1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasVInstructions()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) { 132 if (VT.getVectorElementType() == MVT::i64 && 133 !Subtarget.hasVInstructionsI64()) 134 continue; 135 addRegClassForRVV(VT); 136 } 137 138 if (Subtarget.hasVInstructionsF16()) 139 for (MVT VT : F16VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasVInstructionsF32()) 143 for (MVT VT : F32VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.hasVInstructionsF64()) 147 for (MVT VT : F64VecVTs) 148 addRegClassForRVV(VT); 149 150 if (Subtarget.useRVVForFixedLengthVectors()) { 151 auto addRegClassForFixedVectors = [this](MVT VT) { 152 MVT ContainerVT = getContainerForFixedLengthVector(VT); 153 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 154 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 155 addRegisterClass(VT, TRI.getRegClass(RCID)); 156 }; 157 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 161 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 } 165 } 166 167 // Compute derived properties from the register classes. 168 computeRegisterProperties(STI.getRegisterInfo()); 169 170 setStackPointerRegisterToSaveRestore(RISCV::X2); 171 172 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 173 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 174 175 // TODO: add all necessary setOperationAction calls. 176 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 177 178 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 179 setOperationAction(ISD::BR_CC, XLenVT, Expand); 180 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 181 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 182 183 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 184 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 185 186 setOperationAction(ISD::VASTART, MVT::Other, Custom); 187 setOperationAction(ISD::VAARG, MVT::Other, Expand); 188 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 189 setOperationAction(ISD::VAEND, MVT::Other, Expand); 190 191 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 192 if (!Subtarget.hasStdExtZbb()) { 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 195 } 196 197 if (Subtarget.is64Bit()) { 198 setOperationAction(ISD::ADD, MVT::i32, Custom); 199 setOperationAction(ISD::SUB, MVT::i32, Custom); 200 setOperationAction(ISD::SHL, MVT::i32, Custom); 201 setOperationAction(ISD::SRA, MVT::i32, Custom); 202 setOperationAction(ISD::SRL, MVT::i32, Custom); 203 204 setOperationAction(ISD::UADDO, MVT::i32, Custom); 205 setOperationAction(ISD::USUBO, MVT::i32, Custom); 206 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 207 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 208 } else { 209 setLibcallName(RTLIB::SHL_I128, nullptr); 210 setLibcallName(RTLIB::SRL_I128, nullptr); 211 setLibcallName(RTLIB::SRA_I128, nullptr); 212 setLibcallName(RTLIB::MUL_I128, nullptr); 213 setLibcallName(RTLIB::MULO_I64, nullptr); 214 } 215 216 if (!Subtarget.hasStdExtM()) { 217 setOperationAction(ISD::MUL, XLenVT, Expand); 218 setOperationAction(ISD::MULHS, XLenVT, Expand); 219 setOperationAction(ISD::MULHU, XLenVT, Expand); 220 setOperationAction(ISD::SDIV, XLenVT, Expand); 221 setOperationAction(ISD::UDIV, XLenVT, Expand); 222 setOperationAction(ISD::SREM, XLenVT, Expand); 223 setOperationAction(ISD::UREM, XLenVT, Expand); 224 } else { 225 if (Subtarget.is64Bit()) { 226 setOperationAction(ISD::MUL, MVT::i32, Custom); 227 setOperationAction(ISD::MUL, MVT::i128, Custom); 228 229 setOperationAction(ISD::SDIV, MVT::i8, Custom); 230 setOperationAction(ISD::UDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UREM, MVT::i8, Custom); 232 setOperationAction(ISD::SDIV, MVT::i16, Custom); 233 setOperationAction(ISD::UDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UREM, MVT::i16, Custom); 235 setOperationAction(ISD::SDIV, MVT::i32, Custom); 236 setOperationAction(ISD::UDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 } else { 239 setOperationAction(ISD::MUL, MVT::i64, Custom); 240 } 241 } 242 243 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 244 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 246 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 247 248 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 249 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 251 252 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 253 if (Subtarget.is64Bit()) { 254 setOperationAction(ISD::ROTL, MVT::i32, Custom); 255 setOperationAction(ISD::ROTR, MVT::i32, Custom); 256 } 257 } else { 258 setOperationAction(ISD::ROTL, XLenVT, Expand); 259 setOperationAction(ISD::ROTR, XLenVT, Expand); 260 } 261 262 if (Subtarget.hasStdExtZbp()) { 263 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 264 // more combining. 265 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 266 setOperationAction(ISD::BSWAP, XLenVT, Custom); 267 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 268 // BSWAP i8 doesn't exist. 269 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 271 272 if (Subtarget.is64Bit()) { 273 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 274 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 275 } 276 } else { 277 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 278 // pattern match it directly in isel. 279 setOperationAction(ISD::BSWAP, XLenVT, 280 Subtarget.hasStdExtZbb() ? Legal : Expand); 281 } 282 283 if (Subtarget.hasStdExtZbb()) { 284 setOperationAction(ISD::SMIN, XLenVT, Legal); 285 setOperationAction(ISD::SMAX, XLenVT, Legal); 286 setOperationAction(ISD::UMIN, XLenVT, Legal); 287 setOperationAction(ISD::UMAX, XLenVT, Legal); 288 289 if (Subtarget.is64Bit()) { 290 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 291 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 292 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 294 } 295 } else { 296 setOperationAction(ISD::CTTZ, XLenVT, Expand); 297 setOperationAction(ISD::CTLZ, XLenVT, Expand); 298 setOperationAction(ISD::CTPOP, XLenVT, Expand); 299 } 300 301 if (Subtarget.hasStdExtZbt()) { 302 setOperationAction(ISD::FSHL, XLenVT, Custom); 303 setOperationAction(ISD::FSHR, XLenVT, Custom); 304 setOperationAction(ISD::SELECT, XLenVT, Legal); 305 306 if (Subtarget.is64Bit()) { 307 setOperationAction(ISD::FSHL, MVT::i32, Custom); 308 setOperationAction(ISD::FSHR, MVT::i32, Custom); 309 } 310 } else { 311 setOperationAction(ISD::SELECT, XLenVT, Custom); 312 } 313 314 static const ISD::CondCode FPCCToExpand[] = { 315 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 316 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 317 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 318 319 static const ISD::NodeType FPOpToExpand[] = { 320 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 321 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 322 323 if (Subtarget.hasStdExtZfh()) 324 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 325 326 if (Subtarget.hasStdExtZfh()) { 327 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 329 setOperationAction(ISD::LRINT, MVT::f16, Legal); 330 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LROUND, MVT::f16, Legal); 332 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 333 for (auto CC : FPCCToExpand) 334 setCondCodeAction(CC, MVT::f16, Expand); 335 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 336 setOperationAction(ISD::SELECT, MVT::f16, Custom); 337 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 338 339 setOperationAction(ISD::FREM, MVT::f16, Promote); 340 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 341 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 342 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 343 setOperationAction(ISD::FRINT, MVT::f16, Promote); 344 setOperationAction(ISD::FROUND, MVT::f16, Promote); 345 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 346 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 347 setOperationAction(ISD::FPOW, MVT::f16, Promote); 348 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 349 setOperationAction(ISD::FCOS, MVT::f16, Promote); 350 setOperationAction(ISD::FSIN, MVT::f16, Promote); 351 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 352 setOperationAction(ISD::FEXP, MVT::f16, Promote); 353 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 354 setOperationAction(ISD::FLOG, MVT::f16, Promote); 355 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 356 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 357 358 // We need to custom promote this. 359 if (Subtarget.is64Bit()) 360 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 361 } 362 363 if (Subtarget.hasStdExtF()) { 364 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 365 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 366 setOperationAction(ISD::LRINT, MVT::f32, Legal); 367 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 368 setOperationAction(ISD::LROUND, MVT::f32, Legal); 369 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 370 for (auto CC : FPCCToExpand) 371 setCondCodeAction(CC, MVT::f32, Expand); 372 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 373 setOperationAction(ISD::SELECT, MVT::f32, Custom); 374 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 375 for (auto Op : FPOpToExpand) 376 setOperationAction(Op, MVT::f32, Expand); 377 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 378 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 379 } 380 381 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 382 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 383 384 if (Subtarget.hasStdExtD()) { 385 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 386 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 387 setOperationAction(ISD::LRINT, MVT::f64, Legal); 388 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 389 setOperationAction(ISD::LROUND, MVT::f64, Legal); 390 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 391 for (auto CC : FPCCToExpand) 392 setCondCodeAction(CC, MVT::f64, Expand); 393 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 394 setOperationAction(ISD::SELECT, MVT::f64, Custom); 395 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 396 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 397 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 398 for (auto Op : FPOpToExpand) 399 setOperationAction(Op, MVT::f64, Expand); 400 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 401 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 402 } 403 404 if (Subtarget.is64Bit()) { 405 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 406 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 407 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 408 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 409 } 410 411 if (Subtarget.hasStdExtF()) { 412 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 413 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 414 415 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 416 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 417 } 418 419 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 420 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 421 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 422 setOperationAction(ISD::JumpTable, XLenVT, Custom); 423 424 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 425 426 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 427 // Unfortunately this can't be determined just from the ISA naming string. 428 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 429 Subtarget.is64Bit() ? Legal : Custom); 430 431 setOperationAction(ISD::TRAP, MVT::Other, Legal); 432 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 433 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 434 if (Subtarget.is64Bit()) 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 436 437 if (Subtarget.hasStdExtA()) { 438 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 439 setMinCmpXchgSizeInBits(32); 440 } else { 441 setMaxAtomicSizeInBitsSupported(0); 442 } 443 444 setBooleanContents(ZeroOrOneBooleanContent); 445 446 if (Subtarget.hasVInstructions()) { 447 setBooleanVectorContents(ZeroOrOneBooleanContent); 448 449 setOperationAction(ISD::VSCALE, XLenVT, Custom); 450 451 // RVV intrinsics may have illegal operands. 452 // We also need to custom legalize vmv.x.s. 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 454 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 455 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 456 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 457 if (Subtarget.is64Bit()) { 458 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 459 } else { 460 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 461 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 462 } 463 464 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 465 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 466 467 static const unsigned IntegerVPOps[] = { 468 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 469 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 470 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 471 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 472 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 473 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 474 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 475 ISD::VP_SELECT}; 476 477 static const unsigned FloatingPointVPOps[] = { 478 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 479 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 480 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 481 482 if (!Subtarget.is64Bit()) { 483 // We must custom-lower certain vXi64 operations on RV32 due to the vector 484 // element type being illegal. 485 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 486 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 487 488 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 489 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 490 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 491 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 492 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 493 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 494 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 495 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 496 497 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 498 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 499 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 500 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 501 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 502 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 503 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 504 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 505 } 506 507 for (MVT VT : BoolVecVTs) { 508 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 509 510 // Mask VTs are custom-expanded into a series of standard nodes 511 setOperationAction(ISD::TRUNCATE, VT, Custom); 512 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 513 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 514 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 515 516 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 517 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 518 519 setOperationAction(ISD::SELECT, VT, Custom); 520 setOperationAction(ISD::SELECT_CC, VT, Expand); 521 setOperationAction(ISD::VSELECT, VT, Expand); 522 523 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 524 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 525 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 526 527 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 528 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 529 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 530 531 // RVV has native int->float & float->int conversions where the 532 // element type sizes are within one power-of-two of each other. Any 533 // wider distances between type sizes have to be lowered as sequences 534 // which progressively narrow the gap in stages. 535 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 536 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 537 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 538 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 539 540 // Expand all extending loads to types larger than this, and truncating 541 // stores from types larger than this. 542 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 543 setTruncStoreAction(OtherVT, VT, Expand); 544 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 545 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 546 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 547 } 548 } 549 550 for (MVT VT : IntVecVTs) { 551 if (VT.getVectorElementType() == MVT::i64 && 552 !Subtarget.hasVInstructionsI64()) 553 continue; 554 555 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 556 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 557 558 // Vectors implement MULHS/MULHU. 559 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 560 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 561 562 setOperationAction(ISD::SMIN, VT, Legal); 563 setOperationAction(ISD::SMAX, VT, Legal); 564 setOperationAction(ISD::UMIN, VT, Legal); 565 setOperationAction(ISD::UMAX, VT, Legal); 566 567 setOperationAction(ISD::ROTL, VT, Expand); 568 setOperationAction(ISD::ROTR, VT, Expand); 569 570 setOperationAction(ISD::CTTZ, VT, Expand); 571 setOperationAction(ISD::CTLZ, VT, Expand); 572 setOperationAction(ISD::CTPOP, VT, Expand); 573 574 setOperationAction(ISD::BSWAP, VT, Expand); 575 576 // Custom-lower extensions and truncations from/to mask types. 577 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 578 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 579 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 580 581 // RVV has native int->float & float->int conversions where the 582 // element type sizes are within one power-of-two of each other. Any 583 // wider distances between type sizes have to be lowered as sequences 584 // which progressively narrow the gap in stages. 585 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 586 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 587 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 588 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 589 590 setOperationAction(ISD::SADDSAT, VT, Legal); 591 setOperationAction(ISD::UADDSAT, VT, Legal); 592 setOperationAction(ISD::SSUBSAT, VT, Legal); 593 setOperationAction(ISD::USUBSAT, VT, Legal); 594 595 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 596 // nodes which truncate by one power of two at a time. 597 setOperationAction(ISD::TRUNCATE, VT, Custom); 598 599 // Custom-lower insert/extract operations to simplify patterns. 600 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 601 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 602 603 // Custom-lower reduction operations to set up the corresponding custom 604 // nodes' operands. 605 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 606 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 607 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 608 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 609 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 610 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 611 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 612 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 613 614 for (unsigned VPOpc : IntegerVPOps) 615 setOperationAction(VPOpc, VT, Custom); 616 617 setOperationAction(ISD::LOAD, VT, Custom); 618 setOperationAction(ISD::STORE, VT, Custom); 619 620 setOperationAction(ISD::MLOAD, VT, Custom); 621 setOperationAction(ISD::MSTORE, VT, Custom); 622 setOperationAction(ISD::MGATHER, VT, Custom); 623 setOperationAction(ISD::MSCATTER, VT, Custom); 624 625 setOperationAction(ISD::VP_LOAD, VT, Custom); 626 setOperationAction(ISD::VP_STORE, VT, Custom); 627 setOperationAction(ISD::VP_GATHER, VT, Custom); 628 setOperationAction(ISD::VP_SCATTER, VT, Custom); 629 630 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 631 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 632 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 633 634 setOperationAction(ISD::SELECT, VT, Custom); 635 setOperationAction(ISD::SELECT_CC, VT, Expand); 636 637 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 638 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 639 640 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 641 setTruncStoreAction(VT, OtherVT, Expand); 642 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 643 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 644 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 645 } 646 647 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 648 // type that can represent the value exactly. 649 if (VT.getVectorElementType() != MVT::i64) { 650 MVT FloatEltVT = 651 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 652 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 653 if (isTypeLegal(FloatVT)) { 654 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 655 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 656 } 657 } 658 } 659 660 // Expand various CCs to best match the RVV ISA, which natively supports UNE 661 // but no other unordered comparisons, and supports all ordered comparisons 662 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 663 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 664 // and we pattern-match those back to the "original", swapping operands once 665 // more. This way we catch both operations and both "vf" and "fv" forms with 666 // fewer patterns. 667 static const ISD::CondCode VFPCCToExpand[] = { 668 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 669 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 670 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 671 }; 672 673 // Sets common operation actions on RVV floating-point vector types. 674 const auto SetCommonVFPActions = [&](MVT VT) { 675 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 676 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 677 // sizes are within one power-of-two of each other. Therefore conversions 678 // between vXf16 and vXf64 must be lowered as sequences which convert via 679 // vXf32. 680 setOperationAction(ISD::FP_ROUND, VT, Custom); 681 setOperationAction(ISD::FP_EXTEND, VT, Custom); 682 // Custom-lower insert/extract operations to simplify patterns. 683 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 684 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 685 // Expand various condition codes (explained above). 686 for (auto CC : VFPCCToExpand) 687 setCondCodeAction(CC, VT, Expand); 688 689 setOperationAction(ISD::FMINNUM, VT, Legal); 690 setOperationAction(ISD::FMAXNUM, VT, Legal); 691 692 setOperationAction(ISD::FTRUNC, VT, Custom); 693 setOperationAction(ISD::FCEIL, VT, Custom); 694 setOperationAction(ISD::FFLOOR, VT, Custom); 695 696 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 697 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 698 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 699 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 700 701 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 702 703 setOperationAction(ISD::LOAD, VT, Custom); 704 setOperationAction(ISD::STORE, VT, Custom); 705 706 setOperationAction(ISD::MLOAD, VT, Custom); 707 setOperationAction(ISD::MSTORE, VT, Custom); 708 setOperationAction(ISD::MGATHER, VT, Custom); 709 setOperationAction(ISD::MSCATTER, VT, Custom); 710 711 setOperationAction(ISD::VP_LOAD, VT, Custom); 712 setOperationAction(ISD::VP_STORE, VT, Custom); 713 setOperationAction(ISD::VP_GATHER, VT, Custom); 714 setOperationAction(ISD::VP_SCATTER, VT, Custom); 715 716 setOperationAction(ISD::SELECT, VT, Custom); 717 setOperationAction(ISD::SELECT_CC, VT, Expand); 718 719 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 720 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 721 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 722 723 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 724 725 for (unsigned VPOpc : FloatingPointVPOps) 726 setOperationAction(VPOpc, VT, Custom); 727 }; 728 729 // Sets common extload/truncstore actions on RVV floating-point vector 730 // types. 731 const auto SetCommonVFPExtLoadTruncStoreActions = 732 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 733 for (auto SmallVT : SmallerVTs) { 734 setTruncStoreAction(VT, SmallVT, Expand); 735 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 736 } 737 }; 738 739 if (Subtarget.hasVInstructionsF16()) 740 for (MVT VT : F16VecVTs) 741 SetCommonVFPActions(VT); 742 743 for (MVT VT : F32VecVTs) { 744 if (Subtarget.hasVInstructionsF32()) 745 SetCommonVFPActions(VT); 746 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 747 } 748 749 for (MVT VT : F64VecVTs) { 750 if (Subtarget.hasVInstructionsF64()) 751 SetCommonVFPActions(VT); 752 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 753 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 754 } 755 756 if (Subtarget.useRVVForFixedLengthVectors()) { 757 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 758 if (!useRVVForFixedLengthVectorVT(VT)) 759 continue; 760 761 // By default everything must be expanded. 762 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 763 setOperationAction(Op, VT, Expand); 764 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 765 setTruncStoreAction(VT, OtherVT, Expand); 766 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 767 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 768 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 769 } 770 771 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 772 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 773 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 774 775 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 776 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 777 778 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 779 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 780 781 setOperationAction(ISD::LOAD, VT, Custom); 782 setOperationAction(ISD::STORE, VT, Custom); 783 784 setOperationAction(ISD::SETCC, VT, Custom); 785 786 setOperationAction(ISD::SELECT, VT, Custom); 787 788 setOperationAction(ISD::TRUNCATE, VT, Custom); 789 790 setOperationAction(ISD::BITCAST, VT, Custom); 791 792 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 793 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 794 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 795 796 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 797 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 798 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 799 800 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 801 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 802 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 803 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 804 805 // Operations below are different for between masks and other vectors. 806 if (VT.getVectorElementType() == MVT::i1) { 807 setOperationAction(ISD::AND, VT, Custom); 808 setOperationAction(ISD::OR, VT, Custom); 809 setOperationAction(ISD::XOR, VT, Custom); 810 continue; 811 } 812 813 // Use SPLAT_VECTOR to prevent type legalization from destroying the 814 // splats when type legalizing i64 scalar on RV32. 815 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 816 // improvements first. 817 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 818 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 819 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 820 } 821 822 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 823 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 824 825 setOperationAction(ISD::MLOAD, VT, Custom); 826 setOperationAction(ISD::MSTORE, VT, Custom); 827 setOperationAction(ISD::MGATHER, VT, Custom); 828 setOperationAction(ISD::MSCATTER, VT, Custom); 829 830 setOperationAction(ISD::VP_LOAD, VT, Custom); 831 setOperationAction(ISD::VP_STORE, VT, Custom); 832 setOperationAction(ISD::VP_GATHER, VT, Custom); 833 setOperationAction(ISD::VP_SCATTER, VT, Custom); 834 835 setOperationAction(ISD::ADD, VT, Custom); 836 setOperationAction(ISD::MUL, VT, Custom); 837 setOperationAction(ISD::SUB, VT, Custom); 838 setOperationAction(ISD::AND, VT, Custom); 839 setOperationAction(ISD::OR, VT, Custom); 840 setOperationAction(ISD::XOR, VT, Custom); 841 setOperationAction(ISD::SDIV, VT, Custom); 842 setOperationAction(ISD::SREM, VT, Custom); 843 setOperationAction(ISD::UDIV, VT, Custom); 844 setOperationAction(ISD::UREM, VT, Custom); 845 setOperationAction(ISD::SHL, VT, Custom); 846 setOperationAction(ISD::SRA, VT, Custom); 847 setOperationAction(ISD::SRL, VT, Custom); 848 849 setOperationAction(ISD::SMIN, VT, Custom); 850 setOperationAction(ISD::SMAX, VT, Custom); 851 setOperationAction(ISD::UMIN, VT, Custom); 852 setOperationAction(ISD::UMAX, VT, Custom); 853 setOperationAction(ISD::ABS, VT, Custom); 854 855 setOperationAction(ISD::MULHS, VT, Custom); 856 setOperationAction(ISD::MULHU, VT, Custom); 857 858 setOperationAction(ISD::SADDSAT, VT, Custom); 859 setOperationAction(ISD::UADDSAT, VT, Custom); 860 setOperationAction(ISD::SSUBSAT, VT, Custom); 861 setOperationAction(ISD::USUBSAT, VT, Custom); 862 863 setOperationAction(ISD::VSELECT, VT, Custom); 864 setOperationAction(ISD::SELECT_CC, VT, Expand); 865 866 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 867 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 868 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 869 870 // Custom-lower reduction operations to set up the corresponding custom 871 // nodes' operands. 872 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 873 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 874 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 875 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 876 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 877 878 for (unsigned VPOpc : IntegerVPOps) 879 setOperationAction(VPOpc, VT, Custom); 880 881 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 882 // type that can represent the value exactly. 883 if (VT.getVectorElementType() != MVT::i64) { 884 MVT FloatEltVT = 885 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 886 EVT FloatVT = 887 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 888 if (isTypeLegal(FloatVT)) { 889 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 890 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 891 } 892 } 893 } 894 895 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 896 if (!useRVVForFixedLengthVectorVT(VT)) 897 continue; 898 899 // By default everything must be expanded. 900 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 901 setOperationAction(Op, VT, Expand); 902 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 903 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 904 setTruncStoreAction(VT, OtherVT, Expand); 905 } 906 907 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 908 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 909 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 910 911 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 912 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 913 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 914 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 915 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 916 917 setOperationAction(ISD::LOAD, VT, Custom); 918 setOperationAction(ISD::STORE, VT, Custom); 919 setOperationAction(ISD::MLOAD, VT, Custom); 920 setOperationAction(ISD::MSTORE, VT, Custom); 921 setOperationAction(ISD::MGATHER, VT, Custom); 922 setOperationAction(ISD::MSCATTER, VT, Custom); 923 924 setOperationAction(ISD::VP_LOAD, VT, Custom); 925 setOperationAction(ISD::VP_STORE, VT, Custom); 926 setOperationAction(ISD::VP_GATHER, VT, Custom); 927 setOperationAction(ISD::VP_SCATTER, VT, Custom); 928 929 setOperationAction(ISD::FADD, VT, Custom); 930 setOperationAction(ISD::FSUB, VT, Custom); 931 setOperationAction(ISD::FMUL, VT, Custom); 932 setOperationAction(ISD::FDIV, VT, Custom); 933 setOperationAction(ISD::FNEG, VT, Custom); 934 setOperationAction(ISD::FABS, VT, Custom); 935 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 936 setOperationAction(ISD::FSQRT, VT, Custom); 937 setOperationAction(ISD::FMA, VT, Custom); 938 setOperationAction(ISD::FMINNUM, VT, Custom); 939 setOperationAction(ISD::FMAXNUM, VT, Custom); 940 941 setOperationAction(ISD::FP_ROUND, VT, Custom); 942 setOperationAction(ISD::FP_EXTEND, VT, Custom); 943 944 setOperationAction(ISD::FTRUNC, VT, Custom); 945 setOperationAction(ISD::FCEIL, VT, Custom); 946 setOperationAction(ISD::FFLOOR, VT, Custom); 947 948 for (auto CC : VFPCCToExpand) 949 setCondCodeAction(CC, VT, Expand); 950 951 setOperationAction(ISD::VSELECT, VT, Custom); 952 setOperationAction(ISD::SELECT, VT, Custom); 953 setOperationAction(ISD::SELECT_CC, VT, Expand); 954 955 setOperationAction(ISD::BITCAST, VT, Custom); 956 957 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 958 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 959 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 960 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 961 962 for (unsigned VPOpc : FloatingPointVPOps) 963 setOperationAction(VPOpc, VT, Custom); 964 } 965 966 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 967 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 968 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 969 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 970 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 971 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 972 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 973 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 974 } 975 } 976 977 // Function alignments. 978 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 979 setMinFunctionAlignment(FunctionAlignment); 980 setPrefFunctionAlignment(FunctionAlignment); 981 982 setMinimumJumpTableEntries(5); 983 984 // Jumps are expensive, compared to logic 985 setJumpIsExpensive(); 986 987 setTargetDAGCombine(ISD::ADD); 988 setTargetDAGCombine(ISD::SUB); 989 setTargetDAGCombine(ISD::AND); 990 setTargetDAGCombine(ISD::OR); 991 setTargetDAGCombine(ISD::XOR); 992 setTargetDAGCombine(ISD::ANY_EXTEND); 993 setTargetDAGCombine(ISD::ZERO_EXTEND); 994 if (Subtarget.hasVInstructions()) { 995 setTargetDAGCombine(ISD::FCOPYSIGN); 996 setTargetDAGCombine(ISD::MGATHER); 997 setTargetDAGCombine(ISD::MSCATTER); 998 setTargetDAGCombine(ISD::VP_GATHER); 999 setTargetDAGCombine(ISD::VP_SCATTER); 1000 setTargetDAGCombine(ISD::SRA); 1001 setTargetDAGCombine(ISD::SRL); 1002 setTargetDAGCombine(ISD::SHL); 1003 setTargetDAGCombine(ISD::STORE); 1004 } 1005 } 1006 1007 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1008 LLVMContext &Context, 1009 EVT VT) const { 1010 if (!VT.isVector()) 1011 return getPointerTy(DL); 1012 if (Subtarget.hasVInstructions() && 1013 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1014 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1015 return VT.changeVectorElementTypeToInteger(); 1016 } 1017 1018 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1019 return Subtarget.getXLenVT(); 1020 } 1021 1022 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1023 const CallInst &I, 1024 MachineFunction &MF, 1025 unsigned Intrinsic) const { 1026 auto &DL = I.getModule()->getDataLayout(); 1027 switch (Intrinsic) { 1028 default: 1029 return false; 1030 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1031 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1032 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1033 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1034 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1035 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1036 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1037 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1038 case Intrinsic::riscv_masked_cmpxchg_i32: { 1039 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1040 Info.opc = ISD::INTRINSIC_W_CHAIN; 1041 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1042 Info.ptrVal = I.getArgOperand(0); 1043 Info.offset = 0; 1044 Info.align = Align(4); 1045 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1046 MachineMemOperand::MOVolatile; 1047 return true; 1048 } 1049 case Intrinsic::riscv_masked_strided_load: 1050 Info.opc = ISD::INTRINSIC_W_CHAIN; 1051 Info.ptrVal = I.getArgOperand(1); 1052 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1053 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1054 Info.size = MemoryLocation::UnknownSize; 1055 Info.flags |= MachineMemOperand::MOLoad; 1056 return true; 1057 case Intrinsic::riscv_masked_strided_store: 1058 Info.opc = ISD::INTRINSIC_VOID; 1059 Info.ptrVal = I.getArgOperand(1); 1060 Info.memVT = 1061 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1062 Info.align = Align( 1063 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1064 8); 1065 Info.size = MemoryLocation::UnknownSize; 1066 Info.flags |= MachineMemOperand::MOStore; 1067 return true; 1068 } 1069 } 1070 1071 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1072 const AddrMode &AM, Type *Ty, 1073 unsigned AS, 1074 Instruction *I) const { 1075 // No global is ever allowed as a base. 1076 if (AM.BaseGV) 1077 return false; 1078 1079 // Require a 12-bit signed offset. 1080 if (!isInt<12>(AM.BaseOffs)) 1081 return false; 1082 1083 switch (AM.Scale) { 1084 case 0: // "r+i" or just "i", depending on HasBaseReg. 1085 break; 1086 case 1: 1087 if (!AM.HasBaseReg) // allow "r+i". 1088 break; 1089 return false; // disallow "r+r" or "r+r+i". 1090 default: 1091 return false; 1092 } 1093 1094 return true; 1095 } 1096 1097 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1098 return isInt<12>(Imm); 1099 } 1100 1101 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1102 return isInt<12>(Imm); 1103 } 1104 1105 // On RV32, 64-bit integers are split into their high and low parts and held 1106 // in two different registers, so the trunc is free since the low register can 1107 // just be used. 1108 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1109 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1110 return false; 1111 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1112 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1113 return (SrcBits == 64 && DestBits == 32); 1114 } 1115 1116 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1117 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1118 !SrcVT.isInteger() || !DstVT.isInteger()) 1119 return false; 1120 unsigned SrcBits = SrcVT.getSizeInBits(); 1121 unsigned DestBits = DstVT.getSizeInBits(); 1122 return (SrcBits == 64 && DestBits == 32); 1123 } 1124 1125 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1126 // Zexts are free if they can be combined with a load. 1127 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1128 EVT MemVT = LD->getMemoryVT(); 1129 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1130 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1131 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1132 LD->getExtensionType() == ISD::ZEXTLOAD)) 1133 return true; 1134 } 1135 1136 return TargetLowering::isZExtFree(Val, VT2); 1137 } 1138 1139 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1140 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1141 } 1142 1143 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1144 return Subtarget.hasStdExtZbb(); 1145 } 1146 1147 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1148 return Subtarget.hasStdExtZbb(); 1149 } 1150 1151 bool RISCVTargetLowering::hasAndNot(SDValue Y) const { 1152 EVT VT = Y.getValueType(); 1153 1154 // FIXME: Support vectors once we have tests. 1155 if (VT.isVector()) 1156 return false; 1157 1158 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1159 } 1160 1161 /// Check if sinking \p I's operands to I's basic block is profitable, because 1162 /// the operands can be folded into a target instruction, e.g. 1163 /// splats of scalars can fold into vector instructions. 1164 bool RISCVTargetLowering::shouldSinkOperands( 1165 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1166 using namespace llvm::PatternMatch; 1167 1168 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1169 return false; 1170 1171 auto IsSinker = [&](Instruction *I, int Operand) { 1172 switch (I->getOpcode()) { 1173 case Instruction::Add: 1174 case Instruction::Sub: 1175 case Instruction::Mul: 1176 case Instruction::And: 1177 case Instruction::Or: 1178 case Instruction::Xor: 1179 case Instruction::FAdd: 1180 case Instruction::FSub: 1181 case Instruction::FMul: 1182 case Instruction::FDiv: 1183 case Instruction::ICmp: 1184 case Instruction::FCmp: 1185 return true; 1186 case Instruction::Shl: 1187 case Instruction::LShr: 1188 case Instruction::AShr: 1189 case Instruction::UDiv: 1190 case Instruction::SDiv: 1191 case Instruction::URem: 1192 case Instruction::SRem: 1193 return Operand == 1; 1194 case Instruction::Call: 1195 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1196 switch (II->getIntrinsicID()) { 1197 case Intrinsic::fma: 1198 return Operand == 0 || Operand == 1; 1199 default: 1200 return false; 1201 } 1202 } 1203 return false; 1204 default: 1205 return false; 1206 } 1207 }; 1208 1209 for (auto OpIdx : enumerate(I->operands())) { 1210 if (!IsSinker(I, OpIdx.index())) 1211 continue; 1212 1213 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1214 // Make sure we are not already sinking this operand 1215 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1216 continue; 1217 1218 // We are looking for a splat that can be sunk. 1219 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1220 m_Undef(), m_ZeroMask()))) 1221 continue; 1222 1223 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1224 // and vector registers 1225 for (Use &U : Op->uses()) { 1226 Instruction *Insn = cast<Instruction>(U.getUser()); 1227 if (!IsSinker(Insn, U.getOperandNo())) 1228 return false; 1229 } 1230 1231 Ops.push_back(&Op->getOperandUse(0)); 1232 Ops.push_back(&OpIdx.value()); 1233 } 1234 return true; 1235 } 1236 1237 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1238 bool ForCodeSize) const { 1239 if (VT == MVT::f16 && !Subtarget.hasStdExtZfhmin()) 1240 return false; 1241 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1242 return false; 1243 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1244 return false; 1245 if (Imm.isNegZero()) 1246 return false; 1247 return Imm.isZero(); 1248 } 1249 1250 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1251 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1252 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1253 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1254 } 1255 1256 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1257 CallingConv::ID CC, 1258 EVT VT) const { 1259 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1260 // We might still end up using a GPR but that will be decided based on ABI. 1261 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1262 return MVT::f32; 1263 1264 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1265 } 1266 1267 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1268 CallingConv::ID CC, 1269 EVT VT) const { 1270 // Use f32 to pass f16 if it is legal and Zfhmin/Zfh is not enabled. 1271 // We might still end up using a GPR but that will be decided based on ABI. 1272 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfhmin()) 1273 return 1; 1274 1275 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1276 } 1277 1278 // Changes the condition code and swaps operands if necessary, so the SetCC 1279 // operation matches one of the comparisons supported directly by branches 1280 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1281 // with 1/-1. 1282 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1283 ISD::CondCode &CC, SelectionDAG &DAG) { 1284 // Convert X > -1 to X >= 0. 1285 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1286 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1287 CC = ISD::SETGE; 1288 return; 1289 } 1290 // Convert X < 1 to 0 >= X. 1291 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1292 RHS = LHS; 1293 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1294 CC = ISD::SETGE; 1295 return; 1296 } 1297 1298 switch (CC) { 1299 default: 1300 break; 1301 case ISD::SETGT: 1302 case ISD::SETLE: 1303 case ISD::SETUGT: 1304 case ISD::SETULE: 1305 CC = ISD::getSetCCSwappedOperands(CC); 1306 std::swap(LHS, RHS); 1307 break; 1308 } 1309 } 1310 1311 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1312 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1313 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1314 if (VT.getVectorElementType() == MVT::i1) 1315 KnownSize *= 8; 1316 1317 switch (KnownSize) { 1318 default: 1319 llvm_unreachable("Invalid LMUL."); 1320 case 8: 1321 return RISCVII::VLMUL::LMUL_F8; 1322 case 16: 1323 return RISCVII::VLMUL::LMUL_F4; 1324 case 32: 1325 return RISCVII::VLMUL::LMUL_F2; 1326 case 64: 1327 return RISCVII::VLMUL::LMUL_1; 1328 case 128: 1329 return RISCVII::VLMUL::LMUL_2; 1330 case 256: 1331 return RISCVII::VLMUL::LMUL_4; 1332 case 512: 1333 return RISCVII::VLMUL::LMUL_8; 1334 } 1335 } 1336 1337 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1338 switch (LMul) { 1339 default: 1340 llvm_unreachable("Invalid LMUL."); 1341 case RISCVII::VLMUL::LMUL_F8: 1342 case RISCVII::VLMUL::LMUL_F4: 1343 case RISCVII::VLMUL::LMUL_F2: 1344 case RISCVII::VLMUL::LMUL_1: 1345 return RISCV::VRRegClassID; 1346 case RISCVII::VLMUL::LMUL_2: 1347 return RISCV::VRM2RegClassID; 1348 case RISCVII::VLMUL::LMUL_4: 1349 return RISCV::VRM4RegClassID; 1350 case RISCVII::VLMUL::LMUL_8: 1351 return RISCV::VRM8RegClassID; 1352 } 1353 } 1354 1355 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1356 RISCVII::VLMUL LMUL = getLMUL(VT); 1357 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1358 LMUL == RISCVII::VLMUL::LMUL_F4 || 1359 LMUL == RISCVII::VLMUL::LMUL_F2 || 1360 LMUL == RISCVII::VLMUL::LMUL_1) { 1361 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1362 "Unexpected subreg numbering"); 1363 return RISCV::sub_vrm1_0 + Index; 1364 } 1365 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1366 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1367 "Unexpected subreg numbering"); 1368 return RISCV::sub_vrm2_0 + Index; 1369 } 1370 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1371 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1372 "Unexpected subreg numbering"); 1373 return RISCV::sub_vrm4_0 + Index; 1374 } 1375 llvm_unreachable("Invalid vector type."); 1376 } 1377 1378 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1379 if (VT.getVectorElementType() == MVT::i1) 1380 return RISCV::VRRegClassID; 1381 return getRegClassIDForLMUL(getLMUL(VT)); 1382 } 1383 1384 // Attempt to decompose a subvector insert/extract between VecVT and 1385 // SubVecVT via subregister indices. Returns the subregister index that 1386 // can perform the subvector insert/extract with the given element index, as 1387 // well as the index corresponding to any leftover subvectors that must be 1388 // further inserted/extracted within the register class for SubVecVT. 1389 std::pair<unsigned, unsigned> 1390 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1391 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1392 const RISCVRegisterInfo *TRI) { 1393 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1394 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1395 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1396 "Register classes not ordered"); 1397 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1398 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1399 // Try to compose a subregister index that takes us from the incoming 1400 // LMUL>1 register class down to the outgoing one. At each step we half 1401 // the LMUL: 1402 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1403 // Note that this is not guaranteed to find a subregister index, such as 1404 // when we are extracting from one VR type to another. 1405 unsigned SubRegIdx = RISCV::NoSubRegister; 1406 for (const unsigned RCID : 1407 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1408 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1409 VecVT = VecVT.getHalfNumVectorElementsVT(); 1410 bool IsHi = 1411 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1412 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1413 getSubregIndexByMVT(VecVT, IsHi)); 1414 if (IsHi) 1415 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1416 } 1417 return {SubRegIdx, InsertExtractIdx}; 1418 } 1419 1420 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1421 // stores for those types. 1422 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1423 return !Subtarget.useRVVForFixedLengthVectors() || 1424 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1425 } 1426 1427 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1428 if (ScalarTy->isPointerTy()) 1429 return true; 1430 1431 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1432 ScalarTy->isIntegerTy(32)) 1433 return true; 1434 1435 if (ScalarTy->isIntegerTy(64)) 1436 return Subtarget.hasVInstructionsI64(); 1437 1438 if (ScalarTy->isHalfTy()) 1439 return Subtarget.hasVInstructionsF16(); 1440 if (ScalarTy->isFloatTy()) 1441 return Subtarget.hasVInstructionsF32(); 1442 if (ScalarTy->isDoubleTy()) 1443 return Subtarget.hasVInstructionsF64(); 1444 1445 return false; 1446 } 1447 1448 static bool useRVVForFixedLengthVectorVT(MVT VT, 1449 const RISCVSubtarget &Subtarget) { 1450 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1451 if (!Subtarget.useRVVForFixedLengthVectors()) 1452 return false; 1453 1454 // We only support a set of vector types with a consistent maximum fixed size 1455 // across all supported vector element types to avoid legalization issues. 1456 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1457 // fixed-length vector type we support is 1024 bytes. 1458 if (VT.getFixedSizeInBits() > 1024 * 8) 1459 return false; 1460 1461 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1462 1463 MVT EltVT = VT.getVectorElementType(); 1464 1465 // Don't use RVV for vectors we cannot scalarize if required. 1466 switch (EltVT.SimpleTy) { 1467 // i1 is supported but has different rules. 1468 default: 1469 return false; 1470 case MVT::i1: 1471 // Masks can only use a single register. 1472 if (VT.getVectorNumElements() > MinVLen) 1473 return false; 1474 MinVLen /= 8; 1475 break; 1476 case MVT::i8: 1477 case MVT::i16: 1478 case MVT::i32: 1479 break; 1480 case MVT::i64: 1481 if (!Subtarget.hasVInstructionsI64()) 1482 return false; 1483 break; 1484 case MVT::f16: 1485 if (!Subtarget.hasVInstructionsF16()) 1486 return false; 1487 break; 1488 case MVT::f32: 1489 if (!Subtarget.hasVInstructionsF32()) 1490 return false; 1491 break; 1492 case MVT::f64: 1493 if (!Subtarget.hasVInstructionsF64()) 1494 return false; 1495 break; 1496 } 1497 1498 // Reject elements larger than ELEN. 1499 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1500 return false; 1501 1502 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1503 // Don't use RVV for types that don't fit. 1504 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1505 return false; 1506 1507 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1508 // the base fixed length RVV support in place. 1509 if (!VT.isPow2VectorType()) 1510 return false; 1511 1512 return true; 1513 } 1514 1515 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1516 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1517 } 1518 1519 // Return the largest legal scalable vector type that matches VT's element type. 1520 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1521 const RISCVSubtarget &Subtarget) { 1522 // This may be called before legal types are setup. 1523 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1524 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1525 "Expected legal fixed length vector!"); 1526 1527 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1528 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1529 1530 MVT EltVT = VT.getVectorElementType(); 1531 switch (EltVT.SimpleTy) { 1532 default: 1533 llvm_unreachable("unexpected element type for RVV container"); 1534 case MVT::i1: 1535 case MVT::i8: 1536 case MVT::i16: 1537 case MVT::i32: 1538 case MVT::i64: 1539 case MVT::f16: 1540 case MVT::f32: 1541 case MVT::f64: { 1542 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1543 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1544 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1545 unsigned NumElts = 1546 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1547 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1548 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1549 return MVT::getScalableVectorVT(EltVT, NumElts); 1550 } 1551 } 1552 } 1553 1554 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1555 const RISCVSubtarget &Subtarget) { 1556 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1557 Subtarget); 1558 } 1559 1560 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1561 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1562 } 1563 1564 // Grow V to consume an entire RVV register. 1565 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1566 const RISCVSubtarget &Subtarget) { 1567 assert(VT.isScalableVector() && 1568 "Expected to convert into a scalable vector!"); 1569 assert(V.getValueType().isFixedLengthVector() && 1570 "Expected a fixed length vector operand!"); 1571 SDLoc DL(V); 1572 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1573 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1574 } 1575 1576 // Shrink V so it's just big enough to maintain a VT's worth of data. 1577 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1578 const RISCVSubtarget &Subtarget) { 1579 assert(VT.isFixedLengthVector() && 1580 "Expected to convert into a fixed length vector!"); 1581 assert(V.getValueType().isScalableVector() && 1582 "Expected a scalable vector operand!"); 1583 SDLoc DL(V); 1584 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1585 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1586 } 1587 1588 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1589 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1590 // the vector type that it is contained in. 1591 static std::pair<SDValue, SDValue> 1592 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1593 const RISCVSubtarget &Subtarget) { 1594 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1595 MVT XLenVT = Subtarget.getXLenVT(); 1596 SDValue VL = VecVT.isFixedLengthVector() 1597 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1598 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1599 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1600 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1601 return {Mask, VL}; 1602 } 1603 1604 // As above but assuming the given type is a scalable vector type. 1605 static std::pair<SDValue, SDValue> 1606 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1607 const RISCVSubtarget &Subtarget) { 1608 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1609 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1610 } 1611 1612 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1613 // of either is (currently) supported. This can get us into an infinite loop 1614 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1615 // as a ..., etc. 1616 // Until either (or both) of these can reliably lower any node, reporting that 1617 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1618 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1619 // which is not desirable. 1620 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1621 EVT VT, unsigned DefinedValues) const { 1622 return false; 1623 } 1624 1625 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1626 // Only splats are currently supported. 1627 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1628 return true; 1629 1630 return false; 1631 } 1632 1633 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1634 // RISCV FP-to-int conversions saturate to the destination register size, but 1635 // don't produce 0 for nan. We can use a conversion instruction and fix the 1636 // nan case with a compare and a select. 1637 SDValue Src = Op.getOperand(0); 1638 1639 EVT DstVT = Op.getValueType(); 1640 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1641 1642 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1643 unsigned Opc; 1644 if (SatVT == DstVT) 1645 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1646 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1647 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1648 else 1649 return SDValue(); 1650 // FIXME: Support other SatVTs by clamping before or after the conversion. 1651 1652 SDLoc DL(Op); 1653 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1654 1655 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1656 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1657 } 1658 1659 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1660 // and back. Taking care to avoid converting values that are nan or already 1661 // correct. 1662 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1663 // have FRM dependencies modeled yet. 1664 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1665 MVT VT = Op.getSimpleValueType(); 1666 assert(VT.isVector() && "Unexpected type"); 1667 1668 SDLoc DL(Op); 1669 1670 // Freeze the source since we are increasing the number of uses. 1671 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1672 1673 // Truncate to integer and convert back to FP. 1674 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1675 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1676 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1677 1678 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1679 1680 if (Op.getOpcode() == ISD::FCEIL) { 1681 // If the truncated value is the greater than or equal to the original 1682 // value, we've computed the ceil. Otherwise, we went the wrong way and 1683 // need to increase by 1. 1684 // FIXME: This should use a masked operation. Handle here or in isel? 1685 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1686 DAG.getConstantFP(1.0, DL, VT)); 1687 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1688 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1689 } else if (Op.getOpcode() == ISD::FFLOOR) { 1690 // If the truncated value is the less than or equal to the original value, 1691 // we've computed the floor. Otherwise, we went the wrong way and need to 1692 // decrease by 1. 1693 // FIXME: This should use a masked operation. Handle here or in isel? 1694 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1695 DAG.getConstantFP(1.0, DL, VT)); 1696 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1697 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1698 } 1699 1700 // Restore the original sign so that -0.0 is preserved. 1701 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1702 1703 // Determine the largest integer that can be represented exactly. This and 1704 // values larger than it don't have any fractional bits so don't need to 1705 // be converted. 1706 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1707 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1708 APFloat MaxVal = APFloat(FltSem); 1709 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1710 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1711 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1712 1713 // If abs(Src) was larger than MaxVal or nan, keep it. 1714 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1715 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1716 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1717 } 1718 1719 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1720 const RISCVSubtarget &Subtarget) { 1721 MVT VT = Op.getSimpleValueType(); 1722 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1723 1724 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1725 1726 SDLoc DL(Op); 1727 SDValue Mask, VL; 1728 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1729 1730 unsigned Opc = 1731 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1732 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1733 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1734 } 1735 1736 struct VIDSequence { 1737 int64_t StepNumerator; 1738 unsigned StepDenominator; 1739 int64_t Addend; 1740 }; 1741 1742 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1743 // to the (non-zero) step S and start value X. This can be then lowered as the 1744 // RVV sequence (VID * S) + X, for example. 1745 // The step S is represented as an integer numerator divided by a positive 1746 // denominator. Note that the implementation currently only identifies 1747 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1748 // cannot detect 2/3, for example. 1749 // Note that this method will also match potentially unappealing index 1750 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1751 // determine whether this is worth generating code for. 1752 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1753 unsigned NumElts = Op.getNumOperands(); 1754 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1755 if (!Op.getValueType().isInteger()) 1756 return None; 1757 1758 Optional<unsigned> SeqStepDenom; 1759 Optional<int64_t> SeqStepNum, SeqAddend; 1760 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1761 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1762 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1763 // Assume undef elements match the sequence; we just have to be careful 1764 // when interpolating across them. 1765 if (Op.getOperand(Idx).isUndef()) 1766 continue; 1767 // The BUILD_VECTOR must be all constants. 1768 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1769 return None; 1770 1771 uint64_t Val = Op.getConstantOperandVal(Idx) & 1772 maskTrailingOnes<uint64_t>(EltSizeInBits); 1773 1774 if (PrevElt) { 1775 // Calculate the step since the last non-undef element, and ensure 1776 // it's consistent across the entire sequence. 1777 unsigned IdxDiff = Idx - PrevElt->second; 1778 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1779 1780 // A zero-value value difference means that we're somewhere in the middle 1781 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1782 // step change before evaluating the sequence. 1783 if (ValDiff != 0) { 1784 int64_t Remainder = ValDiff % IdxDiff; 1785 // Normalize the step if it's greater than 1. 1786 if (Remainder != ValDiff) { 1787 // The difference must cleanly divide the element span. 1788 if (Remainder != 0) 1789 return None; 1790 ValDiff /= IdxDiff; 1791 IdxDiff = 1; 1792 } 1793 1794 if (!SeqStepNum) 1795 SeqStepNum = ValDiff; 1796 else if (ValDiff != SeqStepNum) 1797 return None; 1798 1799 if (!SeqStepDenom) 1800 SeqStepDenom = IdxDiff; 1801 else if (IdxDiff != *SeqStepDenom) 1802 return None; 1803 } 1804 } 1805 1806 // Record and/or check any addend. 1807 if (SeqStepNum && SeqStepDenom) { 1808 uint64_t ExpectedVal = 1809 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1810 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1811 if (!SeqAddend) 1812 SeqAddend = Addend; 1813 else if (SeqAddend != Addend) 1814 return None; 1815 } 1816 1817 // Record this non-undef element for later. 1818 if (!PrevElt || PrevElt->first != Val) 1819 PrevElt = std::make_pair(Val, Idx); 1820 } 1821 // We need to have logged both a step and an addend for this to count as 1822 // a legal index sequence. 1823 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1824 return None; 1825 1826 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1827 } 1828 1829 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1830 const RISCVSubtarget &Subtarget) { 1831 MVT VT = Op.getSimpleValueType(); 1832 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1833 1834 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1835 1836 SDLoc DL(Op); 1837 SDValue Mask, VL; 1838 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1839 1840 MVT XLenVT = Subtarget.getXLenVT(); 1841 unsigned NumElts = Op.getNumOperands(); 1842 1843 if (VT.getVectorElementType() == MVT::i1) { 1844 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1845 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1846 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1847 } 1848 1849 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1850 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1851 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1852 } 1853 1854 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1855 // scalar integer chunks whose bit-width depends on the number of mask 1856 // bits and XLEN. 1857 // First, determine the most appropriate scalar integer type to use. This 1858 // is at most XLenVT, but may be shrunk to a smaller vector element type 1859 // according to the size of the final vector - use i8 chunks rather than 1860 // XLenVT if we're producing a v8i1. This results in more consistent 1861 // codegen across RV32 and RV64. 1862 unsigned NumViaIntegerBits = 1863 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1864 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1865 // If we have to use more than one INSERT_VECTOR_ELT then this 1866 // optimization is likely to increase code size; avoid peforming it in 1867 // such a case. We can use a load from a constant pool in this case. 1868 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1869 return SDValue(); 1870 // Now we can create our integer vector type. Note that it may be larger 1871 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1872 MVT IntegerViaVecVT = 1873 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1874 divideCeil(NumElts, NumViaIntegerBits)); 1875 1876 uint64_t Bits = 0; 1877 unsigned BitPos = 0, IntegerEltIdx = 0; 1878 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1879 1880 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1881 // Once we accumulate enough bits to fill our scalar type, insert into 1882 // our vector and clear our accumulated data. 1883 if (I != 0 && I % NumViaIntegerBits == 0) { 1884 if (NumViaIntegerBits <= 32) 1885 Bits = SignExtend64(Bits, 32); 1886 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1887 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1888 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1889 Bits = 0; 1890 BitPos = 0; 1891 IntegerEltIdx++; 1892 } 1893 SDValue V = Op.getOperand(I); 1894 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1895 Bits |= ((uint64_t)BitValue << BitPos); 1896 } 1897 1898 // Insert the (remaining) scalar value into position in our integer 1899 // vector type. 1900 if (NumViaIntegerBits <= 32) 1901 Bits = SignExtend64(Bits, 32); 1902 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1903 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1904 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1905 1906 if (NumElts < NumViaIntegerBits) { 1907 // If we're producing a smaller vector than our minimum legal integer 1908 // type, bitcast to the equivalent (known-legal) mask type, and extract 1909 // our final mask. 1910 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1911 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1912 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1913 DAG.getConstant(0, DL, XLenVT)); 1914 } else { 1915 // Else we must have produced an integer type with the same size as the 1916 // mask type; bitcast for the final result. 1917 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1918 Vec = DAG.getBitcast(VT, Vec); 1919 } 1920 1921 return Vec; 1922 } 1923 1924 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1925 // vector type, we have a legal equivalently-sized i8 type, so we can use 1926 // that. 1927 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1928 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1929 1930 SDValue WideVec; 1931 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1932 // For a splat, perform a scalar truncate before creating the wider 1933 // vector. 1934 assert(Splat.getValueType() == XLenVT && 1935 "Unexpected type for i1 splat value"); 1936 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1937 DAG.getConstant(1, DL, XLenVT)); 1938 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1939 } else { 1940 SmallVector<SDValue, 8> Ops(Op->op_values()); 1941 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1942 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1943 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1944 } 1945 1946 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1947 } 1948 1949 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1950 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1951 : RISCVISD::VMV_V_X_VL; 1952 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1953 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1954 } 1955 1956 // Try and match index sequences, which we can lower to the vid instruction 1957 // with optional modifications. An all-undef vector is matched by 1958 // getSplatValue, above. 1959 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1960 int64_t StepNumerator = SimpleVID->StepNumerator; 1961 unsigned StepDenominator = SimpleVID->StepDenominator; 1962 int64_t Addend = SimpleVID->Addend; 1963 1964 assert(StepNumerator != 0 && "Invalid step"); 1965 bool Negate = false; 1966 int64_t SplatStepVal = StepNumerator; 1967 unsigned StepOpcode = ISD::MUL; 1968 if (StepNumerator != 1) { 1969 if (isPowerOf2_64(std::abs(StepNumerator))) { 1970 Negate = StepNumerator < 0; 1971 StepOpcode = ISD::SHL; 1972 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1973 } 1974 } 1975 1976 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1977 // threshold since it's the immediate value many RVV instructions accept. 1978 // There is no vmul.vi instruction so ensure multiply constant can fit in 1979 // a single addi instruction. 1980 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 1981 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 1982 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 1983 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1984 // Convert right out of the scalable type so we can use standard ISD 1985 // nodes for the rest of the computation. If we used scalable types with 1986 // these, we'd lose the fixed-length vector info and generate worse 1987 // vsetvli code. 1988 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1989 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 1990 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 1991 SDValue SplatStep = DAG.getSplatVector( 1992 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1993 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 1994 } 1995 if (StepDenominator != 1) { 1996 SDValue SplatStep = DAG.getSplatVector( 1997 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1998 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1999 } 2000 if (Addend != 0 || Negate) { 2001 SDValue SplatAddend = 2002 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2003 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2004 } 2005 return VID; 2006 } 2007 } 2008 2009 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2010 // when re-interpreted as a vector with a larger element type. For example, 2011 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2012 // could be instead splat as 2013 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2014 // TODO: This optimization could also work on non-constant splats, but it 2015 // would require bit-manipulation instructions to construct the splat value. 2016 SmallVector<SDValue> Sequence; 2017 unsigned EltBitSize = VT.getScalarSizeInBits(); 2018 const auto *BV = cast<BuildVectorSDNode>(Op); 2019 if (VT.isInteger() && EltBitSize < 64 && 2020 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2021 BV->getRepeatedSequence(Sequence) && 2022 (Sequence.size() * EltBitSize) <= 64) { 2023 unsigned SeqLen = Sequence.size(); 2024 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2025 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2026 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2027 ViaIntVT == MVT::i64) && 2028 "Unexpected sequence type"); 2029 2030 unsigned EltIdx = 0; 2031 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2032 uint64_t SplatValue = 0; 2033 // Construct the amalgamated value which can be splatted as this larger 2034 // vector type. 2035 for (const auto &SeqV : Sequence) { 2036 if (!SeqV.isUndef()) 2037 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2038 << (EltIdx * EltBitSize)); 2039 EltIdx++; 2040 } 2041 2042 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2043 // achieve better constant materializion. 2044 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2045 SplatValue = SignExtend64(SplatValue, 32); 2046 2047 // Since we can't introduce illegal i64 types at this stage, we can only 2048 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2049 // way we can use RVV instructions to splat. 2050 assert((ViaIntVT.bitsLE(XLenVT) || 2051 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2052 "Unexpected bitcast sequence"); 2053 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2054 SDValue ViaVL = 2055 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2056 MVT ViaContainerVT = 2057 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2058 SDValue Splat = 2059 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2060 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2061 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2062 return DAG.getBitcast(VT, Splat); 2063 } 2064 } 2065 2066 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2067 // which constitute a large proportion of the elements. In such cases we can 2068 // splat a vector with the dominant element and make up the shortfall with 2069 // INSERT_VECTOR_ELTs. 2070 // Note that this includes vectors of 2 elements by association. The 2071 // upper-most element is the "dominant" one, allowing us to use a splat to 2072 // "insert" the upper element, and an insert of the lower element at position 2073 // 0, which improves codegen. 2074 SDValue DominantValue; 2075 unsigned MostCommonCount = 0; 2076 DenseMap<SDValue, unsigned> ValueCounts; 2077 unsigned NumUndefElts = 2078 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2079 2080 // Track the number of scalar loads we know we'd be inserting, estimated as 2081 // any non-zero floating-point constant. Other kinds of element are either 2082 // already in registers or are materialized on demand. The threshold at which 2083 // a vector load is more desirable than several scalar materializion and 2084 // vector-insertion instructions is not known. 2085 unsigned NumScalarLoads = 0; 2086 2087 for (SDValue V : Op->op_values()) { 2088 if (V.isUndef()) 2089 continue; 2090 2091 ValueCounts.insert(std::make_pair(V, 0)); 2092 unsigned &Count = ValueCounts[V]; 2093 2094 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2095 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2096 2097 // Is this value dominant? In case of a tie, prefer the highest element as 2098 // it's cheaper to insert near the beginning of a vector than it is at the 2099 // end. 2100 if (++Count >= MostCommonCount) { 2101 DominantValue = V; 2102 MostCommonCount = Count; 2103 } 2104 } 2105 2106 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2107 unsigned NumDefElts = NumElts - NumUndefElts; 2108 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2109 2110 // Don't perform this optimization when optimizing for size, since 2111 // materializing elements and inserting them tends to cause code bloat. 2112 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2113 ((MostCommonCount > DominantValueCountThreshold) || 2114 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2115 // Start by splatting the most common element. 2116 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2117 2118 DenseSet<SDValue> Processed{DominantValue}; 2119 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2120 for (const auto &OpIdx : enumerate(Op->ops())) { 2121 const SDValue &V = OpIdx.value(); 2122 if (V.isUndef() || !Processed.insert(V).second) 2123 continue; 2124 if (ValueCounts[V] == 1) { 2125 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2126 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2127 } else { 2128 // Blend in all instances of this value using a VSELECT, using a 2129 // mask where each bit signals whether that element is the one 2130 // we're after. 2131 SmallVector<SDValue> Ops; 2132 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2133 return DAG.getConstant(V == V1, DL, XLenVT); 2134 }); 2135 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2136 DAG.getBuildVector(SelMaskTy, DL, Ops), 2137 DAG.getSplatBuildVector(VT, DL, V), Vec); 2138 } 2139 } 2140 2141 return Vec; 2142 } 2143 2144 return SDValue(); 2145 } 2146 2147 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2148 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2149 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2150 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2151 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2152 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2153 // node in order to try and match RVV vector/scalar instructions. 2154 if ((LoC >> 31) == HiC) 2155 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2156 } 2157 2158 // Fall back to a stack store and stride x0 vector load. 2159 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2160 } 2161 2162 // Called by type legalization to handle splat of i64 on RV32. 2163 // FIXME: We can optimize this when the type has sign or zero bits in one 2164 // of the halves. 2165 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2166 SDValue VL, SelectionDAG &DAG) { 2167 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2168 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2169 DAG.getConstant(0, DL, MVT::i32)); 2170 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2171 DAG.getConstant(1, DL, MVT::i32)); 2172 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2173 } 2174 2175 // This function lowers a splat of a scalar operand Splat with the vector 2176 // length VL. It ensures the final sequence is type legal, which is useful when 2177 // lowering a splat after type legalization. 2178 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2179 SelectionDAG &DAG, 2180 const RISCVSubtarget &Subtarget) { 2181 if (VT.isFloatingPoint()) 2182 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2183 2184 MVT XLenVT = Subtarget.getXLenVT(); 2185 2186 // Simplest case is that the operand needs to be promoted to XLenVT. 2187 if (Scalar.getValueType().bitsLE(XLenVT)) { 2188 // If the operand is a constant, sign extend to increase our chances 2189 // of being able to use a .vi instruction. ANY_EXTEND would become a 2190 // a zero extend and the simm5 check in isel would fail. 2191 // FIXME: Should we ignore the upper bits in isel instead? 2192 unsigned ExtOpc = 2193 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2194 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2195 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2196 } 2197 2198 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2199 "Unexpected scalar for splat lowering!"); 2200 2201 // Otherwise use the more complicated splatting algorithm. 2202 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2203 } 2204 2205 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2206 const RISCVSubtarget &Subtarget) { 2207 SDValue V1 = Op.getOperand(0); 2208 SDValue V2 = Op.getOperand(1); 2209 SDLoc DL(Op); 2210 MVT XLenVT = Subtarget.getXLenVT(); 2211 MVT VT = Op.getSimpleValueType(); 2212 unsigned NumElts = VT.getVectorNumElements(); 2213 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2214 2215 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2216 2217 SDValue TrueMask, VL; 2218 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2219 2220 if (SVN->isSplat()) { 2221 const int Lane = SVN->getSplatIndex(); 2222 if (Lane >= 0) { 2223 MVT SVT = VT.getVectorElementType(); 2224 2225 // Turn splatted vector load into a strided load with an X0 stride. 2226 SDValue V = V1; 2227 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2228 // with undef. 2229 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2230 int Offset = Lane; 2231 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2232 int OpElements = 2233 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2234 V = V.getOperand(Offset / OpElements); 2235 Offset %= OpElements; 2236 } 2237 2238 // We need to ensure the load isn't atomic or volatile. 2239 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2240 auto *Ld = cast<LoadSDNode>(V); 2241 Offset *= SVT.getStoreSize(); 2242 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2243 TypeSize::Fixed(Offset), DL); 2244 2245 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2246 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2247 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2248 SDValue IntID = 2249 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2250 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2251 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2252 SDValue NewLoad = DAG.getMemIntrinsicNode( 2253 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2254 DAG.getMachineFunction().getMachineMemOperand( 2255 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2256 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2257 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2258 } 2259 2260 // Otherwise use a scalar load and splat. This will give the best 2261 // opportunity to fold a splat into the operation. ISel can turn it into 2262 // the x0 strided load if we aren't able to fold away the select. 2263 if (SVT.isFloatingPoint()) 2264 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2265 Ld->getPointerInfo().getWithOffset(Offset), 2266 Ld->getOriginalAlign(), 2267 Ld->getMemOperand()->getFlags()); 2268 else 2269 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2270 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2271 Ld->getOriginalAlign(), 2272 Ld->getMemOperand()->getFlags()); 2273 DAG.makeEquivalentMemoryOrdering(Ld, V); 2274 2275 unsigned Opc = 2276 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2277 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2278 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2279 } 2280 2281 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2282 assert(Lane < (int)NumElts && "Unexpected lane!"); 2283 SDValue Gather = 2284 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2285 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2286 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2287 } 2288 } 2289 2290 // Detect shuffles which can be re-expressed as vector selects; these are 2291 // shuffles in which each element in the destination is taken from an element 2292 // at the corresponding index in either source vectors. 2293 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2294 int MaskIndex = MaskIdx.value(); 2295 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2296 }); 2297 2298 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2299 2300 SmallVector<SDValue> MaskVals; 2301 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2302 // merged with a second vrgather. 2303 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2304 2305 // By default we preserve the original operand order, and use a mask to 2306 // select LHS as true and RHS as false. However, since RVV vector selects may 2307 // feature splats but only on the LHS, we may choose to invert our mask and 2308 // instead select between RHS and LHS. 2309 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2310 bool InvertMask = IsSelect == SwapOps; 2311 2312 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2313 // half. 2314 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2315 2316 // Now construct the mask that will be used by the vselect or blended 2317 // vrgather operation. For vrgathers, construct the appropriate indices into 2318 // each vector. 2319 for (int MaskIndex : SVN->getMask()) { 2320 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2321 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2322 if (!IsSelect) { 2323 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2324 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2325 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2326 : DAG.getUNDEF(XLenVT)); 2327 GatherIndicesRHS.push_back( 2328 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2329 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2330 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2331 ++LHSIndexCounts[MaskIndex]; 2332 if (!IsLHSOrUndefIndex) 2333 ++RHSIndexCounts[MaskIndex - NumElts]; 2334 } 2335 } 2336 2337 if (SwapOps) { 2338 std::swap(V1, V2); 2339 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2340 } 2341 2342 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2343 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2344 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2345 2346 if (IsSelect) 2347 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2348 2349 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2350 // On such a large vector we're unable to use i8 as the index type. 2351 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2352 // may involve vector splitting if we're already at LMUL=8, or our 2353 // user-supplied maximum fixed-length LMUL. 2354 return SDValue(); 2355 } 2356 2357 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2358 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2359 MVT IndexVT = VT.changeTypeToInteger(); 2360 // Since we can't introduce illegal index types at this stage, use i16 and 2361 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2362 // than XLenVT. 2363 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2364 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2365 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2366 } 2367 2368 MVT IndexContainerVT = 2369 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2370 2371 SDValue Gather; 2372 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2373 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2374 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2375 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2376 } else { 2377 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2378 // If only one index is used, we can use a "splat" vrgather. 2379 // TODO: We can splat the most-common index and fix-up any stragglers, if 2380 // that's beneficial. 2381 if (LHSIndexCounts.size() == 1) { 2382 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2383 Gather = 2384 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2385 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2386 } else { 2387 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2388 LHSIndices = 2389 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2390 2391 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2392 TrueMask, VL); 2393 } 2394 } 2395 2396 // If a second vector operand is used by this shuffle, blend it in with an 2397 // additional vrgather. 2398 if (!V2.isUndef()) { 2399 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2400 // If only one index is used, we can use a "splat" vrgather. 2401 // TODO: We can splat the most-common index and fix-up any stragglers, if 2402 // that's beneficial. 2403 if (RHSIndexCounts.size() == 1) { 2404 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2405 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2406 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2407 } else { 2408 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2409 RHSIndices = 2410 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2411 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2412 VL); 2413 } 2414 2415 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2416 SelectMask = 2417 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2418 2419 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2420 Gather, VL); 2421 } 2422 2423 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2424 } 2425 2426 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2427 SDLoc DL, SelectionDAG &DAG, 2428 const RISCVSubtarget &Subtarget) { 2429 if (VT.isScalableVector()) 2430 return DAG.getFPExtendOrRound(Op, DL, VT); 2431 assert(VT.isFixedLengthVector() && 2432 "Unexpected value type for RVV FP extend/round lowering"); 2433 SDValue Mask, VL; 2434 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2435 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2436 ? RISCVISD::FP_EXTEND_VL 2437 : RISCVISD::FP_ROUND_VL; 2438 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2439 } 2440 2441 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2442 // the exponent. 2443 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2444 MVT VT = Op.getSimpleValueType(); 2445 unsigned EltSize = VT.getScalarSizeInBits(); 2446 SDValue Src = Op.getOperand(0); 2447 SDLoc DL(Op); 2448 2449 // We need a FP type that can represent the value. 2450 // TODO: Use f16 for i8 when possible? 2451 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2452 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2453 2454 // Legal types should have been checked in the RISCVTargetLowering 2455 // constructor. 2456 // TODO: Splitting may make sense in some cases. 2457 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2458 "Expected legal float type!"); 2459 2460 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2461 // The trailing zero count is equal to log2 of this single bit value. 2462 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2463 SDValue Neg = 2464 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2465 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2466 } 2467 2468 // We have a legal FP type, convert to it. 2469 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2470 // Bitcast to integer and shift the exponent to the LSB. 2471 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2472 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2473 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2474 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2475 DAG.getConstant(ShiftAmt, DL, IntVT)); 2476 // Truncate back to original type to allow vnsrl. 2477 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2478 // The exponent contains log2 of the value in biased form. 2479 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2480 2481 // For trailing zeros, we just need to subtract the bias. 2482 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2483 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2484 DAG.getConstant(ExponentBias, DL, VT)); 2485 2486 // For leading zeros, we need to remove the bias and convert from log2 to 2487 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2488 unsigned Adjust = ExponentBias + (EltSize - 1); 2489 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2490 } 2491 2492 // While RVV has alignment restrictions, we should always be able to load as a 2493 // legal equivalently-sized byte-typed vector instead. This method is 2494 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2495 // the load is already correctly-aligned, it returns SDValue(). 2496 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2497 SelectionDAG &DAG) const { 2498 auto *Load = cast<LoadSDNode>(Op); 2499 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2500 2501 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2502 Load->getMemoryVT(), 2503 *Load->getMemOperand())) 2504 return SDValue(); 2505 2506 SDLoc DL(Op); 2507 MVT VT = Op.getSimpleValueType(); 2508 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2509 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2510 "Unexpected unaligned RVV load type"); 2511 MVT NewVT = 2512 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2513 assert(NewVT.isValid() && 2514 "Expecting equally-sized RVV vector types to be legal"); 2515 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2516 Load->getPointerInfo(), Load->getOriginalAlign(), 2517 Load->getMemOperand()->getFlags()); 2518 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2519 } 2520 2521 // While RVV has alignment restrictions, we should always be able to store as a 2522 // legal equivalently-sized byte-typed vector instead. This method is 2523 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2524 // returns SDValue() if the store is already correctly aligned. 2525 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2526 SelectionDAG &DAG) const { 2527 auto *Store = cast<StoreSDNode>(Op); 2528 assert(Store && Store->getValue().getValueType().isVector() && 2529 "Expected vector store"); 2530 2531 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2532 Store->getMemoryVT(), 2533 *Store->getMemOperand())) 2534 return SDValue(); 2535 2536 SDLoc DL(Op); 2537 SDValue StoredVal = Store->getValue(); 2538 MVT VT = StoredVal.getSimpleValueType(); 2539 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2540 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2541 "Unexpected unaligned RVV store type"); 2542 MVT NewVT = 2543 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2544 assert(NewVT.isValid() && 2545 "Expecting equally-sized RVV vector types to be legal"); 2546 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2547 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2548 Store->getPointerInfo(), Store->getOriginalAlign(), 2549 Store->getMemOperand()->getFlags()); 2550 } 2551 2552 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2553 SelectionDAG &DAG) const { 2554 switch (Op.getOpcode()) { 2555 default: 2556 report_fatal_error("unimplemented operand"); 2557 case ISD::GlobalAddress: 2558 return lowerGlobalAddress(Op, DAG); 2559 case ISD::BlockAddress: 2560 return lowerBlockAddress(Op, DAG); 2561 case ISD::ConstantPool: 2562 return lowerConstantPool(Op, DAG); 2563 case ISD::JumpTable: 2564 return lowerJumpTable(Op, DAG); 2565 case ISD::GlobalTLSAddress: 2566 return lowerGlobalTLSAddress(Op, DAG); 2567 case ISD::SELECT: 2568 return lowerSELECT(Op, DAG); 2569 case ISD::BRCOND: 2570 return lowerBRCOND(Op, DAG); 2571 case ISD::VASTART: 2572 return lowerVASTART(Op, DAG); 2573 case ISD::FRAMEADDR: 2574 return lowerFRAMEADDR(Op, DAG); 2575 case ISD::RETURNADDR: 2576 return lowerRETURNADDR(Op, DAG); 2577 case ISD::SHL_PARTS: 2578 return lowerShiftLeftParts(Op, DAG); 2579 case ISD::SRA_PARTS: 2580 return lowerShiftRightParts(Op, DAG, true); 2581 case ISD::SRL_PARTS: 2582 return lowerShiftRightParts(Op, DAG, false); 2583 case ISD::BITCAST: { 2584 SDLoc DL(Op); 2585 EVT VT = Op.getValueType(); 2586 SDValue Op0 = Op.getOperand(0); 2587 EVT Op0VT = Op0.getValueType(); 2588 MVT XLenVT = Subtarget.getXLenVT(); 2589 if (VT.isFixedLengthVector()) { 2590 // We can handle fixed length vector bitcasts with a simple replacement 2591 // in isel. 2592 if (Op0VT.isFixedLengthVector()) 2593 return Op; 2594 // When bitcasting from scalar to fixed-length vector, insert the scalar 2595 // into a one-element vector of the result type, and perform a vector 2596 // bitcast. 2597 if (!Op0VT.isVector()) { 2598 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2599 if (!isTypeLegal(BVT)) 2600 return SDValue(); 2601 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2602 DAG.getUNDEF(BVT), Op0, 2603 DAG.getConstant(0, DL, XLenVT))); 2604 } 2605 return SDValue(); 2606 } 2607 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2608 // thus: bitcast the vector to a one-element vector type whose element type 2609 // is the same as the result type, and extract the first element. 2610 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2611 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2612 if (!isTypeLegal(BVT)) 2613 return SDValue(); 2614 SDValue BVec = DAG.getBitcast(BVT, Op0); 2615 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2616 DAG.getConstant(0, DL, XLenVT)); 2617 } 2618 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2619 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2620 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2621 return FPConv; 2622 } 2623 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2624 Subtarget.hasStdExtF()) { 2625 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2626 SDValue FPConv = 2627 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2628 return FPConv; 2629 } 2630 return SDValue(); 2631 } 2632 case ISD::INTRINSIC_WO_CHAIN: 2633 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2634 case ISD::INTRINSIC_W_CHAIN: 2635 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2636 case ISD::INTRINSIC_VOID: 2637 return LowerINTRINSIC_VOID(Op, DAG); 2638 case ISD::BSWAP: 2639 case ISD::BITREVERSE: { 2640 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2641 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2642 MVT VT = Op.getSimpleValueType(); 2643 SDLoc DL(Op); 2644 // Start with the maximum immediate value which is the bitwidth - 1. 2645 unsigned Imm = VT.getSizeInBits() - 1; 2646 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2647 if (Op.getOpcode() == ISD::BSWAP) 2648 Imm &= ~0x7U; 2649 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2650 DAG.getConstant(Imm, DL, VT)); 2651 } 2652 case ISD::FSHL: 2653 case ISD::FSHR: { 2654 MVT VT = Op.getSimpleValueType(); 2655 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2656 SDLoc DL(Op); 2657 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2658 return Op; 2659 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2660 // use log(XLen) bits. Mask the shift amount accordingly. 2661 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2662 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2663 DAG.getConstant(ShAmtWidth, DL, VT)); 2664 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2665 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2666 } 2667 case ISD::TRUNCATE: { 2668 SDLoc DL(Op); 2669 MVT VT = Op.getSimpleValueType(); 2670 // Only custom-lower vector truncates 2671 if (!VT.isVector()) 2672 return Op; 2673 2674 // Truncates to mask types are handled differently 2675 if (VT.getVectorElementType() == MVT::i1) 2676 return lowerVectorMaskTrunc(Op, DAG); 2677 2678 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2679 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2680 // truncate by one power of two at a time. 2681 MVT DstEltVT = VT.getVectorElementType(); 2682 2683 SDValue Src = Op.getOperand(0); 2684 MVT SrcVT = Src.getSimpleValueType(); 2685 MVT SrcEltVT = SrcVT.getVectorElementType(); 2686 2687 assert(DstEltVT.bitsLT(SrcEltVT) && 2688 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2689 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2690 "Unexpected vector truncate lowering"); 2691 2692 MVT ContainerVT = SrcVT; 2693 if (SrcVT.isFixedLengthVector()) { 2694 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2695 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2696 } 2697 2698 SDValue Result = Src; 2699 SDValue Mask, VL; 2700 std::tie(Mask, VL) = 2701 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2702 LLVMContext &Context = *DAG.getContext(); 2703 const ElementCount Count = ContainerVT.getVectorElementCount(); 2704 do { 2705 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2706 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2707 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2708 Mask, VL); 2709 } while (SrcEltVT != DstEltVT); 2710 2711 if (SrcVT.isFixedLengthVector()) 2712 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2713 2714 return Result; 2715 } 2716 case ISD::ANY_EXTEND: 2717 case ISD::ZERO_EXTEND: 2718 if (Op.getOperand(0).getValueType().isVector() && 2719 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2720 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2721 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2722 case ISD::SIGN_EXTEND: 2723 if (Op.getOperand(0).getValueType().isVector() && 2724 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2725 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2726 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2727 case ISD::SPLAT_VECTOR_PARTS: 2728 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2729 case ISD::INSERT_VECTOR_ELT: 2730 return lowerINSERT_VECTOR_ELT(Op, DAG); 2731 case ISD::EXTRACT_VECTOR_ELT: 2732 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2733 case ISD::VSCALE: { 2734 MVT VT = Op.getSimpleValueType(); 2735 SDLoc DL(Op); 2736 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2737 // We define our scalable vector types for lmul=1 to use a 64 bit known 2738 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2739 // vscale as VLENB / 8. 2740 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2741 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2742 // We assume VLENB is a multiple of 8. We manually choose the best shift 2743 // here because SimplifyDemandedBits isn't always able to simplify it. 2744 uint64_t Val = Op.getConstantOperandVal(0); 2745 if (isPowerOf2_64(Val)) { 2746 uint64_t Log2 = Log2_64(Val); 2747 if (Log2 < 3) 2748 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2749 DAG.getConstant(3 - Log2, DL, VT)); 2750 if (Log2 > 3) 2751 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2752 DAG.getConstant(Log2 - 3, DL, VT)); 2753 return VLENB; 2754 } 2755 // If the multiplier is a multiple of 8, scale it down to avoid needing 2756 // to shift the VLENB value. 2757 if ((Val % 8) == 0) 2758 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2759 DAG.getConstant(Val / 8, DL, VT)); 2760 } 2761 2762 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2763 DAG.getConstant(3, DL, VT)); 2764 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2765 } 2766 case ISD::FPOWI: { 2767 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2768 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2769 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2770 Op.getOperand(1).getValueType() == MVT::i32) { 2771 SDLoc DL(Op); 2772 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2773 SDValue Powi = 2774 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2775 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2776 DAG.getIntPtrConstant(0, DL)); 2777 } 2778 return SDValue(); 2779 } 2780 case ISD::FP_EXTEND: { 2781 // RVV can only do fp_extend to types double the size as the source. We 2782 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2783 // via f32. 2784 SDLoc DL(Op); 2785 MVT VT = Op.getSimpleValueType(); 2786 SDValue Src = Op.getOperand(0); 2787 MVT SrcVT = Src.getSimpleValueType(); 2788 2789 // Prepare any fixed-length vector operands. 2790 MVT ContainerVT = VT; 2791 if (SrcVT.isFixedLengthVector()) { 2792 ContainerVT = getContainerForFixedLengthVector(VT); 2793 MVT SrcContainerVT = 2794 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2795 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2796 } 2797 2798 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2799 SrcVT.getVectorElementType() != MVT::f16) { 2800 // For scalable vectors, we only need to close the gap between 2801 // vXf16->vXf64. 2802 if (!VT.isFixedLengthVector()) 2803 return Op; 2804 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2805 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2806 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2807 } 2808 2809 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2810 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2811 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2812 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2813 2814 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2815 DL, DAG, Subtarget); 2816 if (VT.isFixedLengthVector()) 2817 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2818 return Extend; 2819 } 2820 case ISD::FP_ROUND: { 2821 // RVV can only do fp_round to types half the size as the source. We 2822 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2823 // conversion instruction. 2824 SDLoc DL(Op); 2825 MVT VT = Op.getSimpleValueType(); 2826 SDValue Src = Op.getOperand(0); 2827 MVT SrcVT = Src.getSimpleValueType(); 2828 2829 // Prepare any fixed-length vector operands. 2830 MVT ContainerVT = VT; 2831 if (VT.isFixedLengthVector()) { 2832 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2833 ContainerVT = 2834 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2835 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2836 } 2837 2838 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2839 SrcVT.getVectorElementType() != MVT::f64) { 2840 // For scalable vectors, we only need to close the gap between 2841 // vXf64<->vXf16. 2842 if (!VT.isFixedLengthVector()) 2843 return Op; 2844 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2845 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2846 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2847 } 2848 2849 SDValue Mask, VL; 2850 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2851 2852 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2853 SDValue IntermediateRound = 2854 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2855 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2856 DL, DAG, Subtarget); 2857 2858 if (VT.isFixedLengthVector()) 2859 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2860 return Round; 2861 } 2862 case ISD::FP_TO_SINT: 2863 case ISD::FP_TO_UINT: 2864 case ISD::SINT_TO_FP: 2865 case ISD::UINT_TO_FP: { 2866 // RVV can only do fp<->int conversions to types half/double the size as 2867 // the source. We custom-lower any conversions that do two hops into 2868 // sequences. 2869 MVT VT = Op.getSimpleValueType(); 2870 if (!VT.isVector()) 2871 return Op; 2872 SDLoc DL(Op); 2873 SDValue Src = Op.getOperand(0); 2874 MVT EltVT = VT.getVectorElementType(); 2875 MVT SrcVT = Src.getSimpleValueType(); 2876 MVT SrcEltVT = SrcVT.getVectorElementType(); 2877 unsigned EltSize = EltVT.getSizeInBits(); 2878 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2879 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2880 "Unexpected vector element types"); 2881 2882 bool IsInt2FP = SrcEltVT.isInteger(); 2883 // Widening conversions 2884 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2885 if (IsInt2FP) { 2886 // Do a regular integer sign/zero extension then convert to float. 2887 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2888 VT.getVectorElementCount()); 2889 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2890 ? ISD::ZERO_EXTEND 2891 : ISD::SIGN_EXTEND; 2892 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2893 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2894 } 2895 // FP2Int 2896 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2897 // Do one doubling fp_extend then complete the operation by converting 2898 // to int. 2899 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2900 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2901 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2902 } 2903 2904 // Narrowing conversions 2905 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2906 if (IsInt2FP) { 2907 // One narrowing int_to_fp, then an fp_round. 2908 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2909 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2910 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2911 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2912 } 2913 // FP2Int 2914 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2915 // representable by the integer, the result is poison. 2916 MVT IVecVT = 2917 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2918 VT.getVectorElementCount()); 2919 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2920 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2921 } 2922 2923 // Scalable vectors can exit here. Patterns will handle equally-sized 2924 // conversions halving/doubling ones. 2925 if (!VT.isFixedLengthVector()) 2926 return Op; 2927 2928 // For fixed-length vectors we lower to a custom "VL" node. 2929 unsigned RVVOpc = 0; 2930 switch (Op.getOpcode()) { 2931 default: 2932 llvm_unreachable("Impossible opcode"); 2933 case ISD::FP_TO_SINT: 2934 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2935 break; 2936 case ISD::FP_TO_UINT: 2937 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2938 break; 2939 case ISD::SINT_TO_FP: 2940 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2941 break; 2942 case ISD::UINT_TO_FP: 2943 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2944 break; 2945 } 2946 2947 MVT ContainerVT, SrcContainerVT; 2948 // Derive the reference container type from the larger vector type. 2949 if (SrcEltSize > EltSize) { 2950 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2951 ContainerVT = 2952 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2953 } else { 2954 ContainerVT = getContainerForFixedLengthVector(VT); 2955 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2956 } 2957 2958 SDValue Mask, VL; 2959 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2960 2961 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2962 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2963 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2964 } 2965 case ISD::FP_TO_SINT_SAT: 2966 case ISD::FP_TO_UINT_SAT: 2967 return lowerFP_TO_INT_SAT(Op, DAG); 2968 case ISD::FTRUNC: 2969 case ISD::FCEIL: 2970 case ISD::FFLOOR: 2971 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 2972 case ISD::VECREDUCE_ADD: 2973 case ISD::VECREDUCE_UMAX: 2974 case ISD::VECREDUCE_SMAX: 2975 case ISD::VECREDUCE_UMIN: 2976 case ISD::VECREDUCE_SMIN: 2977 return lowerVECREDUCE(Op, DAG); 2978 case ISD::VECREDUCE_AND: 2979 case ISD::VECREDUCE_OR: 2980 case ISD::VECREDUCE_XOR: 2981 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2982 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2983 return lowerVECREDUCE(Op, DAG); 2984 case ISD::VECREDUCE_FADD: 2985 case ISD::VECREDUCE_SEQ_FADD: 2986 case ISD::VECREDUCE_FMIN: 2987 case ISD::VECREDUCE_FMAX: 2988 return lowerFPVECREDUCE(Op, DAG); 2989 case ISD::VP_REDUCE_ADD: 2990 case ISD::VP_REDUCE_UMAX: 2991 case ISD::VP_REDUCE_SMAX: 2992 case ISD::VP_REDUCE_UMIN: 2993 case ISD::VP_REDUCE_SMIN: 2994 case ISD::VP_REDUCE_FADD: 2995 case ISD::VP_REDUCE_SEQ_FADD: 2996 case ISD::VP_REDUCE_FMIN: 2997 case ISD::VP_REDUCE_FMAX: 2998 return lowerVPREDUCE(Op, DAG); 2999 case ISD::VP_REDUCE_AND: 3000 case ISD::VP_REDUCE_OR: 3001 case ISD::VP_REDUCE_XOR: 3002 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3003 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3004 return lowerVPREDUCE(Op, DAG); 3005 case ISD::INSERT_SUBVECTOR: 3006 return lowerINSERT_SUBVECTOR(Op, DAG); 3007 case ISD::EXTRACT_SUBVECTOR: 3008 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3009 case ISD::STEP_VECTOR: 3010 return lowerSTEP_VECTOR(Op, DAG); 3011 case ISD::VECTOR_REVERSE: 3012 return lowerVECTOR_REVERSE(Op, DAG); 3013 case ISD::BUILD_VECTOR: 3014 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3015 case ISD::SPLAT_VECTOR: 3016 if (Op.getValueType().getVectorElementType() == MVT::i1) 3017 return lowerVectorMaskSplat(Op, DAG); 3018 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3019 case ISD::VECTOR_SHUFFLE: 3020 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3021 case ISD::CONCAT_VECTORS: { 3022 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3023 // better than going through the stack, as the default expansion does. 3024 SDLoc DL(Op); 3025 MVT VT = Op.getSimpleValueType(); 3026 unsigned NumOpElts = 3027 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3028 SDValue Vec = DAG.getUNDEF(VT); 3029 for (const auto &OpIdx : enumerate(Op->ops())) 3030 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3031 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3032 return Vec; 3033 } 3034 case ISD::LOAD: 3035 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3036 return V; 3037 if (Op.getValueType().isFixedLengthVector()) 3038 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3039 return Op; 3040 case ISD::STORE: 3041 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3042 return V; 3043 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3044 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3045 return Op; 3046 case ISD::MLOAD: 3047 case ISD::VP_LOAD: 3048 return lowerMaskedLoad(Op, DAG); 3049 case ISD::MSTORE: 3050 case ISD::VP_STORE: 3051 return lowerMaskedStore(Op, DAG); 3052 case ISD::SETCC: 3053 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3054 case ISD::ADD: 3055 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3056 case ISD::SUB: 3057 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3058 case ISD::MUL: 3059 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3060 case ISD::MULHS: 3061 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3062 case ISD::MULHU: 3063 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3064 case ISD::AND: 3065 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3066 RISCVISD::AND_VL); 3067 case ISD::OR: 3068 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3069 RISCVISD::OR_VL); 3070 case ISD::XOR: 3071 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3072 RISCVISD::XOR_VL); 3073 case ISD::SDIV: 3074 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3075 case ISD::SREM: 3076 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3077 case ISD::UDIV: 3078 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3079 case ISD::UREM: 3080 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3081 case ISD::SHL: 3082 case ISD::SRA: 3083 case ISD::SRL: 3084 if (Op.getSimpleValueType().isFixedLengthVector()) 3085 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3086 // This can be called for an i32 shift amount that needs to be promoted. 3087 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3088 "Unexpected custom legalisation"); 3089 return SDValue(); 3090 case ISD::SADDSAT: 3091 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3092 case ISD::UADDSAT: 3093 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3094 case ISD::SSUBSAT: 3095 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3096 case ISD::USUBSAT: 3097 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3098 case ISD::FADD: 3099 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3100 case ISD::FSUB: 3101 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3102 case ISD::FMUL: 3103 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3104 case ISD::FDIV: 3105 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3106 case ISD::FNEG: 3107 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3108 case ISD::FABS: 3109 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3110 case ISD::FSQRT: 3111 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3112 case ISD::FMA: 3113 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3114 case ISD::SMIN: 3115 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3116 case ISD::SMAX: 3117 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3118 case ISD::UMIN: 3119 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3120 case ISD::UMAX: 3121 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3122 case ISD::FMINNUM: 3123 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3124 case ISD::FMAXNUM: 3125 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3126 case ISD::ABS: 3127 return lowerABS(Op, DAG); 3128 case ISD::CTLZ_ZERO_UNDEF: 3129 case ISD::CTTZ_ZERO_UNDEF: 3130 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3131 case ISD::VSELECT: 3132 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3133 case ISD::FCOPYSIGN: 3134 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3135 case ISD::MGATHER: 3136 case ISD::VP_GATHER: 3137 return lowerMaskedGather(Op, DAG); 3138 case ISD::MSCATTER: 3139 case ISD::VP_SCATTER: 3140 return lowerMaskedScatter(Op, DAG); 3141 case ISD::FLT_ROUNDS_: 3142 return lowerGET_ROUNDING(Op, DAG); 3143 case ISD::SET_ROUNDING: 3144 return lowerSET_ROUNDING(Op, DAG); 3145 case ISD::VP_SELECT: 3146 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3147 case ISD::VP_ADD: 3148 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3149 case ISD::VP_SUB: 3150 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3151 case ISD::VP_MUL: 3152 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3153 case ISD::VP_SDIV: 3154 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3155 case ISD::VP_UDIV: 3156 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3157 case ISD::VP_SREM: 3158 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3159 case ISD::VP_UREM: 3160 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3161 case ISD::VP_AND: 3162 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 3163 case ISD::VP_OR: 3164 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 3165 case ISD::VP_XOR: 3166 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 3167 case ISD::VP_ASHR: 3168 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3169 case ISD::VP_LSHR: 3170 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3171 case ISD::VP_SHL: 3172 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3173 case ISD::VP_FADD: 3174 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3175 case ISD::VP_FSUB: 3176 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3177 case ISD::VP_FMUL: 3178 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3179 case ISD::VP_FDIV: 3180 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3181 } 3182 } 3183 3184 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3185 SelectionDAG &DAG, unsigned Flags) { 3186 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3187 } 3188 3189 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3190 SelectionDAG &DAG, unsigned Flags) { 3191 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3192 Flags); 3193 } 3194 3195 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3196 SelectionDAG &DAG, unsigned Flags) { 3197 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3198 N->getOffset(), Flags); 3199 } 3200 3201 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3202 SelectionDAG &DAG, unsigned Flags) { 3203 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3204 } 3205 3206 template <class NodeTy> 3207 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3208 bool IsLocal) const { 3209 SDLoc DL(N); 3210 EVT Ty = getPointerTy(DAG.getDataLayout()); 3211 3212 if (isPositionIndependent()) { 3213 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3214 if (IsLocal) 3215 // Use PC-relative addressing to access the symbol. This generates the 3216 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3217 // %pcrel_lo(auipc)). 3218 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3219 3220 // Use PC-relative addressing to access the GOT for this symbol, then load 3221 // the address from the GOT. This generates the pattern (PseudoLA sym), 3222 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3223 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3224 } 3225 3226 switch (getTargetMachine().getCodeModel()) { 3227 default: 3228 report_fatal_error("Unsupported code model for lowering"); 3229 case CodeModel::Small: { 3230 // Generate a sequence for accessing addresses within the first 2 GiB of 3231 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3232 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3233 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3234 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3235 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3236 } 3237 case CodeModel::Medium: { 3238 // Generate a sequence for accessing addresses within any 2GiB range within 3239 // the address space. This generates the pattern (PseudoLLA sym), which 3240 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3241 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3242 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3243 } 3244 } 3245 } 3246 3247 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3248 SelectionDAG &DAG) const { 3249 SDLoc DL(Op); 3250 EVT Ty = Op.getValueType(); 3251 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3252 int64_t Offset = N->getOffset(); 3253 MVT XLenVT = Subtarget.getXLenVT(); 3254 3255 const GlobalValue *GV = N->getGlobal(); 3256 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3257 SDValue Addr = getAddr(N, DAG, IsLocal); 3258 3259 // In order to maximise the opportunity for common subexpression elimination, 3260 // emit a separate ADD node for the global address offset instead of folding 3261 // it in the global address node. Later peephole optimisations may choose to 3262 // fold it back in when profitable. 3263 if (Offset != 0) 3264 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3265 DAG.getConstant(Offset, DL, XLenVT)); 3266 return Addr; 3267 } 3268 3269 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3270 SelectionDAG &DAG) const { 3271 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3272 3273 return getAddr(N, DAG); 3274 } 3275 3276 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3277 SelectionDAG &DAG) const { 3278 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3279 3280 return getAddr(N, DAG); 3281 } 3282 3283 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3284 SelectionDAG &DAG) const { 3285 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3286 3287 return getAddr(N, DAG); 3288 } 3289 3290 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3291 SelectionDAG &DAG, 3292 bool UseGOT) const { 3293 SDLoc DL(N); 3294 EVT Ty = getPointerTy(DAG.getDataLayout()); 3295 const GlobalValue *GV = N->getGlobal(); 3296 MVT XLenVT = Subtarget.getXLenVT(); 3297 3298 if (UseGOT) { 3299 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3300 // load the address from the GOT and add the thread pointer. This generates 3301 // the pattern (PseudoLA_TLS_IE sym), which expands to 3302 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3303 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3304 SDValue Load = 3305 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3306 3307 // Add the thread pointer. 3308 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3309 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3310 } 3311 3312 // Generate a sequence for accessing the address relative to the thread 3313 // pointer, with the appropriate adjustment for the thread pointer offset. 3314 // This generates the pattern 3315 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3316 SDValue AddrHi = 3317 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3318 SDValue AddrAdd = 3319 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3320 SDValue AddrLo = 3321 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3322 3323 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3324 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3325 SDValue MNAdd = SDValue( 3326 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3327 0); 3328 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3329 } 3330 3331 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3332 SelectionDAG &DAG) const { 3333 SDLoc DL(N); 3334 EVT Ty = getPointerTy(DAG.getDataLayout()); 3335 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3336 const GlobalValue *GV = N->getGlobal(); 3337 3338 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3339 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3340 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3341 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3342 SDValue Load = 3343 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3344 3345 // Prepare argument list to generate call. 3346 ArgListTy Args; 3347 ArgListEntry Entry; 3348 Entry.Node = Load; 3349 Entry.Ty = CallTy; 3350 Args.push_back(Entry); 3351 3352 // Setup call to __tls_get_addr. 3353 TargetLowering::CallLoweringInfo CLI(DAG); 3354 CLI.setDebugLoc(DL) 3355 .setChain(DAG.getEntryNode()) 3356 .setLibCallee(CallingConv::C, CallTy, 3357 DAG.getExternalSymbol("__tls_get_addr", Ty), 3358 std::move(Args)); 3359 3360 return LowerCallTo(CLI).first; 3361 } 3362 3363 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3364 SelectionDAG &DAG) const { 3365 SDLoc DL(Op); 3366 EVT Ty = Op.getValueType(); 3367 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3368 int64_t Offset = N->getOffset(); 3369 MVT XLenVT = Subtarget.getXLenVT(); 3370 3371 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3372 3373 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3374 CallingConv::GHC) 3375 report_fatal_error("In GHC calling convention TLS is not supported"); 3376 3377 SDValue Addr; 3378 switch (Model) { 3379 case TLSModel::LocalExec: 3380 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3381 break; 3382 case TLSModel::InitialExec: 3383 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3384 break; 3385 case TLSModel::LocalDynamic: 3386 case TLSModel::GeneralDynamic: 3387 Addr = getDynamicTLSAddr(N, DAG); 3388 break; 3389 } 3390 3391 // In order to maximise the opportunity for common subexpression elimination, 3392 // emit a separate ADD node for the global address offset instead of folding 3393 // it in the global address node. Later peephole optimisations may choose to 3394 // fold it back in when profitable. 3395 if (Offset != 0) 3396 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3397 DAG.getConstant(Offset, DL, XLenVT)); 3398 return Addr; 3399 } 3400 3401 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3402 SDValue CondV = Op.getOperand(0); 3403 SDValue TrueV = Op.getOperand(1); 3404 SDValue FalseV = Op.getOperand(2); 3405 SDLoc DL(Op); 3406 MVT VT = Op.getSimpleValueType(); 3407 MVT XLenVT = Subtarget.getXLenVT(); 3408 3409 // Lower vector SELECTs to VSELECTs by splatting the condition. 3410 if (VT.isVector()) { 3411 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3412 SDValue CondSplat = VT.isScalableVector() 3413 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3414 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3415 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3416 } 3417 3418 // If the result type is XLenVT and CondV is the output of a SETCC node 3419 // which also operated on XLenVT inputs, then merge the SETCC node into the 3420 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3421 // compare+branch instructions. i.e.: 3422 // (select (setcc lhs, rhs, cc), truev, falsev) 3423 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3424 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3425 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3426 SDValue LHS = CondV.getOperand(0); 3427 SDValue RHS = CondV.getOperand(1); 3428 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3429 ISD::CondCode CCVal = CC->get(); 3430 3431 // Special case for a select of 2 constants that have a diffence of 1. 3432 // Normally this is done by DAGCombine, but if the select is introduced by 3433 // type legalization or op legalization, we miss it. Restricting to SETLT 3434 // case for now because that is what signed saturating add/sub need. 3435 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3436 // but we would probably want to swap the true/false values if the condition 3437 // is SETGE/SETLE to avoid an XORI. 3438 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3439 CCVal == ISD::SETLT) { 3440 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3441 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3442 if (TrueVal - 1 == FalseVal) 3443 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3444 if (TrueVal + 1 == FalseVal) 3445 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3446 } 3447 3448 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3449 3450 SDValue TargetCC = DAG.getCondCode(CCVal); 3451 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3452 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3453 } 3454 3455 // Otherwise: 3456 // (select condv, truev, falsev) 3457 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3458 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3459 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3460 3461 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3462 3463 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3464 } 3465 3466 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3467 SDValue CondV = Op.getOperand(1); 3468 SDLoc DL(Op); 3469 MVT XLenVT = Subtarget.getXLenVT(); 3470 3471 if (CondV.getOpcode() == ISD::SETCC && 3472 CondV.getOperand(0).getValueType() == XLenVT) { 3473 SDValue LHS = CondV.getOperand(0); 3474 SDValue RHS = CondV.getOperand(1); 3475 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3476 3477 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3478 3479 SDValue TargetCC = DAG.getCondCode(CCVal); 3480 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3481 LHS, RHS, TargetCC, Op.getOperand(2)); 3482 } 3483 3484 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3485 CondV, DAG.getConstant(0, DL, XLenVT), 3486 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3487 } 3488 3489 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3490 MachineFunction &MF = DAG.getMachineFunction(); 3491 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3492 3493 SDLoc DL(Op); 3494 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3495 getPointerTy(MF.getDataLayout())); 3496 3497 // vastart just stores the address of the VarArgsFrameIndex slot into the 3498 // memory location argument. 3499 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3500 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3501 MachinePointerInfo(SV)); 3502 } 3503 3504 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3505 SelectionDAG &DAG) const { 3506 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3507 MachineFunction &MF = DAG.getMachineFunction(); 3508 MachineFrameInfo &MFI = MF.getFrameInfo(); 3509 MFI.setFrameAddressIsTaken(true); 3510 Register FrameReg = RI.getFrameRegister(MF); 3511 int XLenInBytes = Subtarget.getXLen() / 8; 3512 3513 EVT VT = Op.getValueType(); 3514 SDLoc DL(Op); 3515 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3516 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3517 while (Depth--) { 3518 int Offset = -(XLenInBytes * 2); 3519 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3520 DAG.getIntPtrConstant(Offset, DL)); 3521 FrameAddr = 3522 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3523 } 3524 return FrameAddr; 3525 } 3526 3527 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3528 SelectionDAG &DAG) const { 3529 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3530 MachineFunction &MF = DAG.getMachineFunction(); 3531 MachineFrameInfo &MFI = MF.getFrameInfo(); 3532 MFI.setReturnAddressIsTaken(true); 3533 MVT XLenVT = Subtarget.getXLenVT(); 3534 int XLenInBytes = Subtarget.getXLen() / 8; 3535 3536 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3537 return SDValue(); 3538 3539 EVT VT = Op.getValueType(); 3540 SDLoc DL(Op); 3541 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3542 if (Depth) { 3543 int Off = -XLenInBytes; 3544 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3545 SDValue Offset = DAG.getConstant(Off, DL, VT); 3546 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3547 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3548 MachinePointerInfo()); 3549 } 3550 3551 // Return the value of the return address register, marking it an implicit 3552 // live-in. 3553 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3554 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3555 } 3556 3557 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3558 SelectionDAG &DAG) const { 3559 SDLoc DL(Op); 3560 SDValue Lo = Op.getOperand(0); 3561 SDValue Hi = Op.getOperand(1); 3562 SDValue Shamt = Op.getOperand(2); 3563 EVT VT = Lo.getValueType(); 3564 3565 // if Shamt-XLEN < 0: // Shamt < XLEN 3566 // Lo = Lo << Shamt 3567 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3568 // else: 3569 // Lo = 0 3570 // Hi = Lo << (Shamt-XLEN) 3571 3572 SDValue Zero = DAG.getConstant(0, DL, VT); 3573 SDValue One = DAG.getConstant(1, DL, VT); 3574 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3575 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3576 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3577 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3578 3579 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3580 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3581 SDValue ShiftRightLo = 3582 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3583 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3584 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3585 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3586 3587 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3588 3589 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3590 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3591 3592 SDValue Parts[2] = {Lo, Hi}; 3593 return DAG.getMergeValues(Parts, DL); 3594 } 3595 3596 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3597 bool IsSRA) const { 3598 SDLoc DL(Op); 3599 SDValue Lo = Op.getOperand(0); 3600 SDValue Hi = Op.getOperand(1); 3601 SDValue Shamt = Op.getOperand(2); 3602 EVT VT = Lo.getValueType(); 3603 3604 // SRA expansion: 3605 // if Shamt-XLEN < 0: // Shamt < XLEN 3606 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3607 // Hi = Hi >>s Shamt 3608 // else: 3609 // Lo = Hi >>s (Shamt-XLEN); 3610 // Hi = Hi >>s (XLEN-1) 3611 // 3612 // SRL expansion: 3613 // if Shamt-XLEN < 0: // Shamt < XLEN 3614 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3615 // Hi = Hi >>u Shamt 3616 // else: 3617 // Lo = Hi >>u (Shamt-XLEN); 3618 // Hi = 0; 3619 3620 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3621 3622 SDValue Zero = DAG.getConstant(0, DL, VT); 3623 SDValue One = DAG.getConstant(1, DL, VT); 3624 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3625 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3626 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3627 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3628 3629 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3630 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3631 SDValue ShiftLeftHi = 3632 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3633 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3634 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3635 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3636 SDValue HiFalse = 3637 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3638 3639 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3640 3641 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3642 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3643 3644 SDValue Parts[2] = {Lo, Hi}; 3645 return DAG.getMergeValues(Parts, DL); 3646 } 3647 3648 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3649 // legal equivalently-sized i8 type, so we can use that as a go-between. 3650 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3651 SelectionDAG &DAG) const { 3652 SDLoc DL(Op); 3653 MVT VT = Op.getSimpleValueType(); 3654 SDValue SplatVal = Op.getOperand(0); 3655 // All-zeros or all-ones splats are handled specially. 3656 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3657 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3658 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3659 } 3660 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3661 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3662 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3663 } 3664 MVT XLenVT = Subtarget.getXLenVT(); 3665 assert(SplatVal.getValueType() == XLenVT && 3666 "Unexpected type for i1 splat value"); 3667 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3668 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3669 DAG.getConstant(1, DL, XLenVT)); 3670 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3671 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3672 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3673 } 3674 3675 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3676 // illegal (currently only vXi64 RV32). 3677 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3678 // them to SPLAT_VECTOR_I64 3679 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3680 SelectionDAG &DAG) const { 3681 SDLoc DL(Op); 3682 MVT VecVT = Op.getSimpleValueType(); 3683 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3684 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3685 3686 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3687 SDValue Lo = Op.getOperand(0); 3688 SDValue Hi = Op.getOperand(1); 3689 3690 if (VecVT.isFixedLengthVector()) { 3691 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3692 SDLoc DL(Op); 3693 SDValue Mask, VL; 3694 std::tie(Mask, VL) = 3695 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3696 3697 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3698 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3699 } 3700 3701 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3702 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3703 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3704 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3705 // node in order to try and match RVV vector/scalar instructions. 3706 if ((LoC >> 31) == HiC) 3707 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3708 } 3709 3710 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3711 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3712 isa<ConstantSDNode>(Hi.getOperand(1)) && 3713 Hi.getConstantOperandVal(1) == 31) 3714 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3715 3716 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3717 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3718 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3719 } 3720 3721 // Custom-lower extensions from mask vectors by using a vselect either with 1 3722 // for zero/any-extension or -1 for sign-extension: 3723 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3724 // Note that any-extension is lowered identically to zero-extension. 3725 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3726 int64_t ExtTrueVal) const { 3727 SDLoc DL(Op); 3728 MVT VecVT = Op.getSimpleValueType(); 3729 SDValue Src = Op.getOperand(0); 3730 // Only custom-lower extensions from mask types 3731 assert(Src.getValueType().isVector() && 3732 Src.getValueType().getVectorElementType() == MVT::i1); 3733 3734 MVT XLenVT = Subtarget.getXLenVT(); 3735 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3736 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3737 3738 if (VecVT.isScalableVector()) { 3739 // Be careful not to introduce illegal scalar types at this stage, and be 3740 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3741 // illegal and must be expanded. Since we know that the constants are 3742 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3743 bool IsRV32E64 = 3744 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3745 3746 if (!IsRV32E64) { 3747 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3748 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3749 } else { 3750 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3751 SplatTrueVal = 3752 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3753 } 3754 3755 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3756 } 3757 3758 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3759 MVT I1ContainerVT = 3760 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3761 3762 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3763 3764 SDValue Mask, VL; 3765 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3766 3767 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3768 SplatTrueVal = 3769 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3770 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3771 SplatTrueVal, SplatZero, VL); 3772 3773 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3774 } 3775 3776 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3777 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3778 MVT ExtVT = Op.getSimpleValueType(); 3779 // Only custom-lower extensions from fixed-length vector types. 3780 if (!ExtVT.isFixedLengthVector()) 3781 return Op; 3782 MVT VT = Op.getOperand(0).getSimpleValueType(); 3783 // Grab the canonical container type for the extended type. Infer the smaller 3784 // type from that to ensure the same number of vector elements, as we know 3785 // the LMUL will be sufficient to hold the smaller type. 3786 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3787 // Get the extended container type manually to ensure the same number of 3788 // vector elements between source and dest. 3789 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3790 ContainerExtVT.getVectorElementCount()); 3791 3792 SDValue Op1 = 3793 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3794 3795 SDLoc DL(Op); 3796 SDValue Mask, VL; 3797 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3798 3799 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3800 3801 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3802 } 3803 3804 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3805 // setcc operation: 3806 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3807 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3808 SelectionDAG &DAG) const { 3809 SDLoc DL(Op); 3810 EVT MaskVT = Op.getValueType(); 3811 // Only expect to custom-lower truncations to mask types 3812 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3813 "Unexpected type for vector mask lowering"); 3814 SDValue Src = Op.getOperand(0); 3815 MVT VecVT = Src.getSimpleValueType(); 3816 3817 // If this is a fixed vector, we need to convert it to a scalable vector. 3818 MVT ContainerVT = VecVT; 3819 if (VecVT.isFixedLengthVector()) { 3820 ContainerVT = getContainerForFixedLengthVector(VecVT); 3821 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3822 } 3823 3824 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3825 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3826 3827 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3828 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3829 3830 if (VecVT.isScalableVector()) { 3831 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3832 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3833 } 3834 3835 SDValue Mask, VL; 3836 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3837 3838 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3839 SDValue Trunc = 3840 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3841 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3842 DAG.getCondCode(ISD::SETNE), Mask, VL); 3843 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3844 } 3845 3846 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3847 // first position of a vector, and that vector is slid up to the insert index. 3848 // By limiting the active vector length to index+1 and merging with the 3849 // original vector (with an undisturbed tail policy for elements >= VL), we 3850 // achieve the desired result of leaving all elements untouched except the one 3851 // at VL-1, which is replaced with the desired value. 3852 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3853 SelectionDAG &DAG) const { 3854 SDLoc DL(Op); 3855 MVT VecVT = Op.getSimpleValueType(); 3856 SDValue Vec = Op.getOperand(0); 3857 SDValue Val = Op.getOperand(1); 3858 SDValue Idx = Op.getOperand(2); 3859 3860 if (VecVT.getVectorElementType() == MVT::i1) { 3861 // FIXME: For now we just promote to an i8 vector and insert into that, 3862 // but this is probably not optimal. 3863 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3864 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3865 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3866 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3867 } 3868 3869 MVT ContainerVT = VecVT; 3870 // If the operand is a fixed-length vector, convert to a scalable one. 3871 if (VecVT.isFixedLengthVector()) { 3872 ContainerVT = getContainerForFixedLengthVector(VecVT); 3873 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3874 } 3875 3876 MVT XLenVT = Subtarget.getXLenVT(); 3877 3878 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3879 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3880 // Even i64-element vectors on RV32 can be lowered without scalar 3881 // legalization if the most-significant 32 bits of the value are not affected 3882 // by the sign-extension of the lower 32 bits. 3883 // TODO: We could also catch sign extensions of a 32-bit value. 3884 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3885 const auto *CVal = cast<ConstantSDNode>(Val); 3886 if (isInt<32>(CVal->getSExtValue())) { 3887 IsLegalInsert = true; 3888 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3889 } 3890 } 3891 3892 SDValue Mask, VL; 3893 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3894 3895 SDValue ValInVec; 3896 3897 if (IsLegalInsert) { 3898 unsigned Opc = 3899 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3900 if (isNullConstant(Idx)) { 3901 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3902 if (!VecVT.isFixedLengthVector()) 3903 return Vec; 3904 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3905 } 3906 ValInVec = 3907 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3908 } else { 3909 // On RV32, i64-element vectors must be specially handled to place the 3910 // value at element 0, by using two vslide1up instructions in sequence on 3911 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3912 // this. 3913 SDValue One = DAG.getConstant(1, DL, XLenVT); 3914 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3915 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3916 MVT I32ContainerVT = 3917 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3918 SDValue I32Mask = 3919 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3920 // Limit the active VL to two. 3921 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3922 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3923 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3924 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3925 InsertI64VL); 3926 // First slide in the hi value, then the lo in underneath it. 3927 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3928 ValHi, I32Mask, InsertI64VL); 3929 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3930 ValLo, I32Mask, InsertI64VL); 3931 // Bitcast back to the right container type. 3932 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3933 } 3934 3935 // Now that the value is in a vector, slide it into position. 3936 SDValue InsertVL = 3937 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3938 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3939 ValInVec, Idx, Mask, InsertVL); 3940 if (!VecVT.isFixedLengthVector()) 3941 return Slideup; 3942 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3943 } 3944 3945 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3946 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3947 // types this is done using VMV_X_S to allow us to glean information about the 3948 // sign bits of the result. 3949 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3950 SelectionDAG &DAG) const { 3951 SDLoc DL(Op); 3952 SDValue Idx = Op.getOperand(1); 3953 SDValue Vec = Op.getOperand(0); 3954 EVT EltVT = Op.getValueType(); 3955 MVT VecVT = Vec.getSimpleValueType(); 3956 MVT XLenVT = Subtarget.getXLenVT(); 3957 3958 if (VecVT.getVectorElementType() == MVT::i1) { 3959 // FIXME: For now we just promote to an i8 vector and extract from that, 3960 // but this is probably not optimal. 3961 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3962 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3963 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3964 } 3965 3966 // If this is a fixed vector, we need to convert it to a scalable vector. 3967 MVT ContainerVT = VecVT; 3968 if (VecVT.isFixedLengthVector()) { 3969 ContainerVT = getContainerForFixedLengthVector(VecVT); 3970 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3971 } 3972 3973 // If the index is 0, the vector is already in the right position. 3974 if (!isNullConstant(Idx)) { 3975 // Use a VL of 1 to avoid processing more elements than we need. 3976 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3977 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3978 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3979 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3980 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3981 } 3982 3983 if (!EltVT.isInteger()) { 3984 // Floating-point extracts are handled in TableGen. 3985 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3986 DAG.getConstant(0, DL, XLenVT)); 3987 } 3988 3989 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3990 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3991 } 3992 3993 // Some RVV intrinsics may claim that they want an integer operand to be 3994 // promoted or expanded. 3995 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3996 const RISCVSubtarget &Subtarget) { 3997 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3998 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3999 "Unexpected opcode"); 4000 4001 if (!Subtarget.hasVInstructions()) 4002 return SDValue(); 4003 4004 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4005 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4006 SDLoc DL(Op); 4007 4008 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4009 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4010 if (!II || !II->SplatOperand) 4011 return SDValue(); 4012 4013 unsigned SplatOp = II->SplatOperand + HasChain; 4014 assert(SplatOp < Op.getNumOperands()); 4015 4016 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4017 SDValue &ScalarOp = Operands[SplatOp]; 4018 MVT OpVT = ScalarOp.getSimpleValueType(); 4019 MVT XLenVT = Subtarget.getXLenVT(); 4020 4021 // If this isn't a scalar, or its type is XLenVT we're done. 4022 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4023 return SDValue(); 4024 4025 // Simplest case is that the operand needs to be promoted to XLenVT. 4026 if (OpVT.bitsLT(XLenVT)) { 4027 // If the operand is a constant, sign extend to increase our chances 4028 // of being able to use a .vi instruction. ANY_EXTEND would become a 4029 // a zero extend and the simm5 check in isel would fail. 4030 // FIXME: Should we ignore the upper bits in isel instead? 4031 unsigned ExtOpc = 4032 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4033 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4034 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4035 } 4036 4037 // Use the previous operand to get the vXi64 VT. The result might be a mask 4038 // VT for compares. Using the previous operand assumes that the previous 4039 // operand will never have a smaller element size than a scalar operand and 4040 // that a widening operation never uses SEW=64. 4041 // NOTE: If this fails the below assert, we can probably just find the 4042 // element count from any operand or result and use it to construct the VT. 4043 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4044 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4045 4046 // The more complex case is when the scalar is larger than XLenVT. 4047 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4048 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4049 4050 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4051 // on the instruction to sign-extend since SEW>XLEN. 4052 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4053 if (isInt<32>(CVal->getSExtValue())) { 4054 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4055 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4056 } 4057 } 4058 4059 // We need to convert the scalar to a splat vector. 4060 // FIXME: Can we implicitly truncate the scalar if it is known to 4061 // be sign extended? 4062 // VL should be the last operand. 4063 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4064 assert(VL.getValueType() == XLenVT); 4065 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4066 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4067 } 4068 4069 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4070 SelectionDAG &DAG) const { 4071 unsigned IntNo = Op.getConstantOperandVal(0); 4072 SDLoc DL(Op); 4073 MVT XLenVT = Subtarget.getXLenVT(); 4074 4075 switch (IntNo) { 4076 default: 4077 break; // Don't custom lower most intrinsics. 4078 case Intrinsic::thread_pointer: { 4079 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4080 return DAG.getRegister(RISCV::X4, PtrVT); 4081 } 4082 case Intrinsic::riscv_orc_b: 4083 // Lower to the GORCI encoding for orc.b. 4084 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4085 DAG.getConstant(7, DL, XLenVT)); 4086 case Intrinsic::riscv_grev: 4087 case Intrinsic::riscv_gorc: { 4088 unsigned Opc = 4089 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4090 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4091 } 4092 case Intrinsic::riscv_shfl: 4093 case Intrinsic::riscv_unshfl: { 4094 unsigned Opc = 4095 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4096 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4097 } 4098 case Intrinsic::riscv_bcompress: 4099 case Intrinsic::riscv_bdecompress: { 4100 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4101 : RISCVISD::BDECOMPRESS; 4102 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4103 } 4104 case Intrinsic::riscv_vmv_x_s: 4105 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4106 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4107 Op.getOperand(1)); 4108 case Intrinsic::riscv_vmv_v_x: 4109 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4110 Op.getSimpleValueType(), DL, DAG, Subtarget); 4111 case Intrinsic::riscv_vfmv_v_f: 4112 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4113 Op.getOperand(1), Op.getOperand(2)); 4114 case Intrinsic::riscv_vmv_s_x: { 4115 SDValue Scalar = Op.getOperand(2); 4116 4117 if (Scalar.getValueType().bitsLE(XLenVT)) { 4118 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4119 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4120 Op.getOperand(1), Scalar, Op.getOperand(3)); 4121 } 4122 4123 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4124 4125 // This is an i64 value that lives in two scalar registers. We have to 4126 // insert this in a convoluted way. First we build vXi64 splat containing 4127 // the/ two values that we assemble using some bit math. Next we'll use 4128 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4129 // to merge element 0 from our splat into the source vector. 4130 // FIXME: This is probably not the best way to do this, but it is 4131 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4132 // point. 4133 // sw lo, (a0) 4134 // sw hi, 4(a0) 4135 // vlse vX, (a0) 4136 // 4137 // vid.v vVid 4138 // vmseq.vx mMask, vVid, 0 4139 // vmerge.vvm vDest, vSrc, vVal, mMask 4140 MVT VT = Op.getSimpleValueType(); 4141 SDValue Vec = Op.getOperand(1); 4142 SDValue VL = Op.getOperand(3); 4143 4144 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4145 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4146 DAG.getConstant(0, DL, MVT::i32), VL); 4147 4148 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4149 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4150 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4151 SDValue SelectCond = 4152 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4153 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4154 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4155 Vec, VL); 4156 } 4157 case Intrinsic::riscv_vslide1up: 4158 case Intrinsic::riscv_vslide1down: 4159 case Intrinsic::riscv_vslide1up_mask: 4160 case Intrinsic::riscv_vslide1down_mask: { 4161 // We need to special case these when the scalar is larger than XLen. 4162 unsigned NumOps = Op.getNumOperands(); 4163 bool IsMasked = NumOps == 7; 4164 unsigned OpOffset = IsMasked ? 1 : 0; 4165 SDValue Scalar = Op.getOperand(2 + OpOffset); 4166 if (Scalar.getValueType().bitsLE(XLenVT)) 4167 break; 4168 4169 // Splatting a sign extended constant is fine. 4170 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4171 if (isInt<32>(CVal->getSExtValue())) 4172 break; 4173 4174 MVT VT = Op.getSimpleValueType(); 4175 assert(VT.getVectorElementType() == MVT::i64 && 4176 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4177 4178 // Convert the vector source to the equivalent nxvXi32 vector. 4179 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4180 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4181 4182 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4183 DAG.getConstant(0, DL, XLenVT)); 4184 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4185 DAG.getConstant(1, DL, XLenVT)); 4186 4187 // Double the VL since we halved SEW. 4188 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4189 SDValue I32VL = 4190 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4191 4192 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4193 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4194 4195 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4196 // instructions. 4197 if (IntNo == Intrinsic::riscv_vslide1up || 4198 IntNo == Intrinsic::riscv_vslide1up_mask) { 4199 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4200 I32Mask, I32VL); 4201 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4202 I32Mask, I32VL); 4203 } else { 4204 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4205 I32Mask, I32VL); 4206 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4207 I32Mask, I32VL); 4208 } 4209 4210 // Convert back to nxvXi64. 4211 Vec = DAG.getBitcast(VT, Vec); 4212 4213 if (!IsMasked) 4214 return Vec; 4215 4216 // Apply mask after the operation. 4217 SDValue Mask = Op.getOperand(NumOps - 3); 4218 SDValue MaskedOff = Op.getOperand(1); 4219 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4220 } 4221 } 4222 4223 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4224 } 4225 4226 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4227 SelectionDAG &DAG) const { 4228 unsigned IntNo = Op.getConstantOperandVal(1); 4229 switch (IntNo) { 4230 default: 4231 break; 4232 case Intrinsic::riscv_masked_strided_load: { 4233 SDLoc DL(Op); 4234 MVT XLenVT = Subtarget.getXLenVT(); 4235 4236 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4237 // the selection of the masked intrinsics doesn't do this for us. 4238 SDValue Mask = Op.getOperand(5); 4239 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4240 4241 MVT VT = Op->getSimpleValueType(0); 4242 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4243 4244 SDValue PassThru = Op.getOperand(2); 4245 if (!IsUnmasked) { 4246 MVT MaskVT = 4247 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4248 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4249 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4250 } 4251 4252 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4253 4254 SDValue IntID = DAG.getTargetConstant( 4255 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4256 XLenVT); 4257 4258 auto *Load = cast<MemIntrinsicSDNode>(Op); 4259 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4260 if (!IsUnmasked) 4261 Ops.push_back(PassThru); 4262 Ops.push_back(Op.getOperand(3)); // Ptr 4263 Ops.push_back(Op.getOperand(4)); // Stride 4264 if (!IsUnmasked) 4265 Ops.push_back(Mask); 4266 Ops.push_back(VL); 4267 if (!IsUnmasked) { 4268 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4269 Ops.push_back(Policy); 4270 } 4271 4272 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4273 SDValue Result = 4274 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4275 Load->getMemoryVT(), Load->getMemOperand()); 4276 SDValue Chain = Result.getValue(1); 4277 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4278 return DAG.getMergeValues({Result, Chain}, DL); 4279 } 4280 } 4281 4282 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4283 } 4284 4285 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4286 SelectionDAG &DAG) const { 4287 unsigned IntNo = Op.getConstantOperandVal(1); 4288 switch (IntNo) { 4289 default: 4290 break; 4291 case Intrinsic::riscv_masked_strided_store: { 4292 SDLoc DL(Op); 4293 MVT XLenVT = Subtarget.getXLenVT(); 4294 4295 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4296 // the selection of the masked intrinsics doesn't do this for us. 4297 SDValue Mask = Op.getOperand(5); 4298 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4299 4300 SDValue Val = Op.getOperand(2); 4301 MVT VT = Val.getSimpleValueType(); 4302 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4303 4304 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4305 if (!IsUnmasked) { 4306 MVT MaskVT = 4307 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4308 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4309 } 4310 4311 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4312 4313 SDValue IntID = DAG.getTargetConstant( 4314 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4315 XLenVT); 4316 4317 auto *Store = cast<MemIntrinsicSDNode>(Op); 4318 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4319 Ops.push_back(Val); 4320 Ops.push_back(Op.getOperand(3)); // Ptr 4321 Ops.push_back(Op.getOperand(4)); // Stride 4322 if (!IsUnmasked) 4323 Ops.push_back(Mask); 4324 Ops.push_back(VL); 4325 4326 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4327 Ops, Store->getMemoryVT(), 4328 Store->getMemOperand()); 4329 } 4330 } 4331 4332 return SDValue(); 4333 } 4334 4335 static MVT getLMUL1VT(MVT VT) { 4336 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4337 "Unexpected vector MVT"); 4338 return MVT::getScalableVectorVT( 4339 VT.getVectorElementType(), 4340 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4341 } 4342 4343 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4344 switch (ISDOpcode) { 4345 default: 4346 llvm_unreachable("Unhandled reduction"); 4347 case ISD::VECREDUCE_ADD: 4348 return RISCVISD::VECREDUCE_ADD_VL; 4349 case ISD::VECREDUCE_UMAX: 4350 return RISCVISD::VECREDUCE_UMAX_VL; 4351 case ISD::VECREDUCE_SMAX: 4352 return RISCVISD::VECREDUCE_SMAX_VL; 4353 case ISD::VECREDUCE_UMIN: 4354 return RISCVISD::VECREDUCE_UMIN_VL; 4355 case ISD::VECREDUCE_SMIN: 4356 return RISCVISD::VECREDUCE_SMIN_VL; 4357 case ISD::VECREDUCE_AND: 4358 return RISCVISD::VECREDUCE_AND_VL; 4359 case ISD::VECREDUCE_OR: 4360 return RISCVISD::VECREDUCE_OR_VL; 4361 case ISD::VECREDUCE_XOR: 4362 return RISCVISD::VECREDUCE_XOR_VL; 4363 } 4364 } 4365 4366 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4367 SelectionDAG &DAG, 4368 bool IsVP) const { 4369 SDLoc DL(Op); 4370 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4371 MVT VecVT = Vec.getSimpleValueType(); 4372 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4373 Op.getOpcode() == ISD::VECREDUCE_OR || 4374 Op.getOpcode() == ISD::VECREDUCE_XOR || 4375 Op.getOpcode() == ISD::VP_REDUCE_AND || 4376 Op.getOpcode() == ISD::VP_REDUCE_OR || 4377 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4378 "Unexpected reduction lowering"); 4379 4380 MVT XLenVT = Subtarget.getXLenVT(); 4381 assert(Op.getValueType() == XLenVT && 4382 "Expected reduction output to be legalized to XLenVT"); 4383 4384 MVT ContainerVT = VecVT; 4385 if (VecVT.isFixedLengthVector()) { 4386 ContainerVT = getContainerForFixedLengthVector(VecVT); 4387 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4388 } 4389 4390 SDValue Mask, VL; 4391 if (IsVP) { 4392 Mask = Op.getOperand(2); 4393 VL = Op.getOperand(3); 4394 } else { 4395 std::tie(Mask, VL) = 4396 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4397 } 4398 4399 unsigned BaseOpc; 4400 ISD::CondCode CC; 4401 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4402 4403 switch (Op.getOpcode()) { 4404 default: 4405 llvm_unreachable("Unhandled reduction"); 4406 case ISD::VECREDUCE_AND: 4407 case ISD::VP_REDUCE_AND: { 4408 // vcpop ~x == 0 4409 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4410 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4411 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4412 CC = ISD::SETEQ; 4413 BaseOpc = ISD::AND; 4414 break; 4415 } 4416 case ISD::VECREDUCE_OR: 4417 case ISD::VP_REDUCE_OR: 4418 // vcpop x != 0 4419 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4420 CC = ISD::SETNE; 4421 BaseOpc = ISD::OR; 4422 break; 4423 case ISD::VECREDUCE_XOR: 4424 case ISD::VP_REDUCE_XOR: { 4425 // ((vcpop x) & 1) != 0 4426 SDValue One = DAG.getConstant(1, DL, XLenVT); 4427 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4428 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4429 CC = ISD::SETNE; 4430 BaseOpc = ISD::XOR; 4431 break; 4432 } 4433 } 4434 4435 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4436 4437 if (!IsVP) 4438 return SetCC; 4439 4440 // Now include the start value in the operation. 4441 // Note that we must return the start value when no elements are operated 4442 // upon. The vcpop instructions we've emitted in each case above will return 4443 // 0 for an inactive vector, and so we've already received the neutral value: 4444 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4445 // can simply include the start value. 4446 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4447 } 4448 4449 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4450 SelectionDAG &DAG) const { 4451 SDLoc DL(Op); 4452 SDValue Vec = Op.getOperand(0); 4453 EVT VecEVT = Vec.getValueType(); 4454 4455 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4456 4457 // Due to ordering in legalize types we may have a vector type that needs to 4458 // be split. Do that manually so we can get down to a legal type. 4459 while (getTypeAction(*DAG.getContext(), VecEVT) == 4460 TargetLowering::TypeSplitVector) { 4461 SDValue Lo, Hi; 4462 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4463 VecEVT = Lo.getValueType(); 4464 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4465 } 4466 4467 // TODO: The type may need to be widened rather than split. Or widened before 4468 // it can be split. 4469 if (!isTypeLegal(VecEVT)) 4470 return SDValue(); 4471 4472 MVT VecVT = VecEVT.getSimpleVT(); 4473 MVT VecEltVT = VecVT.getVectorElementType(); 4474 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4475 4476 MVT ContainerVT = VecVT; 4477 if (VecVT.isFixedLengthVector()) { 4478 ContainerVT = getContainerForFixedLengthVector(VecVT); 4479 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4480 } 4481 4482 MVT M1VT = getLMUL1VT(ContainerVT); 4483 MVT XLenVT = Subtarget.getXLenVT(); 4484 4485 SDValue Mask, VL; 4486 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4487 4488 SDValue NeutralElem = 4489 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4490 SDValue IdentitySplat = lowerScalarSplat( 4491 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4492 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4493 IdentitySplat, Mask, VL); 4494 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4495 DAG.getConstant(0, DL, XLenVT)); 4496 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4497 } 4498 4499 // Given a reduction op, this function returns the matching reduction opcode, 4500 // the vector SDValue and the scalar SDValue required to lower this to a 4501 // RISCVISD node. 4502 static std::tuple<unsigned, SDValue, SDValue> 4503 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4504 SDLoc DL(Op); 4505 auto Flags = Op->getFlags(); 4506 unsigned Opcode = Op.getOpcode(); 4507 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4508 switch (Opcode) { 4509 default: 4510 llvm_unreachable("Unhandled reduction"); 4511 case ISD::VECREDUCE_FADD: 4512 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4513 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4514 case ISD::VECREDUCE_SEQ_FADD: 4515 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4516 Op.getOperand(0)); 4517 case ISD::VECREDUCE_FMIN: 4518 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4519 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4520 case ISD::VECREDUCE_FMAX: 4521 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4522 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4523 } 4524 } 4525 4526 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4527 SelectionDAG &DAG) const { 4528 SDLoc DL(Op); 4529 MVT VecEltVT = Op.getSimpleValueType(); 4530 4531 unsigned RVVOpcode; 4532 SDValue VectorVal, ScalarVal; 4533 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4534 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4535 MVT VecVT = VectorVal.getSimpleValueType(); 4536 4537 MVT ContainerVT = VecVT; 4538 if (VecVT.isFixedLengthVector()) { 4539 ContainerVT = getContainerForFixedLengthVector(VecVT); 4540 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4541 } 4542 4543 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4544 MVT XLenVT = Subtarget.getXLenVT(); 4545 4546 SDValue Mask, VL; 4547 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4548 4549 SDValue ScalarSplat = lowerScalarSplat( 4550 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4551 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4552 VectorVal, ScalarSplat, Mask, VL); 4553 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4554 DAG.getConstant(0, DL, XLenVT)); 4555 } 4556 4557 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4558 switch (ISDOpcode) { 4559 default: 4560 llvm_unreachable("Unhandled reduction"); 4561 case ISD::VP_REDUCE_ADD: 4562 return RISCVISD::VECREDUCE_ADD_VL; 4563 case ISD::VP_REDUCE_UMAX: 4564 return RISCVISD::VECREDUCE_UMAX_VL; 4565 case ISD::VP_REDUCE_SMAX: 4566 return RISCVISD::VECREDUCE_SMAX_VL; 4567 case ISD::VP_REDUCE_UMIN: 4568 return RISCVISD::VECREDUCE_UMIN_VL; 4569 case ISD::VP_REDUCE_SMIN: 4570 return RISCVISD::VECREDUCE_SMIN_VL; 4571 case ISD::VP_REDUCE_AND: 4572 return RISCVISD::VECREDUCE_AND_VL; 4573 case ISD::VP_REDUCE_OR: 4574 return RISCVISD::VECREDUCE_OR_VL; 4575 case ISD::VP_REDUCE_XOR: 4576 return RISCVISD::VECREDUCE_XOR_VL; 4577 case ISD::VP_REDUCE_FADD: 4578 return RISCVISD::VECREDUCE_FADD_VL; 4579 case ISD::VP_REDUCE_SEQ_FADD: 4580 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4581 case ISD::VP_REDUCE_FMAX: 4582 return RISCVISD::VECREDUCE_FMAX_VL; 4583 case ISD::VP_REDUCE_FMIN: 4584 return RISCVISD::VECREDUCE_FMIN_VL; 4585 } 4586 } 4587 4588 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4589 SelectionDAG &DAG) const { 4590 SDLoc DL(Op); 4591 SDValue Vec = Op.getOperand(1); 4592 EVT VecEVT = Vec.getValueType(); 4593 4594 // TODO: The type may need to be widened rather than split. Or widened before 4595 // it can be split. 4596 if (!isTypeLegal(VecEVT)) 4597 return SDValue(); 4598 4599 MVT VecVT = VecEVT.getSimpleVT(); 4600 MVT VecEltVT = VecVT.getVectorElementType(); 4601 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4602 4603 MVT ContainerVT = VecVT; 4604 if (VecVT.isFixedLengthVector()) { 4605 ContainerVT = getContainerForFixedLengthVector(VecVT); 4606 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4607 } 4608 4609 SDValue VL = Op.getOperand(3); 4610 SDValue Mask = Op.getOperand(2); 4611 4612 MVT M1VT = getLMUL1VT(ContainerVT); 4613 MVT XLenVT = Subtarget.getXLenVT(); 4614 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4615 4616 SDValue StartSplat = 4617 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4618 DL, DAG, Subtarget); 4619 SDValue Reduction = 4620 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4621 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4622 DAG.getConstant(0, DL, XLenVT)); 4623 if (!VecVT.isInteger()) 4624 return Elt0; 4625 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4626 } 4627 4628 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4629 SelectionDAG &DAG) const { 4630 SDValue Vec = Op.getOperand(0); 4631 SDValue SubVec = Op.getOperand(1); 4632 MVT VecVT = Vec.getSimpleValueType(); 4633 MVT SubVecVT = SubVec.getSimpleValueType(); 4634 4635 SDLoc DL(Op); 4636 MVT XLenVT = Subtarget.getXLenVT(); 4637 unsigned OrigIdx = Op.getConstantOperandVal(2); 4638 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4639 4640 // We don't have the ability to slide mask vectors up indexed by their i1 4641 // elements; the smallest we can do is i8. Often we are able to bitcast to 4642 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4643 // into a scalable one, we might not necessarily have enough scalable 4644 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4645 if (SubVecVT.getVectorElementType() == MVT::i1 && 4646 (OrigIdx != 0 || !Vec.isUndef())) { 4647 if (VecVT.getVectorMinNumElements() >= 8 && 4648 SubVecVT.getVectorMinNumElements() >= 8) { 4649 assert(OrigIdx % 8 == 0 && "Invalid index"); 4650 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4651 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4652 "Unexpected mask vector lowering"); 4653 OrigIdx /= 8; 4654 SubVecVT = 4655 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4656 SubVecVT.isScalableVector()); 4657 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4658 VecVT.isScalableVector()); 4659 Vec = DAG.getBitcast(VecVT, Vec); 4660 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4661 } else { 4662 // We can't slide this mask vector up indexed by its i1 elements. 4663 // This poses a problem when we wish to insert a scalable vector which 4664 // can't be re-expressed as a larger type. Just choose the slow path and 4665 // extend to a larger type, then truncate back down. 4666 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4667 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4668 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4669 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4670 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4671 Op.getOperand(2)); 4672 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4673 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4674 } 4675 } 4676 4677 // If the subvector vector is a fixed-length type, we cannot use subregister 4678 // manipulation to simplify the codegen; we don't know which register of a 4679 // LMUL group contains the specific subvector as we only know the minimum 4680 // register size. Therefore we must slide the vector group up the full 4681 // amount. 4682 if (SubVecVT.isFixedLengthVector()) { 4683 if (OrigIdx == 0 && Vec.isUndef()) 4684 return Op; 4685 MVT ContainerVT = VecVT; 4686 if (VecVT.isFixedLengthVector()) { 4687 ContainerVT = getContainerForFixedLengthVector(VecVT); 4688 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4689 } 4690 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4691 DAG.getUNDEF(ContainerVT), SubVec, 4692 DAG.getConstant(0, DL, XLenVT)); 4693 SDValue Mask = 4694 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4695 // Set the vector length to only the number of elements we care about. Note 4696 // that for slideup this includes the offset. 4697 SDValue VL = 4698 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4699 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4700 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4701 SubVec, SlideupAmt, Mask, VL); 4702 if (VecVT.isFixedLengthVector()) 4703 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4704 return DAG.getBitcast(Op.getValueType(), Slideup); 4705 } 4706 4707 unsigned SubRegIdx, RemIdx; 4708 std::tie(SubRegIdx, RemIdx) = 4709 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4710 VecVT, SubVecVT, OrigIdx, TRI); 4711 4712 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4713 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4714 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4715 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4716 4717 // 1. If the Idx has been completely eliminated and this subvector's size is 4718 // a vector register or a multiple thereof, or the surrounding elements are 4719 // undef, then this is a subvector insert which naturally aligns to a vector 4720 // register. These can easily be handled using subregister manipulation. 4721 // 2. If the subvector is smaller than a vector register, then the insertion 4722 // must preserve the undisturbed elements of the register. We do this by 4723 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4724 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4725 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4726 // LMUL=1 type back into the larger vector (resolving to another subregister 4727 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4728 // to avoid allocating a large register group to hold our subvector. 4729 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4730 return Op; 4731 4732 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4733 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4734 // (in our case undisturbed). This means we can set up a subvector insertion 4735 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4736 // size of the subvector. 4737 MVT InterSubVT = VecVT; 4738 SDValue AlignedExtract = Vec; 4739 unsigned AlignedIdx = OrigIdx - RemIdx; 4740 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4741 InterSubVT = getLMUL1VT(VecVT); 4742 // Extract a subvector equal to the nearest full vector register type. This 4743 // should resolve to a EXTRACT_SUBREG instruction. 4744 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4745 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4746 } 4747 4748 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4749 // For scalable vectors this must be further multiplied by vscale. 4750 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4751 4752 SDValue Mask, VL; 4753 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4754 4755 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4756 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4757 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4758 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4759 4760 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4761 DAG.getUNDEF(InterSubVT), SubVec, 4762 DAG.getConstant(0, DL, XLenVT)); 4763 4764 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4765 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4766 4767 // If required, insert this subvector back into the correct vector register. 4768 // This should resolve to an INSERT_SUBREG instruction. 4769 if (VecVT.bitsGT(InterSubVT)) 4770 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4771 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4772 4773 // We might have bitcast from a mask type: cast back to the original type if 4774 // required. 4775 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4776 } 4777 4778 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4779 SelectionDAG &DAG) const { 4780 SDValue Vec = Op.getOperand(0); 4781 MVT SubVecVT = Op.getSimpleValueType(); 4782 MVT VecVT = Vec.getSimpleValueType(); 4783 4784 SDLoc DL(Op); 4785 MVT XLenVT = Subtarget.getXLenVT(); 4786 unsigned OrigIdx = Op.getConstantOperandVal(1); 4787 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4788 4789 // We don't have the ability to slide mask vectors down indexed by their i1 4790 // elements; the smallest we can do is i8. Often we are able to bitcast to 4791 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4792 // from a scalable one, we might not necessarily have enough scalable 4793 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4794 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4795 if (VecVT.getVectorMinNumElements() >= 8 && 4796 SubVecVT.getVectorMinNumElements() >= 8) { 4797 assert(OrigIdx % 8 == 0 && "Invalid index"); 4798 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4799 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4800 "Unexpected mask vector lowering"); 4801 OrigIdx /= 8; 4802 SubVecVT = 4803 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4804 SubVecVT.isScalableVector()); 4805 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4806 VecVT.isScalableVector()); 4807 Vec = DAG.getBitcast(VecVT, Vec); 4808 } else { 4809 // We can't slide this mask vector down, indexed by its i1 elements. 4810 // This poses a problem when we wish to extract a scalable vector which 4811 // can't be re-expressed as a larger type. Just choose the slow path and 4812 // extend to a larger type, then truncate back down. 4813 // TODO: We could probably improve this when extracting certain fixed 4814 // from fixed, where we can extract as i8 and shift the correct element 4815 // right to reach the desired subvector? 4816 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4817 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4818 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4819 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4820 Op.getOperand(1)); 4821 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4822 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4823 } 4824 } 4825 4826 // If the subvector vector is a fixed-length type, we cannot use subregister 4827 // manipulation to simplify the codegen; we don't know which register of a 4828 // LMUL group contains the specific subvector as we only know the minimum 4829 // register size. Therefore we must slide the vector group down the full 4830 // amount. 4831 if (SubVecVT.isFixedLengthVector()) { 4832 // With an index of 0 this is a cast-like subvector, which can be performed 4833 // with subregister operations. 4834 if (OrigIdx == 0) 4835 return Op; 4836 MVT ContainerVT = VecVT; 4837 if (VecVT.isFixedLengthVector()) { 4838 ContainerVT = getContainerForFixedLengthVector(VecVT); 4839 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4840 } 4841 SDValue Mask = 4842 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4843 // Set the vector length to only the number of elements we care about. This 4844 // avoids sliding down elements we're going to discard straight away. 4845 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4846 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4847 SDValue Slidedown = 4848 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4849 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4850 // Now we can use a cast-like subvector extract to get the result. 4851 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4852 DAG.getConstant(0, DL, XLenVT)); 4853 return DAG.getBitcast(Op.getValueType(), Slidedown); 4854 } 4855 4856 unsigned SubRegIdx, RemIdx; 4857 std::tie(SubRegIdx, RemIdx) = 4858 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4859 VecVT, SubVecVT, OrigIdx, TRI); 4860 4861 // If the Idx has been completely eliminated then this is a subvector extract 4862 // which naturally aligns to a vector register. These can easily be handled 4863 // using subregister manipulation. 4864 if (RemIdx == 0) 4865 return Op; 4866 4867 // Else we must shift our vector register directly to extract the subvector. 4868 // Do this using VSLIDEDOWN. 4869 4870 // If the vector type is an LMUL-group type, extract a subvector equal to the 4871 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4872 // instruction. 4873 MVT InterSubVT = VecVT; 4874 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4875 InterSubVT = getLMUL1VT(VecVT); 4876 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4877 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4878 } 4879 4880 // Slide this vector register down by the desired number of elements in order 4881 // to place the desired subvector starting at element 0. 4882 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4883 // For scalable vectors this must be further multiplied by vscale. 4884 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4885 4886 SDValue Mask, VL; 4887 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4888 SDValue Slidedown = 4889 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4890 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4891 4892 // Now the vector is in the right position, extract our final subvector. This 4893 // should resolve to a COPY. 4894 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4895 DAG.getConstant(0, DL, XLenVT)); 4896 4897 // We might have bitcast from a mask type: cast back to the original type if 4898 // required. 4899 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4900 } 4901 4902 // Lower step_vector to the vid instruction. Any non-identity step value must 4903 // be accounted for my manual expansion. 4904 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4905 SelectionDAG &DAG) const { 4906 SDLoc DL(Op); 4907 MVT VT = Op.getSimpleValueType(); 4908 MVT XLenVT = Subtarget.getXLenVT(); 4909 SDValue Mask, VL; 4910 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4911 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4912 uint64_t StepValImm = Op.getConstantOperandVal(0); 4913 if (StepValImm != 1) { 4914 if (isPowerOf2_64(StepValImm)) { 4915 SDValue StepVal = 4916 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4917 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4918 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4919 } else { 4920 SDValue StepVal = lowerScalarSplat( 4921 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4922 DL, DAG, Subtarget); 4923 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4924 } 4925 } 4926 return StepVec; 4927 } 4928 4929 // Implement vector_reverse using vrgather.vv with indices determined by 4930 // subtracting the id of each element from (VLMAX-1). This will convert 4931 // the indices like so: 4932 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4933 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4934 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4935 SelectionDAG &DAG) const { 4936 SDLoc DL(Op); 4937 MVT VecVT = Op.getSimpleValueType(); 4938 unsigned EltSize = VecVT.getScalarSizeInBits(); 4939 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4940 4941 unsigned MaxVLMAX = 0; 4942 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4943 if (VectorBitsMax != 0) 4944 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4945 4946 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4947 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4948 4949 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4950 // to use vrgatherei16.vv. 4951 // TODO: It's also possible to use vrgatherei16.vv for other types to 4952 // decrease register width for the index calculation. 4953 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4954 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4955 // Reverse each half, then reassemble them in reverse order. 4956 // NOTE: It's also possible that after splitting that VLMAX no longer 4957 // requires vrgatherei16.vv. 4958 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4959 SDValue Lo, Hi; 4960 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4961 EVT LoVT, HiVT; 4962 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4963 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4964 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4965 // Reassemble the low and high pieces reversed. 4966 // FIXME: This is a CONCAT_VECTORS. 4967 SDValue Res = 4968 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4969 DAG.getIntPtrConstant(0, DL)); 4970 return DAG.getNode( 4971 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4972 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4973 } 4974 4975 // Just promote the int type to i16 which will double the LMUL. 4976 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4977 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4978 } 4979 4980 MVT XLenVT = Subtarget.getXLenVT(); 4981 SDValue Mask, VL; 4982 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4983 4984 // Calculate VLMAX-1 for the desired SEW. 4985 unsigned MinElts = VecVT.getVectorMinNumElements(); 4986 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4987 DAG.getConstant(MinElts, DL, XLenVT)); 4988 SDValue VLMinus1 = 4989 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4990 4991 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4992 bool IsRV32E64 = 4993 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4994 SDValue SplatVL; 4995 if (!IsRV32E64) 4996 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4997 else 4998 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4999 5000 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5001 SDValue Indices = 5002 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5003 5004 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5005 } 5006 5007 SDValue 5008 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5009 SelectionDAG &DAG) const { 5010 SDLoc DL(Op); 5011 auto *Load = cast<LoadSDNode>(Op); 5012 5013 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5014 Load->getMemoryVT(), 5015 *Load->getMemOperand()) && 5016 "Expecting a correctly-aligned load"); 5017 5018 MVT VT = Op.getSimpleValueType(); 5019 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5020 5021 SDValue VL = 5022 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5023 5024 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5025 SDValue NewLoad = DAG.getMemIntrinsicNode( 5026 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5027 Load->getMemoryVT(), Load->getMemOperand()); 5028 5029 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5030 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5031 } 5032 5033 SDValue 5034 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5035 SelectionDAG &DAG) const { 5036 SDLoc DL(Op); 5037 auto *Store = cast<StoreSDNode>(Op); 5038 5039 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5040 Store->getMemoryVT(), 5041 *Store->getMemOperand()) && 5042 "Expecting a correctly-aligned store"); 5043 5044 SDValue StoreVal = Store->getValue(); 5045 MVT VT = StoreVal.getSimpleValueType(); 5046 5047 // If the size less than a byte, we need to pad with zeros to make a byte. 5048 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5049 VT = MVT::v8i1; 5050 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5051 DAG.getConstant(0, DL, VT), StoreVal, 5052 DAG.getIntPtrConstant(0, DL)); 5053 } 5054 5055 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5056 5057 SDValue VL = 5058 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5059 5060 SDValue NewValue = 5061 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5062 return DAG.getMemIntrinsicNode( 5063 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5064 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5065 Store->getMemoryVT(), Store->getMemOperand()); 5066 } 5067 5068 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5069 SelectionDAG &DAG) const { 5070 SDLoc DL(Op); 5071 MVT VT = Op.getSimpleValueType(); 5072 5073 const auto *MemSD = cast<MemSDNode>(Op); 5074 EVT MemVT = MemSD->getMemoryVT(); 5075 MachineMemOperand *MMO = MemSD->getMemOperand(); 5076 SDValue Chain = MemSD->getChain(); 5077 SDValue BasePtr = MemSD->getBasePtr(); 5078 5079 SDValue Mask, PassThru, VL; 5080 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5081 Mask = VPLoad->getMask(); 5082 PassThru = DAG.getUNDEF(VT); 5083 VL = VPLoad->getVectorLength(); 5084 } else { 5085 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5086 Mask = MLoad->getMask(); 5087 PassThru = MLoad->getPassThru(); 5088 } 5089 5090 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5091 5092 MVT XLenVT = Subtarget.getXLenVT(); 5093 5094 MVT ContainerVT = VT; 5095 if (VT.isFixedLengthVector()) { 5096 ContainerVT = getContainerForFixedLengthVector(VT); 5097 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5098 if (!IsUnmasked) { 5099 MVT MaskVT = 5100 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5101 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5102 } 5103 } 5104 5105 if (!VL) 5106 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5107 5108 unsigned IntID = 5109 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5110 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5111 if (!IsUnmasked) 5112 Ops.push_back(PassThru); 5113 Ops.push_back(BasePtr); 5114 if (!IsUnmasked) 5115 Ops.push_back(Mask); 5116 Ops.push_back(VL); 5117 if (!IsUnmasked) 5118 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5119 5120 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5121 5122 SDValue Result = 5123 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5124 Chain = Result.getValue(1); 5125 5126 if (VT.isFixedLengthVector()) 5127 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5128 5129 return DAG.getMergeValues({Result, Chain}, DL); 5130 } 5131 5132 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5133 SelectionDAG &DAG) const { 5134 SDLoc DL(Op); 5135 5136 const auto *MemSD = cast<MemSDNode>(Op); 5137 EVT MemVT = MemSD->getMemoryVT(); 5138 MachineMemOperand *MMO = MemSD->getMemOperand(); 5139 SDValue Chain = MemSD->getChain(); 5140 SDValue BasePtr = MemSD->getBasePtr(); 5141 SDValue Val, Mask, VL; 5142 5143 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5144 Val = VPStore->getValue(); 5145 Mask = VPStore->getMask(); 5146 VL = VPStore->getVectorLength(); 5147 } else { 5148 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5149 Val = MStore->getValue(); 5150 Mask = MStore->getMask(); 5151 } 5152 5153 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5154 5155 MVT VT = Val.getSimpleValueType(); 5156 MVT XLenVT = Subtarget.getXLenVT(); 5157 5158 MVT ContainerVT = VT; 5159 if (VT.isFixedLengthVector()) { 5160 ContainerVT = getContainerForFixedLengthVector(VT); 5161 5162 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5163 if (!IsUnmasked) { 5164 MVT MaskVT = 5165 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5166 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5167 } 5168 } 5169 5170 if (!VL) 5171 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5172 5173 unsigned IntID = 5174 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5175 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5176 Ops.push_back(Val); 5177 Ops.push_back(BasePtr); 5178 if (!IsUnmasked) 5179 Ops.push_back(Mask); 5180 Ops.push_back(VL); 5181 5182 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5183 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5184 } 5185 5186 SDValue 5187 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5188 SelectionDAG &DAG) const { 5189 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5190 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5191 5192 MVT VT = Op.getSimpleValueType(); 5193 5194 SDValue Op1 = 5195 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5196 SDValue Op2 = 5197 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5198 5199 SDLoc DL(Op); 5200 SDValue VL = 5201 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5202 5203 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5204 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5205 5206 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5207 Op.getOperand(2), Mask, VL); 5208 5209 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5210 } 5211 5212 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5213 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5214 MVT VT = Op.getSimpleValueType(); 5215 5216 if (VT.getVectorElementType() == MVT::i1) 5217 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5218 5219 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5220 } 5221 5222 SDValue 5223 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5224 SelectionDAG &DAG) const { 5225 unsigned Opc; 5226 switch (Op.getOpcode()) { 5227 default: llvm_unreachable("Unexpected opcode!"); 5228 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5229 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5230 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5231 } 5232 5233 return lowerToScalableOp(Op, DAG, Opc); 5234 } 5235 5236 // Lower vector ABS to smax(X, sub(0, X)). 5237 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5238 SDLoc DL(Op); 5239 MVT VT = Op.getSimpleValueType(); 5240 SDValue X = Op.getOperand(0); 5241 5242 assert(VT.isFixedLengthVector() && "Unexpected type"); 5243 5244 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5245 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5246 5247 SDValue Mask, VL; 5248 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5249 5250 SDValue SplatZero = 5251 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5252 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5253 SDValue NegX = 5254 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5255 SDValue Max = 5256 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5257 5258 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5259 } 5260 5261 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5262 SDValue Op, SelectionDAG &DAG) const { 5263 SDLoc DL(Op); 5264 MVT VT = Op.getSimpleValueType(); 5265 SDValue Mag = Op.getOperand(0); 5266 SDValue Sign = Op.getOperand(1); 5267 assert(Mag.getValueType() == Sign.getValueType() && 5268 "Can only handle COPYSIGN with matching types."); 5269 5270 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5271 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5272 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5273 5274 SDValue Mask, VL; 5275 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5276 5277 SDValue CopySign = 5278 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5279 5280 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5281 } 5282 5283 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5284 SDValue Op, SelectionDAG &DAG) const { 5285 MVT VT = Op.getSimpleValueType(); 5286 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5287 5288 MVT I1ContainerVT = 5289 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5290 5291 SDValue CC = 5292 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5293 SDValue Op1 = 5294 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5295 SDValue Op2 = 5296 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5297 5298 SDLoc DL(Op); 5299 SDValue Mask, VL; 5300 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5301 5302 SDValue Select = 5303 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5304 5305 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5306 } 5307 5308 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5309 unsigned NewOpc, 5310 bool HasMask) const { 5311 MVT VT = Op.getSimpleValueType(); 5312 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5313 5314 // Create list of operands by converting existing ones to scalable types. 5315 SmallVector<SDValue, 6> Ops; 5316 for (const SDValue &V : Op->op_values()) { 5317 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5318 5319 // Pass through non-vector operands. 5320 if (!V.getValueType().isVector()) { 5321 Ops.push_back(V); 5322 continue; 5323 } 5324 5325 // "cast" fixed length vector to a scalable vector. 5326 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5327 "Only fixed length vectors are supported!"); 5328 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5329 } 5330 5331 SDLoc DL(Op); 5332 SDValue Mask, VL; 5333 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5334 if (HasMask) 5335 Ops.push_back(Mask); 5336 Ops.push_back(VL); 5337 5338 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5339 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5340 } 5341 5342 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5343 // * Operands of each node are assumed to be in the same order. 5344 // * The EVL operand is promoted from i32 to i64 on RV64. 5345 // * Fixed-length vectors are converted to their scalable-vector container 5346 // types. 5347 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5348 unsigned RISCVISDOpc) const { 5349 SDLoc DL(Op); 5350 MVT VT = Op.getSimpleValueType(); 5351 SmallVector<SDValue, 4> Ops; 5352 5353 for (const auto &OpIdx : enumerate(Op->ops())) { 5354 SDValue V = OpIdx.value(); 5355 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5356 // Pass through operands which aren't fixed-length vectors. 5357 if (!V.getValueType().isFixedLengthVector()) { 5358 Ops.push_back(V); 5359 continue; 5360 } 5361 // "cast" fixed length vector to a scalable vector. 5362 MVT OpVT = V.getSimpleValueType(); 5363 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5364 assert(useRVVForFixedLengthVectorVT(OpVT) && 5365 "Only fixed length vectors are supported!"); 5366 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5367 } 5368 5369 if (!VT.isFixedLengthVector()) 5370 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5371 5372 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5373 5374 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5375 5376 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5377 } 5378 5379 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5380 // matched to a RVV indexed load. The RVV indexed load instructions only 5381 // support the "unsigned unscaled" addressing mode; indices are implicitly 5382 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5383 // signed or scaled indexing is extended to the XLEN value type and scaled 5384 // accordingly. 5385 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5386 SelectionDAG &DAG) const { 5387 SDLoc DL(Op); 5388 MVT VT = Op.getSimpleValueType(); 5389 5390 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5391 EVT MemVT = MemSD->getMemoryVT(); 5392 MachineMemOperand *MMO = MemSD->getMemOperand(); 5393 SDValue Chain = MemSD->getChain(); 5394 SDValue BasePtr = MemSD->getBasePtr(); 5395 5396 ISD::LoadExtType LoadExtType; 5397 SDValue Index, Mask, PassThru, VL; 5398 5399 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5400 Index = VPGN->getIndex(); 5401 Mask = VPGN->getMask(); 5402 PassThru = DAG.getUNDEF(VT); 5403 VL = VPGN->getVectorLength(); 5404 // VP doesn't support extending loads. 5405 LoadExtType = ISD::NON_EXTLOAD; 5406 } else { 5407 // Else it must be a MGATHER. 5408 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5409 Index = MGN->getIndex(); 5410 Mask = MGN->getMask(); 5411 PassThru = MGN->getPassThru(); 5412 LoadExtType = MGN->getExtensionType(); 5413 } 5414 5415 MVT IndexVT = Index.getSimpleValueType(); 5416 MVT XLenVT = Subtarget.getXLenVT(); 5417 5418 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5419 "Unexpected VTs!"); 5420 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5421 // Targets have to explicitly opt-in for extending vector loads. 5422 assert(LoadExtType == ISD::NON_EXTLOAD && 5423 "Unexpected extending MGATHER/VP_GATHER"); 5424 (void)LoadExtType; 5425 5426 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5427 // the selection of the masked intrinsics doesn't do this for us. 5428 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5429 5430 MVT ContainerVT = VT; 5431 if (VT.isFixedLengthVector()) { 5432 // We need to use the larger of the result and index type to determine the 5433 // scalable type to use so we don't increase LMUL for any operand/result. 5434 if (VT.bitsGE(IndexVT)) { 5435 ContainerVT = getContainerForFixedLengthVector(VT); 5436 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5437 ContainerVT.getVectorElementCount()); 5438 } else { 5439 IndexVT = getContainerForFixedLengthVector(IndexVT); 5440 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5441 IndexVT.getVectorElementCount()); 5442 } 5443 5444 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5445 5446 if (!IsUnmasked) { 5447 MVT MaskVT = 5448 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5449 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5450 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5451 } 5452 } 5453 5454 if (!VL) 5455 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5456 5457 unsigned IntID = 5458 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5459 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5460 if (!IsUnmasked) 5461 Ops.push_back(PassThru); 5462 Ops.push_back(BasePtr); 5463 Ops.push_back(Index); 5464 if (!IsUnmasked) 5465 Ops.push_back(Mask); 5466 Ops.push_back(VL); 5467 if (!IsUnmasked) 5468 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5469 5470 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5471 SDValue Result = 5472 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5473 Chain = Result.getValue(1); 5474 5475 if (VT.isFixedLengthVector()) 5476 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5477 5478 return DAG.getMergeValues({Result, Chain}, DL); 5479 } 5480 5481 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5482 // matched to a RVV indexed store. The RVV indexed store instructions only 5483 // support the "unsigned unscaled" addressing mode; indices are implicitly 5484 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5485 // signed or scaled indexing is extended to the XLEN value type and scaled 5486 // accordingly. 5487 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5488 SelectionDAG &DAG) const { 5489 SDLoc DL(Op); 5490 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5491 EVT MemVT = MemSD->getMemoryVT(); 5492 MachineMemOperand *MMO = MemSD->getMemOperand(); 5493 SDValue Chain = MemSD->getChain(); 5494 SDValue BasePtr = MemSD->getBasePtr(); 5495 5496 bool IsTruncatingStore = false; 5497 SDValue Index, Mask, Val, VL; 5498 5499 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5500 Index = VPSN->getIndex(); 5501 Mask = VPSN->getMask(); 5502 Val = VPSN->getValue(); 5503 VL = VPSN->getVectorLength(); 5504 // VP doesn't support truncating stores. 5505 IsTruncatingStore = false; 5506 } else { 5507 // Else it must be a MSCATTER. 5508 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5509 Index = MSN->getIndex(); 5510 Mask = MSN->getMask(); 5511 Val = MSN->getValue(); 5512 IsTruncatingStore = MSN->isTruncatingStore(); 5513 } 5514 5515 MVT VT = Val.getSimpleValueType(); 5516 MVT IndexVT = Index.getSimpleValueType(); 5517 MVT XLenVT = Subtarget.getXLenVT(); 5518 5519 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5520 "Unexpected VTs!"); 5521 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5522 // Targets have to explicitly opt-in for extending vector loads and 5523 // truncating vector stores. 5524 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5525 (void)IsTruncatingStore; 5526 5527 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5528 // the selection of the masked intrinsics doesn't do this for us. 5529 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5530 5531 MVT ContainerVT = VT; 5532 if (VT.isFixedLengthVector()) { 5533 // We need to use the larger of the value and index type to determine the 5534 // scalable type to use so we don't increase LMUL for any operand/result. 5535 if (VT.bitsGE(IndexVT)) { 5536 ContainerVT = getContainerForFixedLengthVector(VT); 5537 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5538 ContainerVT.getVectorElementCount()); 5539 } else { 5540 IndexVT = getContainerForFixedLengthVector(IndexVT); 5541 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5542 IndexVT.getVectorElementCount()); 5543 } 5544 5545 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5546 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5547 5548 if (!IsUnmasked) { 5549 MVT MaskVT = 5550 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5551 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5552 } 5553 } 5554 5555 if (!VL) 5556 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5557 5558 unsigned IntID = 5559 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5560 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5561 Ops.push_back(Val); 5562 Ops.push_back(BasePtr); 5563 Ops.push_back(Index); 5564 if (!IsUnmasked) 5565 Ops.push_back(Mask); 5566 Ops.push_back(VL); 5567 5568 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5569 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5570 } 5571 5572 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5573 SelectionDAG &DAG) const { 5574 const MVT XLenVT = Subtarget.getXLenVT(); 5575 SDLoc DL(Op); 5576 SDValue Chain = Op->getOperand(0); 5577 SDValue SysRegNo = DAG.getTargetConstant( 5578 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5579 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5580 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5581 5582 // Encoding used for rounding mode in RISCV differs from that used in 5583 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5584 // table, which consists of a sequence of 4-bit fields, each representing 5585 // corresponding FLT_ROUNDS mode. 5586 static const int Table = 5587 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5588 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5589 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5590 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5591 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5592 5593 SDValue Shift = 5594 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5595 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5596 DAG.getConstant(Table, DL, XLenVT), Shift); 5597 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5598 DAG.getConstant(7, DL, XLenVT)); 5599 5600 return DAG.getMergeValues({Masked, Chain}, DL); 5601 } 5602 5603 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5604 SelectionDAG &DAG) const { 5605 const MVT XLenVT = Subtarget.getXLenVT(); 5606 SDLoc DL(Op); 5607 SDValue Chain = Op->getOperand(0); 5608 SDValue RMValue = Op->getOperand(1); 5609 SDValue SysRegNo = DAG.getTargetConstant( 5610 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5611 5612 // Encoding used for rounding mode in RISCV differs from that used in 5613 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5614 // a table, which consists of a sequence of 4-bit fields, each representing 5615 // corresponding RISCV mode. 5616 static const unsigned Table = 5617 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5618 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5619 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5620 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5621 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5622 5623 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5624 DAG.getConstant(2, DL, XLenVT)); 5625 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5626 DAG.getConstant(Table, DL, XLenVT), Shift); 5627 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5628 DAG.getConstant(0x7, DL, XLenVT)); 5629 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5630 RMValue); 5631 } 5632 5633 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5634 // form of the given Opcode. 5635 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5636 switch (Opcode) { 5637 default: 5638 llvm_unreachable("Unexpected opcode"); 5639 case ISD::SHL: 5640 return RISCVISD::SLLW; 5641 case ISD::SRA: 5642 return RISCVISD::SRAW; 5643 case ISD::SRL: 5644 return RISCVISD::SRLW; 5645 case ISD::SDIV: 5646 return RISCVISD::DIVW; 5647 case ISD::UDIV: 5648 return RISCVISD::DIVUW; 5649 case ISD::UREM: 5650 return RISCVISD::REMUW; 5651 case ISD::ROTL: 5652 return RISCVISD::ROLW; 5653 case ISD::ROTR: 5654 return RISCVISD::RORW; 5655 case RISCVISD::GREV: 5656 return RISCVISD::GREVW; 5657 case RISCVISD::GORC: 5658 return RISCVISD::GORCW; 5659 } 5660 } 5661 5662 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5663 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5664 // otherwise be promoted to i64, making it difficult to select the 5665 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5666 // type i8/i16/i32 is lost. 5667 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5668 unsigned ExtOpc = ISD::ANY_EXTEND) { 5669 SDLoc DL(N); 5670 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5671 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5672 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5673 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5674 // ReplaceNodeResults requires we maintain the same type for the return value. 5675 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5676 } 5677 5678 // Converts the given 32-bit operation to a i64 operation with signed extension 5679 // semantic to reduce the signed extension instructions. 5680 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5681 SDLoc DL(N); 5682 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5683 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5684 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5685 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5686 DAG.getValueType(MVT::i32)); 5687 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5688 } 5689 5690 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5691 SmallVectorImpl<SDValue> &Results, 5692 SelectionDAG &DAG) const { 5693 SDLoc DL(N); 5694 switch (N->getOpcode()) { 5695 default: 5696 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5697 case ISD::STRICT_FP_TO_SINT: 5698 case ISD::STRICT_FP_TO_UINT: 5699 case ISD::FP_TO_SINT: 5700 case ISD::FP_TO_UINT: { 5701 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5702 "Unexpected custom legalisation"); 5703 bool IsStrict = N->isStrictFPOpcode(); 5704 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5705 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5706 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5707 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5708 TargetLowering::TypeSoftenFloat) { 5709 // FIXME: Support strict FP. 5710 if (IsStrict) 5711 return; 5712 if (!isTypeLegal(Op0.getValueType())) 5713 return; 5714 unsigned Opc = 5715 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5716 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5717 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5718 return; 5719 } 5720 // If the FP type needs to be softened, emit a library call using the 'si' 5721 // version. If we left it to default legalization we'd end up with 'di'. If 5722 // the FP type doesn't need to be softened just let generic type 5723 // legalization promote the result type. 5724 RTLIB::Libcall LC; 5725 if (IsSigned) 5726 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5727 else 5728 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5729 MakeLibCallOptions CallOptions; 5730 EVT OpVT = Op0.getValueType(); 5731 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5732 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5733 SDValue Result; 5734 std::tie(Result, Chain) = 5735 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5736 Results.push_back(Result); 5737 if (IsStrict) 5738 Results.push_back(Chain); 5739 break; 5740 } 5741 case ISD::READCYCLECOUNTER: { 5742 assert(!Subtarget.is64Bit() && 5743 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5744 5745 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5746 SDValue RCW = 5747 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5748 5749 Results.push_back( 5750 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5751 Results.push_back(RCW.getValue(2)); 5752 break; 5753 } 5754 case ISD::MUL: { 5755 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5756 unsigned XLen = Subtarget.getXLen(); 5757 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5758 if (Size > XLen) { 5759 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5760 SDValue LHS = N->getOperand(0); 5761 SDValue RHS = N->getOperand(1); 5762 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5763 5764 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5765 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5766 // We need exactly one side to be unsigned. 5767 if (LHSIsU == RHSIsU) 5768 return; 5769 5770 auto MakeMULPair = [&](SDValue S, SDValue U) { 5771 MVT XLenVT = Subtarget.getXLenVT(); 5772 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5773 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5774 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5775 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5776 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5777 }; 5778 5779 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5780 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5781 5782 // The other operand should be signed, but still prefer MULH when 5783 // possible. 5784 if (RHSIsU && LHSIsS && !RHSIsS) 5785 Results.push_back(MakeMULPair(LHS, RHS)); 5786 else if (LHSIsU && RHSIsS && !LHSIsS) 5787 Results.push_back(MakeMULPair(RHS, LHS)); 5788 5789 return; 5790 } 5791 LLVM_FALLTHROUGH; 5792 } 5793 case ISD::ADD: 5794 case ISD::SUB: 5795 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5796 "Unexpected custom legalisation"); 5797 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5798 break; 5799 case ISD::SHL: 5800 case ISD::SRA: 5801 case ISD::SRL: 5802 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5803 "Unexpected custom legalisation"); 5804 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5805 Results.push_back(customLegalizeToWOp(N, DAG)); 5806 break; 5807 } 5808 5809 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5810 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5811 // shift amount. 5812 if (N->getOpcode() == ISD::SHL) { 5813 SDLoc DL(N); 5814 SDValue NewOp0 = 5815 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5816 SDValue NewOp1 = 5817 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5818 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5819 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5820 DAG.getValueType(MVT::i32)); 5821 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5822 } 5823 5824 break; 5825 case ISD::ROTL: 5826 case ISD::ROTR: 5827 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5828 "Unexpected custom legalisation"); 5829 Results.push_back(customLegalizeToWOp(N, DAG)); 5830 break; 5831 case ISD::CTTZ: 5832 case ISD::CTTZ_ZERO_UNDEF: 5833 case ISD::CTLZ: 5834 case ISD::CTLZ_ZERO_UNDEF: { 5835 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5836 "Unexpected custom legalisation"); 5837 5838 SDValue NewOp0 = 5839 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5840 bool IsCTZ = 5841 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5842 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5843 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5844 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5845 return; 5846 } 5847 case ISD::SDIV: 5848 case ISD::UDIV: 5849 case ISD::UREM: { 5850 MVT VT = N->getSimpleValueType(0); 5851 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5852 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5853 "Unexpected custom legalisation"); 5854 // Don't promote division/remainder by constant since we should expand those 5855 // to multiply by magic constant. 5856 // FIXME: What if the expansion is disabled for minsize. 5857 if (N->getOperand(1).getOpcode() == ISD::Constant) 5858 return; 5859 5860 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5861 // the upper 32 bits. For other types we need to sign or zero extend 5862 // based on the opcode. 5863 unsigned ExtOpc = ISD::ANY_EXTEND; 5864 if (VT != MVT::i32) 5865 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5866 : ISD::ZERO_EXTEND; 5867 5868 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5869 break; 5870 } 5871 case ISD::UADDO: 5872 case ISD::USUBO: { 5873 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5874 "Unexpected custom legalisation"); 5875 bool IsAdd = N->getOpcode() == ISD::UADDO; 5876 // Create an ADDW or SUBW. 5877 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5878 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5879 SDValue Res = 5880 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5881 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5882 DAG.getValueType(MVT::i32)); 5883 5884 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5885 // Since the inputs are sign extended from i32, this is equivalent to 5886 // comparing the lower 32 bits. 5887 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5888 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5889 IsAdd ? ISD::SETULT : ISD::SETUGT); 5890 5891 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5892 Results.push_back(Overflow); 5893 return; 5894 } 5895 case ISD::UADDSAT: 5896 case ISD::USUBSAT: { 5897 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5898 "Unexpected custom legalisation"); 5899 if (Subtarget.hasStdExtZbb()) { 5900 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5901 // sign extend allows overflow of the lower 32 bits to be detected on 5902 // the promoted size. 5903 SDValue LHS = 5904 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5905 SDValue RHS = 5906 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5907 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5908 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5909 return; 5910 } 5911 5912 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5913 // promotion for UADDO/USUBO. 5914 Results.push_back(expandAddSubSat(N, DAG)); 5915 return; 5916 } 5917 case ISD::BITCAST: { 5918 EVT VT = N->getValueType(0); 5919 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5920 SDValue Op0 = N->getOperand(0); 5921 EVT Op0VT = Op0.getValueType(); 5922 MVT XLenVT = Subtarget.getXLenVT(); 5923 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5924 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5925 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5926 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5927 Subtarget.hasStdExtF()) { 5928 SDValue FPConv = 5929 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5930 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5931 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5932 isTypeLegal(Op0VT)) { 5933 // Custom-legalize bitcasts from fixed-length vector types to illegal 5934 // scalar types in order to improve codegen. Bitcast the vector to a 5935 // one-element vector type whose element type is the same as the result 5936 // type, and extract the first element. 5937 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 5938 if (isTypeLegal(BVT)) { 5939 SDValue BVec = DAG.getBitcast(BVT, Op0); 5940 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5941 DAG.getConstant(0, DL, XLenVT))); 5942 } 5943 } 5944 break; 5945 } 5946 case RISCVISD::GREV: 5947 case RISCVISD::GORC: { 5948 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5949 "Unexpected custom legalisation"); 5950 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5951 // This is similar to customLegalizeToWOp, except that we pass the second 5952 // operand (a TargetConstant) straight through: it is already of type 5953 // XLenVT. 5954 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5955 SDValue NewOp0 = 5956 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5957 SDValue NewOp1 = 5958 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5959 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5960 // ReplaceNodeResults requires we maintain the same type for the return 5961 // value. 5962 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5963 break; 5964 } 5965 case RISCVISD::SHFL: { 5966 // There is no SHFLIW instruction, but we can just promote the operation. 5967 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5968 "Unexpected custom legalisation"); 5969 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5970 SDValue NewOp0 = 5971 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5972 SDValue NewOp1 = 5973 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5974 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5975 // ReplaceNodeResults requires we maintain the same type for the return 5976 // value. 5977 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5978 break; 5979 } 5980 case ISD::BSWAP: 5981 case ISD::BITREVERSE: { 5982 MVT VT = N->getSimpleValueType(0); 5983 MVT XLenVT = Subtarget.getXLenVT(); 5984 assert((VT == MVT::i8 || VT == MVT::i16 || 5985 (VT == MVT::i32 && Subtarget.is64Bit())) && 5986 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5987 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5988 unsigned Imm = VT.getSizeInBits() - 1; 5989 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5990 if (N->getOpcode() == ISD::BSWAP) 5991 Imm &= ~0x7U; 5992 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5993 SDValue GREVI = 5994 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5995 // ReplaceNodeResults requires we maintain the same type for the return 5996 // value. 5997 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5998 break; 5999 } 6000 case ISD::FSHL: 6001 case ISD::FSHR: { 6002 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6003 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6004 SDValue NewOp0 = 6005 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6006 SDValue NewOp1 = 6007 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6008 SDValue NewOp2 = 6009 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6010 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6011 // Mask the shift amount to 5 bits. 6012 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6013 DAG.getConstant(0x1f, DL, MVT::i64)); 6014 unsigned Opc = 6015 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6016 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6017 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6018 break; 6019 } 6020 case ISD::EXTRACT_VECTOR_ELT: { 6021 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6022 // type is illegal (currently only vXi64 RV32). 6023 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6024 // transferred to the destination register. We issue two of these from the 6025 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6026 // first element. 6027 SDValue Vec = N->getOperand(0); 6028 SDValue Idx = N->getOperand(1); 6029 6030 // The vector type hasn't been legalized yet so we can't issue target 6031 // specific nodes if it needs legalization. 6032 // FIXME: We would manually legalize if it's important. 6033 if (!isTypeLegal(Vec.getValueType())) 6034 return; 6035 6036 MVT VecVT = Vec.getSimpleValueType(); 6037 6038 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6039 VecVT.getVectorElementType() == MVT::i64 && 6040 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6041 6042 // If this is a fixed vector, we need to convert it to a scalable vector. 6043 MVT ContainerVT = VecVT; 6044 if (VecVT.isFixedLengthVector()) { 6045 ContainerVT = getContainerForFixedLengthVector(VecVT); 6046 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6047 } 6048 6049 MVT XLenVT = Subtarget.getXLenVT(); 6050 6051 // Use a VL of 1 to avoid processing more elements than we need. 6052 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6053 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6054 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6055 6056 // Unless the index is known to be 0, we must slide the vector down to get 6057 // the desired element into index 0. 6058 if (!isNullConstant(Idx)) { 6059 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6060 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6061 } 6062 6063 // Extract the lower XLEN bits of the correct vector element. 6064 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6065 6066 // To extract the upper XLEN bits of the vector element, shift the first 6067 // element right by 32 bits and re-extract the lower XLEN bits. 6068 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6069 DAG.getConstant(32, DL, XLenVT), VL); 6070 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6071 ThirtyTwoV, Mask, VL); 6072 6073 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6074 6075 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6076 break; 6077 } 6078 case ISD::INTRINSIC_WO_CHAIN: { 6079 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6080 switch (IntNo) { 6081 default: 6082 llvm_unreachable( 6083 "Don't know how to custom type legalize this intrinsic!"); 6084 case Intrinsic::riscv_orc_b: { 6085 // Lower to the GORCI encoding for orc.b with the operand extended. 6086 SDValue NewOp = 6087 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6088 // If Zbp is enabled, use GORCIW which will sign extend the result. 6089 unsigned Opc = 6090 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6091 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6092 DAG.getConstant(7, DL, MVT::i64)); 6093 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6094 return; 6095 } 6096 case Intrinsic::riscv_grev: 6097 case Intrinsic::riscv_gorc: { 6098 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6099 "Unexpected custom legalisation"); 6100 SDValue NewOp1 = 6101 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6102 SDValue NewOp2 = 6103 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6104 unsigned Opc = 6105 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6106 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6107 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6108 break; 6109 } 6110 case Intrinsic::riscv_shfl: 6111 case Intrinsic::riscv_unshfl: { 6112 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6113 "Unexpected custom legalisation"); 6114 SDValue NewOp1 = 6115 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6116 SDValue NewOp2 = 6117 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6118 unsigned Opc = 6119 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6120 if (isa<ConstantSDNode>(N->getOperand(2))) { 6121 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6122 DAG.getConstant(0xf, DL, MVT::i64)); 6123 Opc = 6124 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6125 } 6126 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6127 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6128 break; 6129 } 6130 case Intrinsic::riscv_bcompress: 6131 case Intrinsic::riscv_bdecompress: { 6132 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6133 "Unexpected custom legalisation"); 6134 SDValue NewOp1 = 6135 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6136 SDValue NewOp2 = 6137 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6138 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6139 ? RISCVISD::BCOMPRESSW 6140 : RISCVISD::BDECOMPRESSW; 6141 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6142 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6143 break; 6144 } 6145 case Intrinsic::riscv_vmv_x_s: { 6146 EVT VT = N->getValueType(0); 6147 MVT XLenVT = Subtarget.getXLenVT(); 6148 if (VT.bitsLT(XLenVT)) { 6149 // Simple case just extract using vmv.x.s and truncate. 6150 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6151 Subtarget.getXLenVT(), N->getOperand(1)); 6152 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6153 return; 6154 } 6155 6156 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6157 "Unexpected custom legalization"); 6158 6159 // We need to do the move in two steps. 6160 SDValue Vec = N->getOperand(1); 6161 MVT VecVT = Vec.getSimpleValueType(); 6162 6163 // First extract the lower XLEN bits of the element. 6164 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6165 6166 // To extract the upper XLEN bits of the vector element, shift the first 6167 // element right by 32 bits and re-extract the lower XLEN bits. 6168 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6169 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6170 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6171 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6172 DAG.getConstant(32, DL, XLenVT), VL); 6173 SDValue LShr32 = 6174 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6175 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6176 6177 Results.push_back( 6178 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6179 break; 6180 } 6181 } 6182 break; 6183 } 6184 case ISD::VECREDUCE_ADD: 6185 case ISD::VECREDUCE_AND: 6186 case ISD::VECREDUCE_OR: 6187 case ISD::VECREDUCE_XOR: 6188 case ISD::VECREDUCE_SMAX: 6189 case ISD::VECREDUCE_UMAX: 6190 case ISD::VECREDUCE_SMIN: 6191 case ISD::VECREDUCE_UMIN: 6192 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6193 Results.push_back(V); 6194 break; 6195 case ISD::VP_REDUCE_ADD: 6196 case ISD::VP_REDUCE_AND: 6197 case ISD::VP_REDUCE_OR: 6198 case ISD::VP_REDUCE_XOR: 6199 case ISD::VP_REDUCE_SMAX: 6200 case ISD::VP_REDUCE_UMAX: 6201 case ISD::VP_REDUCE_SMIN: 6202 case ISD::VP_REDUCE_UMIN: 6203 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6204 Results.push_back(V); 6205 break; 6206 case ISD::FLT_ROUNDS_: { 6207 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6208 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6209 Results.push_back(Res.getValue(0)); 6210 Results.push_back(Res.getValue(1)); 6211 break; 6212 } 6213 } 6214 } 6215 6216 // A structure to hold one of the bit-manipulation patterns below. Together, a 6217 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6218 // (or (and (shl x, 1), 0xAAAAAAAA), 6219 // (and (srl x, 1), 0x55555555)) 6220 struct RISCVBitmanipPat { 6221 SDValue Op; 6222 unsigned ShAmt; 6223 bool IsSHL; 6224 6225 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6226 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6227 } 6228 }; 6229 6230 // Matches patterns of the form 6231 // (and (shl x, C2), (C1 << C2)) 6232 // (and (srl x, C2), C1) 6233 // (shl (and x, C1), C2) 6234 // (srl (and x, (C1 << C2)), C2) 6235 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6236 // The expected masks for each shift amount are specified in BitmanipMasks where 6237 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6238 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6239 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6240 // XLen is 64. 6241 static Optional<RISCVBitmanipPat> 6242 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6243 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6244 "Unexpected number of masks"); 6245 Optional<uint64_t> Mask; 6246 // Optionally consume a mask around the shift operation. 6247 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6248 Mask = Op.getConstantOperandVal(1); 6249 Op = Op.getOperand(0); 6250 } 6251 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6252 return None; 6253 bool IsSHL = Op.getOpcode() == ISD::SHL; 6254 6255 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6256 return None; 6257 uint64_t ShAmt = Op.getConstantOperandVal(1); 6258 6259 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6260 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6261 return None; 6262 // If we don't have enough masks for 64 bit, then we must be trying to 6263 // match SHFL so we're only allowed to shift 1/4 of the width. 6264 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6265 return None; 6266 6267 SDValue Src = Op.getOperand(0); 6268 6269 // The expected mask is shifted left when the AND is found around SHL 6270 // patterns. 6271 // ((x >> 1) & 0x55555555) 6272 // ((x << 1) & 0xAAAAAAAA) 6273 bool SHLExpMask = IsSHL; 6274 6275 if (!Mask) { 6276 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6277 // the mask is all ones: consume that now. 6278 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6279 Mask = Src.getConstantOperandVal(1); 6280 Src = Src.getOperand(0); 6281 // The expected mask is now in fact shifted left for SRL, so reverse the 6282 // decision. 6283 // ((x & 0xAAAAAAAA) >> 1) 6284 // ((x & 0x55555555) << 1) 6285 SHLExpMask = !SHLExpMask; 6286 } else { 6287 // Use a default shifted mask of all-ones if there's no AND, truncated 6288 // down to the expected width. This simplifies the logic later on. 6289 Mask = maskTrailingOnes<uint64_t>(Width); 6290 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6291 } 6292 } 6293 6294 unsigned MaskIdx = Log2_32(ShAmt); 6295 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6296 6297 if (SHLExpMask) 6298 ExpMask <<= ShAmt; 6299 6300 if (Mask != ExpMask) 6301 return None; 6302 6303 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6304 } 6305 6306 // Matches any of the following bit-manipulation patterns: 6307 // (and (shl x, 1), (0x55555555 << 1)) 6308 // (and (srl x, 1), 0x55555555) 6309 // (shl (and x, 0x55555555), 1) 6310 // (srl (and x, (0x55555555 << 1)), 1) 6311 // where the shift amount and mask may vary thus: 6312 // [1] = 0x55555555 / 0xAAAAAAAA 6313 // [2] = 0x33333333 / 0xCCCCCCCC 6314 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6315 // [8] = 0x00FF00FF / 0xFF00FF00 6316 // [16] = 0x0000FFFF / 0xFFFFFFFF 6317 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6318 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6319 // These are the unshifted masks which we use to match bit-manipulation 6320 // patterns. They may be shifted left in certain circumstances. 6321 static const uint64_t BitmanipMasks[] = { 6322 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6323 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6324 6325 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6326 } 6327 6328 // Match the following pattern as a GREVI(W) operation 6329 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6330 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6331 const RISCVSubtarget &Subtarget) { 6332 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6333 EVT VT = Op.getValueType(); 6334 6335 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6336 auto LHS = matchGREVIPat(Op.getOperand(0)); 6337 auto RHS = matchGREVIPat(Op.getOperand(1)); 6338 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6339 SDLoc DL(Op); 6340 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6341 DAG.getConstant(LHS->ShAmt, DL, VT)); 6342 } 6343 } 6344 return SDValue(); 6345 } 6346 6347 // Matches any the following pattern as a GORCI(W) operation 6348 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6349 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6350 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6351 // Note that with the variant of 3., 6352 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6353 // the inner pattern will first be matched as GREVI and then the outer 6354 // pattern will be matched to GORC via the first rule above. 6355 // 4. (or (rotl/rotr x, bitwidth/2), x) 6356 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6357 const RISCVSubtarget &Subtarget) { 6358 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6359 EVT VT = Op.getValueType(); 6360 6361 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6362 SDLoc DL(Op); 6363 SDValue Op0 = Op.getOperand(0); 6364 SDValue Op1 = Op.getOperand(1); 6365 6366 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6367 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6368 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6369 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6370 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6371 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6372 if ((Reverse.getOpcode() == ISD::ROTL || 6373 Reverse.getOpcode() == ISD::ROTR) && 6374 Reverse.getOperand(0) == X && 6375 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6376 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6377 if (RotAmt == (VT.getSizeInBits() / 2)) 6378 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6379 DAG.getConstant(RotAmt, DL, VT)); 6380 } 6381 return SDValue(); 6382 }; 6383 6384 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6385 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6386 return V; 6387 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6388 return V; 6389 6390 // OR is commutable so canonicalize its OR operand to the left 6391 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6392 std::swap(Op0, Op1); 6393 if (Op0.getOpcode() != ISD::OR) 6394 return SDValue(); 6395 SDValue OrOp0 = Op0.getOperand(0); 6396 SDValue OrOp1 = Op0.getOperand(1); 6397 auto LHS = matchGREVIPat(OrOp0); 6398 // OR is commutable so swap the operands and try again: x might have been 6399 // on the left 6400 if (!LHS) { 6401 std::swap(OrOp0, OrOp1); 6402 LHS = matchGREVIPat(OrOp0); 6403 } 6404 auto RHS = matchGREVIPat(Op1); 6405 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6406 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6407 DAG.getConstant(LHS->ShAmt, DL, VT)); 6408 } 6409 } 6410 return SDValue(); 6411 } 6412 6413 // Matches any of the following bit-manipulation patterns: 6414 // (and (shl x, 1), (0x22222222 << 1)) 6415 // (and (srl x, 1), 0x22222222) 6416 // (shl (and x, 0x22222222), 1) 6417 // (srl (and x, (0x22222222 << 1)), 1) 6418 // where the shift amount and mask may vary thus: 6419 // [1] = 0x22222222 / 0x44444444 6420 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6421 // [4] = 0x00F000F0 / 0x0F000F00 6422 // [8] = 0x0000FF00 / 0x00FF0000 6423 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6424 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6425 // These are the unshifted masks which we use to match bit-manipulation 6426 // patterns. They may be shifted left in certain circumstances. 6427 static const uint64_t BitmanipMasks[] = { 6428 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6429 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6430 6431 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6432 } 6433 6434 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6435 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6436 const RISCVSubtarget &Subtarget) { 6437 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6438 EVT VT = Op.getValueType(); 6439 6440 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6441 return SDValue(); 6442 6443 SDValue Op0 = Op.getOperand(0); 6444 SDValue Op1 = Op.getOperand(1); 6445 6446 // Or is commutable so canonicalize the second OR to the LHS. 6447 if (Op0.getOpcode() != ISD::OR) 6448 std::swap(Op0, Op1); 6449 if (Op0.getOpcode() != ISD::OR) 6450 return SDValue(); 6451 6452 // We found an inner OR, so our operands are the operands of the inner OR 6453 // and the other operand of the outer OR. 6454 SDValue A = Op0.getOperand(0); 6455 SDValue B = Op0.getOperand(1); 6456 SDValue C = Op1; 6457 6458 auto Match1 = matchSHFLPat(A); 6459 auto Match2 = matchSHFLPat(B); 6460 6461 // If neither matched, we failed. 6462 if (!Match1 && !Match2) 6463 return SDValue(); 6464 6465 // We had at least one match. if one failed, try the remaining C operand. 6466 if (!Match1) { 6467 std::swap(A, C); 6468 Match1 = matchSHFLPat(A); 6469 if (!Match1) 6470 return SDValue(); 6471 } else if (!Match2) { 6472 std::swap(B, C); 6473 Match2 = matchSHFLPat(B); 6474 if (!Match2) 6475 return SDValue(); 6476 } 6477 assert(Match1 && Match2); 6478 6479 // Make sure our matches pair up. 6480 if (!Match1->formsPairWith(*Match2)) 6481 return SDValue(); 6482 6483 // All the remains is to make sure C is an AND with the same input, that masks 6484 // out the bits that are being shuffled. 6485 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6486 C.getOperand(0) != Match1->Op) 6487 return SDValue(); 6488 6489 uint64_t Mask = C.getConstantOperandVal(1); 6490 6491 static const uint64_t BitmanipMasks[] = { 6492 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6493 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6494 }; 6495 6496 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6497 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6498 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6499 6500 if (Mask != ExpMask) 6501 return SDValue(); 6502 6503 SDLoc DL(Op); 6504 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6505 DAG.getConstant(Match1->ShAmt, DL, VT)); 6506 } 6507 6508 // Optimize (add (shl x, c0), (shl y, c1)) -> 6509 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6510 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6511 const RISCVSubtarget &Subtarget) { 6512 // Perform this optimization only in the zba extension. 6513 if (!Subtarget.hasStdExtZba()) 6514 return SDValue(); 6515 6516 // Skip for vector types and larger types. 6517 EVT VT = N->getValueType(0); 6518 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6519 return SDValue(); 6520 6521 // The two operand nodes must be SHL and have no other use. 6522 SDValue N0 = N->getOperand(0); 6523 SDValue N1 = N->getOperand(1); 6524 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6525 !N0->hasOneUse() || !N1->hasOneUse()) 6526 return SDValue(); 6527 6528 // Check c0 and c1. 6529 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6530 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6531 if (!N0C || !N1C) 6532 return SDValue(); 6533 int64_t C0 = N0C->getSExtValue(); 6534 int64_t C1 = N1C->getSExtValue(); 6535 if (C0 <= 0 || C1 <= 0) 6536 return SDValue(); 6537 6538 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6539 int64_t Bits = std::min(C0, C1); 6540 int64_t Diff = std::abs(C0 - C1); 6541 if (Diff != 1 && Diff != 2 && Diff != 3) 6542 return SDValue(); 6543 6544 // Build nodes. 6545 SDLoc DL(N); 6546 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6547 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6548 SDValue NA0 = 6549 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6550 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6551 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6552 } 6553 6554 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6555 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6556 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6557 // not undo itself, but they are redundant. 6558 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6559 SDValue Src = N->getOperand(0); 6560 6561 if (Src.getOpcode() != N->getOpcode()) 6562 return SDValue(); 6563 6564 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6565 !isa<ConstantSDNode>(Src.getOperand(1))) 6566 return SDValue(); 6567 6568 unsigned ShAmt1 = N->getConstantOperandVal(1); 6569 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6570 Src = Src.getOperand(0); 6571 6572 unsigned CombinedShAmt; 6573 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6574 CombinedShAmt = ShAmt1 | ShAmt2; 6575 else 6576 CombinedShAmt = ShAmt1 ^ ShAmt2; 6577 6578 if (CombinedShAmt == 0) 6579 return Src; 6580 6581 SDLoc DL(N); 6582 return DAG.getNode( 6583 N->getOpcode(), DL, N->getValueType(0), Src, 6584 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6585 } 6586 6587 // Combine a constant select operand into its use: 6588 // 6589 // (and (select cond, -1, c), x) 6590 // -> (select cond, x, (and x, c)) [AllOnes=1] 6591 // (or (select cond, 0, c), x) 6592 // -> (select cond, x, (or x, c)) [AllOnes=0] 6593 // (xor (select cond, 0, c), x) 6594 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6595 // (add (select cond, 0, c), x) 6596 // -> (select cond, x, (add x, c)) [AllOnes=0] 6597 // (sub x, (select cond, 0, c)) 6598 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6599 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6600 SelectionDAG &DAG, bool AllOnes) { 6601 EVT VT = N->getValueType(0); 6602 6603 // Skip vectors. 6604 if (VT.isVector()) 6605 return SDValue(); 6606 6607 if ((Slct.getOpcode() != ISD::SELECT && 6608 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6609 !Slct.hasOneUse()) 6610 return SDValue(); 6611 6612 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6613 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6614 }; 6615 6616 bool SwapSelectOps; 6617 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6618 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6619 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6620 SDValue NonConstantVal; 6621 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6622 SwapSelectOps = false; 6623 NonConstantVal = FalseVal; 6624 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6625 SwapSelectOps = true; 6626 NonConstantVal = TrueVal; 6627 } else 6628 return SDValue(); 6629 6630 // Slct is now know to be the desired identity constant when CC is true. 6631 TrueVal = OtherOp; 6632 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6633 // Unless SwapSelectOps says the condition should be false. 6634 if (SwapSelectOps) 6635 std::swap(TrueVal, FalseVal); 6636 6637 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6638 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6639 {Slct.getOperand(0), Slct.getOperand(1), 6640 Slct.getOperand(2), TrueVal, FalseVal}); 6641 6642 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6643 {Slct.getOperand(0), TrueVal, FalseVal}); 6644 } 6645 6646 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6647 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6648 bool AllOnes) { 6649 SDValue N0 = N->getOperand(0); 6650 SDValue N1 = N->getOperand(1); 6651 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6652 return Result; 6653 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6654 return Result; 6655 return SDValue(); 6656 } 6657 6658 // Transform (add (mul x, c0), c1) -> 6659 // (add (mul (add x, c1/c0), c0), c1%c0). 6660 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6661 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6662 // to an infinite loop in DAGCombine if transformed. 6663 // Or transform (add (mul x, c0), c1) -> 6664 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6665 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6666 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6667 // lead to an infinite loop in DAGCombine if transformed. 6668 // Or transform (add (mul x, c0), c1) -> 6669 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6670 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6671 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6672 // lead to an infinite loop in DAGCombine if transformed. 6673 // Or transform (add (mul x, c0), c1) -> 6674 // (mul (add x, c1/c0), c0). 6675 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6676 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6677 const RISCVSubtarget &Subtarget) { 6678 // Skip for vector types and larger types. 6679 EVT VT = N->getValueType(0); 6680 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6681 return SDValue(); 6682 // The first operand node must be a MUL and has no other use. 6683 SDValue N0 = N->getOperand(0); 6684 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6685 return SDValue(); 6686 // Check if c0 and c1 match above conditions. 6687 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6688 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6689 if (!N0C || !N1C) 6690 return SDValue(); 6691 int64_t C0 = N0C->getSExtValue(); 6692 int64_t C1 = N1C->getSExtValue(); 6693 int64_t CA, CB; 6694 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6695 return SDValue(); 6696 // Search for proper CA (non-zero) and CB that both are simm12. 6697 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6698 !isInt<12>(C0 * (C1 / C0))) { 6699 CA = C1 / C0; 6700 CB = C1 % C0; 6701 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6702 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6703 CA = C1 / C0 + 1; 6704 CB = C1 % C0 - C0; 6705 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6706 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6707 CA = C1 / C0 - 1; 6708 CB = C1 % C0 + C0; 6709 } else 6710 return SDValue(); 6711 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6712 SDLoc DL(N); 6713 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6714 DAG.getConstant(CA, DL, VT)); 6715 SDValue New1 = 6716 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6717 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6718 } 6719 6720 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6721 const RISCVSubtarget &Subtarget) { 6722 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6723 return V; 6724 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6725 return V; 6726 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6727 // (select lhs, rhs, cc, x, (add x, y)) 6728 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6729 } 6730 6731 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6732 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6733 // (select lhs, rhs, cc, x, (sub x, y)) 6734 SDValue N0 = N->getOperand(0); 6735 SDValue N1 = N->getOperand(1); 6736 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6737 } 6738 6739 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6740 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6741 // (select lhs, rhs, cc, x, (and x, y)) 6742 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6743 } 6744 6745 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6746 const RISCVSubtarget &Subtarget) { 6747 if (Subtarget.hasStdExtZbp()) { 6748 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6749 return GREV; 6750 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6751 return GORC; 6752 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6753 return SHFL; 6754 } 6755 6756 // fold (or (select cond, 0, y), x) -> 6757 // (select cond, x, (or x, y)) 6758 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6759 } 6760 6761 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6762 // fold (xor (select cond, 0, y), x) -> 6763 // (select cond, x, (xor x, y)) 6764 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6765 } 6766 6767 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6768 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6769 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6770 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6771 // ADDW/SUBW/MULW. 6772 static SDValue performANY_EXTENDCombine(SDNode *N, 6773 TargetLowering::DAGCombinerInfo &DCI, 6774 const RISCVSubtarget &Subtarget) { 6775 if (!Subtarget.is64Bit()) 6776 return SDValue(); 6777 6778 SelectionDAG &DAG = DCI.DAG; 6779 6780 SDValue Src = N->getOperand(0); 6781 EVT VT = N->getValueType(0); 6782 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6783 return SDValue(); 6784 6785 // The opcode must be one that can implicitly sign_extend. 6786 // FIXME: Additional opcodes. 6787 switch (Src.getOpcode()) { 6788 default: 6789 return SDValue(); 6790 case ISD::MUL: 6791 if (!Subtarget.hasStdExtM()) 6792 return SDValue(); 6793 LLVM_FALLTHROUGH; 6794 case ISD::ADD: 6795 case ISD::SUB: 6796 break; 6797 } 6798 6799 // Only handle cases where the result is used by a CopyToReg. That likely 6800 // means the value is a liveout of the basic block. This helps prevent 6801 // infinite combine loops like PR51206. 6802 if (none_of(N->uses(), 6803 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6804 return SDValue(); 6805 6806 SmallVector<SDNode *, 4> SetCCs; 6807 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6808 UE = Src.getNode()->use_end(); 6809 UI != UE; ++UI) { 6810 SDNode *User = *UI; 6811 if (User == N) 6812 continue; 6813 if (UI.getUse().getResNo() != Src.getResNo()) 6814 continue; 6815 // All i32 setccs are legalized by sign extending operands. 6816 if (User->getOpcode() == ISD::SETCC) { 6817 SetCCs.push_back(User); 6818 continue; 6819 } 6820 // We don't know if we can extend this user. 6821 break; 6822 } 6823 6824 // If we don't have any SetCCs, this isn't worthwhile. 6825 if (SetCCs.empty()) 6826 return SDValue(); 6827 6828 SDLoc DL(N); 6829 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6830 DCI.CombineTo(N, SExt); 6831 6832 // Promote all the setccs. 6833 for (SDNode *SetCC : SetCCs) { 6834 SmallVector<SDValue, 4> Ops; 6835 6836 for (unsigned j = 0; j != 2; ++j) { 6837 SDValue SOp = SetCC->getOperand(j); 6838 if (SOp == Src) 6839 Ops.push_back(SExt); 6840 else 6841 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6842 } 6843 6844 Ops.push_back(SetCC->getOperand(2)); 6845 DCI.CombineTo(SetCC, 6846 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6847 } 6848 return SDValue(N, 0); 6849 } 6850 6851 // Try to form VWMUL or VWMULU. 6852 // FIXME: Support VWMULSU. 6853 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 6854 SelectionDAG &DAG) { 6855 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 6856 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6857 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6858 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 6859 return SDValue(); 6860 6861 SDValue Mask = N->getOperand(2); 6862 SDValue VL = N->getOperand(3); 6863 6864 // Make sure the mask and VL match. 6865 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 6866 return SDValue(); 6867 6868 MVT VT = N->getSimpleValueType(0); 6869 6870 // Determine the narrow size for a widening multiply. 6871 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 6872 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 6873 VT.getVectorElementCount()); 6874 6875 SDLoc DL(N); 6876 6877 // See if the other operand is the same opcode. 6878 if (Op0.getOpcode() == Op1.getOpcode()) { 6879 if (!Op1.hasOneUse()) 6880 return SDValue(); 6881 6882 // Make sure the mask and VL match. 6883 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 6884 return SDValue(); 6885 6886 Op1 = Op1.getOperand(0); 6887 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 6888 // The operand is a splat of a scalar. 6889 6890 // The VL must be the same. 6891 if (Op1.getOperand(1) != VL) 6892 return SDValue(); 6893 6894 // Get the scalar value. 6895 Op1 = Op1.getOperand(0); 6896 6897 // See if have enough sign bits or zero bits in the scalar to use a 6898 // widening multiply by splatting to smaller element size. 6899 unsigned EltBits = VT.getScalarSizeInBits(); 6900 unsigned ScalarBits = Op1.getValueSizeInBits(); 6901 // Make sure we're getting all element bits from the scalar register. 6902 // FIXME: Support implicit sign extension of vmv.v.x? 6903 if (ScalarBits < EltBits) 6904 return SDValue(); 6905 6906 if (IsSignExt) { 6907 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 6908 return SDValue(); 6909 } else { 6910 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 6911 if (!DAG.MaskedValueIsZero(Op1, Mask)) 6912 return SDValue(); 6913 } 6914 6915 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 6916 } else 6917 return SDValue(); 6918 6919 Op0 = Op0.getOperand(0); 6920 6921 // Re-introduce narrower extends if needed. 6922 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6923 if (Op0.getValueType() != NarrowVT) 6924 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6925 if (Op1.getValueType() != NarrowVT) 6926 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6927 6928 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6929 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6930 } 6931 6932 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6933 DAGCombinerInfo &DCI) const { 6934 SelectionDAG &DAG = DCI.DAG; 6935 6936 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6937 // bits are demanded. N will be added to the Worklist if it was not deleted. 6938 // Caller should return SDValue(N, 0) if this returns true. 6939 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6940 SDValue Op = N->getOperand(OpNo); 6941 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6942 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6943 return false; 6944 6945 if (N->getOpcode() != ISD::DELETED_NODE) 6946 DCI.AddToWorklist(N); 6947 return true; 6948 }; 6949 6950 switch (N->getOpcode()) { 6951 default: 6952 break; 6953 case RISCVISD::SplitF64: { 6954 SDValue Op0 = N->getOperand(0); 6955 // If the input to SplitF64 is just BuildPairF64 then the operation is 6956 // redundant. Instead, use BuildPairF64's operands directly. 6957 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6958 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6959 6960 SDLoc DL(N); 6961 6962 // It's cheaper to materialise two 32-bit integers than to load a double 6963 // from the constant pool and transfer it to integer registers through the 6964 // stack. 6965 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6966 APInt V = C->getValueAPF().bitcastToAPInt(); 6967 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6968 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6969 return DCI.CombineTo(N, Lo, Hi); 6970 } 6971 6972 // This is a target-specific version of a DAGCombine performed in 6973 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6974 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6975 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6976 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6977 !Op0.getNode()->hasOneUse()) 6978 break; 6979 SDValue NewSplitF64 = 6980 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6981 Op0.getOperand(0)); 6982 SDValue Lo = NewSplitF64.getValue(0); 6983 SDValue Hi = NewSplitF64.getValue(1); 6984 APInt SignBit = APInt::getSignMask(32); 6985 if (Op0.getOpcode() == ISD::FNEG) { 6986 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6987 DAG.getConstant(SignBit, DL, MVT::i32)); 6988 return DCI.CombineTo(N, Lo, NewHi); 6989 } 6990 assert(Op0.getOpcode() == ISD::FABS); 6991 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6992 DAG.getConstant(~SignBit, DL, MVT::i32)); 6993 return DCI.CombineTo(N, Lo, NewHi); 6994 } 6995 case RISCVISD::SLLW: 6996 case RISCVISD::SRAW: 6997 case RISCVISD::SRLW: 6998 case RISCVISD::ROLW: 6999 case RISCVISD::RORW: { 7000 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7001 if (SimplifyDemandedLowBitsHelper(0, 32) || 7002 SimplifyDemandedLowBitsHelper(1, 5)) 7003 return SDValue(N, 0); 7004 break; 7005 } 7006 case RISCVISD::CLZW: 7007 case RISCVISD::CTZW: { 7008 // Only the lower 32 bits of the first operand are read 7009 if (SimplifyDemandedLowBitsHelper(0, 32)) 7010 return SDValue(N, 0); 7011 break; 7012 } 7013 case RISCVISD::FSL: 7014 case RISCVISD::FSR: { 7015 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7016 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7017 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7018 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7019 return SDValue(N, 0); 7020 break; 7021 } 7022 case RISCVISD::FSLW: 7023 case RISCVISD::FSRW: { 7024 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7025 // read. 7026 if (SimplifyDemandedLowBitsHelper(0, 32) || 7027 SimplifyDemandedLowBitsHelper(1, 32) || 7028 SimplifyDemandedLowBitsHelper(2, 6)) 7029 return SDValue(N, 0); 7030 break; 7031 } 7032 case RISCVISD::GREV: 7033 case RISCVISD::GORC: { 7034 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7035 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7036 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7037 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7038 return SDValue(N, 0); 7039 7040 return combineGREVI_GORCI(N, DCI.DAG); 7041 } 7042 case RISCVISD::GREVW: 7043 case RISCVISD::GORCW: { 7044 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7045 if (SimplifyDemandedLowBitsHelper(0, 32) || 7046 SimplifyDemandedLowBitsHelper(1, 5)) 7047 return SDValue(N, 0); 7048 7049 return combineGREVI_GORCI(N, DCI.DAG); 7050 } 7051 case RISCVISD::SHFL: 7052 case RISCVISD::UNSHFL: { 7053 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7054 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7055 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7056 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7057 return SDValue(N, 0); 7058 7059 break; 7060 } 7061 case RISCVISD::SHFLW: 7062 case RISCVISD::UNSHFLW: { 7063 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7064 SDValue LHS = N->getOperand(0); 7065 SDValue RHS = N->getOperand(1); 7066 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7067 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7068 if (SimplifyDemandedLowBitsHelper(0, 32) || 7069 SimplifyDemandedLowBitsHelper(1, 4)) 7070 return SDValue(N, 0); 7071 7072 break; 7073 } 7074 case RISCVISD::BCOMPRESSW: 7075 case RISCVISD::BDECOMPRESSW: { 7076 // Only the lower 32 bits of LHS and RHS are read. 7077 if (SimplifyDemandedLowBitsHelper(0, 32) || 7078 SimplifyDemandedLowBitsHelper(1, 32)) 7079 return SDValue(N, 0); 7080 7081 break; 7082 } 7083 case RISCVISD::FMV_X_ANYEXTH: 7084 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7085 SDLoc DL(N); 7086 SDValue Op0 = N->getOperand(0); 7087 MVT VT = N->getSimpleValueType(0); 7088 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7089 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7090 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7091 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7092 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7093 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7094 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7095 assert(Op0.getOperand(0).getValueType() == VT && 7096 "Unexpected value type!"); 7097 return Op0.getOperand(0); 7098 } 7099 7100 // This is a target-specific version of a DAGCombine performed in 7101 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7102 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7103 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7104 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7105 !Op0.getNode()->hasOneUse()) 7106 break; 7107 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7108 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7109 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7110 if (Op0.getOpcode() == ISD::FNEG) 7111 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7112 DAG.getConstant(SignBit, DL, VT)); 7113 7114 assert(Op0.getOpcode() == ISD::FABS); 7115 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7116 DAG.getConstant(~SignBit, DL, VT)); 7117 } 7118 case ISD::ADD: 7119 return performADDCombine(N, DAG, Subtarget); 7120 case ISD::SUB: 7121 return performSUBCombine(N, DAG); 7122 case ISD::AND: 7123 return performANDCombine(N, DAG); 7124 case ISD::OR: 7125 return performORCombine(N, DAG, Subtarget); 7126 case ISD::XOR: 7127 return performXORCombine(N, DAG); 7128 case ISD::ANY_EXTEND: 7129 return performANY_EXTENDCombine(N, DCI, Subtarget); 7130 case ISD::ZERO_EXTEND: 7131 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7132 // type legalization. This is safe because fp_to_uint produces poison if 7133 // it overflows. 7134 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 7135 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 7136 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 7137 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7138 N->getOperand(0).getOperand(0)); 7139 return SDValue(); 7140 case RISCVISD::SELECT_CC: { 7141 // Transform 7142 SDValue LHS = N->getOperand(0); 7143 SDValue RHS = N->getOperand(1); 7144 SDValue TrueV = N->getOperand(3); 7145 SDValue FalseV = N->getOperand(4); 7146 7147 // If the True and False values are the same, we don't need a select_cc. 7148 if (TrueV == FalseV) 7149 return TrueV; 7150 7151 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7152 if (!ISD::isIntEqualitySetCC(CCVal)) 7153 break; 7154 7155 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7156 // (select_cc X, Y, lt, trueV, falseV) 7157 // Sometimes the setcc is introduced after select_cc has been formed. 7158 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7159 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7160 // If we're looking for eq 0 instead of ne 0, we need to invert the 7161 // condition. 7162 bool Invert = CCVal == ISD::SETEQ; 7163 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7164 if (Invert) 7165 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7166 7167 SDLoc DL(N); 7168 RHS = LHS.getOperand(1); 7169 LHS = LHS.getOperand(0); 7170 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7171 7172 SDValue TargetCC = DAG.getCondCode(CCVal); 7173 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7174 {LHS, RHS, TargetCC, TrueV, FalseV}); 7175 } 7176 7177 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7178 // (select_cc X, Y, eq/ne, trueV, falseV) 7179 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7180 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7181 {LHS.getOperand(0), LHS.getOperand(1), 7182 N->getOperand(2), TrueV, FalseV}); 7183 // (select_cc X, 1, setne, trueV, falseV) -> 7184 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7185 // This can occur when legalizing some floating point comparisons. 7186 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7187 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7188 SDLoc DL(N); 7189 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7190 SDValue TargetCC = DAG.getCondCode(CCVal); 7191 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7192 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7193 {LHS, RHS, TargetCC, TrueV, FalseV}); 7194 } 7195 7196 break; 7197 } 7198 case RISCVISD::BR_CC: { 7199 SDValue LHS = N->getOperand(1); 7200 SDValue RHS = N->getOperand(2); 7201 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7202 if (!ISD::isIntEqualitySetCC(CCVal)) 7203 break; 7204 7205 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7206 // (br_cc X, Y, lt, dest) 7207 // Sometimes the setcc is introduced after br_cc has been formed. 7208 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7209 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7210 // If we're looking for eq 0 instead of ne 0, we need to invert the 7211 // condition. 7212 bool Invert = CCVal == ISD::SETEQ; 7213 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7214 if (Invert) 7215 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7216 7217 SDLoc DL(N); 7218 RHS = LHS.getOperand(1); 7219 LHS = LHS.getOperand(0); 7220 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7221 7222 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7223 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7224 N->getOperand(4)); 7225 } 7226 7227 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7228 // (br_cc X, Y, eq/ne, trueV, falseV) 7229 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7230 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7231 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7232 N->getOperand(3), N->getOperand(4)); 7233 7234 // (br_cc X, 1, setne, br_cc) -> 7235 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7236 // This can occur when legalizing some floating point comparisons. 7237 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7238 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7239 SDLoc DL(N); 7240 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7241 SDValue TargetCC = DAG.getCondCode(CCVal); 7242 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7243 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7244 N->getOperand(0), LHS, RHS, TargetCC, 7245 N->getOperand(4)); 7246 } 7247 break; 7248 } 7249 case ISD::FCOPYSIGN: { 7250 EVT VT = N->getValueType(0); 7251 if (!VT.isVector()) 7252 break; 7253 // There is a form of VFSGNJ which injects the negated sign of its second 7254 // operand. Try and bubble any FNEG up after the extend/round to produce 7255 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7256 // TRUNC=1. 7257 SDValue In2 = N->getOperand(1); 7258 // Avoid cases where the extend/round has multiple uses, as duplicating 7259 // those is typically more expensive than removing a fneg. 7260 if (!In2.hasOneUse()) 7261 break; 7262 if (In2.getOpcode() != ISD::FP_EXTEND && 7263 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7264 break; 7265 In2 = In2.getOperand(0); 7266 if (In2.getOpcode() != ISD::FNEG) 7267 break; 7268 SDLoc DL(N); 7269 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7270 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7271 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7272 } 7273 case ISD::MGATHER: 7274 case ISD::MSCATTER: 7275 case ISD::VP_GATHER: 7276 case ISD::VP_SCATTER: { 7277 if (!DCI.isBeforeLegalize()) 7278 break; 7279 SDValue Index, ScaleOp; 7280 bool IsIndexScaled = false; 7281 bool IsIndexSigned = false; 7282 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7283 Index = VPGSN->getIndex(); 7284 ScaleOp = VPGSN->getScale(); 7285 IsIndexScaled = VPGSN->isIndexScaled(); 7286 IsIndexSigned = VPGSN->isIndexSigned(); 7287 } else { 7288 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7289 Index = MGSN->getIndex(); 7290 ScaleOp = MGSN->getScale(); 7291 IsIndexScaled = MGSN->isIndexScaled(); 7292 IsIndexSigned = MGSN->isIndexSigned(); 7293 } 7294 EVT IndexVT = Index.getValueType(); 7295 MVT XLenVT = Subtarget.getXLenVT(); 7296 // RISCV indexed loads only support the "unsigned unscaled" addressing 7297 // mode, so anything else must be manually legalized. 7298 bool NeedsIdxLegalization = 7299 IsIndexScaled || 7300 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7301 if (!NeedsIdxLegalization) 7302 break; 7303 7304 SDLoc DL(N); 7305 7306 // Any index legalization should first promote to XLenVT, so we don't lose 7307 // bits when scaling. This may create an illegal index type so we let 7308 // LLVM's legalization take care of the splitting. 7309 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7310 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7311 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7312 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7313 DL, IndexVT, Index); 7314 } 7315 7316 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7317 if (IsIndexScaled && Scale != 1) { 7318 // Manually scale the indices by the element size. 7319 // TODO: Sanitize the scale operand here? 7320 // TODO: For VP nodes, should we use VP_SHL here? 7321 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7322 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7323 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7324 } 7325 7326 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7327 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7328 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7329 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7330 VPGN->getScale(), VPGN->getMask(), 7331 VPGN->getVectorLength()}, 7332 VPGN->getMemOperand(), NewIndexTy); 7333 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7334 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7335 {VPSN->getChain(), VPSN->getValue(), 7336 VPSN->getBasePtr(), Index, VPSN->getScale(), 7337 VPSN->getMask(), VPSN->getVectorLength()}, 7338 VPSN->getMemOperand(), NewIndexTy); 7339 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7340 return DAG.getMaskedGather( 7341 N->getVTList(), MGN->getMemoryVT(), DL, 7342 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7343 MGN->getBasePtr(), Index, MGN->getScale()}, 7344 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7345 const auto *MSN = cast<MaskedScatterSDNode>(N); 7346 return DAG.getMaskedScatter( 7347 N->getVTList(), MSN->getMemoryVT(), DL, 7348 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7349 Index, MSN->getScale()}, 7350 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7351 } 7352 case RISCVISD::SRA_VL: 7353 case RISCVISD::SRL_VL: 7354 case RISCVISD::SHL_VL: { 7355 SDValue ShAmt = N->getOperand(1); 7356 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7357 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7358 SDLoc DL(N); 7359 SDValue VL = N->getOperand(3); 7360 EVT VT = N->getValueType(0); 7361 ShAmt = 7362 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7363 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7364 N->getOperand(2), N->getOperand(3)); 7365 } 7366 break; 7367 } 7368 case ISD::SRA: 7369 case ISD::SRL: 7370 case ISD::SHL: { 7371 SDValue ShAmt = N->getOperand(1); 7372 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7373 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7374 SDLoc DL(N); 7375 EVT VT = N->getValueType(0); 7376 ShAmt = 7377 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7378 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7379 } 7380 break; 7381 } 7382 case RISCVISD::MUL_VL: { 7383 SDValue Op0 = N->getOperand(0); 7384 SDValue Op1 = N->getOperand(1); 7385 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7386 return V; 7387 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7388 return V; 7389 return SDValue(); 7390 } 7391 case ISD::STORE: { 7392 auto *Store = cast<StoreSDNode>(N); 7393 SDValue Val = Store->getValue(); 7394 // Combine store of vmv.x.s to vse with VL of 1. 7395 // FIXME: Support FP. 7396 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7397 SDValue Src = Val.getOperand(0); 7398 EVT VecVT = Src.getValueType(); 7399 EVT MemVT = Store->getMemoryVT(); 7400 // The memory VT and the element type must match. 7401 if (VecVT.getVectorElementType() == MemVT) { 7402 SDLoc DL(N); 7403 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7404 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7405 DAG.getConstant(1, DL, MaskVT), 7406 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7407 Store->getPointerInfo(), 7408 Store->getOriginalAlign(), 7409 Store->getMemOperand()->getFlags()); 7410 } 7411 } 7412 7413 break; 7414 } 7415 } 7416 7417 return SDValue(); 7418 } 7419 7420 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7421 const SDNode *N, CombineLevel Level) const { 7422 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7423 // materialised in fewer instructions than `(OP _, c1)`: 7424 // 7425 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7426 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7427 SDValue N0 = N->getOperand(0); 7428 EVT Ty = N0.getValueType(); 7429 if (Ty.isScalarInteger() && 7430 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7431 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7432 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7433 if (C1 && C2) { 7434 const APInt &C1Int = C1->getAPIntValue(); 7435 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7436 7437 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7438 // and the combine should happen, to potentially allow further combines 7439 // later. 7440 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7441 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7442 return true; 7443 7444 // We can materialise `c1` in an add immediate, so it's "free", and the 7445 // combine should be prevented. 7446 if (C1Int.getMinSignedBits() <= 64 && 7447 isLegalAddImmediate(C1Int.getSExtValue())) 7448 return false; 7449 7450 // Neither constant will fit into an immediate, so find materialisation 7451 // costs. 7452 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7453 Subtarget.getFeatureBits(), 7454 /*CompressionCost*/true); 7455 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7456 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7457 /*CompressionCost*/true); 7458 7459 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7460 // combine should be prevented. 7461 if (C1Cost < ShiftedC1Cost) 7462 return false; 7463 } 7464 } 7465 return true; 7466 } 7467 7468 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7469 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7470 TargetLoweringOpt &TLO) const { 7471 // Delay this optimization as late as possible. 7472 if (!TLO.LegalOps) 7473 return false; 7474 7475 EVT VT = Op.getValueType(); 7476 if (VT.isVector()) 7477 return false; 7478 7479 // Only handle AND for now. 7480 if (Op.getOpcode() != ISD::AND) 7481 return false; 7482 7483 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7484 if (!C) 7485 return false; 7486 7487 const APInt &Mask = C->getAPIntValue(); 7488 7489 // Clear all non-demanded bits initially. 7490 APInt ShrunkMask = Mask & DemandedBits; 7491 7492 // Try to make a smaller immediate by setting undemanded bits. 7493 7494 APInt ExpandedMask = Mask | ~DemandedBits; 7495 7496 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7497 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7498 }; 7499 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7500 if (NewMask == Mask) 7501 return true; 7502 SDLoc DL(Op); 7503 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7504 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7505 return TLO.CombineTo(Op, NewOp); 7506 }; 7507 7508 // If the shrunk mask fits in sign extended 12 bits, let the target 7509 // independent code apply it. 7510 if (ShrunkMask.isSignedIntN(12)) 7511 return false; 7512 7513 // Preserve (and X, 0xffff) when zext.h is supported. 7514 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7515 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7516 if (IsLegalMask(NewMask)) 7517 return UseMask(NewMask); 7518 } 7519 7520 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7521 if (VT == MVT::i64) { 7522 APInt NewMask = APInt(64, 0xffffffff); 7523 if (IsLegalMask(NewMask)) 7524 return UseMask(NewMask); 7525 } 7526 7527 // For the remaining optimizations, we need to be able to make a negative 7528 // number through a combination of mask and undemanded bits. 7529 if (!ExpandedMask.isNegative()) 7530 return false; 7531 7532 // What is the fewest number of bits we need to represent the negative number. 7533 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7534 7535 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7536 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7537 APInt NewMask = ShrunkMask; 7538 if (MinSignedBits <= 12) 7539 NewMask.setBitsFrom(11); 7540 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7541 NewMask.setBitsFrom(31); 7542 else 7543 return false; 7544 7545 // Check that our new mask is a subset of the demanded mask. 7546 assert(IsLegalMask(NewMask)); 7547 return UseMask(NewMask); 7548 } 7549 7550 static void computeGREV(APInt &Src, unsigned ShAmt) { 7551 ShAmt &= Src.getBitWidth() - 1; 7552 uint64_t x = Src.getZExtValue(); 7553 if (ShAmt & 1) 7554 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7555 if (ShAmt & 2) 7556 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7557 if (ShAmt & 4) 7558 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7559 if (ShAmt & 8) 7560 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7561 if (ShAmt & 16) 7562 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7563 if (ShAmt & 32) 7564 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7565 Src = x; 7566 } 7567 7568 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7569 KnownBits &Known, 7570 const APInt &DemandedElts, 7571 const SelectionDAG &DAG, 7572 unsigned Depth) const { 7573 unsigned BitWidth = Known.getBitWidth(); 7574 unsigned Opc = Op.getOpcode(); 7575 assert((Opc >= ISD::BUILTIN_OP_END || 7576 Opc == ISD::INTRINSIC_WO_CHAIN || 7577 Opc == ISD::INTRINSIC_W_CHAIN || 7578 Opc == ISD::INTRINSIC_VOID) && 7579 "Should use MaskedValueIsZero if you don't know whether Op" 7580 " is a target node!"); 7581 7582 Known.resetAll(); 7583 switch (Opc) { 7584 default: break; 7585 case RISCVISD::SELECT_CC: { 7586 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7587 // If we don't know any bits, early out. 7588 if (Known.isUnknown()) 7589 break; 7590 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7591 7592 // Only known if known in both the LHS and RHS. 7593 Known = KnownBits::commonBits(Known, Known2); 7594 break; 7595 } 7596 case RISCVISD::REMUW: { 7597 KnownBits Known2; 7598 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7599 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7600 // We only care about the lower 32 bits. 7601 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7602 // Restore the original width by sign extending. 7603 Known = Known.sext(BitWidth); 7604 break; 7605 } 7606 case RISCVISD::DIVUW: { 7607 KnownBits Known2; 7608 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7609 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7610 // We only care about the lower 32 bits. 7611 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7612 // Restore the original width by sign extending. 7613 Known = Known.sext(BitWidth); 7614 break; 7615 } 7616 case RISCVISD::CTZW: { 7617 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7618 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7619 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7620 Known.Zero.setBitsFrom(LowBits); 7621 break; 7622 } 7623 case RISCVISD::CLZW: { 7624 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7625 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7626 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7627 Known.Zero.setBitsFrom(LowBits); 7628 break; 7629 } 7630 case RISCVISD::GREV: 7631 case RISCVISD::GREVW: { 7632 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7633 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7634 if (Opc == RISCVISD::GREVW) 7635 Known = Known.trunc(32); 7636 unsigned ShAmt = C->getZExtValue(); 7637 computeGREV(Known.Zero, ShAmt); 7638 computeGREV(Known.One, ShAmt); 7639 if (Opc == RISCVISD::GREVW) 7640 Known = Known.sext(BitWidth); 7641 } 7642 break; 7643 } 7644 case RISCVISD::READ_VLENB: 7645 // We assume VLENB is at least 16 bytes. 7646 Known.Zero.setLowBits(4); 7647 // We assume VLENB is no more than 65536 / 8 bytes. 7648 Known.Zero.setBitsFrom(14); 7649 break; 7650 case ISD::INTRINSIC_W_CHAIN: { 7651 unsigned IntNo = Op.getConstantOperandVal(1); 7652 switch (IntNo) { 7653 default: 7654 // We can't do anything for most intrinsics. 7655 break; 7656 case Intrinsic::riscv_vsetvli: 7657 case Intrinsic::riscv_vsetvlimax: 7658 // Assume that VL output is positive and would fit in an int32_t. 7659 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7660 if (BitWidth >= 32) 7661 Known.Zero.setBitsFrom(31); 7662 break; 7663 } 7664 break; 7665 } 7666 } 7667 } 7668 7669 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7670 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7671 unsigned Depth) const { 7672 switch (Op.getOpcode()) { 7673 default: 7674 break; 7675 case RISCVISD::SELECT_CC: { 7676 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7677 if (Tmp == 1) return 1; // Early out. 7678 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7679 return std::min(Tmp, Tmp2); 7680 } 7681 case RISCVISD::SLLW: 7682 case RISCVISD::SRAW: 7683 case RISCVISD::SRLW: 7684 case RISCVISD::DIVW: 7685 case RISCVISD::DIVUW: 7686 case RISCVISD::REMUW: 7687 case RISCVISD::ROLW: 7688 case RISCVISD::RORW: 7689 case RISCVISD::GREVW: 7690 case RISCVISD::GORCW: 7691 case RISCVISD::FSLW: 7692 case RISCVISD::FSRW: 7693 case RISCVISD::SHFLW: 7694 case RISCVISD::UNSHFLW: 7695 case RISCVISD::BCOMPRESSW: 7696 case RISCVISD::BDECOMPRESSW: 7697 case RISCVISD::FCVT_W_RTZ_RV64: 7698 case RISCVISD::FCVT_WU_RTZ_RV64: 7699 // TODO: As the result is sign-extended, this is conservatively correct. A 7700 // more precise answer could be calculated for SRAW depending on known 7701 // bits in the shift amount. 7702 return 33; 7703 case RISCVISD::SHFL: 7704 case RISCVISD::UNSHFL: { 7705 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7706 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7707 // will stay within the upper 32 bits. If there were more than 32 sign bits 7708 // before there will be at least 33 sign bits after. 7709 if (Op.getValueType() == MVT::i64 && 7710 isa<ConstantSDNode>(Op.getOperand(1)) && 7711 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7712 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7713 if (Tmp > 32) 7714 return 33; 7715 } 7716 break; 7717 } 7718 case RISCVISD::VMV_X_S: 7719 // The number of sign bits of the scalar result is computed by obtaining the 7720 // element type of the input vector operand, subtracting its width from the 7721 // XLEN, and then adding one (sign bit within the element type). If the 7722 // element type is wider than XLen, the least-significant XLEN bits are 7723 // taken. 7724 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7725 return 1; 7726 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7727 } 7728 7729 return 1; 7730 } 7731 7732 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7733 MachineBasicBlock *BB) { 7734 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7735 7736 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7737 // Should the count have wrapped while it was being read, we need to try 7738 // again. 7739 // ... 7740 // read: 7741 // rdcycleh x3 # load high word of cycle 7742 // rdcycle x2 # load low word of cycle 7743 // rdcycleh x4 # load high word of cycle 7744 // bne x3, x4, read # check if high word reads match, otherwise try again 7745 // ... 7746 7747 MachineFunction &MF = *BB->getParent(); 7748 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7749 MachineFunction::iterator It = ++BB->getIterator(); 7750 7751 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7752 MF.insert(It, LoopMBB); 7753 7754 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7755 MF.insert(It, DoneMBB); 7756 7757 // Transfer the remainder of BB and its successor edges to DoneMBB. 7758 DoneMBB->splice(DoneMBB->begin(), BB, 7759 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7760 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7761 7762 BB->addSuccessor(LoopMBB); 7763 7764 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7765 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7766 Register LoReg = MI.getOperand(0).getReg(); 7767 Register HiReg = MI.getOperand(1).getReg(); 7768 DebugLoc DL = MI.getDebugLoc(); 7769 7770 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7771 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7772 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7773 .addReg(RISCV::X0); 7774 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7775 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7776 .addReg(RISCV::X0); 7777 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7778 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7779 .addReg(RISCV::X0); 7780 7781 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7782 .addReg(HiReg) 7783 .addReg(ReadAgainReg) 7784 .addMBB(LoopMBB); 7785 7786 LoopMBB->addSuccessor(LoopMBB); 7787 LoopMBB->addSuccessor(DoneMBB); 7788 7789 MI.eraseFromParent(); 7790 7791 return DoneMBB; 7792 } 7793 7794 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7795 MachineBasicBlock *BB) { 7796 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7797 7798 MachineFunction &MF = *BB->getParent(); 7799 DebugLoc DL = MI.getDebugLoc(); 7800 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7801 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7802 Register LoReg = MI.getOperand(0).getReg(); 7803 Register HiReg = MI.getOperand(1).getReg(); 7804 Register SrcReg = MI.getOperand(2).getReg(); 7805 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7806 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7807 7808 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7809 RI); 7810 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7811 MachineMemOperand *MMOLo = 7812 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7813 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7814 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7815 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7816 .addFrameIndex(FI) 7817 .addImm(0) 7818 .addMemOperand(MMOLo); 7819 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7820 .addFrameIndex(FI) 7821 .addImm(4) 7822 .addMemOperand(MMOHi); 7823 MI.eraseFromParent(); // The pseudo instruction is gone now. 7824 return BB; 7825 } 7826 7827 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7828 MachineBasicBlock *BB) { 7829 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7830 "Unexpected instruction"); 7831 7832 MachineFunction &MF = *BB->getParent(); 7833 DebugLoc DL = MI.getDebugLoc(); 7834 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7835 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7836 Register DstReg = MI.getOperand(0).getReg(); 7837 Register LoReg = MI.getOperand(1).getReg(); 7838 Register HiReg = MI.getOperand(2).getReg(); 7839 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7840 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7841 7842 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7843 MachineMemOperand *MMOLo = 7844 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7845 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7846 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7847 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7848 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7849 .addFrameIndex(FI) 7850 .addImm(0) 7851 .addMemOperand(MMOLo); 7852 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7853 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7854 .addFrameIndex(FI) 7855 .addImm(4) 7856 .addMemOperand(MMOHi); 7857 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7858 MI.eraseFromParent(); // The pseudo instruction is gone now. 7859 return BB; 7860 } 7861 7862 static bool isSelectPseudo(MachineInstr &MI) { 7863 switch (MI.getOpcode()) { 7864 default: 7865 return false; 7866 case RISCV::Select_GPR_Using_CC_GPR: 7867 case RISCV::Select_FPR16_Using_CC_GPR: 7868 case RISCV::Select_FPR32_Using_CC_GPR: 7869 case RISCV::Select_FPR64_Using_CC_GPR: 7870 return true; 7871 } 7872 } 7873 7874 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7875 MachineBasicBlock *BB, 7876 const RISCVSubtarget &Subtarget) { 7877 // To "insert" Select_* instructions, we actually have to insert the triangle 7878 // control-flow pattern. The incoming instructions know the destination vreg 7879 // to set, the condition code register to branch on, the true/false values to 7880 // select between, and the condcode to use to select the appropriate branch. 7881 // 7882 // We produce the following control flow: 7883 // HeadMBB 7884 // | \ 7885 // | IfFalseMBB 7886 // | / 7887 // TailMBB 7888 // 7889 // When we find a sequence of selects we attempt to optimize their emission 7890 // by sharing the control flow. Currently we only handle cases where we have 7891 // multiple selects with the exact same condition (same LHS, RHS and CC). 7892 // The selects may be interleaved with other instructions if the other 7893 // instructions meet some requirements we deem safe: 7894 // - They are debug instructions. Otherwise, 7895 // - They do not have side-effects, do not access memory and their inputs do 7896 // not depend on the results of the select pseudo-instructions. 7897 // The TrueV/FalseV operands of the selects cannot depend on the result of 7898 // previous selects in the sequence. 7899 // These conditions could be further relaxed. See the X86 target for a 7900 // related approach and more information. 7901 Register LHS = MI.getOperand(1).getReg(); 7902 Register RHS = MI.getOperand(2).getReg(); 7903 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7904 7905 SmallVector<MachineInstr *, 4> SelectDebugValues; 7906 SmallSet<Register, 4> SelectDests; 7907 SelectDests.insert(MI.getOperand(0).getReg()); 7908 7909 MachineInstr *LastSelectPseudo = &MI; 7910 7911 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7912 SequenceMBBI != E; ++SequenceMBBI) { 7913 if (SequenceMBBI->isDebugInstr()) 7914 continue; 7915 else if (isSelectPseudo(*SequenceMBBI)) { 7916 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7917 SequenceMBBI->getOperand(2).getReg() != RHS || 7918 SequenceMBBI->getOperand(3).getImm() != CC || 7919 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7920 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7921 break; 7922 LastSelectPseudo = &*SequenceMBBI; 7923 SequenceMBBI->collectDebugValues(SelectDebugValues); 7924 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7925 } else { 7926 if (SequenceMBBI->hasUnmodeledSideEffects() || 7927 SequenceMBBI->mayLoadOrStore()) 7928 break; 7929 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7930 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7931 })) 7932 break; 7933 } 7934 } 7935 7936 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7937 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7938 DebugLoc DL = MI.getDebugLoc(); 7939 MachineFunction::iterator I = ++BB->getIterator(); 7940 7941 MachineBasicBlock *HeadMBB = BB; 7942 MachineFunction *F = BB->getParent(); 7943 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7944 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7945 7946 F->insert(I, IfFalseMBB); 7947 F->insert(I, TailMBB); 7948 7949 // Transfer debug instructions associated with the selects to TailMBB. 7950 for (MachineInstr *DebugInstr : SelectDebugValues) { 7951 TailMBB->push_back(DebugInstr->removeFromParent()); 7952 } 7953 7954 // Move all instructions after the sequence to TailMBB. 7955 TailMBB->splice(TailMBB->end(), HeadMBB, 7956 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7957 // Update machine-CFG edges by transferring all successors of the current 7958 // block to the new block which will contain the Phi nodes for the selects. 7959 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7960 // Set the successors for HeadMBB. 7961 HeadMBB->addSuccessor(IfFalseMBB); 7962 HeadMBB->addSuccessor(TailMBB); 7963 7964 // Insert appropriate branch. 7965 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7966 .addReg(LHS) 7967 .addReg(RHS) 7968 .addMBB(TailMBB); 7969 7970 // IfFalseMBB just falls through to TailMBB. 7971 IfFalseMBB->addSuccessor(TailMBB); 7972 7973 // Create PHIs for all of the select pseudo-instructions. 7974 auto SelectMBBI = MI.getIterator(); 7975 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7976 auto InsertionPoint = TailMBB->begin(); 7977 while (SelectMBBI != SelectEnd) { 7978 auto Next = std::next(SelectMBBI); 7979 if (isSelectPseudo(*SelectMBBI)) { 7980 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7981 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7982 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7983 .addReg(SelectMBBI->getOperand(4).getReg()) 7984 .addMBB(HeadMBB) 7985 .addReg(SelectMBBI->getOperand(5).getReg()) 7986 .addMBB(IfFalseMBB); 7987 SelectMBBI->eraseFromParent(); 7988 } 7989 SelectMBBI = Next; 7990 } 7991 7992 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7993 return TailMBB; 7994 } 7995 7996 MachineBasicBlock * 7997 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7998 MachineBasicBlock *BB) const { 7999 switch (MI.getOpcode()) { 8000 default: 8001 llvm_unreachable("Unexpected instr type to insert"); 8002 case RISCV::ReadCycleWide: 8003 assert(!Subtarget.is64Bit() && 8004 "ReadCycleWrite is only to be used on riscv32"); 8005 return emitReadCycleWidePseudo(MI, BB); 8006 case RISCV::Select_GPR_Using_CC_GPR: 8007 case RISCV::Select_FPR16_Using_CC_GPR: 8008 case RISCV::Select_FPR32_Using_CC_GPR: 8009 case RISCV::Select_FPR64_Using_CC_GPR: 8010 return emitSelectPseudo(MI, BB, Subtarget); 8011 case RISCV::BuildPairF64Pseudo: 8012 return emitBuildPairF64Pseudo(MI, BB); 8013 case RISCV::SplitF64Pseudo: 8014 return emitSplitF64Pseudo(MI, BB); 8015 } 8016 } 8017 8018 // Calling Convention Implementation. 8019 // The expectations for frontend ABI lowering vary from target to target. 8020 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8021 // details, but this is a longer term goal. For now, we simply try to keep the 8022 // role of the frontend as simple and well-defined as possible. The rules can 8023 // be summarised as: 8024 // * Never split up large scalar arguments. We handle them here. 8025 // * If a hardfloat calling convention is being used, and the struct may be 8026 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8027 // available, then pass as two separate arguments. If either the GPRs or FPRs 8028 // are exhausted, then pass according to the rule below. 8029 // * If a struct could never be passed in registers or directly in a stack 8030 // slot (as it is larger than 2*XLEN and the floating point rules don't 8031 // apply), then pass it using a pointer with the byval attribute. 8032 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8033 // word-sized array or a 2*XLEN scalar (depending on alignment). 8034 // * The frontend can determine whether a struct is returned by reference or 8035 // not based on its size and fields. If it will be returned by reference, the 8036 // frontend must modify the prototype so a pointer with the sret annotation is 8037 // passed as the first argument. This is not necessary for large scalar 8038 // returns. 8039 // * Struct return values and varargs should be coerced to structs containing 8040 // register-size fields in the same situations they would be for fixed 8041 // arguments. 8042 8043 static const MCPhysReg ArgGPRs[] = { 8044 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8045 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8046 }; 8047 static const MCPhysReg ArgFPR16s[] = { 8048 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8049 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8050 }; 8051 static const MCPhysReg ArgFPR32s[] = { 8052 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8053 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8054 }; 8055 static const MCPhysReg ArgFPR64s[] = { 8056 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8057 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8058 }; 8059 // This is an interim calling convention and it may be changed in the future. 8060 static const MCPhysReg ArgVRs[] = { 8061 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8062 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8063 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8064 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8065 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8066 RISCV::V20M2, RISCV::V22M2}; 8067 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8068 RISCV::V20M4}; 8069 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8070 8071 // Pass a 2*XLEN argument that has been split into two XLEN values through 8072 // registers or the stack as necessary. 8073 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8074 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8075 MVT ValVT2, MVT LocVT2, 8076 ISD::ArgFlagsTy ArgFlags2) { 8077 unsigned XLenInBytes = XLen / 8; 8078 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8079 // At least one half can be passed via register. 8080 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8081 VA1.getLocVT(), CCValAssign::Full)); 8082 } else { 8083 // Both halves must be passed on the stack, with proper alignment. 8084 Align StackAlign = 8085 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8086 State.addLoc( 8087 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8088 State.AllocateStack(XLenInBytes, StackAlign), 8089 VA1.getLocVT(), CCValAssign::Full)); 8090 State.addLoc(CCValAssign::getMem( 8091 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8092 LocVT2, CCValAssign::Full)); 8093 return false; 8094 } 8095 8096 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8097 // The second half can also be passed via register. 8098 State.addLoc( 8099 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8100 } else { 8101 // The second half is passed via the stack, without additional alignment. 8102 State.addLoc(CCValAssign::getMem( 8103 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8104 LocVT2, CCValAssign::Full)); 8105 } 8106 8107 return false; 8108 } 8109 8110 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8111 Optional<unsigned> FirstMaskArgument, 8112 CCState &State, const RISCVTargetLowering &TLI) { 8113 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8114 if (RC == &RISCV::VRRegClass) { 8115 // Assign the first mask argument to V0. 8116 // This is an interim calling convention and it may be changed in the 8117 // future. 8118 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8119 return State.AllocateReg(RISCV::V0); 8120 return State.AllocateReg(ArgVRs); 8121 } 8122 if (RC == &RISCV::VRM2RegClass) 8123 return State.AllocateReg(ArgVRM2s); 8124 if (RC == &RISCV::VRM4RegClass) 8125 return State.AllocateReg(ArgVRM4s); 8126 if (RC == &RISCV::VRM8RegClass) 8127 return State.AllocateReg(ArgVRM8s); 8128 llvm_unreachable("Unhandled register class for ValueType"); 8129 } 8130 8131 // Implements the RISC-V calling convention. Returns true upon failure. 8132 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8133 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8134 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8135 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8136 Optional<unsigned> FirstMaskArgument) { 8137 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8138 assert(XLen == 32 || XLen == 64); 8139 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8140 8141 // Any return value split in to more than two values can't be returned 8142 // directly. Vectors are returned via the available vector registers. 8143 if (!LocVT.isVector() && IsRet && ValNo > 1) 8144 return true; 8145 8146 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8147 // variadic argument, or if no F16/F32 argument registers are available. 8148 bool UseGPRForF16_F32 = true; 8149 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8150 // variadic argument, or if no F64 argument registers are available. 8151 bool UseGPRForF64 = true; 8152 8153 switch (ABI) { 8154 default: 8155 llvm_unreachable("Unexpected ABI"); 8156 case RISCVABI::ABI_ILP32: 8157 case RISCVABI::ABI_LP64: 8158 break; 8159 case RISCVABI::ABI_ILP32F: 8160 case RISCVABI::ABI_LP64F: 8161 UseGPRForF16_F32 = !IsFixed; 8162 break; 8163 case RISCVABI::ABI_ILP32D: 8164 case RISCVABI::ABI_LP64D: 8165 UseGPRForF16_F32 = !IsFixed; 8166 UseGPRForF64 = !IsFixed; 8167 break; 8168 } 8169 8170 // FPR16, FPR32, and FPR64 alias each other. 8171 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8172 UseGPRForF16_F32 = true; 8173 UseGPRForF64 = true; 8174 } 8175 8176 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8177 // similar local variables rather than directly checking against the target 8178 // ABI. 8179 8180 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8181 LocVT = XLenVT; 8182 LocInfo = CCValAssign::BCvt; 8183 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8184 LocVT = MVT::i64; 8185 LocInfo = CCValAssign::BCvt; 8186 } 8187 8188 // If this is a variadic argument, the RISC-V calling convention requires 8189 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8190 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8191 // be used regardless of whether the original argument was split during 8192 // legalisation or not. The argument will not be passed by registers if the 8193 // original type is larger than 2*XLEN, so the register alignment rule does 8194 // not apply. 8195 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8196 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8197 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8198 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8199 // Skip 'odd' register if necessary. 8200 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8201 State.AllocateReg(ArgGPRs); 8202 } 8203 8204 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8205 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8206 State.getPendingArgFlags(); 8207 8208 assert(PendingLocs.size() == PendingArgFlags.size() && 8209 "PendingLocs and PendingArgFlags out of sync"); 8210 8211 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8212 // registers are exhausted. 8213 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8214 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8215 "Can't lower f64 if it is split"); 8216 // Depending on available argument GPRS, f64 may be passed in a pair of 8217 // GPRs, split between a GPR and the stack, or passed completely on the 8218 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8219 // cases. 8220 Register Reg = State.AllocateReg(ArgGPRs); 8221 LocVT = MVT::i32; 8222 if (!Reg) { 8223 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8224 State.addLoc( 8225 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8226 return false; 8227 } 8228 if (!State.AllocateReg(ArgGPRs)) 8229 State.AllocateStack(4, Align(4)); 8230 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8231 return false; 8232 } 8233 8234 // Fixed-length vectors are located in the corresponding scalable-vector 8235 // container types. 8236 if (ValVT.isFixedLengthVector()) 8237 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8238 8239 // Split arguments might be passed indirectly, so keep track of the pending 8240 // values. Split vectors are passed via a mix of registers and indirectly, so 8241 // treat them as we would any other argument. 8242 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8243 LocVT = XLenVT; 8244 LocInfo = CCValAssign::Indirect; 8245 PendingLocs.push_back( 8246 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8247 PendingArgFlags.push_back(ArgFlags); 8248 if (!ArgFlags.isSplitEnd()) { 8249 return false; 8250 } 8251 } 8252 8253 // If the split argument only had two elements, it should be passed directly 8254 // in registers or on the stack. 8255 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8256 PendingLocs.size() <= 2) { 8257 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8258 // Apply the normal calling convention rules to the first half of the 8259 // split argument. 8260 CCValAssign VA = PendingLocs[0]; 8261 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8262 PendingLocs.clear(); 8263 PendingArgFlags.clear(); 8264 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8265 ArgFlags); 8266 } 8267 8268 // Allocate to a register if possible, or else a stack slot. 8269 Register Reg; 8270 unsigned StoreSizeBytes = XLen / 8; 8271 Align StackAlign = Align(XLen / 8); 8272 8273 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8274 Reg = State.AllocateReg(ArgFPR16s); 8275 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8276 Reg = State.AllocateReg(ArgFPR32s); 8277 else if (ValVT == MVT::f64 && !UseGPRForF64) 8278 Reg = State.AllocateReg(ArgFPR64s); 8279 else if (ValVT.isVector()) { 8280 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8281 if (!Reg) { 8282 // For return values, the vector must be passed fully via registers or 8283 // via the stack. 8284 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8285 // but we're using all of them. 8286 if (IsRet) 8287 return true; 8288 // Try using a GPR to pass the address 8289 if ((Reg = State.AllocateReg(ArgGPRs))) { 8290 LocVT = XLenVT; 8291 LocInfo = CCValAssign::Indirect; 8292 } else if (ValVT.isScalableVector()) { 8293 report_fatal_error("Unable to pass scalable vector types on the stack"); 8294 } else { 8295 // Pass fixed-length vectors on the stack. 8296 LocVT = ValVT; 8297 StoreSizeBytes = ValVT.getStoreSize(); 8298 // Align vectors to their element sizes, being careful for vXi1 8299 // vectors. 8300 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8301 } 8302 } 8303 } else { 8304 Reg = State.AllocateReg(ArgGPRs); 8305 } 8306 8307 unsigned StackOffset = 8308 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8309 8310 // If we reach this point and PendingLocs is non-empty, we must be at the 8311 // end of a split argument that must be passed indirectly. 8312 if (!PendingLocs.empty()) { 8313 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8314 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8315 8316 for (auto &It : PendingLocs) { 8317 if (Reg) 8318 It.convertToReg(Reg); 8319 else 8320 It.convertToMem(StackOffset); 8321 State.addLoc(It); 8322 } 8323 PendingLocs.clear(); 8324 PendingArgFlags.clear(); 8325 return false; 8326 } 8327 8328 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8329 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8330 "Expected an XLenVT or vector types at this stage"); 8331 8332 if (Reg) { 8333 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8334 return false; 8335 } 8336 8337 // When a floating-point value is passed on the stack, no bit-conversion is 8338 // needed. 8339 if (ValVT.isFloatingPoint()) { 8340 LocVT = ValVT; 8341 LocInfo = CCValAssign::Full; 8342 } 8343 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8344 return false; 8345 } 8346 8347 template <typename ArgTy> 8348 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8349 for (const auto &ArgIdx : enumerate(Args)) { 8350 MVT ArgVT = ArgIdx.value().VT; 8351 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8352 return ArgIdx.index(); 8353 } 8354 return None; 8355 } 8356 8357 void RISCVTargetLowering::analyzeInputArgs( 8358 MachineFunction &MF, CCState &CCInfo, 8359 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8360 RISCVCCAssignFn Fn) const { 8361 unsigned NumArgs = Ins.size(); 8362 FunctionType *FType = MF.getFunction().getFunctionType(); 8363 8364 Optional<unsigned> FirstMaskArgument; 8365 if (Subtarget.hasVInstructions()) 8366 FirstMaskArgument = preAssignMask(Ins); 8367 8368 for (unsigned i = 0; i != NumArgs; ++i) { 8369 MVT ArgVT = Ins[i].VT; 8370 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8371 8372 Type *ArgTy = nullptr; 8373 if (IsRet) 8374 ArgTy = FType->getReturnType(); 8375 else if (Ins[i].isOrigArg()) 8376 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8377 8378 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8379 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8380 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8381 FirstMaskArgument)) { 8382 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8383 << EVT(ArgVT).getEVTString() << '\n'); 8384 llvm_unreachable(nullptr); 8385 } 8386 } 8387 } 8388 8389 void RISCVTargetLowering::analyzeOutputArgs( 8390 MachineFunction &MF, CCState &CCInfo, 8391 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8392 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8393 unsigned NumArgs = Outs.size(); 8394 8395 Optional<unsigned> FirstMaskArgument; 8396 if (Subtarget.hasVInstructions()) 8397 FirstMaskArgument = preAssignMask(Outs); 8398 8399 for (unsigned i = 0; i != NumArgs; i++) { 8400 MVT ArgVT = Outs[i].VT; 8401 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8402 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8403 8404 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8405 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8406 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8407 FirstMaskArgument)) { 8408 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8409 << EVT(ArgVT).getEVTString() << "\n"); 8410 llvm_unreachable(nullptr); 8411 } 8412 } 8413 } 8414 8415 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8416 // values. 8417 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8418 const CCValAssign &VA, const SDLoc &DL, 8419 const RISCVSubtarget &Subtarget) { 8420 switch (VA.getLocInfo()) { 8421 default: 8422 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8423 case CCValAssign::Full: 8424 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8425 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8426 break; 8427 case CCValAssign::BCvt: 8428 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8429 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8430 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8431 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8432 else 8433 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8434 break; 8435 } 8436 return Val; 8437 } 8438 8439 // The caller is responsible for loading the full value if the argument is 8440 // passed with CCValAssign::Indirect. 8441 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8442 const CCValAssign &VA, const SDLoc &DL, 8443 const RISCVTargetLowering &TLI) { 8444 MachineFunction &MF = DAG.getMachineFunction(); 8445 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8446 EVT LocVT = VA.getLocVT(); 8447 SDValue Val; 8448 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8449 Register VReg = RegInfo.createVirtualRegister(RC); 8450 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8451 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8452 8453 if (VA.getLocInfo() == CCValAssign::Indirect) 8454 return Val; 8455 8456 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8457 } 8458 8459 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8460 const CCValAssign &VA, const SDLoc &DL, 8461 const RISCVSubtarget &Subtarget) { 8462 EVT LocVT = VA.getLocVT(); 8463 8464 switch (VA.getLocInfo()) { 8465 default: 8466 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8467 case CCValAssign::Full: 8468 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8469 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8470 break; 8471 case CCValAssign::BCvt: 8472 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8473 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8474 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8475 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8476 else 8477 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8478 break; 8479 } 8480 return Val; 8481 } 8482 8483 // The caller is responsible for loading the full value if the argument is 8484 // passed with CCValAssign::Indirect. 8485 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8486 const CCValAssign &VA, const SDLoc &DL) { 8487 MachineFunction &MF = DAG.getMachineFunction(); 8488 MachineFrameInfo &MFI = MF.getFrameInfo(); 8489 EVT LocVT = VA.getLocVT(); 8490 EVT ValVT = VA.getValVT(); 8491 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8492 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8493 /*Immutable=*/true); 8494 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8495 SDValue Val; 8496 8497 ISD::LoadExtType ExtType; 8498 switch (VA.getLocInfo()) { 8499 default: 8500 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8501 case CCValAssign::Full: 8502 case CCValAssign::Indirect: 8503 case CCValAssign::BCvt: 8504 ExtType = ISD::NON_EXTLOAD; 8505 break; 8506 } 8507 Val = DAG.getExtLoad( 8508 ExtType, DL, LocVT, Chain, FIN, 8509 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8510 return Val; 8511 } 8512 8513 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8514 const CCValAssign &VA, const SDLoc &DL) { 8515 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8516 "Unexpected VA"); 8517 MachineFunction &MF = DAG.getMachineFunction(); 8518 MachineFrameInfo &MFI = MF.getFrameInfo(); 8519 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8520 8521 if (VA.isMemLoc()) { 8522 // f64 is passed on the stack. 8523 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8524 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8525 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8526 MachinePointerInfo::getFixedStack(MF, FI)); 8527 } 8528 8529 assert(VA.isRegLoc() && "Expected register VA assignment"); 8530 8531 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8532 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8533 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8534 SDValue Hi; 8535 if (VA.getLocReg() == RISCV::X17) { 8536 // Second half of f64 is passed on the stack. 8537 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8538 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8539 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8540 MachinePointerInfo::getFixedStack(MF, FI)); 8541 } else { 8542 // Second half of f64 is passed in another GPR. 8543 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8544 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8545 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8546 } 8547 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8548 } 8549 8550 // FastCC has less than 1% performance improvement for some particular 8551 // benchmark. But theoretically, it may has benenfit for some cases. 8552 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8553 unsigned ValNo, MVT ValVT, MVT LocVT, 8554 CCValAssign::LocInfo LocInfo, 8555 ISD::ArgFlagsTy ArgFlags, CCState &State, 8556 bool IsFixed, bool IsRet, Type *OrigTy, 8557 const RISCVTargetLowering &TLI, 8558 Optional<unsigned> FirstMaskArgument) { 8559 8560 // X5 and X6 might be used for save-restore libcall. 8561 static const MCPhysReg GPRList[] = { 8562 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8563 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8564 RISCV::X29, RISCV::X30, RISCV::X31}; 8565 8566 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8567 if (unsigned Reg = State.AllocateReg(GPRList)) { 8568 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8569 return false; 8570 } 8571 } 8572 8573 if (LocVT == MVT::f16) { 8574 static const MCPhysReg FPR16List[] = { 8575 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8576 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8577 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8578 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8579 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8580 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8581 return false; 8582 } 8583 } 8584 8585 if (LocVT == MVT::f32) { 8586 static const MCPhysReg FPR32List[] = { 8587 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8588 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8589 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8590 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8591 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8592 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8593 return false; 8594 } 8595 } 8596 8597 if (LocVT == MVT::f64) { 8598 static const MCPhysReg FPR64List[] = { 8599 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8600 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8601 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8602 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8603 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8604 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8605 return false; 8606 } 8607 } 8608 8609 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8610 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8611 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8612 return false; 8613 } 8614 8615 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8616 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8617 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8618 return false; 8619 } 8620 8621 if (LocVT.isVector()) { 8622 if (unsigned Reg = 8623 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8624 // Fixed-length vectors are located in the corresponding scalable-vector 8625 // container types. 8626 if (ValVT.isFixedLengthVector()) 8627 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8628 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8629 } else { 8630 // Try and pass the address via a "fast" GPR. 8631 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8632 LocInfo = CCValAssign::Indirect; 8633 LocVT = TLI.getSubtarget().getXLenVT(); 8634 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8635 } else if (ValVT.isFixedLengthVector()) { 8636 auto StackAlign = 8637 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8638 unsigned StackOffset = 8639 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8640 State.addLoc( 8641 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8642 } else { 8643 // Can't pass scalable vectors on the stack. 8644 return true; 8645 } 8646 } 8647 8648 return false; 8649 } 8650 8651 return true; // CC didn't match. 8652 } 8653 8654 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8655 CCValAssign::LocInfo LocInfo, 8656 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8657 8658 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8659 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8660 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8661 static const MCPhysReg GPRList[] = { 8662 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8663 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8664 if (unsigned Reg = State.AllocateReg(GPRList)) { 8665 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8666 return false; 8667 } 8668 } 8669 8670 if (LocVT == MVT::f32) { 8671 // Pass in STG registers: F1, ..., F6 8672 // fs0 ... fs5 8673 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8674 RISCV::F18_F, RISCV::F19_F, 8675 RISCV::F20_F, RISCV::F21_F}; 8676 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8677 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8678 return false; 8679 } 8680 } 8681 8682 if (LocVT == MVT::f64) { 8683 // Pass in STG registers: D1, ..., D6 8684 // fs6 ... fs11 8685 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8686 RISCV::F24_D, RISCV::F25_D, 8687 RISCV::F26_D, RISCV::F27_D}; 8688 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8689 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8690 return false; 8691 } 8692 } 8693 8694 report_fatal_error("No registers left in GHC calling convention"); 8695 return true; 8696 } 8697 8698 // Transform physical registers into virtual registers. 8699 SDValue RISCVTargetLowering::LowerFormalArguments( 8700 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8701 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8702 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8703 8704 MachineFunction &MF = DAG.getMachineFunction(); 8705 8706 switch (CallConv) { 8707 default: 8708 report_fatal_error("Unsupported calling convention"); 8709 case CallingConv::C: 8710 case CallingConv::Fast: 8711 break; 8712 case CallingConv::GHC: 8713 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8714 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8715 report_fatal_error( 8716 "GHC calling convention requires the F and D instruction set extensions"); 8717 } 8718 8719 const Function &Func = MF.getFunction(); 8720 if (Func.hasFnAttribute("interrupt")) { 8721 if (!Func.arg_empty()) 8722 report_fatal_error( 8723 "Functions with the interrupt attribute cannot have arguments!"); 8724 8725 StringRef Kind = 8726 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8727 8728 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8729 report_fatal_error( 8730 "Function interrupt attribute argument not supported!"); 8731 } 8732 8733 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8734 MVT XLenVT = Subtarget.getXLenVT(); 8735 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8736 // Used with vargs to acumulate store chains. 8737 std::vector<SDValue> OutChains; 8738 8739 // Assign locations to all of the incoming arguments. 8740 SmallVector<CCValAssign, 16> ArgLocs; 8741 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8742 8743 if (CallConv == CallingConv::GHC) 8744 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8745 else 8746 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8747 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8748 : CC_RISCV); 8749 8750 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8751 CCValAssign &VA = ArgLocs[i]; 8752 SDValue ArgValue; 8753 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8754 // case. 8755 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8756 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8757 else if (VA.isRegLoc()) 8758 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8759 else 8760 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8761 8762 if (VA.getLocInfo() == CCValAssign::Indirect) { 8763 // If the original argument was split and passed by reference (e.g. i128 8764 // on RV32), we need to load all parts of it here (using the same 8765 // address). Vectors may be partly split to registers and partly to the 8766 // stack, in which case the base address is partly offset and subsequent 8767 // stores are relative to that. 8768 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8769 MachinePointerInfo())); 8770 unsigned ArgIndex = Ins[i].OrigArgIndex; 8771 unsigned ArgPartOffset = Ins[i].PartOffset; 8772 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8773 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8774 CCValAssign &PartVA = ArgLocs[i + 1]; 8775 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8776 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8777 if (PartVA.getValVT().isScalableVector()) 8778 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8779 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8780 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8781 MachinePointerInfo())); 8782 ++i; 8783 } 8784 continue; 8785 } 8786 InVals.push_back(ArgValue); 8787 } 8788 8789 if (IsVarArg) { 8790 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8791 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8792 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8793 MachineFrameInfo &MFI = MF.getFrameInfo(); 8794 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8795 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8796 8797 // Offset of the first variable argument from stack pointer, and size of 8798 // the vararg save area. For now, the varargs save area is either zero or 8799 // large enough to hold a0-a7. 8800 int VaArgOffset, VarArgsSaveSize; 8801 8802 // If all registers are allocated, then all varargs must be passed on the 8803 // stack and we don't need to save any argregs. 8804 if (ArgRegs.size() == Idx) { 8805 VaArgOffset = CCInfo.getNextStackOffset(); 8806 VarArgsSaveSize = 0; 8807 } else { 8808 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8809 VaArgOffset = -VarArgsSaveSize; 8810 } 8811 8812 // Record the frame index of the first variable argument 8813 // which is a value necessary to VASTART. 8814 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8815 RVFI->setVarArgsFrameIndex(FI); 8816 8817 // If saving an odd number of registers then create an extra stack slot to 8818 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8819 // offsets to even-numbered registered remain 2*XLEN-aligned. 8820 if (Idx % 2) { 8821 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8822 VarArgsSaveSize += XLenInBytes; 8823 } 8824 8825 // Copy the integer registers that may have been used for passing varargs 8826 // to the vararg save area. 8827 for (unsigned I = Idx; I < ArgRegs.size(); 8828 ++I, VaArgOffset += XLenInBytes) { 8829 const Register Reg = RegInfo.createVirtualRegister(RC); 8830 RegInfo.addLiveIn(ArgRegs[I], Reg); 8831 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8832 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8833 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8834 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8835 MachinePointerInfo::getFixedStack(MF, FI)); 8836 cast<StoreSDNode>(Store.getNode()) 8837 ->getMemOperand() 8838 ->setValue((Value *)nullptr); 8839 OutChains.push_back(Store); 8840 } 8841 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8842 } 8843 8844 // All stores are grouped in one node to allow the matching between 8845 // the size of Ins and InVals. This only happens for vararg functions. 8846 if (!OutChains.empty()) { 8847 OutChains.push_back(Chain); 8848 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8849 } 8850 8851 return Chain; 8852 } 8853 8854 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8855 /// for tail call optimization. 8856 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8857 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8858 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8859 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8860 8861 auto &Callee = CLI.Callee; 8862 auto CalleeCC = CLI.CallConv; 8863 auto &Outs = CLI.Outs; 8864 auto &Caller = MF.getFunction(); 8865 auto CallerCC = Caller.getCallingConv(); 8866 8867 // Exception-handling functions need a special set of instructions to 8868 // indicate a return to the hardware. Tail-calling another function would 8869 // probably break this. 8870 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8871 // should be expanded as new function attributes are introduced. 8872 if (Caller.hasFnAttribute("interrupt")) 8873 return false; 8874 8875 // Do not tail call opt if the stack is used to pass parameters. 8876 if (CCInfo.getNextStackOffset() != 0) 8877 return false; 8878 8879 // Do not tail call opt if any parameters need to be passed indirectly. 8880 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8881 // passed indirectly. So the address of the value will be passed in a 8882 // register, or if not available, then the address is put on the stack. In 8883 // order to pass indirectly, space on the stack often needs to be allocated 8884 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8885 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8886 // are passed CCValAssign::Indirect. 8887 for (auto &VA : ArgLocs) 8888 if (VA.getLocInfo() == CCValAssign::Indirect) 8889 return false; 8890 8891 // Do not tail call opt if either caller or callee uses struct return 8892 // semantics. 8893 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8894 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8895 if (IsCallerStructRet || IsCalleeStructRet) 8896 return false; 8897 8898 // Externally-defined functions with weak linkage should not be 8899 // tail-called. The behaviour of branch instructions in this situation (as 8900 // used for tail calls) is implementation-defined, so we cannot rely on the 8901 // linker replacing the tail call with a return. 8902 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8903 const GlobalValue *GV = G->getGlobal(); 8904 if (GV->hasExternalWeakLinkage()) 8905 return false; 8906 } 8907 8908 // The callee has to preserve all registers the caller needs to preserve. 8909 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8910 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8911 if (CalleeCC != CallerCC) { 8912 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8913 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8914 return false; 8915 } 8916 8917 // Byval parameters hand the function a pointer directly into the stack area 8918 // we want to reuse during a tail call. Working around this *is* possible 8919 // but less efficient and uglier in LowerCall. 8920 for (auto &Arg : Outs) 8921 if (Arg.Flags.isByVal()) 8922 return false; 8923 8924 return true; 8925 } 8926 8927 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8928 return DAG.getDataLayout().getPrefTypeAlign( 8929 VT.getTypeForEVT(*DAG.getContext())); 8930 } 8931 8932 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8933 // and output parameter nodes. 8934 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8935 SmallVectorImpl<SDValue> &InVals) const { 8936 SelectionDAG &DAG = CLI.DAG; 8937 SDLoc &DL = CLI.DL; 8938 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8939 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8940 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8941 SDValue Chain = CLI.Chain; 8942 SDValue Callee = CLI.Callee; 8943 bool &IsTailCall = CLI.IsTailCall; 8944 CallingConv::ID CallConv = CLI.CallConv; 8945 bool IsVarArg = CLI.IsVarArg; 8946 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8947 MVT XLenVT = Subtarget.getXLenVT(); 8948 8949 MachineFunction &MF = DAG.getMachineFunction(); 8950 8951 // Analyze the operands of the call, assigning locations to each operand. 8952 SmallVector<CCValAssign, 16> ArgLocs; 8953 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8954 8955 if (CallConv == CallingConv::GHC) 8956 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8957 else 8958 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8959 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8960 : CC_RISCV); 8961 8962 // Check if it's really possible to do a tail call. 8963 if (IsTailCall) 8964 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8965 8966 if (IsTailCall) 8967 ++NumTailCalls; 8968 else if (CLI.CB && CLI.CB->isMustTailCall()) 8969 report_fatal_error("failed to perform tail call elimination on a call " 8970 "site marked musttail"); 8971 8972 // Get a count of how many bytes are to be pushed on the stack. 8973 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8974 8975 // Create local copies for byval args 8976 SmallVector<SDValue, 8> ByValArgs; 8977 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8978 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8979 if (!Flags.isByVal()) 8980 continue; 8981 8982 SDValue Arg = OutVals[i]; 8983 unsigned Size = Flags.getByValSize(); 8984 Align Alignment = Flags.getNonZeroByValAlign(); 8985 8986 int FI = 8987 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8988 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8989 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8990 8991 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8992 /*IsVolatile=*/false, 8993 /*AlwaysInline=*/false, IsTailCall, 8994 MachinePointerInfo(), MachinePointerInfo()); 8995 ByValArgs.push_back(FIPtr); 8996 } 8997 8998 if (!IsTailCall) 8999 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9000 9001 // Copy argument values to their designated locations. 9002 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9003 SmallVector<SDValue, 8> MemOpChains; 9004 SDValue StackPtr; 9005 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9006 CCValAssign &VA = ArgLocs[i]; 9007 SDValue ArgValue = OutVals[i]; 9008 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9009 9010 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9011 bool IsF64OnRV32DSoftABI = 9012 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9013 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9014 SDValue SplitF64 = DAG.getNode( 9015 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9016 SDValue Lo = SplitF64.getValue(0); 9017 SDValue Hi = SplitF64.getValue(1); 9018 9019 Register RegLo = VA.getLocReg(); 9020 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9021 9022 if (RegLo == RISCV::X17) { 9023 // Second half of f64 is passed on the stack. 9024 // Work out the address of the stack slot. 9025 if (!StackPtr.getNode()) 9026 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9027 // Emit the store. 9028 MemOpChains.push_back( 9029 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9030 } else { 9031 // Second half of f64 is passed in another GPR. 9032 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9033 Register RegHigh = RegLo + 1; 9034 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9035 } 9036 continue; 9037 } 9038 9039 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9040 // as any other MemLoc. 9041 9042 // Promote the value if needed. 9043 // For now, only handle fully promoted and indirect arguments. 9044 if (VA.getLocInfo() == CCValAssign::Indirect) { 9045 // Store the argument in a stack slot and pass its address. 9046 Align StackAlign = 9047 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9048 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9049 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9050 // If the original argument was split (e.g. i128), we need 9051 // to store the required parts of it here (and pass just one address). 9052 // Vectors may be partly split to registers and partly to the stack, in 9053 // which case the base address is partly offset and subsequent stores are 9054 // relative to that. 9055 unsigned ArgIndex = Outs[i].OrigArgIndex; 9056 unsigned ArgPartOffset = Outs[i].PartOffset; 9057 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9058 // Calculate the total size to store. We don't have access to what we're 9059 // actually storing other than performing the loop and collecting the 9060 // info. 9061 SmallVector<std::pair<SDValue, SDValue>> Parts; 9062 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9063 SDValue PartValue = OutVals[i + 1]; 9064 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9065 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9066 EVT PartVT = PartValue.getValueType(); 9067 if (PartVT.isScalableVector()) 9068 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9069 StoredSize += PartVT.getStoreSize(); 9070 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9071 Parts.push_back(std::make_pair(PartValue, Offset)); 9072 ++i; 9073 } 9074 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9075 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9076 MemOpChains.push_back( 9077 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9078 MachinePointerInfo::getFixedStack(MF, FI))); 9079 for (const auto &Part : Parts) { 9080 SDValue PartValue = Part.first; 9081 SDValue PartOffset = Part.second; 9082 SDValue Address = 9083 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9084 MemOpChains.push_back( 9085 DAG.getStore(Chain, DL, PartValue, Address, 9086 MachinePointerInfo::getFixedStack(MF, FI))); 9087 } 9088 ArgValue = SpillSlot; 9089 } else { 9090 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9091 } 9092 9093 // Use local copy if it is a byval arg. 9094 if (Flags.isByVal()) 9095 ArgValue = ByValArgs[j++]; 9096 9097 if (VA.isRegLoc()) { 9098 // Queue up the argument copies and emit them at the end. 9099 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9100 } else { 9101 assert(VA.isMemLoc() && "Argument not register or memory"); 9102 assert(!IsTailCall && "Tail call not allowed if stack is used " 9103 "for passing parameters"); 9104 9105 // Work out the address of the stack slot. 9106 if (!StackPtr.getNode()) 9107 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9108 SDValue Address = 9109 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9110 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9111 9112 // Emit the store. 9113 MemOpChains.push_back( 9114 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9115 } 9116 } 9117 9118 // Join the stores, which are independent of one another. 9119 if (!MemOpChains.empty()) 9120 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9121 9122 SDValue Glue; 9123 9124 // Build a sequence of copy-to-reg nodes, chained and glued together. 9125 for (auto &Reg : RegsToPass) { 9126 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9127 Glue = Chain.getValue(1); 9128 } 9129 9130 // Validate that none of the argument registers have been marked as 9131 // reserved, if so report an error. Do the same for the return address if this 9132 // is not a tailcall. 9133 validateCCReservedRegs(RegsToPass, MF); 9134 if (!IsTailCall && 9135 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9136 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9137 MF.getFunction(), 9138 "Return address register required, but has been reserved."}); 9139 9140 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9141 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9142 // split it and then direct call can be matched by PseudoCALL. 9143 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9144 const GlobalValue *GV = S->getGlobal(); 9145 9146 unsigned OpFlags = RISCVII::MO_CALL; 9147 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9148 OpFlags = RISCVII::MO_PLT; 9149 9150 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9151 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9152 unsigned OpFlags = RISCVII::MO_CALL; 9153 9154 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9155 nullptr)) 9156 OpFlags = RISCVII::MO_PLT; 9157 9158 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9159 } 9160 9161 // The first call operand is the chain and the second is the target address. 9162 SmallVector<SDValue, 8> Ops; 9163 Ops.push_back(Chain); 9164 Ops.push_back(Callee); 9165 9166 // Add argument registers to the end of the list so that they are 9167 // known live into the call. 9168 for (auto &Reg : RegsToPass) 9169 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9170 9171 if (!IsTailCall) { 9172 // Add a register mask operand representing the call-preserved registers. 9173 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9174 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9175 assert(Mask && "Missing call preserved mask for calling convention"); 9176 Ops.push_back(DAG.getRegisterMask(Mask)); 9177 } 9178 9179 // Glue the call to the argument copies, if any. 9180 if (Glue.getNode()) 9181 Ops.push_back(Glue); 9182 9183 // Emit the call. 9184 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9185 9186 if (IsTailCall) { 9187 MF.getFrameInfo().setHasTailCall(); 9188 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9189 } 9190 9191 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9192 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9193 Glue = Chain.getValue(1); 9194 9195 // Mark the end of the call, which is glued to the call itself. 9196 Chain = DAG.getCALLSEQ_END(Chain, 9197 DAG.getConstant(NumBytes, DL, PtrVT, true), 9198 DAG.getConstant(0, DL, PtrVT, true), 9199 Glue, DL); 9200 Glue = Chain.getValue(1); 9201 9202 // Assign locations to each value returned by this call. 9203 SmallVector<CCValAssign, 16> RVLocs; 9204 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9205 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9206 9207 // Copy all of the result registers out of their specified physreg. 9208 for (auto &VA : RVLocs) { 9209 // Copy the value out 9210 SDValue RetValue = 9211 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9212 // Glue the RetValue to the end of the call sequence 9213 Chain = RetValue.getValue(1); 9214 Glue = RetValue.getValue(2); 9215 9216 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9217 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9218 SDValue RetValue2 = 9219 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9220 Chain = RetValue2.getValue(1); 9221 Glue = RetValue2.getValue(2); 9222 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9223 RetValue2); 9224 } 9225 9226 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9227 9228 InVals.push_back(RetValue); 9229 } 9230 9231 return Chain; 9232 } 9233 9234 bool RISCVTargetLowering::CanLowerReturn( 9235 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9236 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9237 SmallVector<CCValAssign, 16> RVLocs; 9238 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9239 9240 Optional<unsigned> FirstMaskArgument; 9241 if (Subtarget.hasVInstructions()) 9242 FirstMaskArgument = preAssignMask(Outs); 9243 9244 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9245 MVT VT = Outs[i].VT; 9246 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9247 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9248 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9249 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9250 *this, FirstMaskArgument)) 9251 return false; 9252 } 9253 return true; 9254 } 9255 9256 SDValue 9257 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9258 bool IsVarArg, 9259 const SmallVectorImpl<ISD::OutputArg> &Outs, 9260 const SmallVectorImpl<SDValue> &OutVals, 9261 const SDLoc &DL, SelectionDAG &DAG) const { 9262 const MachineFunction &MF = DAG.getMachineFunction(); 9263 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9264 9265 // Stores the assignment of the return value to a location. 9266 SmallVector<CCValAssign, 16> RVLocs; 9267 9268 // Info about the registers and stack slot. 9269 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9270 *DAG.getContext()); 9271 9272 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9273 nullptr, CC_RISCV); 9274 9275 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9276 report_fatal_error("GHC functions return void only"); 9277 9278 SDValue Glue; 9279 SmallVector<SDValue, 4> RetOps(1, Chain); 9280 9281 // Copy the result values into the output registers. 9282 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9283 SDValue Val = OutVals[i]; 9284 CCValAssign &VA = RVLocs[i]; 9285 assert(VA.isRegLoc() && "Can only return in registers!"); 9286 9287 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9288 // Handle returning f64 on RV32D with a soft float ABI. 9289 assert(VA.isRegLoc() && "Expected return via registers"); 9290 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9291 DAG.getVTList(MVT::i32, MVT::i32), Val); 9292 SDValue Lo = SplitF64.getValue(0); 9293 SDValue Hi = SplitF64.getValue(1); 9294 Register RegLo = VA.getLocReg(); 9295 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9296 Register RegHi = RegLo + 1; 9297 9298 if (STI.isRegisterReservedByUser(RegLo) || 9299 STI.isRegisterReservedByUser(RegHi)) 9300 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9301 MF.getFunction(), 9302 "Return value register required, but has been reserved."}); 9303 9304 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9305 Glue = Chain.getValue(1); 9306 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9307 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9308 Glue = Chain.getValue(1); 9309 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9310 } else { 9311 // Handle a 'normal' return. 9312 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9313 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9314 9315 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9316 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9317 MF.getFunction(), 9318 "Return value register required, but has been reserved."}); 9319 9320 // Guarantee that all emitted copies are stuck together. 9321 Glue = Chain.getValue(1); 9322 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9323 } 9324 } 9325 9326 RetOps[0] = Chain; // Update chain. 9327 9328 // Add the glue node if we have it. 9329 if (Glue.getNode()) { 9330 RetOps.push_back(Glue); 9331 } 9332 9333 unsigned RetOpc = RISCVISD::RET_FLAG; 9334 // Interrupt service routines use different return instructions. 9335 const Function &Func = DAG.getMachineFunction().getFunction(); 9336 if (Func.hasFnAttribute("interrupt")) { 9337 if (!Func.getReturnType()->isVoidTy()) 9338 report_fatal_error( 9339 "Functions with the interrupt attribute must have void return type!"); 9340 9341 MachineFunction &MF = DAG.getMachineFunction(); 9342 StringRef Kind = 9343 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9344 9345 if (Kind == "user") 9346 RetOpc = RISCVISD::URET_FLAG; 9347 else if (Kind == "supervisor") 9348 RetOpc = RISCVISD::SRET_FLAG; 9349 else 9350 RetOpc = RISCVISD::MRET_FLAG; 9351 } 9352 9353 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9354 } 9355 9356 void RISCVTargetLowering::validateCCReservedRegs( 9357 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9358 MachineFunction &MF) const { 9359 const Function &F = MF.getFunction(); 9360 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9361 9362 if (llvm::any_of(Regs, [&STI](auto Reg) { 9363 return STI.isRegisterReservedByUser(Reg.first); 9364 })) 9365 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9366 F, "Argument register required, but has been reserved."}); 9367 } 9368 9369 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9370 return CI->isTailCall(); 9371 } 9372 9373 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9374 #define NODE_NAME_CASE(NODE) \ 9375 case RISCVISD::NODE: \ 9376 return "RISCVISD::" #NODE; 9377 // clang-format off 9378 switch ((RISCVISD::NodeType)Opcode) { 9379 case RISCVISD::FIRST_NUMBER: 9380 break; 9381 NODE_NAME_CASE(RET_FLAG) 9382 NODE_NAME_CASE(URET_FLAG) 9383 NODE_NAME_CASE(SRET_FLAG) 9384 NODE_NAME_CASE(MRET_FLAG) 9385 NODE_NAME_CASE(CALL) 9386 NODE_NAME_CASE(SELECT_CC) 9387 NODE_NAME_CASE(BR_CC) 9388 NODE_NAME_CASE(BuildPairF64) 9389 NODE_NAME_CASE(SplitF64) 9390 NODE_NAME_CASE(TAIL) 9391 NODE_NAME_CASE(MULHSU) 9392 NODE_NAME_CASE(SLLW) 9393 NODE_NAME_CASE(SRAW) 9394 NODE_NAME_CASE(SRLW) 9395 NODE_NAME_CASE(DIVW) 9396 NODE_NAME_CASE(DIVUW) 9397 NODE_NAME_CASE(REMUW) 9398 NODE_NAME_CASE(ROLW) 9399 NODE_NAME_CASE(RORW) 9400 NODE_NAME_CASE(CLZW) 9401 NODE_NAME_CASE(CTZW) 9402 NODE_NAME_CASE(FSLW) 9403 NODE_NAME_CASE(FSRW) 9404 NODE_NAME_CASE(FSL) 9405 NODE_NAME_CASE(FSR) 9406 NODE_NAME_CASE(FMV_H_X) 9407 NODE_NAME_CASE(FMV_X_ANYEXTH) 9408 NODE_NAME_CASE(FMV_W_X_RV64) 9409 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9410 NODE_NAME_CASE(FCVT_X_RTZ) 9411 NODE_NAME_CASE(FCVT_XU_RTZ) 9412 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9413 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9414 NODE_NAME_CASE(READ_CYCLE_WIDE) 9415 NODE_NAME_CASE(GREV) 9416 NODE_NAME_CASE(GREVW) 9417 NODE_NAME_CASE(GORC) 9418 NODE_NAME_CASE(GORCW) 9419 NODE_NAME_CASE(SHFL) 9420 NODE_NAME_CASE(SHFLW) 9421 NODE_NAME_CASE(UNSHFL) 9422 NODE_NAME_CASE(UNSHFLW) 9423 NODE_NAME_CASE(BCOMPRESS) 9424 NODE_NAME_CASE(BCOMPRESSW) 9425 NODE_NAME_CASE(BDECOMPRESS) 9426 NODE_NAME_CASE(BDECOMPRESSW) 9427 NODE_NAME_CASE(VMV_V_X_VL) 9428 NODE_NAME_CASE(VFMV_V_F_VL) 9429 NODE_NAME_CASE(VMV_X_S) 9430 NODE_NAME_CASE(VMV_S_X_VL) 9431 NODE_NAME_CASE(VFMV_S_F_VL) 9432 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9433 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9434 NODE_NAME_CASE(READ_VLENB) 9435 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9436 NODE_NAME_CASE(VSLIDEUP_VL) 9437 NODE_NAME_CASE(VSLIDE1UP_VL) 9438 NODE_NAME_CASE(VSLIDEDOWN_VL) 9439 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9440 NODE_NAME_CASE(VID_VL) 9441 NODE_NAME_CASE(VFNCVT_ROD_VL) 9442 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9443 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9444 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9445 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9446 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9447 NODE_NAME_CASE(VECREDUCE_AND_VL) 9448 NODE_NAME_CASE(VECREDUCE_OR_VL) 9449 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9450 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9451 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9452 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9453 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9454 NODE_NAME_CASE(ADD_VL) 9455 NODE_NAME_CASE(AND_VL) 9456 NODE_NAME_CASE(MUL_VL) 9457 NODE_NAME_CASE(OR_VL) 9458 NODE_NAME_CASE(SDIV_VL) 9459 NODE_NAME_CASE(SHL_VL) 9460 NODE_NAME_CASE(SREM_VL) 9461 NODE_NAME_CASE(SRA_VL) 9462 NODE_NAME_CASE(SRL_VL) 9463 NODE_NAME_CASE(SUB_VL) 9464 NODE_NAME_CASE(UDIV_VL) 9465 NODE_NAME_CASE(UREM_VL) 9466 NODE_NAME_CASE(XOR_VL) 9467 NODE_NAME_CASE(SADDSAT_VL) 9468 NODE_NAME_CASE(UADDSAT_VL) 9469 NODE_NAME_CASE(SSUBSAT_VL) 9470 NODE_NAME_CASE(USUBSAT_VL) 9471 NODE_NAME_CASE(FADD_VL) 9472 NODE_NAME_CASE(FSUB_VL) 9473 NODE_NAME_CASE(FMUL_VL) 9474 NODE_NAME_CASE(FDIV_VL) 9475 NODE_NAME_CASE(FNEG_VL) 9476 NODE_NAME_CASE(FABS_VL) 9477 NODE_NAME_CASE(FSQRT_VL) 9478 NODE_NAME_CASE(FMA_VL) 9479 NODE_NAME_CASE(FCOPYSIGN_VL) 9480 NODE_NAME_CASE(SMIN_VL) 9481 NODE_NAME_CASE(SMAX_VL) 9482 NODE_NAME_CASE(UMIN_VL) 9483 NODE_NAME_CASE(UMAX_VL) 9484 NODE_NAME_CASE(FMINNUM_VL) 9485 NODE_NAME_CASE(FMAXNUM_VL) 9486 NODE_NAME_CASE(MULHS_VL) 9487 NODE_NAME_CASE(MULHU_VL) 9488 NODE_NAME_CASE(FP_TO_SINT_VL) 9489 NODE_NAME_CASE(FP_TO_UINT_VL) 9490 NODE_NAME_CASE(SINT_TO_FP_VL) 9491 NODE_NAME_CASE(UINT_TO_FP_VL) 9492 NODE_NAME_CASE(FP_EXTEND_VL) 9493 NODE_NAME_CASE(FP_ROUND_VL) 9494 NODE_NAME_CASE(VWMUL_VL) 9495 NODE_NAME_CASE(VWMULU_VL) 9496 NODE_NAME_CASE(SETCC_VL) 9497 NODE_NAME_CASE(VSELECT_VL) 9498 NODE_NAME_CASE(VMAND_VL) 9499 NODE_NAME_CASE(VMOR_VL) 9500 NODE_NAME_CASE(VMXOR_VL) 9501 NODE_NAME_CASE(VMCLR_VL) 9502 NODE_NAME_CASE(VMSET_VL) 9503 NODE_NAME_CASE(VRGATHER_VX_VL) 9504 NODE_NAME_CASE(VRGATHER_VV_VL) 9505 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9506 NODE_NAME_CASE(VSEXT_VL) 9507 NODE_NAME_CASE(VZEXT_VL) 9508 NODE_NAME_CASE(VCPOP_VL) 9509 NODE_NAME_CASE(VLE_VL) 9510 NODE_NAME_CASE(VSE_VL) 9511 NODE_NAME_CASE(READ_CSR) 9512 NODE_NAME_CASE(WRITE_CSR) 9513 NODE_NAME_CASE(SWAP_CSR) 9514 } 9515 // clang-format on 9516 return nullptr; 9517 #undef NODE_NAME_CASE 9518 } 9519 9520 /// getConstraintType - Given a constraint letter, return the type of 9521 /// constraint it is for this target. 9522 RISCVTargetLowering::ConstraintType 9523 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9524 if (Constraint.size() == 1) { 9525 switch (Constraint[0]) { 9526 default: 9527 break; 9528 case 'f': 9529 return C_RegisterClass; 9530 case 'I': 9531 case 'J': 9532 case 'K': 9533 return C_Immediate; 9534 case 'A': 9535 return C_Memory; 9536 case 'S': // A symbolic address 9537 return C_Other; 9538 } 9539 } else { 9540 if (Constraint == "vr" || Constraint == "vm") 9541 return C_RegisterClass; 9542 } 9543 return TargetLowering::getConstraintType(Constraint); 9544 } 9545 9546 std::pair<unsigned, const TargetRegisterClass *> 9547 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9548 StringRef Constraint, 9549 MVT VT) const { 9550 // First, see if this is a constraint that directly corresponds to a 9551 // RISCV register class. 9552 if (Constraint.size() == 1) { 9553 switch (Constraint[0]) { 9554 case 'r': 9555 return std::make_pair(0U, &RISCV::GPRRegClass); 9556 case 'f': 9557 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9558 return std::make_pair(0U, &RISCV::FPR16RegClass); 9559 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9560 return std::make_pair(0U, &RISCV::FPR32RegClass); 9561 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9562 return std::make_pair(0U, &RISCV::FPR64RegClass); 9563 break; 9564 default: 9565 break; 9566 } 9567 } else { 9568 if (Constraint == "vr") { 9569 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9570 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9571 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9572 return std::make_pair(0U, RC); 9573 } 9574 } else if (Constraint == "vm") { 9575 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9576 return std::make_pair(0U, &RISCV::VMV0RegClass); 9577 } 9578 } 9579 9580 // Clang will correctly decode the usage of register name aliases into their 9581 // official names. However, other frontends like `rustc` do not. This allows 9582 // users of these frontends to use the ABI names for registers in LLVM-style 9583 // register constraints. 9584 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9585 .Case("{zero}", RISCV::X0) 9586 .Case("{ra}", RISCV::X1) 9587 .Case("{sp}", RISCV::X2) 9588 .Case("{gp}", RISCV::X3) 9589 .Case("{tp}", RISCV::X4) 9590 .Case("{t0}", RISCV::X5) 9591 .Case("{t1}", RISCV::X6) 9592 .Case("{t2}", RISCV::X7) 9593 .Cases("{s0}", "{fp}", RISCV::X8) 9594 .Case("{s1}", RISCV::X9) 9595 .Case("{a0}", RISCV::X10) 9596 .Case("{a1}", RISCV::X11) 9597 .Case("{a2}", RISCV::X12) 9598 .Case("{a3}", RISCV::X13) 9599 .Case("{a4}", RISCV::X14) 9600 .Case("{a5}", RISCV::X15) 9601 .Case("{a6}", RISCV::X16) 9602 .Case("{a7}", RISCV::X17) 9603 .Case("{s2}", RISCV::X18) 9604 .Case("{s3}", RISCV::X19) 9605 .Case("{s4}", RISCV::X20) 9606 .Case("{s5}", RISCV::X21) 9607 .Case("{s6}", RISCV::X22) 9608 .Case("{s7}", RISCV::X23) 9609 .Case("{s8}", RISCV::X24) 9610 .Case("{s9}", RISCV::X25) 9611 .Case("{s10}", RISCV::X26) 9612 .Case("{s11}", RISCV::X27) 9613 .Case("{t3}", RISCV::X28) 9614 .Case("{t4}", RISCV::X29) 9615 .Case("{t5}", RISCV::X30) 9616 .Case("{t6}", RISCV::X31) 9617 .Default(RISCV::NoRegister); 9618 if (XRegFromAlias != RISCV::NoRegister) 9619 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9620 9621 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9622 // TableGen record rather than the AsmName to choose registers for InlineAsm 9623 // constraints, plus we want to match those names to the widest floating point 9624 // register type available, manually select floating point registers here. 9625 // 9626 // The second case is the ABI name of the register, so that frontends can also 9627 // use the ABI names in register constraint lists. 9628 if (Subtarget.hasStdExtF()) { 9629 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9630 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9631 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9632 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9633 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9634 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9635 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9636 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9637 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9638 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9639 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9640 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9641 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9642 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9643 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9644 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9645 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9646 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9647 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9648 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9649 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9650 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9651 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9652 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9653 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9654 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9655 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9656 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9657 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9658 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9659 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9660 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9661 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9662 .Default(RISCV::NoRegister); 9663 if (FReg != RISCV::NoRegister) { 9664 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9665 if (Subtarget.hasStdExtD()) { 9666 unsigned RegNo = FReg - RISCV::F0_F; 9667 unsigned DReg = RISCV::F0_D + RegNo; 9668 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9669 } 9670 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9671 } 9672 } 9673 9674 if (Subtarget.hasVInstructions()) { 9675 Register VReg = StringSwitch<Register>(Constraint.lower()) 9676 .Case("{v0}", RISCV::V0) 9677 .Case("{v1}", RISCV::V1) 9678 .Case("{v2}", RISCV::V2) 9679 .Case("{v3}", RISCV::V3) 9680 .Case("{v4}", RISCV::V4) 9681 .Case("{v5}", RISCV::V5) 9682 .Case("{v6}", RISCV::V6) 9683 .Case("{v7}", RISCV::V7) 9684 .Case("{v8}", RISCV::V8) 9685 .Case("{v9}", RISCV::V9) 9686 .Case("{v10}", RISCV::V10) 9687 .Case("{v11}", RISCV::V11) 9688 .Case("{v12}", RISCV::V12) 9689 .Case("{v13}", RISCV::V13) 9690 .Case("{v14}", RISCV::V14) 9691 .Case("{v15}", RISCV::V15) 9692 .Case("{v16}", RISCV::V16) 9693 .Case("{v17}", RISCV::V17) 9694 .Case("{v18}", RISCV::V18) 9695 .Case("{v19}", RISCV::V19) 9696 .Case("{v20}", RISCV::V20) 9697 .Case("{v21}", RISCV::V21) 9698 .Case("{v22}", RISCV::V22) 9699 .Case("{v23}", RISCV::V23) 9700 .Case("{v24}", RISCV::V24) 9701 .Case("{v25}", RISCV::V25) 9702 .Case("{v26}", RISCV::V26) 9703 .Case("{v27}", RISCV::V27) 9704 .Case("{v28}", RISCV::V28) 9705 .Case("{v29}", RISCV::V29) 9706 .Case("{v30}", RISCV::V30) 9707 .Case("{v31}", RISCV::V31) 9708 .Default(RISCV::NoRegister); 9709 if (VReg != RISCV::NoRegister) { 9710 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9711 return std::make_pair(VReg, &RISCV::VMRegClass); 9712 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9713 return std::make_pair(VReg, &RISCV::VRRegClass); 9714 for (const auto *RC : 9715 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9716 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9717 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9718 return std::make_pair(VReg, RC); 9719 } 9720 } 9721 } 9722 } 9723 9724 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9725 } 9726 9727 unsigned 9728 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9729 // Currently only support length 1 constraints. 9730 if (ConstraintCode.size() == 1) { 9731 switch (ConstraintCode[0]) { 9732 case 'A': 9733 return InlineAsm::Constraint_A; 9734 default: 9735 break; 9736 } 9737 } 9738 9739 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9740 } 9741 9742 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9743 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9744 SelectionDAG &DAG) const { 9745 // Currently only support length 1 constraints. 9746 if (Constraint.length() == 1) { 9747 switch (Constraint[0]) { 9748 case 'I': 9749 // Validate & create a 12-bit signed immediate operand. 9750 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9751 uint64_t CVal = C->getSExtValue(); 9752 if (isInt<12>(CVal)) 9753 Ops.push_back( 9754 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9755 } 9756 return; 9757 case 'J': 9758 // Validate & create an integer zero operand. 9759 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9760 if (C->getZExtValue() == 0) 9761 Ops.push_back( 9762 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9763 return; 9764 case 'K': 9765 // Validate & create a 5-bit unsigned immediate operand. 9766 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9767 uint64_t CVal = C->getZExtValue(); 9768 if (isUInt<5>(CVal)) 9769 Ops.push_back( 9770 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9771 } 9772 return; 9773 case 'S': 9774 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9775 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9776 GA->getValueType(0))); 9777 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9778 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9779 BA->getValueType(0))); 9780 } 9781 return; 9782 default: 9783 break; 9784 } 9785 } 9786 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9787 } 9788 9789 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9790 Instruction *Inst, 9791 AtomicOrdering Ord) const { 9792 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9793 return Builder.CreateFence(Ord); 9794 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9795 return Builder.CreateFence(AtomicOrdering::Release); 9796 return nullptr; 9797 } 9798 9799 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9800 Instruction *Inst, 9801 AtomicOrdering Ord) const { 9802 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9803 return Builder.CreateFence(AtomicOrdering::Acquire); 9804 return nullptr; 9805 } 9806 9807 TargetLowering::AtomicExpansionKind 9808 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9809 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9810 // point operations can't be used in an lr/sc sequence without breaking the 9811 // forward-progress guarantee. 9812 if (AI->isFloatingPointOperation()) 9813 return AtomicExpansionKind::CmpXChg; 9814 9815 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9816 if (Size == 8 || Size == 16) 9817 return AtomicExpansionKind::MaskedIntrinsic; 9818 return AtomicExpansionKind::None; 9819 } 9820 9821 static Intrinsic::ID 9822 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9823 if (XLen == 32) { 9824 switch (BinOp) { 9825 default: 9826 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9827 case AtomicRMWInst::Xchg: 9828 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9829 case AtomicRMWInst::Add: 9830 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9831 case AtomicRMWInst::Sub: 9832 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9833 case AtomicRMWInst::Nand: 9834 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9835 case AtomicRMWInst::Max: 9836 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9837 case AtomicRMWInst::Min: 9838 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9839 case AtomicRMWInst::UMax: 9840 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9841 case AtomicRMWInst::UMin: 9842 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9843 } 9844 } 9845 9846 if (XLen == 64) { 9847 switch (BinOp) { 9848 default: 9849 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9850 case AtomicRMWInst::Xchg: 9851 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9852 case AtomicRMWInst::Add: 9853 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9854 case AtomicRMWInst::Sub: 9855 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9856 case AtomicRMWInst::Nand: 9857 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9858 case AtomicRMWInst::Max: 9859 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9860 case AtomicRMWInst::Min: 9861 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9862 case AtomicRMWInst::UMax: 9863 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9864 case AtomicRMWInst::UMin: 9865 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9866 } 9867 } 9868 9869 llvm_unreachable("Unexpected XLen\n"); 9870 } 9871 9872 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9873 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9874 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9875 unsigned XLen = Subtarget.getXLen(); 9876 Value *Ordering = 9877 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9878 Type *Tys[] = {AlignedAddr->getType()}; 9879 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9880 AI->getModule(), 9881 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9882 9883 if (XLen == 64) { 9884 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9885 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9886 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9887 } 9888 9889 Value *Result; 9890 9891 // Must pass the shift amount needed to sign extend the loaded value prior 9892 // to performing a signed comparison for min/max. ShiftAmt is the number of 9893 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9894 // is the number of bits to left+right shift the value in order to 9895 // sign-extend. 9896 if (AI->getOperation() == AtomicRMWInst::Min || 9897 AI->getOperation() == AtomicRMWInst::Max) { 9898 const DataLayout &DL = AI->getModule()->getDataLayout(); 9899 unsigned ValWidth = 9900 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9901 Value *SextShamt = 9902 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9903 Result = Builder.CreateCall(LrwOpScwLoop, 9904 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9905 } else { 9906 Result = 9907 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9908 } 9909 9910 if (XLen == 64) 9911 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9912 return Result; 9913 } 9914 9915 TargetLowering::AtomicExpansionKind 9916 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9917 AtomicCmpXchgInst *CI) const { 9918 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9919 if (Size == 8 || Size == 16) 9920 return AtomicExpansionKind::MaskedIntrinsic; 9921 return AtomicExpansionKind::None; 9922 } 9923 9924 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9925 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9926 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9927 unsigned XLen = Subtarget.getXLen(); 9928 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9929 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9930 if (XLen == 64) { 9931 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9932 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9933 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9934 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9935 } 9936 Type *Tys[] = {AlignedAddr->getType()}; 9937 Function *MaskedCmpXchg = 9938 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9939 Value *Result = Builder.CreateCall( 9940 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9941 if (XLen == 64) 9942 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9943 return Result; 9944 } 9945 9946 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9947 return false; 9948 } 9949 9950 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 9951 EVT VT) const { 9952 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 9953 return false; 9954 9955 switch (FPVT.getSimpleVT().SimpleTy) { 9956 case MVT::f16: 9957 return Subtarget.hasStdExtZfh(); 9958 case MVT::f32: 9959 return Subtarget.hasStdExtF(); 9960 case MVT::f64: 9961 return Subtarget.hasStdExtD(); 9962 default: 9963 return false; 9964 } 9965 } 9966 9967 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9968 EVT VT) const { 9969 VT = VT.getScalarType(); 9970 9971 if (!VT.isSimple()) 9972 return false; 9973 9974 switch (VT.getSimpleVT().SimpleTy) { 9975 case MVT::f16: 9976 return Subtarget.hasStdExtZfh(); 9977 case MVT::f32: 9978 return Subtarget.hasStdExtF(); 9979 case MVT::f64: 9980 return Subtarget.hasStdExtD(); 9981 default: 9982 break; 9983 } 9984 9985 return false; 9986 } 9987 9988 Register RISCVTargetLowering::getExceptionPointerRegister( 9989 const Constant *PersonalityFn) const { 9990 return RISCV::X10; 9991 } 9992 9993 Register RISCVTargetLowering::getExceptionSelectorRegister( 9994 const Constant *PersonalityFn) const { 9995 return RISCV::X11; 9996 } 9997 9998 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9999 // Return false to suppress the unnecessary extensions if the LibCall 10000 // arguments or return value is f32 type for LP64 ABI. 10001 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10002 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10003 return false; 10004 10005 return true; 10006 } 10007 10008 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10009 if (Subtarget.is64Bit() && Type == MVT::i32) 10010 return true; 10011 10012 return IsSigned; 10013 } 10014 10015 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10016 SDValue C) const { 10017 // Check integral scalar types. 10018 if (VT.isScalarInteger()) { 10019 // Omit the optimization if the sub target has the M extension and the data 10020 // size exceeds XLen. 10021 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10022 return false; 10023 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10024 // Break the MUL to a SLLI and an ADD/SUB. 10025 const APInt &Imm = ConstNode->getAPIntValue(); 10026 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10027 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10028 return true; 10029 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10030 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10031 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10032 (Imm - 8).isPowerOf2())) 10033 return true; 10034 // Omit the following optimization if the sub target has the M extension 10035 // and the data size >= XLen. 10036 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10037 return false; 10038 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10039 // a pair of LUI/ADDI. 10040 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10041 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10042 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10043 (1 - ImmS).isPowerOf2()) 10044 return true; 10045 } 10046 } 10047 } 10048 10049 return false; 10050 } 10051 10052 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10053 const SDValue &AddNode, const SDValue &ConstNode) const { 10054 // Let the DAGCombiner decide for vectors. 10055 EVT VT = AddNode.getValueType(); 10056 if (VT.isVector()) 10057 return true; 10058 10059 // Let the DAGCombiner decide for larger types. 10060 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10061 return true; 10062 10063 // It is worse if c1 is simm12 while c1*c2 is not. 10064 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10065 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10066 const APInt &C1 = C1Node->getAPIntValue(); 10067 const APInt &C2 = C2Node->getAPIntValue(); 10068 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10069 return false; 10070 10071 // Default to true and let the DAGCombiner decide. 10072 return true; 10073 } 10074 10075 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10076 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10077 bool *Fast) const { 10078 if (!VT.isVector()) 10079 return false; 10080 10081 EVT ElemVT = VT.getVectorElementType(); 10082 if (Alignment >= ElemVT.getStoreSize()) { 10083 if (Fast) 10084 *Fast = true; 10085 return true; 10086 } 10087 10088 return false; 10089 } 10090 10091 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10092 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10093 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10094 bool IsABIRegCopy = CC.hasValue(); 10095 EVT ValueVT = Val.getValueType(); 10096 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10097 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10098 // and cast to f32. 10099 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10100 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10101 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10102 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10103 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10104 Parts[0] = Val; 10105 return true; 10106 } 10107 10108 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10109 LLVMContext &Context = *DAG.getContext(); 10110 EVT ValueEltVT = ValueVT.getVectorElementType(); 10111 EVT PartEltVT = PartVT.getVectorElementType(); 10112 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10113 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10114 if (PartVTBitSize % ValueVTBitSize == 0) { 10115 assert(PartVTBitSize >= ValueVTBitSize); 10116 // If the element types are different, bitcast to the same element type of 10117 // PartVT first. 10118 // Give an example here, we want copy a <vscale x 1 x i8> value to 10119 // <vscale x 4 x i16>. 10120 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10121 // subvector, then we can bitcast to <vscale x 4 x i16>. 10122 if (ValueEltVT != PartEltVT) { 10123 if (PartVTBitSize > ValueVTBitSize) { 10124 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10125 assert(Count != 0 && "The number of element should not be zero."); 10126 EVT SameEltTypeVT = 10127 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10128 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10129 DAG.getUNDEF(SameEltTypeVT), Val, 10130 DAG.getVectorIdxConstant(0, DL)); 10131 } 10132 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10133 } else { 10134 Val = 10135 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10136 Val, DAG.getVectorIdxConstant(0, DL)); 10137 } 10138 Parts[0] = Val; 10139 return true; 10140 } 10141 } 10142 return false; 10143 } 10144 10145 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10146 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10147 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10148 bool IsABIRegCopy = CC.hasValue(); 10149 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10150 SDValue Val = Parts[0]; 10151 10152 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10153 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10154 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10155 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10156 return Val; 10157 } 10158 10159 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10160 LLVMContext &Context = *DAG.getContext(); 10161 SDValue Val = Parts[0]; 10162 EVT ValueEltVT = ValueVT.getVectorElementType(); 10163 EVT PartEltVT = PartVT.getVectorElementType(); 10164 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10165 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10166 if (PartVTBitSize % ValueVTBitSize == 0) { 10167 assert(PartVTBitSize >= ValueVTBitSize); 10168 EVT SameEltTypeVT = ValueVT; 10169 // If the element types are different, convert it to the same element type 10170 // of PartVT. 10171 // Give an example here, we want copy a <vscale x 1 x i8> value from 10172 // <vscale x 4 x i16>. 10173 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10174 // then we can extract <vscale x 1 x i8>. 10175 if (ValueEltVT != PartEltVT) { 10176 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10177 assert(Count != 0 && "The number of element should not be zero."); 10178 SameEltTypeVT = 10179 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10180 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10181 } 10182 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10183 DAG.getVectorIdxConstant(0, DL)); 10184 return Val; 10185 } 10186 } 10187 return SDValue(); 10188 } 10189 10190 #define GET_REGISTER_MATCHER 10191 #include "RISCVGenAsmMatcher.inc" 10192 10193 Register 10194 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10195 const MachineFunction &MF) const { 10196 Register Reg = MatchRegisterAltName(RegName); 10197 if (Reg == RISCV::NoRegister) 10198 Reg = MatchRegisterName(RegName); 10199 if (Reg == RISCV::NoRegister) 10200 report_fatal_error( 10201 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10202 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10203 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10204 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10205 StringRef(RegName) + "\".")); 10206 return Reg; 10207 } 10208 10209 namespace llvm { 10210 namespace RISCVVIntrinsicsTable { 10211 10212 #define GET_RISCVVIntrinsicsTable_IMPL 10213 #include "RISCVGenSearchableTables.inc" 10214 10215 } // namespace RISCVVIntrinsicsTable 10216 10217 } // namespace llvm 10218