1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 256 // BSWAP i8 doesn't exist. 257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 259 260 if (Subtarget.is64Bit()) { 261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 262 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 263 } 264 } else { 265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 266 // pattern match it directly in isel. 267 setOperationAction(ISD::BSWAP, XLenVT, 268 Subtarget.hasStdExtZbb() ? Legal : Expand); 269 } 270 271 if (Subtarget.hasStdExtZbb()) { 272 setOperationAction(ISD::SMIN, XLenVT, Legal); 273 setOperationAction(ISD::SMAX, XLenVT, Legal); 274 setOperationAction(ISD::UMIN, XLenVT, Legal); 275 setOperationAction(ISD::UMAX, XLenVT, Legal); 276 277 if (Subtarget.is64Bit()) { 278 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 280 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 282 } 283 } else { 284 setOperationAction(ISD::CTTZ, XLenVT, Expand); 285 setOperationAction(ISD::CTLZ, XLenVT, Expand); 286 setOperationAction(ISD::CTPOP, XLenVT, Expand); 287 } 288 289 if (Subtarget.hasStdExtZbt()) { 290 setOperationAction(ISD::FSHL, XLenVT, Custom); 291 setOperationAction(ISD::FSHR, XLenVT, Custom); 292 setOperationAction(ISD::SELECT, XLenVT, Legal); 293 294 if (Subtarget.is64Bit()) { 295 setOperationAction(ISD::FSHL, MVT::i32, Custom); 296 setOperationAction(ISD::FSHR, MVT::i32, Custom); 297 } 298 } else { 299 setOperationAction(ISD::SELECT, XLenVT, Custom); 300 } 301 302 ISD::CondCode FPCCToExpand[] = { 303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 306 307 ISD::NodeType FPOpToExpand[] = { 308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 309 ISD::FP_TO_FP16}; 310 311 if (Subtarget.hasStdExtZfh()) 312 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 313 314 if (Subtarget.hasStdExtZfh()) { 315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 317 for (auto CC : FPCCToExpand) 318 setCondCodeAction(CC, MVT::f16, Expand); 319 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 320 setOperationAction(ISD::SELECT, MVT::f16, Custom); 321 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 322 for (auto Op : FPOpToExpand) 323 setOperationAction(Op, MVT::f16, Expand); 324 } 325 326 if (Subtarget.hasStdExtF()) { 327 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 328 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f32, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 332 setOperationAction(ISD::SELECT, MVT::f32, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f32, Expand); 336 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 337 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 338 } 339 340 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 341 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 342 343 if (Subtarget.hasStdExtD()) { 344 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 345 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 346 for (auto CC : FPCCToExpand) 347 setCondCodeAction(CC, MVT::f64, Expand); 348 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 349 setOperationAction(ISD::SELECT, MVT::f64, Custom); 350 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 353 for (auto Op : FPOpToExpand) 354 setOperationAction(Op, MVT::f64, Expand); 355 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 356 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 357 } 358 359 if (Subtarget.is64Bit()) { 360 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 361 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 362 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 363 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 364 } 365 366 if (Subtarget.hasStdExtF()) { 367 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 368 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 369 } 370 371 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 372 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 373 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 374 setOperationAction(ISD::JumpTable, XLenVT, Custom); 375 376 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 377 378 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 379 // Unfortunately this can't be determined just from the ISA naming string. 380 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 381 Subtarget.is64Bit() ? Legal : Custom); 382 383 setOperationAction(ISD::TRAP, MVT::Other, Legal); 384 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 385 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 386 if (Subtarget.is64Bit()) 387 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 388 389 if (Subtarget.hasStdExtA()) { 390 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 391 setMinCmpXchgSizeInBits(32); 392 } else { 393 setMaxAtomicSizeInBitsSupported(0); 394 } 395 396 setBooleanContents(ZeroOrOneBooleanContent); 397 398 if (Subtarget.hasStdExtV()) { 399 setBooleanVectorContents(ZeroOrOneBooleanContent); 400 401 setOperationAction(ISD::VSCALE, XLenVT, Custom); 402 403 // RVV intrinsics may have illegal operands. 404 // We also need to custom legalize vmv.x.s. 405 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 406 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 407 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 408 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 409 if (Subtarget.is64Bit()) { 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 411 } else { 412 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 413 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 414 } 415 416 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 417 418 static unsigned IntegerVPOps[] = { 419 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 420 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 421 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 422 423 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 424 ISD::VP_FMUL, ISD::VP_FDIV}; 425 426 if (!Subtarget.is64Bit()) { 427 // We must custom-lower certain vXi64 operations on RV32 due to the vector 428 // element type being illegal. 429 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 430 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 431 432 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 433 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 434 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 435 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 436 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 437 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 438 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 439 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 440 } 441 442 for (MVT VT : BoolVecVTs) { 443 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 444 445 // Mask VTs are custom-expanded into a series of standard nodes 446 setOperationAction(ISD::TRUNCATE, VT, Custom); 447 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 448 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 449 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 450 451 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 452 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 453 454 setOperationAction(ISD::SELECT, VT, Custom); 455 setOperationAction(ISD::SELECT_CC, VT, Expand); 456 setOperationAction(ISD::VSELECT, VT, Expand); 457 458 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 459 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 460 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 461 462 // RVV has native int->float & float->int conversions where the 463 // element type sizes are within one power-of-two of each other. Any 464 // wider distances between type sizes have to be lowered as sequences 465 // which progressively narrow the gap in stages. 466 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 467 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 468 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 469 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 470 471 // Expand all extending loads to types larger than this, and truncating 472 // stores from types larger than this. 473 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 474 setTruncStoreAction(OtherVT, VT, Expand); 475 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 476 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 477 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 478 } 479 } 480 481 for (MVT VT : IntVecVTs) { 482 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 483 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 484 485 setOperationAction(ISD::SMIN, VT, Legal); 486 setOperationAction(ISD::SMAX, VT, Legal); 487 setOperationAction(ISD::UMIN, VT, Legal); 488 setOperationAction(ISD::UMAX, VT, Legal); 489 490 setOperationAction(ISD::ROTL, VT, Expand); 491 setOperationAction(ISD::ROTR, VT, Expand); 492 493 // Custom-lower extensions and truncations from/to mask types. 494 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 495 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 496 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 497 498 // RVV has native int->float & float->int conversions where the 499 // element type sizes are within one power-of-two of each other. Any 500 // wider distances between type sizes have to be lowered as sequences 501 // which progressively narrow the gap in stages. 502 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 503 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 504 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 505 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 506 507 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 508 // nodes which truncate by one power of two at a time. 509 setOperationAction(ISD::TRUNCATE, VT, Custom); 510 511 // Custom-lower insert/extract operations to simplify patterns. 512 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 513 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 514 515 // Custom-lower reduction operations to set up the corresponding custom 516 // nodes' operands. 517 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 518 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 519 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 520 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 521 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 522 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 523 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 524 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 525 526 for (unsigned VPOpc : IntegerVPOps) 527 setOperationAction(VPOpc, VT, Custom); 528 529 setOperationAction(ISD::LOAD, VT, Custom); 530 setOperationAction(ISD::STORE, VT, Custom); 531 532 setOperationAction(ISD::MLOAD, VT, Custom); 533 setOperationAction(ISD::MSTORE, VT, Custom); 534 setOperationAction(ISD::MGATHER, VT, Custom); 535 setOperationAction(ISD::MSCATTER, VT, Custom); 536 537 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 538 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 539 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 540 541 setOperationAction(ISD::SELECT, VT, Custom); 542 setOperationAction(ISD::SELECT_CC, VT, Expand); 543 544 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 545 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 546 547 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 548 setTruncStoreAction(VT, OtherVT, Expand); 549 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 550 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 551 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 552 } 553 } 554 555 // Expand various CCs to best match the RVV ISA, which natively supports UNE 556 // but no other unordered comparisons, and supports all ordered comparisons 557 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 558 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 559 // and we pattern-match those back to the "original", swapping operands once 560 // more. This way we catch both operations and both "vf" and "fv" forms with 561 // fewer patterns. 562 ISD::CondCode VFPCCToExpand[] = { 563 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 564 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 565 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 566 }; 567 568 // Sets common operation actions on RVV floating-point vector types. 569 const auto SetCommonVFPActions = [&](MVT VT) { 570 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 571 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 572 // sizes are within one power-of-two of each other. Therefore conversions 573 // between vXf16 and vXf64 must be lowered as sequences which convert via 574 // vXf32. 575 setOperationAction(ISD::FP_ROUND, VT, Custom); 576 setOperationAction(ISD::FP_EXTEND, VT, Custom); 577 // Custom-lower insert/extract operations to simplify patterns. 578 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 580 // Expand various condition codes (explained above). 581 for (auto CC : VFPCCToExpand) 582 setCondCodeAction(CC, VT, Expand); 583 584 setOperationAction(ISD::FMINNUM, VT, Legal); 585 setOperationAction(ISD::FMAXNUM, VT, Legal); 586 587 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 588 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 589 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 590 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 591 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 592 593 setOperationAction(ISD::LOAD, VT, Custom); 594 setOperationAction(ISD::STORE, VT, Custom); 595 596 setOperationAction(ISD::MLOAD, VT, Custom); 597 setOperationAction(ISD::MSTORE, VT, Custom); 598 setOperationAction(ISD::MGATHER, VT, Custom); 599 setOperationAction(ISD::MSCATTER, VT, Custom); 600 601 setOperationAction(ISD::SELECT, VT, Custom); 602 setOperationAction(ISD::SELECT_CC, VT, Expand); 603 604 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 605 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 606 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 607 608 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 609 610 for (unsigned VPOpc : FloatingPointVPOps) 611 setOperationAction(VPOpc, VT, Custom); 612 }; 613 614 // Sets common extload/truncstore actions on RVV floating-point vector 615 // types. 616 const auto SetCommonVFPExtLoadTruncStoreActions = 617 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 618 for (auto SmallVT : SmallerVTs) { 619 setTruncStoreAction(VT, SmallVT, Expand); 620 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 621 } 622 }; 623 624 if (Subtarget.hasStdExtZfh()) 625 for (MVT VT : F16VecVTs) 626 SetCommonVFPActions(VT); 627 628 for (MVT VT : F32VecVTs) { 629 if (Subtarget.hasStdExtF()) 630 SetCommonVFPActions(VT); 631 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 632 } 633 634 for (MVT VT : F64VecVTs) { 635 if (Subtarget.hasStdExtD()) 636 SetCommonVFPActions(VT); 637 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 638 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 639 } 640 641 if (Subtarget.useRVVForFixedLengthVectors()) { 642 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 643 if (!useRVVForFixedLengthVectorVT(VT)) 644 continue; 645 646 // By default everything must be expanded. 647 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 648 setOperationAction(Op, VT, Expand); 649 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 650 setTruncStoreAction(VT, OtherVT, Expand); 651 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 652 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 653 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 654 } 655 656 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 657 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 658 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 659 660 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 661 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 662 663 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 664 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 665 666 setOperationAction(ISD::LOAD, VT, Custom); 667 setOperationAction(ISD::STORE, VT, Custom); 668 669 setOperationAction(ISD::SETCC, VT, Custom); 670 671 setOperationAction(ISD::SELECT, VT, Custom); 672 673 setOperationAction(ISD::TRUNCATE, VT, Custom); 674 675 setOperationAction(ISD::BITCAST, VT, Custom); 676 677 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 678 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 679 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 680 681 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 682 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 683 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 684 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 685 686 // Operations below are different for between masks and other vectors. 687 if (VT.getVectorElementType() == MVT::i1) { 688 setOperationAction(ISD::AND, VT, Custom); 689 setOperationAction(ISD::OR, VT, Custom); 690 setOperationAction(ISD::XOR, VT, Custom); 691 continue; 692 } 693 694 // Use SPLAT_VECTOR to prevent type legalization from destroying the 695 // splats when type legalizing i64 scalar on RV32. 696 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 697 // improvements first. 698 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 699 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 700 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 701 } 702 703 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 704 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 705 706 setOperationAction(ISD::MLOAD, VT, Custom); 707 setOperationAction(ISD::MSTORE, VT, Custom); 708 setOperationAction(ISD::MGATHER, VT, Custom); 709 setOperationAction(ISD::MSCATTER, VT, Custom); 710 setOperationAction(ISD::ADD, VT, Custom); 711 setOperationAction(ISD::MUL, VT, Custom); 712 setOperationAction(ISD::SUB, VT, Custom); 713 setOperationAction(ISD::AND, VT, Custom); 714 setOperationAction(ISD::OR, VT, Custom); 715 setOperationAction(ISD::XOR, VT, Custom); 716 setOperationAction(ISD::SDIV, VT, Custom); 717 setOperationAction(ISD::SREM, VT, Custom); 718 setOperationAction(ISD::UDIV, VT, Custom); 719 setOperationAction(ISD::UREM, VT, Custom); 720 setOperationAction(ISD::SHL, VT, Custom); 721 setOperationAction(ISD::SRA, VT, Custom); 722 setOperationAction(ISD::SRL, VT, Custom); 723 724 setOperationAction(ISD::SMIN, VT, Custom); 725 setOperationAction(ISD::SMAX, VT, Custom); 726 setOperationAction(ISD::UMIN, VT, Custom); 727 setOperationAction(ISD::UMAX, VT, Custom); 728 setOperationAction(ISD::ABS, VT, Custom); 729 730 setOperationAction(ISD::MULHS, VT, Custom); 731 setOperationAction(ISD::MULHU, VT, Custom); 732 733 setOperationAction(ISD::VSELECT, VT, Custom); 734 setOperationAction(ISD::SELECT_CC, VT, Expand); 735 736 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 737 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 738 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 739 740 // Custom-lower reduction operations to set up the corresponding custom 741 // nodes' operands. 742 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 743 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 744 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 745 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 746 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 747 748 for (unsigned VPOpc : IntegerVPOps) 749 setOperationAction(VPOpc, VT, Custom); 750 } 751 752 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 753 if (!useRVVForFixedLengthVectorVT(VT)) 754 continue; 755 756 // By default everything must be expanded. 757 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 758 setOperationAction(Op, VT, Expand); 759 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 760 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 761 setTruncStoreAction(VT, OtherVT, Expand); 762 } 763 764 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 765 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 766 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 767 768 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 769 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 770 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 771 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 772 773 setOperationAction(ISD::LOAD, VT, Custom); 774 setOperationAction(ISD::STORE, VT, Custom); 775 setOperationAction(ISD::MLOAD, VT, Custom); 776 setOperationAction(ISD::MSTORE, VT, Custom); 777 setOperationAction(ISD::MGATHER, VT, Custom); 778 setOperationAction(ISD::MSCATTER, VT, Custom); 779 setOperationAction(ISD::FADD, VT, Custom); 780 setOperationAction(ISD::FSUB, VT, Custom); 781 setOperationAction(ISD::FMUL, VT, Custom); 782 setOperationAction(ISD::FDIV, VT, Custom); 783 setOperationAction(ISD::FNEG, VT, Custom); 784 setOperationAction(ISD::FABS, VT, Custom); 785 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 786 setOperationAction(ISD::FSQRT, VT, Custom); 787 setOperationAction(ISD::FMA, VT, Custom); 788 setOperationAction(ISD::FMINNUM, VT, Custom); 789 setOperationAction(ISD::FMAXNUM, VT, Custom); 790 791 setOperationAction(ISD::FP_ROUND, VT, Custom); 792 setOperationAction(ISD::FP_EXTEND, VT, Custom); 793 794 for (auto CC : VFPCCToExpand) 795 setCondCodeAction(CC, VT, Expand); 796 797 setOperationAction(ISD::VSELECT, VT, Custom); 798 setOperationAction(ISD::SELECT, VT, Custom); 799 setOperationAction(ISD::SELECT_CC, VT, Expand); 800 801 setOperationAction(ISD::BITCAST, VT, Custom); 802 803 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 804 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 805 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 806 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 807 808 for (unsigned VPOpc : FloatingPointVPOps) 809 setOperationAction(VPOpc, VT, Custom); 810 } 811 812 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 813 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 814 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 815 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 816 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 817 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 818 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 819 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 820 } 821 } 822 823 // Function alignments. 824 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 825 setMinFunctionAlignment(FunctionAlignment); 826 setPrefFunctionAlignment(FunctionAlignment); 827 828 setMinimumJumpTableEntries(5); 829 830 // Jumps are expensive, compared to logic 831 setJumpIsExpensive(); 832 833 // We can use any register for comparisons 834 setHasMultipleConditionRegisters(); 835 836 setTargetDAGCombine(ISD::AND); 837 setTargetDAGCombine(ISD::OR); 838 setTargetDAGCombine(ISD::XOR); 839 setTargetDAGCombine(ISD::ANY_EXTEND); 840 if (Subtarget.hasStdExtV()) { 841 setTargetDAGCombine(ISD::FCOPYSIGN); 842 setTargetDAGCombine(ISD::MGATHER); 843 setTargetDAGCombine(ISD::MSCATTER); 844 setTargetDAGCombine(ISD::SRA); 845 setTargetDAGCombine(ISD::SRL); 846 setTargetDAGCombine(ISD::SHL); 847 } 848 } 849 850 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 851 LLVMContext &Context, 852 EVT VT) const { 853 if (!VT.isVector()) 854 return getPointerTy(DL); 855 if (Subtarget.hasStdExtV() && 856 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 857 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 858 return VT.changeVectorElementTypeToInteger(); 859 } 860 861 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 862 return Subtarget.getXLenVT(); 863 } 864 865 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 866 const CallInst &I, 867 MachineFunction &MF, 868 unsigned Intrinsic) const { 869 switch (Intrinsic) { 870 default: 871 return false; 872 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 873 case Intrinsic::riscv_masked_atomicrmw_add_i32: 874 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 875 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 876 case Intrinsic::riscv_masked_atomicrmw_max_i32: 877 case Intrinsic::riscv_masked_atomicrmw_min_i32: 878 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 879 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 880 case Intrinsic::riscv_masked_cmpxchg_i32: 881 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 882 Info.opc = ISD::INTRINSIC_W_CHAIN; 883 Info.memVT = MVT::getVT(PtrTy->getElementType()); 884 Info.ptrVal = I.getArgOperand(0); 885 Info.offset = 0; 886 Info.align = Align(4); 887 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 888 MachineMemOperand::MOVolatile; 889 return true; 890 } 891 } 892 893 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 894 const AddrMode &AM, Type *Ty, 895 unsigned AS, 896 Instruction *I) const { 897 // No global is ever allowed as a base. 898 if (AM.BaseGV) 899 return false; 900 901 // Require a 12-bit signed offset. 902 if (!isInt<12>(AM.BaseOffs)) 903 return false; 904 905 switch (AM.Scale) { 906 case 0: // "r+i" or just "i", depending on HasBaseReg. 907 break; 908 case 1: 909 if (!AM.HasBaseReg) // allow "r+i". 910 break; 911 return false; // disallow "r+r" or "r+r+i". 912 default: 913 return false; 914 } 915 916 return true; 917 } 918 919 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 920 return isInt<12>(Imm); 921 } 922 923 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 924 return isInt<12>(Imm); 925 } 926 927 // On RV32, 64-bit integers are split into their high and low parts and held 928 // in two different registers, so the trunc is free since the low register can 929 // just be used. 930 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 931 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 932 return false; 933 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 934 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 935 return (SrcBits == 64 && DestBits == 32); 936 } 937 938 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 939 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 940 !SrcVT.isInteger() || !DstVT.isInteger()) 941 return false; 942 unsigned SrcBits = SrcVT.getSizeInBits(); 943 unsigned DestBits = DstVT.getSizeInBits(); 944 return (SrcBits == 64 && DestBits == 32); 945 } 946 947 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 948 // Zexts are free if they can be combined with a load. 949 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 950 EVT MemVT = LD->getMemoryVT(); 951 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 952 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 953 (LD->getExtensionType() == ISD::NON_EXTLOAD || 954 LD->getExtensionType() == ISD::ZEXTLOAD)) 955 return true; 956 } 957 958 return TargetLowering::isZExtFree(Val, VT2); 959 } 960 961 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 962 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 963 } 964 965 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 966 return Subtarget.hasStdExtZbb(); 967 } 968 969 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 970 return Subtarget.hasStdExtZbb(); 971 } 972 973 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 974 bool ForCodeSize) const { 975 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 976 return false; 977 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 978 return false; 979 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 980 return false; 981 if (Imm.isNegZero()) 982 return false; 983 return Imm.isZero(); 984 } 985 986 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 987 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 988 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 989 (VT == MVT::f64 && Subtarget.hasStdExtD()); 990 } 991 992 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 993 CallingConv::ID CC, 994 EVT VT) const { 995 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 996 // end up using a GPR but that will be decided based on ABI. 997 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 998 return MVT::f32; 999 1000 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1001 } 1002 1003 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1004 CallingConv::ID CC, 1005 EVT VT) const { 1006 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1007 // end up using a GPR but that will be decided based on ABI. 1008 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1009 return 1; 1010 1011 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1012 } 1013 1014 // Changes the condition code and swaps operands if necessary, so the SetCC 1015 // operation matches one of the comparisons supported directly by branches 1016 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1017 // with 1/-1. 1018 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1019 ISD::CondCode &CC, SelectionDAG &DAG) { 1020 // Convert X > -1 to X >= 0. 1021 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1022 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1023 CC = ISD::SETGE; 1024 return; 1025 } 1026 // Convert X < 1 to 0 >= X. 1027 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1028 RHS = LHS; 1029 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1030 CC = ISD::SETGE; 1031 return; 1032 } 1033 1034 switch (CC) { 1035 default: 1036 break; 1037 case ISD::SETGT: 1038 case ISD::SETLE: 1039 case ISD::SETUGT: 1040 case ISD::SETULE: 1041 CC = ISD::getSetCCSwappedOperands(CC); 1042 std::swap(LHS, RHS); 1043 break; 1044 } 1045 } 1046 1047 // Return the RISC-V branch opcode that matches the given DAG integer 1048 // condition code. The CondCode must be one of those supported by the RISC-V 1049 // ISA (see translateSetCCForBranch). 1050 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1051 switch (CC) { 1052 default: 1053 llvm_unreachable("Unsupported CondCode"); 1054 case ISD::SETEQ: 1055 return RISCV::BEQ; 1056 case ISD::SETNE: 1057 return RISCV::BNE; 1058 case ISD::SETLT: 1059 return RISCV::BLT; 1060 case ISD::SETGE: 1061 return RISCV::BGE; 1062 case ISD::SETULT: 1063 return RISCV::BLTU; 1064 case ISD::SETUGE: 1065 return RISCV::BGEU; 1066 } 1067 } 1068 1069 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1070 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1071 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1072 if (VT.getVectorElementType() == MVT::i1) 1073 KnownSize *= 8; 1074 1075 switch (KnownSize) { 1076 default: 1077 llvm_unreachable("Invalid LMUL."); 1078 case 8: 1079 return RISCVII::VLMUL::LMUL_F8; 1080 case 16: 1081 return RISCVII::VLMUL::LMUL_F4; 1082 case 32: 1083 return RISCVII::VLMUL::LMUL_F2; 1084 case 64: 1085 return RISCVII::VLMUL::LMUL_1; 1086 case 128: 1087 return RISCVII::VLMUL::LMUL_2; 1088 case 256: 1089 return RISCVII::VLMUL::LMUL_4; 1090 case 512: 1091 return RISCVII::VLMUL::LMUL_8; 1092 } 1093 } 1094 1095 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1096 switch (LMul) { 1097 default: 1098 llvm_unreachable("Invalid LMUL."); 1099 case RISCVII::VLMUL::LMUL_F8: 1100 case RISCVII::VLMUL::LMUL_F4: 1101 case RISCVII::VLMUL::LMUL_F2: 1102 case RISCVII::VLMUL::LMUL_1: 1103 return RISCV::VRRegClassID; 1104 case RISCVII::VLMUL::LMUL_2: 1105 return RISCV::VRM2RegClassID; 1106 case RISCVII::VLMUL::LMUL_4: 1107 return RISCV::VRM4RegClassID; 1108 case RISCVII::VLMUL::LMUL_8: 1109 return RISCV::VRM8RegClassID; 1110 } 1111 } 1112 1113 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1114 RISCVII::VLMUL LMUL = getLMUL(VT); 1115 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1116 LMUL == RISCVII::VLMUL::LMUL_F4 || 1117 LMUL == RISCVII::VLMUL::LMUL_F2 || 1118 LMUL == RISCVII::VLMUL::LMUL_1) { 1119 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1120 "Unexpected subreg numbering"); 1121 return RISCV::sub_vrm1_0 + Index; 1122 } 1123 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1124 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1125 "Unexpected subreg numbering"); 1126 return RISCV::sub_vrm2_0 + Index; 1127 } 1128 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1129 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1130 "Unexpected subreg numbering"); 1131 return RISCV::sub_vrm4_0 + Index; 1132 } 1133 llvm_unreachable("Invalid vector type."); 1134 } 1135 1136 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1137 if (VT.getVectorElementType() == MVT::i1) 1138 return RISCV::VRRegClassID; 1139 return getRegClassIDForLMUL(getLMUL(VT)); 1140 } 1141 1142 // Attempt to decompose a subvector insert/extract between VecVT and 1143 // SubVecVT via subregister indices. Returns the subregister index that 1144 // can perform the subvector insert/extract with the given element index, as 1145 // well as the index corresponding to any leftover subvectors that must be 1146 // further inserted/extracted within the register class for SubVecVT. 1147 std::pair<unsigned, unsigned> 1148 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1149 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1150 const RISCVRegisterInfo *TRI) { 1151 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1152 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1153 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1154 "Register classes not ordered"); 1155 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1156 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1157 // Try to compose a subregister index that takes us from the incoming 1158 // LMUL>1 register class down to the outgoing one. At each step we half 1159 // the LMUL: 1160 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1161 // Note that this is not guaranteed to find a subregister index, such as 1162 // when we are extracting from one VR type to another. 1163 unsigned SubRegIdx = RISCV::NoSubRegister; 1164 for (const unsigned RCID : 1165 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1166 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1167 VecVT = VecVT.getHalfNumVectorElementsVT(); 1168 bool IsHi = 1169 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1170 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1171 getSubregIndexByMVT(VecVT, IsHi)); 1172 if (IsHi) 1173 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1174 } 1175 return {SubRegIdx, InsertExtractIdx}; 1176 } 1177 1178 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1179 // stores for those types. 1180 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1181 return !Subtarget.useRVVForFixedLengthVectors() || 1182 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1183 } 1184 1185 static bool useRVVForFixedLengthVectorVT(MVT VT, 1186 const RISCVSubtarget &Subtarget) { 1187 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1188 if (!Subtarget.useRVVForFixedLengthVectors()) 1189 return false; 1190 1191 // We only support a set of vector types with a consistent maximum fixed size 1192 // across all supported vector element types to avoid legalization issues. 1193 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1194 // fixed-length vector type we support is 1024 bytes. 1195 if (VT.getFixedSizeInBits() > 1024 * 8) 1196 return false; 1197 1198 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1199 1200 // Don't use RVV for vectors we cannot scalarize if required. 1201 switch (VT.getVectorElementType().SimpleTy) { 1202 // i1 is supported but has different rules. 1203 default: 1204 return false; 1205 case MVT::i1: 1206 // Masks can only use a single register. 1207 if (VT.getVectorNumElements() > MinVLen) 1208 return false; 1209 MinVLen /= 8; 1210 break; 1211 case MVT::i8: 1212 case MVT::i16: 1213 case MVT::i32: 1214 case MVT::i64: 1215 break; 1216 case MVT::f16: 1217 if (!Subtarget.hasStdExtZfh()) 1218 return false; 1219 break; 1220 case MVT::f32: 1221 if (!Subtarget.hasStdExtF()) 1222 return false; 1223 break; 1224 case MVT::f64: 1225 if (!Subtarget.hasStdExtD()) 1226 return false; 1227 break; 1228 } 1229 1230 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1231 // Don't use RVV for types that don't fit. 1232 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1233 return false; 1234 1235 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1236 // the base fixed length RVV support in place. 1237 if (!VT.isPow2VectorType()) 1238 return false; 1239 1240 return true; 1241 } 1242 1243 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1244 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1245 } 1246 1247 // Return the largest legal scalable vector type that matches VT's element type. 1248 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1249 const RISCVSubtarget &Subtarget) { 1250 // This may be called before legal types are setup. 1251 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1252 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1253 "Expected legal fixed length vector!"); 1254 1255 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1256 1257 MVT EltVT = VT.getVectorElementType(); 1258 switch (EltVT.SimpleTy) { 1259 default: 1260 llvm_unreachable("unexpected element type for RVV container"); 1261 case MVT::i1: 1262 case MVT::i8: 1263 case MVT::i16: 1264 case MVT::i32: 1265 case MVT::i64: 1266 case MVT::f16: 1267 case MVT::f32: 1268 case MVT::f64: { 1269 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1270 // narrower types, but we can't have a fractional LMUL with demoninator less 1271 // than 64/SEW. 1272 unsigned NumElts = 1273 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1274 return MVT::getScalableVectorVT(EltVT, NumElts); 1275 } 1276 } 1277 } 1278 1279 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1280 const RISCVSubtarget &Subtarget) { 1281 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1282 Subtarget); 1283 } 1284 1285 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1286 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1287 } 1288 1289 // Grow V to consume an entire RVV register. 1290 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1291 const RISCVSubtarget &Subtarget) { 1292 assert(VT.isScalableVector() && 1293 "Expected to convert into a scalable vector!"); 1294 assert(V.getValueType().isFixedLengthVector() && 1295 "Expected a fixed length vector operand!"); 1296 SDLoc DL(V); 1297 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1298 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1299 } 1300 1301 // Shrink V so it's just big enough to maintain a VT's worth of data. 1302 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1303 const RISCVSubtarget &Subtarget) { 1304 assert(VT.isFixedLengthVector() && 1305 "Expected to convert into a fixed length vector!"); 1306 assert(V.getValueType().isScalableVector() && 1307 "Expected a scalable vector operand!"); 1308 SDLoc DL(V); 1309 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1310 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1311 } 1312 1313 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1314 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1315 // the vector type that it is contained in. 1316 static std::pair<SDValue, SDValue> 1317 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1318 const RISCVSubtarget &Subtarget) { 1319 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1320 MVT XLenVT = Subtarget.getXLenVT(); 1321 SDValue VL = VecVT.isFixedLengthVector() 1322 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1323 : DAG.getRegister(RISCV::X0, XLenVT); 1324 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1325 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1326 return {Mask, VL}; 1327 } 1328 1329 // As above but assuming the given type is a scalable vector type. 1330 static std::pair<SDValue, SDValue> 1331 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1332 const RISCVSubtarget &Subtarget) { 1333 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1334 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1335 } 1336 1337 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1338 // of either is (currently) supported. This can get us into an infinite loop 1339 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1340 // as a ..., etc. 1341 // Until either (or both) of these can reliably lower any node, reporting that 1342 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1343 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1344 // which is not desirable. 1345 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1346 EVT VT, unsigned DefinedValues) const { 1347 return false; 1348 } 1349 1350 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1351 // Only splats are currently supported. 1352 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1353 return true; 1354 1355 return false; 1356 } 1357 1358 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1359 const RISCVSubtarget &Subtarget) { 1360 MVT VT = Op.getSimpleValueType(); 1361 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1362 1363 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1364 1365 SDLoc DL(Op); 1366 SDValue Mask, VL; 1367 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1368 1369 unsigned Opc = 1370 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1371 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1372 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1373 } 1374 1375 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1376 const RISCVSubtarget &Subtarget) { 1377 MVT VT = Op.getSimpleValueType(); 1378 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1379 1380 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1381 1382 SDLoc DL(Op); 1383 SDValue Mask, VL; 1384 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1385 1386 MVT XLenVT = Subtarget.getXLenVT(); 1387 unsigned NumElts = Op.getNumOperands(); 1388 1389 if (VT.getVectorElementType() == MVT::i1) { 1390 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1391 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1392 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1393 } 1394 1395 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1396 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1397 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1398 } 1399 1400 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1401 // scalar integer chunks whose bit-width depends on the number of mask 1402 // bits and XLEN. 1403 // First, determine the most appropriate scalar integer type to use. This 1404 // is at most XLenVT, but may be shrunk to a smaller vector element type 1405 // according to the size of the final vector - use i8 chunks rather than 1406 // XLenVT if we're producing a v8i1. This results in more consistent 1407 // codegen across RV32 and RV64. 1408 unsigned NumViaIntegerBits = 1409 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1410 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1411 // If we have to use more than one INSERT_VECTOR_ELT then this 1412 // optimization is likely to increase code size; avoid peforming it in 1413 // such a case. We can use a load from a constant pool in this case. 1414 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1415 return SDValue(); 1416 // Now we can create our integer vector type. Note that it may be larger 1417 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1418 MVT IntegerViaVecVT = 1419 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1420 divideCeil(NumElts, NumViaIntegerBits)); 1421 1422 uint64_t Bits = 0; 1423 unsigned BitPos = 0, IntegerEltIdx = 0; 1424 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1425 1426 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1427 // Once we accumulate enough bits to fill our scalar type, insert into 1428 // our vector and clear our accumulated data. 1429 if (I != 0 && I % NumViaIntegerBits == 0) { 1430 if (NumViaIntegerBits <= 32) 1431 Bits = SignExtend64(Bits, 32); 1432 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1433 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1434 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1435 Bits = 0; 1436 BitPos = 0; 1437 IntegerEltIdx++; 1438 } 1439 SDValue V = Op.getOperand(I); 1440 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1441 Bits |= ((uint64_t)BitValue << BitPos); 1442 } 1443 1444 // Insert the (remaining) scalar value into position in our integer 1445 // vector type. 1446 if (NumViaIntegerBits <= 32) 1447 Bits = SignExtend64(Bits, 32); 1448 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1449 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1450 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1451 1452 if (NumElts < NumViaIntegerBits) { 1453 // If we're producing a smaller vector than our minimum legal integer 1454 // type, bitcast to the equivalent (known-legal) mask type, and extract 1455 // our final mask. 1456 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1457 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1458 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1459 DAG.getConstant(0, DL, XLenVT)); 1460 } else { 1461 // Else we must have produced an integer type with the same size as the 1462 // mask type; bitcast for the final result. 1463 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1464 Vec = DAG.getBitcast(VT, Vec); 1465 } 1466 1467 return Vec; 1468 } 1469 1470 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1471 // vector type, we have a legal equivalently-sized i8 type, so we can use 1472 // that. 1473 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1474 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1475 1476 SDValue WideVec; 1477 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1478 // For a splat, perform a scalar truncate before creating the wider 1479 // vector. 1480 assert(Splat.getValueType() == XLenVT && 1481 "Unexpected type for i1 splat value"); 1482 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1483 DAG.getConstant(1, DL, XLenVT)); 1484 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1485 } else { 1486 SmallVector<SDValue, 8> Ops(Op->op_values()); 1487 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1488 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1489 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1490 } 1491 1492 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1493 } 1494 1495 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1496 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1497 : RISCVISD::VMV_V_X_VL; 1498 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1499 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1500 } 1501 1502 // Try and match an index sequence, which we can lower directly to the vid 1503 // instruction. An all-undef vector is matched by getSplatValue, above. 1504 if (VT.isInteger()) { 1505 bool IsVID = true; 1506 for (unsigned I = 0; I < NumElts && IsVID; I++) 1507 IsVID &= Op.getOperand(I).isUndef() || 1508 (isa<ConstantSDNode>(Op.getOperand(I)) && 1509 Op.getConstantOperandVal(I) == I); 1510 1511 if (IsVID) { 1512 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1513 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1514 } 1515 } 1516 1517 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1518 // when re-interpreted as a vector with a larger element type. For example, 1519 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1520 // could be instead splat as 1521 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1522 // TODO: This optimization could also work on non-constant splats, but it 1523 // would require bit-manipulation instructions to construct the splat value. 1524 SmallVector<SDValue> Sequence; 1525 unsigned EltBitSize = VT.getScalarSizeInBits(); 1526 const auto *BV = cast<BuildVectorSDNode>(Op); 1527 if (VT.isInteger() && EltBitSize < 64 && 1528 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1529 BV->getRepeatedSequence(Sequence) && 1530 (Sequence.size() * EltBitSize) <= 64) { 1531 unsigned SeqLen = Sequence.size(); 1532 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1533 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1534 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1535 ViaIntVT == MVT::i64) && 1536 "Unexpected sequence type"); 1537 1538 unsigned EltIdx = 0; 1539 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1540 uint64_t SplatValue = 0; 1541 // Construct the amalgamated value which can be splatted as this larger 1542 // vector type. 1543 for (const auto &SeqV : Sequence) { 1544 if (!SeqV.isUndef()) 1545 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1546 << (EltIdx * EltBitSize)); 1547 EltIdx++; 1548 } 1549 1550 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1551 // achieve better constant materializion. 1552 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1553 SplatValue = SignExtend64(SplatValue, 32); 1554 1555 // Since we can't introduce illegal i64 types at this stage, we can only 1556 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1557 // way we can use RVV instructions to splat. 1558 assert((ViaIntVT.bitsLE(XLenVT) || 1559 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1560 "Unexpected bitcast sequence"); 1561 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1562 SDValue ViaVL = 1563 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1564 MVT ViaContainerVT = 1565 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1566 SDValue Splat = 1567 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1568 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1569 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1570 return DAG.getBitcast(VT, Splat); 1571 } 1572 } 1573 1574 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1575 // which constitute a large proportion of the elements. In such cases we can 1576 // splat a vector with the dominant element and make up the shortfall with 1577 // INSERT_VECTOR_ELTs. 1578 // Note that this includes vectors of 2 elements by association. The 1579 // upper-most element is the "dominant" one, allowing us to use a splat to 1580 // "insert" the upper element, and an insert of the lower element at position 1581 // 0, which improves codegen. 1582 SDValue DominantValue; 1583 unsigned MostCommonCount = 0; 1584 DenseMap<SDValue, unsigned> ValueCounts; 1585 unsigned NumUndefElts = 1586 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1587 1588 for (SDValue V : Op->op_values()) { 1589 if (V.isUndef()) 1590 continue; 1591 1592 ValueCounts.insert(std::make_pair(V, 0)); 1593 unsigned &Count = ValueCounts[V]; 1594 1595 // Is this value dominant? In case of a tie, prefer the highest element as 1596 // it's cheaper to insert near the beginning of a vector than it is at the 1597 // end. 1598 if (++Count >= MostCommonCount) { 1599 DominantValue = V; 1600 MostCommonCount = Count; 1601 } 1602 } 1603 1604 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1605 unsigned NumDefElts = NumElts - NumUndefElts; 1606 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1607 1608 // Don't perform this optimization when optimizing for size, since 1609 // materializing elements and inserting them tends to cause code bloat. 1610 if (!DAG.shouldOptForSize() && 1611 ((MostCommonCount > DominantValueCountThreshold) || 1612 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1613 // Start by splatting the most common element. 1614 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1615 1616 DenseSet<SDValue> Processed{DominantValue}; 1617 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1618 for (const auto &OpIdx : enumerate(Op->ops())) { 1619 const SDValue &V = OpIdx.value(); 1620 if (V.isUndef() || !Processed.insert(V).second) 1621 continue; 1622 if (ValueCounts[V] == 1) { 1623 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1624 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1625 } else { 1626 // Blend in all instances of this value using a VSELECT, using a 1627 // mask where each bit signals whether that element is the one 1628 // we're after. 1629 SmallVector<SDValue> Ops; 1630 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1631 return DAG.getConstant(V == V1, DL, XLenVT); 1632 }); 1633 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1634 DAG.getBuildVector(SelMaskTy, DL, Ops), 1635 DAG.getSplatBuildVector(VT, DL, V), Vec); 1636 } 1637 } 1638 1639 return Vec; 1640 } 1641 1642 return SDValue(); 1643 } 1644 1645 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1646 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1647 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1648 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1649 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1650 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1651 // node in order to try and match RVV vector/scalar instructions. 1652 if ((LoC >> 31) == HiC) 1653 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1654 } 1655 1656 // Fall back to a stack store and stride x0 vector load. 1657 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1658 } 1659 1660 // Called by type legalization to handle splat of i64 on RV32. 1661 // FIXME: We can optimize this when the type has sign or zero bits in one 1662 // of the halves. 1663 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1664 SDValue VL, SelectionDAG &DAG) { 1665 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1666 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1667 DAG.getConstant(0, DL, MVT::i32)); 1668 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1669 DAG.getConstant(1, DL, MVT::i32)); 1670 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1671 } 1672 1673 // This function lowers a splat of a scalar operand Splat with the vector 1674 // length VL. It ensures the final sequence is type legal, which is useful when 1675 // lowering a splat after type legalization. 1676 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1677 SelectionDAG &DAG, 1678 const RISCVSubtarget &Subtarget) { 1679 if (VT.isFloatingPoint()) 1680 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1681 1682 MVT XLenVT = Subtarget.getXLenVT(); 1683 1684 // Simplest case is that the operand needs to be promoted to XLenVT. 1685 if (Scalar.getValueType().bitsLE(XLenVT)) { 1686 // If the operand is a constant, sign extend to increase our chances 1687 // of being able to use a .vi instruction. ANY_EXTEND would become a 1688 // a zero extend and the simm5 check in isel would fail. 1689 // FIXME: Should we ignore the upper bits in isel instead? 1690 unsigned ExtOpc = 1691 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1692 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1693 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1694 } 1695 1696 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1697 "Unexpected scalar for splat lowering!"); 1698 1699 // Otherwise use the more complicated splatting algorithm. 1700 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1701 } 1702 1703 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1704 const RISCVSubtarget &Subtarget) { 1705 SDValue V1 = Op.getOperand(0); 1706 SDValue V2 = Op.getOperand(1); 1707 SDLoc DL(Op); 1708 MVT XLenVT = Subtarget.getXLenVT(); 1709 MVT VT = Op.getSimpleValueType(); 1710 unsigned NumElts = VT.getVectorNumElements(); 1711 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1712 1713 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1714 1715 SDValue TrueMask, VL; 1716 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1717 1718 if (SVN->isSplat()) { 1719 const int Lane = SVN->getSplatIndex(); 1720 if (Lane >= 0) { 1721 MVT SVT = VT.getVectorElementType(); 1722 1723 // Turn splatted vector load into a strided load with an X0 stride. 1724 SDValue V = V1; 1725 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1726 // with undef. 1727 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1728 int Offset = Lane; 1729 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1730 int OpElements = 1731 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1732 V = V.getOperand(Offset / OpElements); 1733 Offset %= OpElements; 1734 } 1735 1736 // We need to ensure the load isn't atomic or volatile. 1737 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1738 auto *Ld = cast<LoadSDNode>(V); 1739 Offset *= SVT.getStoreSize(); 1740 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1741 TypeSize::Fixed(Offset), DL); 1742 1743 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1744 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1745 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1746 SDValue IntID = 1747 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1748 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1749 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1750 SDValue NewLoad = DAG.getMemIntrinsicNode( 1751 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1752 DAG.getMachineFunction().getMachineMemOperand( 1753 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1754 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1755 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1756 } 1757 1758 // Otherwise use a scalar load and splat. This will give the best 1759 // opportunity to fold a splat into the operation. ISel can turn it into 1760 // the x0 strided load if we aren't able to fold away the select. 1761 if (SVT.isFloatingPoint()) 1762 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1763 Ld->getPointerInfo().getWithOffset(Offset), 1764 Ld->getOriginalAlign(), 1765 Ld->getMemOperand()->getFlags()); 1766 else 1767 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1768 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1769 Ld->getOriginalAlign(), 1770 Ld->getMemOperand()->getFlags()); 1771 DAG.makeEquivalentMemoryOrdering(Ld, V); 1772 1773 unsigned Opc = 1774 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1775 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1776 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1777 } 1778 1779 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1780 assert(Lane < (int)NumElts && "Unexpected lane!"); 1781 SDValue Gather = 1782 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1783 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1784 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1785 } 1786 } 1787 1788 // Detect shuffles which can be re-expressed as vector selects; these are 1789 // shuffles in which each element in the destination is taken from an element 1790 // at the corresponding index in either source vectors. 1791 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1792 int MaskIndex = MaskIdx.value(); 1793 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1794 }); 1795 1796 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1797 1798 SmallVector<SDValue> MaskVals; 1799 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1800 // merged with a second vrgather. 1801 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1802 1803 // By default we preserve the original operand order, and use a mask to 1804 // select LHS as true and RHS as false. However, since RVV vector selects may 1805 // feature splats but only on the LHS, we may choose to invert our mask and 1806 // instead select between RHS and LHS. 1807 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1808 bool InvertMask = IsSelect == SwapOps; 1809 1810 // Now construct the mask that will be used by the vselect or blended 1811 // vrgather operation. For vrgathers, construct the appropriate indices into 1812 // each vector. 1813 for (int MaskIndex : SVN->getMask()) { 1814 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1815 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1816 if (!IsSelect) { 1817 bool IsLHS = MaskIndex < (int)NumElts; 1818 // For "undef" elements of -1, shuffle in element 0 instead. 1819 GatherIndicesLHS.push_back( 1820 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1821 // TODO: If we're masking out unused elements anyway, it might produce 1822 // better code if we use the most-common element index instead of 0. 1823 GatherIndicesRHS.push_back( 1824 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1825 } 1826 } 1827 1828 if (SwapOps) { 1829 std::swap(V1, V2); 1830 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1831 } 1832 1833 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1834 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1835 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1836 1837 if (IsSelect) 1838 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1839 1840 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1841 // On such a large vector we're unable to use i8 as the index type. 1842 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1843 // may involve vector splitting if we're already at LMUL=8, or our 1844 // user-supplied maximum fixed-length LMUL. 1845 return SDValue(); 1846 } 1847 1848 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1849 MVT IndexVT = VT.changeTypeToInteger(); 1850 // Since we can't introduce illegal index types at this stage, use i16 and 1851 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1852 // than XLenVT. 1853 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1854 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1855 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1856 } 1857 1858 MVT IndexContainerVT = 1859 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1860 1861 SDValue Gather; 1862 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1863 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1864 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1865 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1866 } else { 1867 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1868 LHSIndices = 1869 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1870 1871 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1872 Gather = 1873 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1874 } 1875 1876 // If a second vector operand is used by this shuffle, blend it in with an 1877 // additional vrgather. 1878 if (!V2.isUndef()) { 1879 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1880 SelectMask = 1881 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1882 1883 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1884 RHSIndices = 1885 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1886 1887 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1888 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1889 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1890 Gather, VL); 1891 } 1892 1893 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1894 } 1895 1896 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1897 SDLoc DL, SelectionDAG &DAG, 1898 const RISCVSubtarget &Subtarget) { 1899 if (VT.isScalableVector()) 1900 return DAG.getFPExtendOrRound(Op, DL, VT); 1901 assert(VT.isFixedLengthVector() && 1902 "Unexpected value type for RVV FP extend/round lowering"); 1903 SDValue Mask, VL; 1904 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1905 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1906 ? RISCVISD::FP_EXTEND_VL 1907 : RISCVISD::FP_ROUND_VL; 1908 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1909 } 1910 1911 // While RVV has alignment restrictions, we should always be able to load as a 1912 // legal equivalently-sized byte-typed vector instead. This method is 1913 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 1914 // the load is already correctly-aligned, it returns SDValue(). 1915 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 1916 SelectionDAG &DAG) const { 1917 auto *Load = cast<LoadSDNode>(Op); 1918 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 1919 1920 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1921 Load->getMemoryVT(), 1922 *Load->getMemOperand())) 1923 return SDValue(); 1924 1925 SDLoc DL(Op); 1926 MVT VT = Op.getSimpleValueType(); 1927 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1928 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1929 "Unexpected unaligned RVV load type"); 1930 MVT NewVT = 1931 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1932 assert(NewVT.isValid() && 1933 "Expecting equally-sized RVV vector types to be legal"); 1934 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 1935 Load->getPointerInfo(), Load->getOriginalAlign(), 1936 Load->getMemOperand()->getFlags()); 1937 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 1938 } 1939 1940 // While RVV has alignment restrictions, we should always be able to store as a 1941 // legal equivalently-sized byte-typed vector instead. This method is 1942 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 1943 // returns SDValue() if the store is already correctly aligned. 1944 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 1945 SelectionDAG &DAG) const { 1946 auto *Store = cast<StoreSDNode>(Op); 1947 assert(Store && Store->getValue().getValueType().isVector() && 1948 "Expected vector store"); 1949 1950 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 1951 Store->getMemoryVT(), 1952 *Store->getMemOperand())) 1953 return SDValue(); 1954 1955 SDLoc DL(Op); 1956 SDValue StoredVal = Store->getValue(); 1957 MVT VT = StoredVal.getSimpleValueType(); 1958 unsigned EltSizeBits = VT.getScalarSizeInBits(); 1959 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 1960 "Unexpected unaligned RVV store type"); 1961 MVT NewVT = 1962 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 1963 assert(NewVT.isValid() && 1964 "Expecting equally-sized RVV vector types to be legal"); 1965 StoredVal = DAG.getBitcast(NewVT, StoredVal); 1966 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 1967 Store->getPointerInfo(), Store->getOriginalAlign(), 1968 Store->getMemOperand()->getFlags()); 1969 } 1970 1971 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1972 SelectionDAG &DAG) const { 1973 switch (Op.getOpcode()) { 1974 default: 1975 report_fatal_error("unimplemented operand"); 1976 case ISD::GlobalAddress: 1977 return lowerGlobalAddress(Op, DAG); 1978 case ISD::BlockAddress: 1979 return lowerBlockAddress(Op, DAG); 1980 case ISD::ConstantPool: 1981 return lowerConstantPool(Op, DAG); 1982 case ISD::JumpTable: 1983 return lowerJumpTable(Op, DAG); 1984 case ISD::GlobalTLSAddress: 1985 return lowerGlobalTLSAddress(Op, DAG); 1986 case ISD::SELECT: 1987 return lowerSELECT(Op, DAG); 1988 case ISD::BRCOND: 1989 return lowerBRCOND(Op, DAG); 1990 case ISD::VASTART: 1991 return lowerVASTART(Op, DAG); 1992 case ISD::FRAMEADDR: 1993 return lowerFRAMEADDR(Op, DAG); 1994 case ISD::RETURNADDR: 1995 return lowerRETURNADDR(Op, DAG); 1996 case ISD::SHL_PARTS: 1997 return lowerShiftLeftParts(Op, DAG); 1998 case ISD::SRA_PARTS: 1999 return lowerShiftRightParts(Op, DAG, true); 2000 case ISD::SRL_PARTS: 2001 return lowerShiftRightParts(Op, DAG, false); 2002 case ISD::BITCAST: { 2003 SDLoc DL(Op); 2004 EVT VT = Op.getValueType(); 2005 SDValue Op0 = Op.getOperand(0); 2006 EVT Op0VT = Op0.getValueType(); 2007 MVT XLenVT = Subtarget.getXLenVT(); 2008 if (VT.isFixedLengthVector()) { 2009 // We can handle fixed length vector bitcasts with a simple replacement 2010 // in isel. 2011 if (Op0VT.isFixedLengthVector()) 2012 return Op; 2013 // When bitcasting from scalar to fixed-length vector, insert the scalar 2014 // into a one-element vector of the result type, and perform a vector 2015 // bitcast. 2016 if (!Op0VT.isVector()) { 2017 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2018 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2019 DAG.getUNDEF(BVT), Op0, 2020 DAG.getConstant(0, DL, XLenVT))); 2021 } 2022 return SDValue(); 2023 } 2024 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2025 // thus: bitcast the vector to a one-element vector type whose element type 2026 // is the same as the result type, and extract the first element. 2027 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2028 LLVMContext &Context = *DAG.getContext(); 2029 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2030 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2031 DAG.getConstant(0, DL, XLenVT)); 2032 } 2033 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2034 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2035 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2036 return FPConv; 2037 } 2038 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2039 Subtarget.hasStdExtF()) { 2040 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2041 SDValue FPConv = 2042 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2043 return FPConv; 2044 } 2045 return SDValue(); 2046 } 2047 case ISD::INTRINSIC_WO_CHAIN: 2048 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2049 case ISD::INTRINSIC_W_CHAIN: 2050 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2051 case ISD::BSWAP: 2052 case ISD::BITREVERSE: { 2053 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2054 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2055 MVT VT = Op.getSimpleValueType(); 2056 SDLoc DL(Op); 2057 // Start with the maximum immediate value which is the bitwidth - 1. 2058 unsigned Imm = VT.getSizeInBits() - 1; 2059 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2060 if (Op.getOpcode() == ISD::BSWAP) 2061 Imm &= ~0x7U; 2062 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2063 DAG.getConstant(Imm, DL, VT)); 2064 } 2065 case ISD::FSHL: 2066 case ISD::FSHR: { 2067 MVT VT = Op.getSimpleValueType(); 2068 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2069 SDLoc DL(Op); 2070 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2071 return Op; 2072 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2073 // use log(XLen) bits. Mask the shift amount accordingly. 2074 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2075 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2076 DAG.getConstant(ShAmtWidth, DL, VT)); 2077 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2078 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2079 } 2080 case ISD::TRUNCATE: { 2081 SDLoc DL(Op); 2082 MVT VT = Op.getSimpleValueType(); 2083 // Only custom-lower vector truncates 2084 if (!VT.isVector()) 2085 return Op; 2086 2087 // Truncates to mask types are handled differently 2088 if (VT.getVectorElementType() == MVT::i1) 2089 return lowerVectorMaskTrunc(Op, DAG); 2090 2091 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2092 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2093 // truncate by one power of two at a time. 2094 MVT DstEltVT = VT.getVectorElementType(); 2095 2096 SDValue Src = Op.getOperand(0); 2097 MVT SrcVT = Src.getSimpleValueType(); 2098 MVT SrcEltVT = SrcVT.getVectorElementType(); 2099 2100 assert(DstEltVT.bitsLT(SrcEltVT) && 2101 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2102 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2103 "Unexpected vector truncate lowering"); 2104 2105 MVT ContainerVT = SrcVT; 2106 if (SrcVT.isFixedLengthVector()) { 2107 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2108 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2109 } 2110 2111 SDValue Result = Src; 2112 SDValue Mask, VL; 2113 std::tie(Mask, VL) = 2114 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2115 LLVMContext &Context = *DAG.getContext(); 2116 const ElementCount Count = ContainerVT.getVectorElementCount(); 2117 do { 2118 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2119 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2120 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2121 Mask, VL); 2122 } while (SrcEltVT != DstEltVT); 2123 2124 if (SrcVT.isFixedLengthVector()) 2125 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2126 2127 return Result; 2128 } 2129 case ISD::ANY_EXTEND: 2130 case ISD::ZERO_EXTEND: 2131 if (Op.getOperand(0).getValueType().isVector() && 2132 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2133 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2134 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2135 case ISD::SIGN_EXTEND: 2136 if (Op.getOperand(0).getValueType().isVector() && 2137 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2138 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2139 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2140 case ISD::SPLAT_VECTOR_PARTS: 2141 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2142 case ISD::INSERT_VECTOR_ELT: 2143 return lowerINSERT_VECTOR_ELT(Op, DAG); 2144 case ISD::EXTRACT_VECTOR_ELT: 2145 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2146 case ISD::VSCALE: { 2147 MVT VT = Op.getSimpleValueType(); 2148 SDLoc DL(Op); 2149 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2150 // We define our scalable vector types for lmul=1 to use a 64 bit known 2151 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2152 // vscale as VLENB / 8. 2153 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2154 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2155 DAG.getConstant(3, DL, VT)); 2156 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2157 } 2158 case ISD::FP_EXTEND: { 2159 // RVV can only do fp_extend to types double the size as the source. We 2160 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2161 // via f32. 2162 SDLoc DL(Op); 2163 MVT VT = Op.getSimpleValueType(); 2164 SDValue Src = Op.getOperand(0); 2165 MVT SrcVT = Src.getSimpleValueType(); 2166 2167 // Prepare any fixed-length vector operands. 2168 MVT ContainerVT = VT; 2169 if (SrcVT.isFixedLengthVector()) { 2170 ContainerVT = getContainerForFixedLengthVector(VT); 2171 MVT SrcContainerVT = 2172 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2173 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2174 } 2175 2176 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2177 SrcVT.getVectorElementType() != MVT::f16) { 2178 // For scalable vectors, we only need to close the gap between 2179 // vXf16->vXf64. 2180 if (!VT.isFixedLengthVector()) 2181 return Op; 2182 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2183 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2184 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2185 } 2186 2187 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2188 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2189 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2190 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2191 2192 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2193 DL, DAG, Subtarget); 2194 if (VT.isFixedLengthVector()) 2195 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2196 return Extend; 2197 } 2198 case ISD::FP_ROUND: { 2199 // RVV can only do fp_round to types half the size as the source. We 2200 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2201 // conversion instruction. 2202 SDLoc DL(Op); 2203 MVT VT = Op.getSimpleValueType(); 2204 SDValue Src = Op.getOperand(0); 2205 MVT SrcVT = Src.getSimpleValueType(); 2206 2207 // Prepare any fixed-length vector operands. 2208 MVT ContainerVT = VT; 2209 if (VT.isFixedLengthVector()) { 2210 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2211 ContainerVT = 2212 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2213 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2214 } 2215 2216 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2217 SrcVT.getVectorElementType() != MVT::f64) { 2218 // For scalable vectors, we only need to close the gap between 2219 // vXf64<->vXf16. 2220 if (!VT.isFixedLengthVector()) 2221 return Op; 2222 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2223 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2224 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2225 } 2226 2227 SDValue Mask, VL; 2228 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2229 2230 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2231 SDValue IntermediateRound = 2232 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2233 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2234 DL, DAG, Subtarget); 2235 2236 if (VT.isFixedLengthVector()) 2237 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2238 return Round; 2239 } 2240 case ISD::FP_TO_SINT: 2241 case ISD::FP_TO_UINT: 2242 case ISD::SINT_TO_FP: 2243 case ISD::UINT_TO_FP: { 2244 // RVV can only do fp<->int conversions to types half/double the size as 2245 // the source. We custom-lower any conversions that do two hops into 2246 // sequences. 2247 MVT VT = Op.getSimpleValueType(); 2248 if (!VT.isVector()) 2249 return Op; 2250 SDLoc DL(Op); 2251 SDValue Src = Op.getOperand(0); 2252 MVT EltVT = VT.getVectorElementType(); 2253 MVT SrcVT = Src.getSimpleValueType(); 2254 MVT SrcEltVT = SrcVT.getVectorElementType(); 2255 unsigned EltSize = EltVT.getSizeInBits(); 2256 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2257 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2258 "Unexpected vector element types"); 2259 2260 bool IsInt2FP = SrcEltVT.isInteger(); 2261 // Widening conversions 2262 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2263 if (IsInt2FP) { 2264 // Do a regular integer sign/zero extension then convert to float. 2265 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2266 VT.getVectorElementCount()); 2267 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2268 ? ISD::ZERO_EXTEND 2269 : ISD::SIGN_EXTEND; 2270 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2271 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2272 } 2273 // FP2Int 2274 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2275 // Do one doubling fp_extend then complete the operation by converting 2276 // to int. 2277 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2278 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2279 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2280 } 2281 2282 // Narrowing conversions 2283 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2284 if (IsInt2FP) { 2285 // One narrowing int_to_fp, then an fp_round. 2286 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2287 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2288 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2289 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2290 } 2291 // FP2Int 2292 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2293 // representable by the integer, the result is poison. 2294 MVT IVecVT = 2295 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2296 VT.getVectorElementCount()); 2297 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2298 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2299 } 2300 2301 // Scalable vectors can exit here. Patterns will handle equally-sized 2302 // conversions halving/doubling ones. 2303 if (!VT.isFixedLengthVector()) 2304 return Op; 2305 2306 // For fixed-length vectors we lower to a custom "VL" node. 2307 unsigned RVVOpc = 0; 2308 switch (Op.getOpcode()) { 2309 default: 2310 llvm_unreachable("Impossible opcode"); 2311 case ISD::FP_TO_SINT: 2312 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2313 break; 2314 case ISD::FP_TO_UINT: 2315 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2316 break; 2317 case ISD::SINT_TO_FP: 2318 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2319 break; 2320 case ISD::UINT_TO_FP: 2321 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2322 break; 2323 } 2324 2325 MVT ContainerVT, SrcContainerVT; 2326 // Derive the reference container type from the larger vector type. 2327 if (SrcEltSize > EltSize) { 2328 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2329 ContainerVT = 2330 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2331 } else { 2332 ContainerVT = getContainerForFixedLengthVector(VT); 2333 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2334 } 2335 2336 SDValue Mask, VL; 2337 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2338 2339 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2340 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2341 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2342 } 2343 case ISD::VECREDUCE_ADD: 2344 case ISD::VECREDUCE_UMAX: 2345 case ISD::VECREDUCE_SMAX: 2346 case ISD::VECREDUCE_UMIN: 2347 case ISD::VECREDUCE_SMIN: 2348 return lowerVECREDUCE(Op, DAG); 2349 case ISD::VECREDUCE_AND: 2350 case ISD::VECREDUCE_OR: 2351 case ISD::VECREDUCE_XOR: 2352 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2353 return lowerVectorMaskVECREDUCE(Op, DAG); 2354 return lowerVECREDUCE(Op, DAG); 2355 case ISD::VECREDUCE_FADD: 2356 case ISD::VECREDUCE_SEQ_FADD: 2357 case ISD::VECREDUCE_FMIN: 2358 case ISD::VECREDUCE_FMAX: 2359 return lowerFPVECREDUCE(Op, DAG); 2360 case ISD::INSERT_SUBVECTOR: 2361 return lowerINSERT_SUBVECTOR(Op, DAG); 2362 case ISD::EXTRACT_SUBVECTOR: 2363 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2364 case ISD::STEP_VECTOR: 2365 return lowerSTEP_VECTOR(Op, DAG); 2366 case ISD::VECTOR_REVERSE: 2367 return lowerVECTOR_REVERSE(Op, DAG); 2368 case ISD::BUILD_VECTOR: 2369 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2370 case ISD::SPLAT_VECTOR: 2371 if (Op.getValueType().getVectorElementType() == MVT::i1) 2372 return lowerVectorMaskSplat(Op, DAG); 2373 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2374 case ISD::VECTOR_SHUFFLE: 2375 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2376 case ISD::CONCAT_VECTORS: { 2377 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2378 // better than going through the stack, as the default expansion does. 2379 SDLoc DL(Op); 2380 MVT VT = Op.getSimpleValueType(); 2381 unsigned NumOpElts = 2382 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2383 SDValue Vec = DAG.getUNDEF(VT); 2384 for (const auto &OpIdx : enumerate(Op->ops())) 2385 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2386 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2387 return Vec; 2388 } 2389 case ISD::LOAD: 2390 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2391 return V; 2392 if (Op.getValueType().isFixedLengthVector()) 2393 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2394 return Op; 2395 case ISD::STORE: 2396 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2397 return V; 2398 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2399 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2400 return Op; 2401 case ISD::MLOAD: 2402 return lowerMLOAD(Op, DAG); 2403 case ISD::MSTORE: 2404 return lowerMSTORE(Op, DAG); 2405 case ISD::SETCC: 2406 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2407 case ISD::ADD: 2408 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2409 case ISD::SUB: 2410 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2411 case ISD::MUL: 2412 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2413 case ISD::MULHS: 2414 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2415 case ISD::MULHU: 2416 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2417 case ISD::AND: 2418 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2419 RISCVISD::AND_VL); 2420 case ISD::OR: 2421 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2422 RISCVISD::OR_VL); 2423 case ISD::XOR: 2424 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2425 RISCVISD::XOR_VL); 2426 case ISD::SDIV: 2427 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2428 case ISD::SREM: 2429 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2430 case ISD::UDIV: 2431 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2432 case ISD::UREM: 2433 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2434 case ISD::SHL: 2435 case ISD::SRA: 2436 case ISD::SRL: 2437 if (Op.getSimpleValueType().isFixedLengthVector()) 2438 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2439 // This can be called for an i32 shift amount that needs to be promoted. 2440 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2441 "Unexpected custom legalisation"); 2442 return SDValue(); 2443 case ISD::FADD: 2444 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2445 case ISD::FSUB: 2446 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2447 case ISD::FMUL: 2448 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2449 case ISD::FDIV: 2450 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2451 case ISD::FNEG: 2452 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2453 case ISD::FABS: 2454 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2455 case ISD::FSQRT: 2456 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2457 case ISD::FMA: 2458 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2459 case ISD::SMIN: 2460 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2461 case ISD::SMAX: 2462 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2463 case ISD::UMIN: 2464 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2465 case ISD::UMAX: 2466 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2467 case ISD::FMINNUM: 2468 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2469 case ISD::FMAXNUM: 2470 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2471 case ISD::ABS: 2472 return lowerABS(Op, DAG); 2473 case ISD::VSELECT: 2474 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2475 case ISD::FCOPYSIGN: 2476 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2477 case ISD::MGATHER: 2478 return lowerMGATHER(Op, DAG); 2479 case ISD::MSCATTER: 2480 return lowerMSCATTER(Op, DAG); 2481 case ISD::FLT_ROUNDS_: 2482 return lowerGET_ROUNDING(Op, DAG); 2483 case ISD::SET_ROUNDING: 2484 return lowerSET_ROUNDING(Op, DAG); 2485 case ISD::VP_ADD: 2486 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2487 case ISD::VP_SUB: 2488 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2489 case ISD::VP_MUL: 2490 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2491 case ISD::VP_SDIV: 2492 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2493 case ISD::VP_UDIV: 2494 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2495 case ISD::VP_SREM: 2496 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2497 case ISD::VP_UREM: 2498 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2499 case ISD::VP_AND: 2500 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2501 case ISD::VP_OR: 2502 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2503 case ISD::VP_XOR: 2504 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2505 case ISD::VP_ASHR: 2506 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2507 case ISD::VP_LSHR: 2508 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2509 case ISD::VP_SHL: 2510 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2511 case ISD::VP_FADD: 2512 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2513 case ISD::VP_FSUB: 2514 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2515 case ISD::VP_FMUL: 2516 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2517 case ISD::VP_FDIV: 2518 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2519 } 2520 } 2521 2522 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2523 SelectionDAG &DAG, unsigned Flags) { 2524 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2525 } 2526 2527 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2528 SelectionDAG &DAG, unsigned Flags) { 2529 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2530 Flags); 2531 } 2532 2533 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2534 SelectionDAG &DAG, unsigned Flags) { 2535 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2536 N->getOffset(), Flags); 2537 } 2538 2539 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2540 SelectionDAG &DAG, unsigned Flags) { 2541 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2542 } 2543 2544 template <class NodeTy> 2545 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2546 bool IsLocal) const { 2547 SDLoc DL(N); 2548 EVT Ty = getPointerTy(DAG.getDataLayout()); 2549 2550 if (isPositionIndependent()) { 2551 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2552 if (IsLocal) 2553 // Use PC-relative addressing to access the symbol. This generates the 2554 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2555 // %pcrel_lo(auipc)). 2556 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2557 2558 // Use PC-relative addressing to access the GOT for this symbol, then load 2559 // the address from the GOT. This generates the pattern (PseudoLA sym), 2560 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2561 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2562 } 2563 2564 switch (getTargetMachine().getCodeModel()) { 2565 default: 2566 report_fatal_error("Unsupported code model for lowering"); 2567 case CodeModel::Small: { 2568 // Generate a sequence for accessing addresses within the first 2 GiB of 2569 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2570 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2571 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2572 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2573 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2574 } 2575 case CodeModel::Medium: { 2576 // Generate a sequence for accessing addresses within any 2GiB range within 2577 // the address space. This generates the pattern (PseudoLLA sym), which 2578 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2579 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2580 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2581 } 2582 } 2583 } 2584 2585 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2586 SelectionDAG &DAG) const { 2587 SDLoc DL(Op); 2588 EVT Ty = Op.getValueType(); 2589 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2590 int64_t Offset = N->getOffset(); 2591 MVT XLenVT = Subtarget.getXLenVT(); 2592 2593 const GlobalValue *GV = N->getGlobal(); 2594 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2595 SDValue Addr = getAddr(N, DAG, IsLocal); 2596 2597 // In order to maximise the opportunity for common subexpression elimination, 2598 // emit a separate ADD node for the global address offset instead of folding 2599 // it in the global address node. Later peephole optimisations may choose to 2600 // fold it back in when profitable. 2601 if (Offset != 0) 2602 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2603 DAG.getConstant(Offset, DL, XLenVT)); 2604 return Addr; 2605 } 2606 2607 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2608 SelectionDAG &DAG) const { 2609 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2610 2611 return getAddr(N, DAG); 2612 } 2613 2614 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2615 SelectionDAG &DAG) const { 2616 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2617 2618 return getAddr(N, DAG); 2619 } 2620 2621 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2622 SelectionDAG &DAG) const { 2623 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2624 2625 return getAddr(N, DAG); 2626 } 2627 2628 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2629 SelectionDAG &DAG, 2630 bool UseGOT) const { 2631 SDLoc DL(N); 2632 EVT Ty = getPointerTy(DAG.getDataLayout()); 2633 const GlobalValue *GV = N->getGlobal(); 2634 MVT XLenVT = Subtarget.getXLenVT(); 2635 2636 if (UseGOT) { 2637 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2638 // load the address from the GOT and add the thread pointer. This generates 2639 // the pattern (PseudoLA_TLS_IE sym), which expands to 2640 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2641 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2642 SDValue Load = 2643 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2644 2645 // Add the thread pointer. 2646 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2647 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2648 } 2649 2650 // Generate a sequence for accessing the address relative to the thread 2651 // pointer, with the appropriate adjustment for the thread pointer offset. 2652 // This generates the pattern 2653 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2654 SDValue AddrHi = 2655 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2656 SDValue AddrAdd = 2657 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2658 SDValue AddrLo = 2659 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2660 2661 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2662 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2663 SDValue MNAdd = SDValue( 2664 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2665 0); 2666 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2667 } 2668 2669 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2670 SelectionDAG &DAG) const { 2671 SDLoc DL(N); 2672 EVT Ty = getPointerTy(DAG.getDataLayout()); 2673 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2674 const GlobalValue *GV = N->getGlobal(); 2675 2676 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2677 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2678 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2679 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2680 SDValue Load = 2681 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2682 2683 // Prepare argument list to generate call. 2684 ArgListTy Args; 2685 ArgListEntry Entry; 2686 Entry.Node = Load; 2687 Entry.Ty = CallTy; 2688 Args.push_back(Entry); 2689 2690 // Setup call to __tls_get_addr. 2691 TargetLowering::CallLoweringInfo CLI(DAG); 2692 CLI.setDebugLoc(DL) 2693 .setChain(DAG.getEntryNode()) 2694 .setLibCallee(CallingConv::C, CallTy, 2695 DAG.getExternalSymbol("__tls_get_addr", Ty), 2696 std::move(Args)); 2697 2698 return LowerCallTo(CLI).first; 2699 } 2700 2701 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2702 SelectionDAG &DAG) const { 2703 SDLoc DL(Op); 2704 EVT Ty = Op.getValueType(); 2705 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2706 int64_t Offset = N->getOffset(); 2707 MVT XLenVT = Subtarget.getXLenVT(); 2708 2709 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2710 2711 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2712 CallingConv::GHC) 2713 report_fatal_error("In GHC calling convention TLS is not supported"); 2714 2715 SDValue Addr; 2716 switch (Model) { 2717 case TLSModel::LocalExec: 2718 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2719 break; 2720 case TLSModel::InitialExec: 2721 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2722 break; 2723 case TLSModel::LocalDynamic: 2724 case TLSModel::GeneralDynamic: 2725 Addr = getDynamicTLSAddr(N, DAG); 2726 break; 2727 } 2728 2729 // In order to maximise the opportunity for common subexpression elimination, 2730 // emit a separate ADD node for the global address offset instead of folding 2731 // it in the global address node. Later peephole optimisations may choose to 2732 // fold it back in when profitable. 2733 if (Offset != 0) 2734 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2735 DAG.getConstant(Offset, DL, XLenVT)); 2736 return Addr; 2737 } 2738 2739 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2740 SDValue CondV = Op.getOperand(0); 2741 SDValue TrueV = Op.getOperand(1); 2742 SDValue FalseV = Op.getOperand(2); 2743 SDLoc DL(Op); 2744 MVT VT = Op.getSimpleValueType(); 2745 MVT XLenVT = Subtarget.getXLenVT(); 2746 2747 // Lower vector SELECTs to VSELECTs by splatting the condition. 2748 if (VT.isVector()) { 2749 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 2750 SDValue CondSplat = VT.isScalableVector() 2751 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 2752 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 2753 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 2754 } 2755 2756 // If the result type is XLenVT and CondV is the output of a SETCC node 2757 // which also operated on XLenVT inputs, then merge the SETCC node into the 2758 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2759 // compare+branch instructions. i.e.: 2760 // (select (setcc lhs, rhs, cc), truev, falsev) 2761 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2762 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 2763 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2764 SDValue LHS = CondV.getOperand(0); 2765 SDValue RHS = CondV.getOperand(1); 2766 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2767 ISD::CondCode CCVal = CC->get(); 2768 2769 // Special case for a select of 2 constants that have a diffence of 1. 2770 // Normally this is done by DAGCombine, but if the select is introduced by 2771 // type legalization or op legalization, we miss it. Restricting to SETLT 2772 // case for now because that is what signed saturating add/sub need. 2773 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2774 // but we would probably want to swap the true/false values if the condition 2775 // is SETGE/SETLE to avoid an XORI. 2776 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2777 CCVal == ISD::SETLT) { 2778 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2779 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2780 if (TrueVal - 1 == FalseVal) 2781 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2782 if (TrueVal + 1 == FalseVal) 2783 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2784 } 2785 2786 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2787 2788 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2789 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2790 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2791 } 2792 2793 // Otherwise: 2794 // (select condv, truev, falsev) 2795 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2796 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2797 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2798 2799 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2800 2801 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2802 } 2803 2804 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2805 SDValue CondV = Op.getOperand(1); 2806 SDLoc DL(Op); 2807 MVT XLenVT = Subtarget.getXLenVT(); 2808 2809 if (CondV.getOpcode() == ISD::SETCC && 2810 CondV.getOperand(0).getValueType() == XLenVT) { 2811 SDValue LHS = CondV.getOperand(0); 2812 SDValue RHS = CondV.getOperand(1); 2813 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2814 2815 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2816 2817 SDValue TargetCC = DAG.getCondCode(CCVal); 2818 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2819 LHS, RHS, TargetCC, Op.getOperand(2)); 2820 } 2821 2822 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2823 CondV, DAG.getConstant(0, DL, XLenVT), 2824 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2825 } 2826 2827 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2828 MachineFunction &MF = DAG.getMachineFunction(); 2829 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2830 2831 SDLoc DL(Op); 2832 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2833 getPointerTy(MF.getDataLayout())); 2834 2835 // vastart just stores the address of the VarArgsFrameIndex slot into the 2836 // memory location argument. 2837 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2838 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2839 MachinePointerInfo(SV)); 2840 } 2841 2842 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2843 SelectionDAG &DAG) const { 2844 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2845 MachineFunction &MF = DAG.getMachineFunction(); 2846 MachineFrameInfo &MFI = MF.getFrameInfo(); 2847 MFI.setFrameAddressIsTaken(true); 2848 Register FrameReg = RI.getFrameRegister(MF); 2849 int XLenInBytes = Subtarget.getXLen() / 8; 2850 2851 EVT VT = Op.getValueType(); 2852 SDLoc DL(Op); 2853 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2854 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2855 while (Depth--) { 2856 int Offset = -(XLenInBytes * 2); 2857 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2858 DAG.getIntPtrConstant(Offset, DL)); 2859 FrameAddr = 2860 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2861 } 2862 return FrameAddr; 2863 } 2864 2865 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2866 SelectionDAG &DAG) const { 2867 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2868 MachineFunction &MF = DAG.getMachineFunction(); 2869 MachineFrameInfo &MFI = MF.getFrameInfo(); 2870 MFI.setReturnAddressIsTaken(true); 2871 MVT XLenVT = Subtarget.getXLenVT(); 2872 int XLenInBytes = Subtarget.getXLen() / 8; 2873 2874 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2875 return SDValue(); 2876 2877 EVT VT = Op.getValueType(); 2878 SDLoc DL(Op); 2879 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2880 if (Depth) { 2881 int Off = -XLenInBytes; 2882 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2883 SDValue Offset = DAG.getConstant(Off, DL, VT); 2884 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2885 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2886 MachinePointerInfo()); 2887 } 2888 2889 // Return the value of the return address register, marking it an implicit 2890 // live-in. 2891 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2892 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2893 } 2894 2895 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2896 SelectionDAG &DAG) const { 2897 SDLoc DL(Op); 2898 SDValue Lo = Op.getOperand(0); 2899 SDValue Hi = Op.getOperand(1); 2900 SDValue Shamt = Op.getOperand(2); 2901 EVT VT = Lo.getValueType(); 2902 2903 // if Shamt-XLEN < 0: // Shamt < XLEN 2904 // Lo = Lo << Shamt 2905 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2906 // else: 2907 // Lo = 0 2908 // Hi = Lo << (Shamt-XLEN) 2909 2910 SDValue Zero = DAG.getConstant(0, DL, VT); 2911 SDValue One = DAG.getConstant(1, DL, VT); 2912 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2913 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2914 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2915 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2916 2917 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2918 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2919 SDValue ShiftRightLo = 2920 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2921 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2922 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2923 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2924 2925 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2926 2927 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2928 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2929 2930 SDValue Parts[2] = {Lo, Hi}; 2931 return DAG.getMergeValues(Parts, DL); 2932 } 2933 2934 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2935 bool IsSRA) const { 2936 SDLoc DL(Op); 2937 SDValue Lo = Op.getOperand(0); 2938 SDValue Hi = Op.getOperand(1); 2939 SDValue Shamt = Op.getOperand(2); 2940 EVT VT = Lo.getValueType(); 2941 2942 // SRA expansion: 2943 // if Shamt-XLEN < 0: // Shamt < XLEN 2944 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2945 // Hi = Hi >>s Shamt 2946 // else: 2947 // Lo = Hi >>s (Shamt-XLEN); 2948 // Hi = Hi >>s (XLEN-1) 2949 // 2950 // SRL expansion: 2951 // if Shamt-XLEN < 0: // Shamt < XLEN 2952 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2953 // Hi = Hi >>u Shamt 2954 // else: 2955 // Lo = Hi >>u (Shamt-XLEN); 2956 // Hi = 0; 2957 2958 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2959 2960 SDValue Zero = DAG.getConstant(0, DL, VT); 2961 SDValue One = DAG.getConstant(1, DL, VT); 2962 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2963 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2964 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2965 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2966 2967 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2968 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2969 SDValue ShiftLeftHi = 2970 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2971 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2972 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2973 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2974 SDValue HiFalse = 2975 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2976 2977 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2978 2979 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2980 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2981 2982 SDValue Parts[2] = {Lo, Hi}; 2983 return DAG.getMergeValues(Parts, DL); 2984 } 2985 2986 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2987 // legal equivalently-sized i8 type, so we can use that as a go-between. 2988 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 2989 SelectionDAG &DAG) const { 2990 SDLoc DL(Op); 2991 MVT VT = Op.getSimpleValueType(); 2992 SDValue SplatVal = Op.getOperand(0); 2993 // All-zeros or all-ones splats are handled specially. 2994 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 2995 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2996 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 2997 } 2998 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 2999 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3000 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3001 } 3002 MVT XLenVT = Subtarget.getXLenVT(); 3003 assert(SplatVal.getValueType() == XLenVT && 3004 "Unexpected type for i1 splat value"); 3005 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3006 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3007 DAG.getConstant(1, DL, XLenVT)); 3008 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3009 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3010 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3011 } 3012 3013 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3014 // illegal (currently only vXi64 RV32). 3015 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3016 // them to SPLAT_VECTOR_I64 3017 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3018 SelectionDAG &DAG) const { 3019 SDLoc DL(Op); 3020 MVT VecVT = Op.getSimpleValueType(); 3021 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3022 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3023 3024 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3025 SDValue Lo = Op.getOperand(0); 3026 SDValue Hi = Op.getOperand(1); 3027 3028 if (VecVT.isFixedLengthVector()) { 3029 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3030 SDLoc DL(Op); 3031 SDValue Mask, VL; 3032 std::tie(Mask, VL) = 3033 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3034 3035 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3036 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3037 } 3038 3039 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3040 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3041 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3042 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3043 // node in order to try and match RVV vector/scalar instructions. 3044 if ((LoC >> 31) == HiC) 3045 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3046 } 3047 3048 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3049 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3050 isa<ConstantSDNode>(Hi.getOperand(1)) && 3051 Hi.getConstantOperandVal(1) == 31) 3052 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3053 3054 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3055 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3056 DAG.getRegister(RISCV::X0, MVT::i64)); 3057 } 3058 3059 // Custom-lower extensions from mask vectors by using a vselect either with 1 3060 // for zero/any-extension or -1 for sign-extension: 3061 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3062 // Note that any-extension is lowered identically to zero-extension. 3063 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3064 int64_t ExtTrueVal) const { 3065 SDLoc DL(Op); 3066 MVT VecVT = Op.getSimpleValueType(); 3067 SDValue Src = Op.getOperand(0); 3068 // Only custom-lower extensions from mask types 3069 assert(Src.getValueType().isVector() && 3070 Src.getValueType().getVectorElementType() == MVT::i1); 3071 3072 MVT XLenVT = Subtarget.getXLenVT(); 3073 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3074 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3075 3076 if (VecVT.isScalableVector()) { 3077 // Be careful not to introduce illegal scalar types at this stage, and be 3078 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3079 // illegal and must be expanded. Since we know that the constants are 3080 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3081 bool IsRV32E64 = 3082 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3083 3084 if (!IsRV32E64) { 3085 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3086 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3087 } else { 3088 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3089 SplatTrueVal = 3090 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3091 } 3092 3093 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3094 } 3095 3096 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3097 MVT I1ContainerVT = 3098 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3099 3100 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3101 3102 SDValue Mask, VL; 3103 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3104 3105 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3106 SplatTrueVal = 3107 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3108 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3109 SplatTrueVal, SplatZero, VL); 3110 3111 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3112 } 3113 3114 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3115 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3116 MVT ExtVT = Op.getSimpleValueType(); 3117 // Only custom-lower extensions from fixed-length vector types. 3118 if (!ExtVT.isFixedLengthVector()) 3119 return Op; 3120 MVT VT = Op.getOperand(0).getSimpleValueType(); 3121 // Grab the canonical container type for the extended type. Infer the smaller 3122 // type from that to ensure the same number of vector elements, as we know 3123 // the LMUL will be sufficient to hold the smaller type. 3124 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3125 // Get the extended container type manually to ensure the same number of 3126 // vector elements between source and dest. 3127 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3128 ContainerExtVT.getVectorElementCount()); 3129 3130 SDValue Op1 = 3131 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3132 3133 SDLoc DL(Op); 3134 SDValue Mask, VL; 3135 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3136 3137 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3138 3139 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3140 } 3141 3142 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3143 // setcc operation: 3144 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3145 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3146 SelectionDAG &DAG) const { 3147 SDLoc DL(Op); 3148 EVT MaskVT = Op.getValueType(); 3149 // Only expect to custom-lower truncations to mask types 3150 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3151 "Unexpected type for vector mask lowering"); 3152 SDValue Src = Op.getOperand(0); 3153 MVT VecVT = Src.getSimpleValueType(); 3154 3155 // If this is a fixed vector, we need to convert it to a scalable vector. 3156 MVT ContainerVT = VecVT; 3157 if (VecVT.isFixedLengthVector()) { 3158 ContainerVT = getContainerForFixedLengthVector(VecVT); 3159 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3160 } 3161 3162 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3163 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3164 3165 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3166 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3167 3168 if (VecVT.isScalableVector()) { 3169 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3170 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3171 } 3172 3173 SDValue Mask, VL; 3174 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3175 3176 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3177 SDValue Trunc = 3178 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3179 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3180 DAG.getCondCode(ISD::SETNE), Mask, VL); 3181 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3182 } 3183 3184 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3185 // first position of a vector, and that vector is slid up to the insert index. 3186 // By limiting the active vector length to index+1 and merging with the 3187 // original vector (with an undisturbed tail policy for elements >= VL), we 3188 // achieve the desired result of leaving all elements untouched except the one 3189 // at VL-1, which is replaced with the desired value. 3190 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3191 SelectionDAG &DAG) const { 3192 SDLoc DL(Op); 3193 MVT VecVT = Op.getSimpleValueType(); 3194 SDValue Vec = Op.getOperand(0); 3195 SDValue Val = Op.getOperand(1); 3196 SDValue Idx = Op.getOperand(2); 3197 3198 if (VecVT.getVectorElementType() == MVT::i1) { 3199 // FIXME: For now we just promote to an i8 vector and insert into that, 3200 // but this is probably not optimal. 3201 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3202 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3203 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3204 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3205 } 3206 3207 MVT ContainerVT = VecVT; 3208 // If the operand is a fixed-length vector, convert to a scalable one. 3209 if (VecVT.isFixedLengthVector()) { 3210 ContainerVT = getContainerForFixedLengthVector(VecVT); 3211 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3212 } 3213 3214 MVT XLenVT = Subtarget.getXLenVT(); 3215 3216 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3217 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3218 // Even i64-element vectors on RV32 can be lowered without scalar 3219 // legalization if the most-significant 32 bits of the value are not affected 3220 // by the sign-extension of the lower 32 bits. 3221 // TODO: We could also catch sign extensions of a 32-bit value. 3222 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3223 const auto *CVal = cast<ConstantSDNode>(Val); 3224 if (isInt<32>(CVal->getSExtValue())) { 3225 IsLegalInsert = true; 3226 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3227 } 3228 } 3229 3230 SDValue Mask, VL; 3231 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3232 3233 SDValue ValInVec; 3234 3235 if (IsLegalInsert) { 3236 unsigned Opc = 3237 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3238 if (isNullConstant(Idx)) { 3239 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3240 if (!VecVT.isFixedLengthVector()) 3241 return Vec; 3242 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3243 } 3244 ValInVec = 3245 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3246 } else { 3247 // On RV32, i64-element vectors must be specially handled to place the 3248 // value at element 0, by using two vslide1up instructions in sequence on 3249 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3250 // this. 3251 SDValue One = DAG.getConstant(1, DL, XLenVT); 3252 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3253 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3254 MVT I32ContainerVT = 3255 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3256 SDValue I32Mask = 3257 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3258 // Limit the active VL to two. 3259 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3260 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3261 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3262 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3263 InsertI64VL); 3264 // First slide in the hi value, then the lo in underneath it. 3265 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3266 ValHi, I32Mask, InsertI64VL); 3267 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3268 ValLo, I32Mask, InsertI64VL); 3269 // Bitcast back to the right container type. 3270 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3271 } 3272 3273 // Now that the value is in a vector, slide it into position. 3274 SDValue InsertVL = 3275 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3276 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3277 ValInVec, Idx, Mask, InsertVL); 3278 if (!VecVT.isFixedLengthVector()) 3279 return Slideup; 3280 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3281 } 3282 3283 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3284 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3285 // types this is done using VMV_X_S to allow us to glean information about the 3286 // sign bits of the result. 3287 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3288 SelectionDAG &DAG) const { 3289 SDLoc DL(Op); 3290 SDValue Idx = Op.getOperand(1); 3291 SDValue Vec = Op.getOperand(0); 3292 EVT EltVT = Op.getValueType(); 3293 MVT VecVT = Vec.getSimpleValueType(); 3294 MVT XLenVT = Subtarget.getXLenVT(); 3295 3296 if (VecVT.getVectorElementType() == MVT::i1) { 3297 // FIXME: For now we just promote to an i8 vector and extract from that, 3298 // but this is probably not optimal. 3299 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3300 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3301 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3302 } 3303 3304 // If this is a fixed vector, we need to convert it to a scalable vector. 3305 MVT ContainerVT = VecVT; 3306 if (VecVT.isFixedLengthVector()) { 3307 ContainerVT = getContainerForFixedLengthVector(VecVT); 3308 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3309 } 3310 3311 // If the index is 0, the vector is already in the right position. 3312 if (!isNullConstant(Idx)) { 3313 // Use a VL of 1 to avoid processing more elements than we need. 3314 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3315 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3316 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3317 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3318 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3319 } 3320 3321 if (!EltVT.isInteger()) { 3322 // Floating-point extracts are handled in TableGen. 3323 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3324 DAG.getConstant(0, DL, XLenVT)); 3325 } 3326 3327 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3328 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3329 } 3330 3331 // Some RVV intrinsics may claim that they want an integer operand to be 3332 // promoted or expanded. 3333 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3334 const RISCVSubtarget &Subtarget) { 3335 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3336 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3337 "Unexpected opcode"); 3338 3339 if (!Subtarget.hasStdExtV()) 3340 return SDValue(); 3341 3342 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3343 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3344 SDLoc DL(Op); 3345 3346 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3347 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3348 if (!II || !II->SplatOperand) 3349 return SDValue(); 3350 3351 unsigned SplatOp = II->SplatOperand + HasChain; 3352 assert(SplatOp < Op.getNumOperands()); 3353 3354 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3355 SDValue &ScalarOp = Operands[SplatOp]; 3356 MVT OpVT = ScalarOp.getSimpleValueType(); 3357 MVT XLenVT = Subtarget.getXLenVT(); 3358 3359 // If this isn't a scalar, or its type is XLenVT we're done. 3360 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3361 return SDValue(); 3362 3363 // Simplest case is that the operand needs to be promoted to XLenVT. 3364 if (OpVT.bitsLT(XLenVT)) { 3365 // If the operand is a constant, sign extend to increase our chances 3366 // of being able to use a .vi instruction. ANY_EXTEND would become a 3367 // a zero extend and the simm5 check in isel would fail. 3368 // FIXME: Should we ignore the upper bits in isel instead? 3369 unsigned ExtOpc = 3370 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3371 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3372 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3373 } 3374 3375 // Use the previous operand to get the vXi64 VT. The result might be a mask 3376 // VT for compares. Using the previous operand assumes that the previous 3377 // operand will never have a smaller element size than a scalar operand and 3378 // that a widening operation never uses SEW=64. 3379 // NOTE: If this fails the below assert, we can probably just find the 3380 // element count from any operand or result and use it to construct the VT. 3381 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3382 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3383 3384 // The more complex case is when the scalar is larger than XLenVT. 3385 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3386 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3387 3388 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3389 // on the instruction to sign-extend since SEW>XLEN. 3390 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3391 if (isInt<32>(CVal->getSExtValue())) { 3392 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3393 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3394 } 3395 } 3396 3397 // We need to convert the scalar to a splat vector. 3398 // FIXME: Can we implicitly truncate the scalar if it is known to 3399 // be sign extended? 3400 // VL should be the last operand. 3401 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3402 assert(VL.getValueType() == XLenVT); 3403 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3404 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3405 } 3406 3407 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3408 SelectionDAG &DAG) const { 3409 unsigned IntNo = Op.getConstantOperandVal(0); 3410 SDLoc DL(Op); 3411 MVT XLenVT = Subtarget.getXLenVT(); 3412 3413 switch (IntNo) { 3414 default: 3415 break; // Don't custom lower most intrinsics. 3416 case Intrinsic::thread_pointer: { 3417 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3418 return DAG.getRegister(RISCV::X4, PtrVT); 3419 } 3420 case Intrinsic::riscv_orc_b: 3421 // Lower to the GORCI encoding for orc.b. 3422 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3423 DAG.getConstant(7, DL, XLenVT)); 3424 case Intrinsic::riscv_grev: 3425 case Intrinsic::riscv_gorc: { 3426 unsigned Opc = 3427 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3428 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3429 } 3430 case Intrinsic::riscv_shfl: 3431 case Intrinsic::riscv_unshfl: { 3432 unsigned Opc = 3433 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3434 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3435 } 3436 case Intrinsic::riscv_bcompress: 3437 case Intrinsic::riscv_bdecompress: { 3438 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3439 : RISCVISD::BDECOMPRESS; 3440 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3441 } 3442 case Intrinsic::riscv_vmv_x_s: 3443 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3444 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3445 Op.getOperand(1)); 3446 case Intrinsic::riscv_vmv_v_x: 3447 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3448 Op.getSimpleValueType(), DL, DAG, Subtarget); 3449 case Intrinsic::riscv_vfmv_v_f: 3450 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3451 Op.getOperand(1), Op.getOperand(2)); 3452 case Intrinsic::riscv_vmv_s_x: { 3453 SDValue Scalar = Op.getOperand(2); 3454 3455 if (Scalar.getValueType().bitsLE(XLenVT)) { 3456 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3457 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3458 Op.getOperand(1), Scalar, Op.getOperand(3)); 3459 } 3460 3461 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3462 3463 // This is an i64 value that lives in two scalar registers. We have to 3464 // insert this in a convoluted way. First we build vXi64 splat containing 3465 // the/ two values that we assemble using some bit math. Next we'll use 3466 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3467 // to merge element 0 from our splat into the source vector. 3468 // FIXME: This is probably not the best way to do this, but it is 3469 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3470 // point. 3471 // sw lo, (a0) 3472 // sw hi, 4(a0) 3473 // vlse vX, (a0) 3474 // 3475 // vid.v vVid 3476 // vmseq.vx mMask, vVid, 0 3477 // vmerge.vvm vDest, vSrc, vVal, mMask 3478 MVT VT = Op.getSimpleValueType(); 3479 SDValue Vec = Op.getOperand(1); 3480 SDValue VL = Op.getOperand(3); 3481 3482 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3483 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3484 DAG.getConstant(0, DL, MVT::i32), VL); 3485 3486 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3487 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3488 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3489 SDValue SelectCond = 3490 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3491 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3492 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3493 Vec, VL); 3494 } 3495 case Intrinsic::riscv_vslide1up: 3496 case Intrinsic::riscv_vslide1down: 3497 case Intrinsic::riscv_vslide1up_mask: 3498 case Intrinsic::riscv_vslide1down_mask: { 3499 // We need to special case these when the scalar is larger than XLen. 3500 unsigned NumOps = Op.getNumOperands(); 3501 bool IsMasked = NumOps == 6; 3502 unsigned OpOffset = IsMasked ? 1 : 0; 3503 SDValue Scalar = Op.getOperand(2 + OpOffset); 3504 if (Scalar.getValueType().bitsLE(XLenVT)) 3505 break; 3506 3507 // Splatting a sign extended constant is fine. 3508 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3509 if (isInt<32>(CVal->getSExtValue())) 3510 break; 3511 3512 MVT VT = Op.getSimpleValueType(); 3513 assert(VT.getVectorElementType() == MVT::i64 && 3514 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3515 3516 // Convert the vector source to the equivalent nxvXi32 vector. 3517 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3518 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3519 3520 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3521 DAG.getConstant(0, DL, XLenVT)); 3522 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3523 DAG.getConstant(1, DL, XLenVT)); 3524 3525 // Double the VL since we halved SEW. 3526 SDValue VL = Op.getOperand(NumOps - 1); 3527 SDValue I32VL = 3528 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3529 3530 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3531 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3532 3533 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3534 // instructions. 3535 if (IntNo == Intrinsic::riscv_vslide1up || 3536 IntNo == Intrinsic::riscv_vslide1up_mask) { 3537 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3538 I32Mask, I32VL); 3539 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3540 I32Mask, I32VL); 3541 } else { 3542 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3543 I32Mask, I32VL); 3544 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3545 I32Mask, I32VL); 3546 } 3547 3548 // Convert back to nxvXi64. 3549 Vec = DAG.getBitcast(VT, Vec); 3550 3551 if (!IsMasked) 3552 return Vec; 3553 3554 // Apply mask after the operation. 3555 SDValue Mask = Op.getOperand(NumOps - 2); 3556 SDValue MaskedOff = Op.getOperand(1); 3557 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3558 } 3559 } 3560 3561 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3562 } 3563 3564 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3565 SelectionDAG &DAG) const { 3566 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3567 } 3568 3569 static MVT getLMUL1VT(MVT VT) { 3570 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3571 "Unexpected vector MVT"); 3572 return MVT::getScalableVectorVT( 3573 VT.getVectorElementType(), 3574 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3575 } 3576 3577 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3578 switch (ISDOpcode) { 3579 default: 3580 llvm_unreachable("Unhandled reduction"); 3581 case ISD::VECREDUCE_ADD: 3582 return RISCVISD::VECREDUCE_ADD_VL; 3583 case ISD::VECREDUCE_UMAX: 3584 return RISCVISD::VECREDUCE_UMAX_VL; 3585 case ISD::VECREDUCE_SMAX: 3586 return RISCVISD::VECREDUCE_SMAX_VL; 3587 case ISD::VECREDUCE_UMIN: 3588 return RISCVISD::VECREDUCE_UMIN_VL; 3589 case ISD::VECREDUCE_SMIN: 3590 return RISCVISD::VECREDUCE_SMIN_VL; 3591 case ISD::VECREDUCE_AND: 3592 return RISCVISD::VECREDUCE_AND_VL; 3593 case ISD::VECREDUCE_OR: 3594 return RISCVISD::VECREDUCE_OR_VL; 3595 case ISD::VECREDUCE_XOR: 3596 return RISCVISD::VECREDUCE_XOR_VL; 3597 } 3598 } 3599 3600 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3601 SelectionDAG &DAG) const { 3602 SDLoc DL(Op); 3603 SDValue Vec = Op.getOperand(0); 3604 MVT VecVT = Vec.getSimpleValueType(); 3605 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3606 Op.getOpcode() == ISD::VECREDUCE_OR || 3607 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3608 "Unexpected reduction lowering"); 3609 3610 MVT XLenVT = Subtarget.getXLenVT(); 3611 assert(Op.getValueType() == XLenVT && 3612 "Expected reduction output to be legalized to XLenVT"); 3613 3614 MVT ContainerVT = VecVT; 3615 if (VecVT.isFixedLengthVector()) { 3616 ContainerVT = getContainerForFixedLengthVector(VecVT); 3617 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3618 } 3619 3620 SDValue Mask, VL; 3621 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3622 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3623 3624 switch (Op.getOpcode()) { 3625 default: 3626 llvm_unreachable("Unhandled reduction"); 3627 case ISD::VECREDUCE_AND: 3628 // vpopc ~x == 0 3629 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3630 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3631 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3632 case ISD::VECREDUCE_OR: 3633 // vpopc x != 0 3634 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3635 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3636 case ISD::VECREDUCE_XOR: { 3637 // ((vpopc x) & 1) != 0 3638 SDValue One = DAG.getConstant(1, DL, XLenVT); 3639 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3640 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3641 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3642 } 3643 } 3644 } 3645 3646 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3647 SelectionDAG &DAG) const { 3648 SDLoc DL(Op); 3649 SDValue Vec = Op.getOperand(0); 3650 EVT VecEVT = Vec.getValueType(); 3651 3652 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3653 3654 // Due to ordering in legalize types we may have a vector type that needs to 3655 // be split. Do that manually so we can get down to a legal type. 3656 while (getTypeAction(*DAG.getContext(), VecEVT) == 3657 TargetLowering::TypeSplitVector) { 3658 SDValue Lo, Hi; 3659 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3660 VecEVT = Lo.getValueType(); 3661 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3662 } 3663 3664 // TODO: The type may need to be widened rather than split. Or widened before 3665 // it can be split. 3666 if (!isTypeLegal(VecEVT)) 3667 return SDValue(); 3668 3669 MVT VecVT = VecEVT.getSimpleVT(); 3670 MVT VecEltVT = VecVT.getVectorElementType(); 3671 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3672 3673 MVT ContainerVT = VecVT; 3674 if (VecVT.isFixedLengthVector()) { 3675 ContainerVT = getContainerForFixedLengthVector(VecVT); 3676 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3677 } 3678 3679 MVT M1VT = getLMUL1VT(ContainerVT); 3680 3681 SDValue Mask, VL; 3682 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3683 3684 // FIXME: This is a VLMAX splat which might be too large and can prevent 3685 // vsetvli removal. 3686 SDValue NeutralElem = 3687 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3688 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3689 SDValue Reduction = 3690 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3691 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3692 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3693 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3694 } 3695 3696 // Given a reduction op, this function returns the matching reduction opcode, 3697 // the vector SDValue and the scalar SDValue required to lower this to a 3698 // RISCVISD node. 3699 static std::tuple<unsigned, SDValue, SDValue> 3700 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3701 SDLoc DL(Op); 3702 auto Flags = Op->getFlags(); 3703 unsigned Opcode = Op.getOpcode(); 3704 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3705 switch (Opcode) { 3706 default: 3707 llvm_unreachable("Unhandled reduction"); 3708 case ISD::VECREDUCE_FADD: 3709 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3710 DAG.getConstantFP(0.0, DL, EltVT)); 3711 case ISD::VECREDUCE_SEQ_FADD: 3712 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3713 Op.getOperand(0)); 3714 case ISD::VECREDUCE_FMIN: 3715 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3716 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3717 case ISD::VECREDUCE_FMAX: 3718 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3719 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3720 } 3721 } 3722 3723 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3724 SelectionDAG &DAG) const { 3725 SDLoc DL(Op); 3726 MVT VecEltVT = Op.getSimpleValueType(); 3727 3728 unsigned RVVOpcode; 3729 SDValue VectorVal, ScalarVal; 3730 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3731 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3732 MVT VecVT = VectorVal.getSimpleValueType(); 3733 3734 MVT ContainerVT = VecVT; 3735 if (VecVT.isFixedLengthVector()) { 3736 ContainerVT = getContainerForFixedLengthVector(VecVT); 3737 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3738 } 3739 3740 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3741 3742 SDValue Mask, VL; 3743 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3744 3745 // FIXME: This is a VLMAX splat which might be too large and can prevent 3746 // vsetvli removal. 3747 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3748 SDValue Reduction = 3749 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3750 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3751 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3752 } 3753 3754 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3755 SelectionDAG &DAG) const { 3756 SDValue Vec = Op.getOperand(0); 3757 SDValue SubVec = Op.getOperand(1); 3758 MVT VecVT = Vec.getSimpleValueType(); 3759 MVT SubVecVT = SubVec.getSimpleValueType(); 3760 3761 SDLoc DL(Op); 3762 MVT XLenVT = Subtarget.getXLenVT(); 3763 unsigned OrigIdx = Op.getConstantOperandVal(2); 3764 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3765 3766 // We don't have the ability to slide mask vectors up indexed by their i1 3767 // elements; the smallest we can do is i8. Often we are able to bitcast to 3768 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3769 // into a scalable one, we might not necessarily have enough scalable 3770 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3771 if (SubVecVT.getVectorElementType() == MVT::i1 && 3772 (OrigIdx != 0 || !Vec.isUndef())) { 3773 if (VecVT.getVectorMinNumElements() >= 8 && 3774 SubVecVT.getVectorMinNumElements() >= 8) { 3775 assert(OrigIdx % 8 == 0 && "Invalid index"); 3776 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3777 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3778 "Unexpected mask vector lowering"); 3779 OrigIdx /= 8; 3780 SubVecVT = 3781 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3782 SubVecVT.isScalableVector()); 3783 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3784 VecVT.isScalableVector()); 3785 Vec = DAG.getBitcast(VecVT, Vec); 3786 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3787 } else { 3788 // We can't slide this mask vector up indexed by its i1 elements. 3789 // This poses a problem when we wish to insert a scalable vector which 3790 // can't be re-expressed as a larger type. Just choose the slow path and 3791 // extend to a larger type, then truncate back down. 3792 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3793 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3794 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3795 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3796 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3797 Op.getOperand(2)); 3798 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3799 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3800 } 3801 } 3802 3803 // If the subvector vector is a fixed-length type, we cannot use subregister 3804 // manipulation to simplify the codegen; we don't know which register of a 3805 // LMUL group contains the specific subvector as we only know the minimum 3806 // register size. Therefore we must slide the vector group up the full 3807 // amount. 3808 if (SubVecVT.isFixedLengthVector()) { 3809 if (OrigIdx == 0 && Vec.isUndef()) 3810 return Op; 3811 MVT ContainerVT = VecVT; 3812 if (VecVT.isFixedLengthVector()) { 3813 ContainerVT = getContainerForFixedLengthVector(VecVT); 3814 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3815 } 3816 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3817 DAG.getUNDEF(ContainerVT), SubVec, 3818 DAG.getConstant(0, DL, XLenVT)); 3819 SDValue Mask = 3820 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3821 // Set the vector length to only the number of elements we care about. Note 3822 // that for slideup this includes the offset. 3823 SDValue VL = 3824 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3825 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3826 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3827 SubVec, SlideupAmt, Mask, VL); 3828 if (VecVT.isFixedLengthVector()) 3829 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3830 return DAG.getBitcast(Op.getValueType(), Slideup); 3831 } 3832 3833 unsigned SubRegIdx, RemIdx; 3834 std::tie(SubRegIdx, RemIdx) = 3835 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3836 VecVT, SubVecVT, OrigIdx, TRI); 3837 3838 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3839 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3840 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3841 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3842 3843 // 1. If the Idx has been completely eliminated and this subvector's size is 3844 // a vector register or a multiple thereof, or the surrounding elements are 3845 // undef, then this is a subvector insert which naturally aligns to a vector 3846 // register. These can easily be handled using subregister manipulation. 3847 // 2. If the subvector is smaller than a vector register, then the insertion 3848 // must preserve the undisturbed elements of the register. We do this by 3849 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3850 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3851 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3852 // LMUL=1 type back into the larger vector (resolving to another subregister 3853 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3854 // to avoid allocating a large register group to hold our subvector. 3855 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3856 return Op; 3857 3858 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3859 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3860 // (in our case undisturbed). This means we can set up a subvector insertion 3861 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3862 // size of the subvector. 3863 MVT InterSubVT = VecVT; 3864 SDValue AlignedExtract = Vec; 3865 unsigned AlignedIdx = OrigIdx - RemIdx; 3866 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3867 InterSubVT = getLMUL1VT(VecVT); 3868 // Extract a subvector equal to the nearest full vector register type. This 3869 // should resolve to a EXTRACT_SUBREG instruction. 3870 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3871 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3872 } 3873 3874 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3875 // For scalable vectors this must be further multiplied by vscale. 3876 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3877 3878 SDValue Mask, VL; 3879 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3880 3881 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3882 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3883 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3884 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3885 3886 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3887 DAG.getUNDEF(InterSubVT), SubVec, 3888 DAG.getConstant(0, DL, XLenVT)); 3889 3890 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3891 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3892 3893 // If required, insert this subvector back into the correct vector register. 3894 // This should resolve to an INSERT_SUBREG instruction. 3895 if (VecVT.bitsGT(InterSubVT)) 3896 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3897 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3898 3899 // We might have bitcast from a mask type: cast back to the original type if 3900 // required. 3901 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3902 } 3903 3904 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3905 SelectionDAG &DAG) const { 3906 SDValue Vec = Op.getOperand(0); 3907 MVT SubVecVT = Op.getSimpleValueType(); 3908 MVT VecVT = Vec.getSimpleValueType(); 3909 3910 SDLoc DL(Op); 3911 MVT XLenVT = Subtarget.getXLenVT(); 3912 unsigned OrigIdx = Op.getConstantOperandVal(1); 3913 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3914 3915 // We don't have the ability to slide mask vectors down indexed by their i1 3916 // elements; the smallest we can do is i8. Often we are able to bitcast to 3917 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3918 // from a scalable one, we might not necessarily have enough scalable 3919 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3920 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3921 if (VecVT.getVectorMinNumElements() >= 8 && 3922 SubVecVT.getVectorMinNumElements() >= 8) { 3923 assert(OrigIdx % 8 == 0 && "Invalid index"); 3924 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3925 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3926 "Unexpected mask vector lowering"); 3927 OrigIdx /= 8; 3928 SubVecVT = 3929 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3930 SubVecVT.isScalableVector()); 3931 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3932 VecVT.isScalableVector()); 3933 Vec = DAG.getBitcast(VecVT, Vec); 3934 } else { 3935 // We can't slide this mask vector down, indexed by its i1 elements. 3936 // This poses a problem when we wish to extract a scalable vector which 3937 // can't be re-expressed as a larger type. Just choose the slow path and 3938 // extend to a larger type, then truncate back down. 3939 // TODO: We could probably improve this when extracting certain fixed 3940 // from fixed, where we can extract as i8 and shift the correct element 3941 // right to reach the desired subvector? 3942 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3943 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3944 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3945 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3946 Op.getOperand(1)); 3947 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3948 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3949 } 3950 } 3951 3952 // If the subvector vector is a fixed-length type, we cannot use subregister 3953 // manipulation to simplify the codegen; we don't know which register of a 3954 // LMUL group contains the specific subvector as we only know the minimum 3955 // register size. Therefore we must slide the vector group down the full 3956 // amount. 3957 if (SubVecVT.isFixedLengthVector()) { 3958 // With an index of 0 this is a cast-like subvector, which can be performed 3959 // with subregister operations. 3960 if (OrigIdx == 0) 3961 return Op; 3962 MVT ContainerVT = VecVT; 3963 if (VecVT.isFixedLengthVector()) { 3964 ContainerVT = getContainerForFixedLengthVector(VecVT); 3965 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3966 } 3967 SDValue Mask = 3968 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3969 // Set the vector length to only the number of elements we care about. This 3970 // avoids sliding down elements we're going to discard straight away. 3971 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3972 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3973 SDValue Slidedown = 3974 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3975 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3976 // Now we can use a cast-like subvector extract to get the result. 3977 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3978 DAG.getConstant(0, DL, XLenVT)); 3979 return DAG.getBitcast(Op.getValueType(), Slidedown); 3980 } 3981 3982 unsigned SubRegIdx, RemIdx; 3983 std::tie(SubRegIdx, RemIdx) = 3984 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3985 VecVT, SubVecVT, OrigIdx, TRI); 3986 3987 // If the Idx has been completely eliminated then this is a subvector extract 3988 // which naturally aligns to a vector register. These can easily be handled 3989 // using subregister manipulation. 3990 if (RemIdx == 0) 3991 return Op; 3992 3993 // Else we must shift our vector register directly to extract the subvector. 3994 // Do this using VSLIDEDOWN. 3995 3996 // If the vector type is an LMUL-group type, extract a subvector equal to the 3997 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3998 // instruction. 3999 MVT InterSubVT = VecVT; 4000 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4001 InterSubVT = getLMUL1VT(VecVT); 4002 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4003 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4004 } 4005 4006 // Slide this vector register down by the desired number of elements in order 4007 // to place the desired subvector starting at element 0. 4008 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4009 // For scalable vectors this must be further multiplied by vscale. 4010 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4011 4012 SDValue Mask, VL; 4013 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4014 SDValue Slidedown = 4015 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4016 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4017 4018 // Now the vector is in the right position, extract our final subvector. This 4019 // should resolve to a COPY. 4020 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4021 DAG.getConstant(0, DL, XLenVT)); 4022 4023 // We might have bitcast from a mask type: cast back to the original type if 4024 // required. 4025 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4026 } 4027 4028 // Lower step_vector to the vid instruction. Any non-identity step value must 4029 // be accounted for my manual expansion. 4030 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4031 SelectionDAG &DAG) const { 4032 SDLoc DL(Op); 4033 MVT VT = Op.getSimpleValueType(); 4034 MVT XLenVT = Subtarget.getXLenVT(); 4035 SDValue Mask, VL; 4036 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4037 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4038 uint64_t StepValImm = Op.getConstantOperandVal(0); 4039 if (StepValImm != 1) { 4040 assert(Op.getOperand(0).getValueType() == XLenVT && 4041 "Unexpected step value type"); 4042 if (isPowerOf2_64(StepValImm)) { 4043 SDValue StepVal = 4044 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4045 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4046 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4047 } else { 4048 SDValue StepVal = 4049 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 4050 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4051 } 4052 } 4053 return StepVec; 4054 } 4055 4056 // Implement vector_reverse using vrgather.vv with indices determined by 4057 // subtracting the id of each element from (VLMAX-1). This will convert 4058 // the indices like so: 4059 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4060 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4061 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4062 SelectionDAG &DAG) const { 4063 SDLoc DL(Op); 4064 MVT VecVT = Op.getSimpleValueType(); 4065 unsigned EltSize = VecVT.getScalarSizeInBits(); 4066 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4067 4068 unsigned MaxVLMAX = 0; 4069 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4070 if (VectorBitsMax != 0) 4071 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4072 4073 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4074 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4075 4076 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4077 // to use vrgatherei16.vv. 4078 // TODO: It's also possible to use vrgatherei16.vv for other types to 4079 // decrease register width for the index calculation. 4080 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4081 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4082 // Reverse each half, then reassemble them in reverse order. 4083 // NOTE: It's also possible that after splitting that VLMAX no longer 4084 // requires vrgatherei16.vv. 4085 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4086 SDValue Lo, Hi; 4087 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4088 EVT LoVT, HiVT; 4089 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4090 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4091 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4092 // Reassemble the low and high pieces reversed. 4093 // FIXME: This is a CONCAT_VECTORS. 4094 SDValue Res = 4095 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4096 DAG.getIntPtrConstant(0, DL)); 4097 return DAG.getNode( 4098 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4099 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4100 } 4101 4102 // Just promote the int type to i16 which will double the LMUL. 4103 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4104 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4105 } 4106 4107 MVT XLenVT = Subtarget.getXLenVT(); 4108 SDValue Mask, VL; 4109 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4110 4111 // Calculate VLMAX-1 for the desired SEW. 4112 unsigned MinElts = VecVT.getVectorMinNumElements(); 4113 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4114 DAG.getConstant(MinElts, DL, XLenVT)); 4115 SDValue VLMinus1 = 4116 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4117 4118 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4119 bool IsRV32E64 = 4120 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4121 SDValue SplatVL; 4122 if (!IsRV32E64) 4123 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4124 else 4125 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4126 4127 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4128 SDValue Indices = 4129 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4130 4131 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4132 } 4133 4134 SDValue 4135 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4136 SelectionDAG &DAG) const { 4137 SDLoc DL(Op); 4138 auto *Load = cast<LoadSDNode>(Op); 4139 4140 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4141 Load->getMemoryVT(), 4142 *Load->getMemOperand()) && 4143 "Expecting a correctly-aligned load"); 4144 4145 MVT VT = Op.getSimpleValueType(); 4146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4147 4148 SDValue VL = 4149 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4150 4151 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4152 SDValue NewLoad = DAG.getMemIntrinsicNode( 4153 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4154 Load->getMemoryVT(), Load->getMemOperand()); 4155 4156 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4157 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4158 } 4159 4160 SDValue 4161 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4162 SelectionDAG &DAG) const { 4163 SDLoc DL(Op); 4164 auto *Store = cast<StoreSDNode>(Op); 4165 4166 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4167 Store->getMemoryVT(), 4168 *Store->getMemOperand()) && 4169 "Expecting a correctly-aligned store"); 4170 4171 SDValue StoreVal = Store->getValue(); 4172 MVT VT = StoreVal.getSimpleValueType(); 4173 4174 // If the size less than a byte, we need to pad with zeros to make a byte. 4175 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4176 VT = MVT::v8i1; 4177 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4178 DAG.getConstant(0, DL, VT), StoreVal, 4179 DAG.getIntPtrConstant(0, DL)); 4180 } 4181 4182 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4183 4184 SDValue VL = 4185 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4186 4187 SDValue NewValue = 4188 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4189 return DAG.getMemIntrinsicNode( 4190 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4191 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4192 Store->getMemoryVT(), Store->getMemOperand()); 4193 } 4194 4195 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4196 auto *Load = cast<MaskedLoadSDNode>(Op); 4197 4198 SDLoc DL(Op); 4199 MVT VT = Op.getSimpleValueType(); 4200 MVT XLenVT = Subtarget.getXLenVT(); 4201 4202 SDValue Mask = Load->getMask(); 4203 SDValue PassThru = Load->getPassThru(); 4204 SDValue VL; 4205 4206 MVT ContainerVT = VT; 4207 if (VT.isFixedLengthVector()) { 4208 ContainerVT = getContainerForFixedLengthVector(VT); 4209 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4210 4211 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4212 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4213 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4214 } else 4215 VL = DAG.getRegister(RISCV::X0, XLenVT); 4216 4217 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4218 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4219 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4220 Load->getBasePtr(), Mask, VL}; 4221 SDValue Result = 4222 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4223 Load->getMemoryVT(), Load->getMemOperand()); 4224 SDValue Chain = Result.getValue(1); 4225 4226 if (VT.isFixedLengthVector()) 4227 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4228 4229 return DAG.getMergeValues({Result, Chain}, DL); 4230 } 4231 4232 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4233 auto *Store = cast<MaskedStoreSDNode>(Op); 4234 4235 SDLoc DL(Op); 4236 SDValue Val = Store->getValue(); 4237 SDValue Mask = Store->getMask(); 4238 MVT VT = Val.getSimpleValueType(); 4239 MVT XLenVT = Subtarget.getXLenVT(); 4240 SDValue VL; 4241 4242 MVT ContainerVT = VT; 4243 if (VT.isFixedLengthVector()) { 4244 ContainerVT = getContainerForFixedLengthVector(VT); 4245 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4246 4247 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4248 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4249 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4250 } else 4251 VL = DAG.getRegister(RISCV::X0, XLenVT); 4252 4253 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4254 return DAG.getMemIntrinsicNode( 4255 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4256 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4257 Store->getMemoryVT(), Store->getMemOperand()); 4258 } 4259 4260 SDValue 4261 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4262 SelectionDAG &DAG) const { 4263 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4264 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4265 4266 MVT VT = Op.getSimpleValueType(); 4267 4268 SDValue Op1 = 4269 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4270 SDValue Op2 = 4271 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4272 4273 SDLoc DL(Op); 4274 SDValue VL = 4275 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4276 4277 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4278 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4279 4280 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4281 Op.getOperand(2), Mask, VL); 4282 4283 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4284 } 4285 4286 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4287 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4288 MVT VT = Op.getSimpleValueType(); 4289 4290 if (VT.getVectorElementType() == MVT::i1) 4291 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4292 4293 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4294 } 4295 4296 SDValue 4297 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4298 SelectionDAG &DAG) const { 4299 unsigned Opc; 4300 switch (Op.getOpcode()) { 4301 default: llvm_unreachable("Unexpected opcode!"); 4302 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4303 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4304 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4305 } 4306 4307 return lowerToScalableOp(Op, DAG, Opc); 4308 } 4309 4310 // Lower vector ABS to smax(X, sub(0, X)). 4311 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4312 SDLoc DL(Op); 4313 MVT VT = Op.getSimpleValueType(); 4314 SDValue X = Op.getOperand(0); 4315 4316 assert(VT.isFixedLengthVector() && "Unexpected type"); 4317 4318 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4319 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4320 4321 SDValue Mask, VL; 4322 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4323 4324 SDValue SplatZero = 4325 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4326 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4327 SDValue NegX = 4328 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4329 SDValue Max = 4330 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4331 4332 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4333 } 4334 4335 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4336 SDValue Op, SelectionDAG &DAG) const { 4337 SDLoc DL(Op); 4338 MVT VT = Op.getSimpleValueType(); 4339 SDValue Mag = Op.getOperand(0); 4340 SDValue Sign = Op.getOperand(1); 4341 assert(Mag.getValueType() == Sign.getValueType() && 4342 "Can only handle COPYSIGN with matching types."); 4343 4344 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4345 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4346 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4347 4348 SDValue Mask, VL; 4349 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4350 4351 SDValue CopySign = 4352 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4353 4354 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4355 } 4356 4357 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4358 SDValue Op, SelectionDAG &DAG) const { 4359 MVT VT = Op.getSimpleValueType(); 4360 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4361 4362 MVT I1ContainerVT = 4363 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4364 4365 SDValue CC = 4366 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4367 SDValue Op1 = 4368 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4369 SDValue Op2 = 4370 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4371 4372 SDLoc DL(Op); 4373 SDValue Mask, VL; 4374 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4375 4376 SDValue Select = 4377 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4378 4379 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4380 } 4381 4382 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4383 unsigned NewOpc, 4384 bool HasMask) const { 4385 MVT VT = Op.getSimpleValueType(); 4386 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4387 4388 // Create list of operands by converting existing ones to scalable types. 4389 SmallVector<SDValue, 6> Ops; 4390 for (const SDValue &V : Op->op_values()) { 4391 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4392 4393 // Pass through non-vector operands. 4394 if (!V.getValueType().isVector()) { 4395 Ops.push_back(V); 4396 continue; 4397 } 4398 4399 // "cast" fixed length vector to a scalable vector. 4400 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4401 "Only fixed length vectors are supported!"); 4402 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4403 } 4404 4405 SDLoc DL(Op); 4406 SDValue Mask, VL; 4407 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4408 if (HasMask) 4409 Ops.push_back(Mask); 4410 Ops.push_back(VL); 4411 4412 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4413 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4414 } 4415 4416 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4417 // * Operands of each node are assumed to be in the same order. 4418 // * The EVL operand is promoted from i32 to i64 on RV64. 4419 // * Fixed-length vectors are converted to their scalable-vector container 4420 // types. 4421 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4422 unsigned RISCVISDOpc) const { 4423 SDLoc DL(Op); 4424 MVT VT = Op.getSimpleValueType(); 4425 SmallVector<SDValue, 4> Ops; 4426 4427 for (const auto &OpIdx : enumerate(Op->ops())) { 4428 SDValue V = OpIdx.value(); 4429 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4430 // Pass through operands which aren't fixed-length vectors. 4431 if (!V.getValueType().isFixedLengthVector()) { 4432 Ops.push_back(V); 4433 continue; 4434 } 4435 // "cast" fixed length vector to a scalable vector. 4436 MVT OpVT = V.getSimpleValueType(); 4437 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4438 assert(useRVVForFixedLengthVectorVT(OpVT) && 4439 "Only fixed length vectors are supported!"); 4440 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4441 } 4442 4443 if (!VT.isFixedLengthVector()) 4444 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4445 4446 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4447 4448 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4449 4450 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4451 } 4452 4453 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4454 // a RVV indexed load. The RVV indexed load instructions only support the 4455 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4456 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4457 // indexing is extended to the XLEN value type and scaled accordingly. 4458 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4459 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4460 SDLoc DL(Op); 4461 4462 SDValue Index = MGN->getIndex(); 4463 SDValue Mask = MGN->getMask(); 4464 SDValue PassThru = MGN->getPassThru(); 4465 4466 MVT VT = Op.getSimpleValueType(); 4467 MVT IndexVT = Index.getSimpleValueType(); 4468 MVT XLenVT = Subtarget.getXLenVT(); 4469 4470 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4471 "Unexpected VTs!"); 4472 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4473 "Unexpected pointer type"); 4474 // Targets have to explicitly opt-in for extending vector loads. 4475 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4476 "Unexpected extending MGATHER"); 4477 4478 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4479 // the selection of the masked intrinsics doesn't do this for us. 4480 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4481 4482 SDValue VL; 4483 MVT ContainerVT = VT; 4484 if (VT.isFixedLengthVector()) { 4485 // We need to use the larger of the result and index type to determine the 4486 // scalable type to use so we don't increase LMUL for any operand/result. 4487 if (VT.bitsGE(IndexVT)) { 4488 ContainerVT = getContainerForFixedLengthVector(VT); 4489 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4490 ContainerVT.getVectorElementCount()); 4491 } else { 4492 IndexVT = getContainerForFixedLengthVector(IndexVT); 4493 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4494 IndexVT.getVectorElementCount()); 4495 } 4496 4497 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4498 4499 if (!IsUnmasked) { 4500 MVT MaskVT = 4501 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4502 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4503 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4504 } 4505 4506 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4507 } else 4508 VL = DAG.getRegister(RISCV::X0, XLenVT); 4509 4510 unsigned IntID = 4511 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4512 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4513 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4514 if (!IsUnmasked) 4515 Ops.push_back(PassThru); 4516 Ops.push_back(MGN->getBasePtr()); 4517 Ops.push_back(Index); 4518 if (!IsUnmasked) 4519 Ops.push_back(Mask); 4520 Ops.push_back(VL); 4521 4522 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4523 SDValue Result = 4524 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4525 MGN->getMemoryVT(), MGN->getMemOperand()); 4526 SDValue Chain = Result.getValue(1); 4527 4528 if (VT.isFixedLengthVector()) 4529 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4530 4531 return DAG.getMergeValues({Result, Chain}, DL); 4532 } 4533 4534 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4535 // a RVV indexed store. The RVV indexed store instructions only support the 4536 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4537 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4538 // indexing is extended to the XLEN value type and scaled accordingly. 4539 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4540 SelectionDAG &DAG) const { 4541 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4542 SDLoc DL(Op); 4543 SDValue Index = MSN->getIndex(); 4544 SDValue Mask = MSN->getMask(); 4545 SDValue Val = MSN->getValue(); 4546 4547 MVT VT = Val.getSimpleValueType(); 4548 MVT IndexVT = Index.getSimpleValueType(); 4549 MVT XLenVT = Subtarget.getXLenVT(); 4550 4551 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4552 "Unexpected VTs!"); 4553 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4554 "Unexpected pointer type"); 4555 // Targets have to explicitly opt-in for extending vector loads and 4556 // truncating vector stores. 4557 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4558 4559 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4560 // the selection of the masked intrinsics doesn't do this for us. 4561 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4562 4563 SDValue VL; 4564 if (VT.isFixedLengthVector()) { 4565 // We need to use the larger of the value and index type to determine the 4566 // scalable type to use so we don't increase LMUL for any operand/result. 4567 MVT ContainerVT; 4568 if (VT.bitsGE(IndexVT)) { 4569 ContainerVT = getContainerForFixedLengthVector(VT); 4570 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4571 ContainerVT.getVectorElementCount()); 4572 } else { 4573 IndexVT = getContainerForFixedLengthVector(IndexVT); 4574 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4575 IndexVT.getVectorElementCount()); 4576 } 4577 4578 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4579 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4580 4581 if (!IsUnmasked) { 4582 MVT MaskVT = 4583 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4584 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4585 } 4586 4587 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4588 } else 4589 VL = DAG.getRegister(RISCV::X0, XLenVT); 4590 4591 unsigned IntID = 4592 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4593 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4594 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4595 Ops.push_back(Val); 4596 Ops.push_back(MSN->getBasePtr()); 4597 Ops.push_back(Index); 4598 if (!IsUnmasked) 4599 Ops.push_back(Mask); 4600 Ops.push_back(VL); 4601 4602 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4603 MSN->getMemoryVT(), MSN->getMemOperand()); 4604 } 4605 4606 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4607 SelectionDAG &DAG) const { 4608 const MVT XLenVT = Subtarget.getXLenVT(); 4609 SDLoc DL(Op); 4610 SDValue Chain = Op->getOperand(0); 4611 SDValue SysRegNo = DAG.getConstant( 4612 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4613 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4614 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4615 4616 // Encoding used for rounding mode in RISCV differs from that used in 4617 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4618 // table, which consists of a sequence of 4-bit fields, each representing 4619 // corresponding FLT_ROUNDS mode. 4620 static const int Table = 4621 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4622 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4623 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4624 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4625 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4626 4627 SDValue Shift = 4628 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4629 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4630 DAG.getConstant(Table, DL, XLenVT), Shift); 4631 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4632 DAG.getConstant(7, DL, XLenVT)); 4633 4634 return DAG.getMergeValues({Masked, Chain}, DL); 4635 } 4636 4637 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4638 SelectionDAG &DAG) const { 4639 const MVT XLenVT = Subtarget.getXLenVT(); 4640 SDLoc DL(Op); 4641 SDValue Chain = Op->getOperand(0); 4642 SDValue RMValue = Op->getOperand(1); 4643 SDValue SysRegNo = DAG.getConstant( 4644 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4645 4646 // Encoding used for rounding mode in RISCV differs from that used in 4647 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4648 // a table, which consists of a sequence of 4-bit fields, each representing 4649 // corresponding RISCV mode. 4650 static const unsigned Table = 4651 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4652 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4653 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4654 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4655 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4656 4657 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4658 DAG.getConstant(2, DL, XLenVT)); 4659 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4660 DAG.getConstant(Table, DL, XLenVT), Shift); 4661 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4662 DAG.getConstant(0x7, DL, XLenVT)); 4663 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4664 RMValue); 4665 } 4666 4667 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4668 // form of the given Opcode. 4669 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4670 switch (Opcode) { 4671 default: 4672 llvm_unreachable("Unexpected opcode"); 4673 case ISD::SHL: 4674 return RISCVISD::SLLW; 4675 case ISD::SRA: 4676 return RISCVISD::SRAW; 4677 case ISD::SRL: 4678 return RISCVISD::SRLW; 4679 case ISD::SDIV: 4680 return RISCVISD::DIVW; 4681 case ISD::UDIV: 4682 return RISCVISD::DIVUW; 4683 case ISD::UREM: 4684 return RISCVISD::REMUW; 4685 case ISD::ROTL: 4686 return RISCVISD::ROLW; 4687 case ISD::ROTR: 4688 return RISCVISD::RORW; 4689 case RISCVISD::GREV: 4690 return RISCVISD::GREVW; 4691 case RISCVISD::GORC: 4692 return RISCVISD::GORCW; 4693 } 4694 } 4695 4696 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4697 // Because i32 isn't a legal type for RV64, these operations would otherwise 4698 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4699 // later one because the fact the operation was originally of type i32 is 4700 // lost. 4701 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4702 unsigned ExtOpc = ISD::ANY_EXTEND) { 4703 SDLoc DL(N); 4704 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4705 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4706 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4707 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4708 // ReplaceNodeResults requires we maintain the same type for the return value. 4709 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4710 } 4711 4712 // Converts the given 32-bit operation to a i64 operation with signed extension 4713 // semantic to reduce the signed extension instructions. 4714 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4715 SDLoc DL(N); 4716 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4717 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4718 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4719 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4720 DAG.getValueType(MVT::i32)); 4721 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4722 } 4723 4724 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4725 SmallVectorImpl<SDValue> &Results, 4726 SelectionDAG &DAG) const { 4727 SDLoc DL(N); 4728 switch (N->getOpcode()) { 4729 default: 4730 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4731 case ISD::STRICT_FP_TO_SINT: 4732 case ISD::STRICT_FP_TO_UINT: 4733 case ISD::FP_TO_SINT: 4734 case ISD::FP_TO_UINT: { 4735 bool IsStrict = N->isStrictFPOpcode(); 4736 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4737 "Unexpected custom legalisation"); 4738 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4739 // If the FP type needs to be softened, emit a library call using the 'si' 4740 // version. If we left it to default legalization we'd end up with 'di'. If 4741 // the FP type doesn't need to be softened just let generic type 4742 // legalization promote the result type. 4743 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4744 TargetLowering::TypeSoftenFloat) 4745 return; 4746 RTLIB::Libcall LC; 4747 if (N->getOpcode() == ISD::FP_TO_SINT || 4748 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4749 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4750 else 4751 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4752 MakeLibCallOptions CallOptions; 4753 EVT OpVT = Op0.getValueType(); 4754 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4755 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4756 SDValue Result; 4757 std::tie(Result, Chain) = 4758 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4759 Results.push_back(Result); 4760 if (IsStrict) 4761 Results.push_back(Chain); 4762 break; 4763 } 4764 case ISD::READCYCLECOUNTER: { 4765 assert(!Subtarget.is64Bit() && 4766 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4767 4768 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4769 SDValue RCW = 4770 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4771 4772 Results.push_back( 4773 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4774 Results.push_back(RCW.getValue(2)); 4775 break; 4776 } 4777 case ISD::MUL: { 4778 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4779 unsigned XLen = Subtarget.getXLen(); 4780 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4781 if (Size > XLen) { 4782 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4783 SDValue LHS = N->getOperand(0); 4784 SDValue RHS = N->getOperand(1); 4785 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4786 4787 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4788 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4789 // We need exactly one side to be unsigned. 4790 if (LHSIsU == RHSIsU) 4791 return; 4792 4793 auto MakeMULPair = [&](SDValue S, SDValue U) { 4794 MVT XLenVT = Subtarget.getXLenVT(); 4795 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4796 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4797 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4798 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4799 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4800 }; 4801 4802 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4803 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4804 4805 // The other operand should be signed, but still prefer MULH when 4806 // possible. 4807 if (RHSIsU && LHSIsS && !RHSIsS) 4808 Results.push_back(MakeMULPair(LHS, RHS)); 4809 else if (LHSIsU && RHSIsS && !LHSIsS) 4810 Results.push_back(MakeMULPair(RHS, LHS)); 4811 4812 return; 4813 } 4814 LLVM_FALLTHROUGH; 4815 } 4816 case ISD::ADD: 4817 case ISD::SUB: 4818 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4819 "Unexpected custom legalisation"); 4820 if (N->getOperand(1).getOpcode() == ISD::Constant) 4821 return; 4822 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4823 break; 4824 case ISD::SHL: 4825 case ISD::SRA: 4826 case ISD::SRL: 4827 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4828 "Unexpected custom legalisation"); 4829 if (N->getOperand(1).getOpcode() == ISD::Constant) 4830 return; 4831 Results.push_back(customLegalizeToWOp(N, DAG)); 4832 break; 4833 case ISD::ROTL: 4834 case ISD::ROTR: 4835 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4836 "Unexpected custom legalisation"); 4837 Results.push_back(customLegalizeToWOp(N, DAG)); 4838 break; 4839 case ISD::CTTZ: 4840 case ISD::CTTZ_ZERO_UNDEF: 4841 case ISD::CTLZ: 4842 case ISD::CTLZ_ZERO_UNDEF: { 4843 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4844 "Unexpected custom legalisation"); 4845 4846 SDValue NewOp0 = 4847 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4848 bool IsCTZ = 4849 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4850 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4851 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4852 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4853 return; 4854 } 4855 case ISD::SDIV: 4856 case ISD::UDIV: 4857 case ISD::UREM: { 4858 MVT VT = N->getSimpleValueType(0); 4859 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4860 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4861 "Unexpected custom legalisation"); 4862 if (N->getOperand(0).getOpcode() == ISD::Constant || 4863 N->getOperand(1).getOpcode() == ISD::Constant) 4864 return; 4865 4866 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4867 // the upper 32 bits. For other types we need to sign or zero extend 4868 // based on the opcode. 4869 unsigned ExtOpc = ISD::ANY_EXTEND; 4870 if (VT != MVT::i32) 4871 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4872 : ISD::ZERO_EXTEND; 4873 4874 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4875 break; 4876 } 4877 case ISD::UADDO: 4878 case ISD::USUBO: { 4879 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4880 "Unexpected custom legalisation"); 4881 bool IsAdd = N->getOpcode() == ISD::UADDO; 4882 // Create an ADDW or SUBW. 4883 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4884 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4885 SDValue Res = 4886 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4887 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4888 DAG.getValueType(MVT::i32)); 4889 4890 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4891 // Since the inputs are sign extended from i32, this is equivalent to 4892 // comparing the lower 32 bits. 4893 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4894 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4895 IsAdd ? ISD::SETULT : ISD::SETUGT); 4896 4897 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4898 Results.push_back(Overflow); 4899 return; 4900 } 4901 case ISD::UADDSAT: 4902 case ISD::USUBSAT: { 4903 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4904 "Unexpected custom legalisation"); 4905 if (Subtarget.hasStdExtZbb()) { 4906 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4907 // sign extend allows overflow of the lower 32 bits to be detected on 4908 // the promoted size. 4909 SDValue LHS = 4910 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4911 SDValue RHS = 4912 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4913 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4914 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4915 return; 4916 } 4917 4918 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4919 // promotion for UADDO/USUBO. 4920 Results.push_back(expandAddSubSat(N, DAG)); 4921 return; 4922 } 4923 case ISD::BITCAST: { 4924 EVT VT = N->getValueType(0); 4925 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4926 SDValue Op0 = N->getOperand(0); 4927 EVT Op0VT = Op0.getValueType(); 4928 MVT XLenVT = Subtarget.getXLenVT(); 4929 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4930 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4931 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4932 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4933 Subtarget.hasStdExtF()) { 4934 SDValue FPConv = 4935 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4936 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4937 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4938 isTypeLegal(Op0VT)) { 4939 // Custom-legalize bitcasts from fixed-length vector types to illegal 4940 // scalar types in order to improve codegen. Bitcast the vector to a 4941 // one-element vector type whose element type is the same as the result 4942 // type, and extract the first element. 4943 LLVMContext &Context = *DAG.getContext(); 4944 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4945 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4946 DAG.getConstant(0, DL, XLenVT))); 4947 } 4948 break; 4949 } 4950 case RISCVISD::GREV: 4951 case RISCVISD::GORC: { 4952 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4953 "Unexpected custom legalisation"); 4954 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4955 // This is similar to customLegalizeToWOp, except that we pass the second 4956 // operand (a TargetConstant) straight through: it is already of type 4957 // XLenVT. 4958 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4959 SDValue NewOp0 = 4960 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4961 SDValue NewOp1 = 4962 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4963 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4964 // ReplaceNodeResults requires we maintain the same type for the return 4965 // value. 4966 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4967 break; 4968 } 4969 case RISCVISD::SHFL: { 4970 // There is no SHFLIW instruction, but we can just promote the operation. 4971 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4972 "Unexpected custom legalisation"); 4973 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4974 SDValue NewOp0 = 4975 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4976 SDValue NewOp1 = 4977 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4978 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4979 // ReplaceNodeResults requires we maintain the same type for the return 4980 // value. 4981 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4982 break; 4983 } 4984 case ISD::BSWAP: 4985 case ISD::BITREVERSE: { 4986 MVT VT = N->getSimpleValueType(0); 4987 MVT XLenVT = Subtarget.getXLenVT(); 4988 assert((VT == MVT::i8 || VT == MVT::i16 || 4989 (VT == MVT::i32 && Subtarget.is64Bit())) && 4990 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4991 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 4992 unsigned Imm = VT.getSizeInBits() - 1; 4993 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 4994 if (N->getOpcode() == ISD::BSWAP) 4995 Imm &= ~0x7U; 4996 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 4997 SDValue GREVI = 4998 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 4999 // ReplaceNodeResults requires we maintain the same type for the return 5000 // value. 5001 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5002 break; 5003 } 5004 case ISD::FSHL: 5005 case ISD::FSHR: { 5006 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5007 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5008 SDValue NewOp0 = 5009 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5010 SDValue NewOp1 = 5011 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5012 SDValue NewOp2 = 5013 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5014 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5015 // Mask the shift amount to 5 bits. 5016 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5017 DAG.getConstant(0x1f, DL, MVT::i64)); 5018 unsigned Opc = 5019 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5020 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5021 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5022 break; 5023 } 5024 case ISD::EXTRACT_VECTOR_ELT: { 5025 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5026 // type is illegal (currently only vXi64 RV32). 5027 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5028 // transferred to the destination register. We issue two of these from the 5029 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5030 // first element. 5031 SDValue Vec = N->getOperand(0); 5032 SDValue Idx = N->getOperand(1); 5033 5034 // The vector type hasn't been legalized yet so we can't issue target 5035 // specific nodes if it needs legalization. 5036 // FIXME: We would manually legalize if it's important. 5037 if (!isTypeLegal(Vec.getValueType())) 5038 return; 5039 5040 MVT VecVT = Vec.getSimpleValueType(); 5041 5042 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5043 VecVT.getVectorElementType() == MVT::i64 && 5044 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5045 5046 // If this is a fixed vector, we need to convert it to a scalable vector. 5047 MVT ContainerVT = VecVT; 5048 if (VecVT.isFixedLengthVector()) { 5049 ContainerVT = getContainerForFixedLengthVector(VecVT); 5050 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5051 } 5052 5053 MVT XLenVT = Subtarget.getXLenVT(); 5054 5055 // Use a VL of 1 to avoid processing more elements than we need. 5056 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5057 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5058 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5059 5060 // Unless the index is known to be 0, we must slide the vector down to get 5061 // the desired element into index 0. 5062 if (!isNullConstant(Idx)) { 5063 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5064 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5065 } 5066 5067 // Extract the lower XLEN bits of the correct vector element. 5068 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5069 5070 // To extract the upper XLEN bits of the vector element, shift the first 5071 // element right by 32 bits and re-extract the lower XLEN bits. 5072 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5073 DAG.getConstant(32, DL, XLenVT), VL); 5074 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5075 ThirtyTwoV, Mask, VL); 5076 5077 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5078 5079 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5080 break; 5081 } 5082 case ISD::INTRINSIC_WO_CHAIN: { 5083 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5084 switch (IntNo) { 5085 default: 5086 llvm_unreachable( 5087 "Don't know how to custom type legalize this intrinsic!"); 5088 case Intrinsic::riscv_orc_b: { 5089 // Lower to the GORCI encoding for orc.b with the operand extended. 5090 SDValue NewOp = 5091 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5092 // If Zbp is enabled, use GORCIW which will sign extend the result. 5093 unsigned Opc = 5094 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5095 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5096 DAG.getConstant(7, DL, MVT::i64)); 5097 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5098 return; 5099 } 5100 case Intrinsic::riscv_grev: 5101 case Intrinsic::riscv_gorc: { 5102 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5103 "Unexpected custom legalisation"); 5104 SDValue NewOp1 = 5105 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5106 SDValue NewOp2 = 5107 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5108 unsigned Opc = 5109 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5110 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5111 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5112 break; 5113 } 5114 case Intrinsic::riscv_shfl: 5115 case Intrinsic::riscv_unshfl: { 5116 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5117 "Unexpected custom legalisation"); 5118 SDValue NewOp1 = 5119 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5120 SDValue NewOp2 = 5121 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5122 unsigned Opc = 5123 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5124 if (isa<ConstantSDNode>(N->getOperand(2))) { 5125 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5126 DAG.getConstant(0xf, DL, MVT::i64)); 5127 Opc = 5128 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5129 } 5130 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5131 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5132 break; 5133 } 5134 case Intrinsic::riscv_bcompress: 5135 case Intrinsic::riscv_bdecompress: { 5136 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5137 "Unexpected custom legalisation"); 5138 SDValue NewOp1 = 5139 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5140 SDValue NewOp2 = 5141 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5142 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5143 ? RISCVISD::BCOMPRESSW 5144 : RISCVISD::BDECOMPRESSW; 5145 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5146 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5147 break; 5148 } 5149 case Intrinsic::riscv_vmv_x_s: { 5150 EVT VT = N->getValueType(0); 5151 MVT XLenVT = Subtarget.getXLenVT(); 5152 if (VT.bitsLT(XLenVT)) { 5153 // Simple case just extract using vmv.x.s and truncate. 5154 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5155 Subtarget.getXLenVT(), N->getOperand(1)); 5156 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5157 return; 5158 } 5159 5160 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5161 "Unexpected custom legalization"); 5162 5163 // We need to do the move in two steps. 5164 SDValue Vec = N->getOperand(1); 5165 MVT VecVT = Vec.getSimpleValueType(); 5166 5167 // First extract the lower XLEN bits of the element. 5168 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5169 5170 // To extract the upper XLEN bits of the vector element, shift the first 5171 // element right by 32 bits and re-extract the lower XLEN bits. 5172 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5173 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5174 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5175 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5176 DAG.getConstant(32, DL, XLenVT), VL); 5177 SDValue LShr32 = 5178 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5179 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5180 5181 Results.push_back( 5182 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5183 break; 5184 } 5185 } 5186 break; 5187 } 5188 case ISD::VECREDUCE_ADD: 5189 case ISD::VECREDUCE_AND: 5190 case ISD::VECREDUCE_OR: 5191 case ISD::VECREDUCE_XOR: 5192 case ISD::VECREDUCE_SMAX: 5193 case ISD::VECREDUCE_UMAX: 5194 case ISD::VECREDUCE_SMIN: 5195 case ISD::VECREDUCE_UMIN: 5196 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5197 Results.push_back(V); 5198 break; 5199 case ISD::FLT_ROUNDS_: { 5200 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5201 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5202 Results.push_back(Res.getValue(0)); 5203 Results.push_back(Res.getValue(1)); 5204 break; 5205 } 5206 } 5207 } 5208 5209 // A structure to hold one of the bit-manipulation patterns below. Together, a 5210 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5211 // (or (and (shl x, 1), 0xAAAAAAAA), 5212 // (and (srl x, 1), 0x55555555)) 5213 struct RISCVBitmanipPat { 5214 SDValue Op; 5215 unsigned ShAmt; 5216 bool IsSHL; 5217 5218 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5219 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5220 } 5221 }; 5222 5223 // Matches patterns of the form 5224 // (and (shl x, C2), (C1 << C2)) 5225 // (and (srl x, C2), C1) 5226 // (shl (and x, C1), C2) 5227 // (srl (and x, (C1 << C2)), C2) 5228 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5229 // The expected masks for each shift amount are specified in BitmanipMasks where 5230 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5231 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5232 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5233 // XLen is 64. 5234 static Optional<RISCVBitmanipPat> 5235 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5236 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5237 "Unexpected number of masks"); 5238 Optional<uint64_t> Mask; 5239 // Optionally consume a mask around the shift operation. 5240 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5241 Mask = Op.getConstantOperandVal(1); 5242 Op = Op.getOperand(0); 5243 } 5244 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5245 return None; 5246 bool IsSHL = Op.getOpcode() == ISD::SHL; 5247 5248 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5249 return None; 5250 uint64_t ShAmt = Op.getConstantOperandVal(1); 5251 5252 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5253 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5254 return None; 5255 // If we don't have enough masks for 64 bit, then we must be trying to 5256 // match SHFL so we're only allowed to shift 1/4 of the width. 5257 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5258 return None; 5259 5260 SDValue Src = Op.getOperand(0); 5261 5262 // The expected mask is shifted left when the AND is found around SHL 5263 // patterns. 5264 // ((x >> 1) & 0x55555555) 5265 // ((x << 1) & 0xAAAAAAAA) 5266 bool SHLExpMask = IsSHL; 5267 5268 if (!Mask) { 5269 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5270 // the mask is all ones: consume that now. 5271 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5272 Mask = Src.getConstantOperandVal(1); 5273 Src = Src.getOperand(0); 5274 // The expected mask is now in fact shifted left for SRL, so reverse the 5275 // decision. 5276 // ((x & 0xAAAAAAAA) >> 1) 5277 // ((x & 0x55555555) << 1) 5278 SHLExpMask = !SHLExpMask; 5279 } else { 5280 // Use a default shifted mask of all-ones if there's no AND, truncated 5281 // down to the expected width. This simplifies the logic later on. 5282 Mask = maskTrailingOnes<uint64_t>(Width); 5283 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5284 } 5285 } 5286 5287 unsigned MaskIdx = Log2_32(ShAmt); 5288 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5289 5290 if (SHLExpMask) 5291 ExpMask <<= ShAmt; 5292 5293 if (Mask != ExpMask) 5294 return None; 5295 5296 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5297 } 5298 5299 // Matches any of the following bit-manipulation patterns: 5300 // (and (shl x, 1), (0x55555555 << 1)) 5301 // (and (srl x, 1), 0x55555555) 5302 // (shl (and x, 0x55555555), 1) 5303 // (srl (and x, (0x55555555 << 1)), 1) 5304 // where the shift amount and mask may vary thus: 5305 // [1] = 0x55555555 / 0xAAAAAAAA 5306 // [2] = 0x33333333 / 0xCCCCCCCC 5307 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5308 // [8] = 0x00FF00FF / 0xFF00FF00 5309 // [16] = 0x0000FFFF / 0xFFFFFFFF 5310 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5311 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5312 // These are the unshifted masks which we use to match bit-manipulation 5313 // patterns. They may be shifted left in certain circumstances. 5314 static const uint64_t BitmanipMasks[] = { 5315 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5316 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5317 5318 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5319 } 5320 5321 // Match the following pattern as a GREVI(W) operation 5322 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5323 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5324 const RISCVSubtarget &Subtarget) { 5325 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5326 EVT VT = Op.getValueType(); 5327 5328 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5329 auto LHS = matchGREVIPat(Op.getOperand(0)); 5330 auto RHS = matchGREVIPat(Op.getOperand(1)); 5331 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5332 SDLoc DL(Op); 5333 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5334 DAG.getConstant(LHS->ShAmt, DL, VT)); 5335 } 5336 } 5337 return SDValue(); 5338 } 5339 5340 // Matches any the following pattern as a GORCI(W) operation 5341 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5342 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5343 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5344 // Note that with the variant of 3., 5345 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5346 // the inner pattern will first be matched as GREVI and then the outer 5347 // pattern will be matched to GORC via the first rule above. 5348 // 4. (or (rotl/rotr x, bitwidth/2), x) 5349 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5350 const RISCVSubtarget &Subtarget) { 5351 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5352 EVT VT = Op.getValueType(); 5353 5354 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5355 SDLoc DL(Op); 5356 SDValue Op0 = Op.getOperand(0); 5357 SDValue Op1 = Op.getOperand(1); 5358 5359 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5360 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5361 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5362 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5363 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5364 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5365 if ((Reverse.getOpcode() == ISD::ROTL || 5366 Reverse.getOpcode() == ISD::ROTR) && 5367 Reverse.getOperand(0) == X && 5368 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5369 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5370 if (RotAmt == (VT.getSizeInBits() / 2)) 5371 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5372 DAG.getConstant(RotAmt, DL, VT)); 5373 } 5374 return SDValue(); 5375 }; 5376 5377 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5378 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5379 return V; 5380 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5381 return V; 5382 5383 // OR is commutable so canonicalize its OR operand to the left 5384 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5385 std::swap(Op0, Op1); 5386 if (Op0.getOpcode() != ISD::OR) 5387 return SDValue(); 5388 SDValue OrOp0 = Op0.getOperand(0); 5389 SDValue OrOp1 = Op0.getOperand(1); 5390 auto LHS = matchGREVIPat(OrOp0); 5391 // OR is commutable so swap the operands and try again: x might have been 5392 // on the left 5393 if (!LHS) { 5394 std::swap(OrOp0, OrOp1); 5395 LHS = matchGREVIPat(OrOp0); 5396 } 5397 auto RHS = matchGREVIPat(Op1); 5398 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5399 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5400 DAG.getConstant(LHS->ShAmt, DL, VT)); 5401 } 5402 } 5403 return SDValue(); 5404 } 5405 5406 // Matches any of the following bit-manipulation patterns: 5407 // (and (shl x, 1), (0x22222222 << 1)) 5408 // (and (srl x, 1), 0x22222222) 5409 // (shl (and x, 0x22222222), 1) 5410 // (srl (and x, (0x22222222 << 1)), 1) 5411 // where the shift amount and mask may vary thus: 5412 // [1] = 0x22222222 / 0x44444444 5413 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5414 // [4] = 0x00F000F0 / 0x0F000F00 5415 // [8] = 0x0000FF00 / 0x00FF0000 5416 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5417 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5418 // These are the unshifted masks which we use to match bit-manipulation 5419 // patterns. They may be shifted left in certain circumstances. 5420 static const uint64_t BitmanipMasks[] = { 5421 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5422 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5423 5424 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5425 } 5426 5427 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5428 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5429 const RISCVSubtarget &Subtarget) { 5430 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5431 EVT VT = Op.getValueType(); 5432 5433 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5434 return SDValue(); 5435 5436 SDValue Op0 = Op.getOperand(0); 5437 SDValue Op1 = Op.getOperand(1); 5438 5439 // Or is commutable so canonicalize the second OR to the LHS. 5440 if (Op0.getOpcode() != ISD::OR) 5441 std::swap(Op0, Op1); 5442 if (Op0.getOpcode() != ISD::OR) 5443 return SDValue(); 5444 5445 // We found an inner OR, so our operands are the operands of the inner OR 5446 // and the other operand of the outer OR. 5447 SDValue A = Op0.getOperand(0); 5448 SDValue B = Op0.getOperand(1); 5449 SDValue C = Op1; 5450 5451 auto Match1 = matchSHFLPat(A); 5452 auto Match2 = matchSHFLPat(B); 5453 5454 // If neither matched, we failed. 5455 if (!Match1 && !Match2) 5456 return SDValue(); 5457 5458 // We had at least one match. if one failed, try the remaining C operand. 5459 if (!Match1) { 5460 std::swap(A, C); 5461 Match1 = matchSHFLPat(A); 5462 if (!Match1) 5463 return SDValue(); 5464 } else if (!Match2) { 5465 std::swap(B, C); 5466 Match2 = matchSHFLPat(B); 5467 if (!Match2) 5468 return SDValue(); 5469 } 5470 assert(Match1 && Match2); 5471 5472 // Make sure our matches pair up. 5473 if (!Match1->formsPairWith(*Match2)) 5474 return SDValue(); 5475 5476 // All the remains is to make sure C is an AND with the same input, that masks 5477 // out the bits that are being shuffled. 5478 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5479 C.getOperand(0) != Match1->Op) 5480 return SDValue(); 5481 5482 uint64_t Mask = C.getConstantOperandVal(1); 5483 5484 static const uint64_t BitmanipMasks[] = { 5485 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5486 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5487 }; 5488 5489 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5490 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5491 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5492 5493 if (Mask != ExpMask) 5494 return SDValue(); 5495 5496 SDLoc DL(Op); 5497 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5498 DAG.getConstant(Match1->ShAmt, DL, VT)); 5499 } 5500 5501 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5502 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5503 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5504 // not undo itself, but they are redundant. 5505 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5506 SDValue Src = N->getOperand(0); 5507 5508 if (Src.getOpcode() != N->getOpcode()) 5509 return SDValue(); 5510 5511 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5512 !isa<ConstantSDNode>(Src.getOperand(1))) 5513 return SDValue(); 5514 5515 unsigned ShAmt1 = N->getConstantOperandVal(1); 5516 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5517 Src = Src.getOperand(0); 5518 5519 unsigned CombinedShAmt; 5520 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5521 CombinedShAmt = ShAmt1 | ShAmt2; 5522 else 5523 CombinedShAmt = ShAmt1 ^ ShAmt2; 5524 5525 if (CombinedShAmt == 0) 5526 return Src; 5527 5528 SDLoc DL(N); 5529 return DAG.getNode( 5530 N->getOpcode(), DL, N->getValueType(0), Src, 5531 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5532 } 5533 5534 // Combine a constant select operand into its use: 5535 // 5536 // (and (select_cc lhs, rhs, cc, -1, c), x) 5537 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5538 // (or (select_cc lhs, rhs, cc, 0, c), x) 5539 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5540 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5541 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5542 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5543 SelectionDAG &DAG, bool AllOnes) { 5544 EVT VT = N->getValueType(0); 5545 5546 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5547 return SDValue(); 5548 5549 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5550 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5551 }; 5552 5553 bool SwapSelectOps; 5554 SDValue TrueVal = Slct.getOperand(3); 5555 SDValue FalseVal = Slct.getOperand(4); 5556 SDValue NonConstantVal; 5557 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5558 SwapSelectOps = false; 5559 NonConstantVal = FalseVal; 5560 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5561 SwapSelectOps = true; 5562 NonConstantVal = TrueVal; 5563 } else 5564 return SDValue(); 5565 5566 // Slct is now know to be the desired identity constant when CC is true. 5567 TrueVal = OtherOp; 5568 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5569 // Unless SwapSelectOps says CC should be false. 5570 if (SwapSelectOps) 5571 std::swap(TrueVal, FalseVal); 5572 5573 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5574 {Slct.getOperand(0), Slct.getOperand(1), 5575 Slct.getOperand(2), TrueVal, FalseVal}); 5576 } 5577 5578 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5579 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5580 bool AllOnes) { 5581 SDValue N0 = N->getOperand(0); 5582 SDValue N1 = N->getOperand(1); 5583 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5584 return Result; 5585 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5586 return Result; 5587 return SDValue(); 5588 } 5589 5590 static SDValue performANDCombine(SDNode *N, 5591 TargetLowering::DAGCombinerInfo &DCI, 5592 const RISCVSubtarget &Subtarget) { 5593 SelectionDAG &DAG = DCI.DAG; 5594 5595 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5596 // (select lhs, rhs, cc, x, (and x, y)) 5597 return combineSelectCCAndUseCommutative(N, DAG, true); 5598 } 5599 5600 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5601 const RISCVSubtarget &Subtarget) { 5602 SelectionDAG &DAG = DCI.DAG; 5603 if (Subtarget.hasStdExtZbp()) { 5604 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5605 return GREV; 5606 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5607 return GORC; 5608 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5609 return SHFL; 5610 } 5611 5612 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5613 // (select lhs, rhs, cc, x, (or x, y)) 5614 return combineSelectCCAndUseCommutative(N, DAG, false); 5615 } 5616 5617 static SDValue performXORCombine(SDNode *N, 5618 TargetLowering::DAGCombinerInfo &DCI, 5619 const RISCVSubtarget &Subtarget) { 5620 SelectionDAG &DAG = DCI.DAG; 5621 5622 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5623 // (select lhs, rhs, cc, x, (xor x, y)) 5624 return combineSelectCCAndUseCommutative(N, DAG, false); 5625 } 5626 5627 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 5628 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 5629 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 5630 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 5631 // ADDW/SUBW/MULW. 5632 static SDValue performANY_EXTENDCombine(SDNode *N, 5633 TargetLowering::DAGCombinerInfo &DCI, 5634 const RISCVSubtarget &Subtarget) { 5635 if (!Subtarget.is64Bit()) 5636 return SDValue(); 5637 5638 SelectionDAG &DAG = DCI.DAG; 5639 5640 SDValue Src = N->getOperand(0); 5641 EVT VT = N->getValueType(0); 5642 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 5643 return SDValue(); 5644 5645 // The opcode must be one that can implicitly sign_extend. 5646 // FIXME: Additional opcodes. 5647 switch (Src.getOpcode()) { 5648 default: 5649 return SDValue(); 5650 case ISD::MUL: 5651 if (!Subtarget.hasStdExtM()) 5652 return SDValue(); 5653 LLVM_FALLTHROUGH; 5654 case ISD::ADD: 5655 case ISD::SUB: 5656 break; 5657 } 5658 5659 SmallVector<SDNode *, 4> SetCCs; 5660 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 5661 UE = Src.getNode()->use_end(); 5662 UI != UE; ++UI) { 5663 SDNode *User = *UI; 5664 if (User == N) 5665 continue; 5666 if (UI.getUse().getResNo() != Src.getResNo()) 5667 continue; 5668 // All i32 setccs are legalized by sign extending operands. 5669 if (User->getOpcode() == ISD::SETCC) { 5670 SetCCs.push_back(User); 5671 continue; 5672 } 5673 // We don't know if we can extend this user. 5674 break; 5675 } 5676 5677 // If we don't have any SetCCs, this isn't worthwhile. 5678 if (SetCCs.empty()) 5679 return SDValue(); 5680 5681 SDLoc DL(N); 5682 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 5683 DCI.CombineTo(N, SExt); 5684 5685 // Promote all the setccs. 5686 for (SDNode *SetCC : SetCCs) { 5687 SmallVector<SDValue, 4> Ops; 5688 5689 for (unsigned j = 0; j != 2; ++j) { 5690 SDValue SOp = SetCC->getOperand(j); 5691 if (SOp == Src) 5692 Ops.push_back(SExt); 5693 else 5694 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 5695 } 5696 5697 Ops.push_back(SetCC->getOperand(2)); 5698 DCI.CombineTo(SetCC, 5699 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5700 } 5701 return SDValue(N, 0); 5702 } 5703 5704 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5705 DAGCombinerInfo &DCI) const { 5706 SelectionDAG &DAG = DCI.DAG; 5707 5708 switch (N->getOpcode()) { 5709 default: 5710 break; 5711 case RISCVISD::SplitF64: { 5712 SDValue Op0 = N->getOperand(0); 5713 // If the input to SplitF64 is just BuildPairF64 then the operation is 5714 // redundant. Instead, use BuildPairF64's operands directly. 5715 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5716 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5717 5718 SDLoc DL(N); 5719 5720 // It's cheaper to materialise two 32-bit integers than to load a double 5721 // from the constant pool and transfer it to integer registers through the 5722 // stack. 5723 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5724 APInt V = C->getValueAPF().bitcastToAPInt(); 5725 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5726 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5727 return DCI.CombineTo(N, Lo, Hi); 5728 } 5729 5730 // This is a target-specific version of a DAGCombine performed in 5731 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5732 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5733 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5734 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5735 !Op0.getNode()->hasOneUse()) 5736 break; 5737 SDValue NewSplitF64 = 5738 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5739 Op0.getOperand(0)); 5740 SDValue Lo = NewSplitF64.getValue(0); 5741 SDValue Hi = NewSplitF64.getValue(1); 5742 APInt SignBit = APInt::getSignMask(32); 5743 if (Op0.getOpcode() == ISD::FNEG) { 5744 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5745 DAG.getConstant(SignBit, DL, MVT::i32)); 5746 return DCI.CombineTo(N, Lo, NewHi); 5747 } 5748 assert(Op0.getOpcode() == ISD::FABS); 5749 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5750 DAG.getConstant(~SignBit, DL, MVT::i32)); 5751 return DCI.CombineTo(N, Lo, NewHi); 5752 } 5753 case RISCVISD::SLLW: 5754 case RISCVISD::SRAW: 5755 case RISCVISD::SRLW: 5756 case RISCVISD::ROLW: 5757 case RISCVISD::RORW: { 5758 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5759 SDValue LHS = N->getOperand(0); 5760 SDValue RHS = N->getOperand(1); 5761 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5762 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5763 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5764 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5765 if (N->getOpcode() != ISD::DELETED_NODE) 5766 DCI.AddToWorklist(N); 5767 return SDValue(N, 0); 5768 } 5769 break; 5770 } 5771 case RISCVISD::CLZW: 5772 case RISCVISD::CTZW: { 5773 // Only the lower 32 bits of the first operand are read 5774 SDValue Op0 = N->getOperand(0); 5775 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5776 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5777 if (N->getOpcode() != ISD::DELETED_NODE) 5778 DCI.AddToWorklist(N); 5779 return SDValue(N, 0); 5780 } 5781 break; 5782 } 5783 case RISCVISD::FSL: 5784 case RISCVISD::FSR: { 5785 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5786 SDValue ShAmt = N->getOperand(2); 5787 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5788 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5789 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5790 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5791 if (N->getOpcode() != ISD::DELETED_NODE) 5792 DCI.AddToWorklist(N); 5793 return SDValue(N, 0); 5794 } 5795 break; 5796 } 5797 case RISCVISD::FSLW: 5798 case RISCVISD::FSRW: { 5799 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5800 // read. 5801 SDValue Op0 = N->getOperand(0); 5802 SDValue Op1 = N->getOperand(1); 5803 SDValue ShAmt = N->getOperand(2); 5804 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5805 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5806 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5807 SimplifyDemandedBits(Op1, OpMask, DCI) || 5808 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5809 if (N->getOpcode() != ISD::DELETED_NODE) 5810 DCI.AddToWorklist(N); 5811 return SDValue(N, 0); 5812 } 5813 break; 5814 } 5815 case RISCVISD::GREV: 5816 case RISCVISD::GORC: { 5817 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5818 SDValue ShAmt = N->getOperand(1); 5819 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5820 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5821 APInt ShAmtMask(BitWidth, BitWidth - 1); 5822 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5823 if (N->getOpcode() != ISD::DELETED_NODE) 5824 DCI.AddToWorklist(N); 5825 return SDValue(N, 0); 5826 } 5827 5828 return combineGREVI_GORCI(N, DCI.DAG); 5829 } 5830 case RISCVISD::GREVW: 5831 case RISCVISD::GORCW: { 5832 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5833 SDValue LHS = N->getOperand(0); 5834 SDValue RHS = N->getOperand(1); 5835 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5836 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5837 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5838 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5839 if (N->getOpcode() != ISD::DELETED_NODE) 5840 DCI.AddToWorklist(N); 5841 return SDValue(N, 0); 5842 } 5843 5844 return combineGREVI_GORCI(N, DCI.DAG); 5845 } 5846 case RISCVISD::SHFL: 5847 case RISCVISD::UNSHFL: { 5848 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5849 SDValue ShAmt = N->getOperand(1); 5850 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5851 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5852 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5853 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5854 if (N->getOpcode() != ISD::DELETED_NODE) 5855 DCI.AddToWorklist(N); 5856 return SDValue(N, 0); 5857 } 5858 5859 break; 5860 } 5861 case RISCVISD::SHFLW: 5862 case RISCVISD::UNSHFLW: { 5863 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5864 SDValue LHS = N->getOperand(0); 5865 SDValue RHS = N->getOperand(1); 5866 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5867 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5868 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5869 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5870 if (N->getOpcode() != ISD::DELETED_NODE) 5871 DCI.AddToWorklist(N); 5872 return SDValue(N, 0); 5873 } 5874 5875 break; 5876 } 5877 case RISCVISD::BCOMPRESSW: 5878 case RISCVISD::BDECOMPRESSW: { 5879 // Only the lower 32 bits of LHS and RHS are read. 5880 SDValue LHS = N->getOperand(0); 5881 SDValue RHS = N->getOperand(1); 5882 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5883 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5884 SimplifyDemandedBits(RHS, Mask, DCI)) { 5885 if (N->getOpcode() != ISD::DELETED_NODE) 5886 DCI.AddToWorklist(N); 5887 return SDValue(N, 0); 5888 } 5889 5890 break; 5891 } 5892 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5893 SDLoc DL(N); 5894 SDValue Op0 = N->getOperand(0); 5895 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5896 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5897 // of the FMV_W_X_RV64 operand. 5898 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5899 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5900 "Unexpected value type!"); 5901 return Op0.getOperand(0); 5902 } 5903 5904 // This is a target-specific version of a DAGCombine performed in 5905 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5906 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5907 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5908 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5909 !Op0.getNode()->hasOneUse()) 5910 break; 5911 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5912 Op0.getOperand(0)); 5913 APInt SignBit = APInt::getSignMask(32).sext(64); 5914 if (Op0.getOpcode() == ISD::FNEG) 5915 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5916 DAG.getConstant(SignBit, DL, MVT::i64)); 5917 5918 assert(Op0.getOpcode() == ISD::FABS); 5919 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5920 DAG.getConstant(~SignBit, DL, MVT::i64)); 5921 } 5922 case ISD::AND: 5923 return performANDCombine(N, DCI, Subtarget); 5924 case ISD::OR: 5925 return performORCombine(N, DCI, Subtarget); 5926 case ISD::XOR: 5927 return performXORCombine(N, DCI, Subtarget); 5928 case ISD::ANY_EXTEND: 5929 return performANY_EXTENDCombine(N, DCI, Subtarget); 5930 case RISCVISD::SELECT_CC: { 5931 // Transform 5932 SDValue LHS = N->getOperand(0); 5933 SDValue RHS = N->getOperand(1); 5934 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5935 if (!ISD::isIntEqualitySetCC(CCVal)) 5936 break; 5937 5938 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5939 // (select_cc X, Y, lt, trueV, falseV) 5940 // Sometimes the setcc is introduced after select_cc has been formed. 5941 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5942 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5943 // If we're looking for eq 0 instead of ne 0, we need to invert the 5944 // condition. 5945 bool Invert = CCVal == ISD::SETEQ; 5946 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5947 if (Invert) 5948 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5949 5950 SDLoc DL(N); 5951 RHS = LHS.getOperand(1); 5952 LHS = LHS.getOperand(0); 5953 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5954 5955 SDValue TargetCC = 5956 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5957 return DAG.getNode( 5958 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5959 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5960 } 5961 5962 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5963 // (select_cc X, Y, eq/ne, trueV, falseV) 5964 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5965 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5966 {LHS.getOperand(0), LHS.getOperand(1), 5967 N->getOperand(2), N->getOperand(3), 5968 N->getOperand(4)}); 5969 // (select_cc X, 1, setne, trueV, falseV) -> 5970 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5971 // This can occur when legalizing some floating point comparisons. 5972 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5973 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5974 SDLoc DL(N); 5975 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5976 SDValue TargetCC = 5977 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5978 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5979 return DAG.getNode( 5980 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5981 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5982 } 5983 5984 break; 5985 } 5986 case RISCVISD::BR_CC: { 5987 SDValue LHS = N->getOperand(1); 5988 SDValue RHS = N->getOperand(2); 5989 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5990 if (!ISD::isIntEqualitySetCC(CCVal)) 5991 break; 5992 5993 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5994 // (br_cc X, Y, lt, dest) 5995 // Sometimes the setcc is introduced after br_cc has been formed. 5996 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5997 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5998 // If we're looking for eq 0 instead of ne 0, we need to invert the 5999 // condition. 6000 bool Invert = CCVal == ISD::SETEQ; 6001 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6002 if (Invert) 6003 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6004 6005 SDLoc DL(N); 6006 RHS = LHS.getOperand(1); 6007 LHS = LHS.getOperand(0); 6008 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6009 6010 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6011 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6012 N->getOperand(4)); 6013 } 6014 6015 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6016 // (br_cc X, Y, eq/ne, trueV, falseV) 6017 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6018 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6019 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6020 N->getOperand(3), N->getOperand(4)); 6021 6022 // (br_cc X, 1, setne, br_cc) -> 6023 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6024 // This can occur when legalizing some floating point comparisons. 6025 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6026 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6027 SDLoc DL(N); 6028 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6029 SDValue TargetCC = DAG.getCondCode(CCVal); 6030 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6031 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6032 N->getOperand(0), LHS, RHS, TargetCC, 6033 N->getOperand(4)); 6034 } 6035 break; 6036 } 6037 case ISD::FCOPYSIGN: { 6038 EVT VT = N->getValueType(0); 6039 if (!VT.isVector()) 6040 break; 6041 // There is a form of VFSGNJ which injects the negated sign of its second 6042 // operand. Try and bubble any FNEG up after the extend/round to produce 6043 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6044 // TRUNC=1. 6045 SDValue In2 = N->getOperand(1); 6046 // Avoid cases where the extend/round has multiple uses, as duplicating 6047 // those is typically more expensive than removing a fneg. 6048 if (!In2.hasOneUse()) 6049 break; 6050 if (In2.getOpcode() != ISD::FP_EXTEND && 6051 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6052 break; 6053 In2 = In2.getOperand(0); 6054 if (In2.getOpcode() != ISD::FNEG) 6055 break; 6056 SDLoc DL(N); 6057 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6058 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6059 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6060 } 6061 case ISD::MGATHER: 6062 case ISD::MSCATTER: { 6063 if (!DCI.isBeforeLegalize()) 6064 break; 6065 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 6066 SDValue Index = MGSN->getIndex(); 6067 EVT IndexVT = Index.getValueType(); 6068 MVT XLenVT = Subtarget.getXLenVT(); 6069 // RISCV indexed loads only support the "unsigned unscaled" addressing 6070 // mode, so anything else must be manually legalized. 6071 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 6072 (MGSN->isIndexSigned() && 6073 IndexVT.getVectorElementType().bitsLT(XLenVT)); 6074 if (!NeedsIdxLegalization) 6075 break; 6076 6077 SDLoc DL(N); 6078 6079 // Any index legalization should first promote to XLenVT, so we don't lose 6080 // bits when scaling. This may create an illegal index type so we let 6081 // LLVM's legalization take care of the splitting. 6082 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6083 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6084 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 6085 : ISD::ZERO_EXTEND, 6086 DL, IndexVT, Index); 6087 } 6088 6089 unsigned Scale = N->getConstantOperandVal(5); 6090 if (MGSN->isIndexScaled() && Scale != 1) { 6091 // Manually scale the indices by the element size. 6092 // TODO: Sanitize the scale operand here? 6093 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6094 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6095 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6096 } 6097 6098 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6099 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 6100 return DAG.getMaskedGather( 6101 N->getVTList(), MGSN->getMemoryVT(), DL, 6102 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 6103 MGSN->getBasePtr(), Index, MGN->getScale()}, 6104 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6105 } 6106 const auto *MSN = cast<MaskedScatterSDNode>(N); 6107 return DAG.getMaskedScatter( 6108 N->getVTList(), MGSN->getMemoryVT(), DL, 6109 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 6110 Index, MGSN->getScale()}, 6111 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6112 } 6113 case RISCVISD::SRA_VL: 6114 case RISCVISD::SRL_VL: 6115 case RISCVISD::SHL_VL: { 6116 SDValue ShAmt = N->getOperand(1); 6117 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6118 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6119 SDLoc DL(N); 6120 SDValue VL = N->getOperand(3); 6121 EVT VT = N->getValueType(0); 6122 ShAmt = 6123 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6124 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6125 N->getOperand(2), N->getOperand(3)); 6126 } 6127 break; 6128 } 6129 case ISD::SRA: 6130 case ISD::SRL: 6131 case ISD::SHL: { 6132 SDValue ShAmt = N->getOperand(1); 6133 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6134 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6135 SDLoc DL(N); 6136 EVT VT = N->getValueType(0); 6137 ShAmt = 6138 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6139 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6140 } 6141 break; 6142 } 6143 } 6144 6145 return SDValue(); 6146 } 6147 6148 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6149 const SDNode *N, CombineLevel Level) const { 6150 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6151 // materialised in fewer instructions than `(OP _, c1)`: 6152 // 6153 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6154 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6155 SDValue N0 = N->getOperand(0); 6156 EVT Ty = N0.getValueType(); 6157 if (Ty.isScalarInteger() && 6158 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6159 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6160 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6161 if (C1 && C2) { 6162 const APInt &C1Int = C1->getAPIntValue(); 6163 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6164 6165 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6166 // and the combine should happen, to potentially allow further combines 6167 // later. 6168 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6169 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6170 return true; 6171 6172 // We can materialise `c1` in an add immediate, so it's "free", and the 6173 // combine should be prevented. 6174 if (C1Int.getMinSignedBits() <= 64 && 6175 isLegalAddImmediate(C1Int.getSExtValue())) 6176 return false; 6177 6178 // Neither constant will fit into an immediate, so find materialisation 6179 // costs. 6180 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6181 Subtarget.is64Bit()); 6182 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6183 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 6184 6185 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6186 // combine should be prevented. 6187 if (C1Cost < ShiftedC1Cost) 6188 return false; 6189 } 6190 } 6191 return true; 6192 } 6193 6194 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6195 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6196 TargetLoweringOpt &TLO) const { 6197 // Delay this optimization as late as possible. 6198 if (!TLO.LegalOps) 6199 return false; 6200 6201 EVT VT = Op.getValueType(); 6202 if (VT.isVector()) 6203 return false; 6204 6205 // Only handle AND for now. 6206 if (Op.getOpcode() != ISD::AND) 6207 return false; 6208 6209 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6210 if (!C) 6211 return false; 6212 6213 const APInt &Mask = C->getAPIntValue(); 6214 6215 // Clear all non-demanded bits initially. 6216 APInt ShrunkMask = Mask & DemandedBits; 6217 6218 // Try to make a smaller immediate by setting undemanded bits. 6219 6220 APInt ExpandedMask = Mask | ~DemandedBits; 6221 6222 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6223 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6224 }; 6225 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6226 if (NewMask == Mask) 6227 return true; 6228 SDLoc DL(Op); 6229 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6230 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6231 return TLO.CombineTo(Op, NewOp); 6232 }; 6233 6234 // If the shrunk mask fits in sign extended 12 bits, let the target 6235 // independent code apply it. 6236 if (ShrunkMask.isSignedIntN(12)) 6237 return false; 6238 6239 // Preserve (and X, 0xffff) when zext.h is supported. 6240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6241 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6242 if (IsLegalMask(NewMask)) 6243 return UseMask(NewMask); 6244 } 6245 6246 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6247 if (VT == MVT::i64) { 6248 APInt NewMask = APInt(64, 0xffffffff); 6249 if (IsLegalMask(NewMask)) 6250 return UseMask(NewMask); 6251 } 6252 6253 // For the remaining optimizations, we need to be able to make a negative 6254 // number through a combination of mask and undemanded bits. 6255 if (!ExpandedMask.isNegative()) 6256 return false; 6257 6258 // What is the fewest number of bits we need to represent the negative number. 6259 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6260 6261 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6262 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6263 APInt NewMask = ShrunkMask; 6264 if (MinSignedBits <= 12) 6265 NewMask.setBitsFrom(11); 6266 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6267 NewMask.setBitsFrom(31); 6268 else 6269 return false; 6270 6271 // Sanity check that our new mask is a subset of the demanded mask. 6272 assert(IsLegalMask(NewMask)); 6273 return UseMask(NewMask); 6274 } 6275 6276 static void computeGREV(APInt &Src, unsigned ShAmt) { 6277 ShAmt &= Src.getBitWidth() - 1; 6278 uint64_t x = Src.getZExtValue(); 6279 if (ShAmt & 1) 6280 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6281 if (ShAmt & 2) 6282 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6283 if (ShAmt & 4) 6284 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6285 if (ShAmt & 8) 6286 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6287 if (ShAmt & 16) 6288 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6289 if (ShAmt & 32) 6290 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6291 Src = x; 6292 } 6293 6294 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6295 KnownBits &Known, 6296 const APInt &DemandedElts, 6297 const SelectionDAG &DAG, 6298 unsigned Depth) const { 6299 unsigned BitWidth = Known.getBitWidth(); 6300 unsigned Opc = Op.getOpcode(); 6301 assert((Opc >= ISD::BUILTIN_OP_END || 6302 Opc == ISD::INTRINSIC_WO_CHAIN || 6303 Opc == ISD::INTRINSIC_W_CHAIN || 6304 Opc == ISD::INTRINSIC_VOID) && 6305 "Should use MaskedValueIsZero if you don't know whether Op" 6306 " is a target node!"); 6307 6308 Known.resetAll(); 6309 switch (Opc) { 6310 default: break; 6311 case RISCVISD::SELECT_CC: { 6312 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6313 // If we don't know any bits, early out. 6314 if (Known.isUnknown()) 6315 break; 6316 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6317 6318 // Only known if known in both the LHS and RHS. 6319 Known = KnownBits::commonBits(Known, Known2); 6320 break; 6321 } 6322 case RISCVISD::REMUW: { 6323 KnownBits Known2; 6324 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6325 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6326 // We only care about the lower 32 bits. 6327 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6328 // Restore the original width by sign extending. 6329 Known = Known.sext(BitWidth); 6330 break; 6331 } 6332 case RISCVISD::DIVUW: { 6333 KnownBits Known2; 6334 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6335 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6336 // We only care about the lower 32 bits. 6337 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6338 // Restore the original width by sign extending. 6339 Known = Known.sext(BitWidth); 6340 break; 6341 } 6342 case RISCVISD::CTZW: { 6343 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6344 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6345 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6346 Known.Zero.setBitsFrom(LowBits); 6347 break; 6348 } 6349 case RISCVISD::CLZW: { 6350 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6351 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6352 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6353 Known.Zero.setBitsFrom(LowBits); 6354 break; 6355 } 6356 case RISCVISD::GREV: 6357 case RISCVISD::GREVW: { 6358 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6359 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6360 if (Opc == RISCVISD::GREVW) 6361 Known = Known.trunc(32); 6362 unsigned ShAmt = C->getZExtValue(); 6363 computeGREV(Known.Zero, ShAmt); 6364 computeGREV(Known.One, ShAmt); 6365 if (Opc == RISCVISD::GREVW) 6366 Known = Known.sext(BitWidth); 6367 } 6368 break; 6369 } 6370 case RISCVISD::READ_VLENB: 6371 // We assume VLENB is at least 16 bytes. 6372 Known.Zero.setLowBits(4); 6373 break; 6374 case ISD::INTRINSIC_W_CHAIN: { 6375 unsigned IntNo = Op.getConstantOperandVal(1); 6376 switch (IntNo) { 6377 default: 6378 // We can't do anything for most intrinsics. 6379 break; 6380 case Intrinsic::riscv_vsetvli: 6381 case Intrinsic::riscv_vsetvlimax: 6382 // Assume that VL output is positive and would fit in an int32_t. 6383 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6384 if (BitWidth >= 32) 6385 Known.Zero.setBitsFrom(31); 6386 break; 6387 } 6388 break; 6389 } 6390 } 6391 } 6392 6393 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6394 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6395 unsigned Depth) const { 6396 switch (Op.getOpcode()) { 6397 default: 6398 break; 6399 case RISCVISD::SLLW: 6400 case RISCVISD::SRAW: 6401 case RISCVISD::SRLW: 6402 case RISCVISD::DIVW: 6403 case RISCVISD::DIVUW: 6404 case RISCVISD::REMUW: 6405 case RISCVISD::ROLW: 6406 case RISCVISD::RORW: 6407 case RISCVISD::GREVW: 6408 case RISCVISD::GORCW: 6409 case RISCVISD::FSLW: 6410 case RISCVISD::FSRW: 6411 case RISCVISD::SHFLW: 6412 case RISCVISD::UNSHFLW: 6413 case RISCVISD::BCOMPRESSW: 6414 case RISCVISD::BDECOMPRESSW: 6415 // TODO: As the result is sign-extended, this is conservatively correct. A 6416 // more precise answer could be calculated for SRAW depending on known 6417 // bits in the shift amount. 6418 return 33; 6419 case RISCVISD::SHFL: 6420 case RISCVISD::UNSHFL: { 6421 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6422 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6423 // will stay within the upper 32 bits. If there were more than 32 sign bits 6424 // before there will be at least 33 sign bits after. 6425 if (Op.getValueType() == MVT::i64 && 6426 isa<ConstantSDNode>(Op.getOperand(1)) && 6427 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6428 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6429 if (Tmp > 32) 6430 return 33; 6431 } 6432 break; 6433 } 6434 case RISCVISD::VMV_X_S: 6435 // The number of sign bits of the scalar result is computed by obtaining the 6436 // element type of the input vector operand, subtracting its width from the 6437 // XLEN, and then adding one (sign bit within the element type). If the 6438 // element type is wider than XLen, the least-significant XLEN bits are 6439 // taken. 6440 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6441 return 1; 6442 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6443 } 6444 6445 return 1; 6446 } 6447 6448 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6449 MachineBasicBlock *BB) { 6450 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6451 6452 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6453 // Should the count have wrapped while it was being read, we need to try 6454 // again. 6455 // ... 6456 // read: 6457 // rdcycleh x3 # load high word of cycle 6458 // rdcycle x2 # load low word of cycle 6459 // rdcycleh x4 # load high word of cycle 6460 // bne x3, x4, read # check if high word reads match, otherwise try again 6461 // ... 6462 6463 MachineFunction &MF = *BB->getParent(); 6464 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6465 MachineFunction::iterator It = ++BB->getIterator(); 6466 6467 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6468 MF.insert(It, LoopMBB); 6469 6470 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6471 MF.insert(It, DoneMBB); 6472 6473 // Transfer the remainder of BB and its successor edges to DoneMBB. 6474 DoneMBB->splice(DoneMBB->begin(), BB, 6475 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6476 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6477 6478 BB->addSuccessor(LoopMBB); 6479 6480 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6481 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6482 Register LoReg = MI.getOperand(0).getReg(); 6483 Register HiReg = MI.getOperand(1).getReg(); 6484 DebugLoc DL = MI.getDebugLoc(); 6485 6486 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6487 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6488 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6489 .addReg(RISCV::X0); 6490 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6491 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6492 .addReg(RISCV::X0); 6493 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6494 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6495 .addReg(RISCV::X0); 6496 6497 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6498 .addReg(HiReg) 6499 .addReg(ReadAgainReg) 6500 .addMBB(LoopMBB); 6501 6502 LoopMBB->addSuccessor(LoopMBB); 6503 LoopMBB->addSuccessor(DoneMBB); 6504 6505 MI.eraseFromParent(); 6506 6507 return DoneMBB; 6508 } 6509 6510 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6511 MachineBasicBlock *BB) { 6512 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6513 6514 MachineFunction &MF = *BB->getParent(); 6515 DebugLoc DL = MI.getDebugLoc(); 6516 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6517 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6518 Register LoReg = MI.getOperand(0).getReg(); 6519 Register HiReg = MI.getOperand(1).getReg(); 6520 Register SrcReg = MI.getOperand(2).getReg(); 6521 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6522 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6523 6524 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6525 RI); 6526 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6527 MachineMemOperand *MMOLo = 6528 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6529 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6530 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6531 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6532 .addFrameIndex(FI) 6533 .addImm(0) 6534 .addMemOperand(MMOLo); 6535 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6536 .addFrameIndex(FI) 6537 .addImm(4) 6538 .addMemOperand(MMOHi); 6539 MI.eraseFromParent(); // The pseudo instruction is gone now. 6540 return BB; 6541 } 6542 6543 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6544 MachineBasicBlock *BB) { 6545 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6546 "Unexpected instruction"); 6547 6548 MachineFunction &MF = *BB->getParent(); 6549 DebugLoc DL = MI.getDebugLoc(); 6550 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6551 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6552 Register DstReg = MI.getOperand(0).getReg(); 6553 Register LoReg = MI.getOperand(1).getReg(); 6554 Register HiReg = MI.getOperand(2).getReg(); 6555 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6556 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6557 6558 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6559 MachineMemOperand *MMOLo = 6560 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6561 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6562 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6563 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6564 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6565 .addFrameIndex(FI) 6566 .addImm(0) 6567 .addMemOperand(MMOLo); 6568 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6569 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6570 .addFrameIndex(FI) 6571 .addImm(4) 6572 .addMemOperand(MMOHi); 6573 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6574 MI.eraseFromParent(); // The pseudo instruction is gone now. 6575 return BB; 6576 } 6577 6578 static bool isSelectPseudo(MachineInstr &MI) { 6579 switch (MI.getOpcode()) { 6580 default: 6581 return false; 6582 case RISCV::Select_GPR_Using_CC_GPR: 6583 case RISCV::Select_FPR16_Using_CC_GPR: 6584 case RISCV::Select_FPR32_Using_CC_GPR: 6585 case RISCV::Select_FPR64_Using_CC_GPR: 6586 return true; 6587 } 6588 } 6589 6590 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6591 MachineBasicBlock *BB) { 6592 // To "insert" Select_* instructions, we actually have to insert the triangle 6593 // control-flow pattern. The incoming instructions know the destination vreg 6594 // to set, the condition code register to branch on, the true/false values to 6595 // select between, and the condcode to use to select the appropriate branch. 6596 // 6597 // We produce the following control flow: 6598 // HeadMBB 6599 // | \ 6600 // | IfFalseMBB 6601 // | / 6602 // TailMBB 6603 // 6604 // When we find a sequence of selects we attempt to optimize their emission 6605 // by sharing the control flow. Currently we only handle cases where we have 6606 // multiple selects with the exact same condition (same LHS, RHS and CC). 6607 // The selects may be interleaved with other instructions if the other 6608 // instructions meet some requirements we deem safe: 6609 // - They are debug instructions. Otherwise, 6610 // - They do not have side-effects, do not access memory and their inputs do 6611 // not depend on the results of the select pseudo-instructions. 6612 // The TrueV/FalseV operands of the selects cannot depend on the result of 6613 // previous selects in the sequence. 6614 // These conditions could be further relaxed. See the X86 target for a 6615 // related approach and more information. 6616 Register LHS = MI.getOperand(1).getReg(); 6617 Register RHS = MI.getOperand(2).getReg(); 6618 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6619 6620 SmallVector<MachineInstr *, 4> SelectDebugValues; 6621 SmallSet<Register, 4> SelectDests; 6622 SelectDests.insert(MI.getOperand(0).getReg()); 6623 6624 MachineInstr *LastSelectPseudo = &MI; 6625 6626 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6627 SequenceMBBI != E; ++SequenceMBBI) { 6628 if (SequenceMBBI->isDebugInstr()) 6629 continue; 6630 else if (isSelectPseudo(*SequenceMBBI)) { 6631 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6632 SequenceMBBI->getOperand(2).getReg() != RHS || 6633 SequenceMBBI->getOperand(3).getImm() != CC || 6634 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6635 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6636 break; 6637 LastSelectPseudo = &*SequenceMBBI; 6638 SequenceMBBI->collectDebugValues(SelectDebugValues); 6639 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6640 } else { 6641 if (SequenceMBBI->hasUnmodeledSideEffects() || 6642 SequenceMBBI->mayLoadOrStore()) 6643 break; 6644 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6645 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6646 })) 6647 break; 6648 } 6649 } 6650 6651 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6652 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6653 DebugLoc DL = MI.getDebugLoc(); 6654 MachineFunction::iterator I = ++BB->getIterator(); 6655 6656 MachineBasicBlock *HeadMBB = BB; 6657 MachineFunction *F = BB->getParent(); 6658 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6659 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6660 6661 F->insert(I, IfFalseMBB); 6662 F->insert(I, TailMBB); 6663 6664 // Transfer debug instructions associated with the selects to TailMBB. 6665 for (MachineInstr *DebugInstr : SelectDebugValues) { 6666 TailMBB->push_back(DebugInstr->removeFromParent()); 6667 } 6668 6669 // Move all instructions after the sequence to TailMBB. 6670 TailMBB->splice(TailMBB->end(), HeadMBB, 6671 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6672 // Update machine-CFG edges by transferring all successors of the current 6673 // block to the new block which will contain the Phi nodes for the selects. 6674 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6675 // Set the successors for HeadMBB. 6676 HeadMBB->addSuccessor(IfFalseMBB); 6677 HeadMBB->addSuccessor(TailMBB); 6678 6679 // Insert appropriate branch. 6680 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6681 6682 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6683 .addReg(LHS) 6684 .addReg(RHS) 6685 .addMBB(TailMBB); 6686 6687 // IfFalseMBB just falls through to TailMBB. 6688 IfFalseMBB->addSuccessor(TailMBB); 6689 6690 // Create PHIs for all of the select pseudo-instructions. 6691 auto SelectMBBI = MI.getIterator(); 6692 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6693 auto InsertionPoint = TailMBB->begin(); 6694 while (SelectMBBI != SelectEnd) { 6695 auto Next = std::next(SelectMBBI); 6696 if (isSelectPseudo(*SelectMBBI)) { 6697 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6698 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6699 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6700 .addReg(SelectMBBI->getOperand(4).getReg()) 6701 .addMBB(HeadMBB) 6702 .addReg(SelectMBBI->getOperand(5).getReg()) 6703 .addMBB(IfFalseMBB); 6704 SelectMBBI->eraseFromParent(); 6705 } 6706 SelectMBBI = Next; 6707 } 6708 6709 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6710 return TailMBB; 6711 } 6712 6713 MachineBasicBlock * 6714 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6715 MachineBasicBlock *BB) const { 6716 switch (MI.getOpcode()) { 6717 default: 6718 llvm_unreachable("Unexpected instr type to insert"); 6719 case RISCV::ReadCycleWide: 6720 assert(!Subtarget.is64Bit() && 6721 "ReadCycleWrite is only to be used on riscv32"); 6722 return emitReadCycleWidePseudo(MI, BB); 6723 case RISCV::Select_GPR_Using_CC_GPR: 6724 case RISCV::Select_FPR16_Using_CC_GPR: 6725 case RISCV::Select_FPR32_Using_CC_GPR: 6726 case RISCV::Select_FPR64_Using_CC_GPR: 6727 return emitSelectPseudo(MI, BB); 6728 case RISCV::BuildPairF64Pseudo: 6729 return emitBuildPairF64Pseudo(MI, BB); 6730 case RISCV::SplitF64Pseudo: 6731 return emitSplitF64Pseudo(MI, BB); 6732 } 6733 } 6734 6735 // Calling Convention Implementation. 6736 // The expectations for frontend ABI lowering vary from target to target. 6737 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6738 // details, but this is a longer term goal. For now, we simply try to keep the 6739 // role of the frontend as simple and well-defined as possible. The rules can 6740 // be summarised as: 6741 // * Never split up large scalar arguments. We handle them here. 6742 // * If a hardfloat calling convention is being used, and the struct may be 6743 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6744 // available, then pass as two separate arguments. If either the GPRs or FPRs 6745 // are exhausted, then pass according to the rule below. 6746 // * If a struct could never be passed in registers or directly in a stack 6747 // slot (as it is larger than 2*XLEN and the floating point rules don't 6748 // apply), then pass it using a pointer with the byval attribute. 6749 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6750 // word-sized array or a 2*XLEN scalar (depending on alignment). 6751 // * The frontend can determine whether a struct is returned by reference or 6752 // not based on its size and fields. If it will be returned by reference, the 6753 // frontend must modify the prototype so a pointer with the sret annotation is 6754 // passed as the first argument. This is not necessary for large scalar 6755 // returns. 6756 // * Struct return values and varargs should be coerced to structs containing 6757 // register-size fields in the same situations they would be for fixed 6758 // arguments. 6759 6760 static const MCPhysReg ArgGPRs[] = { 6761 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6762 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6763 }; 6764 static const MCPhysReg ArgFPR16s[] = { 6765 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6766 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6767 }; 6768 static const MCPhysReg ArgFPR32s[] = { 6769 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6770 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6771 }; 6772 static const MCPhysReg ArgFPR64s[] = { 6773 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6774 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6775 }; 6776 // This is an interim calling convention and it may be changed in the future. 6777 static const MCPhysReg ArgVRs[] = { 6778 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6779 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6780 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6781 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6782 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6783 RISCV::V20M2, RISCV::V22M2}; 6784 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6785 RISCV::V20M4}; 6786 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6787 6788 // Pass a 2*XLEN argument that has been split into two XLEN values through 6789 // registers or the stack as necessary. 6790 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6791 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6792 MVT ValVT2, MVT LocVT2, 6793 ISD::ArgFlagsTy ArgFlags2) { 6794 unsigned XLenInBytes = XLen / 8; 6795 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6796 // At least one half can be passed via register. 6797 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6798 VA1.getLocVT(), CCValAssign::Full)); 6799 } else { 6800 // Both halves must be passed on the stack, with proper alignment. 6801 Align StackAlign = 6802 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6803 State.addLoc( 6804 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6805 State.AllocateStack(XLenInBytes, StackAlign), 6806 VA1.getLocVT(), CCValAssign::Full)); 6807 State.addLoc(CCValAssign::getMem( 6808 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6809 LocVT2, CCValAssign::Full)); 6810 return false; 6811 } 6812 6813 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6814 // The second half can also be passed via register. 6815 State.addLoc( 6816 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6817 } else { 6818 // The second half is passed via the stack, without additional alignment. 6819 State.addLoc(CCValAssign::getMem( 6820 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6821 LocVT2, CCValAssign::Full)); 6822 } 6823 6824 return false; 6825 } 6826 6827 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 6828 Optional<unsigned> FirstMaskArgument, 6829 CCState &State, const RISCVTargetLowering &TLI) { 6830 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6831 if (RC == &RISCV::VRRegClass) { 6832 // Assign the first mask argument to V0. 6833 // This is an interim calling convention and it may be changed in the 6834 // future. 6835 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 6836 return State.AllocateReg(RISCV::V0); 6837 return State.AllocateReg(ArgVRs); 6838 } 6839 if (RC == &RISCV::VRM2RegClass) 6840 return State.AllocateReg(ArgVRM2s); 6841 if (RC == &RISCV::VRM4RegClass) 6842 return State.AllocateReg(ArgVRM4s); 6843 if (RC == &RISCV::VRM8RegClass) 6844 return State.AllocateReg(ArgVRM8s); 6845 llvm_unreachable("Unhandled register class for ValueType"); 6846 } 6847 6848 // Implements the RISC-V calling convention. Returns true upon failure. 6849 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6850 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6851 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6852 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6853 Optional<unsigned> FirstMaskArgument) { 6854 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6855 assert(XLen == 32 || XLen == 64); 6856 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6857 6858 // Any return value split in to more than two values can't be returned 6859 // directly. Vectors are returned via the available vector registers. 6860 if (!LocVT.isVector() && IsRet && ValNo > 1) 6861 return true; 6862 6863 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6864 // variadic argument, or if no F16/F32 argument registers are available. 6865 bool UseGPRForF16_F32 = true; 6866 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6867 // variadic argument, or if no F64 argument registers are available. 6868 bool UseGPRForF64 = true; 6869 6870 switch (ABI) { 6871 default: 6872 llvm_unreachable("Unexpected ABI"); 6873 case RISCVABI::ABI_ILP32: 6874 case RISCVABI::ABI_LP64: 6875 break; 6876 case RISCVABI::ABI_ILP32F: 6877 case RISCVABI::ABI_LP64F: 6878 UseGPRForF16_F32 = !IsFixed; 6879 break; 6880 case RISCVABI::ABI_ILP32D: 6881 case RISCVABI::ABI_LP64D: 6882 UseGPRForF16_F32 = !IsFixed; 6883 UseGPRForF64 = !IsFixed; 6884 break; 6885 } 6886 6887 // FPR16, FPR32, and FPR64 alias each other. 6888 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6889 UseGPRForF16_F32 = true; 6890 UseGPRForF64 = true; 6891 } 6892 6893 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6894 // similar local variables rather than directly checking against the target 6895 // ABI. 6896 6897 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6898 LocVT = XLenVT; 6899 LocInfo = CCValAssign::BCvt; 6900 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6901 LocVT = MVT::i64; 6902 LocInfo = CCValAssign::BCvt; 6903 } 6904 6905 // If this is a variadic argument, the RISC-V calling convention requires 6906 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6907 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6908 // be used regardless of whether the original argument was split during 6909 // legalisation or not. The argument will not be passed by registers if the 6910 // original type is larger than 2*XLEN, so the register alignment rule does 6911 // not apply. 6912 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6913 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6914 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6915 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6916 // Skip 'odd' register if necessary. 6917 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6918 State.AllocateReg(ArgGPRs); 6919 } 6920 6921 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6922 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6923 State.getPendingArgFlags(); 6924 6925 assert(PendingLocs.size() == PendingArgFlags.size() && 6926 "PendingLocs and PendingArgFlags out of sync"); 6927 6928 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6929 // registers are exhausted. 6930 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6931 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6932 "Can't lower f64 if it is split"); 6933 // Depending on available argument GPRS, f64 may be passed in a pair of 6934 // GPRs, split between a GPR and the stack, or passed completely on the 6935 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6936 // cases. 6937 Register Reg = State.AllocateReg(ArgGPRs); 6938 LocVT = MVT::i32; 6939 if (!Reg) { 6940 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6941 State.addLoc( 6942 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6943 return false; 6944 } 6945 if (!State.AllocateReg(ArgGPRs)) 6946 State.AllocateStack(4, Align(4)); 6947 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6948 return false; 6949 } 6950 6951 // Fixed-length vectors are located in the corresponding scalable-vector 6952 // container types. 6953 if (ValVT.isFixedLengthVector()) 6954 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6955 6956 // Split arguments might be passed indirectly, so keep track of the pending 6957 // values. Split vectors are passed via a mix of registers and indirectly, so 6958 // treat them as we would any other argument. 6959 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6960 LocVT = XLenVT; 6961 LocInfo = CCValAssign::Indirect; 6962 PendingLocs.push_back( 6963 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6964 PendingArgFlags.push_back(ArgFlags); 6965 if (!ArgFlags.isSplitEnd()) { 6966 return false; 6967 } 6968 } 6969 6970 // If the split argument only had two elements, it should be passed directly 6971 // in registers or on the stack. 6972 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6973 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6974 // Apply the normal calling convention rules to the first half of the 6975 // split argument. 6976 CCValAssign VA = PendingLocs[0]; 6977 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6978 PendingLocs.clear(); 6979 PendingArgFlags.clear(); 6980 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6981 ArgFlags); 6982 } 6983 6984 // Allocate to a register if possible, or else a stack slot. 6985 Register Reg; 6986 unsigned StoreSizeBytes = XLen / 8; 6987 Align StackAlign = Align(XLen / 8); 6988 6989 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6990 Reg = State.AllocateReg(ArgFPR16s); 6991 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6992 Reg = State.AllocateReg(ArgFPR32s); 6993 else if (ValVT == MVT::f64 && !UseGPRForF64) 6994 Reg = State.AllocateReg(ArgFPR64s); 6995 else if (ValVT.isVector()) { 6996 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 6997 if (!Reg) { 6998 // For return values, the vector must be passed fully via registers or 6999 // via the stack. 7000 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7001 // but we're using all of them. 7002 if (IsRet) 7003 return true; 7004 // Try using a GPR to pass the address 7005 if ((Reg = State.AllocateReg(ArgGPRs))) { 7006 LocVT = XLenVT; 7007 LocInfo = CCValAssign::Indirect; 7008 } else if (ValVT.isScalableVector()) { 7009 report_fatal_error("Unable to pass scalable vector types on the stack"); 7010 } else { 7011 // Pass fixed-length vectors on the stack. 7012 LocVT = ValVT; 7013 StoreSizeBytes = ValVT.getStoreSize(); 7014 // Align vectors to their element sizes, being careful for vXi1 7015 // vectors. 7016 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7017 } 7018 } 7019 } else { 7020 Reg = State.AllocateReg(ArgGPRs); 7021 } 7022 7023 unsigned StackOffset = 7024 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7025 7026 // If we reach this point and PendingLocs is non-empty, we must be at the 7027 // end of a split argument that must be passed indirectly. 7028 if (!PendingLocs.empty()) { 7029 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7030 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7031 7032 for (auto &It : PendingLocs) { 7033 if (Reg) 7034 It.convertToReg(Reg); 7035 else 7036 It.convertToMem(StackOffset); 7037 State.addLoc(It); 7038 } 7039 PendingLocs.clear(); 7040 PendingArgFlags.clear(); 7041 return false; 7042 } 7043 7044 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7045 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7046 "Expected an XLenVT or vector types at this stage"); 7047 7048 if (Reg) { 7049 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7050 return false; 7051 } 7052 7053 // When a floating-point value is passed on the stack, no bit-conversion is 7054 // needed. 7055 if (ValVT.isFloatingPoint()) { 7056 LocVT = ValVT; 7057 LocInfo = CCValAssign::Full; 7058 } 7059 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7060 return false; 7061 } 7062 7063 template <typename ArgTy> 7064 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7065 for (const auto &ArgIdx : enumerate(Args)) { 7066 MVT ArgVT = ArgIdx.value().VT; 7067 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7068 return ArgIdx.index(); 7069 } 7070 return None; 7071 } 7072 7073 void RISCVTargetLowering::analyzeInputArgs( 7074 MachineFunction &MF, CCState &CCInfo, 7075 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7076 RISCVCCAssignFn Fn) const { 7077 unsigned NumArgs = Ins.size(); 7078 FunctionType *FType = MF.getFunction().getFunctionType(); 7079 7080 Optional<unsigned> FirstMaskArgument; 7081 if (Subtarget.hasStdExtV()) 7082 FirstMaskArgument = preAssignMask(Ins); 7083 7084 for (unsigned i = 0; i != NumArgs; ++i) { 7085 MVT ArgVT = Ins[i].VT; 7086 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7087 7088 Type *ArgTy = nullptr; 7089 if (IsRet) 7090 ArgTy = FType->getReturnType(); 7091 else if (Ins[i].isOrigArg()) 7092 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7093 7094 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7095 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7096 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7097 FirstMaskArgument)) { 7098 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7099 << EVT(ArgVT).getEVTString() << '\n'); 7100 llvm_unreachable(nullptr); 7101 } 7102 } 7103 } 7104 7105 void RISCVTargetLowering::analyzeOutputArgs( 7106 MachineFunction &MF, CCState &CCInfo, 7107 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7108 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7109 unsigned NumArgs = Outs.size(); 7110 7111 Optional<unsigned> FirstMaskArgument; 7112 if (Subtarget.hasStdExtV()) 7113 FirstMaskArgument = preAssignMask(Outs); 7114 7115 for (unsigned i = 0; i != NumArgs; i++) { 7116 MVT ArgVT = Outs[i].VT; 7117 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7118 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7119 7120 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7121 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7122 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7123 FirstMaskArgument)) { 7124 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7125 << EVT(ArgVT).getEVTString() << "\n"); 7126 llvm_unreachable(nullptr); 7127 } 7128 } 7129 } 7130 7131 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7132 // values. 7133 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7134 const CCValAssign &VA, const SDLoc &DL, 7135 const RISCVSubtarget &Subtarget) { 7136 switch (VA.getLocInfo()) { 7137 default: 7138 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7139 case CCValAssign::Full: 7140 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7141 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7142 break; 7143 case CCValAssign::BCvt: 7144 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7145 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7146 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7147 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7148 else 7149 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7150 break; 7151 } 7152 return Val; 7153 } 7154 7155 // The caller is responsible for loading the full value if the argument is 7156 // passed with CCValAssign::Indirect. 7157 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7158 const CCValAssign &VA, const SDLoc &DL, 7159 const RISCVTargetLowering &TLI) { 7160 MachineFunction &MF = DAG.getMachineFunction(); 7161 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7162 EVT LocVT = VA.getLocVT(); 7163 SDValue Val; 7164 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7165 Register VReg = RegInfo.createVirtualRegister(RC); 7166 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7167 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7168 7169 if (VA.getLocInfo() == CCValAssign::Indirect) 7170 return Val; 7171 7172 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7173 } 7174 7175 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7176 const CCValAssign &VA, const SDLoc &DL, 7177 const RISCVSubtarget &Subtarget) { 7178 EVT LocVT = VA.getLocVT(); 7179 7180 switch (VA.getLocInfo()) { 7181 default: 7182 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7183 case CCValAssign::Full: 7184 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7185 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7186 break; 7187 case CCValAssign::BCvt: 7188 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7189 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7190 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7191 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7192 else 7193 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7194 break; 7195 } 7196 return Val; 7197 } 7198 7199 // The caller is responsible for loading the full value if the argument is 7200 // passed with CCValAssign::Indirect. 7201 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7202 const CCValAssign &VA, const SDLoc &DL) { 7203 MachineFunction &MF = DAG.getMachineFunction(); 7204 MachineFrameInfo &MFI = MF.getFrameInfo(); 7205 EVT LocVT = VA.getLocVT(); 7206 EVT ValVT = VA.getValVT(); 7207 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7208 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7209 /*Immutable=*/true); 7210 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7211 SDValue Val; 7212 7213 ISD::LoadExtType ExtType; 7214 switch (VA.getLocInfo()) { 7215 default: 7216 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7217 case CCValAssign::Full: 7218 case CCValAssign::Indirect: 7219 case CCValAssign::BCvt: 7220 ExtType = ISD::NON_EXTLOAD; 7221 break; 7222 } 7223 Val = DAG.getExtLoad( 7224 ExtType, DL, LocVT, Chain, FIN, 7225 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7226 return Val; 7227 } 7228 7229 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7230 const CCValAssign &VA, const SDLoc &DL) { 7231 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7232 "Unexpected VA"); 7233 MachineFunction &MF = DAG.getMachineFunction(); 7234 MachineFrameInfo &MFI = MF.getFrameInfo(); 7235 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7236 7237 if (VA.isMemLoc()) { 7238 // f64 is passed on the stack. 7239 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7240 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7241 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7242 MachinePointerInfo::getFixedStack(MF, FI)); 7243 } 7244 7245 assert(VA.isRegLoc() && "Expected register VA assignment"); 7246 7247 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7248 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7249 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7250 SDValue Hi; 7251 if (VA.getLocReg() == RISCV::X17) { 7252 // Second half of f64 is passed on the stack. 7253 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7254 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7255 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7256 MachinePointerInfo::getFixedStack(MF, FI)); 7257 } else { 7258 // Second half of f64 is passed in another GPR. 7259 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7260 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7261 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7262 } 7263 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7264 } 7265 7266 // FastCC has less than 1% performance improvement for some particular 7267 // benchmark. But theoretically, it may has benenfit for some cases. 7268 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7269 unsigned ValNo, MVT ValVT, MVT LocVT, 7270 CCValAssign::LocInfo LocInfo, 7271 ISD::ArgFlagsTy ArgFlags, CCState &State, 7272 bool IsFixed, bool IsRet, Type *OrigTy, 7273 const RISCVTargetLowering &TLI, 7274 Optional<unsigned> FirstMaskArgument) { 7275 7276 // X5 and X6 might be used for save-restore libcall. 7277 static const MCPhysReg GPRList[] = { 7278 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7279 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7280 RISCV::X29, RISCV::X30, RISCV::X31}; 7281 7282 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7283 if (unsigned Reg = State.AllocateReg(GPRList)) { 7284 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7285 return false; 7286 } 7287 } 7288 7289 if (LocVT == MVT::f16) { 7290 static const MCPhysReg FPR16List[] = { 7291 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7292 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7293 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7294 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7295 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7296 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7297 return false; 7298 } 7299 } 7300 7301 if (LocVT == MVT::f32) { 7302 static const MCPhysReg FPR32List[] = { 7303 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7304 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7305 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7306 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7307 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7308 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7309 return false; 7310 } 7311 } 7312 7313 if (LocVT == MVT::f64) { 7314 static const MCPhysReg FPR64List[] = { 7315 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7316 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7317 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7318 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7319 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7320 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7321 return false; 7322 } 7323 } 7324 7325 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7326 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7327 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7328 return false; 7329 } 7330 7331 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7332 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7333 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7334 return false; 7335 } 7336 7337 if (LocVT.isVector()) { 7338 if (unsigned Reg = 7339 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7340 // Fixed-length vectors are located in the corresponding scalable-vector 7341 // container types. 7342 if (ValVT.isFixedLengthVector()) 7343 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7344 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7345 } else { 7346 // Try and pass the address via a "fast" GPR. 7347 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7348 LocInfo = CCValAssign::Indirect; 7349 LocVT = TLI.getSubtarget().getXLenVT(); 7350 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7351 } else if (ValVT.isFixedLengthVector()) { 7352 auto StackAlign = 7353 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7354 unsigned StackOffset = 7355 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7356 State.addLoc( 7357 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7358 } else { 7359 // Can't pass scalable vectors on the stack. 7360 return true; 7361 } 7362 } 7363 7364 return false; 7365 } 7366 7367 return true; // CC didn't match. 7368 } 7369 7370 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7371 CCValAssign::LocInfo LocInfo, 7372 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7373 7374 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7375 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7376 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7377 static const MCPhysReg GPRList[] = { 7378 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7379 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7380 if (unsigned Reg = State.AllocateReg(GPRList)) { 7381 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7382 return false; 7383 } 7384 } 7385 7386 if (LocVT == MVT::f32) { 7387 // Pass in STG registers: F1, ..., F6 7388 // fs0 ... fs5 7389 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7390 RISCV::F18_F, RISCV::F19_F, 7391 RISCV::F20_F, RISCV::F21_F}; 7392 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7393 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7394 return false; 7395 } 7396 } 7397 7398 if (LocVT == MVT::f64) { 7399 // Pass in STG registers: D1, ..., D6 7400 // fs6 ... fs11 7401 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7402 RISCV::F24_D, RISCV::F25_D, 7403 RISCV::F26_D, RISCV::F27_D}; 7404 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7405 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7406 return false; 7407 } 7408 } 7409 7410 report_fatal_error("No registers left in GHC calling convention"); 7411 return true; 7412 } 7413 7414 // Transform physical registers into virtual registers. 7415 SDValue RISCVTargetLowering::LowerFormalArguments( 7416 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7417 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7418 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7419 7420 MachineFunction &MF = DAG.getMachineFunction(); 7421 7422 switch (CallConv) { 7423 default: 7424 report_fatal_error("Unsupported calling convention"); 7425 case CallingConv::C: 7426 case CallingConv::Fast: 7427 break; 7428 case CallingConv::GHC: 7429 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7430 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7431 report_fatal_error( 7432 "GHC calling convention requires the F and D instruction set extensions"); 7433 } 7434 7435 const Function &Func = MF.getFunction(); 7436 if (Func.hasFnAttribute("interrupt")) { 7437 if (!Func.arg_empty()) 7438 report_fatal_error( 7439 "Functions with the interrupt attribute cannot have arguments!"); 7440 7441 StringRef Kind = 7442 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7443 7444 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7445 report_fatal_error( 7446 "Function interrupt attribute argument not supported!"); 7447 } 7448 7449 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7450 MVT XLenVT = Subtarget.getXLenVT(); 7451 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7452 // Used with vargs to acumulate store chains. 7453 std::vector<SDValue> OutChains; 7454 7455 // Assign locations to all of the incoming arguments. 7456 SmallVector<CCValAssign, 16> ArgLocs; 7457 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7458 7459 if (CallConv == CallingConv::GHC) 7460 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7461 else 7462 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7463 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7464 : CC_RISCV); 7465 7466 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7467 CCValAssign &VA = ArgLocs[i]; 7468 SDValue ArgValue; 7469 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7470 // case. 7471 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7472 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7473 else if (VA.isRegLoc()) 7474 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7475 else 7476 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7477 7478 if (VA.getLocInfo() == CCValAssign::Indirect) { 7479 // If the original argument was split and passed by reference (e.g. i128 7480 // on RV32), we need to load all parts of it here (using the same 7481 // address). Vectors may be partly split to registers and partly to the 7482 // stack, in which case the base address is partly offset and subsequent 7483 // stores are relative to that. 7484 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7485 MachinePointerInfo())); 7486 unsigned ArgIndex = Ins[i].OrigArgIndex; 7487 unsigned ArgPartOffset = Ins[i].PartOffset; 7488 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7489 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7490 CCValAssign &PartVA = ArgLocs[i + 1]; 7491 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7492 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7493 if (PartVA.getValVT().isScalableVector()) 7494 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7495 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7496 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7497 MachinePointerInfo())); 7498 ++i; 7499 } 7500 continue; 7501 } 7502 InVals.push_back(ArgValue); 7503 } 7504 7505 if (IsVarArg) { 7506 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7507 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7508 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7509 MachineFrameInfo &MFI = MF.getFrameInfo(); 7510 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7511 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7512 7513 // Offset of the first variable argument from stack pointer, and size of 7514 // the vararg save area. For now, the varargs save area is either zero or 7515 // large enough to hold a0-a7. 7516 int VaArgOffset, VarArgsSaveSize; 7517 7518 // If all registers are allocated, then all varargs must be passed on the 7519 // stack and we don't need to save any argregs. 7520 if (ArgRegs.size() == Idx) { 7521 VaArgOffset = CCInfo.getNextStackOffset(); 7522 VarArgsSaveSize = 0; 7523 } else { 7524 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7525 VaArgOffset = -VarArgsSaveSize; 7526 } 7527 7528 // Record the frame index of the first variable argument 7529 // which is a value necessary to VASTART. 7530 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7531 RVFI->setVarArgsFrameIndex(FI); 7532 7533 // If saving an odd number of registers then create an extra stack slot to 7534 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7535 // offsets to even-numbered registered remain 2*XLEN-aligned. 7536 if (Idx % 2) { 7537 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7538 VarArgsSaveSize += XLenInBytes; 7539 } 7540 7541 // Copy the integer registers that may have been used for passing varargs 7542 // to the vararg save area. 7543 for (unsigned I = Idx; I < ArgRegs.size(); 7544 ++I, VaArgOffset += XLenInBytes) { 7545 const Register Reg = RegInfo.createVirtualRegister(RC); 7546 RegInfo.addLiveIn(ArgRegs[I], Reg); 7547 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7548 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7549 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7550 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7551 MachinePointerInfo::getFixedStack(MF, FI)); 7552 cast<StoreSDNode>(Store.getNode()) 7553 ->getMemOperand() 7554 ->setValue((Value *)nullptr); 7555 OutChains.push_back(Store); 7556 } 7557 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7558 } 7559 7560 // All stores are grouped in one node to allow the matching between 7561 // the size of Ins and InVals. This only happens for vararg functions. 7562 if (!OutChains.empty()) { 7563 OutChains.push_back(Chain); 7564 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7565 } 7566 7567 return Chain; 7568 } 7569 7570 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7571 /// for tail call optimization. 7572 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7573 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7574 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7575 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7576 7577 auto &Callee = CLI.Callee; 7578 auto CalleeCC = CLI.CallConv; 7579 auto &Outs = CLI.Outs; 7580 auto &Caller = MF.getFunction(); 7581 auto CallerCC = Caller.getCallingConv(); 7582 7583 // Exception-handling functions need a special set of instructions to 7584 // indicate a return to the hardware. Tail-calling another function would 7585 // probably break this. 7586 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7587 // should be expanded as new function attributes are introduced. 7588 if (Caller.hasFnAttribute("interrupt")) 7589 return false; 7590 7591 // Do not tail call opt if the stack is used to pass parameters. 7592 if (CCInfo.getNextStackOffset() != 0) 7593 return false; 7594 7595 // Do not tail call opt if any parameters need to be passed indirectly. 7596 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7597 // passed indirectly. So the address of the value will be passed in a 7598 // register, or if not available, then the address is put on the stack. In 7599 // order to pass indirectly, space on the stack often needs to be allocated 7600 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7601 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7602 // are passed CCValAssign::Indirect. 7603 for (auto &VA : ArgLocs) 7604 if (VA.getLocInfo() == CCValAssign::Indirect) 7605 return false; 7606 7607 // Do not tail call opt if either caller or callee uses struct return 7608 // semantics. 7609 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7610 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7611 if (IsCallerStructRet || IsCalleeStructRet) 7612 return false; 7613 7614 // Externally-defined functions with weak linkage should not be 7615 // tail-called. The behaviour of branch instructions in this situation (as 7616 // used for tail calls) is implementation-defined, so we cannot rely on the 7617 // linker replacing the tail call with a return. 7618 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7619 const GlobalValue *GV = G->getGlobal(); 7620 if (GV->hasExternalWeakLinkage()) 7621 return false; 7622 } 7623 7624 // The callee has to preserve all registers the caller needs to preserve. 7625 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7626 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7627 if (CalleeCC != CallerCC) { 7628 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7629 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7630 return false; 7631 } 7632 7633 // Byval parameters hand the function a pointer directly into the stack area 7634 // we want to reuse during a tail call. Working around this *is* possible 7635 // but less efficient and uglier in LowerCall. 7636 for (auto &Arg : Outs) 7637 if (Arg.Flags.isByVal()) 7638 return false; 7639 7640 return true; 7641 } 7642 7643 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7644 return DAG.getDataLayout().getPrefTypeAlign( 7645 VT.getTypeForEVT(*DAG.getContext())); 7646 } 7647 7648 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7649 // and output parameter nodes. 7650 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7651 SmallVectorImpl<SDValue> &InVals) const { 7652 SelectionDAG &DAG = CLI.DAG; 7653 SDLoc &DL = CLI.DL; 7654 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7655 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7656 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7657 SDValue Chain = CLI.Chain; 7658 SDValue Callee = CLI.Callee; 7659 bool &IsTailCall = CLI.IsTailCall; 7660 CallingConv::ID CallConv = CLI.CallConv; 7661 bool IsVarArg = CLI.IsVarArg; 7662 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7663 MVT XLenVT = Subtarget.getXLenVT(); 7664 7665 MachineFunction &MF = DAG.getMachineFunction(); 7666 7667 // Analyze the operands of the call, assigning locations to each operand. 7668 SmallVector<CCValAssign, 16> ArgLocs; 7669 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7670 7671 if (CallConv == CallingConv::GHC) 7672 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7673 else 7674 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 7675 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7676 : CC_RISCV); 7677 7678 // Check if it's really possible to do a tail call. 7679 if (IsTailCall) 7680 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7681 7682 if (IsTailCall) 7683 ++NumTailCalls; 7684 else if (CLI.CB && CLI.CB->isMustTailCall()) 7685 report_fatal_error("failed to perform tail call elimination on a call " 7686 "site marked musttail"); 7687 7688 // Get a count of how many bytes are to be pushed on the stack. 7689 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7690 7691 // Create local copies for byval args 7692 SmallVector<SDValue, 8> ByValArgs; 7693 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7694 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7695 if (!Flags.isByVal()) 7696 continue; 7697 7698 SDValue Arg = OutVals[i]; 7699 unsigned Size = Flags.getByValSize(); 7700 Align Alignment = Flags.getNonZeroByValAlign(); 7701 7702 int FI = 7703 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7704 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7705 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7706 7707 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7708 /*IsVolatile=*/false, 7709 /*AlwaysInline=*/false, IsTailCall, 7710 MachinePointerInfo(), MachinePointerInfo()); 7711 ByValArgs.push_back(FIPtr); 7712 } 7713 7714 if (!IsTailCall) 7715 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7716 7717 // Copy argument values to their designated locations. 7718 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7719 SmallVector<SDValue, 8> MemOpChains; 7720 SDValue StackPtr; 7721 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7722 CCValAssign &VA = ArgLocs[i]; 7723 SDValue ArgValue = OutVals[i]; 7724 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7725 7726 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7727 bool IsF64OnRV32DSoftABI = 7728 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7729 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7730 SDValue SplitF64 = DAG.getNode( 7731 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7732 SDValue Lo = SplitF64.getValue(0); 7733 SDValue Hi = SplitF64.getValue(1); 7734 7735 Register RegLo = VA.getLocReg(); 7736 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7737 7738 if (RegLo == RISCV::X17) { 7739 // Second half of f64 is passed on the stack. 7740 // Work out the address of the stack slot. 7741 if (!StackPtr.getNode()) 7742 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7743 // Emit the store. 7744 MemOpChains.push_back( 7745 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7746 } else { 7747 // Second half of f64 is passed in another GPR. 7748 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7749 Register RegHigh = RegLo + 1; 7750 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7751 } 7752 continue; 7753 } 7754 7755 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7756 // as any other MemLoc. 7757 7758 // Promote the value if needed. 7759 // For now, only handle fully promoted and indirect arguments. 7760 if (VA.getLocInfo() == CCValAssign::Indirect) { 7761 // Store the argument in a stack slot and pass its address. 7762 Align StackAlign = 7763 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7764 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7765 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7766 // If the original argument was split (e.g. i128), we need 7767 // to store the required parts of it here (and pass just one address). 7768 // Vectors may be partly split to registers and partly to the stack, in 7769 // which case the base address is partly offset and subsequent stores are 7770 // relative to that. 7771 unsigned ArgIndex = Outs[i].OrigArgIndex; 7772 unsigned ArgPartOffset = Outs[i].PartOffset; 7773 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7774 // Calculate the total size to store. We don't have access to what we're 7775 // actually storing other than performing the loop and collecting the 7776 // info. 7777 SmallVector<std::pair<SDValue, SDValue>> Parts; 7778 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7779 SDValue PartValue = OutVals[i + 1]; 7780 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7781 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7782 EVT PartVT = PartValue.getValueType(); 7783 if (PartVT.isScalableVector()) 7784 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7785 StoredSize += PartVT.getStoreSize(); 7786 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7787 Parts.push_back(std::make_pair(PartValue, Offset)); 7788 ++i; 7789 } 7790 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7791 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7792 MemOpChains.push_back( 7793 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7794 MachinePointerInfo::getFixedStack(MF, FI))); 7795 for (const auto &Part : Parts) { 7796 SDValue PartValue = Part.first; 7797 SDValue PartOffset = Part.second; 7798 SDValue Address = 7799 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 7800 MemOpChains.push_back( 7801 DAG.getStore(Chain, DL, PartValue, Address, 7802 MachinePointerInfo::getFixedStack(MF, FI))); 7803 } 7804 ArgValue = SpillSlot; 7805 } else { 7806 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7807 } 7808 7809 // Use local copy if it is a byval arg. 7810 if (Flags.isByVal()) 7811 ArgValue = ByValArgs[j++]; 7812 7813 if (VA.isRegLoc()) { 7814 // Queue up the argument copies and emit them at the end. 7815 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7816 } else { 7817 assert(VA.isMemLoc() && "Argument not register or memory"); 7818 assert(!IsTailCall && "Tail call not allowed if stack is used " 7819 "for passing parameters"); 7820 7821 // Work out the address of the stack slot. 7822 if (!StackPtr.getNode()) 7823 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7824 SDValue Address = 7825 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7826 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7827 7828 // Emit the store. 7829 MemOpChains.push_back( 7830 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7831 } 7832 } 7833 7834 // Join the stores, which are independent of one another. 7835 if (!MemOpChains.empty()) 7836 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7837 7838 SDValue Glue; 7839 7840 // Build a sequence of copy-to-reg nodes, chained and glued together. 7841 for (auto &Reg : RegsToPass) { 7842 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7843 Glue = Chain.getValue(1); 7844 } 7845 7846 // Validate that none of the argument registers have been marked as 7847 // reserved, if so report an error. Do the same for the return address if this 7848 // is not a tailcall. 7849 validateCCReservedRegs(RegsToPass, MF); 7850 if (!IsTailCall && 7851 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7852 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7853 MF.getFunction(), 7854 "Return address register required, but has been reserved."}); 7855 7856 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7857 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7858 // split it and then direct call can be matched by PseudoCALL. 7859 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7860 const GlobalValue *GV = S->getGlobal(); 7861 7862 unsigned OpFlags = RISCVII::MO_CALL; 7863 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7864 OpFlags = RISCVII::MO_PLT; 7865 7866 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7867 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7868 unsigned OpFlags = RISCVII::MO_CALL; 7869 7870 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7871 nullptr)) 7872 OpFlags = RISCVII::MO_PLT; 7873 7874 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7875 } 7876 7877 // The first call operand is the chain and the second is the target address. 7878 SmallVector<SDValue, 8> Ops; 7879 Ops.push_back(Chain); 7880 Ops.push_back(Callee); 7881 7882 // Add argument registers to the end of the list so that they are 7883 // known live into the call. 7884 for (auto &Reg : RegsToPass) 7885 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7886 7887 if (!IsTailCall) { 7888 // Add a register mask operand representing the call-preserved registers. 7889 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7890 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7891 assert(Mask && "Missing call preserved mask for calling convention"); 7892 Ops.push_back(DAG.getRegisterMask(Mask)); 7893 } 7894 7895 // Glue the call to the argument copies, if any. 7896 if (Glue.getNode()) 7897 Ops.push_back(Glue); 7898 7899 // Emit the call. 7900 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7901 7902 if (IsTailCall) { 7903 MF.getFrameInfo().setHasTailCall(); 7904 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7905 } 7906 7907 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7908 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7909 Glue = Chain.getValue(1); 7910 7911 // Mark the end of the call, which is glued to the call itself. 7912 Chain = DAG.getCALLSEQ_END(Chain, 7913 DAG.getConstant(NumBytes, DL, PtrVT, true), 7914 DAG.getConstant(0, DL, PtrVT, true), 7915 Glue, DL); 7916 Glue = Chain.getValue(1); 7917 7918 // Assign locations to each value returned by this call. 7919 SmallVector<CCValAssign, 16> RVLocs; 7920 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7921 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 7922 7923 // Copy all of the result registers out of their specified physreg. 7924 for (auto &VA : RVLocs) { 7925 // Copy the value out 7926 SDValue RetValue = 7927 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7928 // Glue the RetValue to the end of the call sequence 7929 Chain = RetValue.getValue(1); 7930 Glue = RetValue.getValue(2); 7931 7932 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7933 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7934 SDValue RetValue2 = 7935 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7936 Chain = RetValue2.getValue(1); 7937 Glue = RetValue2.getValue(2); 7938 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7939 RetValue2); 7940 } 7941 7942 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7943 7944 InVals.push_back(RetValue); 7945 } 7946 7947 return Chain; 7948 } 7949 7950 bool RISCVTargetLowering::CanLowerReturn( 7951 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7952 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7953 SmallVector<CCValAssign, 16> RVLocs; 7954 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7955 7956 Optional<unsigned> FirstMaskArgument; 7957 if (Subtarget.hasStdExtV()) 7958 FirstMaskArgument = preAssignMask(Outs); 7959 7960 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7961 MVT VT = Outs[i].VT; 7962 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7963 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7964 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7965 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7966 *this, FirstMaskArgument)) 7967 return false; 7968 } 7969 return true; 7970 } 7971 7972 SDValue 7973 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7974 bool IsVarArg, 7975 const SmallVectorImpl<ISD::OutputArg> &Outs, 7976 const SmallVectorImpl<SDValue> &OutVals, 7977 const SDLoc &DL, SelectionDAG &DAG) const { 7978 const MachineFunction &MF = DAG.getMachineFunction(); 7979 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7980 7981 // Stores the assignment of the return value to a location. 7982 SmallVector<CCValAssign, 16> RVLocs; 7983 7984 // Info about the registers and stack slot. 7985 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7986 *DAG.getContext()); 7987 7988 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7989 nullptr, CC_RISCV); 7990 7991 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7992 report_fatal_error("GHC functions return void only"); 7993 7994 SDValue Glue; 7995 SmallVector<SDValue, 4> RetOps(1, Chain); 7996 7997 // Copy the result values into the output registers. 7998 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7999 SDValue Val = OutVals[i]; 8000 CCValAssign &VA = RVLocs[i]; 8001 assert(VA.isRegLoc() && "Can only return in registers!"); 8002 8003 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8004 // Handle returning f64 on RV32D with a soft float ABI. 8005 assert(VA.isRegLoc() && "Expected return via registers"); 8006 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8007 DAG.getVTList(MVT::i32, MVT::i32), Val); 8008 SDValue Lo = SplitF64.getValue(0); 8009 SDValue Hi = SplitF64.getValue(1); 8010 Register RegLo = VA.getLocReg(); 8011 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8012 Register RegHi = RegLo + 1; 8013 8014 if (STI.isRegisterReservedByUser(RegLo) || 8015 STI.isRegisterReservedByUser(RegHi)) 8016 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8017 MF.getFunction(), 8018 "Return value register required, but has been reserved."}); 8019 8020 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8021 Glue = Chain.getValue(1); 8022 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8023 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8024 Glue = Chain.getValue(1); 8025 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8026 } else { 8027 // Handle a 'normal' return. 8028 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8029 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8030 8031 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8032 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8033 MF.getFunction(), 8034 "Return value register required, but has been reserved."}); 8035 8036 // Guarantee that all emitted copies are stuck together. 8037 Glue = Chain.getValue(1); 8038 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8039 } 8040 } 8041 8042 RetOps[0] = Chain; // Update chain. 8043 8044 // Add the glue node if we have it. 8045 if (Glue.getNode()) { 8046 RetOps.push_back(Glue); 8047 } 8048 8049 unsigned RetOpc = RISCVISD::RET_FLAG; 8050 // Interrupt service routines use different return instructions. 8051 const Function &Func = DAG.getMachineFunction().getFunction(); 8052 if (Func.hasFnAttribute("interrupt")) { 8053 if (!Func.getReturnType()->isVoidTy()) 8054 report_fatal_error( 8055 "Functions with the interrupt attribute must have void return type!"); 8056 8057 MachineFunction &MF = DAG.getMachineFunction(); 8058 StringRef Kind = 8059 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8060 8061 if (Kind == "user") 8062 RetOpc = RISCVISD::URET_FLAG; 8063 else if (Kind == "supervisor") 8064 RetOpc = RISCVISD::SRET_FLAG; 8065 else 8066 RetOpc = RISCVISD::MRET_FLAG; 8067 } 8068 8069 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8070 } 8071 8072 void RISCVTargetLowering::validateCCReservedRegs( 8073 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8074 MachineFunction &MF) const { 8075 const Function &F = MF.getFunction(); 8076 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8077 8078 if (llvm::any_of(Regs, [&STI](auto Reg) { 8079 return STI.isRegisterReservedByUser(Reg.first); 8080 })) 8081 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8082 F, "Argument register required, but has been reserved."}); 8083 } 8084 8085 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8086 return CI->isTailCall(); 8087 } 8088 8089 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8090 #define NODE_NAME_CASE(NODE) \ 8091 case RISCVISD::NODE: \ 8092 return "RISCVISD::" #NODE; 8093 // clang-format off 8094 switch ((RISCVISD::NodeType)Opcode) { 8095 case RISCVISD::FIRST_NUMBER: 8096 break; 8097 NODE_NAME_CASE(RET_FLAG) 8098 NODE_NAME_CASE(URET_FLAG) 8099 NODE_NAME_CASE(SRET_FLAG) 8100 NODE_NAME_CASE(MRET_FLAG) 8101 NODE_NAME_CASE(CALL) 8102 NODE_NAME_CASE(SELECT_CC) 8103 NODE_NAME_CASE(BR_CC) 8104 NODE_NAME_CASE(BuildPairF64) 8105 NODE_NAME_CASE(SplitF64) 8106 NODE_NAME_CASE(TAIL) 8107 NODE_NAME_CASE(MULHSU) 8108 NODE_NAME_CASE(SLLW) 8109 NODE_NAME_CASE(SRAW) 8110 NODE_NAME_CASE(SRLW) 8111 NODE_NAME_CASE(DIVW) 8112 NODE_NAME_CASE(DIVUW) 8113 NODE_NAME_CASE(REMUW) 8114 NODE_NAME_CASE(ROLW) 8115 NODE_NAME_CASE(RORW) 8116 NODE_NAME_CASE(CLZW) 8117 NODE_NAME_CASE(CTZW) 8118 NODE_NAME_CASE(FSLW) 8119 NODE_NAME_CASE(FSRW) 8120 NODE_NAME_CASE(FSL) 8121 NODE_NAME_CASE(FSR) 8122 NODE_NAME_CASE(FMV_H_X) 8123 NODE_NAME_CASE(FMV_X_ANYEXTH) 8124 NODE_NAME_CASE(FMV_W_X_RV64) 8125 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8126 NODE_NAME_CASE(READ_CYCLE_WIDE) 8127 NODE_NAME_CASE(GREV) 8128 NODE_NAME_CASE(GREVW) 8129 NODE_NAME_CASE(GORC) 8130 NODE_NAME_CASE(GORCW) 8131 NODE_NAME_CASE(SHFL) 8132 NODE_NAME_CASE(SHFLW) 8133 NODE_NAME_CASE(UNSHFL) 8134 NODE_NAME_CASE(UNSHFLW) 8135 NODE_NAME_CASE(BCOMPRESS) 8136 NODE_NAME_CASE(BCOMPRESSW) 8137 NODE_NAME_CASE(BDECOMPRESS) 8138 NODE_NAME_CASE(BDECOMPRESSW) 8139 NODE_NAME_CASE(VMV_V_X_VL) 8140 NODE_NAME_CASE(VFMV_V_F_VL) 8141 NODE_NAME_CASE(VMV_X_S) 8142 NODE_NAME_CASE(VMV_S_X_VL) 8143 NODE_NAME_CASE(VFMV_S_F_VL) 8144 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8145 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8146 NODE_NAME_CASE(READ_VLENB) 8147 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8148 NODE_NAME_CASE(VSLIDEUP_VL) 8149 NODE_NAME_CASE(VSLIDE1UP_VL) 8150 NODE_NAME_CASE(VSLIDEDOWN_VL) 8151 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8152 NODE_NAME_CASE(VID_VL) 8153 NODE_NAME_CASE(VFNCVT_ROD_VL) 8154 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8155 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8156 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8157 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8158 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8159 NODE_NAME_CASE(VECREDUCE_AND_VL) 8160 NODE_NAME_CASE(VECREDUCE_OR_VL) 8161 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8162 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8163 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8164 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8165 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8166 NODE_NAME_CASE(ADD_VL) 8167 NODE_NAME_CASE(AND_VL) 8168 NODE_NAME_CASE(MUL_VL) 8169 NODE_NAME_CASE(OR_VL) 8170 NODE_NAME_CASE(SDIV_VL) 8171 NODE_NAME_CASE(SHL_VL) 8172 NODE_NAME_CASE(SREM_VL) 8173 NODE_NAME_CASE(SRA_VL) 8174 NODE_NAME_CASE(SRL_VL) 8175 NODE_NAME_CASE(SUB_VL) 8176 NODE_NAME_CASE(UDIV_VL) 8177 NODE_NAME_CASE(UREM_VL) 8178 NODE_NAME_CASE(XOR_VL) 8179 NODE_NAME_CASE(FADD_VL) 8180 NODE_NAME_CASE(FSUB_VL) 8181 NODE_NAME_CASE(FMUL_VL) 8182 NODE_NAME_CASE(FDIV_VL) 8183 NODE_NAME_CASE(FNEG_VL) 8184 NODE_NAME_CASE(FABS_VL) 8185 NODE_NAME_CASE(FSQRT_VL) 8186 NODE_NAME_CASE(FMA_VL) 8187 NODE_NAME_CASE(FCOPYSIGN_VL) 8188 NODE_NAME_CASE(SMIN_VL) 8189 NODE_NAME_CASE(SMAX_VL) 8190 NODE_NAME_CASE(UMIN_VL) 8191 NODE_NAME_CASE(UMAX_VL) 8192 NODE_NAME_CASE(FMINNUM_VL) 8193 NODE_NAME_CASE(FMAXNUM_VL) 8194 NODE_NAME_CASE(MULHS_VL) 8195 NODE_NAME_CASE(MULHU_VL) 8196 NODE_NAME_CASE(FP_TO_SINT_VL) 8197 NODE_NAME_CASE(FP_TO_UINT_VL) 8198 NODE_NAME_CASE(SINT_TO_FP_VL) 8199 NODE_NAME_CASE(UINT_TO_FP_VL) 8200 NODE_NAME_CASE(FP_EXTEND_VL) 8201 NODE_NAME_CASE(FP_ROUND_VL) 8202 NODE_NAME_CASE(SETCC_VL) 8203 NODE_NAME_CASE(VSELECT_VL) 8204 NODE_NAME_CASE(VMAND_VL) 8205 NODE_NAME_CASE(VMOR_VL) 8206 NODE_NAME_CASE(VMXOR_VL) 8207 NODE_NAME_CASE(VMCLR_VL) 8208 NODE_NAME_CASE(VMSET_VL) 8209 NODE_NAME_CASE(VRGATHER_VX_VL) 8210 NODE_NAME_CASE(VRGATHER_VV_VL) 8211 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8212 NODE_NAME_CASE(VSEXT_VL) 8213 NODE_NAME_CASE(VZEXT_VL) 8214 NODE_NAME_CASE(VPOPC_VL) 8215 NODE_NAME_CASE(VLE_VL) 8216 NODE_NAME_CASE(VSE_VL) 8217 NODE_NAME_CASE(READ_CSR) 8218 NODE_NAME_CASE(WRITE_CSR) 8219 NODE_NAME_CASE(SWAP_CSR) 8220 } 8221 // clang-format on 8222 return nullptr; 8223 #undef NODE_NAME_CASE 8224 } 8225 8226 /// getConstraintType - Given a constraint letter, return the type of 8227 /// constraint it is for this target. 8228 RISCVTargetLowering::ConstraintType 8229 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8230 if (Constraint.size() == 1) { 8231 switch (Constraint[0]) { 8232 default: 8233 break; 8234 case 'f': 8235 case 'v': 8236 return C_RegisterClass; 8237 case 'I': 8238 case 'J': 8239 case 'K': 8240 return C_Immediate; 8241 case 'A': 8242 return C_Memory; 8243 } 8244 } 8245 return TargetLowering::getConstraintType(Constraint); 8246 } 8247 8248 std::pair<unsigned, const TargetRegisterClass *> 8249 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8250 StringRef Constraint, 8251 MVT VT) const { 8252 // First, see if this is a constraint that directly corresponds to a 8253 // RISCV register class. 8254 if (Constraint.size() == 1) { 8255 switch (Constraint[0]) { 8256 case 'r': 8257 return std::make_pair(0U, &RISCV::GPRRegClass); 8258 case 'f': 8259 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8260 return std::make_pair(0U, &RISCV::FPR16RegClass); 8261 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8262 return std::make_pair(0U, &RISCV::FPR32RegClass); 8263 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8264 return std::make_pair(0U, &RISCV::FPR64RegClass); 8265 break; 8266 case 'v': 8267 for (const auto *RC : 8268 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 8269 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8270 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8271 return std::make_pair(0U, RC); 8272 } 8273 break; 8274 default: 8275 break; 8276 } 8277 } 8278 8279 // Clang will correctly decode the usage of register name aliases into their 8280 // official names. However, other frontends like `rustc` do not. This allows 8281 // users of these frontends to use the ABI names for registers in LLVM-style 8282 // register constraints. 8283 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8284 .Case("{zero}", RISCV::X0) 8285 .Case("{ra}", RISCV::X1) 8286 .Case("{sp}", RISCV::X2) 8287 .Case("{gp}", RISCV::X3) 8288 .Case("{tp}", RISCV::X4) 8289 .Case("{t0}", RISCV::X5) 8290 .Case("{t1}", RISCV::X6) 8291 .Case("{t2}", RISCV::X7) 8292 .Cases("{s0}", "{fp}", RISCV::X8) 8293 .Case("{s1}", RISCV::X9) 8294 .Case("{a0}", RISCV::X10) 8295 .Case("{a1}", RISCV::X11) 8296 .Case("{a2}", RISCV::X12) 8297 .Case("{a3}", RISCV::X13) 8298 .Case("{a4}", RISCV::X14) 8299 .Case("{a5}", RISCV::X15) 8300 .Case("{a6}", RISCV::X16) 8301 .Case("{a7}", RISCV::X17) 8302 .Case("{s2}", RISCV::X18) 8303 .Case("{s3}", RISCV::X19) 8304 .Case("{s4}", RISCV::X20) 8305 .Case("{s5}", RISCV::X21) 8306 .Case("{s6}", RISCV::X22) 8307 .Case("{s7}", RISCV::X23) 8308 .Case("{s8}", RISCV::X24) 8309 .Case("{s9}", RISCV::X25) 8310 .Case("{s10}", RISCV::X26) 8311 .Case("{s11}", RISCV::X27) 8312 .Case("{t3}", RISCV::X28) 8313 .Case("{t4}", RISCV::X29) 8314 .Case("{t5}", RISCV::X30) 8315 .Case("{t6}", RISCV::X31) 8316 .Default(RISCV::NoRegister); 8317 if (XRegFromAlias != RISCV::NoRegister) 8318 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8319 8320 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8321 // TableGen record rather than the AsmName to choose registers for InlineAsm 8322 // constraints, plus we want to match those names to the widest floating point 8323 // register type available, manually select floating point registers here. 8324 // 8325 // The second case is the ABI name of the register, so that frontends can also 8326 // use the ABI names in register constraint lists. 8327 if (Subtarget.hasStdExtF()) { 8328 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8329 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8330 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8331 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8332 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8333 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8334 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8335 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8336 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8337 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8338 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8339 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8340 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8341 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8342 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8343 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8344 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8345 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8346 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8347 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8348 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8349 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8350 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8351 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8352 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8353 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8354 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8355 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8356 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8357 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8358 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8359 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8360 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8361 .Default(RISCV::NoRegister); 8362 if (FReg != RISCV::NoRegister) { 8363 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8364 if (Subtarget.hasStdExtD()) { 8365 unsigned RegNo = FReg - RISCV::F0_F; 8366 unsigned DReg = RISCV::F0_D + RegNo; 8367 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8368 } 8369 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8370 } 8371 } 8372 8373 if (Subtarget.hasStdExtV()) { 8374 Register VReg = StringSwitch<Register>(Constraint.lower()) 8375 .Case("{v0}", RISCV::V0) 8376 .Case("{v1}", RISCV::V1) 8377 .Case("{v2}", RISCV::V2) 8378 .Case("{v3}", RISCV::V3) 8379 .Case("{v4}", RISCV::V4) 8380 .Case("{v5}", RISCV::V5) 8381 .Case("{v6}", RISCV::V6) 8382 .Case("{v7}", RISCV::V7) 8383 .Case("{v8}", RISCV::V8) 8384 .Case("{v9}", RISCV::V9) 8385 .Case("{v10}", RISCV::V10) 8386 .Case("{v11}", RISCV::V11) 8387 .Case("{v12}", RISCV::V12) 8388 .Case("{v13}", RISCV::V13) 8389 .Case("{v14}", RISCV::V14) 8390 .Case("{v15}", RISCV::V15) 8391 .Case("{v16}", RISCV::V16) 8392 .Case("{v17}", RISCV::V17) 8393 .Case("{v18}", RISCV::V18) 8394 .Case("{v19}", RISCV::V19) 8395 .Case("{v20}", RISCV::V20) 8396 .Case("{v21}", RISCV::V21) 8397 .Case("{v22}", RISCV::V22) 8398 .Case("{v23}", RISCV::V23) 8399 .Case("{v24}", RISCV::V24) 8400 .Case("{v25}", RISCV::V25) 8401 .Case("{v26}", RISCV::V26) 8402 .Case("{v27}", RISCV::V27) 8403 .Case("{v28}", RISCV::V28) 8404 .Case("{v29}", RISCV::V29) 8405 .Case("{v30}", RISCV::V30) 8406 .Case("{v31}", RISCV::V31) 8407 .Default(RISCV::NoRegister); 8408 if (VReg != RISCV::NoRegister) { 8409 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8410 return std::make_pair(VReg, &RISCV::VMRegClass); 8411 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8412 return std::make_pair(VReg, &RISCV::VRRegClass); 8413 for (const auto *RC : 8414 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8415 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8416 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8417 return std::make_pair(VReg, RC); 8418 } 8419 } 8420 } 8421 } 8422 8423 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8424 } 8425 8426 unsigned 8427 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8428 // Currently only support length 1 constraints. 8429 if (ConstraintCode.size() == 1) { 8430 switch (ConstraintCode[0]) { 8431 case 'A': 8432 return InlineAsm::Constraint_A; 8433 default: 8434 break; 8435 } 8436 } 8437 8438 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8439 } 8440 8441 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8442 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8443 SelectionDAG &DAG) const { 8444 // Currently only support length 1 constraints. 8445 if (Constraint.length() == 1) { 8446 switch (Constraint[0]) { 8447 case 'I': 8448 // Validate & create a 12-bit signed immediate operand. 8449 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8450 uint64_t CVal = C->getSExtValue(); 8451 if (isInt<12>(CVal)) 8452 Ops.push_back( 8453 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8454 } 8455 return; 8456 case 'J': 8457 // Validate & create an integer zero operand. 8458 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8459 if (C->getZExtValue() == 0) 8460 Ops.push_back( 8461 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8462 return; 8463 case 'K': 8464 // Validate & create a 5-bit unsigned immediate operand. 8465 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8466 uint64_t CVal = C->getZExtValue(); 8467 if (isUInt<5>(CVal)) 8468 Ops.push_back( 8469 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8470 } 8471 return; 8472 default: 8473 break; 8474 } 8475 } 8476 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8477 } 8478 8479 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8480 Instruction *Inst, 8481 AtomicOrdering Ord) const { 8482 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8483 return Builder.CreateFence(Ord); 8484 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8485 return Builder.CreateFence(AtomicOrdering::Release); 8486 return nullptr; 8487 } 8488 8489 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8490 Instruction *Inst, 8491 AtomicOrdering Ord) const { 8492 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8493 return Builder.CreateFence(AtomicOrdering::Acquire); 8494 return nullptr; 8495 } 8496 8497 TargetLowering::AtomicExpansionKind 8498 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8499 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8500 // point operations can't be used in an lr/sc sequence without breaking the 8501 // forward-progress guarantee. 8502 if (AI->isFloatingPointOperation()) 8503 return AtomicExpansionKind::CmpXChg; 8504 8505 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8506 if (Size == 8 || Size == 16) 8507 return AtomicExpansionKind::MaskedIntrinsic; 8508 return AtomicExpansionKind::None; 8509 } 8510 8511 static Intrinsic::ID 8512 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8513 if (XLen == 32) { 8514 switch (BinOp) { 8515 default: 8516 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8517 case AtomicRMWInst::Xchg: 8518 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8519 case AtomicRMWInst::Add: 8520 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8521 case AtomicRMWInst::Sub: 8522 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8523 case AtomicRMWInst::Nand: 8524 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8525 case AtomicRMWInst::Max: 8526 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8527 case AtomicRMWInst::Min: 8528 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8529 case AtomicRMWInst::UMax: 8530 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8531 case AtomicRMWInst::UMin: 8532 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8533 } 8534 } 8535 8536 if (XLen == 64) { 8537 switch (BinOp) { 8538 default: 8539 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8540 case AtomicRMWInst::Xchg: 8541 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8542 case AtomicRMWInst::Add: 8543 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8544 case AtomicRMWInst::Sub: 8545 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8546 case AtomicRMWInst::Nand: 8547 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8548 case AtomicRMWInst::Max: 8549 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8550 case AtomicRMWInst::Min: 8551 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8552 case AtomicRMWInst::UMax: 8553 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8554 case AtomicRMWInst::UMin: 8555 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8556 } 8557 } 8558 8559 llvm_unreachable("Unexpected XLen\n"); 8560 } 8561 8562 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8563 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8564 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8565 unsigned XLen = Subtarget.getXLen(); 8566 Value *Ordering = 8567 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8568 Type *Tys[] = {AlignedAddr->getType()}; 8569 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8570 AI->getModule(), 8571 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8572 8573 if (XLen == 64) { 8574 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8575 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8576 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8577 } 8578 8579 Value *Result; 8580 8581 // Must pass the shift amount needed to sign extend the loaded value prior 8582 // to performing a signed comparison for min/max. ShiftAmt is the number of 8583 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8584 // is the number of bits to left+right shift the value in order to 8585 // sign-extend. 8586 if (AI->getOperation() == AtomicRMWInst::Min || 8587 AI->getOperation() == AtomicRMWInst::Max) { 8588 const DataLayout &DL = AI->getModule()->getDataLayout(); 8589 unsigned ValWidth = 8590 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8591 Value *SextShamt = 8592 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8593 Result = Builder.CreateCall(LrwOpScwLoop, 8594 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8595 } else { 8596 Result = 8597 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8598 } 8599 8600 if (XLen == 64) 8601 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8602 return Result; 8603 } 8604 8605 TargetLowering::AtomicExpansionKind 8606 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8607 AtomicCmpXchgInst *CI) const { 8608 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8609 if (Size == 8 || Size == 16) 8610 return AtomicExpansionKind::MaskedIntrinsic; 8611 return AtomicExpansionKind::None; 8612 } 8613 8614 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8615 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8616 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8617 unsigned XLen = Subtarget.getXLen(); 8618 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8619 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8620 if (XLen == 64) { 8621 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8622 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8623 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8624 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8625 } 8626 Type *Tys[] = {AlignedAddr->getType()}; 8627 Function *MaskedCmpXchg = 8628 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8629 Value *Result = Builder.CreateCall( 8630 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8631 if (XLen == 64) 8632 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8633 return Result; 8634 } 8635 8636 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8637 return false; 8638 } 8639 8640 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8641 EVT VT) const { 8642 VT = VT.getScalarType(); 8643 8644 if (!VT.isSimple()) 8645 return false; 8646 8647 switch (VT.getSimpleVT().SimpleTy) { 8648 case MVT::f16: 8649 return Subtarget.hasStdExtZfh(); 8650 case MVT::f32: 8651 return Subtarget.hasStdExtF(); 8652 case MVT::f64: 8653 return Subtarget.hasStdExtD(); 8654 default: 8655 break; 8656 } 8657 8658 return false; 8659 } 8660 8661 Register RISCVTargetLowering::getExceptionPointerRegister( 8662 const Constant *PersonalityFn) const { 8663 return RISCV::X10; 8664 } 8665 8666 Register RISCVTargetLowering::getExceptionSelectorRegister( 8667 const Constant *PersonalityFn) const { 8668 return RISCV::X11; 8669 } 8670 8671 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8672 // Return false to suppress the unnecessary extensions if the LibCall 8673 // arguments or return value is f32 type for LP64 ABI. 8674 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8675 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8676 return false; 8677 8678 return true; 8679 } 8680 8681 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8682 if (Subtarget.is64Bit() && Type == MVT::i32) 8683 return true; 8684 8685 return IsSigned; 8686 } 8687 8688 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8689 SDValue C) const { 8690 // Check integral scalar types. 8691 if (VT.isScalarInteger()) { 8692 // Omit the optimization if the sub target has the M extension and the data 8693 // size exceeds XLen. 8694 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8695 return false; 8696 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8697 // Break the MUL to a SLLI and an ADD/SUB. 8698 const APInt &Imm = ConstNode->getAPIntValue(); 8699 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8700 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8701 return true; 8702 // Omit the following optimization if the sub target has the M extension 8703 // and the data size >= XLen. 8704 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8705 return false; 8706 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8707 // a pair of LUI/ADDI. 8708 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8709 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8710 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8711 (1 - ImmS).isPowerOf2()) 8712 return true; 8713 } 8714 } 8715 } 8716 8717 return false; 8718 } 8719 8720 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8721 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8722 bool *Fast) const { 8723 if (!VT.isVector()) 8724 return false; 8725 8726 EVT ElemVT = VT.getVectorElementType(); 8727 if (Alignment >= ElemVT.getStoreSize()) { 8728 if (Fast) 8729 *Fast = true; 8730 return true; 8731 } 8732 8733 return false; 8734 } 8735 8736 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8737 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8738 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8739 bool IsABIRegCopy = CC.hasValue(); 8740 EVT ValueVT = Val.getValueType(); 8741 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8742 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8743 // and cast to f32. 8744 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8745 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8746 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8747 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8748 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8749 Parts[0] = Val; 8750 return true; 8751 } 8752 8753 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8754 LLVMContext &Context = *DAG.getContext(); 8755 EVT ValueEltVT = ValueVT.getVectorElementType(); 8756 EVT PartEltVT = PartVT.getVectorElementType(); 8757 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8758 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8759 if (PartVTBitSize % ValueVTBitSize == 0) { 8760 // If the element types are different, bitcast to the same element type of 8761 // PartVT first. 8762 if (ValueEltVT != PartEltVT) { 8763 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8764 assert(Count != 0 && "The number of element should not be zero."); 8765 EVT SameEltTypeVT = 8766 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8767 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8768 } 8769 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8770 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8771 Parts[0] = Val; 8772 return true; 8773 } 8774 } 8775 return false; 8776 } 8777 8778 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8779 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8780 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8781 bool IsABIRegCopy = CC.hasValue(); 8782 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8783 SDValue Val = Parts[0]; 8784 8785 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8786 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8787 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8788 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8789 return Val; 8790 } 8791 8792 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8793 LLVMContext &Context = *DAG.getContext(); 8794 SDValue Val = Parts[0]; 8795 EVT ValueEltVT = ValueVT.getVectorElementType(); 8796 EVT PartEltVT = PartVT.getVectorElementType(); 8797 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8798 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8799 if (PartVTBitSize % ValueVTBitSize == 0) { 8800 EVT SameEltTypeVT = ValueVT; 8801 // If the element types are different, convert it to the same element type 8802 // of PartVT. 8803 if (ValueEltVT != PartEltVT) { 8804 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8805 assert(Count != 0 && "The number of element should not be zero."); 8806 SameEltTypeVT = 8807 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8808 } 8809 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8810 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8811 if (ValueEltVT != PartEltVT) 8812 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8813 return Val; 8814 } 8815 } 8816 return SDValue(); 8817 } 8818 8819 #define GET_REGISTER_MATCHER 8820 #include "RISCVGenAsmMatcher.inc" 8821 8822 Register 8823 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8824 const MachineFunction &MF) const { 8825 Register Reg = MatchRegisterAltName(RegName); 8826 if (Reg == RISCV::NoRegister) 8827 Reg = MatchRegisterName(RegName); 8828 if (Reg == RISCV::NoRegister) 8829 report_fatal_error( 8830 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8831 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8832 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8833 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8834 StringRef(RegName) + "\".")); 8835 return Reg; 8836 } 8837 8838 namespace llvm { 8839 namespace RISCVVIntrinsicsTable { 8840 8841 #define GET_RISCVVIntrinsicsTable_IMPL 8842 #include "RISCVGenSearchableTables.inc" 8843 8844 } // namespace RISCVVIntrinsicsTable 8845 8846 } // namespace llvm 8847