3969 MVT I32ContainerVT = 3970 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3971 SDValue I32Mask = 3972 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3973 // Limit the active VL to two. 3974 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3975 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3976 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3977 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3978 InsertI64VL); 3979 // First slide in the hi value, then the lo in underneath it. 3980 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3981 ValHi, I32Mask, InsertI64VL); 3982 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3983 ValLo, I32Mask, InsertI64VL); 3984 // Bitcast back to the right container type. 3985 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3986 } 3987 3988 // Now that the value is in a vector, slide it into position. 3989 SDValue InsertVL = 3990 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3991 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3992 ValInVec, Idx, Mask, InsertVL); 3993 if (!VecVT.isFixedLengthVector()) 3994 return Slideup; 3995 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3996 } 3997 3998 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3999 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4000 // types this is done using VMV_X_S to allow us to glean information about the 4001 // sign bits of the result. 4002 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4003 SelectionDAG &DAG) const { 4004 SDLoc DL(Op); 4005 SDValue Idx = Op.getOperand(1); 4006 SDValue Vec = Op.getOperand(0); 4007 EVT EltVT = Op.getValueType(); 4008 MVT VecVT = Vec.getSimpleValueType(); 4009 MVT XLenVT = Subtarget.getXLenVT(); 4010 4011 if (VecVT.getVectorElementType() == MVT::i1) { 4012 // FIXME: For now we just promote to an i8 vector and extract from that, 4013 // but this is probably not optimal. 4014 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4015 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4016 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4017 } 4018 4019 // If this is a fixed vector, we need to convert it to a scalable vector. 4020 MVT ContainerVT = VecVT; 4021 if (VecVT.isFixedLengthVector()) { 4022 ContainerVT = getContainerForFixedLengthVector(VecVT); 4023 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4024 } 4025 4026 // If the index is 0, the vector is already in the right position. 4027 if (!isNullConstant(Idx)) { 4028 // Use a VL of 1 to avoid processing more elements than we need. 4029 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4030 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4031 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4032 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4033 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4034 } 4035 4036 if (!EltVT.isInteger()) { 4037 // Floating-point extracts are handled in TableGen. 4038 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4039 DAG.getConstant(0, DL, XLenVT)); 4040 } 4041 4042 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4043 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4044 } 4045 4046 // Some RVV intrinsics may claim that they want an integer operand to be 4047 // promoted or expanded. 4048 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4049 const RISCVSubtarget &Subtarget) { 4050 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4051 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4052 "Unexpected opcode"); 4053 4054 if (!Subtarget.hasVInstructions()) 4055 return SDValue(); 4056 4057 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4058 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4059 SDLoc DL(Op); 4060 4061 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4062 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4063 if (!II || !II->SplatOperand) 4064 return SDValue(); 4065 4066 unsigned SplatOp = II->SplatOperand + HasChain; 4067 assert(SplatOp < Op.getNumOperands()); 4068 4069 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4070 SDValue &ScalarOp = Operands[SplatOp]; 4071 MVT OpVT = ScalarOp.getSimpleValueType(); 4072 MVT XLenVT = Subtarget.getXLenVT(); 4073 4074 // If this isn't a scalar, or its type is XLenVT we're done. 4075 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4076 return SDValue(); 4077 4078 // Simplest case is that the operand needs to be promoted to XLenVT. 4079 if (OpVT.bitsLT(XLenVT)) { 4080 // If the operand is a constant, sign extend to increase our chances 4081 // of being able to use a .vi instruction. ANY_EXTEND would become a 4082 // a zero extend and the simm5 check in isel would fail. 4083 // FIXME: Should we ignore the upper bits in isel instead? 4084 unsigned ExtOpc = 4085 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4086 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4087 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4088 } 4089 4090 // Use the previous operand to get the vXi64 VT. The result might be a mask 4091 // VT for compares. Using the previous operand assumes that the previous 4092 // operand will never have a smaller element size than a scalar operand and 4093 // that a widening operation never uses SEW=64. 4094 // NOTE: If this fails the below assert, we can probably just find the 4095 // element count from any operand or result and use it to construct the VT. 4096 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4097 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4098 4099 // The more complex case is when the scalar is larger than XLenVT. 4100 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4101 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4102 4103 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4104 // on the instruction to sign-extend since SEW>XLEN. 4105 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4106 if (isInt<32>(CVal->getSExtValue())) { 4107 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4108 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4109 } 4110 } 4111 4112 // We need to convert the scalar to a splat vector. 4113 // FIXME: Can we implicitly truncate the scalar if it is known to 4114 // be sign extended? 4115 // VL should be the last operand. 4116 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4117 assert(VL.getValueType() == XLenVT); 4118 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4119 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4120 } 4121 4122 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4123 SelectionDAG &DAG) const { 4124 unsigned IntNo = Op.getConstantOperandVal(0); 4125 SDLoc DL(Op); 4126 MVT XLenVT = Subtarget.getXLenVT(); 4127 4128 switch (IntNo) { 4129 default: 4130 break; // Don't custom lower most intrinsics. 4131 case Intrinsic::thread_pointer: { 4132 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4133 return DAG.getRegister(RISCV::X4, PtrVT); 4134 } 4135 case Intrinsic::riscv_orc_b: 4136 // Lower to the GORCI encoding for orc.b. 4137 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4138 DAG.getConstant(7, DL, XLenVT)); 4139 case Intrinsic::riscv_grev: 4140 case Intrinsic::riscv_gorc: { 4141 unsigned Opc = 4142 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4143 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4144 } 4145 case Intrinsic::riscv_shfl: 4146 case Intrinsic::riscv_unshfl: { 4147 unsigned Opc = 4148 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4149 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4150 } 4151 case Intrinsic::riscv_bcompress: 4152 case Intrinsic::riscv_bdecompress: { 4153 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4154 : RISCVISD::BDECOMPRESS; 4155 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4156 } 4157 case Intrinsic::riscv_vmv_x_s: 4158 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4159 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4160 Op.getOperand(1)); 4161 case Intrinsic::riscv_vmv_v_x: 4162 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4163 Op.getSimpleValueType(), DL, DAG, Subtarget); 4164 case Intrinsic::riscv_vfmv_v_f: 4165 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4166 Op.getOperand(1), Op.getOperand(2)); 4167 case Intrinsic::riscv_vmv_s_x: { 4168 SDValue Scalar = Op.getOperand(2); 4169 4170 if (Scalar.getValueType().bitsLE(XLenVT)) { 4171 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4172 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4173 Op.getOperand(1), Scalar, Op.getOperand(3)); 4174 } 4175 4176 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4177 4178 // This is an i64 value that lives in two scalar registers. We have to 4179 // insert this in a convoluted way. First we build vXi64 splat containing 4180 // the/ two values that we assemble using some bit math. Next we'll use 4181 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4182 // to merge element 0 from our splat into the source vector. 4183 // FIXME: This is probably not the best way to do this, but it is 4184 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4185 // point. 4186 // sw lo, (a0) 4187 // sw hi, 4(a0) 4188 // vlse vX, (a0) 4189 // 4190 // vid.v vVid 4191 // vmseq.vx mMask, vVid, 0 4192 // vmerge.vvm vDest, vSrc, vVal, mMask 4193 MVT VT = Op.getSimpleValueType(); 4194 SDValue Vec = Op.getOperand(1); 4195 SDValue VL = Op.getOperand(3); 4196 4197 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4198 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4199 DAG.getConstant(0, DL, MVT::i32), VL); 4200 4201 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4202 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4203 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4204 SDValue SelectCond = 4205 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4206 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4207 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4208 Vec, VL); 4209 } 4210 case Intrinsic::riscv_vslide1up: 4211 case Intrinsic::riscv_vslide1down: 4212 case Intrinsic::riscv_vslide1up_mask: 4213 case Intrinsic::riscv_vslide1down_mask: { 4214 // We need to special case these when the scalar is larger than XLen. 4215 unsigned NumOps = Op.getNumOperands(); 4216 bool IsMasked = NumOps == 7; 4217 unsigned OpOffset = IsMasked ? 1 : 0; 4218 SDValue Scalar = Op.getOperand(2 + OpOffset); 4219 if (Scalar.getValueType().bitsLE(XLenVT)) 4220 break; 4221 4222 // Splatting a sign extended constant is fine. 4223 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4224 if (isInt<32>(CVal->getSExtValue())) 4225 break; 4226 4227 MVT VT = Op.getSimpleValueType(); 4228 assert(VT.getVectorElementType() == MVT::i64 && 4229 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4230 4231 // Convert the vector source to the equivalent nxvXi32 vector. 4232 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4233 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4234 4235 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4236 DAG.getConstant(0, DL, XLenVT)); 4237 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4238 DAG.getConstant(1, DL, XLenVT)); 4239 4240 // Double the VL since we halved SEW. 4241 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4242 SDValue I32VL = 4243 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4244 4245 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4246 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4247 4248 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4249 // instructions. 4250 if (IntNo == Intrinsic::riscv_vslide1up || 4251 IntNo == Intrinsic::riscv_vslide1up_mask) { 4252 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4253 I32Mask, I32VL); 4254 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4255 I32Mask, I32VL); 4256 } else { 4257 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4258 I32Mask, I32VL); 4259 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4260 I32Mask, I32VL); 4261 } 4262 4263 // Convert back to nxvXi64. 4264 Vec = DAG.getBitcast(VT, Vec); 4265 4266 if (!IsMasked) 4267 return Vec; 4268 4269 // Apply mask after the operation. 4270 SDValue Mask = Op.getOperand(NumOps - 3); 4271 SDValue MaskedOff = Op.getOperand(1); 4272 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4273 } 4274 } 4275 4276 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4277 } 4278 4279 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4280 SelectionDAG &DAG) const { 4281 unsigned IntNo = Op.getConstantOperandVal(1); 4282 switch (IntNo) { 4283 default: 4284 break; 4285 case Intrinsic::riscv_masked_strided_load: { 4286 SDLoc DL(Op); 4287 MVT XLenVT = Subtarget.getXLenVT(); 4288 4289 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4290 // the selection of the masked intrinsics doesn't do this for us. 4291 SDValue Mask = Op.getOperand(5); 4292 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4293 4294 MVT VT = Op->getSimpleValueType(0); 4295 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4296 4297 SDValue PassThru = Op.getOperand(2); 4298 if (!IsUnmasked) { 4299 MVT MaskVT = 4300 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4301 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4302 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4303 } 4304 4305 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4306 4307 SDValue IntID = DAG.getTargetConstant( 4308 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4309 XLenVT); 4310 4311 auto *Load = cast<MemIntrinsicSDNode>(Op); 4312 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4313 if (!IsUnmasked) 4314 Ops.push_back(PassThru); 4315 Ops.push_back(Op.getOperand(3)); // Ptr 4316 Ops.push_back(Op.getOperand(4)); // Stride 4317 if (!IsUnmasked) 4318 Ops.push_back(Mask); 4319 Ops.push_back(VL); 4320 if (!IsUnmasked) { 4321 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4322 Ops.push_back(Policy); 4323 } 4324 4325 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4326 SDValue Result = 4327 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4328 Load->getMemoryVT(), Load->getMemOperand()); 4329 SDValue Chain = Result.getValue(1); 4330 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4331 return DAG.getMergeValues({Result, Chain}, DL); 4332 } 4333 } 4334 4335 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4336 } 4337 4338 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4339 SelectionDAG &DAG) const { 4340 unsigned IntNo = Op.getConstantOperandVal(1); 4341 switch (IntNo) { 4342 default: 4343 break; 4344 case Intrinsic::riscv_masked_strided_store: { 4345 SDLoc DL(Op); 4346 MVT XLenVT = Subtarget.getXLenVT(); 4347 4348 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4349 // the selection of the masked intrinsics doesn't do this for us. 4350 SDValue Mask = Op.getOperand(5); 4351 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4352 4353 SDValue Val = Op.getOperand(2); 4354 MVT VT = Val.getSimpleValueType(); 4355 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4356 4357 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4358 if (!IsUnmasked) { 4359 MVT MaskVT = 4360 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4361 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4362 } 4363 4364 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4365 4366 SDValue IntID = DAG.getTargetConstant( 4367 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4368 XLenVT); 4369 4370 auto *Store = cast<MemIntrinsicSDNode>(Op); 4371 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4372 Ops.push_back(Val); 4373 Ops.push_back(Op.getOperand(3)); // Ptr 4374 Ops.push_back(Op.getOperand(4)); // Stride 4375 if (!IsUnmasked) 4376 Ops.push_back(Mask); 4377 Ops.push_back(VL); 4378 4379 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4380 Ops, Store->getMemoryVT(), 4381 Store->getMemOperand()); 4382 } 4383 } 4384 4385 return SDValue(); 4386 } 4387 4388 static MVT getLMUL1VT(MVT VT) { 4389 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4390 "Unexpected vector MVT"); 4391 return MVT::getScalableVectorVT( 4392 VT.getVectorElementType(), 4393 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4394 } 4395 4396 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4397 switch (ISDOpcode) { 4398 default: 4399 llvm_unreachable("Unhandled reduction"); 4400 case ISD::VECREDUCE_ADD: 4401 return RISCVISD::VECREDUCE_ADD_VL; 4402 case ISD::VECREDUCE_UMAX: 4403 return RISCVISD::VECREDUCE_UMAX_VL; 4404 case ISD::VECREDUCE_SMAX: 4405 return RISCVISD::VECREDUCE_SMAX_VL; 4406 case ISD::VECREDUCE_UMIN: 4407 return RISCVISD::VECREDUCE_UMIN_VL; 4408 case ISD::VECREDUCE_SMIN: 4409 return RISCVISD::VECREDUCE_SMIN_VL; 4410 case ISD::VECREDUCE_AND: 4411 return RISCVISD::VECREDUCE_AND_VL; 4412 case ISD::VECREDUCE_OR: 4413 return RISCVISD::VECREDUCE_OR_VL; 4414 case ISD::VECREDUCE_XOR: 4415 return RISCVISD::VECREDUCE_XOR_VL; 4416 } 4417 } 4418 4419 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4420 SelectionDAG &DAG, 4421 bool IsVP) const { 4422 SDLoc DL(Op); 4423 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4424 MVT VecVT = Vec.getSimpleValueType(); 4425 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4426 Op.getOpcode() == ISD::VECREDUCE_OR || 4427 Op.getOpcode() == ISD::VECREDUCE_XOR || 4428 Op.getOpcode() == ISD::VP_REDUCE_AND || 4429 Op.getOpcode() == ISD::VP_REDUCE_OR || 4430 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4431 "Unexpected reduction lowering"); 4432 4433 MVT XLenVT = Subtarget.getXLenVT(); 4434 assert(Op.getValueType() == XLenVT && 4435 "Expected reduction output to be legalized to XLenVT"); 4436 4437 MVT ContainerVT = VecVT; 4438 if (VecVT.isFixedLengthVector()) { 4439 ContainerVT = getContainerForFixedLengthVector(VecVT); 4440 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4441 } 4442 4443 SDValue Mask, VL; 4444 if (IsVP) { 4445 Mask = Op.getOperand(2); 4446 VL = Op.getOperand(3); 4447 } else { 4448 std::tie(Mask, VL) = 4449 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4450 } 4451 4452 unsigned BaseOpc; 4453 ISD::CondCode CC; 4454 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4455 4456 switch (Op.getOpcode()) { 4457 default: 4458 llvm_unreachable("Unhandled reduction"); 4459 case ISD::VECREDUCE_AND: 4460 case ISD::VP_REDUCE_AND: { 4461 // vcpop ~x == 0 4462 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4463 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4464 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4465 CC = ISD::SETEQ; 4466 BaseOpc = ISD::AND; 4467 break; 4468 } 4469 case ISD::VECREDUCE_OR: 4470 case ISD::VP_REDUCE_OR: 4471 // vcpop x != 0 4472 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4473 CC = ISD::SETNE; 4474 BaseOpc = ISD::OR; 4475 break; 4476 case ISD::VECREDUCE_XOR: 4477 case ISD::VP_REDUCE_XOR: { 4478 // ((vcpop x) & 1) != 0 4479 SDValue One = DAG.getConstant(1, DL, XLenVT); 4480 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4481 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4482 CC = ISD::SETNE; 4483 BaseOpc = ISD::XOR; 4484 break; 4485 } 4486 } 4487 4488 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4489 4490 if (!IsVP) 4491 return SetCC; 4492 4493 // Now include the start value in the operation. 4494 // Note that we must return the start value when no elements are operated 4495 // upon. The vcpop instructions we've emitted in each case above will return 4496 // 0 for an inactive vector, and so we've already received the neutral value: 4497 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4498 // can simply include the start value. 4499 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4500 } 4501 4502 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4503 SelectionDAG &DAG) const { 4504 SDLoc DL(Op); 4505 SDValue Vec = Op.getOperand(0); 4506 EVT VecEVT = Vec.getValueType(); 4507 4508 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4509 4510 // Due to ordering in legalize types we may have a vector type that needs to 4511 // be split. Do that manually so we can get down to a legal type. 4512 while (getTypeAction(*DAG.getContext(), VecEVT) == 4513 TargetLowering::TypeSplitVector) { 4514 SDValue Lo, Hi; 4515 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4516 VecEVT = Lo.getValueType(); 4517 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4518 } 4519 4520 // TODO: The type may need to be widened rather than split. Or widened before 4521 // it can be split. 4522 if (!isTypeLegal(VecEVT)) 4523 return SDValue(); 4524 4525 MVT VecVT = VecEVT.getSimpleVT(); 4526 MVT VecEltVT = VecVT.getVectorElementType(); 4527 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4528 4529 MVT ContainerVT = VecVT; 4530 if (VecVT.isFixedLengthVector()) { 4531 ContainerVT = getContainerForFixedLengthVector(VecVT); 4532 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4533 } 4534 4535 MVT M1VT = getLMUL1VT(ContainerVT); 4536 MVT XLenVT = Subtarget.getXLenVT(); 4537 4538 SDValue Mask, VL; 4539 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4540 4541 SDValue NeutralElem = 4542 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4543 SDValue IdentitySplat = lowerScalarSplat( 4544 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4545 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4546 IdentitySplat, Mask, VL); 4547 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4548 DAG.getConstant(0, DL, XLenVT)); 4549 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4550 } 4551 4552 // Given a reduction op, this function returns the matching reduction opcode, 4553 // the vector SDValue and the scalar SDValue required to lower this to a 4554 // RISCVISD node. 4555 static std::tuple<unsigned, SDValue, SDValue> 4556 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4557 SDLoc DL(Op); 4558 auto Flags = Op->getFlags(); 4559 unsigned Opcode = Op.getOpcode(); 4560 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4561 switch (Opcode) { 4562 default: 4563 llvm_unreachable("Unhandled reduction"); 4564 case ISD::VECREDUCE_FADD: { 4565 // Use positive zero if we can. It is cheaper to materialize. 4566 SDValue Zero = 4567 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4568 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4569 } 4570 case ISD::VECREDUCE_SEQ_FADD: 4571 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4572 Op.getOperand(0)); 4573 case ISD::VECREDUCE_FMIN: 4574 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4575 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4576 case ISD::VECREDUCE_FMAX: 4577 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4578 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4579 } 4580 } 4581 4582 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4583 SelectionDAG &DAG) const { 4584 SDLoc DL(Op); 4585 MVT VecEltVT = Op.getSimpleValueType(); 4586 4587 unsigned RVVOpcode; 4588 SDValue VectorVal, ScalarVal; 4589 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4590 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4591 MVT VecVT = VectorVal.getSimpleValueType(); 4592 4593 MVT ContainerVT = VecVT; 4594 if (VecVT.isFixedLengthVector()) { 4595 ContainerVT = getContainerForFixedLengthVector(VecVT); 4596 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4597 } 4598 4599 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4600 MVT XLenVT = Subtarget.getXLenVT(); 4601 4602 SDValue Mask, VL; 4603 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4604 4605 SDValue ScalarSplat = lowerScalarSplat( 4606 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4607 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4608 VectorVal, ScalarSplat, Mask, VL); 4609 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4610 DAG.getConstant(0, DL, XLenVT)); 4611 } 4612 4613 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4614 switch (ISDOpcode) { 4615 default: 4616 llvm_unreachable("Unhandled reduction"); 4617 case ISD::VP_REDUCE_ADD: 4618 return RISCVISD::VECREDUCE_ADD_VL; 4619 case ISD::VP_REDUCE_UMAX: 4620 return RISCVISD::VECREDUCE_UMAX_VL; 4621 case ISD::VP_REDUCE_SMAX: 4622 return RISCVISD::VECREDUCE_SMAX_VL; 4623 case ISD::VP_REDUCE_UMIN: 4624 return RISCVISD::VECREDUCE_UMIN_VL; 4625 case ISD::VP_REDUCE_SMIN: 4626 return RISCVISD::VECREDUCE_SMIN_VL; 4627 case ISD::VP_REDUCE_AND: 4628 return RISCVISD::VECREDUCE_AND_VL; 4629 case ISD::VP_REDUCE_OR: 4630 return RISCVISD::VECREDUCE_OR_VL; 4631 case ISD::VP_REDUCE_XOR: 4632 return RISCVISD::VECREDUCE_XOR_VL; 4633 case ISD::VP_REDUCE_FADD: 4634 return RISCVISD::VECREDUCE_FADD_VL; 4635 case ISD::VP_REDUCE_SEQ_FADD: 4636 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4637 case ISD::VP_REDUCE_FMAX: 4638 return RISCVISD::VECREDUCE_FMAX_VL; 4639 case ISD::VP_REDUCE_FMIN: 4640 return RISCVISD::VECREDUCE_FMIN_VL; 4641 } 4642 } 4643 4644 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4645 SelectionDAG &DAG) const { 4646 SDLoc DL(Op); 4647 SDValue Vec = Op.getOperand(1); 4648 EVT VecEVT = Vec.getValueType(); 4649 4650 // TODO: The type may need to be widened rather than split. Or widened before 4651 // it can be split. 4652 if (!isTypeLegal(VecEVT)) 4653 return SDValue(); 4654 4655 MVT VecVT = VecEVT.getSimpleVT(); 4656 MVT VecEltVT = VecVT.getVectorElementType(); 4657 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4658 4659 MVT ContainerVT = VecVT; 4660 if (VecVT.isFixedLengthVector()) { 4661 ContainerVT = getContainerForFixedLengthVector(VecVT); 4662 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4663 } 4664 4665 SDValue VL = Op.getOperand(3); 4666 SDValue Mask = Op.getOperand(2); 4667 4668 MVT M1VT = getLMUL1VT(ContainerVT); 4669 MVT XLenVT = Subtarget.getXLenVT(); 4670 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4671 4672 SDValue StartSplat = 4673 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4674 DL, DAG, Subtarget); 4675 SDValue Reduction = 4676 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4677 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4678 DAG.getConstant(0, DL, XLenVT)); 4679 if (!VecVT.isInteger()) 4680 return Elt0; 4681 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4682 } 4683 4684 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4685 SelectionDAG &DAG) const { 4686 SDValue Vec = Op.getOperand(0); 4687 SDValue SubVec = Op.getOperand(1); 4688 MVT VecVT = Vec.getSimpleValueType(); 4689 MVT SubVecVT = SubVec.getSimpleValueType(); 4690 4691 SDLoc DL(Op); 4692 MVT XLenVT = Subtarget.getXLenVT(); 4693 unsigned OrigIdx = Op.getConstantOperandVal(2); 4694 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4695 4696 // We don't have the ability to slide mask vectors up indexed by their i1 4697 // elements; the smallest we can do is i8. Often we are able to bitcast to 4698 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4699 // into a scalable one, we might not necessarily have enough scalable 4700 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4701 if (SubVecVT.getVectorElementType() == MVT::i1 && 4702 (OrigIdx != 0 || !Vec.isUndef())) { 4703 if (VecVT.getVectorMinNumElements() >= 8 && 4704 SubVecVT.getVectorMinNumElements() >= 8) { 4705 assert(OrigIdx % 8 == 0 && "Invalid index"); 4706 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4707 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4708 "Unexpected mask vector lowering"); 4709 OrigIdx /= 8; 4710 SubVecVT = 4711 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4712 SubVecVT.isScalableVector()); 4713 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4714 VecVT.isScalableVector()); 4715 Vec = DAG.getBitcast(VecVT, Vec); 4716 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4717 } else { 4718 // We can't slide this mask vector up indexed by its i1 elements. 4719 // This poses a problem when we wish to insert a scalable vector which 4720 // can't be re-expressed as a larger type. Just choose the slow path and 4721 // extend to a larger type, then truncate back down. 4722 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4723 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4724 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4725 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4726 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4727 Op.getOperand(2)); 4728 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4729 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4730 } 4731 } 4732 4733 // If the subvector vector is a fixed-length type, we cannot use subregister 4734 // manipulation to simplify the codegen; we don't know which register of a 4735 // LMUL group contains the specific subvector as we only know the minimum 4736 // register size. Therefore we must slide the vector group up the full 4737 // amount. 4738 if (SubVecVT.isFixedLengthVector()) { 4739 if (OrigIdx == 0 && Vec.isUndef()) 4740 return Op; 4741 MVT ContainerVT = VecVT; 4742 if (VecVT.isFixedLengthVector()) { 4743 ContainerVT = getContainerForFixedLengthVector(VecVT); 4744 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4745 } 4746 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4747 DAG.getUNDEF(ContainerVT), SubVec, 4748 DAG.getConstant(0, DL, XLenVT)); 4749 SDValue Mask = 4750 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4751 // Set the vector length to only the number of elements we care about. Note 4752 // that for slideup this includes the offset. 4753 SDValue VL = 4754 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4755 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4756 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4757 SubVec, SlideupAmt, Mask, VL); 4758 if (VecVT.isFixedLengthVector()) 4759 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4760 return DAG.getBitcast(Op.getValueType(), Slideup); 4761 } 4762 4763 unsigned SubRegIdx, RemIdx; 4764 std::tie(SubRegIdx, RemIdx) = 4765 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4766 VecVT, SubVecVT, OrigIdx, TRI); 4767 4768 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4769 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4770 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4771 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4772 4773 // 1. If the Idx has been completely eliminated and this subvector's size is 4774 // a vector register or a multiple thereof, or the surrounding elements are 4775 // undef, then this is a subvector insert which naturally aligns to a vector 4776 // register. These can easily be handled using subregister manipulation. 4777 // 2. If the subvector is smaller than a vector register, then the insertion 4778 // must preserve the undisturbed elements of the register. We do this by 4779 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4780 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4781 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4782 // LMUL=1 type back into the larger vector (resolving to another subregister 4783 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4784 // to avoid allocating a large register group to hold our subvector. 4785 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4786 return Op; 4787 4788 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4789 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4790 // (in our case undisturbed). This means we can set up a subvector insertion 4791 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4792 // size of the subvector. 4793 MVT InterSubVT = VecVT; 4794 SDValue AlignedExtract = Vec; 4795 unsigned AlignedIdx = OrigIdx - RemIdx; 4796 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4797 InterSubVT = getLMUL1VT(VecVT); 4798 // Extract a subvector equal to the nearest full vector register type. This 4799 // should resolve to a EXTRACT_SUBREG instruction. 4800 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4801 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4802 } 4803 4804 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4805 // For scalable vectors this must be further multiplied by vscale. 4806 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4807 4808 SDValue Mask, VL; 4809 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4810 4811 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4812 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4813 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4814 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4815 4816 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4817 DAG.getUNDEF(InterSubVT), SubVec, 4818 DAG.getConstant(0, DL, XLenVT)); 4819 4820 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4821 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4822 4823 // If required, insert this subvector back into the correct vector register. 4824 // This should resolve to an INSERT_SUBREG instruction. 4825 if (VecVT.bitsGT(InterSubVT)) 4826 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4827 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4828 4829 // We might have bitcast from a mask type: cast back to the original type if 4830 // required. 4831 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4832 } 4833 4834 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4835 SelectionDAG &DAG) const { 4836 SDValue Vec = Op.getOperand(0); 4837 MVT SubVecVT = Op.getSimpleValueType(); 4838 MVT VecVT = Vec.getSimpleValueType(); 4839 4840 SDLoc DL(Op); 4841 MVT XLenVT = Subtarget.getXLenVT(); 4842 unsigned OrigIdx = Op.getConstantOperandVal(1); 4843 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4844 4845 // We don't have the ability to slide mask vectors down indexed by their i1 4846 // elements; the smallest we can do is i8. Often we are able to bitcast to 4847 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4848 // from a scalable one, we might not necessarily have enough scalable 4849 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4850 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4851 if (VecVT.getVectorMinNumElements() >= 8 && 4852 SubVecVT.getVectorMinNumElements() >= 8) { 4853 assert(OrigIdx % 8 == 0 && "Invalid index"); 4854 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4855 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4856 "Unexpected mask vector lowering"); 4857 OrigIdx /= 8; 4858 SubVecVT = 4859 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4860 SubVecVT.isScalableVector()); 4861 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4862 VecVT.isScalableVector()); 4863 Vec = DAG.getBitcast(VecVT, Vec); 4864 } else { 4865 // We can't slide this mask vector down, indexed by its i1 elements. 4866 // This poses a problem when we wish to extract a scalable vector which 4867 // can't be re-expressed as a larger type. Just choose the slow path and 4868 // extend to a larger type, then truncate back down. 4869 // TODO: We could probably improve this when extracting certain fixed 4870 // from fixed, where we can extract as i8 and shift the correct element 4871 // right to reach the desired subvector? 4872 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4873 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4874 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4875 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4876 Op.getOperand(1)); 4877 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4878 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4879 } 4880 } 4881 4882 // If the subvector vector is a fixed-length type, we cannot use subregister 4883 // manipulation to simplify the codegen; we don't know which register of a 4884 // LMUL group contains the specific subvector as we only know the minimum 4885 // register size. Therefore we must slide the vector group down the full 4886 // amount. 4887 if (SubVecVT.isFixedLengthVector()) { 4888 // With an index of 0 this is a cast-like subvector, which can be performed 4889 // with subregister operations. 4890 if (OrigIdx == 0) 4891 return Op; 4892 MVT ContainerVT = VecVT; 4893 if (VecVT.isFixedLengthVector()) { 4894 ContainerVT = getContainerForFixedLengthVector(VecVT); 4895 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4896 } 4897 SDValue Mask = 4898 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4899 // Set the vector length to only the number of elements we care about. This 4900 // avoids sliding down elements we're going to discard straight away. 4901 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4902 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4903 SDValue Slidedown = 4904 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4905 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4906 // Now we can use a cast-like subvector extract to get the result. 4907 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4908 DAG.getConstant(0, DL, XLenVT)); 4909 return DAG.getBitcast(Op.getValueType(), Slidedown); 4910 } 4911 4912 unsigned SubRegIdx, RemIdx; 4913 std::tie(SubRegIdx, RemIdx) = 4914 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4915 VecVT, SubVecVT, OrigIdx, TRI); 4916 4917 // If the Idx has been completely eliminated then this is a subvector extract 4918 // which naturally aligns to a vector register. These can easily be handled 4919 // using subregister manipulation. 4920 if (RemIdx == 0) 4921 return Op; 4922 4923 // Else we must shift our vector register directly to extract the subvector. 4924 // Do this using VSLIDEDOWN. 4925 4926 // If the vector type is an LMUL-group type, extract a subvector equal to the 4927 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4928 // instruction. 4929 MVT InterSubVT = VecVT; 4930 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4931 InterSubVT = getLMUL1VT(VecVT); 4932 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4933 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4934 } 4935 4936 // Slide this vector register down by the desired number of elements in order 4937 // to place the desired subvector starting at element 0. 4938 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4939 // For scalable vectors this must be further multiplied by vscale. 4940 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4941 4942 SDValue Mask, VL; 4943 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4944 SDValue Slidedown = 4945 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4946 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4947 4948 // Now the vector is in the right position, extract our final subvector. This 4949 // should resolve to a COPY. 4950 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4951 DAG.getConstant(0, DL, XLenVT)); 4952 4953 // We might have bitcast from a mask type: cast back to the original type if 4954 // required. 4955 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4956 } 4957 4958 // Lower step_vector to the vid instruction. Any non-identity step value must 4959 // be accounted for my manual expansion. 4960 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4961 SelectionDAG &DAG) const { 4962 SDLoc DL(Op); 4963 MVT VT = Op.getSimpleValueType(); 4964 MVT XLenVT = Subtarget.getXLenVT(); 4965 SDValue Mask, VL; 4966 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4967 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4968 uint64_t StepValImm = Op.getConstantOperandVal(0); 4969 if (StepValImm != 1) { 4970 if (isPowerOf2_64(StepValImm)) { 4971 SDValue StepVal = 4972 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4973 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4974 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4975 } else { 4976 SDValue StepVal = lowerScalarSplat( 4977 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4978 DL, DAG, Subtarget); 4979 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4980 } 4981 } 4982 return StepVec; 4983 } 4984 4985 // Implement vector_reverse using vrgather.vv with indices determined by 4986 // subtracting the id of each element from (VLMAX-1). This will convert 4987 // the indices like so: 4988 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4989 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4990 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4991 SelectionDAG &DAG) const { 4992 SDLoc DL(Op); 4993 MVT VecVT = Op.getSimpleValueType(); 4994 unsigned EltSize = VecVT.getScalarSizeInBits(); 4995 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4996 4997 unsigned MaxVLMAX = 0; 4998 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4999 if (VectorBitsMax != 0) 5000 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5001 5002 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5003 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5004 5005 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5006 // to use vrgatherei16.vv. 5007 // TODO: It's also possible to use vrgatherei16.vv for other types to 5008 // decrease register width for the index calculation. 5009 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5010 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5011 // Reverse each half, then reassemble them in reverse order. 5012 // NOTE: It's also possible that after splitting that VLMAX no longer 5013 // requires vrgatherei16.vv. 5014 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5015 SDValue Lo, Hi; 5016 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5017 EVT LoVT, HiVT; 5018 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5019 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5020 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5021 // Reassemble the low and high pieces reversed. 5022 // FIXME: This is a CONCAT_VECTORS. 5023 SDValue Res = 5024 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5025 DAG.getIntPtrConstant(0, DL)); 5026 return DAG.getNode( 5027 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5028 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5029 } 5030 5031 // Just promote the int type to i16 which will double the LMUL. 5032 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5033 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5034 } 5035 5036 MVT XLenVT = Subtarget.getXLenVT(); 5037 SDValue Mask, VL; 5038 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5039 5040 // Calculate VLMAX-1 for the desired SEW. 5041 unsigned MinElts = VecVT.getVectorMinNumElements(); 5042 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5043 DAG.getConstant(MinElts, DL, XLenVT)); 5044 SDValue VLMinus1 = 5045 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5046 5047 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5048 bool IsRV32E64 = 5049 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5050 SDValue SplatVL; 5051 if (!IsRV32E64) 5052 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5053 else 5054 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5055 5056 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5057 SDValue Indices = 5058 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5059 5060 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5061 } 5062 5063 SDValue 5064 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5065 SelectionDAG &DAG) const { 5066 SDLoc DL(Op); 5067 auto *Load = cast<LoadSDNode>(Op); 5068 5069 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5070 Load->getMemoryVT(), 5071 *Load->getMemOperand()) && 5072 "Expecting a correctly-aligned load"); 5073 5074 MVT VT = Op.getSimpleValueType(); 5075 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5076 5077 SDValue VL = 5078 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5079 5080 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5081 SDValue NewLoad = DAG.getMemIntrinsicNode( 5082 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5083 Load->getMemoryVT(), Load->getMemOperand()); 5084 5085 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5086 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5087 } 5088 5089 SDValue 5090 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5091 SelectionDAG &DAG) const { 5092 SDLoc DL(Op); 5093 auto *Store = cast<StoreSDNode>(Op); 5094 5095 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5096 Store->getMemoryVT(), 5097 *Store->getMemOperand()) && 5098 "Expecting a correctly-aligned store"); 5099 5100 SDValue StoreVal = Store->getValue(); 5101 MVT VT = StoreVal.getSimpleValueType(); 5102 5103 // If the size less than a byte, we need to pad with zeros to make a byte. 5104 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5105 VT = MVT::v8i1; 5106 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5107 DAG.getConstant(0, DL, VT), StoreVal, 5108 DAG.getIntPtrConstant(0, DL)); 5109 } 5110 5111 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5112 5113 SDValue VL = 5114 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5115 5116 SDValue NewValue = 5117 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5118 return DAG.getMemIntrinsicNode( 5119 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5120 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5121 Store->getMemoryVT(), Store->getMemOperand()); 5122 } 5123 5124 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5125 SelectionDAG &DAG) const { 5126 SDLoc DL(Op); 5127 MVT VT = Op.getSimpleValueType(); 5128 5129 const auto *MemSD = cast<MemSDNode>(Op); 5130 EVT MemVT = MemSD->getMemoryVT(); 5131 MachineMemOperand *MMO = MemSD->getMemOperand(); 5132 SDValue Chain = MemSD->getChain(); 5133 SDValue BasePtr = MemSD->getBasePtr(); 5134 5135 SDValue Mask, PassThru, VL; 5136 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5137 Mask = VPLoad->getMask(); 5138 PassThru = DAG.getUNDEF(VT); 5139 VL = VPLoad->getVectorLength(); 5140 } else { 5141 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5142 Mask = MLoad->getMask(); 5143 PassThru = MLoad->getPassThru(); 5144 } 5145 5146 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5147 5148 MVT XLenVT = Subtarget.getXLenVT(); 5149 5150 MVT ContainerVT = VT; 5151 if (VT.isFixedLengthVector()) { 5152 ContainerVT = getContainerForFixedLengthVector(VT); 5153 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5154 if (!IsUnmasked) { 5155 MVT MaskVT = 5156 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5157 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5158 } 5159 } 5160 5161 if (!VL) 5162 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5163 5164 unsigned IntID = 5165 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5166 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5167 if (!IsUnmasked) 5168 Ops.push_back(PassThru); 5169 Ops.push_back(BasePtr); 5170 if (!IsUnmasked) 5171 Ops.push_back(Mask); 5172 Ops.push_back(VL); 5173 if (!IsUnmasked) 5174 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5175 5176 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5177 5178 SDValue Result = 5179 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5180 Chain = Result.getValue(1); 5181 5182 if (VT.isFixedLengthVector()) 5183 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5184 5185 return DAG.getMergeValues({Result, Chain}, DL); 5186 } 5187 5188 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5189 SelectionDAG &DAG) const { 5190 SDLoc DL(Op); 5191 5192 const auto *MemSD = cast<MemSDNode>(Op); 5193 EVT MemVT = MemSD->getMemoryVT(); 5194 MachineMemOperand *MMO = MemSD->getMemOperand(); 5195 SDValue Chain = MemSD->getChain(); 5196 SDValue BasePtr = MemSD->getBasePtr(); 5197 SDValue Val, Mask, VL; 5198 5199 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5200 Val = VPStore->getValue(); 5201 Mask = VPStore->getMask(); 5202 VL = VPStore->getVectorLength(); 5203 } else { 5204 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5205 Val = MStore->getValue(); 5206 Mask = MStore->getMask(); 5207 } 5208 5209 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5210 5211 MVT VT = Val.getSimpleValueType(); 5212 MVT XLenVT = Subtarget.getXLenVT(); 5213 5214 MVT ContainerVT = VT; 5215 if (VT.isFixedLengthVector()) { 5216 ContainerVT = getContainerForFixedLengthVector(VT); 5217 5218 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5219 if (!IsUnmasked) { 5220 MVT MaskVT = 5221 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5222 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5223 } 5224 } 5225 5226 if (!VL) 5227 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5228 5229 unsigned IntID = 5230 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5231 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5232 Ops.push_back(Val); 5233 Ops.push_back(BasePtr); 5234 if (!IsUnmasked) 5235 Ops.push_back(Mask); 5236 Ops.push_back(VL); 5237 5238 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5239 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5240 } 5241 5242 SDValue 5243 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5244 SelectionDAG &DAG) const { 5245 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5246 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5247 5248 MVT VT = Op.getSimpleValueType(); 5249 5250 SDValue Op1 = 5251 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5252 SDValue Op2 = 5253 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5254 5255 SDLoc DL(Op); 5256 SDValue VL = 5257 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5258 5259 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5260 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5261 5262 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5263 Op.getOperand(2), Mask, VL); 5264 5265 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5266 } 5267 5268 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5269 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5270 MVT VT = Op.getSimpleValueType(); 5271 5272 if (VT.getVectorElementType() == MVT::i1) 5273 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5274 5275 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5276 } 5277 5278 SDValue 5279 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5280 SelectionDAG &DAG) const { 5281 unsigned Opc; 5282 switch (Op.getOpcode()) { 5283 default: llvm_unreachable("Unexpected opcode!"); 5284 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5285 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5286 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5287 } 5288 5289 return lowerToScalableOp(Op, DAG, Opc); 5290 } 5291 5292 // Lower vector ABS to smax(X, sub(0, X)). 5293 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5294 SDLoc DL(Op); 5295 MVT VT = Op.getSimpleValueType(); 5296 SDValue X = Op.getOperand(0); 5297 5298 assert(VT.isFixedLengthVector() && "Unexpected type"); 5299 5300 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5301 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5302 5303 SDValue Mask, VL; 5304 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5305 5306 SDValue SplatZero = 5307 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5308 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5309 SDValue NegX = 5310 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5311 SDValue Max = 5312 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5313 5314 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5315 } 5316 5317 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5318 SDValue Op, SelectionDAG &DAG) const { 5319 SDLoc DL(Op); 5320 MVT VT = Op.getSimpleValueType(); 5321 SDValue Mag = Op.getOperand(0); 5322 SDValue Sign = Op.getOperand(1); 5323 assert(Mag.getValueType() == Sign.getValueType() && 5324 "Can only handle COPYSIGN with matching types."); 5325 5326 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5327 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5328 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5329 5330 SDValue Mask, VL; 5331 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5332 5333 SDValue CopySign = 5334 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5335 5336 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5337 } 5338 5339 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5340 SDValue Op, SelectionDAG &DAG) const { 5341 MVT VT = Op.getSimpleValueType(); 5342 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5343 5344 MVT I1ContainerVT = 5345 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5346 5347 SDValue CC = 5348 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5349 SDValue Op1 = 5350 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5351 SDValue Op2 = 5352 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5353 5354 SDLoc DL(Op); 5355 SDValue Mask, VL; 5356 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5357 5358 SDValue Select = 5359 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5360 5361 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5362 } 5363 5364 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5365 unsigned NewOpc, 5366 bool HasMask) const { 5367 MVT VT = Op.getSimpleValueType(); 5368 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5369 5370 // Create list of operands by converting existing ones to scalable types. 5371 SmallVector<SDValue, 6> Ops; 5372 for (const SDValue &V : Op->op_values()) { 5373 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5374 5375 // Pass through non-vector operands. 5376 if (!V.getValueType().isVector()) { 5377 Ops.push_back(V); 5378 continue; 5379 } 5380 5381 // "cast" fixed length vector to a scalable vector. 5382 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5383 "Only fixed length vectors are supported!"); 5384 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5385 } 5386 5387 SDLoc DL(Op); 5388 SDValue Mask, VL; 5389 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5390 if (HasMask) 5391 Ops.push_back(Mask); 5392 Ops.push_back(VL); 5393 5394 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5395 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5396 } 5397 5398 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5399 // * Operands of each node are assumed to be in the same order. 5400 // * The EVL operand is promoted from i32 to i64 on RV64. 5401 // * Fixed-length vectors are converted to their scalable-vector container 5402 // types. 5403 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5404 unsigned RISCVISDOpc) const { 5405 SDLoc DL(Op); 5406 MVT VT = Op.getSimpleValueType(); 5407 SmallVector<SDValue, 4> Ops; 5408 5409 for (const auto &OpIdx : enumerate(Op->ops())) { 5410 SDValue V = OpIdx.value(); 5411 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5412 // Pass through operands which aren't fixed-length vectors. 5413 if (!V.getValueType().isFixedLengthVector()) { 5414 Ops.push_back(V); 5415 continue; 5416 } 5417 // "cast" fixed length vector to a scalable vector. 5418 MVT OpVT = V.getSimpleValueType(); 5419 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5420 assert(useRVVForFixedLengthVectorVT(OpVT) && 5421 "Only fixed length vectors are supported!"); 5422 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5423 } 5424 5425 if (!VT.isFixedLengthVector()) 5426 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5427 5428 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5429 5430 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5431 5432 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5433 } 5434 5435 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5436 unsigned MaskOpc, 5437 unsigned VecOpc) const { 5438 MVT VT = Op.getSimpleValueType(); 5439 if (VT.getVectorElementType() != MVT::i1) 5440 return lowerVPOp(Op, DAG, VecOpc); 5441 5442 // It is safe to drop mask parameter as masked-off elements are undef. 5443 SDValue Op1 = Op->getOperand(0); 5444 SDValue Op2 = Op->getOperand(1); 5445 SDValue VL = Op->getOperand(3); 5446 5447 MVT ContainerVT = VT; 5448 const bool IsFixed = VT.isFixedLengthVector(); 5449 if (IsFixed) { 5450 ContainerVT = getContainerForFixedLengthVector(VT); 5451 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5452 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5453 } 5454 5455 SDLoc DL(Op); 5456 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5457 if (!IsFixed) 5458 return Val; 5459 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5460 } 5461 5462 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5463 // matched to a RVV indexed load. The RVV indexed load instructions only 5464 // support the "unsigned unscaled" addressing mode; indices are implicitly 5465 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5466 // signed or scaled indexing is extended to the XLEN value type and scaled 5467 // accordingly. 5468 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5469 SelectionDAG &DAG) const { 5470 SDLoc DL(Op); 5471 MVT VT = Op.getSimpleValueType(); 5472 5473 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5474 EVT MemVT = MemSD->getMemoryVT(); 5475 MachineMemOperand *MMO = MemSD->getMemOperand(); 5476 SDValue Chain = MemSD->getChain(); 5477 SDValue BasePtr = MemSD->getBasePtr(); 5478 5479 ISD::LoadExtType LoadExtType; 5480 SDValue Index, Mask, PassThru, VL; 5481 5482 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5483 Index = VPGN->getIndex(); 5484 Mask = VPGN->getMask(); 5485 PassThru = DAG.getUNDEF(VT); 5486 VL = VPGN->getVectorLength(); 5487 // VP doesn't support extending loads. 5488 LoadExtType = ISD::NON_EXTLOAD; 5489 } else { 5490 // Else it must be a MGATHER. 5491 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5492 Index = MGN->getIndex(); 5493 Mask = MGN->getMask(); 5494 PassThru = MGN->getPassThru(); 5495 LoadExtType = MGN->getExtensionType(); 5496 } 5497 5498 MVT IndexVT = Index.getSimpleValueType(); 5499 MVT XLenVT = Subtarget.getXLenVT(); 5500 5501 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5502 "Unexpected VTs!"); 5503 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5504 // Targets have to explicitly opt-in for extending vector loads. 5505 assert(LoadExtType == ISD::NON_EXTLOAD && 5506 "Unexpected extending MGATHER/VP_GATHER"); 5507 (void)LoadExtType; 5508 5509 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5510 // the selection of the masked intrinsics doesn't do this for us. 5511 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5512 5513 MVT ContainerVT = VT; 5514 if (VT.isFixedLengthVector()) { 5515 // We need to use the larger of the result and index type to determine the 5516 // scalable type to use so we don't increase LMUL for any operand/result. 5517 if (VT.bitsGE(IndexVT)) { 5518 ContainerVT = getContainerForFixedLengthVector(VT); 5519 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5520 ContainerVT.getVectorElementCount()); 5521 } else { 5522 IndexVT = getContainerForFixedLengthVector(IndexVT); 5523 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5524 IndexVT.getVectorElementCount()); 5525 } 5526 5527 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5528 5529 if (!IsUnmasked) { 5530 MVT MaskVT = 5531 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5532 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5533 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5534 } 5535 } 5536 5537 if (!VL) 5538 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5539 5540 unsigned IntID = 5541 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5542 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5543 if (!IsUnmasked) 5544 Ops.push_back(PassThru); 5545 Ops.push_back(BasePtr); 5546 Ops.push_back(Index); 5547 if (!IsUnmasked) 5548 Ops.push_back(Mask); 5549 Ops.push_back(VL); 5550 if (!IsUnmasked) 5551 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5552 5553 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5554 SDValue Result = 5555 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5556 Chain = Result.getValue(1); 5557 5558 if (VT.isFixedLengthVector()) 5559 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5560 5561 return DAG.getMergeValues({Result, Chain}, DL); 5562 } 5563 5564 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5565 // matched to a RVV indexed store. The RVV indexed store instructions only 5566 // support the "unsigned unscaled" addressing mode; indices are implicitly 5567 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5568 // signed or scaled indexing is extended to the XLEN value type and scaled 5569 // accordingly. 5570 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5571 SelectionDAG &DAG) const { 5572 SDLoc DL(Op); 5573 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5574 EVT MemVT = MemSD->getMemoryVT(); 5575 MachineMemOperand *MMO = MemSD->getMemOperand(); 5576 SDValue Chain = MemSD->getChain(); 5577 SDValue BasePtr = MemSD->getBasePtr(); 5578 5579 bool IsTruncatingStore = false; 5580 SDValue Index, Mask, Val, VL; 5581 5582 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5583 Index = VPSN->getIndex(); 5584 Mask = VPSN->getMask(); 5585 Val = VPSN->getValue(); 5586 VL = VPSN->getVectorLength(); 5587 // VP doesn't support truncating stores. 5588 IsTruncatingStore = false; 5589 } else { 5590 // Else it must be a MSCATTER. 5591 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5592 Index = MSN->getIndex(); 5593 Mask = MSN->getMask(); 5594 Val = MSN->getValue(); 5595 IsTruncatingStore = MSN->isTruncatingStore(); 5596 } 5597 5598 MVT VT = Val.getSimpleValueType(); 5599 MVT IndexVT = Index.getSimpleValueType(); 5600 MVT XLenVT = Subtarget.getXLenVT(); 5601 5602 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5603 "Unexpected VTs!"); 5604 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5605 // Targets have to explicitly opt-in for extending vector loads and 5606 // truncating vector stores. 5607 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5608 (void)IsTruncatingStore; 5609 5610 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5611 // the selection of the masked intrinsics doesn't do this for us. 5612 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5613 5614 MVT ContainerVT = VT; 5615 if (VT.isFixedLengthVector()) { 5616 // We need to use the larger of the value and index type to determine the 5617 // scalable type to use so we don't increase LMUL for any operand/result. 5618 if (VT.bitsGE(IndexVT)) { 5619 ContainerVT = getContainerForFixedLengthVector(VT); 5620 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5621 ContainerVT.getVectorElementCount()); 5622 } else { 5623 IndexVT = getContainerForFixedLengthVector(IndexVT); 5624 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5625 IndexVT.getVectorElementCount()); 5626 } 5627 5628 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5629 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5630 5631 if (!IsUnmasked) { 5632 MVT MaskVT = 5633 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5634 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5635 } 5636 } 5637 5638 if (!VL) 5639 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5640 5641 unsigned IntID = 5642 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5643 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5644 Ops.push_back(Val); 5645 Ops.push_back(BasePtr); 5646 Ops.push_back(Index); 5647 if (!IsUnmasked) 5648 Ops.push_back(Mask); 5649 Ops.push_back(VL); 5650 5651 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5652 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5653 } 5654 5655 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5656 SelectionDAG &DAG) const { 5657 const MVT XLenVT = Subtarget.getXLenVT(); 5658 SDLoc DL(Op); 5659 SDValue Chain = Op->getOperand(0); 5660 SDValue SysRegNo = DAG.getTargetConstant( 5661 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5662 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5663 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5664 5665 // Encoding used for rounding mode in RISCV differs from that used in 5666 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5667 // table, which consists of a sequence of 4-bit fields, each representing 5668 // corresponding FLT_ROUNDS mode. 5669 static const int Table = 5670 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5671 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5672 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5673 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5674 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5675 5676 SDValue Shift = 5677 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5678 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5679 DAG.getConstant(Table, DL, XLenVT), Shift); 5680 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5681 DAG.getConstant(7, DL, XLenVT)); 5682 5683 return DAG.getMergeValues({Masked, Chain}, DL); 5684 } 5685 5686 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5687 SelectionDAG &DAG) const { 5688 const MVT XLenVT = Subtarget.getXLenVT(); 5689 SDLoc DL(Op); 5690 SDValue Chain = Op->getOperand(0); 5691 SDValue RMValue = Op->getOperand(1); 5692 SDValue SysRegNo = DAG.getTargetConstant( 5693 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5694 5695 // Encoding used for rounding mode in RISCV differs from that used in 5696 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5697 // a table, which consists of a sequence of 4-bit fields, each representing 5698 // corresponding RISCV mode. 5699 static const unsigned Table = 5700 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5701 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5702 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5703 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5704 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5705 5706 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5707 DAG.getConstant(2, DL, XLenVT)); 5708 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5709 DAG.getConstant(Table, DL, XLenVT), Shift); 5710 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5711 DAG.getConstant(0x7, DL, XLenVT)); 5712 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5713 RMValue); 5714 } 5715 5716 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5717 // form of the given Opcode. 5718 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5719 switch (Opcode) { 5720 default: 5721 llvm_unreachable("Unexpected opcode"); 5722 case ISD::SHL: 5723 return RISCVISD::SLLW; 5724 case ISD::SRA: 5725 return RISCVISD::SRAW; 5726 case ISD::SRL: 5727 return RISCVISD::SRLW; 5728 case ISD::SDIV: 5729 return RISCVISD::DIVW; 5730 case ISD::UDIV: 5731 return RISCVISD::DIVUW; 5732 case ISD::UREM: 5733 return RISCVISD::REMUW; 5734 case ISD::ROTL: 5735 return RISCVISD::ROLW; 5736 case ISD::ROTR: 5737 return RISCVISD::RORW; 5738 case RISCVISD::GREV: 5739 return RISCVISD::GREVW; 5740 case RISCVISD::GORC: 5741 return RISCVISD::GORCW; 5742 } 5743 } 5744 5745 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5746 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5747 // otherwise be promoted to i64, making it difficult to select the 5748 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5749 // type i8/i16/i32 is lost. 5750 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5751 unsigned ExtOpc = ISD::ANY_EXTEND) { 5752 SDLoc DL(N); 5753 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5754 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5755 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5756 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5757 // ReplaceNodeResults requires we maintain the same type for the return value. 5758 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5759 } 5760 5761 // Converts the given 32-bit operation to a i64 operation with signed extension 5762 // semantic to reduce the signed extension instructions. 5763 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5764 SDLoc DL(N); 5765 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5766 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5767 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5768 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5769 DAG.getValueType(MVT::i32)); 5770 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5771 } 5772 5773 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5774 SmallVectorImpl<SDValue> &Results, 5775 SelectionDAG &DAG) const { 5776 SDLoc DL(N); 5777 switch (N->getOpcode()) { 5778 default: 5779 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5780 case ISD::STRICT_FP_TO_SINT: 5781 case ISD::STRICT_FP_TO_UINT: 5782 case ISD::FP_TO_SINT: 5783 case ISD::FP_TO_UINT: { 5784 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5785 "Unexpected custom legalisation"); 5786 bool IsStrict = N->isStrictFPOpcode(); 5787 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5788 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5789 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5790 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5791 TargetLowering::TypeSoftenFloat) { 5792 if (!isTypeLegal(Op0.getValueType())) 5793 return; 5794 if (IsStrict) { 5795 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RTZ_RV64 5796 : RISCVISD::STRICT_FCVT_WU_RTZ_RV64; 5797 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 5798 SDValue Res = DAG.getNode(Opc, DL, VTs, N->getOperand(0), Op0); 5799 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5800 Results.push_back(Res.getValue(1)); 5801 return; 5802 } 5803 unsigned Opc = 5804 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5805 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5806 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5807 return; 5808 } 5809 // If the FP type needs to be softened, emit a library call using the 'si' 5810 // version. If we left it to default legalization we'd end up with 'di'. If 5811 // the FP type doesn't need to be softened just let generic type 5812 // legalization promote the result type. 5813 RTLIB::Libcall LC; 5814 if (IsSigned) 5815 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5816 else 5817 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5818 MakeLibCallOptions CallOptions; 5819 EVT OpVT = Op0.getValueType(); 5820 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5821 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5822 SDValue Result; 5823 std::tie(Result, Chain) = 5824 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5825 Results.push_back(Result); 5826 if (IsStrict) 5827 Results.push_back(Chain); 5828 break; 5829 } 5830 case ISD::READCYCLECOUNTER: { 5831 assert(!Subtarget.is64Bit() && 5832 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5833 5834 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5835 SDValue RCW = 5836 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5837 5838 Results.push_back( 5839 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5840 Results.push_back(RCW.getValue(2)); 5841 break; 5842 } 5843 case ISD::MUL: { 5844 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5845 unsigned XLen = Subtarget.getXLen(); 5846 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5847 if (Size > XLen) { 5848 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5849 SDValue LHS = N->getOperand(0); 5850 SDValue RHS = N->getOperand(1); 5851 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5852 5853 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5854 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5855 // We need exactly one side to be unsigned. 5856 if (LHSIsU == RHSIsU) 5857 return; 5858 5859 auto MakeMULPair = [&](SDValue S, SDValue U) { 5860 MVT XLenVT = Subtarget.getXLenVT(); 5861 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5862 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5863 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5864 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5865 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5866 }; 5867 5868 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5869 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5870 5871 // The other operand should be signed, but still prefer MULH when 5872 // possible. 5873 if (RHSIsU && LHSIsS && !RHSIsS) 5874 Results.push_back(MakeMULPair(LHS, RHS)); 5875 else if (LHSIsU && RHSIsS && !LHSIsS) 5876 Results.push_back(MakeMULPair(RHS, LHS)); 5877 5878 return; 5879 } 5880 LLVM_FALLTHROUGH; 5881 } 5882 case ISD::ADD: 5883 case ISD::SUB: 5884 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5885 "Unexpected custom legalisation"); 5886 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5887 break; 5888 case ISD::SHL: 5889 case ISD::SRA: 5890 case ISD::SRL: 5891 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5892 "Unexpected custom legalisation"); 5893 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5894 Results.push_back(customLegalizeToWOp(N, DAG)); 5895 break; 5896 } 5897 5898 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5899 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5900 // shift amount. 5901 if (N->getOpcode() == ISD::SHL) { 5902 SDLoc DL(N); 5903 SDValue NewOp0 = 5904 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5905 SDValue NewOp1 = 5906 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5907 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5908 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5909 DAG.getValueType(MVT::i32)); 5910 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5911 } 5912 5913 break; 5914 case ISD::ROTL: 5915 case ISD::ROTR: 5916 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5917 "Unexpected custom legalisation"); 5918 Results.push_back(customLegalizeToWOp(N, DAG)); 5919 break; 5920 case ISD::CTTZ: 5921 case ISD::CTTZ_ZERO_UNDEF: 5922 case ISD::CTLZ: 5923 case ISD::CTLZ_ZERO_UNDEF: { 5924 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5925 "Unexpected custom legalisation"); 5926 5927 SDValue NewOp0 = 5928 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5929 bool IsCTZ = 5930 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5931 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5932 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5933 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5934 return; 5935 } 5936 case ISD::SDIV: 5937 case ISD::UDIV: 5938 case ISD::UREM: { 5939 MVT VT = N->getSimpleValueType(0); 5940 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5941 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5942 "Unexpected custom legalisation"); 5943 // Don't promote division/remainder by constant since we should expand those 5944 // to multiply by magic constant. 5945 // FIXME: What if the expansion is disabled for minsize. 5946 if (N->getOperand(1).getOpcode() == ISD::Constant) 5947 return; 5948 5949 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5950 // the upper 32 bits. For other types we need to sign or zero extend 5951 // based on the opcode. 5952 unsigned ExtOpc = ISD::ANY_EXTEND; 5953 if (VT != MVT::i32) 5954 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5955 : ISD::ZERO_EXTEND; 5956 5957 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5958 break; 5959 } 5960 case ISD::UADDO: 5961 case ISD::USUBO: { 5962 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5963 "Unexpected custom legalisation"); 5964 bool IsAdd = N->getOpcode() == ISD::UADDO; 5965 // Create an ADDW or SUBW. 5966 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5967 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5968 SDValue Res = 5969 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5970 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5971 DAG.getValueType(MVT::i32)); 5972 5973 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5974 // Since the inputs are sign extended from i32, this is equivalent to 5975 // comparing the lower 32 bits. 5976 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5977 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5978 IsAdd ? ISD::SETULT : ISD::SETUGT); 5979 5980 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5981 Results.push_back(Overflow); 5982 return; 5983 } 5984 case ISD::UADDSAT: 5985 case ISD::USUBSAT: { 5986 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5987 "Unexpected custom legalisation"); 5988 if (Subtarget.hasStdExtZbb()) { 5989 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5990 // sign extend allows overflow of the lower 32 bits to be detected on 5991 // the promoted size. 5992 SDValue LHS = 5993 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5994 SDValue RHS = 5995 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5996 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5997 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5998 return; 5999 } 6000 6001 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6002 // promotion for UADDO/USUBO. 6003 Results.push_back(expandAddSubSat(N, DAG)); 6004 return; 6005 } 6006 case ISD::BITCAST: { 6007 EVT VT = N->getValueType(0); 6008 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6009 SDValue Op0 = N->getOperand(0); 6010 EVT Op0VT = Op0.getValueType(); 6011 MVT XLenVT = Subtarget.getXLenVT(); 6012 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6013 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6014 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6015 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6016 Subtarget.hasStdExtF()) { 6017 SDValue FPConv = 6018 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6019 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6020 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6021 isTypeLegal(Op0VT)) { 6022 // Custom-legalize bitcasts from fixed-length vector types to illegal 6023 // scalar types in order to improve codegen. Bitcast the vector to a 6024 // one-element vector type whose element type is the same as the result 6025 // type, and extract the first element. 6026 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6027 if (isTypeLegal(BVT)) { 6028 SDValue BVec = DAG.getBitcast(BVT, Op0); 6029 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6030 DAG.getConstant(0, DL, XLenVT))); 6031 } 6032 } 6033 break; 6034 } 6035 case RISCVISD::GREV: 6036 case RISCVISD::GORC: { 6037 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6038 "Unexpected custom legalisation"); 6039 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6040 // This is similar to customLegalizeToWOp, except that we pass the second 6041 // operand (a TargetConstant) straight through: it is already of type 6042 // XLenVT. 6043 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6044 SDValue NewOp0 = 6045 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6046 SDValue NewOp1 = 6047 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6048 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6049 // ReplaceNodeResults requires we maintain the same type for the return 6050 // value. 6051 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6052 break; 6053 } 6054 case RISCVISD::SHFL: { 6055 // There is no SHFLIW instruction, but we can just promote the operation. 6056 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6057 "Unexpected custom legalisation"); 6058 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6059 SDValue NewOp0 = 6060 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6061 SDValue NewOp1 = 6062 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6063 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6064 // ReplaceNodeResults requires we maintain the same type for the return 6065 // value. 6066 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6067 break; 6068 } 6069 case ISD::BSWAP: 6070 case ISD::BITREVERSE: { 6071 MVT VT = N->getSimpleValueType(0); 6072 MVT XLenVT = Subtarget.getXLenVT(); 6073 assert((VT == MVT::i8 || VT == MVT::i16 || 6074 (VT == MVT::i32 && Subtarget.is64Bit())) && 6075 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6076 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6077 unsigned Imm = VT.getSizeInBits() - 1; 6078 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6079 if (N->getOpcode() == ISD::BSWAP) 6080 Imm &= ~0x7U; 6081 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6082 SDValue GREVI = 6083 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6084 // ReplaceNodeResults requires we maintain the same type for the return 6085 // value. 6086 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6087 break; 6088 } 6089 case ISD::FSHL: 6090 case ISD::FSHR: { 6091 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6092 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6093 SDValue NewOp0 = 6094 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6095 SDValue NewOp1 = 6096 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6097 SDValue NewOp2 = 6098 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6099 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6100 // Mask the shift amount to 5 bits. 6101 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6102 DAG.getConstant(0x1f, DL, MVT::i64)); 6103 unsigned Opc = 6104 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6105 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6106 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6107 break; 6108 } 6109 case ISD::EXTRACT_VECTOR_ELT: { 6110 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6111 // type is illegal (currently only vXi64 RV32). 6112 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6113 // transferred to the destination register. We issue two of these from the 6114 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6115 // first element. 6116 SDValue Vec = N->getOperand(0); 6117 SDValue Idx = N->getOperand(1); 6118 6119 // The vector type hasn't been legalized yet so we can't issue target 6120 // specific nodes if it needs legalization. 6121 // FIXME: We would manually legalize if it's important. 6122 if (!isTypeLegal(Vec.getValueType())) 6123 return; 6124 6125 MVT VecVT = Vec.getSimpleValueType(); 6126 6127 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6128 VecVT.getVectorElementType() == MVT::i64 && 6129 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6130 6131 // If this is a fixed vector, we need to convert it to a scalable vector. 6132 MVT ContainerVT = VecVT; 6133 if (VecVT.isFixedLengthVector()) { 6134 ContainerVT = getContainerForFixedLengthVector(VecVT); 6135 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6136 } 6137 6138 MVT XLenVT = Subtarget.getXLenVT(); 6139 6140 // Use a VL of 1 to avoid processing more elements than we need. 6141 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6142 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6143 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6144 6145 // Unless the index is known to be 0, we must slide the vector down to get 6146 // the desired element into index 0. 6147 if (!isNullConstant(Idx)) { 6148 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6149 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6150 } 6151 6152 // Extract the lower XLEN bits of the correct vector element. 6153 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6154 6155 // To extract the upper XLEN bits of the vector element, shift the first 6156 // element right by 32 bits and re-extract the lower XLEN bits. 6157 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6158 DAG.getConstant(32, DL, XLenVT), VL); 6159 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6160 ThirtyTwoV, Mask, VL); 6161 6162 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6163 6164 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6165 break; 6166 } 6167 case ISD::INTRINSIC_WO_CHAIN: { 6168 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6169 switch (IntNo) { 6170 default: 6171 llvm_unreachable( 6172 "Don't know how to custom type legalize this intrinsic!"); 6173 case Intrinsic::riscv_orc_b: { 6174 // Lower to the GORCI encoding for orc.b with the operand extended. 6175 SDValue NewOp = 6176 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6177 // If Zbp is enabled, use GORCIW which will sign extend the result. 6178 unsigned Opc = 6179 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6180 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6181 DAG.getConstant(7, DL, MVT::i64)); 6182 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6183 return; 6184 } 6185 case Intrinsic::riscv_grev: 6186 case Intrinsic::riscv_gorc: { 6187 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6188 "Unexpected custom legalisation"); 6189 SDValue NewOp1 = 6190 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6191 SDValue NewOp2 = 6192 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6193 unsigned Opc = 6194 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6195 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6196 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6197 break; 6198 } 6199 case Intrinsic::riscv_shfl: 6200 case Intrinsic::riscv_unshfl: { 6201 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6202 "Unexpected custom legalisation"); 6203 SDValue NewOp1 = 6204 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6205 SDValue NewOp2 = 6206 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6207 unsigned Opc = 6208 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6209 if (isa<ConstantSDNode>(N->getOperand(2))) { 6210 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6211 DAG.getConstant(0xf, DL, MVT::i64)); 6212 Opc = 6213 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6214 } 6215 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6216 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6217 break; 6218 } 6219 case Intrinsic::riscv_bcompress: 6220 case Intrinsic::riscv_bdecompress: { 6221 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6222 "Unexpected custom legalisation"); 6223 SDValue NewOp1 = 6224 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6225 SDValue NewOp2 = 6226 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6227 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6228 ? RISCVISD::BCOMPRESSW 6229 : RISCVISD::BDECOMPRESSW; 6230 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6231 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6232 break; 6233 } 6234 case Intrinsic::riscv_vmv_x_s: { 6235 EVT VT = N->getValueType(0); 6236 MVT XLenVT = Subtarget.getXLenVT(); 6237 if (VT.bitsLT(XLenVT)) { 6238 // Simple case just extract using vmv.x.s and truncate. 6239 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6240 Subtarget.getXLenVT(), N->getOperand(1)); 6241 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6242 return; 6243 } 6244 6245 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6246 "Unexpected custom legalization"); 6247 6248 // We need to do the move in two steps. 6249 SDValue Vec = N->getOperand(1); 6250 MVT VecVT = Vec.getSimpleValueType(); 6251 6252 // First extract the lower XLEN bits of the element. 6253 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6254 6255 // To extract the upper XLEN bits of the vector element, shift the first 6256 // element right by 32 bits and re-extract the lower XLEN bits. 6257 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6258 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6259 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6260 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6261 DAG.getConstant(32, DL, XLenVT), VL); 6262 SDValue LShr32 = 6263 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6264 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6265 6266 Results.push_back( 6267 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6268 break; 6269 } 6270 } 6271 break; 6272 } 6273 case ISD::VECREDUCE_ADD: 6274 case ISD::VECREDUCE_AND: 6275 case ISD::VECREDUCE_OR: 6276 case ISD::VECREDUCE_XOR: 6277 case ISD::VECREDUCE_SMAX: 6278 case ISD::VECREDUCE_UMAX: 6279 case ISD::VECREDUCE_SMIN: 6280 case ISD::VECREDUCE_UMIN: 6281 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6282 Results.push_back(V); 6283 break; 6284 case ISD::VP_REDUCE_ADD: 6285 case ISD::VP_REDUCE_AND: 6286 case ISD::VP_REDUCE_OR: 6287 case ISD::VP_REDUCE_XOR: 6288 case ISD::VP_REDUCE_SMAX: 6289 case ISD::VP_REDUCE_UMAX: 6290 case ISD::VP_REDUCE_SMIN: 6291 case ISD::VP_REDUCE_UMIN: 6292 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6293 Results.push_back(V); 6294 break; 6295 case ISD::FLT_ROUNDS_: { 6296 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6297 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6298 Results.push_back(Res.getValue(0)); 6299 Results.push_back(Res.getValue(1)); 6300 break; 6301 } 6302 } 6303 } 6304 6305 // A structure to hold one of the bit-manipulation patterns below. Together, a 6306 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6307 // (or (and (shl x, 1), 0xAAAAAAAA), 6308 // (and (srl x, 1), 0x55555555)) 6309 struct RISCVBitmanipPat { 6310 SDValue Op; 6311 unsigned ShAmt; 6312 bool IsSHL; 6313 6314 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6315 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6316 } 6317 }; 6318 6319 // Matches patterns of the form 6320 // (and (shl x, C2), (C1 << C2)) 6321 // (and (srl x, C2), C1) 6322 // (shl (and x, C1), C2) 6323 // (srl (and x, (C1 << C2)), C2) 6324 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6325 // The expected masks for each shift amount are specified in BitmanipMasks where 6326 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6327 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6328 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6329 // XLen is 64. 6330 static Optional<RISCVBitmanipPat> 6331 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6332 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6333 "Unexpected number of masks"); 6334 Optional<uint64_t> Mask; 6335 // Optionally consume a mask around the shift operation. 6336 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6337 Mask = Op.getConstantOperandVal(1); 6338 Op = Op.getOperand(0); 6339 } 6340 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6341 return None; 6342 bool IsSHL = Op.getOpcode() == ISD::SHL; 6343 6344 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6345 return None; 6346 uint64_t ShAmt = Op.getConstantOperandVal(1); 6347 6348 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6349 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6350 return None; 6351 // If we don't have enough masks for 64 bit, then we must be trying to 6352 // match SHFL so we're only allowed to shift 1/4 of the width. 6353 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6354 return None; 6355 6356 SDValue Src = Op.getOperand(0); 6357 6358 // The expected mask is shifted left when the AND is found around SHL 6359 // patterns. 6360 // ((x >> 1) & 0x55555555) 6361 // ((x << 1) & 0xAAAAAAAA) 6362 bool SHLExpMask = IsSHL; 6363 6364 if (!Mask) { 6365 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6366 // the mask is all ones: consume that now. 6367 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6368 Mask = Src.getConstantOperandVal(1); 6369 Src = Src.getOperand(0); 6370 // The expected mask is now in fact shifted left for SRL, so reverse the 6371 // decision. 6372 // ((x & 0xAAAAAAAA) >> 1) 6373 // ((x & 0x55555555) << 1) 6374 SHLExpMask = !SHLExpMask; 6375 } else { 6376 // Use a default shifted mask of all-ones if there's no AND, truncated 6377 // down to the expected width. This simplifies the logic later on. 6378 Mask = maskTrailingOnes<uint64_t>(Width); 6379 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6380 } 6381 } 6382 6383 unsigned MaskIdx = Log2_32(ShAmt); 6384 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6385 6386 if (SHLExpMask) 6387 ExpMask <<= ShAmt; 6388 6389 if (Mask != ExpMask) 6390 return None; 6391 6392 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6393 } 6394 6395 // Matches any of the following bit-manipulation patterns: 6396 // (and (shl x, 1), (0x55555555 << 1)) 6397 // (and (srl x, 1), 0x55555555) 6398 // (shl (and x, 0x55555555), 1) 6399 // (srl (and x, (0x55555555 << 1)), 1) 6400 // where the shift amount and mask may vary thus: 6401 // [1] = 0x55555555 / 0xAAAAAAAA 6402 // [2] = 0x33333333 / 0xCCCCCCCC 6403 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6404 // [8] = 0x00FF00FF / 0xFF00FF00 6405 // [16] = 0x0000FFFF / 0xFFFFFFFF 6406 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6407 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6408 // These are the unshifted masks which we use to match bit-manipulation 6409 // patterns. They may be shifted left in certain circumstances. 6410 static const uint64_t BitmanipMasks[] = { 6411 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6412 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6413 6414 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6415 } 6416 6417 // Match the following pattern as a GREVI(W) operation 6418 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6419 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6420 const RISCVSubtarget &Subtarget) { 6421 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6422 EVT VT = Op.getValueType(); 6423 6424 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6425 auto LHS = matchGREVIPat(Op.getOperand(0)); 6426 auto RHS = matchGREVIPat(Op.getOperand(1)); 6427 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6428 SDLoc DL(Op); 6429 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6430 DAG.getConstant(LHS->ShAmt, DL, VT)); 6431 } 6432 } 6433 return SDValue(); 6434 } 6435 6436 // Matches any the following pattern as a GORCI(W) operation 6437 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6438 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6439 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6440 // Note that with the variant of 3., 6441 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6442 // the inner pattern will first be matched as GREVI and then the outer 6443 // pattern will be matched to GORC via the first rule above. 6444 // 4. (or (rotl/rotr x, bitwidth/2), x) 6445 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6446 const RISCVSubtarget &Subtarget) { 6447 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6448 EVT VT = Op.getValueType(); 6449 6450 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6451 SDLoc DL(Op); 6452 SDValue Op0 = Op.getOperand(0); 6453 SDValue Op1 = Op.getOperand(1); 6454 6455 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6456 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6457 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6458 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6459 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6460 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6461 if ((Reverse.getOpcode() == ISD::ROTL || 6462 Reverse.getOpcode() == ISD::ROTR) && 6463 Reverse.getOperand(0) == X && 6464 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6465 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6466 if (RotAmt == (VT.getSizeInBits() / 2)) 6467 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6468 DAG.getConstant(RotAmt, DL, VT)); 6469 } 6470 return SDValue(); 6471 }; 6472 6473 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6474 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6475 return V; 6476 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6477 return V; 6478 6479 // OR is commutable so canonicalize its OR operand to the left 6480 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6481 std::swap(Op0, Op1); 6482 if (Op0.getOpcode() != ISD::OR) 6483 return SDValue(); 6484 SDValue OrOp0 = Op0.getOperand(0); 6485 SDValue OrOp1 = Op0.getOperand(1); 6486 auto LHS = matchGREVIPat(OrOp0); 6487 // OR is commutable so swap the operands and try again: x might have been 6488 // on the left 6489 if (!LHS) { 6490 std::swap(OrOp0, OrOp1); 6491 LHS = matchGREVIPat(OrOp0); 6492 } 6493 auto RHS = matchGREVIPat(Op1); 6494 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6495 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6496 DAG.getConstant(LHS->ShAmt, DL, VT)); 6497 } 6498 } 6499 return SDValue(); 6500 } 6501 6502 // Matches any of the following bit-manipulation patterns: 6503 // (and (shl x, 1), (0x22222222 << 1)) 6504 // (and (srl x, 1), 0x22222222) 6505 // (shl (and x, 0x22222222), 1) 6506 // (srl (and x, (0x22222222 << 1)), 1) 6507 // where the shift amount and mask may vary thus: 6508 // [1] = 0x22222222 / 0x44444444 6509 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6510 // [4] = 0x00F000F0 / 0x0F000F00 6511 // [8] = 0x0000FF00 / 0x00FF0000 6512 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6513 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6514 // These are the unshifted masks which we use to match bit-manipulation 6515 // patterns. They may be shifted left in certain circumstances. 6516 static const uint64_t BitmanipMasks[] = { 6517 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6518 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6519 6520 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6521 } 6522 6523 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6524 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6525 const RISCVSubtarget &Subtarget) { 6526 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6527 EVT VT = Op.getValueType(); 6528 6529 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6530 return SDValue(); 6531 6532 SDValue Op0 = Op.getOperand(0); 6533 SDValue Op1 = Op.getOperand(1); 6534 6535 // Or is commutable so canonicalize the second OR to the LHS. 6536 if (Op0.getOpcode() != ISD::OR) 6537 std::swap(Op0, Op1); 6538 if (Op0.getOpcode() != ISD::OR) 6539 return SDValue(); 6540 6541 // We found an inner OR, so our operands are the operands of the inner OR 6542 // and the other operand of the outer OR. 6543 SDValue A = Op0.getOperand(0); 6544 SDValue B = Op0.getOperand(1); 6545 SDValue C = Op1; 6546 6547 auto Match1 = matchSHFLPat(A); 6548 auto Match2 = matchSHFLPat(B); 6549 6550 // If neither matched, we failed. 6551 if (!Match1 && !Match2) 6552 return SDValue(); 6553 6554 // We had at least one match. if one failed, try the remaining C operand. 6555 if (!Match1) { 6556 std::swap(A, C); 6557 Match1 = matchSHFLPat(A); 6558 if (!Match1) 6559 return SDValue(); 6560 } else if (!Match2) { 6561 std::swap(B, C); 6562 Match2 = matchSHFLPat(B); 6563 if (!Match2) 6564 return SDValue(); 6565 } 6566 assert(Match1 && Match2); 6567 6568 // Make sure our matches pair up. 6569 if (!Match1->formsPairWith(*Match2)) 6570 return SDValue(); 6571 6572 // All the remains is to make sure C is an AND with the same input, that masks 6573 // out the bits that are being shuffled. 6574 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6575 C.getOperand(0) != Match1->Op) 6576 return SDValue(); 6577 6578 uint64_t Mask = C.getConstantOperandVal(1); 6579 6580 static const uint64_t BitmanipMasks[] = { 6581 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6582 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6583 }; 6584 6585 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6586 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6587 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6588 6589 if (Mask != ExpMask) 6590 return SDValue(); 6591 6592 SDLoc DL(Op); 6593 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6594 DAG.getConstant(Match1->ShAmt, DL, VT)); 6595 } 6596 6597 // Optimize (add (shl x, c0), (shl y, c1)) -> 6598 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6599 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6600 const RISCVSubtarget &Subtarget) { 6601 // Perform this optimization only in the zba extension. 6602 if (!Subtarget.hasStdExtZba()) 6603 return SDValue(); 6604 6605 // Skip for vector types and larger types. 6606 EVT VT = N->getValueType(0); 6607 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6608 return SDValue(); 6609 6610 // The two operand nodes must be SHL and have no other use. 6611 SDValue N0 = N->getOperand(0); 6612 SDValue N1 = N->getOperand(1); 6613 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6614 !N0->hasOneUse() || !N1->hasOneUse()) 6615 return SDValue(); 6616 6617 // Check c0 and c1. 6618 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6619 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6620 if (!N0C || !N1C) 6621 return SDValue(); 6622 int64_t C0 = N0C->getSExtValue(); 6623 int64_t C1 = N1C->getSExtValue(); 6624 if (C0 <= 0 || C1 <= 0) 6625 return SDValue(); 6626 6627 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6628 int64_t Bits = std::min(C0, C1); 6629 int64_t Diff = std::abs(C0 - C1); 6630 if (Diff != 1 && Diff != 2 && Diff != 3) 6631 return SDValue(); 6632 6633 // Build nodes. 6634 SDLoc DL(N); 6635 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6636 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6637 SDValue NA0 = 6638 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6639 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6640 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6641 } 6642 6643 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6644 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6645 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6646 // not undo itself, but they are redundant. 6647 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6648 SDValue Src = N->getOperand(0); 6649 6650 if (Src.getOpcode() != N->getOpcode()) 6651 return SDValue(); 6652 6653 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6654 !isa<ConstantSDNode>(Src.getOperand(1))) 6655 return SDValue(); 6656 6657 unsigned ShAmt1 = N->getConstantOperandVal(1); 6658 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6659 Src = Src.getOperand(0); 6660 6661 unsigned CombinedShAmt; 6662 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6663 CombinedShAmt = ShAmt1 | ShAmt2; 6664 else 6665 CombinedShAmt = ShAmt1 ^ ShAmt2; 6666 6667 if (CombinedShAmt == 0) 6668 return Src; 6669 6670 SDLoc DL(N); 6671 return DAG.getNode( 6672 N->getOpcode(), DL, N->getValueType(0), Src, 6673 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6674 } 6675 6676 // Combine a constant select operand into its use: 6677 // 6678 // (and (select cond, -1, c), x) 6679 // -> (select cond, x, (and x, c)) [AllOnes=1] 6680 // (or (select cond, 0, c), x) 6681 // -> (select cond, x, (or x, c)) [AllOnes=0] 6682 // (xor (select cond, 0, c), x) 6683 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6684 // (add (select cond, 0, c), x) 6685 // -> (select cond, x, (add x, c)) [AllOnes=0] 6686 // (sub x, (select cond, 0, c)) 6687 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6688 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6689 SelectionDAG &DAG, bool AllOnes) { 6690 EVT VT = N->getValueType(0); 6691 6692 // Skip vectors. 6693 if (VT.isVector()) 6694 return SDValue(); 6695 6696 if ((Slct.getOpcode() != ISD::SELECT && 6697 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6698 !Slct.hasOneUse()) 6699 return SDValue(); 6700 6701 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6702 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6703 }; 6704 6705 bool SwapSelectOps; 6706 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6707 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6708 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6709 SDValue NonConstantVal; 6710 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6711 SwapSelectOps = false; 6712 NonConstantVal = FalseVal; 6713 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6714 SwapSelectOps = true; 6715 NonConstantVal = TrueVal; 6716 } else 6717 return SDValue(); 6718 6719 // Slct is now know to be the desired identity constant when CC is true. 6720 TrueVal = OtherOp; 6721 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6722 // Unless SwapSelectOps says the condition should be false. 6723 if (SwapSelectOps) 6724 std::swap(TrueVal, FalseVal); 6725 6726 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6727 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6728 {Slct.getOperand(0), Slct.getOperand(1), 6729 Slct.getOperand(2), TrueVal, FalseVal}); 6730 6731 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6732 {Slct.getOperand(0), TrueVal, FalseVal}); 6733 } 6734 6735 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6736 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6737 bool AllOnes) { 6738 SDValue N0 = N->getOperand(0); 6739 SDValue N1 = N->getOperand(1); 6740 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6741 return Result; 6742 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6743 return Result; 6744 return SDValue(); 6745 } 6746 6747 // Transform (add (mul x, c0), c1) -> 6748 // (add (mul (add x, c1/c0), c0), c1%c0). 6749 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6750 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6751 // to an infinite loop in DAGCombine if transformed. 6752 // Or transform (add (mul x, c0), c1) -> 6753 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6754 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6755 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6756 // lead to an infinite loop in DAGCombine if transformed. 6757 // Or transform (add (mul x, c0), c1) -> 6758 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6759 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6760 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6761 // lead to an infinite loop in DAGCombine if transformed. 6762 // Or transform (add (mul x, c0), c1) -> 6763 // (mul (add x, c1/c0), c0). 6764 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6765 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6766 const RISCVSubtarget &Subtarget) { 6767 // Skip for vector types and larger types. 6768 EVT VT = N->getValueType(0); 6769 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6770 return SDValue(); 6771 // The first operand node must be a MUL and has no other use. 6772 SDValue N0 = N->getOperand(0); 6773 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6774 return SDValue(); 6775 // Check if c0 and c1 match above conditions. 6776 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6777 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6778 if (!N0C || !N1C) 6779 return SDValue(); 6780 int64_t C0 = N0C->getSExtValue(); 6781 int64_t C1 = N1C->getSExtValue(); 6782 int64_t CA, CB; 6783 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6784 return SDValue(); 6785 // Search for proper CA (non-zero) and CB that both are simm12. 6786 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6787 !isInt<12>(C0 * (C1 / C0))) { 6788 CA = C1 / C0; 6789 CB = C1 % C0; 6790 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6791 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6792 CA = C1 / C0 + 1; 6793 CB = C1 % C0 - C0; 6794 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6795 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6796 CA = C1 / C0 - 1; 6797 CB = C1 % C0 + C0; 6798 } else 6799 return SDValue(); 6800 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6801 SDLoc DL(N); 6802 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6803 DAG.getConstant(CA, DL, VT)); 6804 SDValue New1 = 6805 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6806 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6807 } 6808 6809 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6810 const RISCVSubtarget &Subtarget) { 6811 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6812 return V; 6813 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6814 return V; 6815 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6816 // (select lhs, rhs, cc, x, (add x, y)) 6817 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6818 } 6819 6820 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6821 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6822 // (select lhs, rhs, cc, x, (sub x, y)) 6823 SDValue N0 = N->getOperand(0); 6824 SDValue N1 = N->getOperand(1); 6825 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6826 } 6827 6828 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6829 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6830 // (select lhs, rhs, cc, x, (and x, y)) 6831 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6832 } 6833 6834 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6835 const RISCVSubtarget &Subtarget) { 6836 if (Subtarget.hasStdExtZbp()) { 6837 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6838 return GREV; 6839 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6840 return GORC; 6841 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6842 return SHFL; 6843 } 6844 6845 // fold (or (select cond, 0, y), x) -> 6846 // (select cond, x, (or x, y)) 6847 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6848 } 6849 6850 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6851 // fold (xor (select cond, 0, y), x) -> 6852 // (select cond, x, (xor x, y)) 6853 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6854 } 6855 6856 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6857 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6858 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6859 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6860 // ADDW/SUBW/MULW. 6861 static SDValue performANY_EXTENDCombine(SDNode *N, 6862 TargetLowering::DAGCombinerInfo &DCI, 6863 const RISCVSubtarget &Subtarget) { 6864 if (!Subtarget.is64Bit()) 6865 return SDValue(); 6866 6867 SelectionDAG &DAG = DCI.DAG; 6868 6869 SDValue Src = N->getOperand(0); 6870 EVT VT = N->getValueType(0); 6871 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6872 return SDValue(); 6873 6874 // The opcode must be one that can implicitly sign_extend. 6875 // FIXME: Additional opcodes. 6876 switch (Src.getOpcode()) { 6877 default: 6878 return SDValue(); 6879 case ISD::MUL: 6880 if (!Subtarget.hasStdExtM()) 6881 return SDValue(); 6882 LLVM_FALLTHROUGH; 6883 case ISD::ADD: 6884 case ISD::SUB: 6885 break; 6886 } 6887 6888 // Only handle cases where the result is used by a CopyToReg. That likely 6889 // means the value is a liveout of the basic block. This helps prevent 6890 // infinite combine loops like PR51206. 6891 if (none_of(N->uses(), 6892 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6893 return SDValue(); 6894 6895 SmallVector<SDNode *, 4> SetCCs; 6896 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6897 UE = Src.getNode()->use_end(); 6898 UI != UE; ++UI) { 6899 SDNode *User = *UI; 6900 if (User == N) 6901 continue; 6902 if (UI.getUse().getResNo() != Src.getResNo()) 6903 continue; 6904 // All i32 setccs are legalized by sign extending operands. 6905 if (User->getOpcode() == ISD::SETCC) { 6906 SetCCs.push_back(User); 6907 continue; 6908 } 6909 // We don't know if we can extend this user. 6910 break; 6911 } 6912 6913 // If we don't have any SetCCs, this isn't worthwhile. 6914 if (SetCCs.empty()) 6915 return SDValue(); 6916 6917 SDLoc DL(N); 6918 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6919 DCI.CombineTo(N, SExt); 6920 6921 // Promote all the setccs. 6922 for (SDNode *SetCC : SetCCs) { 6923 SmallVector<SDValue, 4> Ops; 6924 6925 for (unsigned j = 0; j != 2; ++j) { 6926 SDValue SOp = SetCC->getOperand(j); 6927 if (SOp == Src) 6928 Ops.push_back(SExt); 6929 else 6930 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6931 } 6932 6933 Ops.push_back(SetCC->getOperand(2)); 6934 DCI.CombineTo(SetCC, 6935 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6936 } 6937 return SDValue(N, 0); 6938 } 6939 6940 // Try to form VWMUL or VWMULU. 6941 // FIXME: Support VWMULSU. 6942 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6943 SelectionDAG &DAG) { 6944 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6945 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6946 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6947 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6948 return SDValue(); 6949 6950 SDValue Mask = N->getOperand(2); 6951 SDValue VL = N->getOperand(3); 6952 6953 // Make sure the mask and VL match. 6954 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6955 return SDValue(); 6956 6957 MVT VT = N->getSimpleValueType(0); 6958 6959 // Determine the narrow size for a widening multiply. 6960 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6961 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6962 VT.getVectorElementCount()); 6963 6964 SDLoc DL(N); 6965 6966 // See if the other operand is the same opcode. 6967 if (Op0.getOpcode() == Op1.getOpcode()) { 6968 if (!Op1.hasOneUse()) 6969 return SDValue(); 6970 6971 // Make sure the mask and VL match. 6972 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6973 return SDValue(); 6974 6975 Op1 = Op1.getOperand(0); 6976 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6977 // The operand is a splat of a scalar. 6978 6979 // The VL must be the same. 6980 if (Op1.getOperand(1) != VL) 6981 return SDValue(); 6982 6983 // Get the scalar value. 6984 Op1 = Op1.getOperand(0); 6985 6986 // See if have enough sign bits or zero bits in the scalar to use a 6987 // widening multiply by splatting to smaller element size. 6988 unsigned EltBits = VT.getScalarSizeInBits(); 6989 unsigned ScalarBits = Op1.getValueSizeInBits(); 6990 // Make sure we're getting all element bits from the scalar register. 6991 // FIXME: Support implicit sign extension of vmv.v.x? 6992 if (ScalarBits < EltBits) 6993 return SDValue(); 6994 6995 if (IsSignExt) { 6996 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6997 return SDValue(); 6998 } else { 6999 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7000 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7001 return SDValue(); 7002 } 7003 7004 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7005 } else 7006 return SDValue(); 7007 7008 Op0 = Op0.getOperand(0); 7009 7010 // Re-introduce narrower extends if needed. 7011 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7012 if (Op0.getValueType() != NarrowVT) 7013 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7014 if (Op1.getValueType() != NarrowVT) 7015 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7016 7017 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7018 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7019 } 7020 7021 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7022 DAGCombinerInfo &DCI) const { 7023 SelectionDAG &DAG = DCI.DAG; 7024 7025 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7026 // bits are demanded. N will be added to the Worklist if it was not deleted. 7027 // Caller should return SDValue(N, 0) if this returns true. 7028 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7029 SDValue Op = N->getOperand(OpNo); 7030 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7031 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7032 return false; 7033 7034 if (N->getOpcode() != ISD::DELETED_NODE) 7035 DCI.AddToWorklist(N); 7036 return true; 7037 }; 7038 7039 switch (N->getOpcode()) { 7040 default: 7041 break; 7042 case RISCVISD::SplitF64: { 7043 SDValue Op0 = N->getOperand(0); 7044 // If the input to SplitF64 is just BuildPairF64 then the operation is 7045 // redundant. Instead, use BuildPairF64's operands directly. 7046 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7047 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7048 7049 SDLoc DL(N); 7050 7051 // It's cheaper to materialise two 32-bit integers than to load a double 7052 // from the constant pool and transfer it to integer registers through the 7053 // stack. 7054 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7055 APInt V = C->getValueAPF().bitcastToAPInt(); 7056 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7057 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7058 return DCI.CombineTo(N, Lo, Hi); 7059 } 7060 7061 // This is a target-specific version of a DAGCombine performed in 7062 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7063 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7064 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7065 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7066 !Op0.getNode()->hasOneUse()) 7067 break; 7068 SDValue NewSplitF64 = 7069 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7070 Op0.getOperand(0)); 7071 SDValue Lo = NewSplitF64.getValue(0); 7072 SDValue Hi = NewSplitF64.getValue(1); 7073 APInt SignBit = APInt::getSignMask(32); 7074 if (Op0.getOpcode() == ISD::FNEG) { 7075 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7076 DAG.getConstant(SignBit, DL, MVT::i32)); 7077 return DCI.CombineTo(N, Lo, NewHi); 7078 } 7079 assert(Op0.getOpcode() == ISD::FABS); 7080 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7081 DAG.getConstant(~SignBit, DL, MVT::i32)); 7082 return DCI.CombineTo(N, Lo, NewHi); 7083 } 7084 case RISCVISD::SLLW: 7085 case RISCVISD::SRAW: 7086 case RISCVISD::SRLW: 7087 case RISCVISD::ROLW: 7088 case RISCVISD::RORW: { 7089 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7090 if (SimplifyDemandedLowBitsHelper(0, 32) || 7091 SimplifyDemandedLowBitsHelper(1, 5)) 7092 return SDValue(N, 0); 7093 break; 7094 } 7095 case RISCVISD::CLZW: 7096 case RISCVISD::CTZW: { 7097 // Only the lower 32 bits of the first operand are read 7098 if (SimplifyDemandedLowBitsHelper(0, 32)) 7099 return SDValue(N, 0); 7100 break; 7101 } 7102 case RISCVISD::FSL: 7103 case RISCVISD::FSR: { 7104 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7105 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7106 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7107 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7108 return SDValue(N, 0); 7109 break; 7110 } 7111 case RISCVISD::FSLW: 7112 case RISCVISD::FSRW: { 7113 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7114 // read. 7115 if (SimplifyDemandedLowBitsHelper(0, 32) || 7116 SimplifyDemandedLowBitsHelper(1, 32) || 7117 SimplifyDemandedLowBitsHelper(2, 6)) 7118 return SDValue(N, 0); 7119 break; 7120 } 7121 case RISCVISD::GREV: 7122 case RISCVISD::GORC: { 7123 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7124 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7125 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7126 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7127 return SDValue(N, 0); 7128 7129 return combineGREVI_GORCI(N, DAG); 7130 } 7131 case RISCVISD::GREVW: 7132 case RISCVISD::GORCW: { 7133 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7134 if (SimplifyDemandedLowBitsHelper(0, 32) || 7135 SimplifyDemandedLowBitsHelper(1, 5)) 7136 return SDValue(N, 0); 7137 7138 return combineGREVI_GORCI(N, DAG); 7139 } 7140 case RISCVISD::SHFL: 7141 case RISCVISD::UNSHFL: { 7142 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7143 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7144 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7145 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7146 return SDValue(N, 0); 7147 7148 break; 7149 } 7150 case RISCVISD::SHFLW: 7151 case RISCVISD::UNSHFLW: { 7152 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7153 SDValue LHS = N->getOperand(0); 7154 SDValue RHS = N->getOperand(1); 7155 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7156 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7157 if (SimplifyDemandedLowBitsHelper(0, 32) || 7158 SimplifyDemandedLowBitsHelper(1, 4)) 7159 return SDValue(N, 0); 7160 7161 break; 7162 } 7163 case RISCVISD::BCOMPRESSW: 7164 case RISCVISD::BDECOMPRESSW: { 7165 // Only the lower 32 bits of LHS and RHS are read. 7166 if (SimplifyDemandedLowBitsHelper(0, 32) || 7167 SimplifyDemandedLowBitsHelper(1, 32)) 7168 return SDValue(N, 0); 7169 7170 break; 7171 } 7172 case RISCVISD::FMV_X_ANYEXTH: 7173 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7174 SDLoc DL(N); 7175 SDValue Op0 = N->getOperand(0); 7176 MVT VT = N->getSimpleValueType(0); 7177 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7178 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7179 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7180 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7181 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7182 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7183 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7184 assert(Op0.getOperand(0).getValueType() == VT && 7185 "Unexpected value type!"); 7186 return Op0.getOperand(0); 7187 } 7188 7189 // This is a target-specific version of a DAGCombine performed in 7190 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7191 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7192 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7193 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7194 !Op0.getNode()->hasOneUse()) 7195 break; 7196 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7197 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7198 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7199 if (Op0.getOpcode() == ISD::FNEG) 7200 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7201 DAG.getConstant(SignBit, DL, VT)); 7202 7203 assert(Op0.getOpcode() == ISD::FABS); 7204 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7205 DAG.getConstant(~SignBit, DL, VT)); 7206 } 7207 case ISD::ADD: 7208 return performADDCombine(N, DAG, Subtarget); 7209 case ISD::SUB: 7210 return performSUBCombine(N, DAG); 7211 case ISD::AND: 7212 return performANDCombine(N, DAG); 7213 case ISD::OR: 7214 return performORCombine(N, DAG, Subtarget); 7215 case ISD::XOR: 7216 return performXORCombine(N, DAG); 7217 case ISD::ANY_EXTEND: 7218 return performANY_EXTENDCombine(N, DCI, Subtarget); 7219 case ISD::ZERO_EXTEND: 7220 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7221 // type legalization. This is safe because fp_to_uint produces poison if 7222 // it overflows. 7223 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7224 SDValue Src = N->getOperand(0); 7225 if (Src.getOpcode() == ISD::FP_TO_UINT && 7226 isTypeLegal(Src.getOperand(0).getValueType())) 7227 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7228 Src.getOperand(0)); 7229 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7230 isTypeLegal(Src.getOperand(1).getValueType())) { 7231 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7232 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7233 Src.getOperand(0), Src.getOperand(1)); 7234 DCI.CombineTo(N, Res); 7235 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7236 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7237 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7238 } 7239 } 7240 return SDValue(); 7241 case RISCVISD::SELECT_CC: { 7242 // Transform 7243 SDValue LHS = N->getOperand(0); 7244 SDValue RHS = N->getOperand(1); 7245 SDValue TrueV = N->getOperand(3); 7246 SDValue FalseV = N->getOperand(4); 7247 7248 // If the True and False values are the same, we don't need a select_cc. 7249 if (TrueV == FalseV) 7250 return TrueV; 7251 7252 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7253 if (!ISD::isIntEqualitySetCC(CCVal)) 7254 break; 7255 7256 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7257 // (select_cc X, Y, lt, trueV, falseV) 7258 // Sometimes the setcc is introduced after select_cc has been formed. 7259 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7260 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7261 // If we're looking for eq 0 instead of ne 0, we need to invert the 7262 // condition. 7263 bool Invert = CCVal == ISD::SETEQ; 7264 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7265 if (Invert) 7266 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7267 7268 SDLoc DL(N); 7269 RHS = LHS.getOperand(1); 7270 LHS = LHS.getOperand(0); 7271 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7272 7273 SDValue TargetCC = DAG.getCondCode(CCVal); 7274 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7275 {LHS, RHS, TargetCC, TrueV, FalseV}); 7276 } 7277 7278 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7279 // (select_cc X, Y, eq/ne, trueV, falseV) 7280 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7281 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7282 {LHS.getOperand(0), LHS.getOperand(1), 7283 N->getOperand(2), TrueV, FalseV}); 7284 // (select_cc X, 1, setne, trueV, falseV) -> 7285 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7286 // This can occur when legalizing some floating point comparisons. 7287 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7288 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7289 SDLoc DL(N); 7290 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7291 SDValue TargetCC = DAG.getCondCode(CCVal); 7292 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7293 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7294 {LHS, RHS, TargetCC, TrueV, FalseV}); 7295 } 7296 7297 break; 7298 } 7299 case RISCVISD::BR_CC: { 7300 SDValue LHS = N->getOperand(1); 7301 SDValue RHS = N->getOperand(2); 7302 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7303 if (!ISD::isIntEqualitySetCC(CCVal)) 7304 break; 7305 7306 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7307 // (br_cc X, Y, lt, dest) 7308 // Sometimes the setcc is introduced after br_cc has been formed. 7309 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7310 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7311 // If we're looking for eq 0 instead of ne 0, we need to invert the 7312 // condition. 7313 bool Invert = CCVal == ISD::SETEQ; 7314 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7315 if (Invert) 7316 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7317 7318 SDLoc DL(N); 7319 RHS = LHS.getOperand(1); 7320 LHS = LHS.getOperand(0); 7321 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7322 7323 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7324 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7325 N->getOperand(4)); 7326 } 7327 7328 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7329 // (br_cc X, Y, eq/ne, trueV, falseV) 7330 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7331 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7332 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7333 N->getOperand(3), N->getOperand(4)); 7334 7335 // (br_cc X, 1, setne, br_cc) -> 7336 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7337 // This can occur when legalizing some floating point comparisons. 7338 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7339 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7340 SDLoc DL(N); 7341 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7342 SDValue TargetCC = DAG.getCondCode(CCVal); 7343 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7344 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7345 N->getOperand(0), LHS, RHS, TargetCC, 7346 N->getOperand(4)); 7347 } 7348 break; 7349 } 7350 case ISD::FCOPYSIGN: { 7351 EVT VT = N->getValueType(0); 7352 if (!VT.isVector()) 7353 break; 7354 // There is a form of VFSGNJ which injects the negated sign of its second 7355 // operand. Try and bubble any FNEG up after the extend/round to produce 7356 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7357 // TRUNC=1. 7358 SDValue In2 = N->getOperand(1); 7359 // Avoid cases where the extend/round has multiple uses, as duplicating 7360 // those is typically more expensive than removing a fneg. 7361 if (!In2.hasOneUse()) 7362 break; 7363 if (In2.getOpcode() != ISD::FP_EXTEND && 7364 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7365 break; 7366 In2 = In2.getOperand(0); 7367 if (In2.getOpcode() != ISD::FNEG) 7368 break; 7369 SDLoc DL(N); 7370 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7371 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7372 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7373 } 7374 case ISD::MGATHER: 7375 case ISD::MSCATTER: 7376 case ISD::VP_GATHER: 7377 case ISD::VP_SCATTER: { 7378 if (!DCI.isBeforeLegalize()) 7379 break; 7380 SDValue Index, ScaleOp; 7381 bool IsIndexScaled = false; 7382 bool IsIndexSigned = false; 7383 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7384 Index = VPGSN->getIndex(); 7385 ScaleOp = VPGSN->getScale(); 7386 IsIndexScaled = VPGSN->isIndexScaled(); 7387 IsIndexSigned = VPGSN->isIndexSigned(); 7388 } else { 7389 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7390 Index = MGSN->getIndex(); 7391 ScaleOp = MGSN->getScale(); 7392 IsIndexScaled = MGSN->isIndexScaled(); 7393 IsIndexSigned = MGSN->isIndexSigned(); 7394 } 7395 EVT IndexVT = Index.getValueType(); 7396 MVT XLenVT = Subtarget.getXLenVT(); 7397 // RISCV indexed loads only support the "unsigned unscaled" addressing 7398 // mode, so anything else must be manually legalized. 7399 bool NeedsIdxLegalization = 7400 IsIndexScaled || 7401 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7402 if (!NeedsIdxLegalization) 7403 break; 7404 7405 SDLoc DL(N); 7406 7407 // Any index legalization should first promote to XLenVT, so we don't lose 7408 // bits when scaling. This may create an illegal index type so we let 7409 // LLVM's legalization take care of the splitting. 7410 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7411 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7412 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7413 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7414 DL, IndexVT, Index); 7415 } 7416 7417 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7418 if (IsIndexScaled && Scale != 1) { 7419 // Manually scale the indices by the element size. 7420 // TODO: Sanitize the scale operand here? 7421 // TODO: For VP nodes, should we use VP_SHL here? 7422 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7423 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7424 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7425 } 7426 7427 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7428 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7429 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7430 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7431 VPGN->getScale(), VPGN->getMask(), 7432 VPGN->getVectorLength()}, 7433 VPGN->getMemOperand(), NewIndexTy); 7434 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7435 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7436 {VPSN->getChain(), VPSN->getValue(), 7437 VPSN->getBasePtr(), Index, VPSN->getScale(), 7438 VPSN->getMask(), VPSN->getVectorLength()}, 7439 VPSN->getMemOperand(), NewIndexTy); 7440 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7441 return DAG.getMaskedGather( 7442 N->getVTList(), MGN->getMemoryVT(), DL, 7443 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7444 MGN->getBasePtr(), Index, MGN->getScale()}, 7445 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7446 const auto *MSN = cast<MaskedScatterSDNode>(N); 7447 return DAG.getMaskedScatter( 7448 N->getVTList(), MSN->getMemoryVT(), DL, 7449 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7450 Index, MSN->getScale()}, 7451 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7452 } 7453 case RISCVISD::SRA_VL: 7454 case RISCVISD::SRL_VL: 7455 case RISCVISD::SHL_VL: { 7456 SDValue ShAmt = N->getOperand(1); 7457 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7458 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7459 SDLoc DL(N); 7460 SDValue VL = N->getOperand(3); 7461 EVT VT = N->getValueType(0); 7462 ShAmt = 7463 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7464 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7465 N->getOperand(2), N->getOperand(3)); 7466 } 7467 break; 7468 } 7469 case ISD::SRA: 7470 case ISD::SRL: 7471 case ISD::SHL: { 7472 SDValue ShAmt = N->getOperand(1); 7473 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7474 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7475 SDLoc DL(N); 7476 EVT VT = N->getValueType(0); 7477 ShAmt = 7478 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7479 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7480 } 7481 break; 7482 } 7483 case RISCVISD::MUL_VL: { 7484 SDValue Op0 = N->getOperand(0); 7485 SDValue Op1 = N->getOperand(1); 7486 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7487 return V; 7488 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7489 return V; 7490 return SDValue(); 7491 } 7492 case ISD::STORE: { 7493 auto *Store = cast<StoreSDNode>(N); 7494 SDValue Val = Store->getValue(); 7495 // Combine store of vmv.x.s to vse with VL of 1. 7496 // FIXME: Support FP. 7497 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7498 SDValue Src = Val.getOperand(0); 7499 EVT VecVT = Src.getValueType(); 7500 EVT MemVT = Store->getMemoryVT(); 7501 // The memory VT and the element type must match. 7502 if (VecVT.getVectorElementType() == MemVT) { 7503 SDLoc DL(N); 7504 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7505 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7506 DAG.getConstant(1, DL, MaskVT), 7507 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7508 Store->getPointerInfo(), 7509 Store->getOriginalAlign(), 7510 Store->getMemOperand()->getFlags()); 7511 } 7512 } 7513 7514 break; 7515 } 7516 } 7517 7518 return SDValue(); 7519 } 7520 7521 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7522 const SDNode *N, CombineLevel Level) const { 7523 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7524 // materialised in fewer instructions than `(OP _, c1)`: 7525 // 7526 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7527 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7528 SDValue N0 = N->getOperand(0); 7529 EVT Ty = N0.getValueType(); 7530 if (Ty.isScalarInteger() && 7531 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7532 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7533 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7534 if (C1 && C2) { 7535 const APInt &C1Int = C1->getAPIntValue(); 7536 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7537 7538 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7539 // and the combine should happen, to potentially allow further combines 7540 // later. 7541 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7542 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7543 return true; 7544 7545 // We can materialise `c1` in an add immediate, so it's "free", and the 7546 // combine should be prevented. 7547 if (C1Int.getMinSignedBits() <= 64 && 7548 isLegalAddImmediate(C1Int.getSExtValue())) 7549 return false; 7550 7551 // Neither constant will fit into an immediate, so find materialisation 7552 // costs. 7553 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7554 Subtarget.getFeatureBits(), 7555 /*CompressionCost*/true); 7556 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7557 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7558 /*CompressionCost*/true); 7559 7560 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7561 // combine should be prevented. 7562 if (C1Cost < ShiftedC1Cost) 7563 return false; 7564 } 7565 } 7566 return true; 7567 } 7568 7569 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7570 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7571 TargetLoweringOpt &TLO) const { 7572 // Delay this optimization as late as possible. 7573 if (!TLO.LegalOps) 7574 return false; 7575 7576 EVT VT = Op.getValueType(); 7577 if (VT.isVector()) 7578 return false; 7579 7580 // Only handle AND for now. 7581 if (Op.getOpcode() != ISD::AND) 7582 return false; 7583 7584 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7585 if (!C) 7586 return false; 7587 7588 const APInt &Mask = C->getAPIntValue(); 7589 7590 // Clear all non-demanded bits initially. 7591 APInt ShrunkMask = Mask & DemandedBits; 7592 7593 // Try to make a smaller immediate by setting undemanded bits. 7594 7595 APInt ExpandedMask = Mask | ~DemandedBits; 7596 7597 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7598 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7599 }; 7600 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7601 if (NewMask == Mask) 7602 return true; 7603 SDLoc DL(Op); 7604 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7605 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7606 return TLO.CombineTo(Op, NewOp); 7607 }; 7608 7609 // If the shrunk mask fits in sign extended 12 bits, let the target 7610 // independent code apply it. 7611 if (ShrunkMask.isSignedIntN(12)) 7612 return false; 7613 7614 // Preserve (and X, 0xffff) when zext.h is supported. 7615 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7616 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7617 if (IsLegalMask(NewMask)) 7618 return UseMask(NewMask); 7619 } 7620 7621 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7622 if (VT == MVT::i64) { 7623 APInt NewMask = APInt(64, 0xffffffff); 7624 if (IsLegalMask(NewMask)) 7625 return UseMask(NewMask); 7626 } 7627 7628 // For the remaining optimizations, we need to be able to make a negative 7629 // number through a combination of mask and undemanded bits. 7630 if (!ExpandedMask.isNegative()) 7631 return false; 7632 7633 // What is the fewest number of bits we need to represent the negative number. 7634 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7635 7636 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7637 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7638 APInt NewMask = ShrunkMask; 7639 if (MinSignedBits <= 12) 7640 NewMask.setBitsFrom(11); 7641 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7642 NewMask.setBitsFrom(31); 7643 else 7644 return false; 7645 7646 // Check that our new mask is a subset of the demanded mask. 7647 assert(IsLegalMask(NewMask)); 7648 return UseMask(NewMask); 7649 } 7650 7651 static void computeGREV(APInt &Src, unsigned ShAmt) { 7652 ShAmt &= Src.getBitWidth() - 1; 7653 uint64_t x = Src.getZExtValue(); 7654 if (ShAmt & 1) 7655 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7656 if (ShAmt & 2) 7657 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7658 if (ShAmt & 4) 7659 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7660 if (ShAmt & 8) 7661 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7662 if (ShAmt & 16) 7663 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7664 if (ShAmt & 32) 7665 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7666 Src = x; 7667 } 7668 7669 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7670 KnownBits &Known, 7671 const APInt &DemandedElts, 7672 const SelectionDAG &DAG, 7673 unsigned Depth) const { 7674 unsigned BitWidth = Known.getBitWidth(); 7675 unsigned Opc = Op.getOpcode(); 7676 assert((Opc >= ISD::BUILTIN_OP_END || 7677 Opc == ISD::INTRINSIC_WO_CHAIN || 7678 Opc == ISD::INTRINSIC_W_CHAIN || 7679 Opc == ISD::INTRINSIC_VOID) && 7680 "Should use MaskedValueIsZero if you don't know whether Op" 7681 " is a target node!"); 7682 7683 Known.resetAll(); 7684 switch (Opc) { 7685 default: break; 7686 case RISCVISD::SELECT_CC: { 7687 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7688 // If we don't know any bits, early out. 7689 if (Known.isUnknown()) 7690 break; 7691 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7692 7693 // Only known if known in both the LHS and RHS. 7694 Known = KnownBits::commonBits(Known, Known2); 7695 break; 7696 } 7697 case RISCVISD::REMUW: { 7698 KnownBits Known2; 7699 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7700 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7701 // We only care about the lower 32 bits. 7702 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7703 // Restore the original width by sign extending. 7704 Known = Known.sext(BitWidth); 7705 break; 7706 } 7707 case RISCVISD::DIVUW: { 7708 KnownBits Known2; 7709 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7710 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7711 // We only care about the lower 32 bits. 7712 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7713 // Restore the original width by sign extending. 7714 Known = Known.sext(BitWidth); 7715 break; 7716 } 7717 case RISCVISD::CTZW: { 7718 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7719 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7720 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7721 Known.Zero.setBitsFrom(LowBits); 7722 break; 7723 } 7724 case RISCVISD::CLZW: { 7725 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7726 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7727 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7728 Known.Zero.setBitsFrom(LowBits); 7729 break; 7730 } 7731 case RISCVISD::GREV: 7732 case RISCVISD::GREVW: { 7733 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7734 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7735 if (Opc == RISCVISD::GREVW) 7736 Known = Known.trunc(32); 7737 unsigned ShAmt = C->getZExtValue(); 7738 computeGREV(Known.Zero, ShAmt); 7739 computeGREV(Known.One, ShAmt); 7740 if (Opc == RISCVISD::GREVW) 7741 Known = Known.sext(BitWidth); 7742 } 7743 break; 7744 } 7745 case RISCVISD::READ_VLENB: 7746 // We assume VLENB is at least 16 bytes. 7747 Known.Zero.setLowBits(4); 7748 // We assume VLENB is no more than 65536 / 8 bytes. 7749 Known.Zero.setBitsFrom(14); 7750 break; 7751 case ISD::INTRINSIC_W_CHAIN: { 7752 unsigned IntNo = Op.getConstantOperandVal(1); 7753 switch (IntNo) { 7754 default: 7755 // We can't do anything for most intrinsics. 7756 break; 7757 case Intrinsic::riscv_vsetvli: 7758 case Intrinsic::riscv_vsetvlimax: 7759 // Assume that VL output is positive and would fit in an int32_t. 7760 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7761 if (BitWidth >= 32) 7762 Known.Zero.setBitsFrom(31); 7763 break; 7764 } 7765 break; 7766 } 7767 } 7768 } 7769 7770 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7771 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7772 unsigned Depth) const { 7773 switch (Op.getOpcode()) { 7774 default: 7775 break; 7776 case RISCVISD::SELECT_CC: { 7777 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7778 if (Tmp == 1) return 1; // Early out. 7779 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7780 return std::min(Tmp, Tmp2); 7781 } 7782 case RISCVISD::SLLW: 7783 case RISCVISD::SRAW: 7784 case RISCVISD::SRLW: 7785 case RISCVISD::DIVW: 7786 case RISCVISD::DIVUW: 7787 case RISCVISD::REMUW: 7788 case RISCVISD::ROLW: 7789 case RISCVISD::RORW: 7790 case RISCVISD::GREVW: 7791 case RISCVISD::GORCW: 7792 case RISCVISD::FSLW: 7793 case RISCVISD::FSRW: 7794 case RISCVISD::SHFLW: 7795 case RISCVISD::UNSHFLW: 7796 case RISCVISD::BCOMPRESSW: 7797 case RISCVISD::BDECOMPRESSW: 7798 case RISCVISD::FCVT_W_RTZ_RV64: 7799 case RISCVISD::FCVT_WU_RTZ_RV64: 7800 case RISCVISD::STRICT_FCVT_W_RTZ_RV64: 7801 case RISCVISD::STRICT_FCVT_WU_RTZ_RV64: 7802 // TODO: As the result is sign-extended, this is conservatively correct. A 7803 // more precise answer could be calculated for SRAW depending on known 7804 // bits in the shift amount. 7805 return 33; 7806 case RISCVISD::SHFL: 7807 case RISCVISD::UNSHFL: { 7808 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7809 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7810 // will stay within the upper 32 bits. If there were more than 32 sign bits 7811 // before there will be at least 33 sign bits after. 7812 if (Op.getValueType() == MVT::i64 && 7813 isa<ConstantSDNode>(Op.getOperand(1)) && 7814 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7815 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7816 if (Tmp > 32) 7817 return 33; 7818 } 7819 break; 7820 } 7821 case RISCVISD::VMV_X_S: 7822 // The number of sign bits of the scalar result is computed by obtaining the 7823 // element type of the input vector operand, subtracting its width from the 7824 // XLEN, and then adding one (sign bit within the element type). If the 7825 // element type is wider than XLen, the least-significant XLEN bits are 7826 // taken. 7827 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7828 return 1; 7829 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7830 } 7831 7832 return 1; 7833 } 7834 7835 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7836 MachineBasicBlock *BB) { 7837 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7838 7839 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7840 // Should the count have wrapped while it was being read, we need to try 7841 // again. 7842 // ... 7843 // read: 7844 // rdcycleh x3 # load high word of cycle 7845 // rdcycle x2 # load low word of cycle 7846 // rdcycleh x4 # load high word of cycle 7847 // bne x3, x4, read # check if high word reads match, otherwise try again 7848 // ... 7849 7850 MachineFunction &MF = *BB->getParent(); 7851 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7852 MachineFunction::iterator It = ++BB->getIterator(); 7853 7854 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7855 MF.insert(It, LoopMBB); 7856 7857 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7858 MF.insert(It, DoneMBB); 7859 7860 // Transfer the remainder of BB and its successor edges to DoneMBB. 7861 DoneMBB->splice(DoneMBB->begin(), BB, 7862 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7863 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7864 7865 BB->addSuccessor(LoopMBB); 7866 7867 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7868 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7869 Register LoReg = MI.getOperand(0).getReg(); 7870 Register HiReg = MI.getOperand(1).getReg(); 7871 DebugLoc DL = MI.getDebugLoc(); 7872 7873 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7874 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7875 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7876 .addReg(RISCV::X0); 7877 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7878 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7879 .addReg(RISCV::X0); 7880 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7881 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7882 .addReg(RISCV::X0); 7883 7884 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7885 .addReg(HiReg) 7886 .addReg(ReadAgainReg) 7887 .addMBB(LoopMBB); 7888 7889 LoopMBB->addSuccessor(LoopMBB); 7890 LoopMBB->addSuccessor(DoneMBB); 7891 7892 MI.eraseFromParent(); 7893 7894 return DoneMBB; 7895 } 7896 7897 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7898 MachineBasicBlock *BB) { 7899 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7900 7901 MachineFunction &MF = *BB->getParent(); 7902 DebugLoc DL = MI.getDebugLoc(); 7903 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7904 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7905 Register LoReg = MI.getOperand(0).getReg(); 7906 Register HiReg = MI.getOperand(1).getReg(); 7907 Register SrcReg = MI.getOperand(2).getReg(); 7908 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7909 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7910 7911 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7912 RI); 7913 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7914 MachineMemOperand *MMOLo = 7915 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7916 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7917 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7918 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7919 .addFrameIndex(FI) 7920 .addImm(0) 7921 .addMemOperand(MMOLo); 7922 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7923 .addFrameIndex(FI) 7924 .addImm(4) 7925 .addMemOperand(MMOHi); 7926 MI.eraseFromParent(); // The pseudo instruction is gone now. 7927 return BB; 7928 } 7929 7930 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7931 MachineBasicBlock *BB) { 7932 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7933 "Unexpected instruction"); 7934 7935 MachineFunction &MF = *BB->getParent(); 7936 DebugLoc DL = MI.getDebugLoc(); 7937 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7938 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7939 Register DstReg = MI.getOperand(0).getReg(); 7940 Register LoReg = MI.getOperand(1).getReg(); 7941 Register HiReg = MI.getOperand(2).getReg(); 7942 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7943 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7944 7945 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7946 MachineMemOperand *MMOLo = 7947 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7948 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7949 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7950 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7951 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7952 .addFrameIndex(FI) 7953 .addImm(0) 7954 .addMemOperand(MMOLo); 7955 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7956 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7957 .addFrameIndex(FI) 7958 .addImm(4) 7959 .addMemOperand(MMOHi); 7960 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7961 MI.eraseFromParent(); // The pseudo instruction is gone now. 7962 return BB; 7963 } 7964 7965 static bool isSelectPseudo(MachineInstr &MI) { 7966 switch (MI.getOpcode()) { 7967 default: 7968 return false; 7969 case RISCV::Select_GPR_Using_CC_GPR: 7970 case RISCV::Select_FPR16_Using_CC_GPR: 7971 case RISCV::Select_FPR32_Using_CC_GPR: 7972 case RISCV::Select_FPR64_Using_CC_GPR: 7973 return true; 7974 } 7975 } 7976 7977 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7978 MachineBasicBlock *BB, 7979 const RISCVSubtarget &Subtarget) { 7980 // To "insert" Select_* instructions, we actually have to insert the triangle 7981 // control-flow pattern. The incoming instructions know the destination vreg 7982 // to set, the condition code register to branch on, the true/false values to 7983 // select between, and the condcode to use to select the appropriate branch. 7984 // 7985 // We produce the following control flow: 7986 // HeadMBB 7987 // | \ 7988 // | IfFalseMBB 7989 // | / 7990 // TailMBB 7991 // 7992 // When we find a sequence of selects we attempt to optimize their emission 7993 // by sharing the control flow. Currently we only handle cases where we have 7994 // multiple selects with the exact same condition (same LHS, RHS and CC). 7995 // The selects may be interleaved with other instructions if the other 7996 // instructions meet some requirements we deem safe: 7997 // - They are debug instructions. Otherwise, 7998 // - They do not have side-effects, do not access memory and their inputs do 7999 // not depend on the results of the select pseudo-instructions. 8000 // The TrueV/FalseV operands of the selects cannot depend on the result of 8001 // previous selects in the sequence. 8002 // These conditions could be further relaxed. See the X86 target for a 8003 // related approach and more information. 8004 Register LHS = MI.getOperand(1).getReg(); 8005 Register RHS = MI.getOperand(2).getReg(); 8006 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8007 8008 SmallVector<MachineInstr *, 4> SelectDebugValues; 8009 SmallSet<Register, 4> SelectDests; 8010 SelectDests.insert(MI.getOperand(0).getReg()); 8011 8012 MachineInstr *LastSelectPseudo = &MI; 8013 8014 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8015 SequenceMBBI != E; ++SequenceMBBI) { 8016 if (SequenceMBBI->isDebugInstr()) 8017 continue; 8018 else if (isSelectPseudo(*SequenceMBBI)) { 8019 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8020 SequenceMBBI->getOperand(2).getReg() != RHS || 8021 SequenceMBBI->getOperand(3).getImm() != CC || 8022 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8023 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8024 break; 8025 LastSelectPseudo = &*SequenceMBBI; 8026 SequenceMBBI->collectDebugValues(SelectDebugValues); 8027 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8028 } else { 8029 if (SequenceMBBI->hasUnmodeledSideEffects() || 8030 SequenceMBBI->mayLoadOrStore()) 8031 break; 8032 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8033 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8034 })) 8035 break; 8036 } 8037 } 8038 8039 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8040 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8041 DebugLoc DL = MI.getDebugLoc(); 8042 MachineFunction::iterator I = ++BB->getIterator(); 8043 8044 MachineBasicBlock *HeadMBB = BB; 8045 MachineFunction *F = BB->getParent(); 8046 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8047 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8048 8049 F->insert(I, IfFalseMBB); 8050 F->insert(I, TailMBB); 8051 8052 // Transfer debug instructions associated with the selects to TailMBB. 8053 for (MachineInstr *DebugInstr : SelectDebugValues) { 8054 TailMBB->push_back(DebugInstr->removeFromParent()); 8055 } 8056 8057 // Move all instructions after the sequence to TailMBB. 8058 TailMBB->splice(TailMBB->end(), HeadMBB, 8059 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8060 // Update machine-CFG edges by transferring all successors of the current 8061 // block to the new block which will contain the Phi nodes for the selects. 8062 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8063 // Set the successors for HeadMBB. 8064 HeadMBB->addSuccessor(IfFalseMBB); 8065 HeadMBB->addSuccessor(TailMBB); 8066 8067 // Insert appropriate branch. 8068 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8069 .addReg(LHS) 8070 .addReg(RHS) 8071 .addMBB(TailMBB); 8072 8073 // IfFalseMBB just falls through to TailMBB. 8074 IfFalseMBB->addSuccessor(TailMBB); 8075 8076 // Create PHIs for all of the select pseudo-instructions. 8077 auto SelectMBBI = MI.getIterator(); 8078 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8079 auto InsertionPoint = TailMBB->begin(); 8080 while (SelectMBBI != SelectEnd) { 8081 auto Next = std::next(SelectMBBI); 8082 if (isSelectPseudo(*SelectMBBI)) { 8083 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8084 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8085 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8086 .addReg(SelectMBBI->getOperand(4).getReg()) 8087 .addMBB(HeadMBB) 8088 .addReg(SelectMBBI->getOperand(5).getReg()) 8089 .addMBB(IfFalseMBB); 8090 SelectMBBI->eraseFromParent(); 8091 } 8092 SelectMBBI = Next; 8093 } 8094 8095 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8096 return TailMBB; 8097 } 8098 8099 MachineBasicBlock * 8100 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8101 MachineBasicBlock *BB) const { 8102 switch (MI.getOpcode()) { 8103 default: 8104 llvm_unreachable("Unexpected instr type to insert"); 8105 case RISCV::ReadCycleWide: 8106 assert(!Subtarget.is64Bit() && 8107 "ReadCycleWrite is only to be used on riscv32"); 8108 return emitReadCycleWidePseudo(MI, BB); 8109 case RISCV::Select_GPR_Using_CC_GPR: 8110 case RISCV::Select_FPR16_Using_CC_GPR: 8111 case RISCV::Select_FPR32_Using_CC_GPR: 8112 case RISCV::Select_FPR64_Using_CC_GPR: 8113 return emitSelectPseudo(MI, BB, Subtarget); 8114 case RISCV::BuildPairF64Pseudo: 8115 return emitBuildPairF64Pseudo(MI, BB); 8116 case RISCV::SplitF64Pseudo: 8117 return emitSplitF64Pseudo(MI, BB); 8118 } 8119 } 8120 8121 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8122 SDNode *Node) const { 8123 // Add FRM dependency to any instructions with dynamic rounding mode. 8124 unsigned Opc = MI.getOpcode(); 8125 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8126 if (Idx < 0) 8127 return; 8128 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8129 return; 8130 // If the instruction already reads FRM, don't add another read. 8131 if (MI.readsRegister(RISCV::FRM)) 8132 return; 8133 MI.addOperand( 8134 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8135 } 8136 8137 // Calling Convention Implementation. 8138 // The expectations for frontend ABI lowering vary from target to target. 8139 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8140 // details, but this is a longer term goal. For now, we simply try to keep the 8141 // role of the frontend as simple and well-defined as possible. The rules can 8142 // be summarised as: 8143 // * Never split up large scalar arguments. We handle them here. 8144 // * If a hardfloat calling convention is being used, and the struct may be 8145 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8146 // available, then pass as two separate arguments. If either the GPRs or FPRs 8147 // are exhausted, then pass according to the rule below. 8148 // * If a struct could never be passed in registers or directly in a stack 8149 // slot (as it is larger than 2*XLEN and the floating point rules don't 8150 // apply), then pass it using a pointer with the byval attribute. 8151 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8152 // word-sized array or a 2*XLEN scalar (depending on alignment). 8153 // * The frontend can determine whether a struct is returned by reference or 8154 // not based on its size and fields. If it will be returned by reference, the 8155 // frontend must modify the prototype so a pointer with the sret annotation is 8156 // passed as the first argument. This is not necessary for large scalar 8157 // returns. 8158 // * Struct return values and varargs should be coerced to structs containing 8159 // register-size fields in the same situations they would be for fixed 8160 // arguments. 8161 8162 static const MCPhysReg ArgGPRs[] = { 8163 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8164 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8165 }; 8166 static const MCPhysReg ArgFPR16s[] = { 8167 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8168 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8169 }; 8170 static const MCPhysReg ArgFPR32s[] = { 8171 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8172 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8173 }; 8174 static const MCPhysReg ArgFPR64s[] = { 8175 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8176 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8177 }; 8178 // This is an interim calling convention and it may be changed in the future. 8179 static const MCPhysReg ArgVRs[] = { 8180 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8181 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8182 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8183 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8184 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8185 RISCV::V20M2, RISCV::V22M2}; 8186 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8187 RISCV::V20M4}; 8188 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8189 8190 // Pass a 2*XLEN argument that has been split into two XLEN values through 8191 // registers or the stack as necessary. 8192 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8193 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8194 MVT ValVT2, MVT LocVT2, 8195 ISD::ArgFlagsTy ArgFlags2) { 8196 unsigned XLenInBytes = XLen / 8; 8197 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8198 // At least one half can be passed via register. 8199 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8200 VA1.getLocVT(), CCValAssign::Full)); 8201 } else { 8202 // Both halves must be passed on the stack, with proper alignment. 8203 Align StackAlign = 8204 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8205 State.addLoc( 8206 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8207 State.AllocateStack(XLenInBytes, StackAlign), 8208 VA1.getLocVT(), CCValAssign::Full)); 8209 State.addLoc(CCValAssign::getMem( 8210 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8211 LocVT2, CCValAssign::Full)); 8212 return false; 8213 } 8214 8215 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8216 // The second half can also be passed via register. 8217 State.addLoc( 8218 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8219 } else { 8220 // The second half is passed via the stack, without additional alignment. 8221 State.addLoc(CCValAssign::getMem( 8222 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8223 LocVT2, CCValAssign::Full)); 8224 } 8225 8226 return false; 8227 } 8228 8229 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8230 Optional<unsigned> FirstMaskArgument, 8231 CCState &State, const RISCVTargetLowering &TLI) { 8232 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8233 if (RC == &RISCV::VRRegClass) { 8234 // Assign the first mask argument to V0. 8235 // This is an interim calling convention and it may be changed in the 8236 // future. 8237 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8238 return State.AllocateReg(RISCV::V0); 8239 return State.AllocateReg(ArgVRs); 8240 } 8241 if (RC == &RISCV::VRM2RegClass) 8242 return State.AllocateReg(ArgVRM2s); 8243 if (RC == &RISCV::VRM4RegClass) 8244 return State.AllocateReg(ArgVRM4s); 8245 if (RC == &RISCV::VRM8RegClass) 8246 return State.AllocateReg(ArgVRM8s); 8247 llvm_unreachable("Unhandled register class for ValueType"); 8248 } 8249 8250 // Implements the RISC-V calling convention. Returns true upon failure. 8251 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8252 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8253 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8254 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8255 Optional<unsigned> FirstMaskArgument) { 8256 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8257 assert(XLen == 32 || XLen == 64); 8258 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8259 8260 // Any return value split in to more than two values can't be returned 8261 // directly. Vectors are returned via the available vector registers. 8262 if (!LocVT.isVector() && IsRet && ValNo > 1) 8263 return true; 8264 8265 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8266 // variadic argument, or if no F16/F32 argument registers are available. 8267 bool UseGPRForF16_F32 = true; 8268 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8269 // variadic argument, or if no F64 argument registers are available. 8270 bool UseGPRForF64 = true; 8271 8272 switch (ABI) { 8273 default: 8274 llvm_unreachable("Unexpected ABI"); 8275 case RISCVABI::ABI_ILP32: 8276 case RISCVABI::ABI_LP64: 8277 break; 8278 case RISCVABI::ABI_ILP32F: 8279 case RISCVABI::ABI_LP64F: 8280 UseGPRForF16_F32 = !IsFixed; 8281 break; 8282 case RISCVABI::ABI_ILP32D: 8283 case RISCVABI::ABI_LP64D: 8284 UseGPRForF16_F32 = !IsFixed; 8285 UseGPRForF64 = !IsFixed; 8286 break; 8287 } 8288 8289 // FPR16, FPR32, and FPR64 alias each other. 8290 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8291 UseGPRForF16_F32 = true; 8292 UseGPRForF64 = true; 8293 } 8294 8295 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8296 // similar local variables rather than directly checking against the target 8297 // ABI. 8298 8299 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8300 LocVT = XLenVT; 8301 LocInfo = CCValAssign::BCvt; 8302 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8303 LocVT = MVT::i64; 8304 LocInfo = CCValAssign::BCvt; 8305 } 8306 8307 // If this is a variadic argument, the RISC-V calling convention requires 8308 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8309 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8310 // be used regardless of whether the original argument was split during 8311 // legalisation or not. The argument will not be passed by registers if the 8312 // original type is larger than 2*XLEN, so the register alignment rule does 8313 // not apply. 8314 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8315 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8316 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8317 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8318 // Skip 'odd' register if necessary. 8319 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8320 State.AllocateReg(ArgGPRs); 8321 } 8322 8323 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8324 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8325 State.getPendingArgFlags(); 8326 8327 assert(PendingLocs.size() == PendingArgFlags.size() && 8328 "PendingLocs and PendingArgFlags out of sync"); 8329 8330 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8331 // registers are exhausted. 8332 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8333 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8334 "Can't lower f64 if it is split"); 8335 // Depending on available argument GPRS, f64 may be passed in a pair of 8336 // GPRs, split between a GPR and the stack, or passed completely on the 8337 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8338 // cases. 8339 Register Reg = State.AllocateReg(ArgGPRs); 8340 LocVT = MVT::i32; 8341 if (!Reg) { 8342 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8343 State.addLoc( 8344 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8345 return false; 8346 } 8347 if (!State.AllocateReg(ArgGPRs)) 8348 State.AllocateStack(4, Align(4)); 8349 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8350 return false; 8351 } 8352 8353 // Fixed-length vectors are located in the corresponding scalable-vector 8354 // container types. 8355 if (ValVT.isFixedLengthVector()) 8356 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8357 8358 // Split arguments might be passed indirectly, so keep track of the pending 8359 // values. Split vectors are passed via a mix of registers and indirectly, so 8360 // treat them as we would any other argument. 8361 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8362 LocVT = XLenVT; 8363 LocInfo = CCValAssign::Indirect; 8364 PendingLocs.push_back( 8365 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8366 PendingArgFlags.push_back(ArgFlags); 8367 if (!ArgFlags.isSplitEnd()) { 8368 return false; 8369 } 8370 } 8371 8372 // If the split argument only had two elements, it should be passed directly 8373 // in registers or on the stack. 8374 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8375 PendingLocs.size() <= 2) { 8376 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8377 // Apply the normal calling convention rules to the first half of the 8378 // split argument. 8379 CCValAssign VA = PendingLocs[0]; 8380 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8381 PendingLocs.clear(); 8382 PendingArgFlags.clear(); 8383 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8384 ArgFlags); 8385 } 8386 8387 // Allocate to a register if possible, or else a stack slot. 8388 Register Reg; 8389 unsigned StoreSizeBytes = XLen / 8; 8390 Align StackAlign = Align(XLen / 8); 8391 8392 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8393 Reg = State.AllocateReg(ArgFPR16s); 8394 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8395 Reg = State.AllocateReg(ArgFPR32s); 8396 else if (ValVT == MVT::f64 && !UseGPRForF64) 8397 Reg = State.AllocateReg(ArgFPR64s); 8398 else if (ValVT.isVector()) { 8399 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8400 if (!Reg) { 8401 // For return values, the vector must be passed fully via registers or 8402 // via the stack. 8403 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8404 // but we're using all of them. 8405 if (IsRet) 8406 return true; 8407 // Try using a GPR to pass the address 8408 if ((Reg = State.AllocateReg(ArgGPRs))) { 8409 LocVT = XLenVT; 8410 LocInfo = CCValAssign::Indirect; 8411 } else if (ValVT.isScalableVector()) { 8412 LocVT = XLenVT; 8413 LocInfo = CCValAssign::Indirect; 8414 } else { 8415 // Pass fixed-length vectors on the stack. 8416 LocVT = ValVT; 8417 StoreSizeBytes = ValVT.getStoreSize(); 8418 // Align vectors to their element sizes, being careful for vXi1 8419 // vectors. 8420 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8421 } 8422 } 8423 } else { 8424 Reg = State.AllocateReg(ArgGPRs); 8425 } 8426 8427 unsigned StackOffset = 8428 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8429 8430 // If we reach this point and PendingLocs is non-empty, we must be at the 8431 // end of a split argument that must be passed indirectly. 8432 if (!PendingLocs.empty()) { 8433 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8434 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8435 8436 for (auto &It : PendingLocs) { 8437 if (Reg) 8438 It.convertToReg(Reg); 8439 else 8440 It.convertToMem(StackOffset); 8441 State.addLoc(It); 8442 } 8443 PendingLocs.clear(); 8444 PendingArgFlags.clear(); 8445 return false; 8446 } 8447 8448 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8449 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8450 "Expected an XLenVT or vector types at this stage"); 8451 8452 if (Reg) { 8453 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8454 return false; 8455 } 8456 8457 // When a floating-point value is passed on the stack, no bit-conversion is 8458 // needed. 8459 if (ValVT.isFloatingPoint()) { 8460 LocVT = ValVT; 8461 LocInfo = CCValAssign::Full; 8462 } 8463 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8464 return false; 8465 } 8466 8467 template <typename ArgTy> 8468 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8469 for (const auto &ArgIdx : enumerate(Args)) { 8470 MVT ArgVT = ArgIdx.value().VT; 8471 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8472 return ArgIdx.index(); 8473 } 8474 return None; 8475 } 8476 8477 void RISCVTargetLowering::analyzeInputArgs( 8478 MachineFunction &MF, CCState &CCInfo, 8479 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8480 RISCVCCAssignFn Fn) const { 8481 unsigned NumArgs = Ins.size(); 8482 FunctionType *FType = MF.getFunction().getFunctionType(); 8483 8484 Optional<unsigned> FirstMaskArgument; 8485 if (Subtarget.hasVInstructions()) 8486 FirstMaskArgument = preAssignMask(Ins); 8487 8488 for (unsigned i = 0; i != NumArgs; ++i) { 8489 MVT ArgVT = Ins[i].VT; 8490 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8491 8492 Type *ArgTy = nullptr; 8493 if (IsRet) 8494 ArgTy = FType->getReturnType(); 8495 else if (Ins[i].isOrigArg()) 8496 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8497 8498 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8499 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8500 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8501 FirstMaskArgument)) { 8502 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8503 << EVT(ArgVT).getEVTString() << '\n'); 8504 llvm_unreachable(nullptr); 8505 } 8506 } 8507 } 8508 8509 void RISCVTargetLowering::analyzeOutputArgs( 8510 MachineFunction &MF, CCState &CCInfo, 8511 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8512 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8513 unsigned NumArgs = Outs.size(); 8514 8515 Optional<unsigned> FirstMaskArgument; 8516 if (Subtarget.hasVInstructions()) 8517 FirstMaskArgument = preAssignMask(Outs); 8518 8519 for (unsigned i = 0; i != NumArgs; i++) { 8520 MVT ArgVT = Outs[i].VT; 8521 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8522 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8523 8524 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8525 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8526 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8527 FirstMaskArgument)) { 8528 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8529 << EVT(ArgVT).getEVTString() << "\n"); 8530 llvm_unreachable(nullptr); 8531 } 8532 } 8533 } 8534 8535 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8536 // values. 8537 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8538 const CCValAssign &VA, const SDLoc &DL, 8539 const RISCVSubtarget &Subtarget) { 8540 switch (VA.getLocInfo()) { 8541 default: 8542 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8543 case CCValAssign::Full: 8544 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8545 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8546 break; 8547 case CCValAssign::BCvt: 8548 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8549 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8550 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8551 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8552 else 8553 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8554 break; 8555 } 8556 return Val; 8557 } 8558 8559 // The caller is responsible for loading the full value if the argument is 8560 // passed with CCValAssign::Indirect. 8561 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8562 const CCValAssign &VA, const SDLoc &DL, 8563 const RISCVTargetLowering &TLI) { 8564 MachineFunction &MF = DAG.getMachineFunction(); 8565 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8566 EVT LocVT = VA.getLocVT(); 8567 SDValue Val; 8568 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8569 Register VReg = RegInfo.createVirtualRegister(RC); 8570 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8571 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8572 8573 if (VA.getLocInfo() == CCValAssign::Indirect) 8574 return Val; 8575 8576 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8577 } 8578 8579 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8580 const CCValAssign &VA, const SDLoc &DL, 8581 const RISCVSubtarget &Subtarget) { 8582 EVT LocVT = VA.getLocVT(); 8583 8584 switch (VA.getLocInfo()) { 8585 default: 8586 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8587 case CCValAssign::Full: 8588 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8589 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8590 break; 8591 case CCValAssign::BCvt: 8592 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8593 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8594 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8595 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8596 else 8597 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8598 break; 8599 } 8600 return Val; 8601 } 8602 8603 // The caller is responsible for loading the full value if the argument is 8604 // passed with CCValAssign::Indirect. 8605 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8606 const CCValAssign &VA, const SDLoc &DL) { 8607 MachineFunction &MF = DAG.getMachineFunction(); 8608 MachineFrameInfo &MFI = MF.getFrameInfo(); 8609 EVT LocVT = VA.getLocVT(); 8610 EVT ValVT = VA.getValVT(); 8611 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8612 if (ValVT.isScalableVector()) { 8613 // When the value is a scalable vector, we save the pointer which points to 8614 // the scalable vector value in the stack. The ValVT will be the pointer 8615 // type, instead of the scalable vector type. 8616 ValVT = LocVT; 8617 } 8618 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8619 /*Immutable=*/true); 8620 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8621 SDValue Val; 8622 8623 ISD::LoadExtType ExtType; 8624 switch (VA.getLocInfo()) { 8625 default: 8626 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8627 case CCValAssign::Full: 8628 case CCValAssign::Indirect: 8629 case CCValAssign::BCvt: 8630 ExtType = ISD::NON_EXTLOAD; 8631 break; 8632 } 8633 Val = DAG.getExtLoad( 8634 ExtType, DL, LocVT, Chain, FIN, 8635 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8636 return Val; 8637 } 8638 8639 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8640 const CCValAssign &VA, const SDLoc &DL) { 8641 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8642 "Unexpected VA"); 8643 MachineFunction &MF = DAG.getMachineFunction(); 8644 MachineFrameInfo &MFI = MF.getFrameInfo(); 8645 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8646 8647 if (VA.isMemLoc()) { 8648 // f64 is passed on the stack. 8649 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8650 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8651 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8652 MachinePointerInfo::getFixedStack(MF, FI)); 8653 } 8654 8655 assert(VA.isRegLoc() && "Expected register VA assignment"); 8656 8657 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8658 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8659 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8660 SDValue Hi; 8661 if (VA.getLocReg() == RISCV::X17) { 8662 // Second half of f64 is passed on the stack. 8663 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8664 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8665 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8666 MachinePointerInfo::getFixedStack(MF, FI)); 8667 } else { 8668 // Second half of f64 is passed in another GPR. 8669 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8670 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8671 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8672 } 8673 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8674 } 8675 8676 // FastCC has less than 1% performance improvement for some particular 8677 // benchmark. But theoretically, it may has benenfit for some cases. 8678 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8679 unsigned ValNo, MVT ValVT, MVT LocVT, 8680 CCValAssign::LocInfo LocInfo, 8681 ISD::ArgFlagsTy ArgFlags, CCState &State, 8682 bool IsFixed, bool IsRet, Type *OrigTy, 8683 const RISCVTargetLowering &TLI, 8684 Optional<unsigned> FirstMaskArgument) { 8685 8686 // X5 and X6 might be used for save-restore libcall. 8687 static const MCPhysReg GPRList[] = { 8688 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8689 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8690 RISCV::X29, RISCV::X30, RISCV::X31}; 8691 8692 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8693 if (unsigned Reg = State.AllocateReg(GPRList)) { 8694 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8695 return false; 8696 } 8697 } 8698 8699 if (LocVT == MVT::f16) { 8700 static const MCPhysReg FPR16List[] = { 8701 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8702 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8703 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8704 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8705 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8706 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8707 return false; 8708 } 8709 } 8710 8711 if (LocVT == MVT::f32) { 8712 static const MCPhysReg FPR32List[] = { 8713 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8714 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8715 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8716 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8717 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8718 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8719 return false; 8720 } 8721 } 8722 8723 if (LocVT == MVT::f64) { 8724 static const MCPhysReg FPR64List[] = { 8725 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8726 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8727 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8728 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8729 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8730 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8731 return false; 8732 } 8733 } 8734 8735 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8736 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8737 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8738 return false; 8739 } 8740 8741 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8742 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8743 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8744 return false; 8745 } 8746 8747 if (LocVT.isVector()) { 8748 if (unsigned Reg = 8749 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8750 // Fixed-length vectors are located in the corresponding scalable-vector 8751 // container types. 8752 if (ValVT.isFixedLengthVector()) 8753 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8754 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8755 } else { 8756 // Try and pass the address via a "fast" GPR. 8757 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8758 LocInfo = CCValAssign::Indirect; 8759 LocVT = TLI.getSubtarget().getXLenVT(); 8760 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8761 } else if (ValVT.isFixedLengthVector()) { 8762 auto StackAlign = 8763 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8764 unsigned StackOffset = 8765 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8766 State.addLoc( 8767 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8768 } else { 8769 // Can't pass scalable vectors on the stack. 8770 return true; 8771 } 8772 } 8773 8774 return false; 8775 } 8776 8777 return true; // CC didn't match. 8778 } 8779 8780 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8781 CCValAssign::LocInfo LocInfo, 8782 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8783 8784 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8785 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8786 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8787 static const MCPhysReg GPRList[] = { 8788 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8789 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8790 if (unsigned Reg = State.AllocateReg(GPRList)) { 8791 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8792 return false; 8793 } 8794 } 8795 8796 if (LocVT == MVT::f32) { 8797 // Pass in STG registers: F1, ..., F6 8798 // fs0 ... fs5 8799 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8800 RISCV::F18_F, RISCV::F19_F, 8801 RISCV::F20_F, RISCV::F21_F}; 8802 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8803 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8804 return false; 8805 } 8806 } 8807 8808 if (LocVT == MVT::f64) { 8809 // Pass in STG registers: D1, ..., D6 8810 // fs6 ... fs11 8811 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8812 RISCV::F24_D, RISCV::F25_D, 8813 RISCV::F26_D, RISCV::F27_D}; 8814 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8815 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8816 return false; 8817 } 8818 } 8819 8820 report_fatal_error("No registers left in GHC calling convention"); 8821 return true; 8822 } 8823 8824 // Transform physical registers into virtual registers. 8825 SDValue RISCVTargetLowering::LowerFormalArguments( 8826 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8827 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8828 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8829 8830 MachineFunction &MF = DAG.getMachineFunction(); 8831 8832 switch (CallConv) { 8833 default: 8834 report_fatal_error("Unsupported calling convention"); 8835 case CallingConv::C: 8836 case CallingConv::Fast: 8837 break; 8838 case CallingConv::GHC: 8839 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8840 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8841 report_fatal_error( 8842 "GHC calling convention requires the F and D instruction set extensions"); 8843 } 8844 8845 const Function &Func = MF.getFunction(); 8846 if (Func.hasFnAttribute("interrupt")) { 8847 if (!Func.arg_empty()) 8848 report_fatal_error( 8849 "Functions with the interrupt attribute cannot have arguments!"); 8850 8851 StringRef Kind = 8852 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8853 8854 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8855 report_fatal_error( 8856 "Function interrupt attribute argument not supported!"); 8857 } 8858 8859 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8860 MVT XLenVT = Subtarget.getXLenVT(); 8861 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8862 // Used with vargs to acumulate store chains. 8863 std::vector<SDValue> OutChains; 8864 8865 // Assign locations to all of the incoming arguments. 8866 SmallVector<CCValAssign, 16> ArgLocs; 8867 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8868 8869 if (CallConv == CallingConv::GHC) 8870 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8871 else 8872 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8873 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8874 : CC_RISCV); 8875 8876 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8877 CCValAssign &VA = ArgLocs[i]; 8878 SDValue ArgValue; 8879 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8880 // case. 8881 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8882 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8883 else if (VA.isRegLoc()) 8884 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8885 else 8886 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8887 8888 if (VA.getLocInfo() == CCValAssign::Indirect) { 8889 // If the original argument was split and passed by reference (e.g. i128 8890 // on RV32), we need to load all parts of it here (using the same 8891 // address). Vectors may be partly split to registers and partly to the 8892 // stack, in which case the base address is partly offset and subsequent 8893 // stores are relative to that. 8894 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8895 MachinePointerInfo())); 8896 unsigned ArgIndex = Ins[i].OrigArgIndex; 8897 unsigned ArgPartOffset = Ins[i].PartOffset; 8898 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8899 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8900 CCValAssign &PartVA = ArgLocs[i + 1]; 8901 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8902 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8903 if (PartVA.getValVT().isScalableVector()) 8904 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8905 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8906 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8907 MachinePointerInfo())); 8908 ++i; 8909 } 8910 continue; 8911 } 8912 InVals.push_back(ArgValue); 8913 } 8914 8915 if (IsVarArg) { 8916 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8917 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8918 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8919 MachineFrameInfo &MFI = MF.getFrameInfo(); 8920 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8921 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8922 8923 // Offset of the first variable argument from stack pointer, and size of 8924 // the vararg save area. For now, the varargs save area is either zero or 8925 // large enough to hold a0-a7. 8926 int VaArgOffset, VarArgsSaveSize; 8927 8928 // If all registers are allocated, then all varargs must be passed on the 8929 // stack and we don't need to save any argregs. 8930 if (ArgRegs.size() == Idx) { 8931 VaArgOffset = CCInfo.getNextStackOffset(); 8932 VarArgsSaveSize = 0; 8933 } else { 8934 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8935 VaArgOffset = -VarArgsSaveSize; 8936 } 8937 8938 // Record the frame index of the first variable argument 8939 // which is a value necessary to VASTART. 8940 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8941 RVFI->setVarArgsFrameIndex(FI); 8942 8943 // If saving an odd number of registers then create an extra stack slot to 8944 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8945 // offsets to even-numbered registered remain 2*XLEN-aligned. 8946 if (Idx % 2) { 8947 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8948 VarArgsSaveSize += XLenInBytes; 8949 } 8950 8951 // Copy the integer registers that may have been used for passing varargs 8952 // to the vararg save area. 8953 for (unsigned I = Idx; I < ArgRegs.size(); 8954 ++I, VaArgOffset += XLenInBytes) { 8955 const Register Reg = RegInfo.createVirtualRegister(RC); 8956 RegInfo.addLiveIn(ArgRegs[I], Reg); 8957 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8958 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8959 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8960 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8961 MachinePointerInfo::getFixedStack(MF, FI)); 8962 cast<StoreSDNode>(Store.getNode()) 8963 ->getMemOperand() 8964 ->setValue((Value *)nullptr); 8965 OutChains.push_back(Store); 8966 } 8967 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8968 } 8969 8970 // All stores are grouped in one node to allow the matching between 8971 // the size of Ins and InVals. This only happens for vararg functions. 8972 if (!OutChains.empty()) { 8973 OutChains.push_back(Chain); 8974 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8975 } 8976 8977 return Chain; 8978 } 8979 8980 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8981 /// for tail call optimization. 8982 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8983 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8984 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8985 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8986 8987 auto &Callee = CLI.Callee; 8988 auto CalleeCC = CLI.CallConv; 8989 auto &Outs = CLI.Outs; 8990 auto &Caller = MF.getFunction(); 8991 auto CallerCC = Caller.getCallingConv(); 8992 8993 // Exception-handling functions need a special set of instructions to 8994 // indicate a return to the hardware. Tail-calling another function would 8995 // probably break this. 8996 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8997 // should be expanded as new function attributes are introduced. 8998 if (Caller.hasFnAttribute("interrupt")) 8999 return false; 9000 9001 // Do not tail call opt if the stack is used to pass parameters. 9002 if (CCInfo.getNextStackOffset() != 0) 9003 return false; 9004 9005 // Do not tail call opt if any parameters need to be passed indirectly. 9006 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9007 // passed indirectly. So the address of the value will be passed in a 9008 // register, or if not available, then the address is put on the stack. In 9009 // order to pass indirectly, space on the stack often needs to be allocated 9010 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9011 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9012 // are passed CCValAssign::Indirect. 9013 for (auto &VA : ArgLocs) 9014 if (VA.getLocInfo() == CCValAssign::Indirect) 9015 return false; 9016 9017 // Do not tail call opt if either caller or callee uses struct return 9018 // semantics. 9019 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9020 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9021 if (IsCallerStructRet || IsCalleeStructRet) 9022 return false; 9023 9024 // Externally-defined functions with weak linkage should not be 9025 // tail-called. The behaviour of branch instructions in this situation (as 9026 // used for tail calls) is implementation-defined, so we cannot rely on the 9027 // linker replacing the tail call with a return. 9028 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9029 const GlobalValue *GV = G->getGlobal(); 9030 if (GV->hasExternalWeakLinkage()) 9031 return false; 9032 } 9033 9034 // The callee has to preserve all registers the caller needs to preserve. 9035 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9036 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9037 if (CalleeCC != CallerCC) { 9038 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9039 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9040 return false; 9041 } 9042 9043 // Byval parameters hand the function a pointer directly into the stack area 9044 // we want to reuse during a tail call. Working around this *is* possible 9045 // but less efficient and uglier in LowerCall. 9046 for (auto &Arg : Outs) 9047 if (Arg.Flags.isByVal()) 9048 return false; 9049 9050 return true; 9051 } 9052 9053 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9054 return DAG.getDataLayout().getPrefTypeAlign( 9055 VT.getTypeForEVT(*DAG.getContext())); 9056 } 9057 9058 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9059 // and output parameter nodes. 9060 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9061 SmallVectorImpl<SDValue> &InVals) const { 9062 SelectionDAG &DAG = CLI.DAG; 9063 SDLoc &DL = CLI.DL; 9064 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9065 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9066 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9067 SDValue Chain = CLI.Chain; 9068 SDValue Callee = CLI.Callee; 9069 bool &IsTailCall = CLI.IsTailCall; 9070 CallingConv::ID CallConv = CLI.CallConv; 9071 bool IsVarArg = CLI.IsVarArg; 9072 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9073 MVT XLenVT = Subtarget.getXLenVT(); 9074 9075 MachineFunction &MF = DAG.getMachineFunction(); 9076 9077 // Analyze the operands of the call, assigning locations to each operand. 9078 SmallVector<CCValAssign, 16> ArgLocs; 9079 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9080 9081 if (CallConv == CallingConv::GHC) 9082 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9083 else 9084 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9085 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9086 : CC_RISCV); 9087 9088 // Check if it's really possible to do a tail call. 9089 if (IsTailCall) 9090 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9091 9092 if (IsTailCall) 9093 ++NumTailCalls; 9094 else if (CLI.CB && CLI.CB->isMustTailCall()) 9095 report_fatal_error("failed to perform tail call elimination on a call " 9096 "site marked musttail"); 9097 9098 // Get a count of how many bytes are to be pushed on the stack. 9099 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9100 9101 // Create local copies for byval args 9102 SmallVector<SDValue, 8> ByValArgs; 9103 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9104 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9105 if (!Flags.isByVal()) 9106 continue; 9107 9108 SDValue Arg = OutVals[i]; 9109 unsigned Size = Flags.getByValSize(); 9110 Align Alignment = Flags.getNonZeroByValAlign(); 9111 9112 int FI = 9113 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9114 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9115 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9116 9117 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9118 /*IsVolatile=*/false, 9119 /*AlwaysInline=*/false, IsTailCall, 9120 MachinePointerInfo(), MachinePointerInfo()); 9121 ByValArgs.push_back(FIPtr); 9122 } 9123 9124 if (!IsTailCall) 9125 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9126 9127 // Copy argument values to their designated locations. 9128 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9129 SmallVector<SDValue, 8> MemOpChains; 9130 SDValue StackPtr; 9131 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9132 CCValAssign &VA = ArgLocs[i]; 9133 SDValue ArgValue = OutVals[i]; 9134 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9135 9136 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9137 bool IsF64OnRV32DSoftABI = 9138 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9139 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9140 SDValue SplitF64 = DAG.getNode( 9141 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9142 SDValue Lo = SplitF64.getValue(0); 9143 SDValue Hi = SplitF64.getValue(1); 9144 9145 Register RegLo = VA.getLocReg(); 9146 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9147 9148 if (RegLo == RISCV::X17) { 9149 // Second half of f64 is passed on the stack. 9150 // Work out the address of the stack slot. 9151 if (!StackPtr.getNode()) 9152 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9153 // Emit the store. 9154 MemOpChains.push_back( 9155 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9156 } else { 9157 // Second half of f64 is passed in another GPR. 9158 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9159 Register RegHigh = RegLo + 1; 9160 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9161 } 9162 continue; 9163 } 9164 9165 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9166 // as any other MemLoc. 9167 9168 // Promote the value if needed. 9169 // For now, only handle fully promoted and indirect arguments. 9170 if (VA.getLocInfo() == CCValAssign::Indirect) { 9171 // Store the argument in a stack slot and pass its address. 9172 Align StackAlign = 9173 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9174 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9175 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9176 // If the original argument was split (e.g. i128), we need 9177 // to store the required parts of it here (and pass just one address). 9178 // Vectors may be partly split to registers and partly to the stack, in 9179 // which case the base address is partly offset and subsequent stores are 9180 // relative to that. 9181 unsigned ArgIndex = Outs[i].OrigArgIndex; 9182 unsigned ArgPartOffset = Outs[i].PartOffset; 9183 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9184 // Calculate the total size to store. We don't have access to what we're 9185 // actually storing other than performing the loop and collecting the 9186 // info. 9187 SmallVector<std::pair<SDValue, SDValue>> Parts; 9188 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9189 SDValue PartValue = OutVals[i + 1]; 9190 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9191 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9192 EVT PartVT = PartValue.getValueType(); 9193 if (PartVT.isScalableVector()) 9194 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9195 StoredSize += PartVT.getStoreSize(); 9196 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9197 Parts.push_back(std::make_pair(PartValue, Offset)); 9198 ++i; 9199 } 9200 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9201 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9202 MemOpChains.push_back( 9203 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9204 MachinePointerInfo::getFixedStack(MF, FI))); 9205 for (const auto &Part : Parts) { 9206 SDValue PartValue = Part.first; 9207 SDValue PartOffset = Part.second; 9208 SDValue Address = 9209 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9210 MemOpChains.push_back( 9211 DAG.getStore(Chain, DL, PartValue, Address, 9212 MachinePointerInfo::getFixedStack(MF, FI))); 9213 } 9214 ArgValue = SpillSlot; 9215 } else { 9216 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9217 } 9218 9219 // Use local copy if it is a byval arg. 9220 if (Flags.isByVal()) 9221 ArgValue = ByValArgs[j++]; 9222 9223 if (VA.isRegLoc()) { 9224 // Queue up the argument copies and emit them at the end. 9225 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9226 } else { 9227 assert(VA.isMemLoc() && "Argument not register or memory"); 9228 assert(!IsTailCall && "Tail call not allowed if stack is used " 9229 "for passing parameters"); 9230 9231 // Work out the address of the stack slot. 9232 if (!StackPtr.getNode()) 9233 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9234 SDValue Address = 9235 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9236 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9237 9238 // Emit the store. 9239 MemOpChains.push_back( 9240 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9241 } 9242 } 9243 9244 // Join the stores, which are independent of one another. 9245 if (!MemOpChains.empty()) 9246 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9247 9248 SDValue Glue; 9249 9250 // Build a sequence of copy-to-reg nodes, chained and glued together. 9251 for (auto &Reg : RegsToPass) { 9252 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9253 Glue = Chain.getValue(1); 9254 } 9255 9256 // Validate that none of the argument registers have been marked as 9257 // reserved, if so report an error. Do the same for the return address if this 9258 // is not a tailcall. 9259 validateCCReservedRegs(RegsToPass, MF); 9260 if (!IsTailCall && 9261 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9262 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9263 MF.getFunction(), 9264 "Return address register required, but has been reserved."}); 9265 9266 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9267 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9268 // split it and then direct call can be matched by PseudoCALL. 9269 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9270 const GlobalValue *GV = S->getGlobal(); 9271 9272 unsigned OpFlags = RISCVII::MO_CALL; 9273 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9274 OpFlags = RISCVII::MO_PLT; 9275 9276 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9277 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9278 unsigned OpFlags = RISCVII::MO_CALL; 9279 9280 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9281 nullptr)) 9282 OpFlags = RISCVII::MO_PLT; 9283 9284 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9285 } 9286 9287 // The first call operand is the chain and the second is the target address. 9288 SmallVector<SDValue, 8> Ops; 9289 Ops.push_back(Chain); 9290 Ops.push_back(Callee); 9291 9292 // Add argument registers to the end of the list so that they are 9293 // known live into the call. 9294 for (auto &Reg : RegsToPass) 9295 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9296 9297 if (!IsTailCall) { 9298 // Add a register mask operand representing the call-preserved registers. 9299 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9300 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9301 assert(Mask && "Missing call preserved mask for calling convention"); 9302 Ops.push_back(DAG.getRegisterMask(Mask)); 9303 } 9304 9305 // Glue the call to the argument copies, if any. 9306 if (Glue.getNode()) 9307 Ops.push_back(Glue); 9308 9309 // Emit the call. 9310 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9311 9312 if (IsTailCall) { 9313 MF.getFrameInfo().setHasTailCall(); 9314 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9315 } 9316 9317 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9318 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9319 Glue = Chain.getValue(1); 9320 9321 // Mark the end of the call, which is glued to the call itself. 9322 Chain = DAG.getCALLSEQ_END(Chain, 9323 DAG.getConstant(NumBytes, DL, PtrVT, true), 9324 DAG.getConstant(0, DL, PtrVT, true), 9325 Glue, DL); 9326 Glue = Chain.getValue(1); 9327 9328 // Assign locations to each value returned by this call. 9329 SmallVector<CCValAssign, 16> RVLocs; 9330 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9331 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9332 9333 // Copy all of the result registers out of their specified physreg. 9334 for (auto &VA : RVLocs) { 9335 // Copy the value out 9336 SDValue RetValue = 9337 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9338 // Glue the RetValue to the end of the call sequence 9339 Chain = RetValue.getValue(1); 9340 Glue = RetValue.getValue(2); 9341 9342 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9343 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9344 SDValue RetValue2 = 9345 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9346 Chain = RetValue2.getValue(1); 9347 Glue = RetValue2.getValue(2); 9348 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9349 RetValue2); 9350 } 9351 9352 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9353 9354 InVals.push_back(RetValue); 9355 } 9356 9357 return Chain; 9358 } 9359 9360 bool RISCVTargetLowering::CanLowerReturn( 9361 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9362 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9363 SmallVector<CCValAssign, 16> RVLocs; 9364 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9365 9366 Optional<unsigned> FirstMaskArgument; 9367 if (Subtarget.hasVInstructions()) 9368 FirstMaskArgument = preAssignMask(Outs); 9369 9370 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9371 MVT VT = Outs[i].VT; 9372 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9373 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9374 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9375 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9376 *this, FirstMaskArgument)) 9377 return false; 9378 } 9379 return true; 9380 } 9381 9382 SDValue 9383 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9384 bool IsVarArg, 9385 const SmallVectorImpl<ISD::OutputArg> &Outs, 9386 const SmallVectorImpl<SDValue> &OutVals, 9387 const SDLoc &DL, SelectionDAG &DAG) const { 9388 const MachineFunction &MF = DAG.getMachineFunction(); 9389 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9390 9391 // Stores the assignment of the return value to a location. 9392 SmallVector<CCValAssign, 16> RVLocs; 9393 9394 // Info about the registers and stack slot. 9395 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9396 *DAG.getContext()); 9397 9398 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9399 nullptr, CC_RISCV); 9400 9401 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9402 report_fatal_error("GHC functions return void only"); 9403 9404 SDValue Glue; 9405 SmallVector<SDValue, 4> RetOps(1, Chain); 9406 9407 // Copy the result values into the output registers. 9408 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9409 SDValue Val = OutVals[i]; 9410 CCValAssign &VA = RVLocs[i]; 9411 assert(VA.isRegLoc() && "Can only return in registers!"); 9412 9413 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9414 // Handle returning f64 on RV32D with a soft float ABI. 9415 assert(VA.isRegLoc() && "Expected return via registers"); 9416 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9417 DAG.getVTList(MVT::i32, MVT::i32), Val); 9418 SDValue Lo = SplitF64.getValue(0); 9419 SDValue Hi = SplitF64.getValue(1); 9420 Register RegLo = VA.getLocReg(); 9421 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9422 Register RegHi = RegLo + 1; 9423 9424 if (STI.isRegisterReservedByUser(RegLo) || 9425 STI.isRegisterReservedByUser(RegHi)) 9426 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9427 MF.getFunction(), 9428 "Return value register required, but has been reserved."}); 9429 9430 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9431 Glue = Chain.getValue(1); 9432 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9433 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9434 Glue = Chain.getValue(1); 9435 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9436 } else { 9437 // Handle a 'normal' return. 9438 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9439 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9440 9441 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9442 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9443 MF.getFunction(), 9444 "Return value register required, but has been reserved."}); 9445 9446 // Guarantee that all emitted copies are stuck together. 9447 Glue = Chain.getValue(1); 9448 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9449 } 9450 } 9451 9452 RetOps[0] = Chain; // Update chain. 9453 9454 // Add the glue node if we have it. 9455 if (Glue.getNode()) { 9456 RetOps.push_back(Glue); 9457 } 9458 9459 unsigned RetOpc = RISCVISD::RET_FLAG; 9460 // Interrupt service routines use different return instructions. 9461 const Function &Func = DAG.getMachineFunction().getFunction(); 9462 if (Func.hasFnAttribute("interrupt")) { 9463 if (!Func.getReturnType()->isVoidTy()) 9464 report_fatal_error( 9465 "Functions with the interrupt attribute must have void return type!"); 9466 9467 MachineFunction &MF = DAG.getMachineFunction(); 9468 StringRef Kind = 9469 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9470 9471 if (Kind == "user") 9472 RetOpc = RISCVISD::URET_FLAG; 9473 else if (Kind == "supervisor") 9474 RetOpc = RISCVISD::SRET_FLAG; 9475 else 9476 RetOpc = RISCVISD::MRET_FLAG; 9477 } 9478 9479 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9480 } 9481 9482 void RISCVTargetLowering::validateCCReservedRegs( 9483 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9484 MachineFunction &MF) const { 9485 const Function &F = MF.getFunction(); 9486 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9487 9488 if (llvm::any_of(Regs, [&STI](auto Reg) { 9489 return STI.isRegisterReservedByUser(Reg.first); 9490 })) 9491 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9492 F, "Argument register required, but has been reserved."}); 9493 } 9494 9495 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9496 return CI->isTailCall(); 9497 } 9498 9499 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9500 #define NODE_NAME_CASE(NODE) \ 9501 case RISCVISD::NODE: \ 9502 return "RISCVISD::" #NODE; 9503 // clang-format off 9504 switch ((RISCVISD::NodeType)Opcode) { 9505 case RISCVISD::FIRST_NUMBER: 9506 break; 9507 NODE_NAME_CASE(RET_FLAG) 9508 NODE_NAME_CASE(URET_FLAG) 9509 NODE_NAME_CASE(SRET_FLAG) 9510 NODE_NAME_CASE(MRET_FLAG) 9511 NODE_NAME_CASE(CALL) 9512 NODE_NAME_CASE(SELECT_CC) 9513 NODE_NAME_CASE(BR_CC) 9514 NODE_NAME_CASE(BuildPairF64) 9515 NODE_NAME_CASE(SplitF64) 9516 NODE_NAME_CASE(TAIL) 9517 NODE_NAME_CASE(MULHSU) 9518 NODE_NAME_CASE(SLLW) 9519 NODE_NAME_CASE(SRAW) 9520 NODE_NAME_CASE(SRLW) 9521 NODE_NAME_CASE(DIVW) 9522 NODE_NAME_CASE(DIVUW) 9523 NODE_NAME_CASE(REMUW) 9524 NODE_NAME_CASE(ROLW) 9525 NODE_NAME_CASE(RORW) 9526 NODE_NAME_CASE(CLZW) 9527 NODE_NAME_CASE(CTZW) 9528 NODE_NAME_CASE(FSLW) 9529 NODE_NAME_CASE(FSRW) 9530 NODE_NAME_CASE(FSL) 9531 NODE_NAME_CASE(FSR) 9532 NODE_NAME_CASE(FMV_H_X) 9533 NODE_NAME_CASE(FMV_X_ANYEXTH) 9534 NODE_NAME_CASE(FMV_W_X_RV64) 9535 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9536 NODE_NAME_CASE(FCVT_X_RTZ) 9537 NODE_NAME_CASE(FCVT_XU_RTZ) 9538 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9539 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9540 NODE_NAME_CASE(STRICT_FCVT_W_RTZ_RV64) 9541 NODE_NAME_CASE(STRICT_FCVT_WU_RTZ_RV64) 9542 NODE_NAME_CASE(READ_CYCLE_WIDE) 9543 NODE_NAME_CASE(GREV) 9544 NODE_NAME_CASE(GREVW) 9545 NODE_NAME_CASE(GORC) 9546 NODE_NAME_CASE(GORCW) 9547 NODE_NAME_CASE(SHFL) 9548 NODE_NAME_CASE(SHFLW) 9549 NODE_NAME_CASE(UNSHFL) 9550 NODE_NAME_CASE(UNSHFLW) 9551 NODE_NAME_CASE(BCOMPRESS) 9552 NODE_NAME_CASE(BCOMPRESSW) 9553 NODE_NAME_CASE(BDECOMPRESS) 9554 NODE_NAME_CASE(BDECOMPRESSW) 9555 NODE_NAME_CASE(VMV_V_X_VL) 9556 NODE_NAME_CASE(VFMV_V_F_VL) 9557 NODE_NAME_CASE(VMV_X_S) 9558 NODE_NAME_CASE(VMV_S_X_VL) 9559 NODE_NAME_CASE(VFMV_S_F_VL) 9560 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9561 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9562 NODE_NAME_CASE(READ_VLENB) 9563 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9564 NODE_NAME_CASE(VSLIDEUP_VL) 9565 NODE_NAME_CASE(VSLIDE1UP_VL) 9566 NODE_NAME_CASE(VSLIDEDOWN_VL) 9567 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9568 NODE_NAME_CASE(VID_VL) 9569 NODE_NAME_CASE(VFNCVT_ROD_VL) 9570 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9571 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9572 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9573 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9574 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9575 NODE_NAME_CASE(VECREDUCE_AND_VL) 9576 NODE_NAME_CASE(VECREDUCE_OR_VL) 9577 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9578 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9579 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9580 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9581 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9582 NODE_NAME_CASE(ADD_VL) 9583 NODE_NAME_CASE(AND_VL) 9584 NODE_NAME_CASE(MUL_VL) 9585 NODE_NAME_CASE(OR_VL) 9586 NODE_NAME_CASE(SDIV_VL) 9587 NODE_NAME_CASE(SHL_VL) 9588 NODE_NAME_CASE(SREM_VL) 9589 NODE_NAME_CASE(SRA_VL) 9590 NODE_NAME_CASE(SRL_VL) 9591 NODE_NAME_CASE(SUB_VL) 9592 NODE_NAME_CASE(UDIV_VL) 9593 NODE_NAME_CASE(UREM_VL) 9594 NODE_NAME_CASE(XOR_VL) 9595 NODE_NAME_CASE(SADDSAT_VL) 9596 NODE_NAME_CASE(UADDSAT_VL) 9597 NODE_NAME_CASE(SSUBSAT_VL) 9598 NODE_NAME_CASE(USUBSAT_VL) 9599 NODE_NAME_CASE(FADD_VL) 9600 NODE_NAME_CASE(FSUB_VL) 9601 NODE_NAME_CASE(FMUL_VL) 9602 NODE_NAME_CASE(FDIV_VL) 9603 NODE_NAME_CASE(FNEG_VL) 9604 NODE_NAME_CASE(FABS_VL) 9605 NODE_NAME_CASE(FSQRT_VL) 9606 NODE_NAME_CASE(FMA_VL) 9607 NODE_NAME_CASE(FCOPYSIGN_VL) 9608 NODE_NAME_CASE(SMIN_VL) 9609 NODE_NAME_CASE(SMAX_VL) 9610 NODE_NAME_CASE(UMIN_VL) 9611 NODE_NAME_CASE(UMAX_VL) 9612 NODE_NAME_CASE(FMINNUM_VL) 9613 NODE_NAME_CASE(FMAXNUM_VL) 9614 NODE_NAME_CASE(MULHS_VL) 9615 NODE_NAME_CASE(MULHU_VL) 9616 NODE_NAME_CASE(FP_TO_SINT_VL) 9617 NODE_NAME_CASE(FP_TO_UINT_VL) 9618 NODE_NAME_CASE(SINT_TO_FP_VL) 9619 NODE_NAME_CASE(UINT_TO_FP_VL) 9620 NODE_NAME_CASE(FP_EXTEND_VL) 9621 NODE_NAME_CASE(FP_ROUND_VL) 9622 NODE_NAME_CASE(VWMUL_VL) 9623 NODE_NAME_CASE(VWMULU_VL) 9624 NODE_NAME_CASE(SETCC_VL) 9625 NODE_NAME_CASE(VSELECT_VL) 9626 NODE_NAME_CASE(VMAND_VL) 9627 NODE_NAME_CASE(VMOR_VL) 9628 NODE_NAME_CASE(VMXOR_VL) 9629 NODE_NAME_CASE(VMCLR_VL) 9630 NODE_NAME_CASE(VMSET_VL) 9631 NODE_NAME_CASE(VRGATHER_VX_VL) 9632 NODE_NAME_CASE(VRGATHER_VV_VL) 9633 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9634 NODE_NAME_CASE(VSEXT_VL) 9635 NODE_NAME_CASE(VZEXT_VL) 9636 NODE_NAME_CASE(VCPOP_VL) 9637 NODE_NAME_CASE(VLE_VL) 9638 NODE_NAME_CASE(VSE_VL) 9639 NODE_NAME_CASE(READ_CSR) 9640 NODE_NAME_CASE(WRITE_CSR) 9641 NODE_NAME_CASE(SWAP_CSR) 9642 } 9643 // clang-format on 9644 return nullptr; 9645 #undef NODE_NAME_CASE 9646 } 9647 9648 /// getConstraintType - Given a constraint letter, return the type of 9649 /// constraint it is for this target. 9650 RISCVTargetLowering::ConstraintType 9651 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9652 if (Constraint.size() == 1) { 9653 switch (Constraint[0]) { 9654 default: 9655 break; 9656 case 'f': 9657 return C_RegisterClass; 9658 case 'I': 9659 case 'J': 9660 case 'K': 9661 return C_Immediate; 9662 case 'A': 9663 return C_Memory; 9664 case 'S': // A symbolic address 9665 return C_Other; 9666 } 9667 } else { 9668 if (Constraint == "vr" || Constraint == "vm") 9669 return C_RegisterClass; 9670 } 9671 return TargetLowering::getConstraintType(Constraint); 9672 } 9673 9674 std::pair<unsigned, const TargetRegisterClass *> 9675 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9676 StringRef Constraint, 9677 MVT VT) const { 9678 // First, see if this is a constraint that directly corresponds to a 9679 // RISCV register class. 9680 if (Constraint.size() == 1) { 9681 switch (Constraint[0]) { 9682 case 'r': 9683 // TODO: Support fixed vectors up to XLen for P extension? 9684 if (VT.isVector()) 9685 break; 9686 return std::make_pair(0U, &RISCV::GPRRegClass); 9687 case 'f': 9688 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9689 return std::make_pair(0U, &RISCV::FPR16RegClass); 9690 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9691 return std::make_pair(0U, &RISCV::FPR32RegClass); 9692 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9693 return std::make_pair(0U, &RISCV::FPR64RegClass); 9694 break; 9695 default: 9696 break; 9697 } 9698 } else if (Constraint == "vr") { 9699 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9700 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9701 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9702 return std::make_pair(0U, RC); 9703 } 9704 } else if (Constraint == "vm") { 9705 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9706 return std::make_pair(0U, &RISCV::VMV0RegClass); 9707 } 9708 9709 // Clang will correctly decode the usage of register name aliases into their 9710 // official names. However, other frontends like `rustc` do not. This allows 9711 // users of these frontends to use the ABI names for registers in LLVM-style 9712 // register constraints. 9713 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9714 .Case("{zero}", RISCV::X0) 9715 .Case("{ra}", RISCV::X1) 9716 .Case("{sp}", RISCV::X2) 9717 .Case("{gp}", RISCV::X3) 9718 .Case("{tp}", RISCV::X4) 9719 .Case("{t0}", RISCV::X5) 9720 .Case("{t1}", RISCV::X6) 9721 .Case("{t2}", RISCV::X7) 9722 .Cases("{s0}", "{fp}", RISCV::X8) 9723 .Case("{s1}", RISCV::X9) 9724 .Case("{a0}", RISCV::X10) 9725 .Case("{a1}", RISCV::X11) 9726 .Case("{a2}", RISCV::X12) 9727 .Case("{a3}", RISCV::X13) 9728 .Case("{a4}", RISCV::X14) 9729 .Case("{a5}", RISCV::X15) 9730 .Case("{a6}", RISCV::X16) 9731 .Case("{a7}", RISCV::X17) 9732 .Case("{s2}", RISCV::X18) 9733 .Case("{s3}", RISCV::X19) 9734 .Case("{s4}", RISCV::X20) 9735 .Case("{s5}", RISCV::X21) 9736 .Case("{s6}", RISCV::X22) 9737 .Case("{s7}", RISCV::X23) 9738 .Case("{s8}", RISCV::X24) 9739 .Case("{s9}", RISCV::X25) 9740 .Case("{s10}", RISCV::X26) 9741 .Case("{s11}", RISCV::X27) 9742 .Case("{t3}", RISCV::X28) 9743 .Case("{t4}", RISCV::X29) 9744 .Case("{t5}", RISCV::X30) 9745 .Case("{t6}", RISCV::X31) 9746 .Default(RISCV::NoRegister); 9747 if (XRegFromAlias != RISCV::NoRegister) 9748 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9749 9750 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9751 // TableGen record rather than the AsmName to choose registers for InlineAsm 9752 // constraints, plus we want to match those names to the widest floating point 9753 // register type available, manually select floating point registers here. 9754 // 9755 // The second case is the ABI name of the register, so that frontends can also 9756 // use the ABI names in register constraint lists. 9757 if (Subtarget.hasStdExtF()) { 9758 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9759 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9760 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9761 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9762 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9763 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9764 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9765 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9766 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9767 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9768 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9769 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9770 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9771 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9772 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9773 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9774 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9775 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9776 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9777 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9778 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9779 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9780 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9781 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9782 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9783 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9784 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9785 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9786 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9787 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9788 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9789 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9790 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9791 .Default(RISCV::NoRegister); 9792 if (FReg != RISCV::NoRegister) { 9793 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9794 if (Subtarget.hasStdExtD()) { 9795 unsigned RegNo = FReg - RISCV::F0_F; 9796 unsigned DReg = RISCV::F0_D + RegNo; 9797 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9798 } 9799 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9800 } 9801 } 9802 9803 if (Subtarget.hasVInstructions()) { 9804 Register VReg = StringSwitch<Register>(Constraint.lower()) 9805 .Case("{v0}", RISCV::V0) 9806 .Case("{v1}", RISCV::V1) 9807 .Case("{v2}", RISCV::V2) 9808 .Case("{v3}", RISCV::V3) 9809 .Case("{v4}", RISCV::V4) 9810 .Case("{v5}", RISCV::V5) 9811 .Case("{v6}", RISCV::V6) 9812 .Case("{v7}", RISCV::V7) 9813 .Case("{v8}", RISCV::V8) 9814 .Case("{v9}", RISCV::V9) 9815 .Case("{v10}", RISCV::V10) 9816 .Case("{v11}", RISCV::V11) 9817 .Case("{v12}", RISCV::V12) 9818 .Case("{v13}", RISCV::V13) 9819 .Case("{v14}", RISCV::V14) 9820 .Case("{v15}", RISCV::V15) 9821 .Case("{v16}", RISCV::V16) 9822 .Case("{v17}", RISCV::V17) 9823 .Case("{v18}", RISCV::V18) 9824 .Case("{v19}", RISCV::V19) 9825 .Case("{v20}", RISCV::V20) 9826 .Case("{v21}", RISCV::V21) 9827 .Case("{v22}", RISCV::V22) 9828 .Case("{v23}", RISCV::V23) 9829 .Case("{v24}", RISCV::V24) 9830 .Case("{v25}", RISCV::V25) 9831 .Case("{v26}", RISCV::V26) 9832 .Case("{v27}", RISCV::V27) 9833 .Case("{v28}", RISCV::V28) 9834 .Case("{v29}", RISCV::V29) 9835 .Case("{v30}", RISCV::V30) 9836 .Case("{v31}", RISCV::V31) 9837 .Default(RISCV::NoRegister); 9838 if (VReg != RISCV::NoRegister) { 9839 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9840 return std::make_pair(VReg, &RISCV::VMRegClass); 9841 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9842 return std::make_pair(VReg, &RISCV::VRRegClass); 9843 for (const auto *RC : 9844 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9845 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9846 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9847 return std::make_pair(VReg, RC); 9848 } 9849 } 9850 } 9851 } 9852 9853 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9854 } 9855 9856 unsigned 9857 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9858 // Currently only support length 1 constraints. 9859 if (ConstraintCode.size() == 1) { 9860 switch (ConstraintCode[0]) { 9861 case 'A': 9862 return InlineAsm::Constraint_A; 9863 default: 9864 break; 9865 } 9866 } 9867 9868 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9869 } 9870 9871 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9872 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9873 SelectionDAG &DAG) const { 9874 // Currently only support length 1 constraints. 9875 if (Constraint.length() == 1) { 9876 switch (Constraint[0]) { 9877 case 'I': 9878 // Validate & create a 12-bit signed immediate operand. 9879 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9880 uint64_t CVal = C->getSExtValue(); 9881 if (isInt<12>(CVal)) 9882 Ops.push_back( 9883 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9884 } 9885 return; 9886 case 'J': 9887 // Validate & create an integer zero operand. 9888 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9889 if (C->getZExtValue() == 0) 9890 Ops.push_back( 9891 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9892 return; 9893 case 'K': 9894 // Validate & create a 5-bit unsigned immediate operand. 9895 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9896 uint64_t CVal = C->getZExtValue(); 9897 if (isUInt<5>(CVal)) 9898 Ops.push_back( 9899 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9900 } 9901 return; 9902 case 'S': 9903 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9904 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9905 GA->getValueType(0))); 9906 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9907 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9908 BA->getValueType(0))); 9909 } 9910 return; 9911 default: 9912 break; 9913 } 9914 } 9915 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9916 } 9917 9918 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9919 Instruction *Inst, 9920 AtomicOrdering Ord) const { 9921 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9922 return Builder.CreateFence(Ord); 9923 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9924 return Builder.CreateFence(AtomicOrdering::Release); 9925 return nullptr; 9926 } 9927 9928 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9929 Instruction *Inst, 9930 AtomicOrdering Ord) const { 9931 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9932 return Builder.CreateFence(AtomicOrdering::Acquire); 9933 return nullptr; 9934 } 9935 9936 TargetLowering::AtomicExpansionKind 9937 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9938 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9939 // point operations can't be used in an lr/sc sequence without breaking the 9940 // forward-progress guarantee. 9941 if (AI->isFloatingPointOperation()) 9942 return AtomicExpansionKind::CmpXChg; 9943 9944 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9945 if (Size == 8 || Size == 16) 9946 return AtomicExpansionKind::MaskedIntrinsic; 9947 return AtomicExpansionKind::None; 9948 } 9949 9950 static Intrinsic::ID 9951 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9952 if (XLen == 32) { 9953 switch (BinOp) { 9954 default: 9955 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9956 case AtomicRMWInst::Xchg: 9957 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9958 case AtomicRMWInst::Add: 9959 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9960 case AtomicRMWInst::Sub: 9961 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9962 case AtomicRMWInst::Nand: 9963 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9964 case AtomicRMWInst::Max: 9965 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9966 case AtomicRMWInst::Min: 9967 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9968 case AtomicRMWInst::UMax: 9969 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9970 case AtomicRMWInst::UMin: 9971 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9972 } 9973 } 9974 9975 if (XLen == 64) { 9976 switch (BinOp) { 9977 default: 9978 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9979 case AtomicRMWInst::Xchg: 9980 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9981 case AtomicRMWInst::Add: 9982 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9983 case AtomicRMWInst::Sub: 9984 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9985 case AtomicRMWInst::Nand: 9986 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9987 case AtomicRMWInst::Max: 9988 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9989 case AtomicRMWInst::Min: 9990 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9991 case AtomicRMWInst::UMax: 9992 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9993 case AtomicRMWInst::UMin: 9994 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9995 } 9996 } 9997 9998 llvm_unreachable("Unexpected XLen\n"); 9999 } 10000 10001 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10002 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10003 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10004 unsigned XLen = Subtarget.getXLen(); 10005 Value *Ordering = 10006 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10007 Type *Tys[] = {AlignedAddr->getType()}; 10008 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10009 AI->getModule(), 10010 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10011 10012 if (XLen == 64) { 10013 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10014 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10015 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10016 } 10017 10018 Value *Result; 10019 10020 // Must pass the shift amount needed to sign extend the loaded value prior 10021 // to performing a signed comparison for min/max. ShiftAmt is the number of 10022 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10023 // is the number of bits to left+right shift the value in order to 10024 // sign-extend. 10025 if (AI->getOperation() == AtomicRMWInst::Min || 10026 AI->getOperation() == AtomicRMWInst::Max) { 10027 const DataLayout &DL = AI->getModule()->getDataLayout(); 10028 unsigned ValWidth = 10029 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10030 Value *SextShamt = 10031 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10032 Result = Builder.CreateCall(LrwOpScwLoop, 10033 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10034 } else { 10035 Result = 10036 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10037 } 10038 10039 if (XLen == 64) 10040 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10041 return Result; 10042 } 10043 10044 TargetLowering::AtomicExpansionKind 10045 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10046 AtomicCmpXchgInst *CI) const { 10047 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10048 if (Size == 8 || Size == 16) 10049 return AtomicExpansionKind::MaskedIntrinsic; 10050 return AtomicExpansionKind::None; 10051 } 10052 10053 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10054 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10055 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10056 unsigned XLen = Subtarget.getXLen(); 10057 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10058 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10059 if (XLen == 64) { 10060 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10061 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10062 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10063 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10064 } 10065 Type *Tys[] = {AlignedAddr->getType()}; 10066 Function *MaskedCmpXchg = 10067 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10068 Value *Result = Builder.CreateCall( 10069 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10070 if (XLen == 64) 10071 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10072 return Result; 10073 } 10074 10075 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10076 return false; 10077 } 10078 10079 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10080 EVT VT) const { 10081 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10082 return false; 10083 10084 switch (FPVT.getSimpleVT().SimpleTy) { 10085 case MVT::f16: 10086 return Subtarget.hasStdExtZfh(); 10087 case MVT::f32: 10088 return Subtarget.hasStdExtF(); 10089 case MVT::f64: 10090 return Subtarget.hasStdExtD(); 10091 default: 10092 return false; 10093 } 10094 } 10095 10096 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10097 EVT VT) const { 10098 VT = VT.getScalarType(); 10099 10100 if (!VT.isSimple()) 10101 return false; 10102 10103 switch (VT.getSimpleVT().SimpleTy) { 10104 case MVT::f16: 10105 return Subtarget.hasStdExtZfh(); 10106 case MVT::f32: 10107 return Subtarget.hasStdExtF(); 10108 case MVT::f64: 10109 return Subtarget.hasStdExtD(); 10110 default: 10111 break; 10112 } 10113 10114 return false; 10115 } 10116 10117 Register RISCVTargetLowering::getExceptionPointerRegister( 10118 const Constant *PersonalityFn) const { 10119 return RISCV::X10; 10120 } 10121 10122 Register RISCVTargetLowering::getExceptionSelectorRegister( 10123 const Constant *PersonalityFn) const { 10124 return RISCV::X11; 10125 } 10126 10127 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10128 // Return false to suppress the unnecessary extensions if the LibCall 10129 // arguments or return value is f32 type for LP64 ABI. 10130 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10131 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10132 return false; 10133 10134 return true; 10135 } 10136 10137 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10138 if (Subtarget.is64Bit() && Type == MVT::i32) 10139 return true; 10140 10141 return IsSigned; 10142 } 10143 10144 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10145 SDValue C) const { 10146 // Check integral scalar types. 10147 if (VT.isScalarInteger()) { 10148 // Omit the optimization if the sub target has the M extension and the data 10149 // size exceeds XLen. 10150 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10151 return false; 10152 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10153 // Break the MUL to a SLLI and an ADD/SUB. 10154 const APInt &Imm = ConstNode->getAPIntValue(); 10155 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10156 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10157 return true; 10158 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10159 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10160 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10161 (Imm - 8).isPowerOf2())) 10162 return true; 10163 // Omit the following optimization if the sub target has the M extension 10164 // and the data size >= XLen. 10165 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10166 return false; 10167 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10168 // a pair of LUI/ADDI. 10169 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10170 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10171 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10172 (1 - ImmS).isPowerOf2()) 10173 return true; 10174 } 10175 } 10176 } 10177 10178 return false; 10179 } 10180 10181 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10182 const SDValue &AddNode, const SDValue &ConstNode) const { 10183 // Let the DAGCombiner decide for vectors. 10184 EVT VT = AddNode.getValueType(); 10185 if (VT.isVector()) 10186 return true; 10187 10188 // Let the DAGCombiner decide for larger types. 10189 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10190 return true; 10191 10192 // It is worse if c1 is simm12 while c1*c2 is not. 10193 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10194 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10195 const APInt &C1 = C1Node->getAPIntValue(); 10196 const APInt &C2 = C2Node->getAPIntValue(); 10197 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10198 return false; 10199 10200 // Default to true and let the DAGCombiner decide. 10201 return true; 10202 } 10203 10204 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10205 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10206 bool *Fast) const { 10207 if (!VT.isVector()) 10208 return false; 10209 10210 EVT ElemVT = VT.getVectorElementType(); 10211 if (Alignment >= ElemVT.getStoreSize()) { 10212 if (Fast) 10213 *Fast = true; 10214 return true; 10215 } 10216 10217 return false; 10218 } 10219 10220 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10221 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10222 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10223 bool IsABIRegCopy = CC.hasValue(); 10224 EVT ValueVT = Val.getValueType(); 10225 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10226 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10227 // and cast to f32. 10228 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10229 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10230 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10231 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10232 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10233 Parts[0] = Val; 10234 return true; 10235 } 10236 10237 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10238 LLVMContext &Context = *DAG.getContext(); 10239 EVT ValueEltVT = ValueVT.getVectorElementType(); 10240 EVT PartEltVT = PartVT.getVectorElementType(); 10241 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10242 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10243 if (PartVTBitSize % ValueVTBitSize == 0) { 10244 assert(PartVTBitSize >= ValueVTBitSize); 10245 // If the element types are different, bitcast to the same element type of 10246 // PartVT first. 10247 // Give an example here, we want copy a <vscale x 1 x i8> value to 10248 // <vscale x 4 x i16>. 10249 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10250 // subvector, then we can bitcast to <vscale x 4 x i16>. 10251 if (ValueEltVT != PartEltVT) { 10252 if (PartVTBitSize > ValueVTBitSize) { 10253 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10254 assert(Count != 0 && "The number of element should not be zero."); 10255 EVT SameEltTypeVT = 10256 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10257 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10258 DAG.getUNDEF(SameEltTypeVT), Val, 10259 DAG.getVectorIdxConstant(0, DL)); 10260 } 10261 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10262 } else { 10263 Val = 10264 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10265 Val, DAG.getVectorIdxConstant(0, DL)); 10266 } 10267 Parts[0] = Val; 10268 return true; 10269 } 10270 } 10271 return false; 10272 } 10273 10274 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10275 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10276 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10277 bool IsABIRegCopy = CC.hasValue(); 10278 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10279 SDValue Val = Parts[0]; 10280 10281 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10282 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10283 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10284 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10285 return Val; 10286 } 10287 10288 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10289 LLVMContext &Context = *DAG.getContext(); 10290 SDValue Val = Parts[0]; 10291 EVT ValueEltVT = ValueVT.getVectorElementType(); 10292 EVT PartEltVT = PartVT.getVectorElementType(); 10293 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10294 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10295 if (PartVTBitSize % ValueVTBitSize == 0) { 10296 assert(PartVTBitSize >= ValueVTBitSize); 10297 EVT SameEltTypeVT = ValueVT; 10298 // If the element types are different, convert it to the same element type 10299 // of PartVT. 10300 // Give an example here, we want copy a <vscale x 1 x i8> value from 10301 // <vscale x 4 x i16>. 10302 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10303 // then we can extract <vscale x 1 x i8>. 10304 if (ValueEltVT != PartEltVT) { 10305 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10306 assert(Count != 0 && "The number of element should not be zero."); 10307 SameEltTypeVT = 10308 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10309 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10310 } 10311 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10312 DAG.getVectorIdxConstant(0, DL)); 10313 return Val; 10314 } 10315 } 10316 return SDValue(); 10317 } 10318 10319 #define GET_REGISTER_MATCHER 10320 #include "RISCVGenAsmMatcher.inc" 10321 10322 Register 10323 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10324 const MachineFunction &MF) const { 10325 Register Reg = MatchRegisterAltName(RegName); 10326 if (Reg == RISCV::NoRegister) 10327 Reg = MatchRegisterName(RegName); 10328 if (Reg == RISCV::NoRegister) 10329 report_fatal_error( 10330 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10331 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10332 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10333 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10334 StringRef(RegName) + "\".")); 10335 return Reg; 10336 } 10337 10338 namespace llvm { 10339 namespace RISCVVIntrinsicsTable { 10340 10341 #define GET_RISCVVIntrinsicsTable_IMPL 10342 #include "RISCVGenSearchableTables.inc" 10343 10344 } // namespace RISCVVIntrinsicsTable 10345 10346 } // namespace llvm 10347