1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_MERGE, ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, 530 ISD::VP_SELECT}; 531 532 if (!Subtarget.is64Bit()) { 533 // We must custom-lower certain vXi64 operations on RV32 due to the vector 534 // element type being illegal. 535 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 537 538 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 545 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 546 547 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 554 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 555 } 556 557 for (MVT VT : BoolVecVTs) { 558 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 559 560 // Mask VTs are custom-expanded into a series of standard nodes 561 setOperationAction(ISD::TRUNCATE, VT, Custom); 562 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 563 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 564 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 565 566 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 567 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 568 569 setOperationAction(ISD::SELECT, VT, Custom); 570 setOperationAction(ISD::SELECT_CC, VT, Expand); 571 setOperationAction(ISD::VSELECT, VT, Expand); 572 setOperationAction(ISD::VP_SELECT, VT, Expand); 573 574 setOperationAction(ISD::VP_AND, VT, Custom); 575 setOperationAction(ISD::VP_OR, VT, Custom); 576 setOperationAction(ISD::VP_XOR, VT, Custom); 577 578 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 580 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 581 582 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 584 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 585 586 // RVV has native int->float & float->int conversions where the 587 // element type sizes are within one power-of-two of each other. Any 588 // wider distances between type sizes have to be lowered as sequences 589 // which progressively narrow the gap in stages. 590 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 592 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 593 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 594 595 // Expand all extending loads to types larger than this, and truncating 596 // stores from types larger than this. 597 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 598 setTruncStoreAction(OtherVT, VT, Expand); 599 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 601 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 602 } 603 } 604 605 for (MVT VT : IntVecVTs) { 606 if (VT.getVectorElementType() == MVT::i64 && 607 !Subtarget.hasVInstructionsI64()) 608 continue; 609 610 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 611 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 612 613 // Vectors implement MULHS/MULHU. 614 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 615 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 616 617 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 618 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 619 setOperationAction(ISD::MULHU, VT, Expand); 620 setOperationAction(ISD::MULHS, VT, Expand); 621 } 622 623 setOperationAction(ISD::SMIN, VT, Legal); 624 setOperationAction(ISD::SMAX, VT, Legal); 625 setOperationAction(ISD::UMIN, VT, Legal); 626 setOperationAction(ISD::UMAX, VT, Legal); 627 628 setOperationAction(ISD::ROTL, VT, Expand); 629 setOperationAction(ISD::ROTR, VT, Expand); 630 631 setOperationAction(ISD::CTTZ, VT, Expand); 632 setOperationAction(ISD::CTLZ, VT, Expand); 633 setOperationAction(ISD::CTPOP, VT, Expand); 634 635 setOperationAction(ISD::BSWAP, VT, Expand); 636 637 // Custom-lower extensions and truncations from/to mask types. 638 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 639 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 640 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 641 642 // RVV has native int->float & float->int conversions where the 643 // element type sizes are within one power-of-two of each other. Any 644 // wider distances between type sizes have to be lowered as sequences 645 // which progressively narrow the gap in stages. 646 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 647 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 648 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 649 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 650 651 setOperationAction(ISD::SADDSAT, VT, Legal); 652 setOperationAction(ISD::UADDSAT, VT, Legal); 653 setOperationAction(ISD::SSUBSAT, VT, Legal); 654 setOperationAction(ISD::USUBSAT, VT, Legal); 655 656 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 657 // nodes which truncate by one power of two at a time. 658 setOperationAction(ISD::TRUNCATE, VT, Custom); 659 660 // Custom-lower insert/extract operations to simplify patterns. 661 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 663 664 // Custom-lower reduction operations to set up the corresponding custom 665 // nodes' operands. 666 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 667 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 668 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 669 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 670 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 671 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 672 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 673 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 674 675 for (unsigned VPOpc : IntegerVPOps) 676 setOperationAction(VPOpc, VT, Custom); 677 678 setOperationAction(ISD::LOAD, VT, Custom); 679 setOperationAction(ISD::STORE, VT, Custom); 680 681 setOperationAction(ISD::MLOAD, VT, Custom); 682 setOperationAction(ISD::MSTORE, VT, Custom); 683 setOperationAction(ISD::MGATHER, VT, Custom); 684 setOperationAction(ISD::MSCATTER, VT, Custom); 685 686 setOperationAction(ISD::VP_LOAD, VT, Custom); 687 setOperationAction(ISD::VP_STORE, VT, Custom); 688 setOperationAction(ISD::VP_GATHER, VT, Custom); 689 setOperationAction(ISD::VP_SCATTER, VT, Custom); 690 691 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 692 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 693 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 694 695 setOperationAction(ISD::SELECT, VT, Custom); 696 setOperationAction(ISD::SELECT_CC, VT, Expand); 697 698 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 699 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 700 701 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 702 setTruncStoreAction(VT, OtherVT, Expand); 703 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 704 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 705 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 706 } 707 708 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 709 // type that can represent the value exactly. 710 if (VT.getVectorElementType() != MVT::i64) { 711 MVT FloatEltVT = 712 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 713 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 714 if (isTypeLegal(FloatVT)) { 715 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 716 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 717 } 718 } 719 } 720 721 // Expand various CCs to best match the RVV ISA, which natively supports UNE 722 // but no other unordered comparisons, and supports all ordered comparisons 723 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 724 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 725 // and we pattern-match those back to the "original", swapping operands once 726 // more. This way we catch both operations and both "vf" and "fv" forms with 727 // fewer patterns. 728 static const ISD::CondCode VFPCCToExpand[] = { 729 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 730 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 731 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 732 }; 733 734 // Sets common operation actions on RVV floating-point vector types. 735 const auto SetCommonVFPActions = [&](MVT VT) { 736 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 737 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 738 // sizes are within one power-of-two of each other. Therefore conversions 739 // between vXf16 and vXf64 must be lowered as sequences which convert via 740 // vXf32. 741 setOperationAction(ISD::FP_ROUND, VT, Custom); 742 setOperationAction(ISD::FP_EXTEND, VT, Custom); 743 // Custom-lower insert/extract operations to simplify patterns. 744 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 746 // Expand various condition codes (explained above). 747 for (auto CC : VFPCCToExpand) 748 setCondCodeAction(CC, VT, Expand); 749 750 setOperationAction(ISD::FMINNUM, VT, Legal); 751 setOperationAction(ISD::FMAXNUM, VT, Legal); 752 753 setOperationAction(ISD::FTRUNC, VT, Custom); 754 setOperationAction(ISD::FCEIL, VT, Custom); 755 setOperationAction(ISD::FFLOOR, VT, Custom); 756 757 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 758 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 759 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 760 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 761 762 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 763 764 setOperationAction(ISD::LOAD, VT, Custom); 765 setOperationAction(ISD::STORE, VT, Custom); 766 767 setOperationAction(ISD::MLOAD, VT, Custom); 768 setOperationAction(ISD::MSTORE, VT, Custom); 769 setOperationAction(ISD::MGATHER, VT, Custom); 770 setOperationAction(ISD::MSCATTER, VT, Custom); 771 772 setOperationAction(ISD::VP_LOAD, VT, Custom); 773 setOperationAction(ISD::VP_STORE, VT, Custom); 774 setOperationAction(ISD::VP_GATHER, VT, Custom); 775 setOperationAction(ISD::VP_SCATTER, VT, Custom); 776 777 setOperationAction(ISD::SELECT, VT, Custom); 778 setOperationAction(ISD::SELECT_CC, VT, Expand); 779 780 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 781 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 782 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 783 784 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 785 786 for (unsigned VPOpc : FloatingPointVPOps) 787 setOperationAction(VPOpc, VT, Custom); 788 }; 789 790 // Sets common extload/truncstore actions on RVV floating-point vector 791 // types. 792 const auto SetCommonVFPExtLoadTruncStoreActions = 793 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 794 for (auto SmallVT : SmallerVTs) { 795 setTruncStoreAction(VT, SmallVT, Expand); 796 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 797 } 798 }; 799 800 if (Subtarget.hasVInstructionsF16()) 801 for (MVT VT : F16VecVTs) 802 SetCommonVFPActions(VT); 803 804 for (MVT VT : F32VecVTs) { 805 if (Subtarget.hasVInstructionsF32()) 806 SetCommonVFPActions(VT); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 808 } 809 810 for (MVT VT : F64VecVTs) { 811 if (Subtarget.hasVInstructionsF64()) 812 SetCommonVFPActions(VT); 813 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 814 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 815 } 816 817 if (Subtarget.useRVVForFixedLengthVectors()) { 818 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 819 if (!useRVVForFixedLengthVectorVT(VT)) 820 continue; 821 822 // By default everything must be expanded. 823 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 824 setOperationAction(Op, VT, Expand); 825 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 826 setTruncStoreAction(VT, OtherVT, Expand); 827 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 828 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 829 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 830 } 831 832 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 833 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 834 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 835 836 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 837 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 838 839 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 840 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 841 842 setOperationAction(ISD::LOAD, VT, Custom); 843 setOperationAction(ISD::STORE, VT, Custom); 844 845 setOperationAction(ISD::SETCC, VT, Custom); 846 847 setOperationAction(ISD::SELECT, VT, Custom); 848 849 setOperationAction(ISD::TRUNCATE, VT, Custom); 850 851 setOperationAction(ISD::BITCAST, VT, Custom); 852 853 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 854 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 855 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 856 857 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 858 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 859 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 860 861 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 862 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 863 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 864 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 865 866 // Operations below are different for between masks and other vectors. 867 if (VT.getVectorElementType() == MVT::i1) { 868 setOperationAction(ISD::VP_AND, VT, Custom); 869 setOperationAction(ISD::VP_OR, VT, Custom); 870 setOperationAction(ISD::VP_XOR, VT, Custom); 871 setOperationAction(ISD::AND, VT, Custom); 872 setOperationAction(ISD::OR, VT, Custom); 873 setOperationAction(ISD::XOR, VT, Custom); 874 continue; 875 } 876 877 // Use SPLAT_VECTOR to prevent type legalization from destroying the 878 // splats when type legalizing i64 scalar on RV32. 879 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 880 // improvements first. 881 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 882 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 883 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 884 } 885 886 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 887 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 888 889 setOperationAction(ISD::MLOAD, VT, Custom); 890 setOperationAction(ISD::MSTORE, VT, Custom); 891 setOperationAction(ISD::MGATHER, VT, Custom); 892 setOperationAction(ISD::MSCATTER, VT, Custom); 893 894 setOperationAction(ISD::VP_LOAD, VT, Custom); 895 setOperationAction(ISD::VP_STORE, VT, Custom); 896 setOperationAction(ISD::VP_GATHER, VT, Custom); 897 setOperationAction(ISD::VP_SCATTER, VT, Custom); 898 899 setOperationAction(ISD::ADD, VT, Custom); 900 setOperationAction(ISD::MUL, VT, Custom); 901 setOperationAction(ISD::SUB, VT, Custom); 902 setOperationAction(ISD::AND, VT, Custom); 903 setOperationAction(ISD::OR, VT, Custom); 904 setOperationAction(ISD::XOR, VT, Custom); 905 setOperationAction(ISD::SDIV, VT, Custom); 906 setOperationAction(ISD::SREM, VT, Custom); 907 setOperationAction(ISD::UDIV, VT, Custom); 908 setOperationAction(ISD::UREM, VT, Custom); 909 setOperationAction(ISD::SHL, VT, Custom); 910 setOperationAction(ISD::SRA, VT, Custom); 911 setOperationAction(ISD::SRL, VT, Custom); 912 913 setOperationAction(ISD::SMIN, VT, Custom); 914 setOperationAction(ISD::SMAX, VT, Custom); 915 setOperationAction(ISD::UMIN, VT, Custom); 916 setOperationAction(ISD::UMAX, VT, Custom); 917 setOperationAction(ISD::ABS, VT, Custom); 918 919 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 920 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 921 setOperationAction(ISD::MULHS, VT, Custom); 922 setOperationAction(ISD::MULHU, VT, Custom); 923 } 924 925 setOperationAction(ISD::SADDSAT, VT, Custom); 926 setOperationAction(ISD::UADDSAT, VT, Custom); 927 setOperationAction(ISD::SSUBSAT, VT, Custom); 928 setOperationAction(ISD::USUBSAT, VT, Custom); 929 930 setOperationAction(ISD::VSELECT, VT, Custom); 931 setOperationAction(ISD::SELECT_CC, VT, Expand); 932 933 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 934 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 935 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 936 937 // Custom-lower reduction operations to set up the corresponding custom 938 // nodes' operands. 939 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 940 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 941 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 942 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 943 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 944 945 for (unsigned VPOpc : IntegerVPOps) 946 setOperationAction(VPOpc, VT, Custom); 947 948 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 949 // type that can represent the value exactly. 950 if (VT.getVectorElementType() != MVT::i64) { 951 MVT FloatEltVT = 952 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 953 EVT FloatVT = 954 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 955 if (isTypeLegal(FloatVT)) { 956 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 957 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 958 } 959 } 960 } 961 962 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 963 if (!useRVVForFixedLengthVectorVT(VT)) 964 continue; 965 966 // By default everything must be expanded. 967 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 968 setOperationAction(Op, VT, Expand); 969 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 970 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 971 setTruncStoreAction(VT, OtherVT, Expand); 972 } 973 974 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 975 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 976 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 977 978 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 979 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 980 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 981 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 982 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 983 984 setOperationAction(ISD::LOAD, VT, Custom); 985 setOperationAction(ISD::STORE, VT, Custom); 986 setOperationAction(ISD::MLOAD, VT, Custom); 987 setOperationAction(ISD::MSTORE, VT, Custom); 988 setOperationAction(ISD::MGATHER, VT, Custom); 989 setOperationAction(ISD::MSCATTER, VT, Custom); 990 991 setOperationAction(ISD::VP_LOAD, VT, Custom); 992 setOperationAction(ISD::VP_STORE, VT, Custom); 993 setOperationAction(ISD::VP_GATHER, VT, Custom); 994 setOperationAction(ISD::VP_SCATTER, VT, Custom); 995 996 setOperationAction(ISD::FADD, VT, Custom); 997 setOperationAction(ISD::FSUB, VT, Custom); 998 setOperationAction(ISD::FMUL, VT, Custom); 999 setOperationAction(ISD::FDIV, VT, Custom); 1000 setOperationAction(ISD::FNEG, VT, Custom); 1001 setOperationAction(ISD::FABS, VT, Custom); 1002 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1003 setOperationAction(ISD::FSQRT, VT, Custom); 1004 setOperationAction(ISD::FMA, VT, Custom); 1005 setOperationAction(ISD::FMINNUM, VT, Custom); 1006 setOperationAction(ISD::FMAXNUM, VT, Custom); 1007 1008 setOperationAction(ISD::FP_ROUND, VT, Custom); 1009 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1010 1011 setOperationAction(ISD::FTRUNC, VT, Custom); 1012 setOperationAction(ISD::FCEIL, VT, Custom); 1013 setOperationAction(ISD::FFLOOR, VT, Custom); 1014 1015 for (auto CC : VFPCCToExpand) 1016 setCondCodeAction(CC, VT, Expand); 1017 1018 setOperationAction(ISD::VSELECT, VT, Custom); 1019 setOperationAction(ISD::SELECT, VT, Custom); 1020 setOperationAction(ISD::SELECT_CC, VT, Expand); 1021 1022 setOperationAction(ISD::BITCAST, VT, Custom); 1023 1024 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1025 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1026 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1027 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1028 1029 for (unsigned VPOpc : FloatingPointVPOps) 1030 setOperationAction(VPOpc, VT, Custom); 1031 } 1032 1033 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1034 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1035 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1036 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1037 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1038 if (Subtarget.hasStdExtZfh()) 1039 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1040 if (Subtarget.hasStdExtF()) 1041 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1042 if (Subtarget.hasStdExtD()) 1043 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1044 } 1045 } 1046 1047 // Function alignments. 1048 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1049 setMinFunctionAlignment(FunctionAlignment); 1050 setPrefFunctionAlignment(FunctionAlignment); 1051 1052 setMinimumJumpTableEntries(5); 1053 1054 // Jumps are expensive, compared to logic 1055 setJumpIsExpensive(); 1056 1057 setTargetDAGCombine(ISD::ADD); 1058 setTargetDAGCombine(ISD::SUB); 1059 setTargetDAGCombine(ISD::AND); 1060 setTargetDAGCombine(ISD::OR); 1061 setTargetDAGCombine(ISD::XOR); 1062 setTargetDAGCombine(ISD::ANY_EXTEND); 1063 if (Subtarget.hasStdExtF()) { 1064 setTargetDAGCombine(ISD::ZERO_EXTEND); 1065 setTargetDAGCombine(ISD::FP_TO_SINT); 1066 setTargetDAGCombine(ISD::FP_TO_UINT); 1067 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1068 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1069 } 1070 if (Subtarget.hasVInstructions()) { 1071 setTargetDAGCombine(ISD::FCOPYSIGN); 1072 setTargetDAGCombine(ISD::MGATHER); 1073 setTargetDAGCombine(ISD::MSCATTER); 1074 setTargetDAGCombine(ISD::VP_GATHER); 1075 setTargetDAGCombine(ISD::VP_SCATTER); 1076 setTargetDAGCombine(ISD::SRA); 1077 setTargetDAGCombine(ISD::SRL); 1078 setTargetDAGCombine(ISD::SHL); 1079 setTargetDAGCombine(ISD::STORE); 1080 } 1081 } 1082 1083 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1084 LLVMContext &Context, 1085 EVT VT) const { 1086 if (!VT.isVector()) 1087 return getPointerTy(DL); 1088 if (Subtarget.hasVInstructions() && 1089 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1090 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1091 return VT.changeVectorElementTypeToInteger(); 1092 } 1093 1094 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1095 return Subtarget.getXLenVT(); 1096 } 1097 1098 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1099 const CallInst &I, 1100 MachineFunction &MF, 1101 unsigned Intrinsic) const { 1102 auto &DL = I.getModule()->getDataLayout(); 1103 switch (Intrinsic) { 1104 default: 1105 return false; 1106 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1107 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1108 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1109 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1110 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1111 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1112 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1113 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1114 case Intrinsic::riscv_masked_cmpxchg_i32: { 1115 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1116 Info.opc = ISD::INTRINSIC_W_CHAIN; 1117 Info.memVT = MVT::getVT(PtrTy->getPointerElementType()); 1118 Info.ptrVal = I.getArgOperand(0); 1119 Info.offset = 0; 1120 Info.align = Align(4); 1121 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1122 MachineMemOperand::MOVolatile; 1123 return true; 1124 } 1125 case Intrinsic::riscv_masked_strided_load: 1126 Info.opc = ISD::INTRINSIC_W_CHAIN; 1127 Info.ptrVal = I.getArgOperand(1); 1128 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1129 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1130 Info.size = MemoryLocation::UnknownSize; 1131 Info.flags |= MachineMemOperand::MOLoad; 1132 return true; 1133 case Intrinsic::riscv_masked_strided_store: 1134 Info.opc = ISD::INTRINSIC_VOID; 1135 Info.ptrVal = I.getArgOperand(1); 1136 Info.memVT = 1137 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1138 Info.align = Align( 1139 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1140 8); 1141 Info.size = MemoryLocation::UnknownSize; 1142 Info.flags |= MachineMemOperand::MOStore; 1143 return true; 1144 } 1145 } 1146 1147 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1148 const AddrMode &AM, Type *Ty, 1149 unsigned AS, 1150 Instruction *I) const { 1151 // No global is ever allowed as a base. 1152 if (AM.BaseGV) 1153 return false; 1154 1155 // Require a 12-bit signed offset. 1156 if (!isInt<12>(AM.BaseOffs)) 1157 return false; 1158 1159 switch (AM.Scale) { 1160 case 0: // "r+i" or just "i", depending on HasBaseReg. 1161 break; 1162 case 1: 1163 if (!AM.HasBaseReg) // allow "r+i". 1164 break; 1165 return false; // disallow "r+r" or "r+r+i". 1166 default: 1167 return false; 1168 } 1169 1170 return true; 1171 } 1172 1173 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1174 return isInt<12>(Imm); 1175 } 1176 1177 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1178 return isInt<12>(Imm); 1179 } 1180 1181 // On RV32, 64-bit integers are split into their high and low parts and held 1182 // in two different registers, so the trunc is free since the low register can 1183 // just be used. 1184 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1185 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1186 return false; 1187 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1188 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1189 return (SrcBits == 64 && DestBits == 32); 1190 } 1191 1192 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1193 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1194 !SrcVT.isInteger() || !DstVT.isInteger()) 1195 return false; 1196 unsigned SrcBits = SrcVT.getSizeInBits(); 1197 unsigned DestBits = DstVT.getSizeInBits(); 1198 return (SrcBits == 64 && DestBits == 32); 1199 } 1200 1201 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1202 // Zexts are free if they can be combined with a load. 1203 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1204 // poorly with type legalization of compares preferring sext. 1205 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1206 EVT MemVT = LD->getMemoryVT(); 1207 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1208 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1209 LD->getExtensionType() == ISD::ZEXTLOAD)) 1210 return true; 1211 } 1212 1213 return TargetLowering::isZExtFree(Val, VT2); 1214 } 1215 1216 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1217 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1218 } 1219 1220 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1221 return Subtarget.hasStdExtZbb(); 1222 } 1223 1224 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1225 return Subtarget.hasStdExtZbb(); 1226 } 1227 1228 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1229 EVT VT = Y.getValueType(); 1230 1231 // FIXME: Support vectors once we have tests. 1232 if (VT.isVector()) 1233 return false; 1234 1235 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) && 1236 !isa<ConstantSDNode>(Y); 1237 } 1238 1239 /// Check if sinking \p I's operands to I's basic block is profitable, because 1240 /// the operands can be folded into a target instruction, e.g. 1241 /// splats of scalars can fold into vector instructions. 1242 bool RISCVTargetLowering::shouldSinkOperands( 1243 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1244 using namespace llvm::PatternMatch; 1245 1246 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1247 return false; 1248 1249 auto IsSinker = [&](Instruction *I, int Operand) { 1250 switch (I->getOpcode()) { 1251 case Instruction::Add: 1252 case Instruction::Sub: 1253 case Instruction::Mul: 1254 case Instruction::And: 1255 case Instruction::Or: 1256 case Instruction::Xor: 1257 case Instruction::FAdd: 1258 case Instruction::FSub: 1259 case Instruction::FMul: 1260 case Instruction::FDiv: 1261 case Instruction::ICmp: 1262 case Instruction::FCmp: 1263 return true; 1264 case Instruction::Shl: 1265 case Instruction::LShr: 1266 case Instruction::AShr: 1267 case Instruction::UDiv: 1268 case Instruction::SDiv: 1269 case Instruction::URem: 1270 case Instruction::SRem: 1271 return Operand == 1; 1272 case Instruction::Call: 1273 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1274 switch (II->getIntrinsicID()) { 1275 case Intrinsic::fma: 1276 return Operand == 0 || Operand == 1; 1277 // FIXME: Our patterns can only match vx/vf instructions when the splat 1278 // it on the RHS, because TableGen doesn't recognize our VP operations 1279 // as commutative. 1280 case Intrinsic::vp_add: 1281 case Intrinsic::vp_mul: 1282 case Intrinsic::vp_and: 1283 case Intrinsic::vp_or: 1284 case Intrinsic::vp_xor: 1285 case Intrinsic::vp_fadd: 1286 case Intrinsic::vp_fmul: 1287 case Intrinsic::vp_shl: 1288 case Intrinsic::vp_lshr: 1289 case Intrinsic::vp_ashr: 1290 case Intrinsic::vp_udiv: 1291 case Intrinsic::vp_sdiv: 1292 case Intrinsic::vp_urem: 1293 case Intrinsic::vp_srem: 1294 return Operand == 1; 1295 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1296 // explicit patterns for both LHS and RHS (as 'vr' versions). 1297 case Intrinsic::vp_sub: 1298 case Intrinsic::vp_fsub: 1299 case Intrinsic::vp_fdiv: 1300 return Operand == 0 || Operand == 1; 1301 default: 1302 return false; 1303 } 1304 } 1305 return false; 1306 default: 1307 return false; 1308 } 1309 }; 1310 1311 for (auto OpIdx : enumerate(I->operands())) { 1312 if (!IsSinker(I, OpIdx.index())) 1313 continue; 1314 1315 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1316 // Make sure we are not already sinking this operand 1317 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1318 continue; 1319 1320 // We are looking for a splat that can be sunk. 1321 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1322 m_Undef(), m_ZeroMask()))) 1323 continue; 1324 1325 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1326 // and vector registers 1327 for (Use &U : Op->uses()) { 1328 Instruction *Insn = cast<Instruction>(U.getUser()); 1329 if (!IsSinker(Insn, U.getOperandNo())) 1330 return false; 1331 } 1332 1333 Ops.push_back(&Op->getOperandUse(0)); 1334 Ops.push_back(&OpIdx.value()); 1335 } 1336 return true; 1337 } 1338 1339 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1340 bool ForCodeSize) const { 1341 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1342 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1343 return false; 1344 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1345 return false; 1346 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1347 return false; 1348 return Imm.isZero(); 1349 } 1350 1351 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1352 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1353 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1354 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1355 } 1356 1357 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1358 CallingConv::ID CC, 1359 EVT VT) const { 1360 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1361 // We might still end up using a GPR but that will be decided based on ABI. 1362 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1363 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1364 return MVT::f32; 1365 1366 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1367 } 1368 1369 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1370 CallingConv::ID CC, 1371 EVT VT) const { 1372 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1373 // We might still end up using a GPR but that will be decided based on ABI. 1374 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1375 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1376 return 1; 1377 1378 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1379 } 1380 1381 // Changes the condition code and swaps operands if necessary, so the SetCC 1382 // operation matches one of the comparisons supported directly by branches 1383 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1384 // with 1/-1. 1385 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1386 ISD::CondCode &CC, SelectionDAG &DAG) { 1387 // Convert X > -1 to X >= 0. 1388 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1389 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1390 CC = ISD::SETGE; 1391 return; 1392 } 1393 // Convert X < 1 to 0 >= X. 1394 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1395 RHS = LHS; 1396 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1397 CC = ISD::SETGE; 1398 return; 1399 } 1400 1401 switch (CC) { 1402 default: 1403 break; 1404 case ISD::SETGT: 1405 case ISD::SETLE: 1406 case ISD::SETUGT: 1407 case ISD::SETULE: 1408 CC = ISD::getSetCCSwappedOperands(CC); 1409 std::swap(LHS, RHS); 1410 break; 1411 } 1412 } 1413 1414 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1415 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1416 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1417 if (VT.getVectorElementType() == MVT::i1) 1418 KnownSize *= 8; 1419 1420 switch (KnownSize) { 1421 default: 1422 llvm_unreachable("Invalid LMUL."); 1423 case 8: 1424 return RISCVII::VLMUL::LMUL_F8; 1425 case 16: 1426 return RISCVII::VLMUL::LMUL_F4; 1427 case 32: 1428 return RISCVII::VLMUL::LMUL_F2; 1429 case 64: 1430 return RISCVII::VLMUL::LMUL_1; 1431 case 128: 1432 return RISCVII::VLMUL::LMUL_2; 1433 case 256: 1434 return RISCVII::VLMUL::LMUL_4; 1435 case 512: 1436 return RISCVII::VLMUL::LMUL_8; 1437 } 1438 } 1439 1440 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1441 switch (LMul) { 1442 default: 1443 llvm_unreachable("Invalid LMUL."); 1444 case RISCVII::VLMUL::LMUL_F8: 1445 case RISCVII::VLMUL::LMUL_F4: 1446 case RISCVII::VLMUL::LMUL_F2: 1447 case RISCVII::VLMUL::LMUL_1: 1448 return RISCV::VRRegClassID; 1449 case RISCVII::VLMUL::LMUL_2: 1450 return RISCV::VRM2RegClassID; 1451 case RISCVII::VLMUL::LMUL_4: 1452 return RISCV::VRM4RegClassID; 1453 case RISCVII::VLMUL::LMUL_8: 1454 return RISCV::VRM8RegClassID; 1455 } 1456 } 1457 1458 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1459 RISCVII::VLMUL LMUL = getLMUL(VT); 1460 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1461 LMUL == RISCVII::VLMUL::LMUL_F4 || 1462 LMUL == RISCVII::VLMUL::LMUL_F2 || 1463 LMUL == RISCVII::VLMUL::LMUL_1) { 1464 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1465 "Unexpected subreg numbering"); 1466 return RISCV::sub_vrm1_0 + Index; 1467 } 1468 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1469 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1470 "Unexpected subreg numbering"); 1471 return RISCV::sub_vrm2_0 + Index; 1472 } 1473 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1474 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1475 "Unexpected subreg numbering"); 1476 return RISCV::sub_vrm4_0 + Index; 1477 } 1478 llvm_unreachable("Invalid vector type."); 1479 } 1480 1481 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1482 if (VT.getVectorElementType() == MVT::i1) 1483 return RISCV::VRRegClassID; 1484 return getRegClassIDForLMUL(getLMUL(VT)); 1485 } 1486 1487 // Attempt to decompose a subvector insert/extract between VecVT and 1488 // SubVecVT via subregister indices. Returns the subregister index that 1489 // can perform the subvector insert/extract with the given element index, as 1490 // well as the index corresponding to any leftover subvectors that must be 1491 // further inserted/extracted within the register class for SubVecVT. 1492 std::pair<unsigned, unsigned> 1493 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1494 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1495 const RISCVRegisterInfo *TRI) { 1496 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1497 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1498 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1499 "Register classes not ordered"); 1500 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1501 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1502 // Try to compose a subregister index that takes us from the incoming 1503 // LMUL>1 register class down to the outgoing one. At each step we half 1504 // the LMUL: 1505 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1506 // Note that this is not guaranteed to find a subregister index, such as 1507 // when we are extracting from one VR type to another. 1508 unsigned SubRegIdx = RISCV::NoSubRegister; 1509 for (const unsigned RCID : 1510 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1511 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1512 VecVT = VecVT.getHalfNumVectorElementsVT(); 1513 bool IsHi = 1514 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1515 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1516 getSubregIndexByMVT(VecVT, IsHi)); 1517 if (IsHi) 1518 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1519 } 1520 return {SubRegIdx, InsertExtractIdx}; 1521 } 1522 1523 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1524 // stores for those types. 1525 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1526 return !Subtarget.useRVVForFixedLengthVectors() || 1527 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1528 } 1529 1530 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1531 if (ScalarTy->isPointerTy()) 1532 return true; 1533 1534 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1535 ScalarTy->isIntegerTy(32)) 1536 return true; 1537 1538 if (ScalarTy->isIntegerTy(64)) 1539 return Subtarget.hasVInstructionsI64(); 1540 1541 if (ScalarTy->isHalfTy()) 1542 return Subtarget.hasVInstructionsF16(); 1543 if (ScalarTy->isFloatTy()) 1544 return Subtarget.hasVInstructionsF32(); 1545 if (ScalarTy->isDoubleTy()) 1546 return Subtarget.hasVInstructionsF64(); 1547 1548 return false; 1549 } 1550 1551 static SDValue getVLOperand(SDValue Op) { 1552 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1553 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1554 "Unexpected opcode"); 1555 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1556 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1557 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1558 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1559 if (!II) 1560 return SDValue(); 1561 return Op.getOperand(II->VLOperand + 1 + HasChain); 1562 } 1563 1564 static bool useRVVForFixedLengthVectorVT(MVT VT, 1565 const RISCVSubtarget &Subtarget) { 1566 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1567 if (!Subtarget.useRVVForFixedLengthVectors()) 1568 return false; 1569 1570 // We only support a set of vector types with a consistent maximum fixed size 1571 // across all supported vector element types to avoid legalization issues. 1572 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1573 // fixed-length vector type we support is 1024 bytes. 1574 if (VT.getFixedSizeInBits() > 1024 * 8) 1575 return false; 1576 1577 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1578 1579 MVT EltVT = VT.getVectorElementType(); 1580 1581 // Don't use RVV for vectors we cannot scalarize if required. 1582 switch (EltVT.SimpleTy) { 1583 // i1 is supported but has different rules. 1584 default: 1585 return false; 1586 case MVT::i1: 1587 // Masks can only use a single register. 1588 if (VT.getVectorNumElements() > MinVLen) 1589 return false; 1590 MinVLen /= 8; 1591 break; 1592 case MVT::i8: 1593 case MVT::i16: 1594 case MVT::i32: 1595 break; 1596 case MVT::i64: 1597 if (!Subtarget.hasVInstructionsI64()) 1598 return false; 1599 break; 1600 case MVT::f16: 1601 if (!Subtarget.hasVInstructionsF16()) 1602 return false; 1603 break; 1604 case MVT::f32: 1605 if (!Subtarget.hasVInstructionsF32()) 1606 return false; 1607 break; 1608 case MVT::f64: 1609 if (!Subtarget.hasVInstructionsF64()) 1610 return false; 1611 break; 1612 } 1613 1614 // Reject elements larger than ELEN. 1615 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1616 return false; 1617 1618 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1619 // Don't use RVV for types that don't fit. 1620 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1621 return false; 1622 1623 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1624 // the base fixed length RVV support in place. 1625 if (!VT.isPow2VectorType()) 1626 return false; 1627 1628 return true; 1629 } 1630 1631 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1632 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1633 } 1634 1635 // Return the largest legal scalable vector type that matches VT's element type. 1636 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1637 const RISCVSubtarget &Subtarget) { 1638 // This may be called before legal types are setup. 1639 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1640 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1641 "Expected legal fixed length vector!"); 1642 1643 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1644 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1645 1646 MVT EltVT = VT.getVectorElementType(); 1647 switch (EltVT.SimpleTy) { 1648 default: 1649 llvm_unreachable("unexpected element type for RVV container"); 1650 case MVT::i1: 1651 case MVT::i8: 1652 case MVT::i16: 1653 case MVT::i32: 1654 case MVT::i64: 1655 case MVT::f16: 1656 case MVT::f32: 1657 case MVT::f64: { 1658 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1659 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1660 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1661 unsigned NumElts = 1662 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1663 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1664 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1665 return MVT::getScalableVectorVT(EltVT, NumElts); 1666 } 1667 } 1668 } 1669 1670 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1671 const RISCVSubtarget &Subtarget) { 1672 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1673 Subtarget); 1674 } 1675 1676 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1677 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1678 } 1679 1680 // Grow V to consume an entire RVV register. 1681 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1682 const RISCVSubtarget &Subtarget) { 1683 assert(VT.isScalableVector() && 1684 "Expected to convert into a scalable vector!"); 1685 assert(V.getValueType().isFixedLengthVector() && 1686 "Expected a fixed length vector operand!"); 1687 SDLoc DL(V); 1688 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1689 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1690 } 1691 1692 // Shrink V so it's just big enough to maintain a VT's worth of data. 1693 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1694 const RISCVSubtarget &Subtarget) { 1695 assert(VT.isFixedLengthVector() && 1696 "Expected to convert into a fixed length vector!"); 1697 assert(V.getValueType().isScalableVector() && 1698 "Expected a scalable vector operand!"); 1699 SDLoc DL(V); 1700 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1701 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1702 } 1703 1704 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1705 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1706 // the vector type that it is contained in. 1707 static std::pair<SDValue, SDValue> 1708 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1709 const RISCVSubtarget &Subtarget) { 1710 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1711 MVT XLenVT = Subtarget.getXLenVT(); 1712 SDValue VL = VecVT.isFixedLengthVector() 1713 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1714 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1715 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1716 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1717 return {Mask, VL}; 1718 } 1719 1720 // As above but assuming the given type is a scalable vector type. 1721 static std::pair<SDValue, SDValue> 1722 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1723 const RISCVSubtarget &Subtarget) { 1724 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1725 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1726 } 1727 1728 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1729 // of either is (currently) supported. This can get us into an infinite loop 1730 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1731 // as a ..., etc. 1732 // Until either (or both) of these can reliably lower any node, reporting that 1733 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1734 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1735 // which is not desirable. 1736 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1737 EVT VT, unsigned DefinedValues) const { 1738 return false; 1739 } 1740 1741 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1742 // Only splats are currently supported. 1743 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1744 return true; 1745 1746 return false; 1747 } 1748 1749 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1750 const RISCVSubtarget &Subtarget) { 1751 // RISCV FP-to-int conversions saturate to the destination register size, but 1752 // don't produce 0 for nan. We can use a conversion instruction and fix the 1753 // nan case with a compare and a select. 1754 SDValue Src = Op.getOperand(0); 1755 1756 EVT DstVT = Op.getValueType(); 1757 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1758 1759 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1760 unsigned Opc; 1761 if (SatVT == DstVT) 1762 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1763 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1764 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1765 else 1766 return SDValue(); 1767 // FIXME: Support other SatVTs by clamping before or after the conversion. 1768 1769 SDLoc DL(Op); 1770 SDValue FpToInt = DAG.getNode( 1771 Opc, DL, DstVT, Src, 1772 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1773 1774 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1775 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1776 } 1777 1778 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1779 // and back. Taking care to avoid converting values that are nan or already 1780 // correct. 1781 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1782 // have FRM dependencies modeled yet. 1783 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1784 MVT VT = Op.getSimpleValueType(); 1785 assert(VT.isVector() && "Unexpected type"); 1786 1787 SDLoc DL(Op); 1788 1789 // Freeze the source since we are increasing the number of uses. 1790 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1791 1792 // Truncate to integer and convert back to FP. 1793 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1794 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1795 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1796 1797 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1798 1799 if (Op.getOpcode() == ISD::FCEIL) { 1800 // If the truncated value is the greater than or equal to the original 1801 // value, we've computed the ceil. Otherwise, we went the wrong way and 1802 // need to increase by 1. 1803 // FIXME: This should use a masked operation. Handle here or in isel? 1804 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1805 DAG.getConstantFP(1.0, DL, VT)); 1806 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1807 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1808 } else if (Op.getOpcode() == ISD::FFLOOR) { 1809 // If the truncated value is the less than or equal to the original value, 1810 // we've computed the floor. Otherwise, we went the wrong way and need to 1811 // decrease by 1. 1812 // FIXME: This should use a masked operation. Handle here or in isel? 1813 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1814 DAG.getConstantFP(1.0, DL, VT)); 1815 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1816 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1817 } 1818 1819 // Restore the original sign so that -0.0 is preserved. 1820 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1821 1822 // Determine the largest integer that can be represented exactly. This and 1823 // values larger than it don't have any fractional bits so don't need to 1824 // be converted. 1825 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1826 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1827 APFloat MaxVal = APFloat(FltSem); 1828 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1829 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1830 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1831 1832 // If abs(Src) was larger than MaxVal or nan, keep it. 1833 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1834 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1835 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1836 } 1837 1838 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1839 const RISCVSubtarget &Subtarget) { 1840 MVT VT = Op.getSimpleValueType(); 1841 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1842 1843 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1844 1845 SDLoc DL(Op); 1846 SDValue Mask, VL; 1847 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1848 1849 unsigned Opc = 1850 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1851 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1852 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1853 } 1854 1855 struct VIDSequence { 1856 int64_t StepNumerator; 1857 unsigned StepDenominator; 1858 int64_t Addend; 1859 }; 1860 1861 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1862 // to the (non-zero) step S and start value X. This can be then lowered as the 1863 // RVV sequence (VID * S) + X, for example. 1864 // The step S is represented as an integer numerator divided by a positive 1865 // denominator. Note that the implementation currently only identifies 1866 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1867 // cannot detect 2/3, for example. 1868 // Note that this method will also match potentially unappealing index 1869 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1870 // determine whether this is worth generating code for. 1871 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1872 unsigned NumElts = Op.getNumOperands(); 1873 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1874 if (!Op.getValueType().isInteger()) 1875 return None; 1876 1877 Optional<unsigned> SeqStepDenom; 1878 Optional<int64_t> SeqStepNum, SeqAddend; 1879 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1880 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1881 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1882 // Assume undef elements match the sequence; we just have to be careful 1883 // when interpolating across them. 1884 if (Op.getOperand(Idx).isUndef()) 1885 continue; 1886 // The BUILD_VECTOR must be all constants. 1887 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1888 return None; 1889 1890 uint64_t Val = Op.getConstantOperandVal(Idx) & 1891 maskTrailingOnes<uint64_t>(EltSizeInBits); 1892 1893 if (PrevElt) { 1894 // Calculate the step since the last non-undef element, and ensure 1895 // it's consistent across the entire sequence. 1896 unsigned IdxDiff = Idx - PrevElt->second; 1897 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1898 1899 // A zero-value value difference means that we're somewhere in the middle 1900 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1901 // step change before evaluating the sequence. 1902 if (ValDiff != 0) { 1903 int64_t Remainder = ValDiff % IdxDiff; 1904 // Normalize the step if it's greater than 1. 1905 if (Remainder != ValDiff) { 1906 // The difference must cleanly divide the element span. 1907 if (Remainder != 0) 1908 return None; 1909 ValDiff /= IdxDiff; 1910 IdxDiff = 1; 1911 } 1912 1913 if (!SeqStepNum) 1914 SeqStepNum = ValDiff; 1915 else if (ValDiff != SeqStepNum) 1916 return None; 1917 1918 if (!SeqStepDenom) 1919 SeqStepDenom = IdxDiff; 1920 else if (IdxDiff != *SeqStepDenom) 1921 return None; 1922 } 1923 } 1924 1925 // Record and/or check any addend. 1926 if (SeqStepNum && SeqStepDenom) { 1927 uint64_t ExpectedVal = 1928 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1929 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1930 if (!SeqAddend) 1931 SeqAddend = Addend; 1932 else if (SeqAddend != Addend) 1933 return None; 1934 } 1935 1936 // Record this non-undef element for later. 1937 if (!PrevElt || PrevElt->first != Val) 1938 PrevElt = std::make_pair(Val, Idx); 1939 } 1940 // We need to have logged both a step and an addend for this to count as 1941 // a legal index sequence. 1942 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1943 return None; 1944 1945 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1946 } 1947 1948 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1949 const RISCVSubtarget &Subtarget) { 1950 MVT VT = Op.getSimpleValueType(); 1951 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1952 1953 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1954 1955 SDLoc DL(Op); 1956 SDValue Mask, VL; 1957 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1958 1959 MVT XLenVT = Subtarget.getXLenVT(); 1960 unsigned NumElts = Op.getNumOperands(); 1961 1962 if (VT.getVectorElementType() == MVT::i1) { 1963 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1964 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1965 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1966 } 1967 1968 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1969 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1970 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1971 } 1972 1973 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1974 // scalar integer chunks whose bit-width depends on the number of mask 1975 // bits and XLEN. 1976 // First, determine the most appropriate scalar integer type to use. This 1977 // is at most XLenVT, but may be shrunk to a smaller vector element type 1978 // according to the size of the final vector - use i8 chunks rather than 1979 // XLenVT if we're producing a v8i1. This results in more consistent 1980 // codegen across RV32 and RV64. 1981 unsigned NumViaIntegerBits = 1982 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1983 NumViaIntegerBits = std::min(NumViaIntegerBits, 1984 Subtarget.getMaxELENForFixedLengthVectors()); 1985 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1986 // If we have to use more than one INSERT_VECTOR_ELT then this 1987 // optimization is likely to increase code size; avoid peforming it in 1988 // such a case. We can use a load from a constant pool in this case. 1989 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1990 return SDValue(); 1991 // Now we can create our integer vector type. Note that it may be larger 1992 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1993 MVT IntegerViaVecVT = 1994 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1995 divideCeil(NumElts, NumViaIntegerBits)); 1996 1997 uint64_t Bits = 0; 1998 unsigned BitPos = 0, IntegerEltIdx = 0; 1999 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2000 2001 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2002 // Once we accumulate enough bits to fill our scalar type, insert into 2003 // our vector and clear our accumulated data. 2004 if (I != 0 && I % NumViaIntegerBits == 0) { 2005 if (NumViaIntegerBits <= 32) 2006 Bits = SignExtend64(Bits, 32); 2007 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2008 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2009 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2010 Bits = 0; 2011 BitPos = 0; 2012 IntegerEltIdx++; 2013 } 2014 SDValue V = Op.getOperand(I); 2015 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2016 Bits |= ((uint64_t)BitValue << BitPos); 2017 } 2018 2019 // Insert the (remaining) scalar value into position in our integer 2020 // vector type. 2021 if (NumViaIntegerBits <= 32) 2022 Bits = SignExtend64(Bits, 32); 2023 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2024 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2025 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2026 2027 if (NumElts < NumViaIntegerBits) { 2028 // If we're producing a smaller vector than our minimum legal integer 2029 // type, bitcast to the equivalent (known-legal) mask type, and extract 2030 // our final mask. 2031 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2032 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2033 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2034 DAG.getConstant(0, DL, XLenVT)); 2035 } else { 2036 // Else we must have produced an integer type with the same size as the 2037 // mask type; bitcast for the final result. 2038 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2039 Vec = DAG.getBitcast(VT, Vec); 2040 } 2041 2042 return Vec; 2043 } 2044 2045 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2046 // vector type, we have a legal equivalently-sized i8 type, so we can use 2047 // that. 2048 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2049 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2050 2051 SDValue WideVec; 2052 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2053 // For a splat, perform a scalar truncate before creating the wider 2054 // vector. 2055 assert(Splat.getValueType() == XLenVT && 2056 "Unexpected type for i1 splat value"); 2057 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2058 DAG.getConstant(1, DL, XLenVT)); 2059 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2060 } else { 2061 SmallVector<SDValue, 8> Ops(Op->op_values()); 2062 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2063 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2064 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2065 } 2066 2067 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2068 } 2069 2070 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2071 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2072 : RISCVISD::VMV_V_X_VL; 2073 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2074 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2075 } 2076 2077 // Try and match index sequences, which we can lower to the vid instruction 2078 // with optional modifications. An all-undef vector is matched by 2079 // getSplatValue, above. 2080 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2081 int64_t StepNumerator = SimpleVID->StepNumerator; 2082 unsigned StepDenominator = SimpleVID->StepDenominator; 2083 int64_t Addend = SimpleVID->Addend; 2084 2085 assert(StepNumerator != 0 && "Invalid step"); 2086 bool Negate = false; 2087 int64_t SplatStepVal = StepNumerator; 2088 unsigned StepOpcode = ISD::MUL; 2089 if (StepNumerator != 1) { 2090 if (isPowerOf2_64(std::abs(StepNumerator))) { 2091 Negate = StepNumerator < 0; 2092 StepOpcode = ISD::SHL; 2093 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2094 } 2095 } 2096 2097 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2098 // threshold since it's the immediate value many RVV instructions accept. 2099 // There is no vmul.vi instruction so ensure multiply constant can fit in 2100 // a single addi instruction. 2101 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2102 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2103 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2104 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2105 // Convert right out of the scalable type so we can use standard ISD 2106 // nodes for the rest of the computation. If we used scalable types with 2107 // these, we'd lose the fixed-length vector info and generate worse 2108 // vsetvli code. 2109 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2110 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2111 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2112 SDValue SplatStep = DAG.getSplatVector( 2113 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2114 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2115 } 2116 if (StepDenominator != 1) { 2117 SDValue SplatStep = DAG.getSplatVector( 2118 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2119 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2120 } 2121 if (Addend != 0 || Negate) { 2122 SDValue SplatAddend = 2123 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2124 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2125 } 2126 return VID; 2127 } 2128 } 2129 2130 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2131 // when re-interpreted as a vector with a larger element type. For example, 2132 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2133 // could be instead splat as 2134 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2135 // TODO: This optimization could also work on non-constant splats, but it 2136 // would require bit-manipulation instructions to construct the splat value. 2137 SmallVector<SDValue> Sequence; 2138 unsigned EltBitSize = VT.getScalarSizeInBits(); 2139 const auto *BV = cast<BuildVectorSDNode>(Op); 2140 if (VT.isInteger() && EltBitSize < 64 && 2141 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2142 BV->getRepeatedSequence(Sequence) && 2143 (Sequence.size() * EltBitSize) <= 64) { 2144 unsigned SeqLen = Sequence.size(); 2145 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2146 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2147 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2148 ViaIntVT == MVT::i64) && 2149 "Unexpected sequence type"); 2150 2151 unsigned EltIdx = 0; 2152 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2153 uint64_t SplatValue = 0; 2154 // Construct the amalgamated value which can be splatted as this larger 2155 // vector type. 2156 for (const auto &SeqV : Sequence) { 2157 if (!SeqV.isUndef()) 2158 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2159 << (EltIdx * EltBitSize)); 2160 EltIdx++; 2161 } 2162 2163 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2164 // achieve better constant materializion. 2165 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2166 SplatValue = SignExtend64(SplatValue, 32); 2167 2168 // Since we can't introduce illegal i64 types at this stage, we can only 2169 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2170 // way we can use RVV instructions to splat. 2171 assert((ViaIntVT.bitsLE(XLenVT) || 2172 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2173 "Unexpected bitcast sequence"); 2174 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2175 SDValue ViaVL = 2176 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2177 MVT ViaContainerVT = 2178 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2179 SDValue Splat = 2180 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2181 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2182 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2183 return DAG.getBitcast(VT, Splat); 2184 } 2185 } 2186 2187 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2188 // which constitute a large proportion of the elements. In such cases we can 2189 // splat a vector with the dominant element and make up the shortfall with 2190 // INSERT_VECTOR_ELTs. 2191 // Note that this includes vectors of 2 elements by association. The 2192 // upper-most element is the "dominant" one, allowing us to use a splat to 2193 // "insert" the upper element, and an insert of the lower element at position 2194 // 0, which improves codegen. 2195 SDValue DominantValue; 2196 unsigned MostCommonCount = 0; 2197 DenseMap<SDValue, unsigned> ValueCounts; 2198 unsigned NumUndefElts = 2199 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2200 2201 // Track the number of scalar loads we know we'd be inserting, estimated as 2202 // any non-zero floating-point constant. Other kinds of element are either 2203 // already in registers or are materialized on demand. The threshold at which 2204 // a vector load is more desirable than several scalar materializion and 2205 // vector-insertion instructions is not known. 2206 unsigned NumScalarLoads = 0; 2207 2208 for (SDValue V : Op->op_values()) { 2209 if (V.isUndef()) 2210 continue; 2211 2212 ValueCounts.insert(std::make_pair(V, 0)); 2213 unsigned &Count = ValueCounts[V]; 2214 2215 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2216 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2217 2218 // Is this value dominant? In case of a tie, prefer the highest element as 2219 // it's cheaper to insert near the beginning of a vector than it is at the 2220 // end. 2221 if (++Count >= MostCommonCount) { 2222 DominantValue = V; 2223 MostCommonCount = Count; 2224 } 2225 } 2226 2227 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2228 unsigned NumDefElts = NumElts - NumUndefElts; 2229 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2230 2231 // Don't perform this optimization when optimizing for size, since 2232 // materializing elements and inserting them tends to cause code bloat. 2233 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2234 ((MostCommonCount > DominantValueCountThreshold) || 2235 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2236 // Start by splatting the most common element. 2237 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2238 2239 DenseSet<SDValue> Processed{DominantValue}; 2240 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2241 for (const auto &OpIdx : enumerate(Op->ops())) { 2242 const SDValue &V = OpIdx.value(); 2243 if (V.isUndef() || !Processed.insert(V).second) 2244 continue; 2245 if (ValueCounts[V] == 1) { 2246 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2247 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2248 } else { 2249 // Blend in all instances of this value using a VSELECT, using a 2250 // mask where each bit signals whether that element is the one 2251 // we're after. 2252 SmallVector<SDValue> Ops; 2253 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2254 return DAG.getConstant(V == V1, DL, XLenVT); 2255 }); 2256 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2257 DAG.getBuildVector(SelMaskTy, DL, Ops), 2258 DAG.getSplatBuildVector(VT, DL, V), Vec); 2259 } 2260 } 2261 2262 return Vec; 2263 } 2264 2265 return SDValue(); 2266 } 2267 2268 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2269 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2270 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2271 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2272 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2273 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2274 // node in order to try and match RVV vector/scalar instructions. 2275 if ((LoC >> 31) == HiC) 2276 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2277 2278 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2279 // vmv.v.x whose EEW = 32 to lower it. 2280 auto *Const = dyn_cast<ConstantSDNode>(VL); 2281 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2282 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2283 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2284 // access the subtarget here now. 2285 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2286 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2287 } 2288 } 2289 2290 // Fall back to a stack store and stride x0 vector load. 2291 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2292 } 2293 2294 // Called by type legalization to handle splat of i64 on RV32. 2295 // FIXME: We can optimize this when the type has sign or zero bits in one 2296 // of the halves. 2297 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2298 SDValue VL, SelectionDAG &DAG) { 2299 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2300 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2301 DAG.getConstant(0, DL, MVT::i32)); 2302 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2303 DAG.getConstant(1, DL, MVT::i32)); 2304 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2305 } 2306 2307 // This function lowers a splat of a scalar operand Splat with the vector 2308 // length VL. It ensures the final sequence is type legal, which is useful when 2309 // lowering a splat after type legalization. 2310 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2311 SelectionDAG &DAG, 2312 const RISCVSubtarget &Subtarget) { 2313 if (VT.isFloatingPoint()) { 2314 // If VL is 1, we could use vfmv.s.f. 2315 if (isOneConstant(VL)) 2316 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2317 Scalar, VL); 2318 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2319 } 2320 2321 MVT XLenVT = Subtarget.getXLenVT(); 2322 2323 // Simplest case is that the operand needs to be promoted to XLenVT. 2324 if (Scalar.getValueType().bitsLE(XLenVT)) { 2325 // If the operand is a constant, sign extend to increase our chances 2326 // of being able to use a .vi instruction. ANY_EXTEND would become a 2327 // a zero extend and the simm5 check in isel would fail. 2328 // FIXME: Should we ignore the upper bits in isel instead? 2329 unsigned ExtOpc = 2330 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2331 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2332 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2333 // If VL is 1 and the scalar value won't benefit from immediate, we could 2334 // use vmv.s.x. 2335 if (isOneConstant(VL) && 2336 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2337 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2338 VL); 2339 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2340 } 2341 2342 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2343 "Unexpected scalar for splat lowering!"); 2344 2345 if (isOneConstant(VL) && isNullConstant(Scalar)) 2346 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2347 DAG.getConstant(0, DL, XLenVT), VL); 2348 2349 // Otherwise use the more complicated splatting algorithm. 2350 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2351 } 2352 2353 // Is the mask a slidedown that shifts in undefs. 2354 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2355 int Size = Mask.size(); 2356 2357 // Elements shifted in should be undef. 2358 auto CheckUndefs = [&](int Shift) { 2359 for (int i = Size - Shift; i != Size; ++i) 2360 if (Mask[i] >= 0) 2361 return false; 2362 return true; 2363 }; 2364 2365 // Elements should be shifted or undef. 2366 auto MatchShift = [&](int Shift) { 2367 for (int i = 0; i != Size - Shift; ++i) 2368 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2369 return false; 2370 return true; 2371 }; 2372 2373 // Try all possible shifts. 2374 for (int Shift = 1; Shift != Size; ++Shift) 2375 if (CheckUndefs(Shift) && MatchShift(Shift)) 2376 return Shift; 2377 2378 // No match. 2379 return -1; 2380 } 2381 2382 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2383 const RISCVSubtarget &Subtarget) { 2384 // We need to be able to widen elements to the next larger integer type. 2385 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2386 return false; 2387 2388 int Size = Mask.size(); 2389 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2390 2391 int Srcs[] = {-1, -1}; 2392 for (int i = 0; i != Size; ++i) { 2393 // Ignore undef elements. 2394 if (Mask[i] < 0) 2395 continue; 2396 2397 // Is this an even or odd element. 2398 int Pol = i % 2; 2399 2400 // Ensure we consistently use the same source for this element polarity. 2401 int Src = Mask[i] / Size; 2402 if (Srcs[Pol] < 0) 2403 Srcs[Pol] = Src; 2404 if (Srcs[Pol] != Src) 2405 return false; 2406 2407 // Make sure the element within the source is appropriate for this element 2408 // in the destination. 2409 int Elt = Mask[i] % Size; 2410 if (Elt != i / 2) 2411 return false; 2412 } 2413 2414 // We need to find a source for each polarity and they can't be the same. 2415 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2416 return false; 2417 2418 // Swap the sources if the second source was in the even polarity. 2419 SwapSources = Srcs[0] > Srcs[1]; 2420 2421 return true; 2422 } 2423 2424 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2425 const RISCVSubtarget &Subtarget) { 2426 SDValue V1 = Op.getOperand(0); 2427 SDValue V2 = Op.getOperand(1); 2428 SDLoc DL(Op); 2429 MVT XLenVT = Subtarget.getXLenVT(); 2430 MVT VT = Op.getSimpleValueType(); 2431 unsigned NumElts = VT.getVectorNumElements(); 2432 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2433 2434 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2435 2436 SDValue TrueMask, VL; 2437 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2438 2439 if (SVN->isSplat()) { 2440 const int Lane = SVN->getSplatIndex(); 2441 if (Lane >= 0) { 2442 MVT SVT = VT.getVectorElementType(); 2443 2444 // Turn splatted vector load into a strided load with an X0 stride. 2445 SDValue V = V1; 2446 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2447 // with undef. 2448 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2449 int Offset = Lane; 2450 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2451 int OpElements = 2452 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2453 V = V.getOperand(Offset / OpElements); 2454 Offset %= OpElements; 2455 } 2456 2457 // We need to ensure the load isn't atomic or volatile. 2458 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2459 auto *Ld = cast<LoadSDNode>(V); 2460 Offset *= SVT.getStoreSize(); 2461 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2462 TypeSize::Fixed(Offset), DL); 2463 2464 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2465 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2466 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2467 SDValue IntID = 2468 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2469 SDValue Ops[] = {Ld->getChain(), 2470 IntID, 2471 DAG.getUNDEF(ContainerVT), 2472 NewAddr, 2473 DAG.getRegister(RISCV::X0, XLenVT), 2474 VL}; 2475 SDValue NewLoad = DAG.getMemIntrinsicNode( 2476 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2477 DAG.getMachineFunction().getMachineMemOperand( 2478 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2479 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2480 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2481 } 2482 2483 // Otherwise use a scalar load and splat. This will give the best 2484 // opportunity to fold a splat into the operation. ISel can turn it into 2485 // the x0 strided load if we aren't able to fold away the select. 2486 if (SVT.isFloatingPoint()) 2487 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2488 Ld->getPointerInfo().getWithOffset(Offset), 2489 Ld->getOriginalAlign(), 2490 Ld->getMemOperand()->getFlags()); 2491 else 2492 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2493 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2494 Ld->getOriginalAlign(), 2495 Ld->getMemOperand()->getFlags()); 2496 DAG.makeEquivalentMemoryOrdering(Ld, V); 2497 2498 unsigned Opc = 2499 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2500 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2501 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2502 } 2503 2504 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2505 assert(Lane < (int)NumElts && "Unexpected lane!"); 2506 SDValue Gather = 2507 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2508 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2509 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2510 } 2511 } 2512 2513 ArrayRef<int> Mask = SVN->getMask(); 2514 2515 // Try to match as a slidedown. 2516 int SlideAmt = matchShuffleAsSlideDown(Mask); 2517 if (SlideAmt >= 0) { 2518 // TODO: Should we reduce the VL to account for the upper undef elements? 2519 // Requires additional vsetvlis, but might be faster to execute. 2520 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2521 SDValue SlideDown = 2522 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2523 DAG.getUNDEF(ContainerVT), V1, 2524 DAG.getConstant(SlideAmt, DL, XLenVT), 2525 TrueMask, VL); 2526 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2527 } 2528 2529 // Detect an interleave shuffle and lower to 2530 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2531 bool SwapSources; 2532 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2533 // Swap sources if needed. 2534 if (SwapSources) 2535 std::swap(V1, V2); 2536 2537 // Extract the lower half of the vectors. 2538 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2539 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2540 DAG.getConstant(0, DL, XLenVT)); 2541 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2542 DAG.getConstant(0, DL, XLenVT)); 2543 2544 // Double the element width and halve the number of elements in an int type. 2545 unsigned EltBits = VT.getScalarSizeInBits(); 2546 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2547 MVT WideIntVT = 2548 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2549 // Convert this to a scalable vector. We need to base this on the 2550 // destination size to ensure there's always a type with a smaller LMUL. 2551 MVT WideIntContainerVT = 2552 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2553 2554 // Convert sources to scalable vectors with the same element count as the 2555 // larger type. 2556 MVT HalfContainerVT = MVT::getVectorVT( 2557 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2558 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2559 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2560 2561 // Cast sources to integer. 2562 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2563 MVT IntHalfVT = 2564 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2565 V1 = DAG.getBitcast(IntHalfVT, V1); 2566 V2 = DAG.getBitcast(IntHalfVT, V2); 2567 2568 // Freeze V2 since we use it twice and we need to be sure that the add and 2569 // multiply see the same value. 2570 V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); 2571 2572 // Recreate TrueMask using the widened type's element count. 2573 MVT MaskVT = 2574 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2575 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2576 2577 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2578 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2579 V2, TrueMask, VL); 2580 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2581 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2582 DAG.getAllOnesConstant(DL, XLenVT)); 2583 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2584 V2, Multiplier, TrueMask, VL); 2585 // Add the new copies to our previous addition giving us 2^eltbits copies of 2586 // V2. This is equivalent to shifting V2 left by eltbits. This should 2587 // combine with the vwmulu.vv above to form vwmaccu.vv. 2588 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2589 TrueMask, VL); 2590 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2591 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2592 // vector VT. 2593 ContainerVT = 2594 MVT::getVectorVT(VT.getVectorElementType(), 2595 WideIntContainerVT.getVectorElementCount() * 2); 2596 Add = DAG.getBitcast(ContainerVT, Add); 2597 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2598 } 2599 2600 // Detect shuffles which can be re-expressed as vector selects; these are 2601 // shuffles in which each element in the destination is taken from an element 2602 // at the corresponding index in either source vectors. 2603 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2604 int MaskIndex = MaskIdx.value(); 2605 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2606 }); 2607 2608 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2609 2610 SmallVector<SDValue> MaskVals; 2611 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2612 // merged with a second vrgather. 2613 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2614 2615 // By default we preserve the original operand order, and use a mask to 2616 // select LHS as true and RHS as false. However, since RVV vector selects may 2617 // feature splats but only on the LHS, we may choose to invert our mask and 2618 // instead select between RHS and LHS. 2619 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2620 bool InvertMask = IsSelect == SwapOps; 2621 2622 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2623 // half. 2624 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2625 2626 // Now construct the mask that will be used by the vselect or blended 2627 // vrgather operation. For vrgathers, construct the appropriate indices into 2628 // each vector. 2629 for (int MaskIndex : Mask) { 2630 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2631 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2632 if (!IsSelect) { 2633 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2634 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2635 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2636 : DAG.getUNDEF(XLenVT)); 2637 GatherIndicesRHS.push_back( 2638 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2639 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2640 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2641 ++LHSIndexCounts[MaskIndex]; 2642 if (!IsLHSOrUndefIndex) 2643 ++RHSIndexCounts[MaskIndex - NumElts]; 2644 } 2645 } 2646 2647 if (SwapOps) { 2648 std::swap(V1, V2); 2649 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2650 } 2651 2652 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2653 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2654 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2655 2656 if (IsSelect) 2657 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2658 2659 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2660 // On such a large vector we're unable to use i8 as the index type. 2661 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2662 // may involve vector splitting if we're already at LMUL=8, or our 2663 // user-supplied maximum fixed-length LMUL. 2664 return SDValue(); 2665 } 2666 2667 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2668 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2669 MVT IndexVT = VT.changeTypeToInteger(); 2670 // Since we can't introduce illegal index types at this stage, use i16 and 2671 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2672 // than XLenVT. 2673 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2674 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2675 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2676 } 2677 2678 MVT IndexContainerVT = 2679 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2680 2681 SDValue Gather; 2682 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2683 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2684 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2685 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2686 } else { 2687 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2688 // If only one index is used, we can use a "splat" vrgather. 2689 // TODO: We can splat the most-common index and fix-up any stragglers, if 2690 // that's beneficial. 2691 if (LHSIndexCounts.size() == 1) { 2692 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2693 Gather = 2694 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2695 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2696 } else { 2697 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2698 LHSIndices = 2699 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2700 2701 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2702 TrueMask, VL); 2703 } 2704 } 2705 2706 // If a second vector operand is used by this shuffle, blend it in with an 2707 // additional vrgather. 2708 if (!V2.isUndef()) { 2709 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2710 // If only one index is used, we can use a "splat" vrgather. 2711 // TODO: We can splat the most-common index and fix-up any stragglers, if 2712 // that's beneficial. 2713 if (RHSIndexCounts.size() == 1) { 2714 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2715 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2716 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2717 } else { 2718 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2719 RHSIndices = 2720 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2721 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2722 VL); 2723 } 2724 2725 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2726 SelectMask = 2727 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2728 2729 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2730 Gather, VL); 2731 } 2732 2733 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2734 } 2735 2736 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2737 SDLoc DL, SelectionDAG &DAG, 2738 const RISCVSubtarget &Subtarget) { 2739 if (VT.isScalableVector()) 2740 return DAG.getFPExtendOrRound(Op, DL, VT); 2741 assert(VT.isFixedLengthVector() && 2742 "Unexpected value type for RVV FP extend/round lowering"); 2743 SDValue Mask, VL; 2744 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2745 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2746 ? RISCVISD::FP_EXTEND_VL 2747 : RISCVISD::FP_ROUND_VL; 2748 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2749 } 2750 2751 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2752 // the exponent. 2753 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2754 MVT VT = Op.getSimpleValueType(); 2755 unsigned EltSize = VT.getScalarSizeInBits(); 2756 SDValue Src = Op.getOperand(0); 2757 SDLoc DL(Op); 2758 2759 // We need a FP type that can represent the value. 2760 // TODO: Use f16 for i8 when possible? 2761 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2762 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2763 2764 // Legal types should have been checked in the RISCVTargetLowering 2765 // constructor. 2766 // TODO: Splitting may make sense in some cases. 2767 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2768 "Expected legal float type!"); 2769 2770 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2771 // The trailing zero count is equal to log2 of this single bit value. 2772 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2773 SDValue Neg = 2774 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2775 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2776 } 2777 2778 // We have a legal FP type, convert to it. 2779 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2780 // Bitcast to integer and shift the exponent to the LSB. 2781 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2782 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2783 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2784 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2785 DAG.getConstant(ShiftAmt, DL, IntVT)); 2786 // Truncate back to original type to allow vnsrl. 2787 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2788 // The exponent contains log2 of the value in biased form. 2789 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2790 2791 // For trailing zeros, we just need to subtract the bias. 2792 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2793 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2794 DAG.getConstant(ExponentBias, DL, VT)); 2795 2796 // For leading zeros, we need to remove the bias and convert from log2 to 2797 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2798 unsigned Adjust = ExponentBias + (EltSize - 1); 2799 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2800 } 2801 2802 // While RVV has alignment restrictions, we should always be able to load as a 2803 // legal equivalently-sized byte-typed vector instead. This method is 2804 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2805 // the load is already correctly-aligned, it returns SDValue(). 2806 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2807 SelectionDAG &DAG) const { 2808 auto *Load = cast<LoadSDNode>(Op); 2809 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2810 2811 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2812 Load->getMemoryVT(), 2813 *Load->getMemOperand())) 2814 return SDValue(); 2815 2816 SDLoc DL(Op); 2817 MVT VT = Op.getSimpleValueType(); 2818 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2819 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2820 "Unexpected unaligned RVV load type"); 2821 MVT NewVT = 2822 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2823 assert(NewVT.isValid() && 2824 "Expecting equally-sized RVV vector types to be legal"); 2825 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2826 Load->getPointerInfo(), Load->getOriginalAlign(), 2827 Load->getMemOperand()->getFlags()); 2828 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2829 } 2830 2831 // While RVV has alignment restrictions, we should always be able to store as a 2832 // legal equivalently-sized byte-typed vector instead. This method is 2833 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2834 // returns SDValue() if the store is already correctly aligned. 2835 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2836 SelectionDAG &DAG) const { 2837 auto *Store = cast<StoreSDNode>(Op); 2838 assert(Store && Store->getValue().getValueType().isVector() && 2839 "Expected vector store"); 2840 2841 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2842 Store->getMemoryVT(), 2843 *Store->getMemOperand())) 2844 return SDValue(); 2845 2846 SDLoc DL(Op); 2847 SDValue StoredVal = Store->getValue(); 2848 MVT VT = StoredVal.getSimpleValueType(); 2849 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2850 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2851 "Unexpected unaligned RVV store type"); 2852 MVT NewVT = 2853 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2854 assert(NewVT.isValid() && 2855 "Expecting equally-sized RVV vector types to be legal"); 2856 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2857 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2858 Store->getPointerInfo(), Store->getOriginalAlign(), 2859 Store->getMemOperand()->getFlags()); 2860 } 2861 2862 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2863 SelectionDAG &DAG) const { 2864 switch (Op.getOpcode()) { 2865 default: 2866 report_fatal_error("unimplemented operand"); 2867 case ISD::GlobalAddress: 2868 return lowerGlobalAddress(Op, DAG); 2869 case ISD::BlockAddress: 2870 return lowerBlockAddress(Op, DAG); 2871 case ISD::ConstantPool: 2872 return lowerConstantPool(Op, DAG); 2873 case ISD::JumpTable: 2874 return lowerJumpTable(Op, DAG); 2875 case ISD::GlobalTLSAddress: 2876 return lowerGlobalTLSAddress(Op, DAG); 2877 case ISD::SELECT: 2878 return lowerSELECT(Op, DAG); 2879 case ISD::BRCOND: 2880 return lowerBRCOND(Op, DAG); 2881 case ISD::VASTART: 2882 return lowerVASTART(Op, DAG); 2883 case ISD::FRAMEADDR: 2884 return lowerFRAMEADDR(Op, DAG); 2885 case ISD::RETURNADDR: 2886 return lowerRETURNADDR(Op, DAG); 2887 case ISD::SHL_PARTS: 2888 return lowerShiftLeftParts(Op, DAG); 2889 case ISD::SRA_PARTS: 2890 return lowerShiftRightParts(Op, DAG, true); 2891 case ISD::SRL_PARTS: 2892 return lowerShiftRightParts(Op, DAG, false); 2893 case ISD::BITCAST: { 2894 SDLoc DL(Op); 2895 EVT VT = Op.getValueType(); 2896 SDValue Op0 = Op.getOperand(0); 2897 EVT Op0VT = Op0.getValueType(); 2898 MVT XLenVT = Subtarget.getXLenVT(); 2899 if (VT.isFixedLengthVector()) { 2900 // We can handle fixed length vector bitcasts with a simple replacement 2901 // in isel. 2902 if (Op0VT.isFixedLengthVector()) 2903 return Op; 2904 // When bitcasting from scalar to fixed-length vector, insert the scalar 2905 // into a one-element vector of the result type, and perform a vector 2906 // bitcast. 2907 if (!Op0VT.isVector()) { 2908 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2909 if (!isTypeLegal(BVT)) 2910 return SDValue(); 2911 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2912 DAG.getUNDEF(BVT), Op0, 2913 DAG.getConstant(0, DL, XLenVT))); 2914 } 2915 return SDValue(); 2916 } 2917 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2918 // thus: bitcast the vector to a one-element vector type whose element type 2919 // is the same as the result type, and extract the first element. 2920 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2921 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2922 if (!isTypeLegal(BVT)) 2923 return SDValue(); 2924 SDValue BVec = DAG.getBitcast(BVT, Op0); 2925 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2926 DAG.getConstant(0, DL, XLenVT)); 2927 } 2928 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2929 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2930 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2931 return FPConv; 2932 } 2933 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2934 Subtarget.hasStdExtF()) { 2935 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2936 SDValue FPConv = 2937 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2938 return FPConv; 2939 } 2940 return SDValue(); 2941 } 2942 case ISD::INTRINSIC_WO_CHAIN: 2943 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2944 case ISD::INTRINSIC_W_CHAIN: 2945 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2946 case ISD::INTRINSIC_VOID: 2947 return LowerINTRINSIC_VOID(Op, DAG); 2948 case ISD::BSWAP: 2949 case ISD::BITREVERSE: { 2950 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2951 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2952 MVT VT = Op.getSimpleValueType(); 2953 SDLoc DL(Op); 2954 // Start with the maximum immediate value which is the bitwidth - 1. 2955 unsigned Imm = VT.getSizeInBits() - 1; 2956 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2957 if (Op.getOpcode() == ISD::BSWAP) 2958 Imm &= ~0x7U; 2959 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2960 DAG.getConstant(Imm, DL, VT)); 2961 } 2962 case ISD::FSHL: 2963 case ISD::FSHR: { 2964 MVT VT = Op.getSimpleValueType(); 2965 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2966 SDLoc DL(Op); 2967 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2968 // use log(XLen) bits. Mask the shift amount accordingly to prevent 2969 // accidentally setting the extra bit. 2970 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2971 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2972 DAG.getConstant(ShAmtWidth, DL, VT)); 2973 // fshl and fshr concatenate their operands in the same order. fsr and fsl 2974 // instruction use different orders. fshl will return its first operand for 2975 // shift of zero, fshr will return its second operand. fsl and fsr both 2976 // return rs1 so the ISD nodes need to have different operand orders. 2977 // Shift amount is in rs2. 2978 SDValue Op0 = Op.getOperand(0); 2979 SDValue Op1 = Op.getOperand(1); 2980 unsigned Opc = RISCVISD::FSL; 2981 if (Op.getOpcode() == ISD::FSHR) { 2982 std::swap(Op0, Op1); 2983 Opc = RISCVISD::FSR; 2984 } 2985 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 2986 } 2987 case ISD::TRUNCATE: { 2988 SDLoc DL(Op); 2989 MVT VT = Op.getSimpleValueType(); 2990 // Only custom-lower vector truncates 2991 if (!VT.isVector()) 2992 return Op; 2993 2994 // Truncates to mask types are handled differently 2995 if (VT.getVectorElementType() == MVT::i1) 2996 return lowerVectorMaskTrunc(Op, DAG); 2997 2998 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2999 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3000 // truncate by one power of two at a time. 3001 MVT DstEltVT = VT.getVectorElementType(); 3002 3003 SDValue Src = Op.getOperand(0); 3004 MVT SrcVT = Src.getSimpleValueType(); 3005 MVT SrcEltVT = SrcVT.getVectorElementType(); 3006 3007 assert(DstEltVT.bitsLT(SrcEltVT) && 3008 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3009 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3010 "Unexpected vector truncate lowering"); 3011 3012 MVT ContainerVT = SrcVT; 3013 if (SrcVT.isFixedLengthVector()) { 3014 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3015 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3016 } 3017 3018 SDValue Result = Src; 3019 SDValue Mask, VL; 3020 std::tie(Mask, VL) = 3021 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3022 LLVMContext &Context = *DAG.getContext(); 3023 const ElementCount Count = ContainerVT.getVectorElementCount(); 3024 do { 3025 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3026 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3027 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3028 Mask, VL); 3029 } while (SrcEltVT != DstEltVT); 3030 3031 if (SrcVT.isFixedLengthVector()) 3032 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3033 3034 return Result; 3035 } 3036 case ISD::ANY_EXTEND: 3037 case ISD::ZERO_EXTEND: 3038 if (Op.getOperand(0).getValueType().isVector() && 3039 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3040 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3041 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3042 case ISD::SIGN_EXTEND: 3043 if (Op.getOperand(0).getValueType().isVector() && 3044 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3045 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3046 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3047 case ISD::SPLAT_VECTOR_PARTS: 3048 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3049 case ISD::INSERT_VECTOR_ELT: 3050 return lowerINSERT_VECTOR_ELT(Op, DAG); 3051 case ISD::EXTRACT_VECTOR_ELT: 3052 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3053 case ISD::VSCALE: { 3054 MVT VT = Op.getSimpleValueType(); 3055 SDLoc DL(Op); 3056 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3057 // We define our scalable vector types for lmul=1 to use a 64 bit known 3058 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3059 // vscale as VLENB / 8. 3060 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3061 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3062 // We assume VLENB is a multiple of 8. We manually choose the best shift 3063 // here because SimplifyDemandedBits isn't always able to simplify it. 3064 uint64_t Val = Op.getConstantOperandVal(0); 3065 if (isPowerOf2_64(Val)) { 3066 uint64_t Log2 = Log2_64(Val); 3067 if (Log2 < 3) 3068 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3069 DAG.getConstant(3 - Log2, DL, VT)); 3070 if (Log2 > 3) 3071 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3072 DAG.getConstant(Log2 - 3, DL, VT)); 3073 return VLENB; 3074 } 3075 // If the multiplier is a multiple of 8, scale it down to avoid needing 3076 // to shift the VLENB value. 3077 if ((Val % 8) == 0) 3078 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3079 DAG.getConstant(Val / 8, DL, VT)); 3080 } 3081 3082 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3083 DAG.getConstant(3, DL, VT)); 3084 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3085 } 3086 case ISD::FPOWI: { 3087 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3088 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3089 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3090 Op.getOperand(1).getValueType() == MVT::i32) { 3091 SDLoc DL(Op); 3092 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3093 SDValue Powi = 3094 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3095 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3096 DAG.getIntPtrConstant(0, DL)); 3097 } 3098 return SDValue(); 3099 } 3100 case ISD::FP_EXTEND: { 3101 // RVV can only do fp_extend to types double the size as the source. We 3102 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3103 // via f32. 3104 SDLoc DL(Op); 3105 MVT VT = Op.getSimpleValueType(); 3106 SDValue Src = Op.getOperand(0); 3107 MVT SrcVT = Src.getSimpleValueType(); 3108 3109 // Prepare any fixed-length vector operands. 3110 MVT ContainerVT = VT; 3111 if (SrcVT.isFixedLengthVector()) { 3112 ContainerVT = getContainerForFixedLengthVector(VT); 3113 MVT SrcContainerVT = 3114 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3115 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3116 } 3117 3118 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3119 SrcVT.getVectorElementType() != MVT::f16) { 3120 // For scalable vectors, we only need to close the gap between 3121 // vXf16->vXf64. 3122 if (!VT.isFixedLengthVector()) 3123 return Op; 3124 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3125 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3126 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3127 } 3128 3129 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3130 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3131 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3132 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3133 3134 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3135 DL, DAG, Subtarget); 3136 if (VT.isFixedLengthVector()) 3137 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3138 return Extend; 3139 } 3140 case ISD::FP_ROUND: { 3141 // RVV can only do fp_round to types half the size as the source. We 3142 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3143 // conversion instruction. 3144 SDLoc DL(Op); 3145 MVT VT = Op.getSimpleValueType(); 3146 SDValue Src = Op.getOperand(0); 3147 MVT SrcVT = Src.getSimpleValueType(); 3148 3149 // Prepare any fixed-length vector operands. 3150 MVT ContainerVT = VT; 3151 if (VT.isFixedLengthVector()) { 3152 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3153 ContainerVT = 3154 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3155 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3156 } 3157 3158 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3159 SrcVT.getVectorElementType() != MVT::f64) { 3160 // For scalable vectors, we only need to close the gap between 3161 // vXf64<->vXf16. 3162 if (!VT.isFixedLengthVector()) 3163 return Op; 3164 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3165 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3166 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3167 } 3168 3169 SDValue Mask, VL; 3170 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3171 3172 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3173 SDValue IntermediateRound = 3174 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3175 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3176 DL, DAG, Subtarget); 3177 3178 if (VT.isFixedLengthVector()) 3179 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3180 return Round; 3181 } 3182 case ISD::FP_TO_SINT: 3183 case ISD::FP_TO_UINT: 3184 case ISD::SINT_TO_FP: 3185 case ISD::UINT_TO_FP: { 3186 // RVV can only do fp<->int conversions to types half/double the size as 3187 // the source. We custom-lower any conversions that do two hops into 3188 // sequences. 3189 MVT VT = Op.getSimpleValueType(); 3190 if (!VT.isVector()) 3191 return Op; 3192 SDLoc DL(Op); 3193 SDValue Src = Op.getOperand(0); 3194 MVT EltVT = VT.getVectorElementType(); 3195 MVT SrcVT = Src.getSimpleValueType(); 3196 MVT SrcEltVT = SrcVT.getVectorElementType(); 3197 unsigned EltSize = EltVT.getSizeInBits(); 3198 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3199 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3200 "Unexpected vector element types"); 3201 3202 bool IsInt2FP = SrcEltVT.isInteger(); 3203 // Widening conversions 3204 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3205 if (IsInt2FP) { 3206 // Do a regular integer sign/zero extension then convert to float. 3207 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3208 VT.getVectorElementCount()); 3209 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3210 ? ISD::ZERO_EXTEND 3211 : ISD::SIGN_EXTEND; 3212 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3213 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3214 } 3215 // FP2Int 3216 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3217 // Do one doubling fp_extend then complete the operation by converting 3218 // to int. 3219 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3220 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3221 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3222 } 3223 3224 // Narrowing conversions 3225 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3226 if (IsInt2FP) { 3227 // One narrowing int_to_fp, then an fp_round. 3228 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3229 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3230 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3231 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3232 } 3233 // FP2Int 3234 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3235 // representable by the integer, the result is poison. 3236 MVT IVecVT = 3237 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3238 VT.getVectorElementCount()); 3239 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3240 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3241 } 3242 3243 // Scalable vectors can exit here. Patterns will handle equally-sized 3244 // conversions halving/doubling ones. 3245 if (!VT.isFixedLengthVector()) 3246 return Op; 3247 3248 // For fixed-length vectors we lower to a custom "VL" node. 3249 unsigned RVVOpc = 0; 3250 switch (Op.getOpcode()) { 3251 default: 3252 llvm_unreachable("Impossible opcode"); 3253 case ISD::FP_TO_SINT: 3254 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3255 break; 3256 case ISD::FP_TO_UINT: 3257 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3258 break; 3259 case ISD::SINT_TO_FP: 3260 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3261 break; 3262 case ISD::UINT_TO_FP: 3263 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3264 break; 3265 } 3266 3267 MVT ContainerVT, SrcContainerVT; 3268 // Derive the reference container type from the larger vector type. 3269 if (SrcEltSize > EltSize) { 3270 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3271 ContainerVT = 3272 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3273 } else { 3274 ContainerVT = getContainerForFixedLengthVector(VT); 3275 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3276 } 3277 3278 SDValue Mask, VL; 3279 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3280 3281 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3282 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3283 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3284 } 3285 case ISD::FP_TO_SINT_SAT: 3286 case ISD::FP_TO_UINT_SAT: 3287 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3288 case ISD::FTRUNC: 3289 case ISD::FCEIL: 3290 case ISD::FFLOOR: 3291 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3292 case ISD::VECREDUCE_ADD: 3293 case ISD::VECREDUCE_UMAX: 3294 case ISD::VECREDUCE_SMAX: 3295 case ISD::VECREDUCE_UMIN: 3296 case ISD::VECREDUCE_SMIN: 3297 return lowerVECREDUCE(Op, DAG); 3298 case ISD::VECREDUCE_AND: 3299 case ISD::VECREDUCE_OR: 3300 case ISD::VECREDUCE_XOR: 3301 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3302 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3303 return lowerVECREDUCE(Op, DAG); 3304 case ISD::VECREDUCE_FADD: 3305 case ISD::VECREDUCE_SEQ_FADD: 3306 case ISD::VECREDUCE_FMIN: 3307 case ISD::VECREDUCE_FMAX: 3308 return lowerFPVECREDUCE(Op, DAG); 3309 case ISD::VP_REDUCE_ADD: 3310 case ISD::VP_REDUCE_UMAX: 3311 case ISD::VP_REDUCE_SMAX: 3312 case ISD::VP_REDUCE_UMIN: 3313 case ISD::VP_REDUCE_SMIN: 3314 case ISD::VP_REDUCE_FADD: 3315 case ISD::VP_REDUCE_SEQ_FADD: 3316 case ISD::VP_REDUCE_FMIN: 3317 case ISD::VP_REDUCE_FMAX: 3318 return lowerVPREDUCE(Op, DAG); 3319 case ISD::VP_REDUCE_AND: 3320 case ISD::VP_REDUCE_OR: 3321 case ISD::VP_REDUCE_XOR: 3322 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3323 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3324 return lowerVPREDUCE(Op, DAG); 3325 case ISD::INSERT_SUBVECTOR: 3326 return lowerINSERT_SUBVECTOR(Op, DAG); 3327 case ISD::EXTRACT_SUBVECTOR: 3328 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3329 case ISD::STEP_VECTOR: 3330 return lowerSTEP_VECTOR(Op, DAG); 3331 case ISD::VECTOR_REVERSE: 3332 return lowerVECTOR_REVERSE(Op, DAG); 3333 case ISD::BUILD_VECTOR: 3334 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3335 case ISD::SPLAT_VECTOR: 3336 if (Op.getValueType().getVectorElementType() == MVT::i1) 3337 return lowerVectorMaskSplat(Op, DAG); 3338 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3339 case ISD::VECTOR_SHUFFLE: 3340 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3341 case ISD::CONCAT_VECTORS: { 3342 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3343 // better than going through the stack, as the default expansion does. 3344 SDLoc DL(Op); 3345 MVT VT = Op.getSimpleValueType(); 3346 unsigned NumOpElts = 3347 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3348 SDValue Vec = DAG.getUNDEF(VT); 3349 for (const auto &OpIdx : enumerate(Op->ops())) { 3350 SDValue SubVec = OpIdx.value(); 3351 // Don't insert undef subvectors. 3352 if (SubVec.isUndef()) 3353 continue; 3354 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3355 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3356 } 3357 return Vec; 3358 } 3359 case ISD::LOAD: 3360 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3361 return V; 3362 if (Op.getValueType().isFixedLengthVector()) 3363 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3364 return Op; 3365 case ISD::STORE: 3366 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3367 return V; 3368 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3369 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3370 return Op; 3371 case ISD::MLOAD: 3372 case ISD::VP_LOAD: 3373 return lowerMaskedLoad(Op, DAG); 3374 case ISD::MSTORE: 3375 case ISD::VP_STORE: 3376 return lowerMaskedStore(Op, DAG); 3377 case ISD::SETCC: 3378 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3379 case ISD::ADD: 3380 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3381 case ISD::SUB: 3382 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3383 case ISD::MUL: 3384 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3385 case ISD::MULHS: 3386 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3387 case ISD::MULHU: 3388 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3389 case ISD::AND: 3390 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3391 RISCVISD::AND_VL); 3392 case ISD::OR: 3393 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3394 RISCVISD::OR_VL); 3395 case ISD::XOR: 3396 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3397 RISCVISD::XOR_VL); 3398 case ISD::SDIV: 3399 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3400 case ISD::SREM: 3401 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3402 case ISD::UDIV: 3403 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3404 case ISD::UREM: 3405 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3406 case ISD::SHL: 3407 case ISD::SRA: 3408 case ISD::SRL: 3409 if (Op.getSimpleValueType().isFixedLengthVector()) 3410 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3411 // This can be called for an i32 shift amount that needs to be promoted. 3412 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3413 "Unexpected custom legalisation"); 3414 return SDValue(); 3415 case ISD::SADDSAT: 3416 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3417 case ISD::UADDSAT: 3418 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3419 case ISD::SSUBSAT: 3420 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3421 case ISD::USUBSAT: 3422 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3423 case ISD::FADD: 3424 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3425 case ISD::FSUB: 3426 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3427 case ISD::FMUL: 3428 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3429 case ISD::FDIV: 3430 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3431 case ISD::FNEG: 3432 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3433 case ISD::FABS: 3434 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3435 case ISD::FSQRT: 3436 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3437 case ISD::FMA: 3438 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3439 case ISD::SMIN: 3440 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3441 case ISD::SMAX: 3442 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3443 case ISD::UMIN: 3444 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3445 case ISD::UMAX: 3446 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3447 case ISD::FMINNUM: 3448 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3449 case ISD::FMAXNUM: 3450 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3451 case ISD::ABS: 3452 return lowerABS(Op, DAG); 3453 case ISD::CTLZ_ZERO_UNDEF: 3454 case ISD::CTTZ_ZERO_UNDEF: 3455 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3456 case ISD::VSELECT: 3457 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3458 case ISD::FCOPYSIGN: 3459 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3460 case ISD::MGATHER: 3461 case ISD::VP_GATHER: 3462 return lowerMaskedGather(Op, DAG); 3463 case ISD::MSCATTER: 3464 case ISD::VP_SCATTER: 3465 return lowerMaskedScatter(Op, DAG); 3466 case ISD::FLT_ROUNDS_: 3467 return lowerGET_ROUNDING(Op, DAG); 3468 case ISD::SET_ROUNDING: 3469 return lowerSET_ROUNDING(Op, DAG); 3470 case ISD::VP_SELECT: 3471 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3472 case ISD::VP_MERGE: 3473 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3474 case ISD::VP_ADD: 3475 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3476 case ISD::VP_SUB: 3477 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3478 case ISD::VP_MUL: 3479 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3480 case ISD::VP_SDIV: 3481 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3482 case ISD::VP_UDIV: 3483 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3484 case ISD::VP_SREM: 3485 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3486 case ISD::VP_UREM: 3487 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3488 case ISD::VP_AND: 3489 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3490 case ISD::VP_OR: 3491 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3492 case ISD::VP_XOR: 3493 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3494 case ISD::VP_ASHR: 3495 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3496 case ISD::VP_LSHR: 3497 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3498 case ISD::VP_SHL: 3499 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3500 case ISD::VP_FADD: 3501 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3502 case ISD::VP_FSUB: 3503 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3504 case ISD::VP_FMUL: 3505 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3506 case ISD::VP_FDIV: 3507 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3508 } 3509 } 3510 3511 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3512 SelectionDAG &DAG, unsigned Flags) { 3513 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3514 } 3515 3516 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3517 SelectionDAG &DAG, unsigned Flags) { 3518 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3519 Flags); 3520 } 3521 3522 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3523 SelectionDAG &DAG, unsigned Flags) { 3524 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3525 N->getOffset(), Flags); 3526 } 3527 3528 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3529 SelectionDAG &DAG, unsigned Flags) { 3530 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3531 } 3532 3533 template <class NodeTy> 3534 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3535 bool IsLocal) const { 3536 SDLoc DL(N); 3537 EVT Ty = getPointerTy(DAG.getDataLayout()); 3538 3539 if (isPositionIndependent()) { 3540 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3541 if (IsLocal) 3542 // Use PC-relative addressing to access the symbol. This generates the 3543 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3544 // %pcrel_lo(auipc)). 3545 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3546 3547 // Use PC-relative addressing to access the GOT for this symbol, then load 3548 // the address from the GOT. This generates the pattern (PseudoLA sym), 3549 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3550 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3551 } 3552 3553 switch (getTargetMachine().getCodeModel()) { 3554 default: 3555 report_fatal_error("Unsupported code model for lowering"); 3556 case CodeModel::Small: { 3557 // Generate a sequence for accessing addresses within the first 2 GiB of 3558 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3559 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3560 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3561 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3562 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3563 } 3564 case CodeModel::Medium: { 3565 // Generate a sequence for accessing addresses within any 2GiB range within 3566 // the address space. This generates the pattern (PseudoLLA sym), which 3567 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3568 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3569 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3570 } 3571 } 3572 } 3573 3574 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3575 SelectionDAG &DAG) const { 3576 SDLoc DL(Op); 3577 EVT Ty = Op.getValueType(); 3578 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3579 int64_t Offset = N->getOffset(); 3580 MVT XLenVT = Subtarget.getXLenVT(); 3581 3582 const GlobalValue *GV = N->getGlobal(); 3583 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3584 SDValue Addr = getAddr(N, DAG, IsLocal); 3585 3586 // In order to maximise the opportunity for common subexpression elimination, 3587 // emit a separate ADD node for the global address offset instead of folding 3588 // it in the global address node. Later peephole optimisations may choose to 3589 // fold it back in when profitable. 3590 if (Offset != 0) 3591 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3592 DAG.getConstant(Offset, DL, XLenVT)); 3593 return Addr; 3594 } 3595 3596 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3597 SelectionDAG &DAG) const { 3598 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3599 3600 return getAddr(N, DAG); 3601 } 3602 3603 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3604 SelectionDAG &DAG) const { 3605 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3606 3607 return getAddr(N, DAG); 3608 } 3609 3610 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3611 SelectionDAG &DAG) const { 3612 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3613 3614 return getAddr(N, DAG); 3615 } 3616 3617 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3618 SelectionDAG &DAG, 3619 bool UseGOT) const { 3620 SDLoc DL(N); 3621 EVT Ty = getPointerTy(DAG.getDataLayout()); 3622 const GlobalValue *GV = N->getGlobal(); 3623 MVT XLenVT = Subtarget.getXLenVT(); 3624 3625 if (UseGOT) { 3626 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3627 // load the address from the GOT and add the thread pointer. This generates 3628 // the pattern (PseudoLA_TLS_IE sym), which expands to 3629 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3630 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3631 SDValue Load = 3632 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3633 3634 // Add the thread pointer. 3635 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3636 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3637 } 3638 3639 // Generate a sequence for accessing the address relative to the thread 3640 // pointer, with the appropriate adjustment for the thread pointer offset. 3641 // This generates the pattern 3642 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3643 SDValue AddrHi = 3644 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3645 SDValue AddrAdd = 3646 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3647 SDValue AddrLo = 3648 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3649 3650 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3651 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3652 SDValue MNAdd = SDValue( 3653 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3654 0); 3655 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3656 } 3657 3658 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3659 SelectionDAG &DAG) const { 3660 SDLoc DL(N); 3661 EVT Ty = getPointerTy(DAG.getDataLayout()); 3662 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3663 const GlobalValue *GV = N->getGlobal(); 3664 3665 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3666 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3667 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3668 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3669 SDValue Load = 3670 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3671 3672 // Prepare argument list to generate call. 3673 ArgListTy Args; 3674 ArgListEntry Entry; 3675 Entry.Node = Load; 3676 Entry.Ty = CallTy; 3677 Args.push_back(Entry); 3678 3679 // Setup call to __tls_get_addr. 3680 TargetLowering::CallLoweringInfo CLI(DAG); 3681 CLI.setDebugLoc(DL) 3682 .setChain(DAG.getEntryNode()) 3683 .setLibCallee(CallingConv::C, CallTy, 3684 DAG.getExternalSymbol("__tls_get_addr", Ty), 3685 std::move(Args)); 3686 3687 return LowerCallTo(CLI).first; 3688 } 3689 3690 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3691 SelectionDAG &DAG) const { 3692 SDLoc DL(Op); 3693 EVT Ty = Op.getValueType(); 3694 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3695 int64_t Offset = N->getOffset(); 3696 MVT XLenVT = Subtarget.getXLenVT(); 3697 3698 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3699 3700 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3701 CallingConv::GHC) 3702 report_fatal_error("In GHC calling convention TLS is not supported"); 3703 3704 SDValue Addr; 3705 switch (Model) { 3706 case TLSModel::LocalExec: 3707 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3708 break; 3709 case TLSModel::InitialExec: 3710 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3711 break; 3712 case TLSModel::LocalDynamic: 3713 case TLSModel::GeneralDynamic: 3714 Addr = getDynamicTLSAddr(N, DAG); 3715 break; 3716 } 3717 3718 // In order to maximise the opportunity for common subexpression elimination, 3719 // emit a separate ADD node for the global address offset instead of folding 3720 // it in the global address node. Later peephole optimisations may choose to 3721 // fold it back in when profitable. 3722 if (Offset != 0) 3723 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3724 DAG.getConstant(Offset, DL, XLenVT)); 3725 return Addr; 3726 } 3727 3728 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3729 SDValue CondV = Op.getOperand(0); 3730 SDValue TrueV = Op.getOperand(1); 3731 SDValue FalseV = Op.getOperand(2); 3732 SDLoc DL(Op); 3733 MVT VT = Op.getSimpleValueType(); 3734 MVT XLenVT = Subtarget.getXLenVT(); 3735 3736 // Lower vector SELECTs to VSELECTs by splatting the condition. 3737 if (VT.isVector()) { 3738 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3739 SDValue CondSplat = VT.isScalableVector() 3740 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3741 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3742 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3743 } 3744 3745 // If the result type is XLenVT and CondV is the output of a SETCC node 3746 // which also operated on XLenVT inputs, then merge the SETCC node into the 3747 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3748 // compare+branch instructions. i.e.: 3749 // (select (setcc lhs, rhs, cc), truev, falsev) 3750 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3751 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3752 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3753 SDValue LHS = CondV.getOperand(0); 3754 SDValue RHS = CondV.getOperand(1); 3755 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3756 ISD::CondCode CCVal = CC->get(); 3757 3758 // Special case for a select of 2 constants that have a diffence of 1. 3759 // Normally this is done by DAGCombine, but if the select is introduced by 3760 // type legalization or op legalization, we miss it. Restricting to SETLT 3761 // case for now because that is what signed saturating add/sub need. 3762 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3763 // but we would probably want to swap the true/false values if the condition 3764 // is SETGE/SETLE to avoid an XORI. 3765 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3766 CCVal == ISD::SETLT) { 3767 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3768 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3769 if (TrueVal - 1 == FalseVal) 3770 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3771 if (TrueVal + 1 == FalseVal) 3772 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3773 } 3774 3775 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3776 3777 SDValue TargetCC = DAG.getCondCode(CCVal); 3778 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3779 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3780 } 3781 3782 // Otherwise: 3783 // (select condv, truev, falsev) 3784 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3785 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3786 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3787 3788 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3789 3790 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3791 } 3792 3793 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3794 SDValue CondV = Op.getOperand(1); 3795 SDLoc DL(Op); 3796 MVT XLenVT = Subtarget.getXLenVT(); 3797 3798 if (CondV.getOpcode() == ISD::SETCC && 3799 CondV.getOperand(0).getValueType() == XLenVT) { 3800 SDValue LHS = CondV.getOperand(0); 3801 SDValue RHS = CondV.getOperand(1); 3802 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3803 3804 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3805 3806 SDValue TargetCC = DAG.getCondCode(CCVal); 3807 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3808 LHS, RHS, TargetCC, Op.getOperand(2)); 3809 } 3810 3811 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3812 CondV, DAG.getConstant(0, DL, XLenVT), 3813 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3814 } 3815 3816 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3817 MachineFunction &MF = DAG.getMachineFunction(); 3818 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3819 3820 SDLoc DL(Op); 3821 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3822 getPointerTy(MF.getDataLayout())); 3823 3824 // vastart just stores the address of the VarArgsFrameIndex slot into the 3825 // memory location argument. 3826 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3827 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3828 MachinePointerInfo(SV)); 3829 } 3830 3831 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3832 SelectionDAG &DAG) const { 3833 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3834 MachineFunction &MF = DAG.getMachineFunction(); 3835 MachineFrameInfo &MFI = MF.getFrameInfo(); 3836 MFI.setFrameAddressIsTaken(true); 3837 Register FrameReg = RI.getFrameRegister(MF); 3838 int XLenInBytes = Subtarget.getXLen() / 8; 3839 3840 EVT VT = Op.getValueType(); 3841 SDLoc DL(Op); 3842 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3843 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3844 while (Depth--) { 3845 int Offset = -(XLenInBytes * 2); 3846 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3847 DAG.getIntPtrConstant(Offset, DL)); 3848 FrameAddr = 3849 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3850 } 3851 return FrameAddr; 3852 } 3853 3854 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3857 MachineFunction &MF = DAG.getMachineFunction(); 3858 MachineFrameInfo &MFI = MF.getFrameInfo(); 3859 MFI.setReturnAddressIsTaken(true); 3860 MVT XLenVT = Subtarget.getXLenVT(); 3861 int XLenInBytes = Subtarget.getXLen() / 8; 3862 3863 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3864 return SDValue(); 3865 3866 EVT VT = Op.getValueType(); 3867 SDLoc DL(Op); 3868 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3869 if (Depth) { 3870 int Off = -XLenInBytes; 3871 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3872 SDValue Offset = DAG.getConstant(Off, DL, VT); 3873 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3874 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3875 MachinePointerInfo()); 3876 } 3877 3878 // Return the value of the return address register, marking it an implicit 3879 // live-in. 3880 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3881 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3882 } 3883 3884 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3885 SelectionDAG &DAG) const { 3886 SDLoc DL(Op); 3887 SDValue Lo = Op.getOperand(0); 3888 SDValue Hi = Op.getOperand(1); 3889 SDValue Shamt = Op.getOperand(2); 3890 EVT VT = Lo.getValueType(); 3891 3892 // if Shamt-XLEN < 0: // Shamt < XLEN 3893 // Lo = Lo << Shamt 3894 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3895 // else: 3896 // Lo = 0 3897 // Hi = Lo << (Shamt-XLEN) 3898 3899 SDValue Zero = DAG.getConstant(0, DL, VT); 3900 SDValue One = DAG.getConstant(1, DL, VT); 3901 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3902 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3903 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3904 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3905 3906 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3907 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3908 SDValue ShiftRightLo = 3909 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3910 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3911 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3912 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3913 3914 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3915 3916 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3917 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3918 3919 SDValue Parts[2] = {Lo, Hi}; 3920 return DAG.getMergeValues(Parts, DL); 3921 } 3922 3923 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3924 bool IsSRA) const { 3925 SDLoc DL(Op); 3926 SDValue Lo = Op.getOperand(0); 3927 SDValue Hi = Op.getOperand(1); 3928 SDValue Shamt = Op.getOperand(2); 3929 EVT VT = Lo.getValueType(); 3930 3931 // SRA expansion: 3932 // if Shamt-XLEN < 0: // Shamt < XLEN 3933 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3934 // Hi = Hi >>s Shamt 3935 // else: 3936 // Lo = Hi >>s (Shamt-XLEN); 3937 // Hi = Hi >>s (XLEN-1) 3938 // 3939 // SRL expansion: 3940 // if Shamt-XLEN < 0: // Shamt < XLEN 3941 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3942 // Hi = Hi >>u Shamt 3943 // else: 3944 // Lo = Hi >>u (Shamt-XLEN); 3945 // Hi = 0; 3946 3947 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3948 3949 SDValue Zero = DAG.getConstant(0, DL, VT); 3950 SDValue One = DAG.getConstant(1, DL, VT); 3951 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3952 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3953 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3954 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3955 3956 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3957 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3958 SDValue ShiftLeftHi = 3959 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3960 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3961 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3962 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3963 SDValue HiFalse = 3964 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3965 3966 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3967 3968 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3969 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3970 3971 SDValue Parts[2] = {Lo, Hi}; 3972 return DAG.getMergeValues(Parts, DL); 3973 } 3974 3975 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3976 // legal equivalently-sized i8 type, so we can use that as a go-between. 3977 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3978 SelectionDAG &DAG) const { 3979 SDLoc DL(Op); 3980 MVT VT = Op.getSimpleValueType(); 3981 SDValue SplatVal = Op.getOperand(0); 3982 // All-zeros or all-ones splats are handled specially. 3983 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3984 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3985 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3986 } 3987 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3988 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3989 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3990 } 3991 MVT XLenVT = Subtarget.getXLenVT(); 3992 assert(SplatVal.getValueType() == XLenVT && 3993 "Unexpected type for i1 splat value"); 3994 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3995 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3996 DAG.getConstant(1, DL, XLenVT)); 3997 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3998 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3999 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4000 } 4001 4002 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4003 // illegal (currently only vXi64 RV32). 4004 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4005 // them to SPLAT_VECTOR_I64 4006 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4007 SelectionDAG &DAG) const { 4008 SDLoc DL(Op); 4009 MVT VecVT = Op.getSimpleValueType(); 4010 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4011 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4012 4013 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4014 SDValue Lo = Op.getOperand(0); 4015 SDValue Hi = Op.getOperand(1); 4016 4017 if (VecVT.isFixedLengthVector()) { 4018 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4019 SDLoc DL(Op); 4020 SDValue Mask, VL; 4021 std::tie(Mask, VL) = 4022 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4023 4024 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 4025 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4026 } 4027 4028 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4029 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4030 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4031 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4032 // node in order to try and match RVV vector/scalar instructions. 4033 if ((LoC >> 31) == HiC) 4034 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4035 } 4036 4037 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4038 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4039 isa<ConstantSDNode>(Hi.getOperand(1)) && 4040 Hi.getConstantOperandVal(1) == 31) 4041 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 4042 4043 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4044 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 4045 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 4046 } 4047 4048 // Custom-lower extensions from mask vectors by using a vselect either with 1 4049 // for zero/any-extension or -1 for sign-extension: 4050 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4051 // Note that any-extension is lowered identically to zero-extension. 4052 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4053 int64_t ExtTrueVal) const { 4054 SDLoc DL(Op); 4055 MVT VecVT = Op.getSimpleValueType(); 4056 SDValue Src = Op.getOperand(0); 4057 // Only custom-lower extensions from mask types 4058 assert(Src.getValueType().isVector() && 4059 Src.getValueType().getVectorElementType() == MVT::i1); 4060 4061 MVT XLenVT = Subtarget.getXLenVT(); 4062 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4063 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4064 4065 if (VecVT.isScalableVector()) { 4066 // Be careful not to introduce illegal scalar types at this stage, and be 4067 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4068 // illegal and must be expanded. Since we know that the constants are 4069 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 4070 bool IsRV32E64 = 4071 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4072 4073 if (!IsRV32E64) { 4074 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4075 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4076 } else { 4077 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 4078 SplatTrueVal = 4079 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 4080 } 4081 4082 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4083 } 4084 4085 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4086 MVT I1ContainerVT = 4087 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4088 4089 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4090 4091 SDValue Mask, VL; 4092 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4093 4094 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 4095 SplatTrueVal = 4096 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 4097 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4098 SplatTrueVal, SplatZero, VL); 4099 4100 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4101 } 4102 4103 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4104 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4105 MVT ExtVT = Op.getSimpleValueType(); 4106 // Only custom-lower extensions from fixed-length vector types. 4107 if (!ExtVT.isFixedLengthVector()) 4108 return Op; 4109 MVT VT = Op.getOperand(0).getSimpleValueType(); 4110 // Grab the canonical container type for the extended type. Infer the smaller 4111 // type from that to ensure the same number of vector elements, as we know 4112 // the LMUL will be sufficient to hold the smaller type. 4113 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4114 // Get the extended container type manually to ensure the same number of 4115 // vector elements between source and dest. 4116 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4117 ContainerExtVT.getVectorElementCount()); 4118 4119 SDValue Op1 = 4120 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4121 4122 SDLoc DL(Op); 4123 SDValue Mask, VL; 4124 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4125 4126 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4127 4128 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4129 } 4130 4131 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4132 // setcc operation: 4133 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4134 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4135 SelectionDAG &DAG) const { 4136 SDLoc DL(Op); 4137 EVT MaskVT = Op.getValueType(); 4138 // Only expect to custom-lower truncations to mask types 4139 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4140 "Unexpected type for vector mask lowering"); 4141 SDValue Src = Op.getOperand(0); 4142 MVT VecVT = Src.getSimpleValueType(); 4143 4144 // If this is a fixed vector, we need to convert it to a scalable vector. 4145 MVT ContainerVT = VecVT; 4146 if (VecVT.isFixedLengthVector()) { 4147 ContainerVT = getContainerForFixedLengthVector(VecVT); 4148 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4149 } 4150 4151 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4152 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4153 4154 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 4155 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 4156 4157 if (VecVT.isScalableVector()) { 4158 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4159 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4160 } 4161 4162 SDValue Mask, VL; 4163 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4164 4165 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4166 SDValue Trunc = 4167 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4168 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4169 DAG.getCondCode(ISD::SETNE), Mask, VL); 4170 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4171 } 4172 4173 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4174 // first position of a vector, and that vector is slid up to the insert index. 4175 // By limiting the active vector length to index+1 and merging with the 4176 // original vector (with an undisturbed tail policy for elements >= VL), we 4177 // achieve the desired result of leaving all elements untouched except the one 4178 // at VL-1, which is replaced with the desired value. 4179 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4180 SelectionDAG &DAG) const { 4181 SDLoc DL(Op); 4182 MVT VecVT = Op.getSimpleValueType(); 4183 SDValue Vec = Op.getOperand(0); 4184 SDValue Val = Op.getOperand(1); 4185 SDValue Idx = Op.getOperand(2); 4186 4187 if (VecVT.getVectorElementType() == MVT::i1) { 4188 // FIXME: For now we just promote to an i8 vector and insert into that, 4189 // but this is probably not optimal. 4190 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4191 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4192 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4193 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4194 } 4195 4196 MVT ContainerVT = VecVT; 4197 // If the operand is a fixed-length vector, convert to a scalable one. 4198 if (VecVT.isFixedLengthVector()) { 4199 ContainerVT = getContainerForFixedLengthVector(VecVT); 4200 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4201 } 4202 4203 MVT XLenVT = Subtarget.getXLenVT(); 4204 4205 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4206 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4207 // Even i64-element vectors on RV32 can be lowered without scalar 4208 // legalization if the most-significant 32 bits of the value are not affected 4209 // by the sign-extension of the lower 32 bits. 4210 // TODO: We could also catch sign extensions of a 32-bit value. 4211 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4212 const auto *CVal = cast<ConstantSDNode>(Val); 4213 if (isInt<32>(CVal->getSExtValue())) { 4214 IsLegalInsert = true; 4215 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4216 } 4217 } 4218 4219 SDValue Mask, VL; 4220 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4221 4222 SDValue ValInVec; 4223 4224 if (IsLegalInsert) { 4225 unsigned Opc = 4226 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4227 if (isNullConstant(Idx)) { 4228 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4229 if (!VecVT.isFixedLengthVector()) 4230 return Vec; 4231 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4232 } 4233 ValInVec = 4234 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4235 } else { 4236 // On RV32, i64-element vectors must be specially handled to place the 4237 // value at element 0, by using two vslide1up instructions in sequence on 4238 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4239 // this. 4240 SDValue One = DAG.getConstant(1, DL, XLenVT); 4241 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4242 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4243 MVT I32ContainerVT = 4244 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4245 SDValue I32Mask = 4246 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4247 // Limit the active VL to two. 4248 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4249 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4250 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4251 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4252 InsertI64VL); 4253 // First slide in the hi value, then the lo in underneath it. 4254 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4255 ValHi, I32Mask, InsertI64VL); 4256 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4257 ValLo, I32Mask, InsertI64VL); 4258 // Bitcast back to the right container type. 4259 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4260 } 4261 4262 // Now that the value is in a vector, slide it into position. 4263 SDValue InsertVL = 4264 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4265 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4266 ValInVec, Idx, Mask, InsertVL); 4267 if (!VecVT.isFixedLengthVector()) 4268 return Slideup; 4269 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4270 } 4271 4272 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4273 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4274 // types this is done using VMV_X_S to allow us to glean information about the 4275 // sign bits of the result. 4276 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4277 SelectionDAG &DAG) const { 4278 SDLoc DL(Op); 4279 SDValue Idx = Op.getOperand(1); 4280 SDValue Vec = Op.getOperand(0); 4281 EVT EltVT = Op.getValueType(); 4282 MVT VecVT = Vec.getSimpleValueType(); 4283 MVT XLenVT = Subtarget.getXLenVT(); 4284 4285 if (VecVT.getVectorElementType() == MVT::i1) { 4286 // FIXME: For now we just promote to an i8 vector and extract from that, 4287 // but this is probably not optimal. 4288 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4289 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4290 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4291 } 4292 4293 // If this is a fixed vector, we need to convert it to a scalable vector. 4294 MVT ContainerVT = VecVT; 4295 if (VecVT.isFixedLengthVector()) { 4296 ContainerVT = getContainerForFixedLengthVector(VecVT); 4297 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4298 } 4299 4300 // If the index is 0, the vector is already in the right position. 4301 if (!isNullConstant(Idx)) { 4302 // Use a VL of 1 to avoid processing more elements than we need. 4303 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4304 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4305 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4306 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4307 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4308 } 4309 4310 if (!EltVT.isInteger()) { 4311 // Floating-point extracts are handled in TableGen. 4312 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4313 DAG.getConstant(0, DL, XLenVT)); 4314 } 4315 4316 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4317 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4318 } 4319 4320 // Some RVV intrinsics may claim that they want an integer operand to be 4321 // promoted or expanded. 4322 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4323 const RISCVSubtarget &Subtarget) { 4324 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4325 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4326 "Unexpected opcode"); 4327 4328 if (!Subtarget.hasVInstructions()) 4329 return SDValue(); 4330 4331 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4332 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4333 SDLoc DL(Op); 4334 4335 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4336 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4337 if (!II || !II->hasSplatOperand()) 4338 return SDValue(); 4339 4340 unsigned SplatOp = II->SplatOperand + 1 + HasChain; 4341 assert(SplatOp < Op.getNumOperands()); 4342 4343 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4344 SDValue &ScalarOp = Operands[SplatOp]; 4345 MVT OpVT = ScalarOp.getSimpleValueType(); 4346 MVT XLenVT = Subtarget.getXLenVT(); 4347 4348 // If this isn't a scalar, or its type is XLenVT we're done. 4349 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4350 return SDValue(); 4351 4352 // Simplest case is that the operand needs to be promoted to XLenVT. 4353 if (OpVT.bitsLT(XLenVT)) { 4354 // If the operand is a constant, sign extend to increase our chances 4355 // of being able to use a .vi instruction. ANY_EXTEND would become a 4356 // a zero extend and the simm5 check in isel would fail. 4357 // FIXME: Should we ignore the upper bits in isel instead? 4358 unsigned ExtOpc = 4359 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4360 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4361 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4362 } 4363 4364 // Use the previous operand to get the vXi64 VT. The result might be a mask 4365 // VT for compares. Using the previous operand assumes that the previous 4366 // operand will never have a smaller element size than a scalar operand and 4367 // that a widening operation never uses SEW=64. 4368 // NOTE: If this fails the below assert, we can probably just find the 4369 // element count from any operand or result and use it to construct the VT. 4370 assert(II->SplatOperand > 0 && "Unexpected splat operand!"); 4371 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4372 4373 // The more complex case is when the scalar is larger than XLenVT. 4374 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4375 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4376 4377 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4378 // on the instruction to sign-extend since SEW>XLEN. 4379 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4380 if (isInt<32>(CVal->getSExtValue())) { 4381 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4382 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4383 } 4384 } 4385 4386 // We need to convert the scalar to a splat vector. 4387 // FIXME: Can we implicitly truncate the scalar if it is known to 4388 // be sign extended? 4389 SDValue VL = getVLOperand(Op); 4390 assert(VL.getValueType() == XLenVT); 4391 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4392 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4393 } 4394 4395 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4396 SelectionDAG &DAG) const { 4397 unsigned IntNo = Op.getConstantOperandVal(0); 4398 SDLoc DL(Op); 4399 MVT XLenVT = Subtarget.getXLenVT(); 4400 4401 switch (IntNo) { 4402 default: 4403 break; // Don't custom lower most intrinsics. 4404 case Intrinsic::thread_pointer: { 4405 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4406 return DAG.getRegister(RISCV::X4, PtrVT); 4407 } 4408 case Intrinsic::riscv_orc_b: 4409 // Lower to the GORCI encoding for orc.b. 4410 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4411 DAG.getConstant(7, DL, XLenVT)); 4412 case Intrinsic::riscv_grev: 4413 case Intrinsic::riscv_gorc: { 4414 unsigned Opc = 4415 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4416 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4417 } 4418 case Intrinsic::riscv_shfl: 4419 case Intrinsic::riscv_unshfl: { 4420 unsigned Opc = 4421 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4422 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4423 } 4424 case Intrinsic::riscv_bcompress: 4425 case Intrinsic::riscv_bdecompress: { 4426 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4427 : RISCVISD::BDECOMPRESS; 4428 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4429 } 4430 case Intrinsic::riscv_bfp: 4431 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4432 Op.getOperand(2)); 4433 case Intrinsic::riscv_fsl: 4434 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4435 Op.getOperand(2), Op.getOperand(3)); 4436 case Intrinsic::riscv_fsr: 4437 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4438 Op.getOperand(2), Op.getOperand(3)); 4439 case Intrinsic::riscv_vmv_x_s: 4440 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4441 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4442 Op.getOperand(1)); 4443 case Intrinsic::riscv_vmv_v_x: 4444 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4445 Op.getSimpleValueType(), DL, DAG, Subtarget); 4446 case Intrinsic::riscv_vfmv_v_f: 4447 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4448 Op.getOperand(1), Op.getOperand(2)); 4449 case Intrinsic::riscv_vmv_s_x: { 4450 SDValue Scalar = Op.getOperand(2); 4451 4452 if (Scalar.getValueType().bitsLE(XLenVT)) { 4453 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4454 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4455 Op.getOperand(1), Scalar, Op.getOperand(3)); 4456 } 4457 4458 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4459 4460 // This is an i64 value that lives in two scalar registers. We have to 4461 // insert this in a convoluted way. First we build vXi64 splat containing 4462 // the/ two values that we assemble using some bit math. Next we'll use 4463 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4464 // to merge element 0 from our splat into the source vector. 4465 // FIXME: This is probably not the best way to do this, but it is 4466 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4467 // point. 4468 // sw lo, (a0) 4469 // sw hi, 4(a0) 4470 // vlse vX, (a0) 4471 // 4472 // vid.v vVid 4473 // vmseq.vx mMask, vVid, 0 4474 // vmerge.vvm vDest, vSrc, vVal, mMask 4475 MVT VT = Op.getSimpleValueType(); 4476 SDValue Vec = Op.getOperand(1); 4477 SDValue VL = getVLOperand(Op); 4478 4479 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4480 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4481 DAG.getConstant(0, DL, MVT::i32), VL); 4482 4483 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4484 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4485 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4486 SDValue SelectCond = 4487 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4488 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4489 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4490 Vec, VL); 4491 } 4492 case Intrinsic::riscv_vslide1up: 4493 case Intrinsic::riscv_vslide1down: 4494 case Intrinsic::riscv_vslide1up_mask: 4495 case Intrinsic::riscv_vslide1down_mask: { 4496 // We need to special case these when the scalar is larger than XLen. 4497 unsigned NumOps = Op.getNumOperands(); 4498 bool IsMasked = NumOps == 7; 4499 unsigned OpOffset = IsMasked ? 1 : 0; 4500 SDValue Scalar = Op.getOperand(2 + OpOffset); 4501 if (Scalar.getValueType().bitsLE(XLenVT)) 4502 break; 4503 4504 // Splatting a sign extended constant is fine. 4505 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4506 if (isInt<32>(CVal->getSExtValue())) 4507 break; 4508 4509 MVT VT = Op.getSimpleValueType(); 4510 assert(VT.getVectorElementType() == MVT::i64 && 4511 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4512 4513 // Convert the vector source to the equivalent nxvXi32 vector. 4514 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4515 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4516 4517 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4518 DAG.getConstant(0, DL, XLenVT)); 4519 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4520 DAG.getConstant(1, DL, XLenVT)); 4521 4522 // Double the VL since we halved SEW. 4523 SDValue VL = getVLOperand(Op); 4524 SDValue I32VL = 4525 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4526 4527 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4528 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4529 4530 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4531 // instructions. 4532 if (IntNo == Intrinsic::riscv_vslide1up || 4533 IntNo == Intrinsic::riscv_vslide1up_mask) { 4534 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4535 I32Mask, I32VL); 4536 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4537 I32Mask, I32VL); 4538 } else { 4539 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4540 I32Mask, I32VL); 4541 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4542 I32Mask, I32VL); 4543 } 4544 4545 // Convert back to nxvXi64. 4546 Vec = DAG.getBitcast(VT, Vec); 4547 4548 if (!IsMasked) 4549 return Vec; 4550 4551 // Apply mask after the operation. 4552 SDValue Mask = Op.getOperand(NumOps - 3); 4553 SDValue MaskedOff = Op.getOperand(1); 4554 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4555 } 4556 } 4557 4558 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4559 } 4560 4561 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4562 SelectionDAG &DAG) const { 4563 unsigned IntNo = Op.getConstantOperandVal(1); 4564 switch (IntNo) { 4565 default: 4566 break; 4567 case Intrinsic::riscv_masked_strided_load: { 4568 SDLoc DL(Op); 4569 MVT XLenVT = Subtarget.getXLenVT(); 4570 4571 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4572 // the selection of the masked intrinsics doesn't do this for us. 4573 SDValue Mask = Op.getOperand(5); 4574 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4575 4576 MVT VT = Op->getSimpleValueType(0); 4577 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4578 4579 SDValue PassThru = Op.getOperand(2); 4580 if (!IsUnmasked) { 4581 MVT MaskVT = 4582 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4583 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4584 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4585 } 4586 4587 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4588 4589 SDValue IntID = DAG.getTargetConstant( 4590 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4591 XLenVT); 4592 4593 auto *Load = cast<MemIntrinsicSDNode>(Op); 4594 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4595 if (IsUnmasked) 4596 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4597 else 4598 Ops.push_back(PassThru); 4599 Ops.push_back(Op.getOperand(3)); // Ptr 4600 Ops.push_back(Op.getOperand(4)); // Stride 4601 if (!IsUnmasked) 4602 Ops.push_back(Mask); 4603 Ops.push_back(VL); 4604 if (!IsUnmasked) { 4605 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4606 Ops.push_back(Policy); 4607 } 4608 4609 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4610 SDValue Result = 4611 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4612 Load->getMemoryVT(), Load->getMemOperand()); 4613 SDValue Chain = Result.getValue(1); 4614 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4615 return DAG.getMergeValues({Result, Chain}, DL); 4616 } 4617 } 4618 4619 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4620 } 4621 4622 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4623 SelectionDAG &DAG) const { 4624 unsigned IntNo = Op.getConstantOperandVal(1); 4625 switch (IntNo) { 4626 default: 4627 break; 4628 case Intrinsic::riscv_masked_strided_store: { 4629 SDLoc DL(Op); 4630 MVT XLenVT = Subtarget.getXLenVT(); 4631 4632 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4633 // the selection of the masked intrinsics doesn't do this for us. 4634 SDValue Mask = Op.getOperand(5); 4635 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4636 4637 SDValue Val = Op.getOperand(2); 4638 MVT VT = Val.getSimpleValueType(); 4639 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4640 4641 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4642 if (!IsUnmasked) { 4643 MVT MaskVT = 4644 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4645 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4646 } 4647 4648 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4649 4650 SDValue IntID = DAG.getTargetConstant( 4651 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4652 XLenVT); 4653 4654 auto *Store = cast<MemIntrinsicSDNode>(Op); 4655 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4656 Ops.push_back(Val); 4657 Ops.push_back(Op.getOperand(3)); // Ptr 4658 Ops.push_back(Op.getOperand(4)); // Stride 4659 if (!IsUnmasked) 4660 Ops.push_back(Mask); 4661 Ops.push_back(VL); 4662 4663 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4664 Ops, Store->getMemoryVT(), 4665 Store->getMemOperand()); 4666 } 4667 } 4668 4669 return SDValue(); 4670 } 4671 4672 static MVT getLMUL1VT(MVT VT) { 4673 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4674 "Unexpected vector MVT"); 4675 return MVT::getScalableVectorVT( 4676 VT.getVectorElementType(), 4677 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4678 } 4679 4680 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4681 switch (ISDOpcode) { 4682 default: 4683 llvm_unreachable("Unhandled reduction"); 4684 case ISD::VECREDUCE_ADD: 4685 return RISCVISD::VECREDUCE_ADD_VL; 4686 case ISD::VECREDUCE_UMAX: 4687 return RISCVISD::VECREDUCE_UMAX_VL; 4688 case ISD::VECREDUCE_SMAX: 4689 return RISCVISD::VECREDUCE_SMAX_VL; 4690 case ISD::VECREDUCE_UMIN: 4691 return RISCVISD::VECREDUCE_UMIN_VL; 4692 case ISD::VECREDUCE_SMIN: 4693 return RISCVISD::VECREDUCE_SMIN_VL; 4694 case ISD::VECREDUCE_AND: 4695 return RISCVISD::VECREDUCE_AND_VL; 4696 case ISD::VECREDUCE_OR: 4697 return RISCVISD::VECREDUCE_OR_VL; 4698 case ISD::VECREDUCE_XOR: 4699 return RISCVISD::VECREDUCE_XOR_VL; 4700 } 4701 } 4702 4703 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4704 SelectionDAG &DAG, 4705 bool IsVP) const { 4706 SDLoc DL(Op); 4707 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4708 MVT VecVT = Vec.getSimpleValueType(); 4709 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4710 Op.getOpcode() == ISD::VECREDUCE_OR || 4711 Op.getOpcode() == ISD::VECREDUCE_XOR || 4712 Op.getOpcode() == ISD::VP_REDUCE_AND || 4713 Op.getOpcode() == ISD::VP_REDUCE_OR || 4714 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4715 "Unexpected reduction lowering"); 4716 4717 MVT XLenVT = Subtarget.getXLenVT(); 4718 assert(Op.getValueType() == XLenVT && 4719 "Expected reduction output to be legalized to XLenVT"); 4720 4721 MVT ContainerVT = VecVT; 4722 if (VecVT.isFixedLengthVector()) { 4723 ContainerVT = getContainerForFixedLengthVector(VecVT); 4724 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4725 } 4726 4727 SDValue Mask, VL; 4728 if (IsVP) { 4729 Mask = Op.getOperand(2); 4730 VL = Op.getOperand(3); 4731 } else { 4732 std::tie(Mask, VL) = 4733 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4734 } 4735 4736 unsigned BaseOpc; 4737 ISD::CondCode CC; 4738 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4739 4740 switch (Op.getOpcode()) { 4741 default: 4742 llvm_unreachable("Unhandled reduction"); 4743 case ISD::VECREDUCE_AND: 4744 case ISD::VP_REDUCE_AND: { 4745 // vcpop ~x == 0 4746 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4747 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4748 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4749 CC = ISD::SETEQ; 4750 BaseOpc = ISD::AND; 4751 break; 4752 } 4753 case ISD::VECREDUCE_OR: 4754 case ISD::VP_REDUCE_OR: 4755 // vcpop x != 0 4756 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4757 CC = ISD::SETNE; 4758 BaseOpc = ISD::OR; 4759 break; 4760 case ISD::VECREDUCE_XOR: 4761 case ISD::VP_REDUCE_XOR: { 4762 // ((vcpop x) & 1) != 0 4763 SDValue One = DAG.getConstant(1, DL, XLenVT); 4764 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4765 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4766 CC = ISD::SETNE; 4767 BaseOpc = ISD::XOR; 4768 break; 4769 } 4770 } 4771 4772 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4773 4774 if (!IsVP) 4775 return SetCC; 4776 4777 // Now include the start value in the operation. 4778 // Note that we must return the start value when no elements are operated 4779 // upon. The vcpop instructions we've emitted in each case above will return 4780 // 0 for an inactive vector, and so we've already received the neutral value: 4781 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4782 // can simply include the start value. 4783 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4784 } 4785 4786 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4787 SelectionDAG &DAG) const { 4788 SDLoc DL(Op); 4789 SDValue Vec = Op.getOperand(0); 4790 EVT VecEVT = Vec.getValueType(); 4791 4792 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4793 4794 // Due to ordering in legalize types we may have a vector type that needs to 4795 // be split. Do that manually so we can get down to a legal type. 4796 while (getTypeAction(*DAG.getContext(), VecEVT) == 4797 TargetLowering::TypeSplitVector) { 4798 SDValue Lo, Hi; 4799 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4800 VecEVT = Lo.getValueType(); 4801 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4802 } 4803 4804 // TODO: The type may need to be widened rather than split. Or widened before 4805 // it can be split. 4806 if (!isTypeLegal(VecEVT)) 4807 return SDValue(); 4808 4809 MVT VecVT = VecEVT.getSimpleVT(); 4810 MVT VecEltVT = VecVT.getVectorElementType(); 4811 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4812 4813 MVT ContainerVT = VecVT; 4814 if (VecVT.isFixedLengthVector()) { 4815 ContainerVT = getContainerForFixedLengthVector(VecVT); 4816 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4817 } 4818 4819 MVT M1VT = getLMUL1VT(ContainerVT); 4820 MVT XLenVT = Subtarget.getXLenVT(); 4821 4822 SDValue Mask, VL; 4823 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4824 4825 SDValue NeutralElem = 4826 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4827 SDValue IdentitySplat = lowerScalarSplat( 4828 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4829 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4830 IdentitySplat, Mask, VL); 4831 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4832 DAG.getConstant(0, DL, XLenVT)); 4833 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4834 } 4835 4836 // Given a reduction op, this function returns the matching reduction opcode, 4837 // the vector SDValue and the scalar SDValue required to lower this to a 4838 // RISCVISD node. 4839 static std::tuple<unsigned, SDValue, SDValue> 4840 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4841 SDLoc DL(Op); 4842 auto Flags = Op->getFlags(); 4843 unsigned Opcode = Op.getOpcode(); 4844 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4845 switch (Opcode) { 4846 default: 4847 llvm_unreachable("Unhandled reduction"); 4848 case ISD::VECREDUCE_FADD: { 4849 // Use positive zero if we can. It is cheaper to materialize. 4850 SDValue Zero = 4851 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4852 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4853 } 4854 case ISD::VECREDUCE_SEQ_FADD: 4855 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4856 Op.getOperand(0)); 4857 case ISD::VECREDUCE_FMIN: 4858 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4859 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4860 case ISD::VECREDUCE_FMAX: 4861 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4862 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4863 } 4864 } 4865 4866 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4867 SelectionDAG &DAG) const { 4868 SDLoc DL(Op); 4869 MVT VecEltVT = Op.getSimpleValueType(); 4870 4871 unsigned RVVOpcode; 4872 SDValue VectorVal, ScalarVal; 4873 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4874 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4875 MVT VecVT = VectorVal.getSimpleValueType(); 4876 4877 MVT ContainerVT = VecVT; 4878 if (VecVT.isFixedLengthVector()) { 4879 ContainerVT = getContainerForFixedLengthVector(VecVT); 4880 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4881 } 4882 4883 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4884 MVT XLenVT = Subtarget.getXLenVT(); 4885 4886 SDValue Mask, VL; 4887 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4888 4889 SDValue ScalarSplat = lowerScalarSplat( 4890 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4891 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4892 VectorVal, ScalarSplat, Mask, VL); 4893 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4894 DAG.getConstant(0, DL, XLenVT)); 4895 } 4896 4897 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4898 switch (ISDOpcode) { 4899 default: 4900 llvm_unreachable("Unhandled reduction"); 4901 case ISD::VP_REDUCE_ADD: 4902 return RISCVISD::VECREDUCE_ADD_VL; 4903 case ISD::VP_REDUCE_UMAX: 4904 return RISCVISD::VECREDUCE_UMAX_VL; 4905 case ISD::VP_REDUCE_SMAX: 4906 return RISCVISD::VECREDUCE_SMAX_VL; 4907 case ISD::VP_REDUCE_UMIN: 4908 return RISCVISD::VECREDUCE_UMIN_VL; 4909 case ISD::VP_REDUCE_SMIN: 4910 return RISCVISD::VECREDUCE_SMIN_VL; 4911 case ISD::VP_REDUCE_AND: 4912 return RISCVISD::VECREDUCE_AND_VL; 4913 case ISD::VP_REDUCE_OR: 4914 return RISCVISD::VECREDUCE_OR_VL; 4915 case ISD::VP_REDUCE_XOR: 4916 return RISCVISD::VECREDUCE_XOR_VL; 4917 case ISD::VP_REDUCE_FADD: 4918 return RISCVISD::VECREDUCE_FADD_VL; 4919 case ISD::VP_REDUCE_SEQ_FADD: 4920 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4921 case ISD::VP_REDUCE_FMAX: 4922 return RISCVISD::VECREDUCE_FMAX_VL; 4923 case ISD::VP_REDUCE_FMIN: 4924 return RISCVISD::VECREDUCE_FMIN_VL; 4925 } 4926 } 4927 4928 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4929 SelectionDAG &DAG) const { 4930 SDLoc DL(Op); 4931 SDValue Vec = Op.getOperand(1); 4932 EVT VecEVT = Vec.getValueType(); 4933 4934 // TODO: The type may need to be widened rather than split. Or widened before 4935 // it can be split. 4936 if (!isTypeLegal(VecEVT)) 4937 return SDValue(); 4938 4939 MVT VecVT = VecEVT.getSimpleVT(); 4940 MVT VecEltVT = VecVT.getVectorElementType(); 4941 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4942 4943 MVT ContainerVT = VecVT; 4944 if (VecVT.isFixedLengthVector()) { 4945 ContainerVT = getContainerForFixedLengthVector(VecVT); 4946 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4947 } 4948 4949 SDValue VL = Op.getOperand(3); 4950 SDValue Mask = Op.getOperand(2); 4951 4952 MVT M1VT = getLMUL1VT(ContainerVT); 4953 MVT XLenVT = Subtarget.getXLenVT(); 4954 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4955 4956 SDValue StartSplat = 4957 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4958 DL, DAG, Subtarget); 4959 SDValue Reduction = 4960 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4961 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4962 DAG.getConstant(0, DL, XLenVT)); 4963 if (!VecVT.isInteger()) 4964 return Elt0; 4965 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4966 } 4967 4968 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4969 SelectionDAG &DAG) const { 4970 SDValue Vec = Op.getOperand(0); 4971 SDValue SubVec = Op.getOperand(1); 4972 MVT VecVT = Vec.getSimpleValueType(); 4973 MVT SubVecVT = SubVec.getSimpleValueType(); 4974 4975 SDLoc DL(Op); 4976 MVT XLenVT = Subtarget.getXLenVT(); 4977 unsigned OrigIdx = Op.getConstantOperandVal(2); 4978 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4979 4980 // We don't have the ability to slide mask vectors up indexed by their i1 4981 // elements; the smallest we can do is i8. Often we are able to bitcast to 4982 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4983 // into a scalable one, we might not necessarily have enough scalable 4984 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4985 if (SubVecVT.getVectorElementType() == MVT::i1 && 4986 (OrigIdx != 0 || !Vec.isUndef())) { 4987 if (VecVT.getVectorMinNumElements() >= 8 && 4988 SubVecVT.getVectorMinNumElements() >= 8) { 4989 assert(OrigIdx % 8 == 0 && "Invalid index"); 4990 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4991 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4992 "Unexpected mask vector lowering"); 4993 OrigIdx /= 8; 4994 SubVecVT = 4995 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4996 SubVecVT.isScalableVector()); 4997 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4998 VecVT.isScalableVector()); 4999 Vec = DAG.getBitcast(VecVT, Vec); 5000 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5001 } else { 5002 // We can't slide this mask vector up indexed by its i1 elements. 5003 // This poses a problem when we wish to insert a scalable vector which 5004 // can't be re-expressed as a larger type. Just choose the slow path and 5005 // extend to a larger type, then truncate back down. 5006 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5007 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5008 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5009 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5010 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5011 Op.getOperand(2)); 5012 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5013 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5014 } 5015 } 5016 5017 // If the subvector vector is a fixed-length type, we cannot use subregister 5018 // manipulation to simplify the codegen; we don't know which register of a 5019 // LMUL group contains the specific subvector as we only know the minimum 5020 // register size. Therefore we must slide the vector group up the full 5021 // amount. 5022 if (SubVecVT.isFixedLengthVector()) { 5023 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5024 return Op; 5025 MVT ContainerVT = VecVT; 5026 if (VecVT.isFixedLengthVector()) { 5027 ContainerVT = getContainerForFixedLengthVector(VecVT); 5028 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5029 } 5030 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5031 DAG.getUNDEF(ContainerVT), SubVec, 5032 DAG.getConstant(0, DL, XLenVT)); 5033 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5034 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5035 return DAG.getBitcast(Op.getValueType(), SubVec); 5036 } 5037 SDValue Mask = 5038 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5039 // Set the vector length to only the number of elements we care about. Note 5040 // that for slideup this includes the offset. 5041 SDValue VL = 5042 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5043 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5044 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5045 SubVec, SlideupAmt, Mask, VL); 5046 if (VecVT.isFixedLengthVector()) 5047 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5048 return DAG.getBitcast(Op.getValueType(), Slideup); 5049 } 5050 5051 unsigned SubRegIdx, RemIdx; 5052 std::tie(SubRegIdx, RemIdx) = 5053 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5054 VecVT, SubVecVT, OrigIdx, TRI); 5055 5056 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5057 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5058 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5059 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5060 5061 // 1. If the Idx has been completely eliminated and this subvector's size is 5062 // a vector register or a multiple thereof, or the surrounding elements are 5063 // undef, then this is a subvector insert which naturally aligns to a vector 5064 // register. These can easily be handled using subregister manipulation. 5065 // 2. If the subvector is smaller than a vector register, then the insertion 5066 // must preserve the undisturbed elements of the register. We do this by 5067 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5068 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5069 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5070 // LMUL=1 type back into the larger vector (resolving to another subregister 5071 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5072 // to avoid allocating a large register group to hold our subvector. 5073 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5074 return Op; 5075 5076 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5077 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5078 // (in our case undisturbed). This means we can set up a subvector insertion 5079 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5080 // size of the subvector. 5081 MVT InterSubVT = VecVT; 5082 SDValue AlignedExtract = Vec; 5083 unsigned AlignedIdx = OrigIdx - RemIdx; 5084 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5085 InterSubVT = getLMUL1VT(VecVT); 5086 // Extract a subvector equal to the nearest full vector register type. This 5087 // should resolve to a EXTRACT_SUBREG instruction. 5088 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5089 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5090 } 5091 5092 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5093 // For scalable vectors this must be further multiplied by vscale. 5094 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5095 5096 SDValue Mask, VL; 5097 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5098 5099 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5100 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5101 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5102 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5103 5104 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5105 DAG.getUNDEF(InterSubVT), SubVec, 5106 DAG.getConstant(0, DL, XLenVT)); 5107 5108 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5109 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5110 5111 // If required, insert this subvector back into the correct vector register. 5112 // This should resolve to an INSERT_SUBREG instruction. 5113 if (VecVT.bitsGT(InterSubVT)) 5114 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5115 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5116 5117 // We might have bitcast from a mask type: cast back to the original type if 5118 // required. 5119 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5120 } 5121 5122 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5123 SelectionDAG &DAG) const { 5124 SDValue Vec = Op.getOperand(0); 5125 MVT SubVecVT = Op.getSimpleValueType(); 5126 MVT VecVT = Vec.getSimpleValueType(); 5127 5128 SDLoc DL(Op); 5129 MVT XLenVT = Subtarget.getXLenVT(); 5130 unsigned OrigIdx = Op.getConstantOperandVal(1); 5131 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5132 5133 // We don't have the ability to slide mask vectors down indexed by their i1 5134 // elements; the smallest we can do is i8. Often we are able to bitcast to 5135 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5136 // from a scalable one, we might not necessarily have enough scalable 5137 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5138 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5139 if (VecVT.getVectorMinNumElements() >= 8 && 5140 SubVecVT.getVectorMinNumElements() >= 8) { 5141 assert(OrigIdx % 8 == 0 && "Invalid index"); 5142 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5143 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5144 "Unexpected mask vector lowering"); 5145 OrigIdx /= 8; 5146 SubVecVT = 5147 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5148 SubVecVT.isScalableVector()); 5149 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5150 VecVT.isScalableVector()); 5151 Vec = DAG.getBitcast(VecVT, Vec); 5152 } else { 5153 // We can't slide this mask vector down, indexed by its i1 elements. 5154 // This poses a problem when we wish to extract a scalable vector which 5155 // can't be re-expressed as a larger type. Just choose the slow path and 5156 // extend to a larger type, then truncate back down. 5157 // TODO: We could probably improve this when extracting certain fixed 5158 // from fixed, where we can extract as i8 and shift the correct element 5159 // right to reach the desired subvector? 5160 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5161 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5162 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5163 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5164 Op.getOperand(1)); 5165 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5166 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5167 } 5168 } 5169 5170 // If the subvector vector is a fixed-length type, we cannot use subregister 5171 // manipulation to simplify the codegen; we don't know which register of a 5172 // LMUL group contains the specific subvector as we only know the minimum 5173 // register size. Therefore we must slide the vector group down the full 5174 // amount. 5175 if (SubVecVT.isFixedLengthVector()) { 5176 // With an index of 0 this is a cast-like subvector, which can be performed 5177 // with subregister operations. 5178 if (OrigIdx == 0) 5179 return Op; 5180 MVT ContainerVT = VecVT; 5181 if (VecVT.isFixedLengthVector()) { 5182 ContainerVT = getContainerForFixedLengthVector(VecVT); 5183 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5184 } 5185 SDValue Mask = 5186 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5187 // Set the vector length to only the number of elements we care about. This 5188 // avoids sliding down elements we're going to discard straight away. 5189 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5190 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5191 SDValue Slidedown = 5192 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5193 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5194 // Now we can use a cast-like subvector extract to get the result. 5195 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5196 DAG.getConstant(0, DL, XLenVT)); 5197 return DAG.getBitcast(Op.getValueType(), Slidedown); 5198 } 5199 5200 unsigned SubRegIdx, RemIdx; 5201 std::tie(SubRegIdx, RemIdx) = 5202 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5203 VecVT, SubVecVT, OrigIdx, TRI); 5204 5205 // If the Idx has been completely eliminated then this is a subvector extract 5206 // which naturally aligns to a vector register. These can easily be handled 5207 // using subregister manipulation. 5208 if (RemIdx == 0) 5209 return Op; 5210 5211 // Else we must shift our vector register directly to extract the subvector. 5212 // Do this using VSLIDEDOWN. 5213 5214 // If the vector type is an LMUL-group type, extract a subvector equal to the 5215 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5216 // instruction. 5217 MVT InterSubVT = VecVT; 5218 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5219 InterSubVT = getLMUL1VT(VecVT); 5220 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5221 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5222 } 5223 5224 // Slide this vector register down by the desired number of elements in order 5225 // to place the desired subvector starting at element 0. 5226 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5227 // For scalable vectors this must be further multiplied by vscale. 5228 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5229 5230 SDValue Mask, VL; 5231 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5232 SDValue Slidedown = 5233 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5234 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5235 5236 // Now the vector is in the right position, extract our final subvector. This 5237 // should resolve to a COPY. 5238 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5239 DAG.getConstant(0, DL, XLenVT)); 5240 5241 // We might have bitcast from a mask type: cast back to the original type if 5242 // required. 5243 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5244 } 5245 5246 // Lower step_vector to the vid instruction. Any non-identity step value must 5247 // be accounted for my manual expansion. 5248 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5249 SelectionDAG &DAG) const { 5250 SDLoc DL(Op); 5251 MVT VT = Op.getSimpleValueType(); 5252 MVT XLenVT = Subtarget.getXLenVT(); 5253 SDValue Mask, VL; 5254 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5255 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5256 uint64_t StepValImm = Op.getConstantOperandVal(0); 5257 if (StepValImm != 1) { 5258 if (isPowerOf2_64(StepValImm)) { 5259 SDValue StepVal = 5260 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5261 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5262 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5263 } else { 5264 SDValue StepVal = lowerScalarSplat( 5265 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5266 DL, DAG, Subtarget); 5267 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5268 } 5269 } 5270 return StepVec; 5271 } 5272 5273 // Implement vector_reverse using vrgather.vv with indices determined by 5274 // subtracting the id of each element from (VLMAX-1). This will convert 5275 // the indices like so: 5276 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5277 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5278 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5279 SelectionDAG &DAG) const { 5280 SDLoc DL(Op); 5281 MVT VecVT = Op.getSimpleValueType(); 5282 unsigned EltSize = VecVT.getScalarSizeInBits(); 5283 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5284 5285 unsigned MaxVLMAX = 0; 5286 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5287 if (VectorBitsMax != 0) 5288 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5289 5290 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5291 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5292 5293 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5294 // to use vrgatherei16.vv. 5295 // TODO: It's also possible to use vrgatherei16.vv for other types to 5296 // decrease register width for the index calculation. 5297 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5298 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5299 // Reverse each half, then reassemble them in reverse order. 5300 // NOTE: It's also possible that after splitting that VLMAX no longer 5301 // requires vrgatherei16.vv. 5302 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5303 SDValue Lo, Hi; 5304 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5305 EVT LoVT, HiVT; 5306 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5307 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5308 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5309 // Reassemble the low and high pieces reversed. 5310 // FIXME: This is a CONCAT_VECTORS. 5311 SDValue Res = 5312 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5313 DAG.getIntPtrConstant(0, DL)); 5314 return DAG.getNode( 5315 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5316 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5317 } 5318 5319 // Just promote the int type to i16 which will double the LMUL. 5320 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5321 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5322 } 5323 5324 MVT XLenVT = Subtarget.getXLenVT(); 5325 SDValue Mask, VL; 5326 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5327 5328 // Calculate VLMAX-1 for the desired SEW. 5329 unsigned MinElts = VecVT.getVectorMinNumElements(); 5330 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5331 DAG.getConstant(MinElts, DL, XLenVT)); 5332 SDValue VLMinus1 = 5333 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5334 5335 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5336 bool IsRV32E64 = 5337 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5338 SDValue SplatVL; 5339 if (!IsRV32E64) 5340 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5341 else 5342 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5343 5344 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5345 SDValue Indices = 5346 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5347 5348 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5349 } 5350 5351 SDValue 5352 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5353 SelectionDAG &DAG) const { 5354 SDLoc DL(Op); 5355 auto *Load = cast<LoadSDNode>(Op); 5356 5357 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5358 Load->getMemoryVT(), 5359 *Load->getMemOperand()) && 5360 "Expecting a correctly-aligned load"); 5361 5362 MVT VT = Op.getSimpleValueType(); 5363 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5364 5365 SDValue VL = 5366 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5367 5368 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5369 SDValue NewLoad = DAG.getMemIntrinsicNode( 5370 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5371 Load->getMemoryVT(), Load->getMemOperand()); 5372 5373 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5374 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5375 } 5376 5377 SDValue 5378 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5379 SelectionDAG &DAG) const { 5380 SDLoc DL(Op); 5381 auto *Store = cast<StoreSDNode>(Op); 5382 5383 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5384 Store->getMemoryVT(), 5385 *Store->getMemOperand()) && 5386 "Expecting a correctly-aligned store"); 5387 5388 SDValue StoreVal = Store->getValue(); 5389 MVT VT = StoreVal.getSimpleValueType(); 5390 5391 // If the size less than a byte, we need to pad with zeros to make a byte. 5392 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5393 VT = MVT::v8i1; 5394 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5395 DAG.getConstant(0, DL, VT), StoreVal, 5396 DAG.getIntPtrConstant(0, DL)); 5397 } 5398 5399 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5400 5401 SDValue VL = 5402 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5403 5404 SDValue NewValue = 5405 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5406 return DAG.getMemIntrinsicNode( 5407 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5408 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5409 Store->getMemoryVT(), Store->getMemOperand()); 5410 } 5411 5412 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5413 SelectionDAG &DAG) const { 5414 SDLoc DL(Op); 5415 MVT VT = Op.getSimpleValueType(); 5416 5417 const auto *MemSD = cast<MemSDNode>(Op); 5418 EVT MemVT = MemSD->getMemoryVT(); 5419 MachineMemOperand *MMO = MemSD->getMemOperand(); 5420 SDValue Chain = MemSD->getChain(); 5421 SDValue BasePtr = MemSD->getBasePtr(); 5422 5423 SDValue Mask, PassThru, VL; 5424 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5425 Mask = VPLoad->getMask(); 5426 PassThru = DAG.getUNDEF(VT); 5427 VL = VPLoad->getVectorLength(); 5428 } else { 5429 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5430 Mask = MLoad->getMask(); 5431 PassThru = MLoad->getPassThru(); 5432 } 5433 5434 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5435 5436 MVT XLenVT = Subtarget.getXLenVT(); 5437 5438 MVT ContainerVT = VT; 5439 if (VT.isFixedLengthVector()) { 5440 ContainerVT = getContainerForFixedLengthVector(VT); 5441 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5442 if (!IsUnmasked) { 5443 MVT MaskVT = 5444 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5445 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5446 } 5447 } 5448 5449 if (!VL) 5450 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5451 5452 unsigned IntID = 5453 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5454 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5455 if (IsUnmasked) 5456 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5457 else 5458 Ops.push_back(PassThru); 5459 Ops.push_back(BasePtr); 5460 if (!IsUnmasked) 5461 Ops.push_back(Mask); 5462 Ops.push_back(VL); 5463 if (!IsUnmasked) 5464 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5465 5466 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5467 5468 SDValue Result = 5469 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5470 Chain = Result.getValue(1); 5471 5472 if (VT.isFixedLengthVector()) 5473 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5474 5475 return DAG.getMergeValues({Result, Chain}, DL); 5476 } 5477 5478 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5479 SelectionDAG &DAG) const { 5480 SDLoc DL(Op); 5481 5482 const auto *MemSD = cast<MemSDNode>(Op); 5483 EVT MemVT = MemSD->getMemoryVT(); 5484 MachineMemOperand *MMO = MemSD->getMemOperand(); 5485 SDValue Chain = MemSD->getChain(); 5486 SDValue BasePtr = MemSD->getBasePtr(); 5487 SDValue Val, Mask, VL; 5488 5489 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5490 Val = VPStore->getValue(); 5491 Mask = VPStore->getMask(); 5492 VL = VPStore->getVectorLength(); 5493 } else { 5494 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5495 Val = MStore->getValue(); 5496 Mask = MStore->getMask(); 5497 } 5498 5499 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5500 5501 MVT VT = Val.getSimpleValueType(); 5502 MVT XLenVT = Subtarget.getXLenVT(); 5503 5504 MVT ContainerVT = VT; 5505 if (VT.isFixedLengthVector()) { 5506 ContainerVT = getContainerForFixedLengthVector(VT); 5507 5508 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5509 if (!IsUnmasked) { 5510 MVT MaskVT = 5511 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5512 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5513 } 5514 } 5515 5516 if (!VL) 5517 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5518 5519 unsigned IntID = 5520 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5521 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5522 Ops.push_back(Val); 5523 Ops.push_back(BasePtr); 5524 if (!IsUnmasked) 5525 Ops.push_back(Mask); 5526 Ops.push_back(VL); 5527 5528 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5529 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5530 } 5531 5532 SDValue 5533 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5534 SelectionDAG &DAG) const { 5535 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5536 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5537 5538 MVT VT = Op.getSimpleValueType(); 5539 5540 SDValue Op1 = 5541 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5542 SDValue Op2 = 5543 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5544 5545 SDLoc DL(Op); 5546 SDValue VL = 5547 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5548 5549 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5550 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5551 5552 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5553 Op.getOperand(2), Mask, VL); 5554 5555 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5556 } 5557 5558 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5559 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5560 MVT VT = Op.getSimpleValueType(); 5561 5562 if (VT.getVectorElementType() == MVT::i1) 5563 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5564 5565 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5566 } 5567 5568 SDValue 5569 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5570 SelectionDAG &DAG) const { 5571 unsigned Opc; 5572 switch (Op.getOpcode()) { 5573 default: llvm_unreachable("Unexpected opcode!"); 5574 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5575 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5576 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5577 } 5578 5579 return lowerToScalableOp(Op, DAG, Opc); 5580 } 5581 5582 // Lower vector ABS to smax(X, sub(0, X)). 5583 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5584 SDLoc DL(Op); 5585 MVT VT = Op.getSimpleValueType(); 5586 SDValue X = Op.getOperand(0); 5587 5588 assert(VT.isFixedLengthVector() && "Unexpected type"); 5589 5590 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5591 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5592 5593 SDValue Mask, VL; 5594 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5595 5596 SDValue SplatZero = 5597 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5598 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5599 SDValue NegX = 5600 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5601 SDValue Max = 5602 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5603 5604 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5605 } 5606 5607 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5608 SDValue Op, SelectionDAG &DAG) const { 5609 SDLoc DL(Op); 5610 MVT VT = Op.getSimpleValueType(); 5611 SDValue Mag = Op.getOperand(0); 5612 SDValue Sign = Op.getOperand(1); 5613 assert(Mag.getValueType() == Sign.getValueType() && 5614 "Can only handle COPYSIGN with matching types."); 5615 5616 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5617 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5618 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5619 5620 SDValue Mask, VL; 5621 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5622 5623 SDValue CopySign = 5624 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5625 5626 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5627 } 5628 5629 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5630 SDValue Op, SelectionDAG &DAG) const { 5631 MVT VT = Op.getSimpleValueType(); 5632 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5633 5634 MVT I1ContainerVT = 5635 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5636 5637 SDValue CC = 5638 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5639 SDValue Op1 = 5640 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5641 SDValue Op2 = 5642 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5643 5644 SDLoc DL(Op); 5645 SDValue Mask, VL; 5646 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5647 5648 SDValue Select = 5649 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5650 5651 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5652 } 5653 5654 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5655 unsigned NewOpc, 5656 bool HasMask) const { 5657 MVT VT = Op.getSimpleValueType(); 5658 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5659 5660 // Create list of operands by converting existing ones to scalable types. 5661 SmallVector<SDValue, 6> Ops; 5662 for (const SDValue &V : Op->op_values()) { 5663 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5664 5665 // Pass through non-vector operands. 5666 if (!V.getValueType().isVector()) { 5667 Ops.push_back(V); 5668 continue; 5669 } 5670 5671 // "cast" fixed length vector to a scalable vector. 5672 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5673 "Only fixed length vectors are supported!"); 5674 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5675 } 5676 5677 SDLoc DL(Op); 5678 SDValue Mask, VL; 5679 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5680 if (HasMask) 5681 Ops.push_back(Mask); 5682 Ops.push_back(VL); 5683 5684 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5685 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5686 } 5687 5688 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5689 // * Operands of each node are assumed to be in the same order. 5690 // * The EVL operand is promoted from i32 to i64 on RV64. 5691 // * Fixed-length vectors are converted to their scalable-vector container 5692 // types. 5693 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5694 unsigned RISCVISDOpc) const { 5695 SDLoc DL(Op); 5696 MVT VT = Op.getSimpleValueType(); 5697 SmallVector<SDValue, 4> Ops; 5698 5699 for (const auto &OpIdx : enumerate(Op->ops())) { 5700 SDValue V = OpIdx.value(); 5701 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5702 // Pass through operands which aren't fixed-length vectors. 5703 if (!V.getValueType().isFixedLengthVector()) { 5704 Ops.push_back(V); 5705 continue; 5706 } 5707 // "cast" fixed length vector to a scalable vector. 5708 MVT OpVT = V.getSimpleValueType(); 5709 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5710 assert(useRVVForFixedLengthVectorVT(OpVT) && 5711 "Only fixed length vectors are supported!"); 5712 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5713 } 5714 5715 if (!VT.isFixedLengthVector()) 5716 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5717 5718 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5719 5720 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5721 5722 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5723 } 5724 5725 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5726 unsigned MaskOpc, 5727 unsigned VecOpc) const { 5728 MVT VT = Op.getSimpleValueType(); 5729 if (VT.getVectorElementType() != MVT::i1) 5730 return lowerVPOp(Op, DAG, VecOpc); 5731 5732 // It is safe to drop mask parameter as masked-off elements are undef. 5733 SDValue Op1 = Op->getOperand(0); 5734 SDValue Op2 = Op->getOperand(1); 5735 SDValue VL = Op->getOperand(3); 5736 5737 MVT ContainerVT = VT; 5738 const bool IsFixed = VT.isFixedLengthVector(); 5739 if (IsFixed) { 5740 ContainerVT = getContainerForFixedLengthVector(VT); 5741 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5742 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5743 } 5744 5745 SDLoc DL(Op); 5746 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5747 if (!IsFixed) 5748 return Val; 5749 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5750 } 5751 5752 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5753 // matched to a RVV indexed load. The RVV indexed load instructions only 5754 // support the "unsigned unscaled" addressing mode; indices are implicitly 5755 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5756 // signed or scaled indexing is extended to the XLEN value type and scaled 5757 // accordingly. 5758 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5759 SelectionDAG &DAG) const { 5760 SDLoc DL(Op); 5761 MVT VT = Op.getSimpleValueType(); 5762 5763 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5764 EVT MemVT = MemSD->getMemoryVT(); 5765 MachineMemOperand *MMO = MemSD->getMemOperand(); 5766 SDValue Chain = MemSD->getChain(); 5767 SDValue BasePtr = MemSD->getBasePtr(); 5768 5769 ISD::LoadExtType LoadExtType; 5770 SDValue Index, Mask, PassThru, VL; 5771 5772 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5773 Index = VPGN->getIndex(); 5774 Mask = VPGN->getMask(); 5775 PassThru = DAG.getUNDEF(VT); 5776 VL = VPGN->getVectorLength(); 5777 // VP doesn't support extending loads. 5778 LoadExtType = ISD::NON_EXTLOAD; 5779 } else { 5780 // Else it must be a MGATHER. 5781 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5782 Index = MGN->getIndex(); 5783 Mask = MGN->getMask(); 5784 PassThru = MGN->getPassThru(); 5785 LoadExtType = MGN->getExtensionType(); 5786 } 5787 5788 MVT IndexVT = Index.getSimpleValueType(); 5789 MVT XLenVT = Subtarget.getXLenVT(); 5790 5791 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5792 "Unexpected VTs!"); 5793 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5794 // Targets have to explicitly opt-in for extending vector loads. 5795 assert(LoadExtType == ISD::NON_EXTLOAD && 5796 "Unexpected extending MGATHER/VP_GATHER"); 5797 (void)LoadExtType; 5798 5799 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5800 // the selection of the masked intrinsics doesn't do this for us. 5801 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5802 5803 MVT ContainerVT = VT; 5804 if (VT.isFixedLengthVector()) { 5805 // We need to use the larger of the result and index type to determine the 5806 // scalable type to use so we don't increase LMUL for any operand/result. 5807 if (VT.bitsGE(IndexVT)) { 5808 ContainerVT = getContainerForFixedLengthVector(VT); 5809 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5810 ContainerVT.getVectorElementCount()); 5811 } else { 5812 IndexVT = getContainerForFixedLengthVector(IndexVT); 5813 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5814 IndexVT.getVectorElementCount()); 5815 } 5816 5817 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5818 5819 if (!IsUnmasked) { 5820 MVT MaskVT = 5821 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5822 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5823 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5824 } 5825 } 5826 5827 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5828 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5829 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5830 } 5831 5832 if (!VL) 5833 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5834 5835 unsigned IntID = 5836 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5837 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5838 if (IsUnmasked) 5839 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5840 else 5841 Ops.push_back(PassThru); 5842 Ops.push_back(BasePtr); 5843 Ops.push_back(Index); 5844 if (!IsUnmasked) 5845 Ops.push_back(Mask); 5846 Ops.push_back(VL); 5847 if (!IsUnmasked) 5848 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5849 5850 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5851 SDValue Result = 5852 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5853 Chain = Result.getValue(1); 5854 5855 if (VT.isFixedLengthVector()) 5856 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5857 5858 return DAG.getMergeValues({Result, Chain}, DL); 5859 } 5860 5861 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5862 // matched to a RVV indexed store. The RVV indexed store instructions only 5863 // support the "unsigned unscaled" addressing mode; indices are implicitly 5864 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5865 // signed or scaled indexing is extended to the XLEN value type and scaled 5866 // accordingly. 5867 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5868 SelectionDAG &DAG) const { 5869 SDLoc DL(Op); 5870 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5871 EVT MemVT = MemSD->getMemoryVT(); 5872 MachineMemOperand *MMO = MemSD->getMemOperand(); 5873 SDValue Chain = MemSD->getChain(); 5874 SDValue BasePtr = MemSD->getBasePtr(); 5875 5876 bool IsTruncatingStore = false; 5877 SDValue Index, Mask, Val, VL; 5878 5879 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5880 Index = VPSN->getIndex(); 5881 Mask = VPSN->getMask(); 5882 Val = VPSN->getValue(); 5883 VL = VPSN->getVectorLength(); 5884 // VP doesn't support truncating stores. 5885 IsTruncatingStore = false; 5886 } else { 5887 // Else it must be a MSCATTER. 5888 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5889 Index = MSN->getIndex(); 5890 Mask = MSN->getMask(); 5891 Val = MSN->getValue(); 5892 IsTruncatingStore = MSN->isTruncatingStore(); 5893 } 5894 5895 MVT VT = Val.getSimpleValueType(); 5896 MVT IndexVT = Index.getSimpleValueType(); 5897 MVT XLenVT = Subtarget.getXLenVT(); 5898 5899 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5900 "Unexpected VTs!"); 5901 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5902 // Targets have to explicitly opt-in for extending vector loads and 5903 // truncating vector stores. 5904 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5905 (void)IsTruncatingStore; 5906 5907 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5908 // the selection of the masked intrinsics doesn't do this for us. 5909 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5910 5911 MVT ContainerVT = VT; 5912 if (VT.isFixedLengthVector()) { 5913 // We need to use the larger of the value and index type to determine the 5914 // scalable type to use so we don't increase LMUL for any operand/result. 5915 if (VT.bitsGE(IndexVT)) { 5916 ContainerVT = getContainerForFixedLengthVector(VT); 5917 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5918 ContainerVT.getVectorElementCount()); 5919 } else { 5920 IndexVT = getContainerForFixedLengthVector(IndexVT); 5921 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5922 IndexVT.getVectorElementCount()); 5923 } 5924 5925 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5926 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5927 5928 if (!IsUnmasked) { 5929 MVT MaskVT = 5930 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5931 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5932 } 5933 } 5934 5935 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5936 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5937 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5938 } 5939 5940 if (!VL) 5941 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5942 5943 unsigned IntID = 5944 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5945 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5946 Ops.push_back(Val); 5947 Ops.push_back(BasePtr); 5948 Ops.push_back(Index); 5949 if (!IsUnmasked) 5950 Ops.push_back(Mask); 5951 Ops.push_back(VL); 5952 5953 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5954 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5955 } 5956 5957 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5958 SelectionDAG &DAG) const { 5959 const MVT XLenVT = Subtarget.getXLenVT(); 5960 SDLoc DL(Op); 5961 SDValue Chain = Op->getOperand(0); 5962 SDValue SysRegNo = DAG.getTargetConstant( 5963 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5964 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5965 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5966 5967 // Encoding used for rounding mode in RISCV differs from that used in 5968 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5969 // table, which consists of a sequence of 4-bit fields, each representing 5970 // corresponding FLT_ROUNDS mode. 5971 static const int Table = 5972 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5973 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5974 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5975 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5976 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5977 5978 SDValue Shift = 5979 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5980 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5981 DAG.getConstant(Table, DL, XLenVT), Shift); 5982 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5983 DAG.getConstant(7, DL, XLenVT)); 5984 5985 return DAG.getMergeValues({Masked, Chain}, DL); 5986 } 5987 5988 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5989 SelectionDAG &DAG) const { 5990 const MVT XLenVT = Subtarget.getXLenVT(); 5991 SDLoc DL(Op); 5992 SDValue Chain = Op->getOperand(0); 5993 SDValue RMValue = Op->getOperand(1); 5994 SDValue SysRegNo = DAG.getTargetConstant( 5995 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5996 5997 // Encoding used for rounding mode in RISCV differs from that used in 5998 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5999 // a table, which consists of a sequence of 4-bit fields, each representing 6000 // corresponding RISCV mode. 6001 static const unsigned Table = 6002 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6003 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6004 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6005 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6006 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6007 6008 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6009 DAG.getConstant(2, DL, XLenVT)); 6010 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6011 DAG.getConstant(Table, DL, XLenVT), Shift); 6012 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6013 DAG.getConstant(0x7, DL, XLenVT)); 6014 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6015 RMValue); 6016 } 6017 6018 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6019 switch (IntNo) { 6020 default: 6021 llvm_unreachable("Unexpected Intrinsic"); 6022 case Intrinsic::riscv_grev: 6023 return RISCVISD::GREVW; 6024 case Intrinsic::riscv_gorc: 6025 return RISCVISD::GORCW; 6026 case Intrinsic::riscv_bcompress: 6027 return RISCVISD::BCOMPRESSW; 6028 case Intrinsic::riscv_bdecompress: 6029 return RISCVISD::BDECOMPRESSW; 6030 case Intrinsic::riscv_bfp: 6031 return RISCVISD::BFPW; 6032 case Intrinsic::riscv_fsl: 6033 return RISCVISD::FSLW; 6034 case Intrinsic::riscv_fsr: 6035 return RISCVISD::FSRW; 6036 } 6037 } 6038 6039 // Converts the given intrinsic to a i64 operation with any extension. 6040 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6041 unsigned IntNo) { 6042 SDLoc DL(N); 6043 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6044 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6045 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6046 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6047 // ReplaceNodeResults requires we maintain the same type for the return value. 6048 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6049 } 6050 6051 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6052 // form of the given Opcode. 6053 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6054 switch (Opcode) { 6055 default: 6056 llvm_unreachable("Unexpected opcode"); 6057 case ISD::SHL: 6058 return RISCVISD::SLLW; 6059 case ISD::SRA: 6060 return RISCVISD::SRAW; 6061 case ISD::SRL: 6062 return RISCVISD::SRLW; 6063 case ISD::SDIV: 6064 return RISCVISD::DIVW; 6065 case ISD::UDIV: 6066 return RISCVISD::DIVUW; 6067 case ISD::UREM: 6068 return RISCVISD::REMUW; 6069 case ISD::ROTL: 6070 return RISCVISD::ROLW; 6071 case ISD::ROTR: 6072 return RISCVISD::RORW; 6073 case RISCVISD::GREV: 6074 return RISCVISD::GREVW; 6075 case RISCVISD::GORC: 6076 return RISCVISD::GORCW; 6077 } 6078 } 6079 6080 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6081 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6082 // otherwise be promoted to i64, making it difficult to select the 6083 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6084 // type i8/i16/i32 is lost. 6085 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6086 unsigned ExtOpc = ISD::ANY_EXTEND) { 6087 SDLoc DL(N); 6088 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6089 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6090 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6091 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6092 // ReplaceNodeResults requires we maintain the same type for the return value. 6093 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6094 } 6095 6096 // Converts the given 32-bit operation to a i64 operation with signed extension 6097 // semantic to reduce the signed extension instructions. 6098 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6099 SDLoc DL(N); 6100 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6101 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6102 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6103 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6104 DAG.getValueType(MVT::i32)); 6105 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6106 } 6107 6108 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6109 SmallVectorImpl<SDValue> &Results, 6110 SelectionDAG &DAG) const { 6111 SDLoc DL(N); 6112 switch (N->getOpcode()) { 6113 default: 6114 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6115 case ISD::STRICT_FP_TO_SINT: 6116 case ISD::STRICT_FP_TO_UINT: 6117 case ISD::FP_TO_SINT: 6118 case ISD::FP_TO_UINT: { 6119 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6120 "Unexpected custom legalisation"); 6121 bool IsStrict = N->isStrictFPOpcode(); 6122 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6123 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6124 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6125 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6126 TargetLowering::TypeSoftenFloat) { 6127 if (!isTypeLegal(Op0.getValueType())) 6128 return; 6129 if (IsStrict) { 6130 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6131 : RISCVISD::STRICT_FCVT_WU_RV64; 6132 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6133 SDValue Res = DAG.getNode( 6134 Opc, DL, VTs, N->getOperand(0), Op0, 6135 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6136 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6137 Results.push_back(Res.getValue(1)); 6138 return; 6139 } 6140 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6141 SDValue Res = 6142 DAG.getNode(Opc, DL, MVT::i64, Op0, 6143 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6144 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6145 return; 6146 } 6147 // If the FP type needs to be softened, emit a library call using the 'si' 6148 // version. If we left it to default legalization we'd end up with 'di'. If 6149 // the FP type doesn't need to be softened just let generic type 6150 // legalization promote the result type. 6151 RTLIB::Libcall LC; 6152 if (IsSigned) 6153 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6154 else 6155 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6156 MakeLibCallOptions CallOptions; 6157 EVT OpVT = Op0.getValueType(); 6158 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6159 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6160 SDValue Result; 6161 std::tie(Result, Chain) = 6162 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6163 Results.push_back(Result); 6164 if (IsStrict) 6165 Results.push_back(Chain); 6166 break; 6167 } 6168 case ISD::READCYCLECOUNTER: { 6169 assert(!Subtarget.is64Bit() && 6170 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6171 6172 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6173 SDValue RCW = 6174 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6175 6176 Results.push_back( 6177 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6178 Results.push_back(RCW.getValue(2)); 6179 break; 6180 } 6181 case ISD::MUL: { 6182 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6183 unsigned XLen = Subtarget.getXLen(); 6184 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6185 if (Size > XLen) { 6186 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6187 SDValue LHS = N->getOperand(0); 6188 SDValue RHS = N->getOperand(1); 6189 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6190 6191 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6192 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6193 // We need exactly one side to be unsigned. 6194 if (LHSIsU == RHSIsU) 6195 return; 6196 6197 auto MakeMULPair = [&](SDValue S, SDValue U) { 6198 MVT XLenVT = Subtarget.getXLenVT(); 6199 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6200 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6201 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6202 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6203 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6204 }; 6205 6206 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6207 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6208 6209 // The other operand should be signed, but still prefer MULH when 6210 // possible. 6211 if (RHSIsU && LHSIsS && !RHSIsS) 6212 Results.push_back(MakeMULPair(LHS, RHS)); 6213 else if (LHSIsU && RHSIsS && !LHSIsS) 6214 Results.push_back(MakeMULPair(RHS, LHS)); 6215 6216 return; 6217 } 6218 LLVM_FALLTHROUGH; 6219 } 6220 case ISD::ADD: 6221 case ISD::SUB: 6222 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6223 "Unexpected custom legalisation"); 6224 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6225 break; 6226 case ISD::SHL: 6227 case ISD::SRA: 6228 case ISD::SRL: 6229 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6230 "Unexpected custom legalisation"); 6231 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6232 Results.push_back(customLegalizeToWOp(N, DAG)); 6233 break; 6234 } 6235 6236 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6237 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6238 // shift amount. 6239 if (N->getOpcode() == ISD::SHL) { 6240 SDLoc DL(N); 6241 SDValue NewOp0 = 6242 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6243 SDValue NewOp1 = 6244 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6245 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6246 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6247 DAG.getValueType(MVT::i32)); 6248 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6249 } 6250 6251 break; 6252 case ISD::ROTL: 6253 case ISD::ROTR: 6254 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6255 "Unexpected custom legalisation"); 6256 Results.push_back(customLegalizeToWOp(N, DAG)); 6257 break; 6258 case ISD::CTTZ: 6259 case ISD::CTTZ_ZERO_UNDEF: 6260 case ISD::CTLZ: 6261 case ISD::CTLZ_ZERO_UNDEF: { 6262 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6263 "Unexpected custom legalisation"); 6264 6265 SDValue NewOp0 = 6266 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6267 bool IsCTZ = 6268 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6269 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6270 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6271 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6272 return; 6273 } 6274 case ISD::SDIV: 6275 case ISD::UDIV: 6276 case ISD::UREM: { 6277 MVT VT = N->getSimpleValueType(0); 6278 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6279 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6280 "Unexpected custom legalisation"); 6281 // Don't promote division/remainder by constant since we should expand those 6282 // to multiply by magic constant. 6283 // FIXME: What if the expansion is disabled for minsize. 6284 if (N->getOperand(1).getOpcode() == ISD::Constant) 6285 return; 6286 6287 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6288 // the upper 32 bits. For other types we need to sign or zero extend 6289 // based on the opcode. 6290 unsigned ExtOpc = ISD::ANY_EXTEND; 6291 if (VT != MVT::i32) 6292 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6293 : ISD::ZERO_EXTEND; 6294 6295 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6296 break; 6297 } 6298 case ISD::UADDO: 6299 case ISD::USUBO: { 6300 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6301 "Unexpected custom legalisation"); 6302 bool IsAdd = N->getOpcode() == ISD::UADDO; 6303 // Create an ADDW or SUBW. 6304 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6305 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6306 SDValue Res = 6307 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6308 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6309 DAG.getValueType(MVT::i32)); 6310 6311 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6312 // Since the inputs are sign extended from i32, this is equivalent to 6313 // comparing the lower 32 bits. 6314 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6315 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6316 IsAdd ? ISD::SETULT : ISD::SETUGT); 6317 6318 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6319 Results.push_back(Overflow); 6320 return; 6321 } 6322 case ISD::UADDSAT: 6323 case ISD::USUBSAT: { 6324 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6325 "Unexpected custom legalisation"); 6326 if (Subtarget.hasStdExtZbb()) { 6327 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6328 // sign extend allows overflow of the lower 32 bits to be detected on 6329 // the promoted size. 6330 SDValue LHS = 6331 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6332 SDValue RHS = 6333 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6334 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6335 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6336 return; 6337 } 6338 6339 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6340 // promotion for UADDO/USUBO. 6341 Results.push_back(expandAddSubSat(N, DAG)); 6342 return; 6343 } 6344 case ISD::BITCAST: { 6345 EVT VT = N->getValueType(0); 6346 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6347 SDValue Op0 = N->getOperand(0); 6348 EVT Op0VT = Op0.getValueType(); 6349 MVT XLenVT = Subtarget.getXLenVT(); 6350 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6351 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6352 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6353 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6354 Subtarget.hasStdExtF()) { 6355 SDValue FPConv = 6356 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6357 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6358 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6359 isTypeLegal(Op0VT)) { 6360 // Custom-legalize bitcasts from fixed-length vector types to illegal 6361 // scalar types in order to improve codegen. Bitcast the vector to a 6362 // one-element vector type whose element type is the same as the result 6363 // type, and extract the first element. 6364 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6365 if (isTypeLegal(BVT)) { 6366 SDValue BVec = DAG.getBitcast(BVT, Op0); 6367 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6368 DAG.getConstant(0, DL, XLenVT))); 6369 } 6370 } 6371 break; 6372 } 6373 case RISCVISD::GREV: 6374 case RISCVISD::GORC: { 6375 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6376 "Unexpected custom legalisation"); 6377 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6378 // This is similar to customLegalizeToWOp, except that we pass the second 6379 // operand (a TargetConstant) straight through: it is already of type 6380 // XLenVT. 6381 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6382 SDValue NewOp0 = 6383 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6384 SDValue NewOp1 = 6385 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6386 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6387 // ReplaceNodeResults requires we maintain the same type for the return 6388 // value. 6389 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6390 break; 6391 } 6392 case RISCVISD::SHFL: { 6393 // There is no SHFLIW instruction, but we can just promote the operation. 6394 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6395 "Unexpected custom legalisation"); 6396 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6397 SDValue NewOp0 = 6398 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6399 SDValue NewOp1 = 6400 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6401 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6402 // ReplaceNodeResults requires we maintain the same type for the return 6403 // value. 6404 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6405 break; 6406 } 6407 case ISD::BSWAP: 6408 case ISD::BITREVERSE: { 6409 MVT VT = N->getSimpleValueType(0); 6410 MVT XLenVT = Subtarget.getXLenVT(); 6411 assert((VT == MVT::i8 || VT == MVT::i16 || 6412 (VT == MVT::i32 && Subtarget.is64Bit())) && 6413 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6414 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6415 unsigned Imm = VT.getSizeInBits() - 1; 6416 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6417 if (N->getOpcode() == ISD::BSWAP) 6418 Imm &= ~0x7U; 6419 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6420 SDValue GREVI = 6421 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6422 // ReplaceNodeResults requires we maintain the same type for the return 6423 // value. 6424 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6425 break; 6426 } 6427 case ISD::FSHL: 6428 case ISD::FSHR: { 6429 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6430 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6431 SDValue NewOp0 = 6432 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6433 SDValue NewOp1 = 6434 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6435 SDValue NewShAmt = 6436 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6437 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6438 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6439 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6440 DAG.getConstant(0x1f, DL, MVT::i64)); 6441 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6442 // instruction use different orders. fshl will return its first operand for 6443 // shift of zero, fshr will return its second operand. fsl and fsr both 6444 // return rs1 so the ISD nodes need to have different operand orders. 6445 // Shift amount is in rs2. 6446 unsigned Opc = RISCVISD::FSLW; 6447 if (N->getOpcode() == ISD::FSHR) { 6448 std::swap(NewOp0, NewOp1); 6449 Opc = RISCVISD::FSRW; 6450 } 6451 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6452 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6453 break; 6454 } 6455 case ISD::EXTRACT_VECTOR_ELT: { 6456 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6457 // type is illegal (currently only vXi64 RV32). 6458 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6459 // transferred to the destination register. We issue two of these from the 6460 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6461 // first element. 6462 SDValue Vec = N->getOperand(0); 6463 SDValue Idx = N->getOperand(1); 6464 6465 // The vector type hasn't been legalized yet so we can't issue target 6466 // specific nodes if it needs legalization. 6467 // FIXME: We would manually legalize if it's important. 6468 if (!isTypeLegal(Vec.getValueType())) 6469 return; 6470 6471 MVT VecVT = Vec.getSimpleValueType(); 6472 6473 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6474 VecVT.getVectorElementType() == MVT::i64 && 6475 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6476 6477 // If this is a fixed vector, we need to convert it to a scalable vector. 6478 MVT ContainerVT = VecVT; 6479 if (VecVT.isFixedLengthVector()) { 6480 ContainerVT = getContainerForFixedLengthVector(VecVT); 6481 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6482 } 6483 6484 MVT XLenVT = Subtarget.getXLenVT(); 6485 6486 // Use a VL of 1 to avoid processing more elements than we need. 6487 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6488 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6489 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6490 6491 // Unless the index is known to be 0, we must slide the vector down to get 6492 // the desired element into index 0. 6493 if (!isNullConstant(Idx)) { 6494 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6495 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6496 } 6497 6498 // Extract the lower XLEN bits of the correct vector element. 6499 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6500 6501 // To extract the upper XLEN bits of the vector element, shift the first 6502 // element right by 32 bits and re-extract the lower XLEN bits. 6503 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6504 DAG.getConstant(32, DL, XLenVT), VL); 6505 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6506 ThirtyTwoV, Mask, VL); 6507 6508 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6509 6510 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6511 break; 6512 } 6513 case ISD::INTRINSIC_WO_CHAIN: { 6514 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6515 switch (IntNo) { 6516 default: 6517 llvm_unreachable( 6518 "Don't know how to custom type legalize this intrinsic!"); 6519 case Intrinsic::riscv_grev: 6520 case Intrinsic::riscv_gorc: 6521 case Intrinsic::riscv_bcompress: 6522 case Intrinsic::riscv_bdecompress: 6523 case Intrinsic::riscv_bfp: { 6524 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6525 "Unexpected custom legalisation"); 6526 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6527 break; 6528 } 6529 case Intrinsic::riscv_fsl: 6530 case Intrinsic::riscv_fsr: { 6531 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6532 "Unexpected custom legalisation"); 6533 SDValue NewOp1 = 6534 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6535 SDValue NewOp2 = 6536 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6537 SDValue NewOp3 = 6538 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6539 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6540 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6541 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6542 break; 6543 } 6544 case Intrinsic::riscv_orc_b: { 6545 // Lower to the GORCI encoding for orc.b with the operand extended. 6546 SDValue NewOp = 6547 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6548 // If Zbp is enabled, use GORCIW which will sign extend the result. 6549 unsigned Opc = 6550 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6551 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6552 DAG.getConstant(7, DL, MVT::i64)); 6553 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6554 return; 6555 } 6556 case Intrinsic::riscv_shfl: 6557 case Intrinsic::riscv_unshfl: { 6558 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6559 "Unexpected custom legalisation"); 6560 SDValue NewOp1 = 6561 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6562 SDValue NewOp2 = 6563 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6564 unsigned Opc = 6565 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6566 if (isa<ConstantSDNode>(N->getOperand(2))) { 6567 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6568 DAG.getConstant(0xf, DL, MVT::i64)); 6569 Opc = 6570 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6571 } 6572 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6573 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6574 break; 6575 } 6576 case Intrinsic::riscv_vmv_x_s: { 6577 EVT VT = N->getValueType(0); 6578 MVT XLenVT = Subtarget.getXLenVT(); 6579 if (VT.bitsLT(XLenVT)) { 6580 // Simple case just extract using vmv.x.s and truncate. 6581 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6582 Subtarget.getXLenVT(), N->getOperand(1)); 6583 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6584 return; 6585 } 6586 6587 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6588 "Unexpected custom legalization"); 6589 6590 // We need to do the move in two steps. 6591 SDValue Vec = N->getOperand(1); 6592 MVT VecVT = Vec.getSimpleValueType(); 6593 6594 // First extract the lower XLEN bits of the element. 6595 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6596 6597 // To extract the upper XLEN bits of the vector element, shift the first 6598 // element right by 32 bits and re-extract the lower XLEN bits. 6599 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6600 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6601 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6602 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6603 DAG.getConstant(32, DL, XLenVT), VL); 6604 SDValue LShr32 = 6605 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6606 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6607 6608 Results.push_back( 6609 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6610 break; 6611 } 6612 } 6613 break; 6614 } 6615 case ISD::VECREDUCE_ADD: 6616 case ISD::VECREDUCE_AND: 6617 case ISD::VECREDUCE_OR: 6618 case ISD::VECREDUCE_XOR: 6619 case ISD::VECREDUCE_SMAX: 6620 case ISD::VECREDUCE_UMAX: 6621 case ISD::VECREDUCE_SMIN: 6622 case ISD::VECREDUCE_UMIN: 6623 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6624 Results.push_back(V); 6625 break; 6626 case ISD::VP_REDUCE_ADD: 6627 case ISD::VP_REDUCE_AND: 6628 case ISD::VP_REDUCE_OR: 6629 case ISD::VP_REDUCE_XOR: 6630 case ISD::VP_REDUCE_SMAX: 6631 case ISD::VP_REDUCE_UMAX: 6632 case ISD::VP_REDUCE_SMIN: 6633 case ISD::VP_REDUCE_UMIN: 6634 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6635 Results.push_back(V); 6636 break; 6637 case ISD::FLT_ROUNDS_: { 6638 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6639 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6640 Results.push_back(Res.getValue(0)); 6641 Results.push_back(Res.getValue(1)); 6642 break; 6643 } 6644 } 6645 } 6646 6647 // A structure to hold one of the bit-manipulation patterns below. Together, a 6648 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6649 // (or (and (shl x, 1), 0xAAAAAAAA), 6650 // (and (srl x, 1), 0x55555555)) 6651 struct RISCVBitmanipPat { 6652 SDValue Op; 6653 unsigned ShAmt; 6654 bool IsSHL; 6655 6656 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6657 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6658 } 6659 }; 6660 6661 // Matches patterns of the form 6662 // (and (shl x, C2), (C1 << C2)) 6663 // (and (srl x, C2), C1) 6664 // (shl (and x, C1), C2) 6665 // (srl (and x, (C1 << C2)), C2) 6666 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6667 // The expected masks for each shift amount are specified in BitmanipMasks where 6668 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6669 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6670 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6671 // XLen is 64. 6672 static Optional<RISCVBitmanipPat> 6673 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6674 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6675 "Unexpected number of masks"); 6676 Optional<uint64_t> Mask; 6677 // Optionally consume a mask around the shift operation. 6678 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6679 Mask = Op.getConstantOperandVal(1); 6680 Op = Op.getOperand(0); 6681 } 6682 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6683 return None; 6684 bool IsSHL = Op.getOpcode() == ISD::SHL; 6685 6686 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6687 return None; 6688 uint64_t ShAmt = Op.getConstantOperandVal(1); 6689 6690 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6691 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6692 return None; 6693 // If we don't have enough masks for 64 bit, then we must be trying to 6694 // match SHFL so we're only allowed to shift 1/4 of the width. 6695 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6696 return None; 6697 6698 SDValue Src = Op.getOperand(0); 6699 6700 // The expected mask is shifted left when the AND is found around SHL 6701 // patterns. 6702 // ((x >> 1) & 0x55555555) 6703 // ((x << 1) & 0xAAAAAAAA) 6704 bool SHLExpMask = IsSHL; 6705 6706 if (!Mask) { 6707 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6708 // the mask is all ones: consume that now. 6709 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6710 Mask = Src.getConstantOperandVal(1); 6711 Src = Src.getOperand(0); 6712 // The expected mask is now in fact shifted left for SRL, so reverse the 6713 // decision. 6714 // ((x & 0xAAAAAAAA) >> 1) 6715 // ((x & 0x55555555) << 1) 6716 SHLExpMask = !SHLExpMask; 6717 } else { 6718 // Use a default shifted mask of all-ones if there's no AND, truncated 6719 // down to the expected width. This simplifies the logic later on. 6720 Mask = maskTrailingOnes<uint64_t>(Width); 6721 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6722 } 6723 } 6724 6725 unsigned MaskIdx = Log2_32(ShAmt); 6726 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6727 6728 if (SHLExpMask) 6729 ExpMask <<= ShAmt; 6730 6731 if (Mask != ExpMask) 6732 return None; 6733 6734 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6735 } 6736 6737 // Matches any of the following bit-manipulation patterns: 6738 // (and (shl x, 1), (0x55555555 << 1)) 6739 // (and (srl x, 1), 0x55555555) 6740 // (shl (and x, 0x55555555), 1) 6741 // (srl (and x, (0x55555555 << 1)), 1) 6742 // where the shift amount and mask may vary thus: 6743 // [1] = 0x55555555 / 0xAAAAAAAA 6744 // [2] = 0x33333333 / 0xCCCCCCCC 6745 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6746 // [8] = 0x00FF00FF / 0xFF00FF00 6747 // [16] = 0x0000FFFF / 0xFFFFFFFF 6748 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6749 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6750 // These are the unshifted masks which we use to match bit-manipulation 6751 // patterns. They may be shifted left in certain circumstances. 6752 static const uint64_t BitmanipMasks[] = { 6753 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6754 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6755 6756 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6757 } 6758 6759 // Match the following pattern as a GREVI(W) operation 6760 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6761 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6762 const RISCVSubtarget &Subtarget) { 6763 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6764 EVT VT = Op.getValueType(); 6765 6766 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6767 auto LHS = matchGREVIPat(Op.getOperand(0)); 6768 auto RHS = matchGREVIPat(Op.getOperand(1)); 6769 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6770 SDLoc DL(Op); 6771 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6772 DAG.getConstant(LHS->ShAmt, DL, VT)); 6773 } 6774 } 6775 return SDValue(); 6776 } 6777 6778 // Matches any the following pattern as a GORCI(W) operation 6779 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6780 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6781 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6782 // Note that with the variant of 3., 6783 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6784 // the inner pattern will first be matched as GREVI and then the outer 6785 // pattern will be matched to GORC via the first rule above. 6786 // 4. (or (rotl/rotr x, bitwidth/2), x) 6787 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6788 const RISCVSubtarget &Subtarget) { 6789 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6790 EVT VT = Op.getValueType(); 6791 6792 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6793 SDLoc DL(Op); 6794 SDValue Op0 = Op.getOperand(0); 6795 SDValue Op1 = Op.getOperand(1); 6796 6797 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6798 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6799 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6800 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6801 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6802 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6803 if ((Reverse.getOpcode() == ISD::ROTL || 6804 Reverse.getOpcode() == ISD::ROTR) && 6805 Reverse.getOperand(0) == X && 6806 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6807 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6808 if (RotAmt == (VT.getSizeInBits() / 2)) 6809 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6810 DAG.getConstant(RotAmt, DL, VT)); 6811 } 6812 return SDValue(); 6813 }; 6814 6815 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6816 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6817 return V; 6818 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6819 return V; 6820 6821 // OR is commutable so canonicalize its OR operand to the left 6822 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6823 std::swap(Op0, Op1); 6824 if (Op0.getOpcode() != ISD::OR) 6825 return SDValue(); 6826 SDValue OrOp0 = Op0.getOperand(0); 6827 SDValue OrOp1 = Op0.getOperand(1); 6828 auto LHS = matchGREVIPat(OrOp0); 6829 // OR is commutable so swap the operands and try again: x might have been 6830 // on the left 6831 if (!LHS) { 6832 std::swap(OrOp0, OrOp1); 6833 LHS = matchGREVIPat(OrOp0); 6834 } 6835 auto RHS = matchGREVIPat(Op1); 6836 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6837 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6838 DAG.getConstant(LHS->ShAmt, DL, VT)); 6839 } 6840 } 6841 return SDValue(); 6842 } 6843 6844 // Matches any of the following bit-manipulation patterns: 6845 // (and (shl x, 1), (0x22222222 << 1)) 6846 // (and (srl x, 1), 0x22222222) 6847 // (shl (and x, 0x22222222), 1) 6848 // (srl (and x, (0x22222222 << 1)), 1) 6849 // where the shift amount and mask may vary thus: 6850 // [1] = 0x22222222 / 0x44444444 6851 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6852 // [4] = 0x00F000F0 / 0x0F000F00 6853 // [8] = 0x0000FF00 / 0x00FF0000 6854 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6855 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6856 // These are the unshifted masks which we use to match bit-manipulation 6857 // patterns. They may be shifted left in certain circumstances. 6858 static const uint64_t BitmanipMasks[] = { 6859 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6860 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6861 6862 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6863 } 6864 6865 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6866 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6867 const RISCVSubtarget &Subtarget) { 6868 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6869 EVT VT = Op.getValueType(); 6870 6871 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6872 return SDValue(); 6873 6874 SDValue Op0 = Op.getOperand(0); 6875 SDValue Op1 = Op.getOperand(1); 6876 6877 // Or is commutable so canonicalize the second OR to the LHS. 6878 if (Op0.getOpcode() != ISD::OR) 6879 std::swap(Op0, Op1); 6880 if (Op0.getOpcode() != ISD::OR) 6881 return SDValue(); 6882 6883 // We found an inner OR, so our operands are the operands of the inner OR 6884 // and the other operand of the outer OR. 6885 SDValue A = Op0.getOperand(0); 6886 SDValue B = Op0.getOperand(1); 6887 SDValue C = Op1; 6888 6889 auto Match1 = matchSHFLPat(A); 6890 auto Match2 = matchSHFLPat(B); 6891 6892 // If neither matched, we failed. 6893 if (!Match1 && !Match2) 6894 return SDValue(); 6895 6896 // We had at least one match. if one failed, try the remaining C operand. 6897 if (!Match1) { 6898 std::swap(A, C); 6899 Match1 = matchSHFLPat(A); 6900 if (!Match1) 6901 return SDValue(); 6902 } else if (!Match2) { 6903 std::swap(B, C); 6904 Match2 = matchSHFLPat(B); 6905 if (!Match2) 6906 return SDValue(); 6907 } 6908 assert(Match1 && Match2); 6909 6910 // Make sure our matches pair up. 6911 if (!Match1->formsPairWith(*Match2)) 6912 return SDValue(); 6913 6914 // All the remains is to make sure C is an AND with the same input, that masks 6915 // out the bits that are being shuffled. 6916 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6917 C.getOperand(0) != Match1->Op) 6918 return SDValue(); 6919 6920 uint64_t Mask = C.getConstantOperandVal(1); 6921 6922 static const uint64_t BitmanipMasks[] = { 6923 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6924 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6925 }; 6926 6927 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6928 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6929 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6930 6931 if (Mask != ExpMask) 6932 return SDValue(); 6933 6934 SDLoc DL(Op); 6935 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6936 DAG.getConstant(Match1->ShAmt, DL, VT)); 6937 } 6938 6939 // Optimize (add (shl x, c0), (shl y, c1)) -> 6940 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6941 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6942 const RISCVSubtarget &Subtarget) { 6943 // Perform this optimization only in the zba extension. 6944 if (!Subtarget.hasStdExtZba()) 6945 return SDValue(); 6946 6947 // Skip for vector types and larger types. 6948 EVT VT = N->getValueType(0); 6949 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6950 return SDValue(); 6951 6952 // The two operand nodes must be SHL and have no other use. 6953 SDValue N0 = N->getOperand(0); 6954 SDValue N1 = N->getOperand(1); 6955 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6956 !N0->hasOneUse() || !N1->hasOneUse()) 6957 return SDValue(); 6958 6959 // Check c0 and c1. 6960 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6961 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6962 if (!N0C || !N1C) 6963 return SDValue(); 6964 int64_t C0 = N0C->getSExtValue(); 6965 int64_t C1 = N1C->getSExtValue(); 6966 if (C0 <= 0 || C1 <= 0) 6967 return SDValue(); 6968 6969 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6970 int64_t Bits = std::min(C0, C1); 6971 int64_t Diff = std::abs(C0 - C1); 6972 if (Diff != 1 && Diff != 2 && Diff != 3) 6973 return SDValue(); 6974 6975 // Build nodes. 6976 SDLoc DL(N); 6977 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6978 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6979 SDValue NA0 = 6980 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6981 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6982 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6983 } 6984 6985 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6986 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6987 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6988 // not undo itself, but they are redundant. 6989 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6990 SDValue Src = N->getOperand(0); 6991 6992 if (Src.getOpcode() != N->getOpcode()) 6993 return SDValue(); 6994 6995 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6996 !isa<ConstantSDNode>(Src.getOperand(1))) 6997 return SDValue(); 6998 6999 unsigned ShAmt1 = N->getConstantOperandVal(1); 7000 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7001 Src = Src.getOperand(0); 7002 7003 unsigned CombinedShAmt; 7004 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 7005 CombinedShAmt = ShAmt1 | ShAmt2; 7006 else 7007 CombinedShAmt = ShAmt1 ^ ShAmt2; 7008 7009 if (CombinedShAmt == 0) 7010 return Src; 7011 7012 SDLoc DL(N); 7013 return DAG.getNode( 7014 N->getOpcode(), DL, N->getValueType(0), Src, 7015 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7016 } 7017 7018 // Combine a constant select operand into its use: 7019 // 7020 // (and (select cond, -1, c), x) 7021 // -> (select cond, x, (and x, c)) [AllOnes=1] 7022 // (or (select cond, 0, c), x) 7023 // -> (select cond, x, (or x, c)) [AllOnes=0] 7024 // (xor (select cond, 0, c), x) 7025 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7026 // (add (select cond, 0, c), x) 7027 // -> (select cond, x, (add x, c)) [AllOnes=0] 7028 // (sub x, (select cond, 0, c)) 7029 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7030 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7031 SelectionDAG &DAG, bool AllOnes) { 7032 EVT VT = N->getValueType(0); 7033 7034 // Skip vectors. 7035 if (VT.isVector()) 7036 return SDValue(); 7037 7038 if ((Slct.getOpcode() != ISD::SELECT && 7039 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7040 !Slct.hasOneUse()) 7041 return SDValue(); 7042 7043 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7044 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7045 }; 7046 7047 bool SwapSelectOps; 7048 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7049 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7050 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7051 SDValue NonConstantVal; 7052 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7053 SwapSelectOps = false; 7054 NonConstantVal = FalseVal; 7055 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7056 SwapSelectOps = true; 7057 NonConstantVal = TrueVal; 7058 } else 7059 return SDValue(); 7060 7061 // Slct is now know to be the desired identity constant when CC is true. 7062 TrueVal = OtherOp; 7063 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7064 // Unless SwapSelectOps says the condition should be false. 7065 if (SwapSelectOps) 7066 std::swap(TrueVal, FalseVal); 7067 7068 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7069 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7070 {Slct.getOperand(0), Slct.getOperand(1), 7071 Slct.getOperand(2), TrueVal, FalseVal}); 7072 7073 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7074 {Slct.getOperand(0), TrueVal, FalseVal}); 7075 } 7076 7077 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7078 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7079 bool AllOnes) { 7080 SDValue N0 = N->getOperand(0); 7081 SDValue N1 = N->getOperand(1); 7082 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7083 return Result; 7084 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7085 return Result; 7086 return SDValue(); 7087 } 7088 7089 // Transform (add (mul x, c0), c1) -> 7090 // (add (mul (add x, c1/c0), c0), c1%c0). 7091 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7092 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7093 // to an infinite loop in DAGCombine if transformed. 7094 // Or transform (add (mul x, c0), c1) -> 7095 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7096 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7097 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7098 // lead to an infinite loop in DAGCombine if transformed. 7099 // Or transform (add (mul x, c0), c1) -> 7100 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7101 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7102 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7103 // lead to an infinite loop in DAGCombine if transformed. 7104 // Or transform (add (mul x, c0), c1) -> 7105 // (mul (add x, c1/c0), c0). 7106 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7107 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7108 const RISCVSubtarget &Subtarget) { 7109 // Skip for vector types and larger types. 7110 EVT VT = N->getValueType(0); 7111 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7112 return SDValue(); 7113 // The first operand node must be a MUL and has no other use. 7114 SDValue N0 = N->getOperand(0); 7115 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7116 return SDValue(); 7117 // Check if c0 and c1 match above conditions. 7118 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7119 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7120 if (!N0C || !N1C) 7121 return SDValue(); 7122 int64_t C0 = N0C->getSExtValue(); 7123 int64_t C1 = N1C->getSExtValue(); 7124 int64_t CA, CB; 7125 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7126 return SDValue(); 7127 // Search for proper CA (non-zero) and CB that both are simm12. 7128 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7129 !isInt<12>(C0 * (C1 / C0))) { 7130 CA = C1 / C0; 7131 CB = C1 % C0; 7132 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7133 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7134 CA = C1 / C0 + 1; 7135 CB = C1 % C0 - C0; 7136 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7137 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7138 CA = C1 / C0 - 1; 7139 CB = C1 % C0 + C0; 7140 } else 7141 return SDValue(); 7142 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7143 SDLoc DL(N); 7144 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7145 DAG.getConstant(CA, DL, VT)); 7146 SDValue New1 = 7147 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7148 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7149 } 7150 7151 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7152 const RISCVSubtarget &Subtarget) { 7153 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7154 return V; 7155 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7156 return V; 7157 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7158 // (select lhs, rhs, cc, x, (add x, y)) 7159 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7160 } 7161 7162 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7163 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7164 // (select lhs, rhs, cc, x, (sub x, y)) 7165 SDValue N0 = N->getOperand(0); 7166 SDValue N1 = N->getOperand(1); 7167 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7168 } 7169 7170 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7171 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7172 // (select lhs, rhs, cc, x, (and x, y)) 7173 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7174 } 7175 7176 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7177 const RISCVSubtarget &Subtarget) { 7178 if (Subtarget.hasStdExtZbp()) { 7179 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7180 return GREV; 7181 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7182 return GORC; 7183 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7184 return SHFL; 7185 } 7186 7187 // fold (or (select cond, 0, y), x) -> 7188 // (select cond, x, (or x, y)) 7189 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7190 } 7191 7192 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7193 // fold (xor (select cond, 0, y), x) -> 7194 // (select cond, x, (xor x, y)) 7195 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7196 } 7197 7198 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 7199 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 7200 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 7201 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 7202 // ADDW/SUBW/MULW. 7203 static SDValue performANY_EXTENDCombine(SDNode *N, 7204 TargetLowering::DAGCombinerInfo &DCI, 7205 const RISCVSubtarget &Subtarget) { 7206 if (!Subtarget.is64Bit()) 7207 return SDValue(); 7208 7209 SelectionDAG &DAG = DCI.DAG; 7210 7211 SDValue Src = N->getOperand(0); 7212 EVT VT = N->getValueType(0); 7213 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 7214 return SDValue(); 7215 7216 // The opcode must be one that can implicitly sign_extend. 7217 // FIXME: Additional opcodes. 7218 switch (Src.getOpcode()) { 7219 default: 7220 return SDValue(); 7221 case ISD::MUL: 7222 if (!Subtarget.hasStdExtM()) 7223 return SDValue(); 7224 LLVM_FALLTHROUGH; 7225 case ISD::ADD: 7226 case ISD::SUB: 7227 break; 7228 } 7229 7230 // Only handle cases where the result is used by a CopyToReg. That likely 7231 // means the value is a liveout of the basic block. This helps prevent 7232 // infinite combine loops like PR51206. 7233 if (none_of(N->uses(), 7234 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7235 return SDValue(); 7236 7237 SmallVector<SDNode *, 4> SetCCs; 7238 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7239 UE = Src.getNode()->use_end(); 7240 UI != UE; ++UI) { 7241 SDNode *User = *UI; 7242 if (User == N) 7243 continue; 7244 if (UI.getUse().getResNo() != Src.getResNo()) 7245 continue; 7246 // All i32 setccs are legalized by sign extending operands. 7247 if (User->getOpcode() == ISD::SETCC) { 7248 SetCCs.push_back(User); 7249 continue; 7250 } 7251 // We don't know if we can extend this user. 7252 break; 7253 } 7254 7255 // If we don't have any SetCCs, this isn't worthwhile. 7256 if (SetCCs.empty()) 7257 return SDValue(); 7258 7259 SDLoc DL(N); 7260 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7261 DCI.CombineTo(N, SExt); 7262 7263 // Promote all the setccs. 7264 for (SDNode *SetCC : SetCCs) { 7265 SmallVector<SDValue, 4> Ops; 7266 7267 for (unsigned j = 0; j != 2; ++j) { 7268 SDValue SOp = SetCC->getOperand(j); 7269 if (SOp == Src) 7270 Ops.push_back(SExt); 7271 else 7272 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7273 } 7274 7275 Ops.push_back(SetCC->getOperand(2)); 7276 DCI.CombineTo(SetCC, 7277 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7278 } 7279 return SDValue(N, 0); 7280 } 7281 7282 // Try to form VWMUL or VWMULU. 7283 // FIXME: Support VWMULSU. 7284 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7285 bool Commute) { 7286 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7287 SDValue Op0 = N->getOperand(0); 7288 SDValue Op1 = N->getOperand(1); 7289 if (Commute) 7290 std::swap(Op0, Op1); 7291 7292 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7293 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7294 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7295 return SDValue(); 7296 7297 SDValue Mask = N->getOperand(2); 7298 SDValue VL = N->getOperand(3); 7299 7300 // Make sure the mask and VL match. 7301 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7302 return SDValue(); 7303 7304 MVT VT = N->getSimpleValueType(0); 7305 7306 // Determine the narrow size for a widening multiply. 7307 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7308 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7309 VT.getVectorElementCount()); 7310 7311 SDLoc DL(N); 7312 7313 // See if the other operand is the same opcode. 7314 if (Op0.getOpcode() == Op1.getOpcode()) { 7315 if (!Op1.hasOneUse()) 7316 return SDValue(); 7317 7318 // Make sure the mask and VL match. 7319 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7320 return SDValue(); 7321 7322 Op1 = Op1.getOperand(0); 7323 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7324 // The operand is a splat of a scalar. 7325 7326 // The VL must be the same. 7327 if (Op1.getOperand(1) != VL) 7328 return SDValue(); 7329 7330 // Get the scalar value. 7331 Op1 = Op1.getOperand(0); 7332 7333 // See if have enough sign bits or zero bits in the scalar to use a 7334 // widening multiply by splatting to smaller element size. 7335 unsigned EltBits = VT.getScalarSizeInBits(); 7336 unsigned ScalarBits = Op1.getValueSizeInBits(); 7337 // Make sure we're getting all element bits from the scalar register. 7338 // FIXME: Support implicit sign extension of vmv.v.x? 7339 if (ScalarBits < EltBits) 7340 return SDValue(); 7341 7342 if (IsSignExt) { 7343 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7344 return SDValue(); 7345 } else { 7346 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7347 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7348 return SDValue(); 7349 } 7350 7351 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7352 } else 7353 return SDValue(); 7354 7355 Op0 = Op0.getOperand(0); 7356 7357 // Re-introduce narrower extends if needed. 7358 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7359 if (Op0.getValueType() != NarrowVT) 7360 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7361 if (Op1.getValueType() != NarrowVT) 7362 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7363 7364 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7365 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7366 } 7367 7368 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7369 switch (Op.getOpcode()) { 7370 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7371 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7372 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7373 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7374 case ISD::FROUND: return RISCVFPRndMode::RMM; 7375 } 7376 7377 return RISCVFPRndMode::Invalid; 7378 } 7379 7380 // Fold 7381 // (fp_to_int (froundeven X)) -> fcvt X, rne 7382 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7383 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7384 // (fp_to_int (fceil X)) -> fcvt X, rup 7385 // (fp_to_int (fround X)) -> fcvt X, rmm 7386 static SDValue performFP_TO_INTCombine(SDNode *N, 7387 TargetLowering::DAGCombinerInfo &DCI, 7388 const RISCVSubtarget &Subtarget) { 7389 SelectionDAG &DAG = DCI.DAG; 7390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7391 MVT XLenVT = Subtarget.getXLenVT(); 7392 7393 // Only handle XLen or i32 types. Other types narrower than XLen will 7394 // eventually be legalized to XLenVT. 7395 EVT VT = N->getValueType(0); 7396 if (VT != MVT::i32 && VT != XLenVT) 7397 return SDValue(); 7398 7399 SDValue Src = N->getOperand(0); 7400 7401 // Ensure the FP type is also legal. 7402 if (!TLI.isTypeLegal(Src.getValueType())) 7403 return SDValue(); 7404 7405 // Don't do this for f16 with Zfhmin and not Zfh. 7406 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7407 return SDValue(); 7408 7409 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7410 if (FRM == RISCVFPRndMode::Invalid) 7411 return SDValue(); 7412 7413 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7414 7415 unsigned Opc; 7416 if (VT == XLenVT) 7417 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7418 else 7419 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7420 7421 SDLoc DL(N); 7422 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7423 DAG.getTargetConstant(FRM, DL, XLenVT)); 7424 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7425 } 7426 7427 // Fold 7428 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 7429 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 7430 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 7431 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 7432 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 7433 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 7434 TargetLowering::DAGCombinerInfo &DCI, 7435 const RISCVSubtarget &Subtarget) { 7436 SelectionDAG &DAG = DCI.DAG; 7437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7438 MVT XLenVT = Subtarget.getXLenVT(); 7439 7440 // Only handle XLen types. Other types narrower than XLen will eventually be 7441 // legalized to XLenVT. 7442 EVT DstVT = N->getValueType(0); 7443 if (DstVT != XLenVT) 7444 return SDValue(); 7445 7446 SDValue Src = N->getOperand(0); 7447 7448 // Ensure the FP type is also legal. 7449 if (!TLI.isTypeLegal(Src.getValueType())) 7450 return SDValue(); 7451 7452 // Don't do this for f16 with Zfhmin and not Zfh. 7453 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7454 return SDValue(); 7455 7456 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 7457 7458 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 7459 if (FRM == RISCVFPRndMode::Invalid) 7460 return SDValue(); 7461 7462 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 7463 7464 unsigned Opc; 7465 if (SatVT == DstVT) 7466 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7467 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 7468 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7469 else 7470 return SDValue(); 7471 // FIXME: Support other SatVTs by clamping before or after the conversion. 7472 7473 Src = Src.getOperand(0); 7474 7475 SDLoc DL(N); 7476 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 7477 DAG.getTargetConstant(FRM, DL, XLenVT)); 7478 7479 // RISCV FP-to-int conversions saturate to the destination register size, but 7480 // don't produce 0 for nan. 7481 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 7482 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 7483 } 7484 7485 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7486 DAGCombinerInfo &DCI) const { 7487 SelectionDAG &DAG = DCI.DAG; 7488 7489 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7490 // bits are demanded. N will be added to the Worklist if it was not deleted. 7491 // Caller should return SDValue(N, 0) if this returns true. 7492 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7493 SDValue Op = N->getOperand(OpNo); 7494 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7495 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7496 return false; 7497 7498 if (N->getOpcode() != ISD::DELETED_NODE) 7499 DCI.AddToWorklist(N); 7500 return true; 7501 }; 7502 7503 switch (N->getOpcode()) { 7504 default: 7505 break; 7506 case RISCVISD::SplitF64: { 7507 SDValue Op0 = N->getOperand(0); 7508 // If the input to SplitF64 is just BuildPairF64 then the operation is 7509 // redundant. Instead, use BuildPairF64's operands directly. 7510 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7511 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7512 7513 SDLoc DL(N); 7514 7515 // It's cheaper to materialise two 32-bit integers than to load a double 7516 // from the constant pool and transfer it to integer registers through the 7517 // stack. 7518 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7519 APInt V = C->getValueAPF().bitcastToAPInt(); 7520 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7521 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7522 return DCI.CombineTo(N, Lo, Hi); 7523 } 7524 7525 // This is a target-specific version of a DAGCombine performed in 7526 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7527 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7528 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7529 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7530 !Op0.getNode()->hasOneUse()) 7531 break; 7532 SDValue NewSplitF64 = 7533 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7534 Op0.getOperand(0)); 7535 SDValue Lo = NewSplitF64.getValue(0); 7536 SDValue Hi = NewSplitF64.getValue(1); 7537 APInt SignBit = APInt::getSignMask(32); 7538 if (Op0.getOpcode() == ISD::FNEG) { 7539 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7540 DAG.getConstant(SignBit, DL, MVT::i32)); 7541 return DCI.CombineTo(N, Lo, NewHi); 7542 } 7543 assert(Op0.getOpcode() == ISD::FABS); 7544 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7545 DAG.getConstant(~SignBit, DL, MVT::i32)); 7546 return DCI.CombineTo(N, Lo, NewHi); 7547 } 7548 case RISCVISD::SLLW: 7549 case RISCVISD::SRAW: 7550 case RISCVISD::SRLW: 7551 case RISCVISD::ROLW: 7552 case RISCVISD::RORW: { 7553 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7554 if (SimplifyDemandedLowBitsHelper(0, 32) || 7555 SimplifyDemandedLowBitsHelper(1, 5)) 7556 return SDValue(N, 0); 7557 break; 7558 } 7559 case RISCVISD::CLZW: 7560 case RISCVISD::CTZW: { 7561 // Only the lower 32 bits of the first operand are read 7562 if (SimplifyDemandedLowBitsHelper(0, 32)) 7563 return SDValue(N, 0); 7564 break; 7565 } 7566 case RISCVISD::GREV: 7567 case RISCVISD::GORC: { 7568 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7569 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7570 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7571 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7572 return SDValue(N, 0); 7573 7574 return combineGREVI_GORCI(N, DAG); 7575 } 7576 case RISCVISD::GREVW: 7577 case RISCVISD::GORCW: { 7578 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7579 if (SimplifyDemandedLowBitsHelper(0, 32) || 7580 SimplifyDemandedLowBitsHelper(1, 5)) 7581 return SDValue(N, 0); 7582 7583 return combineGREVI_GORCI(N, DAG); 7584 } 7585 case RISCVISD::SHFL: 7586 case RISCVISD::UNSHFL: { 7587 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7588 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7589 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7590 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7591 return SDValue(N, 0); 7592 7593 break; 7594 } 7595 case RISCVISD::SHFLW: 7596 case RISCVISD::UNSHFLW: { 7597 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7598 SDValue LHS = N->getOperand(0); 7599 SDValue RHS = N->getOperand(1); 7600 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7601 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7602 if (SimplifyDemandedLowBitsHelper(0, 32) || 7603 SimplifyDemandedLowBitsHelper(1, 4)) 7604 return SDValue(N, 0); 7605 7606 break; 7607 } 7608 case RISCVISD::BCOMPRESSW: 7609 case RISCVISD::BDECOMPRESSW: { 7610 // Only the lower 32 bits of LHS and RHS are read. 7611 if (SimplifyDemandedLowBitsHelper(0, 32) || 7612 SimplifyDemandedLowBitsHelper(1, 32)) 7613 return SDValue(N, 0); 7614 7615 break; 7616 } 7617 case RISCVISD::FMV_X_ANYEXTH: 7618 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7619 SDLoc DL(N); 7620 SDValue Op0 = N->getOperand(0); 7621 MVT VT = N->getSimpleValueType(0); 7622 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7623 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7624 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7625 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7626 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7627 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7628 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7629 assert(Op0.getOperand(0).getValueType() == VT && 7630 "Unexpected value type!"); 7631 return Op0.getOperand(0); 7632 } 7633 7634 // This is a target-specific version of a DAGCombine performed in 7635 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7636 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7637 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7638 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7639 !Op0.getNode()->hasOneUse()) 7640 break; 7641 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7642 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7643 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7644 if (Op0.getOpcode() == ISD::FNEG) 7645 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7646 DAG.getConstant(SignBit, DL, VT)); 7647 7648 assert(Op0.getOpcode() == ISD::FABS); 7649 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7650 DAG.getConstant(~SignBit, DL, VT)); 7651 } 7652 case ISD::ADD: 7653 return performADDCombine(N, DAG, Subtarget); 7654 case ISD::SUB: 7655 return performSUBCombine(N, DAG); 7656 case ISD::AND: 7657 return performANDCombine(N, DAG); 7658 case ISD::OR: 7659 return performORCombine(N, DAG, Subtarget); 7660 case ISD::XOR: 7661 return performXORCombine(N, DAG); 7662 case ISD::ANY_EXTEND: 7663 return performANY_EXTENDCombine(N, DCI, Subtarget); 7664 case ISD::ZERO_EXTEND: 7665 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7666 // type legalization. This is safe because fp_to_uint produces poison if 7667 // it overflows. 7668 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7669 SDValue Src = N->getOperand(0); 7670 if (Src.getOpcode() == ISD::FP_TO_UINT && 7671 isTypeLegal(Src.getOperand(0).getValueType())) 7672 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7673 Src.getOperand(0)); 7674 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7675 isTypeLegal(Src.getOperand(1).getValueType())) { 7676 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7677 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7678 Src.getOperand(0), Src.getOperand(1)); 7679 DCI.CombineTo(N, Res); 7680 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7681 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7682 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7683 } 7684 } 7685 return SDValue(); 7686 case RISCVISD::SELECT_CC: { 7687 // Transform 7688 SDValue LHS = N->getOperand(0); 7689 SDValue RHS = N->getOperand(1); 7690 SDValue TrueV = N->getOperand(3); 7691 SDValue FalseV = N->getOperand(4); 7692 7693 // If the True and False values are the same, we don't need a select_cc. 7694 if (TrueV == FalseV) 7695 return TrueV; 7696 7697 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7698 if (!ISD::isIntEqualitySetCC(CCVal)) 7699 break; 7700 7701 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7702 // (select_cc X, Y, lt, trueV, falseV) 7703 // Sometimes the setcc is introduced after select_cc has been formed. 7704 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7705 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7706 // If we're looking for eq 0 instead of ne 0, we need to invert the 7707 // condition. 7708 bool Invert = CCVal == ISD::SETEQ; 7709 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7710 if (Invert) 7711 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7712 7713 SDLoc DL(N); 7714 RHS = LHS.getOperand(1); 7715 LHS = LHS.getOperand(0); 7716 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7717 7718 SDValue TargetCC = DAG.getCondCode(CCVal); 7719 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7720 {LHS, RHS, TargetCC, TrueV, FalseV}); 7721 } 7722 7723 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7724 // (select_cc X, Y, eq/ne, trueV, falseV) 7725 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7726 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7727 {LHS.getOperand(0), LHS.getOperand(1), 7728 N->getOperand(2), TrueV, FalseV}); 7729 // (select_cc X, 1, setne, trueV, falseV) -> 7730 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7731 // This can occur when legalizing some floating point comparisons. 7732 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7733 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7734 SDLoc DL(N); 7735 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7736 SDValue TargetCC = DAG.getCondCode(CCVal); 7737 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7738 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7739 {LHS, RHS, TargetCC, TrueV, FalseV}); 7740 } 7741 7742 break; 7743 } 7744 case RISCVISD::BR_CC: { 7745 SDValue LHS = N->getOperand(1); 7746 SDValue RHS = N->getOperand(2); 7747 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7748 if (!ISD::isIntEqualitySetCC(CCVal)) 7749 break; 7750 7751 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7752 // (br_cc X, Y, lt, dest) 7753 // Sometimes the setcc is introduced after br_cc has been formed. 7754 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7755 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7756 // If we're looking for eq 0 instead of ne 0, we need to invert the 7757 // condition. 7758 bool Invert = CCVal == ISD::SETEQ; 7759 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7760 if (Invert) 7761 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7762 7763 SDLoc DL(N); 7764 RHS = LHS.getOperand(1); 7765 LHS = LHS.getOperand(0); 7766 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7767 7768 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7769 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7770 N->getOperand(4)); 7771 } 7772 7773 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7774 // (br_cc X, Y, eq/ne, trueV, falseV) 7775 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7776 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7777 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7778 N->getOperand(3), N->getOperand(4)); 7779 7780 // (br_cc X, 1, setne, br_cc) -> 7781 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7782 // This can occur when legalizing some floating point comparisons. 7783 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7784 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7785 SDLoc DL(N); 7786 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7787 SDValue TargetCC = DAG.getCondCode(CCVal); 7788 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7789 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7790 N->getOperand(0), LHS, RHS, TargetCC, 7791 N->getOperand(4)); 7792 } 7793 break; 7794 } 7795 case ISD::FP_TO_SINT: 7796 case ISD::FP_TO_UINT: 7797 return performFP_TO_INTCombine(N, DCI, Subtarget); 7798 case ISD::FP_TO_SINT_SAT: 7799 case ISD::FP_TO_UINT_SAT: 7800 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 7801 case ISD::FCOPYSIGN: { 7802 EVT VT = N->getValueType(0); 7803 if (!VT.isVector()) 7804 break; 7805 // There is a form of VFSGNJ which injects the negated sign of its second 7806 // operand. Try and bubble any FNEG up after the extend/round to produce 7807 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7808 // TRUNC=1. 7809 SDValue In2 = N->getOperand(1); 7810 // Avoid cases where the extend/round has multiple uses, as duplicating 7811 // those is typically more expensive than removing a fneg. 7812 if (!In2.hasOneUse()) 7813 break; 7814 if (In2.getOpcode() != ISD::FP_EXTEND && 7815 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7816 break; 7817 In2 = In2.getOperand(0); 7818 if (In2.getOpcode() != ISD::FNEG) 7819 break; 7820 SDLoc DL(N); 7821 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7822 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7823 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7824 } 7825 case ISD::MGATHER: 7826 case ISD::MSCATTER: 7827 case ISD::VP_GATHER: 7828 case ISD::VP_SCATTER: { 7829 if (!DCI.isBeforeLegalize()) 7830 break; 7831 SDValue Index, ScaleOp; 7832 bool IsIndexScaled = false; 7833 bool IsIndexSigned = false; 7834 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7835 Index = VPGSN->getIndex(); 7836 ScaleOp = VPGSN->getScale(); 7837 IsIndexScaled = VPGSN->isIndexScaled(); 7838 IsIndexSigned = VPGSN->isIndexSigned(); 7839 } else { 7840 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7841 Index = MGSN->getIndex(); 7842 ScaleOp = MGSN->getScale(); 7843 IsIndexScaled = MGSN->isIndexScaled(); 7844 IsIndexSigned = MGSN->isIndexSigned(); 7845 } 7846 EVT IndexVT = Index.getValueType(); 7847 MVT XLenVT = Subtarget.getXLenVT(); 7848 // RISCV indexed loads only support the "unsigned unscaled" addressing 7849 // mode, so anything else must be manually legalized. 7850 bool NeedsIdxLegalization = 7851 IsIndexScaled || 7852 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7853 if (!NeedsIdxLegalization) 7854 break; 7855 7856 SDLoc DL(N); 7857 7858 // Any index legalization should first promote to XLenVT, so we don't lose 7859 // bits when scaling. This may create an illegal index type so we let 7860 // LLVM's legalization take care of the splitting. 7861 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7862 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7863 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7864 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7865 DL, IndexVT, Index); 7866 } 7867 7868 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7869 if (IsIndexScaled && Scale != 1) { 7870 // Manually scale the indices by the element size. 7871 // TODO: Sanitize the scale operand here? 7872 // TODO: For VP nodes, should we use VP_SHL here? 7873 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7874 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7875 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7876 } 7877 7878 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7879 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7880 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7881 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7882 VPGN->getScale(), VPGN->getMask(), 7883 VPGN->getVectorLength()}, 7884 VPGN->getMemOperand(), NewIndexTy); 7885 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7886 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7887 {VPSN->getChain(), VPSN->getValue(), 7888 VPSN->getBasePtr(), Index, VPSN->getScale(), 7889 VPSN->getMask(), VPSN->getVectorLength()}, 7890 VPSN->getMemOperand(), NewIndexTy); 7891 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7892 return DAG.getMaskedGather( 7893 N->getVTList(), MGN->getMemoryVT(), DL, 7894 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7895 MGN->getBasePtr(), Index, MGN->getScale()}, 7896 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7897 const auto *MSN = cast<MaskedScatterSDNode>(N); 7898 return DAG.getMaskedScatter( 7899 N->getVTList(), MSN->getMemoryVT(), DL, 7900 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7901 Index, MSN->getScale()}, 7902 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7903 } 7904 case RISCVISD::SRA_VL: 7905 case RISCVISD::SRL_VL: 7906 case RISCVISD::SHL_VL: { 7907 SDValue ShAmt = N->getOperand(1); 7908 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7909 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7910 SDLoc DL(N); 7911 SDValue VL = N->getOperand(3); 7912 EVT VT = N->getValueType(0); 7913 ShAmt = 7914 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7915 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7916 N->getOperand(2), N->getOperand(3)); 7917 } 7918 break; 7919 } 7920 case ISD::SRA: 7921 case ISD::SRL: 7922 case ISD::SHL: { 7923 SDValue ShAmt = N->getOperand(1); 7924 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7925 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7926 SDLoc DL(N); 7927 EVT VT = N->getValueType(0); 7928 ShAmt = 7929 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7930 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7931 } 7932 break; 7933 } 7934 case RISCVISD::MUL_VL: 7935 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 7936 return V; 7937 // Mul is commutative. 7938 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 7939 case ISD::STORE: { 7940 auto *Store = cast<StoreSDNode>(N); 7941 SDValue Val = Store->getValue(); 7942 // Combine store of vmv.x.s to vse with VL of 1. 7943 // FIXME: Support FP. 7944 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7945 SDValue Src = Val.getOperand(0); 7946 EVT VecVT = Src.getValueType(); 7947 EVT MemVT = Store->getMemoryVT(); 7948 // The memory VT and the element type must match. 7949 if (VecVT.getVectorElementType() == MemVT) { 7950 SDLoc DL(N); 7951 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7952 return DAG.getStoreVP( 7953 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 7954 DAG.getConstant(1, DL, MaskVT), 7955 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 7956 Store->getMemOperand(), Store->getAddressingMode(), 7957 Store->isTruncatingStore(), /*IsCompress*/ false); 7958 } 7959 } 7960 7961 break; 7962 } 7963 } 7964 7965 return SDValue(); 7966 } 7967 7968 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7969 const SDNode *N, CombineLevel Level) const { 7970 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7971 // materialised in fewer instructions than `(OP _, c1)`: 7972 // 7973 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7974 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7975 SDValue N0 = N->getOperand(0); 7976 EVT Ty = N0.getValueType(); 7977 if (Ty.isScalarInteger() && 7978 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7979 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7980 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7981 if (C1 && C2) { 7982 const APInt &C1Int = C1->getAPIntValue(); 7983 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7984 7985 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7986 // and the combine should happen, to potentially allow further combines 7987 // later. 7988 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7989 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7990 return true; 7991 7992 // We can materialise `c1` in an add immediate, so it's "free", and the 7993 // combine should be prevented. 7994 if (C1Int.getMinSignedBits() <= 64 && 7995 isLegalAddImmediate(C1Int.getSExtValue())) 7996 return false; 7997 7998 // Neither constant will fit into an immediate, so find materialisation 7999 // costs. 8000 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8001 Subtarget.getFeatureBits(), 8002 /*CompressionCost*/true); 8003 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8004 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8005 /*CompressionCost*/true); 8006 8007 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8008 // combine should be prevented. 8009 if (C1Cost < ShiftedC1Cost) 8010 return false; 8011 } 8012 } 8013 return true; 8014 } 8015 8016 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8017 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8018 TargetLoweringOpt &TLO) const { 8019 // Delay this optimization as late as possible. 8020 if (!TLO.LegalOps) 8021 return false; 8022 8023 EVT VT = Op.getValueType(); 8024 if (VT.isVector()) 8025 return false; 8026 8027 // Only handle AND for now. 8028 if (Op.getOpcode() != ISD::AND) 8029 return false; 8030 8031 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8032 if (!C) 8033 return false; 8034 8035 const APInt &Mask = C->getAPIntValue(); 8036 8037 // Clear all non-demanded bits initially. 8038 APInt ShrunkMask = Mask & DemandedBits; 8039 8040 // Try to make a smaller immediate by setting undemanded bits. 8041 8042 APInt ExpandedMask = Mask | ~DemandedBits; 8043 8044 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8045 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8046 }; 8047 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8048 if (NewMask == Mask) 8049 return true; 8050 SDLoc DL(Op); 8051 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8052 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8053 return TLO.CombineTo(Op, NewOp); 8054 }; 8055 8056 // If the shrunk mask fits in sign extended 12 bits, let the target 8057 // independent code apply it. 8058 if (ShrunkMask.isSignedIntN(12)) 8059 return false; 8060 8061 // Preserve (and X, 0xffff) when zext.h is supported. 8062 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8063 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8064 if (IsLegalMask(NewMask)) 8065 return UseMask(NewMask); 8066 } 8067 8068 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8069 if (VT == MVT::i64) { 8070 APInt NewMask = APInt(64, 0xffffffff); 8071 if (IsLegalMask(NewMask)) 8072 return UseMask(NewMask); 8073 } 8074 8075 // For the remaining optimizations, we need to be able to make a negative 8076 // number through a combination of mask and undemanded bits. 8077 if (!ExpandedMask.isNegative()) 8078 return false; 8079 8080 // What is the fewest number of bits we need to represent the negative number. 8081 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8082 8083 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8084 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8085 APInt NewMask = ShrunkMask; 8086 if (MinSignedBits <= 12) 8087 NewMask.setBitsFrom(11); 8088 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8089 NewMask.setBitsFrom(31); 8090 else 8091 return false; 8092 8093 // Check that our new mask is a subset of the demanded mask. 8094 assert(IsLegalMask(NewMask)); 8095 return UseMask(NewMask); 8096 } 8097 8098 static void computeGREV(APInt &Src, unsigned ShAmt) { 8099 ShAmt &= Src.getBitWidth() - 1; 8100 uint64_t x = Src.getZExtValue(); 8101 if (ShAmt & 1) 8102 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8103 if (ShAmt & 2) 8104 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8105 if (ShAmt & 4) 8106 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8107 if (ShAmt & 8) 8108 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8109 if (ShAmt & 16) 8110 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8111 if (ShAmt & 32) 8112 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8113 Src = x; 8114 } 8115 8116 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8117 KnownBits &Known, 8118 const APInt &DemandedElts, 8119 const SelectionDAG &DAG, 8120 unsigned Depth) const { 8121 unsigned BitWidth = Known.getBitWidth(); 8122 unsigned Opc = Op.getOpcode(); 8123 assert((Opc >= ISD::BUILTIN_OP_END || 8124 Opc == ISD::INTRINSIC_WO_CHAIN || 8125 Opc == ISD::INTRINSIC_W_CHAIN || 8126 Opc == ISD::INTRINSIC_VOID) && 8127 "Should use MaskedValueIsZero if you don't know whether Op" 8128 " is a target node!"); 8129 8130 Known.resetAll(); 8131 switch (Opc) { 8132 default: break; 8133 case RISCVISD::SELECT_CC: { 8134 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8135 // If we don't know any bits, early out. 8136 if (Known.isUnknown()) 8137 break; 8138 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8139 8140 // Only known if known in both the LHS and RHS. 8141 Known = KnownBits::commonBits(Known, Known2); 8142 break; 8143 } 8144 case RISCVISD::REMUW: { 8145 KnownBits Known2; 8146 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8147 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8148 // We only care about the lower 32 bits. 8149 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8150 // Restore the original width by sign extending. 8151 Known = Known.sext(BitWidth); 8152 break; 8153 } 8154 case RISCVISD::DIVUW: { 8155 KnownBits Known2; 8156 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8157 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8158 // We only care about the lower 32 bits. 8159 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8160 // Restore the original width by sign extending. 8161 Known = Known.sext(BitWidth); 8162 break; 8163 } 8164 case RISCVISD::CTZW: { 8165 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8166 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8167 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8168 Known.Zero.setBitsFrom(LowBits); 8169 break; 8170 } 8171 case RISCVISD::CLZW: { 8172 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8173 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8174 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8175 Known.Zero.setBitsFrom(LowBits); 8176 break; 8177 } 8178 case RISCVISD::GREV: 8179 case RISCVISD::GREVW: { 8180 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8181 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8182 if (Opc == RISCVISD::GREVW) 8183 Known = Known.trunc(32); 8184 unsigned ShAmt = C->getZExtValue(); 8185 computeGREV(Known.Zero, ShAmt); 8186 computeGREV(Known.One, ShAmt); 8187 if (Opc == RISCVISD::GREVW) 8188 Known = Known.sext(BitWidth); 8189 } 8190 break; 8191 } 8192 case RISCVISD::READ_VLENB: 8193 // We assume VLENB is at least 16 bytes. 8194 Known.Zero.setLowBits(4); 8195 // We assume VLENB is no more than 65536 / 8 bytes. 8196 Known.Zero.setBitsFrom(14); 8197 break; 8198 case ISD::INTRINSIC_W_CHAIN: 8199 case ISD::INTRINSIC_WO_CHAIN: { 8200 unsigned IntNo = 8201 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8202 switch (IntNo) { 8203 default: 8204 // We can't do anything for most intrinsics. 8205 break; 8206 case Intrinsic::riscv_vsetvli: 8207 case Intrinsic::riscv_vsetvlimax: 8208 case Intrinsic::riscv_vsetvli_opt: 8209 case Intrinsic::riscv_vsetvlimax_opt: 8210 // Assume that VL output is positive and would fit in an int32_t. 8211 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8212 if (BitWidth >= 32) 8213 Known.Zero.setBitsFrom(31); 8214 break; 8215 } 8216 break; 8217 } 8218 } 8219 } 8220 8221 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8222 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8223 unsigned Depth) const { 8224 switch (Op.getOpcode()) { 8225 default: 8226 break; 8227 case RISCVISD::SELECT_CC: { 8228 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8229 if (Tmp == 1) return 1; // Early out. 8230 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8231 return std::min(Tmp, Tmp2); 8232 } 8233 case RISCVISD::SLLW: 8234 case RISCVISD::SRAW: 8235 case RISCVISD::SRLW: 8236 case RISCVISD::DIVW: 8237 case RISCVISD::DIVUW: 8238 case RISCVISD::REMUW: 8239 case RISCVISD::ROLW: 8240 case RISCVISD::RORW: 8241 case RISCVISD::GREVW: 8242 case RISCVISD::GORCW: 8243 case RISCVISD::FSLW: 8244 case RISCVISD::FSRW: 8245 case RISCVISD::SHFLW: 8246 case RISCVISD::UNSHFLW: 8247 case RISCVISD::BCOMPRESSW: 8248 case RISCVISD::BDECOMPRESSW: 8249 case RISCVISD::BFPW: 8250 case RISCVISD::FCVT_W_RV64: 8251 case RISCVISD::FCVT_WU_RV64: 8252 case RISCVISD::STRICT_FCVT_W_RV64: 8253 case RISCVISD::STRICT_FCVT_WU_RV64: 8254 // TODO: As the result is sign-extended, this is conservatively correct. A 8255 // more precise answer could be calculated for SRAW depending on known 8256 // bits in the shift amount. 8257 return 33; 8258 case RISCVISD::SHFL: 8259 case RISCVISD::UNSHFL: { 8260 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8261 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8262 // will stay within the upper 32 bits. If there were more than 32 sign bits 8263 // before there will be at least 33 sign bits after. 8264 if (Op.getValueType() == MVT::i64 && 8265 isa<ConstantSDNode>(Op.getOperand(1)) && 8266 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8267 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8268 if (Tmp > 32) 8269 return 33; 8270 } 8271 break; 8272 } 8273 case RISCVISD::VMV_X_S: 8274 // The number of sign bits of the scalar result is computed by obtaining the 8275 // element type of the input vector operand, subtracting its width from the 8276 // XLEN, and then adding one (sign bit within the element type). If the 8277 // element type is wider than XLen, the least-significant XLEN bits are 8278 // taken. 8279 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 8280 return 1; 8281 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8282 } 8283 8284 return 1; 8285 } 8286 8287 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8288 MachineBasicBlock *BB) { 8289 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8290 8291 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8292 // Should the count have wrapped while it was being read, we need to try 8293 // again. 8294 // ... 8295 // read: 8296 // rdcycleh x3 # load high word of cycle 8297 // rdcycle x2 # load low word of cycle 8298 // rdcycleh x4 # load high word of cycle 8299 // bne x3, x4, read # check if high word reads match, otherwise try again 8300 // ... 8301 8302 MachineFunction &MF = *BB->getParent(); 8303 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8304 MachineFunction::iterator It = ++BB->getIterator(); 8305 8306 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8307 MF.insert(It, LoopMBB); 8308 8309 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8310 MF.insert(It, DoneMBB); 8311 8312 // Transfer the remainder of BB and its successor edges to DoneMBB. 8313 DoneMBB->splice(DoneMBB->begin(), BB, 8314 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8315 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8316 8317 BB->addSuccessor(LoopMBB); 8318 8319 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8320 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8321 Register LoReg = MI.getOperand(0).getReg(); 8322 Register HiReg = MI.getOperand(1).getReg(); 8323 DebugLoc DL = MI.getDebugLoc(); 8324 8325 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8326 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8327 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8328 .addReg(RISCV::X0); 8329 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8330 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8331 .addReg(RISCV::X0); 8332 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8333 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8334 .addReg(RISCV::X0); 8335 8336 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8337 .addReg(HiReg) 8338 .addReg(ReadAgainReg) 8339 .addMBB(LoopMBB); 8340 8341 LoopMBB->addSuccessor(LoopMBB); 8342 LoopMBB->addSuccessor(DoneMBB); 8343 8344 MI.eraseFromParent(); 8345 8346 return DoneMBB; 8347 } 8348 8349 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8350 MachineBasicBlock *BB) { 8351 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8352 8353 MachineFunction &MF = *BB->getParent(); 8354 DebugLoc DL = MI.getDebugLoc(); 8355 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8356 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8357 Register LoReg = MI.getOperand(0).getReg(); 8358 Register HiReg = MI.getOperand(1).getReg(); 8359 Register SrcReg = MI.getOperand(2).getReg(); 8360 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8361 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8362 8363 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8364 RI); 8365 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8366 MachineMemOperand *MMOLo = 8367 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8368 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8369 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8370 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8371 .addFrameIndex(FI) 8372 .addImm(0) 8373 .addMemOperand(MMOLo); 8374 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8375 .addFrameIndex(FI) 8376 .addImm(4) 8377 .addMemOperand(MMOHi); 8378 MI.eraseFromParent(); // The pseudo instruction is gone now. 8379 return BB; 8380 } 8381 8382 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8383 MachineBasicBlock *BB) { 8384 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8385 "Unexpected instruction"); 8386 8387 MachineFunction &MF = *BB->getParent(); 8388 DebugLoc DL = MI.getDebugLoc(); 8389 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8390 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8391 Register DstReg = MI.getOperand(0).getReg(); 8392 Register LoReg = MI.getOperand(1).getReg(); 8393 Register HiReg = MI.getOperand(2).getReg(); 8394 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8395 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8396 8397 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8398 MachineMemOperand *MMOLo = 8399 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8400 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8401 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8402 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8403 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8404 .addFrameIndex(FI) 8405 .addImm(0) 8406 .addMemOperand(MMOLo); 8407 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8408 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8409 .addFrameIndex(FI) 8410 .addImm(4) 8411 .addMemOperand(MMOHi); 8412 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8413 MI.eraseFromParent(); // The pseudo instruction is gone now. 8414 return BB; 8415 } 8416 8417 static bool isSelectPseudo(MachineInstr &MI) { 8418 switch (MI.getOpcode()) { 8419 default: 8420 return false; 8421 case RISCV::Select_GPR_Using_CC_GPR: 8422 case RISCV::Select_FPR16_Using_CC_GPR: 8423 case RISCV::Select_FPR32_Using_CC_GPR: 8424 case RISCV::Select_FPR64_Using_CC_GPR: 8425 return true; 8426 } 8427 } 8428 8429 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8430 unsigned RelOpcode, unsigned EqOpcode, 8431 const RISCVSubtarget &Subtarget) { 8432 DebugLoc DL = MI.getDebugLoc(); 8433 Register DstReg = MI.getOperand(0).getReg(); 8434 Register Src1Reg = MI.getOperand(1).getReg(); 8435 Register Src2Reg = MI.getOperand(2).getReg(); 8436 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8437 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8438 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8439 8440 // Save the current FFLAGS. 8441 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8442 8443 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8444 .addReg(Src1Reg) 8445 .addReg(Src2Reg); 8446 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8447 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8448 8449 // Restore the FFLAGS. 8450 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8451 .addReg(SavedFFlags, RegState::Kill); 8452 8453 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8454 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8455 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8456 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8457 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8458 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8459 8460 // Erase the pseudoinstruction. 8461 MI.eraseFromParent(); 8462 return BB; 8463 } 8464 8465 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8466 MachineBasicBlock *BB, 8467 const RISCVSubtarget &Subtarget) { 8468 // To "insert" Select_* instructions, we actually have to insert the triangle 8469 // control-flow pattern. The incoming instructions know the destination vreg 8470 // to set, the condition code register to branch on, the true/false values to 8471 // select between, and the condcode to use to select the appropriate branch. 8472 // 8473 // We produce the following control flow: 8474 // HeadMBB 8475 // | \ 8476 // | IfFalseMBB 8477 // | / 8478 // TailMBB 8479 // 8480 // When we find a sequence of selects we attempt to optimize their emission 8481 // by sharing the control flow. Currently we only handle cases where we have 8482 // multiple selects with the exact same condition (same LHS, RHS and CC). 8483 // The selects may be interleaved with other instructions if the other 8484 // instructions meet some requirements we deem safe: 8485 // - They are debug instructions. Otherwise, 8486 // - They do not have side-effects, do not access memory and their inputs do 8487 // not depend on the results of the select pseudo-instructions. 8488 // The TrueV/FalseV operands of the selects cannot depend on the result of 8489 // previous selects in the sequence. 8490 // These conditions could be further relaxed. See the X86 target for a 8491 // related approach and more information. 8492 Register LHS = MI.getOperand(1).getReg(); 8493 Register RHS = MI.getOperand(2).getReg(); 8494 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8495 8496 SmallVector<MachineInstr *, 4> SelectDebugValues; 8497 SmallSet<Register, 4> SelectDests; 8498 SelectDests.insert(MI.getOperand(0).getReg()); 8499 8500 MachineInstr *LastSelectPseudo = &MI; 8501 8502 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8503 SequenceMBBI != E; ++SequenceMBBI) { 8504 if (SequenceMBBI->isDebugInstr()) 8505 continue; 8506 else if (isSelectPseudo(*SequenceMBBI)) { 8507 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8508 SequenceMBBI->getOperand(2).getReg() != RHS || 8509 SequenceMBBI->getOperand(3).getImm() != CC || 8510 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8511 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8512 break; 8513 LastSelectPseudo = &*SequenceMBBI; 8514 SequenceMBBI->collectDebugValues(SelectDebugValues); 8515 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8516 } else { 8517 if (SequenceMBBI->hasUnmodeledSideEffects() || 8518 SequenceMBBI->mayLoadOrStore()) 8519 break; 8520 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8521 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8522 })) 8523 break; 8524 } 8525 } 8526 8527 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8528 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8529 DebugLoc DL = MI.getDebugLoc(); 8530 MachineFunction::iterator I = ++BB->getIterator(); 8531 8532 MachineBasicBlock *HeadMBB = BB; 8533 MachineFunction *F = BB->getParent(); 8534 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8535 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8536 8537 F->insert(I, IfFalseMBB); 8538 F->insert(I, TailMBB); 8539 8540 // Transfer debug instructions associated with the selects to TailMBB. 8541 for (MachineInstr *DebugInstr : SelectDebugValues) { 8542 TailMBB->push_back(DebugInstr->removeFromParent()); 8543 } 8544 8545 // Move all instructions after the sequence to TailMBB. 8546 TailMBB->splice(TailMBB->end(), HeadMBB, 8547 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8548 // Update machine-CFG edges by transferring all successors of the current 8549 // block to the new block which will contain the Phi nodes for the selects. 8550 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8551 // Set the successors for HeadMBB. 8552 HeadMBB->addSuccessor(IfFalseMBB); 8553 HeadMBB->addSuccessor(TailMBB); 8554 8555 // Insert appropriate branch. 8556 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8557 .addReg(LHS) 8558 .addReg(RHS) 8559 .addMBB(TailMBB); 8560 8561 // IfFalseMBB just falls through to TailMBB. 8562 IfFalseMBB->addSuccessor(TailMBB); 8563 8564 // Create PHIs for all of the select pseudo-instructions. 8565 auto SelectMBBI = MI.getIterator(); 8566 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8567 auto InsertionPoint = TailMBB->begin(); 8568 while (SelectMBBI != SelectEnd) { 8569 auto Next = std::next(SelectMBBI); 8570 if (isSelectPseudo(*SelectMBBI)) { 8571 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8572 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8573 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8574 .addReg(SelectMBBI->getOperand(4).getReg()) 8575 .addMBB(HeadMBB) 8576 .addReg(SelectMBBI->getOperand(5).getReg()) 8577 .addMBB(IfFalseMBB); 8578 SelectMBBI->eraseFromParent(); 8579 } 8580 SelectMBBI = Next; 8581 } 8582 8583 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8584 return TailMBB; 8585 } 8586 8587 MachineBasicBlock * 8588 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8589 MachineBasicBlock *BB) const { 8590 switch (MI.getOpcode()) { 8591 default: 8592 llvm_unreachable("Unexpected instr type to insert"); 8593 case RISCV::ReadCycleWide: 8594 assert(!Subtarget.is64Bit() && 8595 "ReadCycleWrite is only to be used on riscv32"); 8596 return emitReadCycleWidePseudo(MI, BB); 8597 case RISCV::Select_GPR_Using_CC_GPR: 8598 case RISCV::Select_FPR16_Using_CC_GPR: 8599 case RISCV::Select_FPR32_Using_CC_GPR: 8600 case RISCV::Select_FPR64_Using_CC_GPR: 8601 return emitSelectPseudo(MI, BB, Subtarget); 8602 case RISCV::BuildPairF64Pseudo: 8603 return emitBuildPairF64Pseudo(MI, BB); 8604 case RISCV::SplitF64Pseudo: 8605 return emitSplitF64Pseudo(MI, BB); 8606 case RISCV::PseudoQuietFLE_H: 8607 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8608 case RISCV::PseudoQuietFLT_H: 8609 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8610 case RISCV::PseudoQuietFLE_S: 8611 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8612 case RISCV::PseudoQuietFLT_S: 8613 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8614 case RISCV::PseudoQuietFLE_D: 8615 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8616 case RISCV::PseudoQuietFLT_D: 8617 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8618 } 8619 } 8620 8621 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8622 SDNode *Node) const { 8623 // Add FRM dependency to any instructions with dynamic rounding mode. 8624 unsigned Opc = MI.getOpcode(); 8625 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8626 if (Idx < 0) 8627 return; 8628 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8629 return; 8630 // If the instruction already reads FRM, don't add another read. 8631 if (MI.readsRegister(RISCV::FRM)) 8632 return; 8633 MI.addOperand( 8634 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8635 } 8636 8637 // Calling Convention Implementation. 8638 // The expectations for frontend ABI lowering vary from target to target. 8639 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8640 // details, but this is a longer term goal. For now, we simply try to keep the 8641 // role of the frontend as simple and well-defined as possible. The rules can 8642 // be summarised as: 8643 // * Never split up large scalar arguments. We handle them here. 8644 // * If a hardfloat calling convention is being used, and the struct may be 8645 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8646 // available, then pass as two separate arguments. If either the GPRs or FPRs 8647 // are exhausted, then pass according to the rule below. 8648 // * If a struct could never be passed in registers or directly in a stack 8649 // slot (as it is larger than 2*XLEN and the floating point rules don't 8650 // apply), then pass it using a pointer with the byval attribute. 8651 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8652 // word-sized array or a 2*XLEN scalar (depending on alignment). 8653 // * The frontend can determine whether a struct is returned by reference or 8654 // not based on its size and fields. If it will be returned by reference, the 8655 // frontend must modify the prototype so a pointer with the sret annotation is 8656 // passed as the first argument. This is not necessary for large scalar 8657 // returns. 8658 // * Struct return values and varargs should be coerced to structs containing 8659 // register-size fields in the same situations they would be for fixed 8660 // arguments. 8661 8662 static const MCPhysReg ArgGPRs[] = { 8663 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8664 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8665 }; 8666 static const MCPhysReg ArgFPR16s[] = { 8667 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8668 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8669 }; 8670 static const MCPhysReg ArgFPR32s[] = { 8671 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8672 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8673 }; 8674 static const MCPhysReg ArgFPR64s[] = { 8675 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8676 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8677 }; 8678 // This is an interim calling convention and it may be changed in the future. 8679 static const MCPhysReg ArgVRs[] = { 8680 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8681 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8682 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8683 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8684 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8685 RISCV::V20M2, RISCV::V22M2}; 8686 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8687 RISCV::V20M4}; 8688 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8689 8690 // Pass a 2*XLEN argument that has been split into two XLEN values through 8691 // registers or the stack as necessary. 8692 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8693 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8694 MVT ValVT2, MVT LocVT2, 8695 ISD::ArgFlagsTy ArgFlags2) { 8696 unsigned XLenInBytes = XLen / 8; 8697 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8698 // At least one half can be passed via register. 8699 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8700 VA1.getLocVT(), CCValAssign::Full)); 8701 } else { 8702 // Both halves must be passed on the stack, with proper alignment. 8703 Align StackAlign = 8704 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8705 State.addLoc( 8706 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8707 State.AllocateStack(XLenInBytes, StackAlign), 8708 VA1.getLocVT(), CCValAssign::Full)); 8709 State.addLoc(CCValAssign::getMem( 8710 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8711 LocVT2, CCValAssign::Full)); 8712 return false; 8713 } 8714 8715 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8716 // The second half can also be passed via register. 8717 State.addLoc( 8718 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8719 } else { 8720 // The second half is passed via the stack, without additional alignment. 8721 State.addLoc(CCValAssign::getMem( 8722 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8723 LocVT2, CCValAssign::Full)); 8724 } 8725 8726 return false; 8727 } 8728 8729 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8730 Optional<unsigned> FirstMaskArgument, 8731 CCState &State, const RISCVTargetLowering &TLI) { 8732 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8733 if (RC == &RISCV::VRRegClass) { 8734 // Assign the first mask argument to V0. 8735 // This is an interim calling convention and it may be changed in the 8736 // future. 8737 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8738 return State.AllocateReg(RISCV::V0); 8739 return State.AllocateReg(ArgVRs); 8740 } 8741 if (RC == &RISCV::VRM2RegClass) 8742 return State.AllocateReg(ArgVRM2s); 8743 if (RC == &RISCV::VRM4RegClass) 8744 return State.AllocateReg(ArgVRM4s); 8745 if (RC == &RISCV::VRM8RegClass) 8746 return State.AllocateReg(ArgVRM8s); 8747 llvm_unreachable("Unhandled register class for ValueType"); 8748 } 8749 8750 // Implements the RISC-V calling convention. Returns true upon failure. 8751 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8752 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8753 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8754 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8755 Optional<unsigned> FirstMaskArgument) { 8756 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8757 assert(XLen == 32 || XLen == 64); 8758 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8759 8760 // Any return value split in to more than two values can't be returned 8761 // directly. Vectors are returned via the available vector registers. 8762 if (!LocVT.isVector() && IsRet && ValNo > 1) 8763 return true; 8764 8765 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8766 // variadic argument, or if no F16/F32 argument registers are available. 8767 bool UseGPRForF16_F32 = true; 8768 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8769 // variadic argument, or if no F64 argument registers are available. 8770 bool UseGPRForF64 = true; 8771 8772 switch (ABI) { 8773 default: 8774 llvm_unreachable("Unexpected ABI"); 8775 case RISCVABI::ABI_ILP32: 8776 case RISCVABI::ABI_LP64: 8777 break; 8778 case RISCVABI::ABI_ILP32F: 8779 case RISCVABI::ABI_LP64F: 8780 UseGPRForF16_F32 = !IsFixed; 8781 break; 8782 case RISCVABI::ABI_ILP32D: 8783 case RISCVABI::ABI_LP64D: 8784 UseGPRForF16_F32 = !IsFixed; 8785 UseGPRForF64 = !IsFixed; 8786 break; 8787 } 8788 8789 // FPR16, FPR32, and FPR64 alias each other. 8790 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8791 UseGPRForF16_F32 = true; 8792 UseGPRForF64 = true; 8793 } 8794 8795 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8796 // similar local variables rather than directly checking against the target 8797 // ABI. 8798 8799 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8800 LocVT = XLenVT; 8801 LocInfo = CCValAssign::BCvt; 8802 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8803 LocVT = MVT::i64; 8804 LocInfo = CCValAssign::BCvt; 8805 } 8806 8807 // If this is a variadic argument, the RISC-V calling convention requires 8808 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8809 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8810 // be used regardless of whether the original argument was split during 8811 // legalisation or not. The argument will not be passed by registers if the 8812 // original type is larger than 2*XLEN, so the register alignment rule does 8813 // not apply. 8814 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8815 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8816 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8817 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8818 // Skip 'odd' register if necessary. 8819 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8820 State.AllocateReg(ArgGPRs); 8821 } 8822 8823 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8824 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8825 State.getPendingArgFlags(); 8826 8827 assert(PendingLocs.size() == PendingArgFlags.size() && 8828 "PendingLocs and PendingArgFlags out of sync"); 8829 8830 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8831 // registers are exhausted. 8832 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8833 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8834 "Can't lower f64 if it is split"); 8835 // Depending on available argument GPRS, f64 may be passed in a pair of 8836 // GPRs, split between a GPR and the stack, or passed completely on the 8837 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8838 // cases. 8839 Register Reg = State.AllocateReg(ArgGPRs); 8840 LocVT = MVT::i32; 8841 if (!Reg) { 8842 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8843 State.addLoc( 8844 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8845 return false; 8846 } 8847 if (!State.AllocateReg(ArgGPRs)) 8848 State.AllocateStack(4, Align(4)); 8849 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8850 return false; 8851 } 8852 8853 // Fixed-length vectors are located in the corresponding scalable-vector 8854 // container types. 8855 if (ValVT.isFixedLengthVector()) 8856 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8857 8858 // Split arguments might be passed indirectly, so keep track of the pending 8859 // values. Split vectors are passed via a mix of registers and indirectly, so 8860 // treat them as we would any other argument. 8861 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8862 LocVT = XLenVT; 8863 LocInfo = CCValAssign::Indirect; 8864 PendingLocs.push_back( 8865 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8866 PendingArgFlags.push_back(ArgFlags); 8867 if (!ArgFlags.isSplitEnd()) { 8868 return false; 8869 } 8870 } 8871 8872 // If the split argument only had two elements, it should be passed directly 8873 // in registers or on the stack. 8874 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8875 PendingLocs.size() <= 2) { 8876 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8877 // Apply the normal calling convention rules to the first half of the 8878 // split argument. 8879 CCValAssign VA = PendingLocs[0]; 8880 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8881 PendingLocs.clear(); 8882 PendingArgFlags.clear(); 8883 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8884 ArgFlags); 8885 } 8886 8887 // Allocate to a register if possible, or else a stack slot. 8888 Register Reg; 8889 unsigned StoreSizeBytes = XLen / 8; 8890 Align StackAlign = Align(XLen / 8); 8891 8892 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8893 Reg = State.AllocateReg(ArgFPR16s); 8894 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8895 Reg = State.AllocateReg(ArgFPR32s); 8896 else if (ValVT == MVT::f64 && !UseGPRForF64) 8897 Reg = State.AllocateReg(ArgFPR64s); 8898 else if (ValVT.isVector()) { 8899 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8900 if (!Reg) { 8901 // For return values, the vector must be passed fully via registers or 8902 // via the stack. 8903 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8904 // but we're using all of them. 8905 if (IsRet) 8906 return true; 8907 // Try using a GPR to pass the address 8908 if ((Reg = State.AllocateReg(ArgGPRs))) { 8909 LocVT = XLenVT; 8910 LocInfo = CCValAssign::Indirect; 8911 } else if (ValVT.isScalableVector()) { 8912 LocVT = XLenVT; 8913 LocInfo = CCValAssign::Indirect; 8914 } else { 8915 // Pass fixed-length vectors on the stack. 8916 LocVT = ValVT; 8917 StoreSizeBytes = ValVT.getStoreSize(); 8918 // Align vectors to their element sizes, being careful for vXi1 8919 // vectors. 8920 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8921 } 8922 } 8923 } else { 8924 Reg = State.AllocateReg(ArgGPRs); 8925 } 8926 8927 unsigned StackOffset = 8928 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8929 8930 // If we reach this point and PendingLocs is non-empty, we must be at the 8931 // end of a split argument that must be passed indirectly. 8932 if (!PendingLocs.empty()) { 8933 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8934 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8935 8936 for (auto &It : PendingLocs) { 8937 if (Reg) 8938 It.convertToReg(Reg); 8939 else 8940 It.convertToMem(StackOffset); 8941 State.addLoc(It); 8942 } 8943 PendingLocs.clear(); 8944 PendingArgFlags.clear(); 8945 return false; 8946 } 8947 8948 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8949 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8950 "Expected an XLenVT or vector types at this stage"); 8951 8952 if (Reg) { 8953 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8954 return false; 8955 } 8956 8957 // When a floating-point value is passed on the stack, no bit-conversion is 8958 // needed. 8959 if (ValVT.isFloatingPoint()) { 8960 LocVT = ValVT; 8961 LocInfo = CCValAssign::Full; 8962 } 8963 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8964 return false; 8965 } 8966 8967 template <typename ArgTy> 8968 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8969 for (const auto &ArgIdx : enumerate(Args)) { 8970 MVT ArgVT = ArgIdx.value().VT; 8971 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8972 return ArgIdx.index(); 8973 } 8974 return None; 8975 } 8976 8977 void RISCVTargetLowering::analyzeInputArgs( 8978 MachineFunction &MF, CCState &CCInfo, 8979 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8980 RISCVCCAssignFn Fn) const { 8981 unsigned NumArgs = Ins.size(); 8982 FunctionType *FType = MF.getFunction().getFunctionType(); 8983 8984 Optional<unsigned> FirstMaskArgument; 8985 if (Subtarget.hasVInstructions()) 8986 FirstMaskArgument = preAssignMask(Ins); 8987 8988 for (unsigned i = 0; i != NumArgs; ++i) { 8989 MVT ArgVT = Ins[i].VT; 8990 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8991 8992 Type *ArgTy = nullptr; 8993 if (IsRet) 8994 ArgTy = FType->getReturnType(); 8995 else if (Ins[i].isOrigArg()) 8996 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8997 8998 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8999 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9000 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9001 FirstMaskArgument)) { 9002 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9003 << EVT(ArgVT).getEVTString() << '\n'); 9004 llvm_unreachable(nullptr); 9005 } 9006 } 9007 } 9008 9009 void RISCVTargetLowering::analyzeOutputArgs( 9010 MachineFunction &MF, CCState &CCInfo, 9011 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9012 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9013 unsigned NumArgs = Outs.size(); 9014 9015 Optional<unsigned> FirstMaskArgument; 9016 if (Subtarget.hasVInstructions()) 9017 FirstMaskArgument = preAssignMask(Outs); 9018 9019 for (unsigned i = 0; i != NumArgs; i++) { 9020 MVT ArgVT = Outs[i].VT; 9021 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9022 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9023 9024 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9025 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9026 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9027 FirstMaskArgument)) { 9028 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9029 << EVT(ArgVT).getEVTString() << "\n"); 9030 llvm_unreachable(nullptr); 9031 } 9032 } 9033 } 9034 9035 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9036 // values. 9037 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9038 const CCValAssign &VA, const SDLoc &DL, 9039 const RISCVSubtarget &Subtarget) { 9040 switch (VA.getLocInfo()) { 9041 default: 9042 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9043 case CCValAssign::Full: 9044 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9045 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9046 break; 9047 case CCValAssign::BCvt: 9048 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9049 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9050 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9051 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9052 else 9053 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9054 break; 9055 } 9056 return Val; 9057 } 9058 9059 // The caller is responsible for loading the full value if the argument is 9060 // passed with CCValAssign::Indirect. 9061 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9062 const CCValAssign &VA, const SDLoc &DL, 9063 const RISCVTargetLowering &TLI) { 9064 MachineFunction &MF = DAG.getMachineFunction(); 9065 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9066 EVT LocVT = VA.getLocVT(); 9067 SDValue Val; 9068 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9069 Register VReg = RegInfo.createVirtualRegister(RC); 9070 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9071 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9072 9073 if (VA.getLocInfo() == CCValAssign::Indirect) 9074 return Val; 9075 9076 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9077 } 9078 9079 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9080 const CCValAssign &VA, const SDLoc &DL, 9081 const RISCVSubtarget &Subtarget) { 9082 EVT LocVT = VA.getLocVT(); 9083 9084 switch (VA.getLocInfo()) { 9085 default: 9086 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9087 case CCValAssign::Full: 9088 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9089 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9090 break; 9091 case CCValAssign::BCvt: 9092 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9093 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9094 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9095 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9096 else 9097 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9098 break; 9099 } 9100 return Val; 9101 } 9102 9103 // The caller is responsible for loading the full value if the argument is 9104 // passed with CCValAssign::Indirect. 9105 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9106 const CCValAssign &VA, const SDLoc &DL) { 9107 MachineFunction &MF = DAG.getMachineFunction(); 9108 MachineFrameInfo &MFI = MF.getFrameInfo(); 9109 EVT LocVT = VA.getLocVT(); 9110 EVT ValVT = VA.getValVT(); 9111 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9112 if (ValVT.isScalableVector()) { 9113 // When the value is a scalable vector, we save the pointer which points to 9114 // the scalable vector value in the stack. The ValVT will be the pointer 9115 // type, instead of the scalable vector type. 9116 ValVT = LocVT; 9117 } 9118 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9119 /*IsImmutable=*/true); 9120 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9121 SDValue Val; 9122 9123 ISD::LoadExtType ExtType; 9124 switch (VA.getLocInfo()) { 9125 default: 9126 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9127 case CCValAssign::Full: 9128 case CCValAssign::Indirect: 9129 case CCValAssign::BCvt: 9130 ExtType = ISD::NON_EXTLOAD; 9131 break; 9132 } 9133 Val = DAG.getExtLoad( 9134 ExtType, DL, LocVT, Chain, FIN, 9135 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9136 return Val; 9137 } 9138 9139 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9140 const CCValAssign &VA, const SDLoc &DL) { 9141 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9142 "Unexpected VA"); 9143 MachineFunction &MF = DAG.getMachineFunction(); 9144 MachineFrameInfo &MFI = MF.getFrameInfo(); 9145 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9146 9147 if (VA.isMemLoc()) { 9148 // f64 is passed on the stack. 9149 int FI = 9150 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9151 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9152 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9153 MachinePointerInfo::getFixedStack(MF, FI)); 9154 } 9155 9156 assert(VA.isRegLoc() && "Expected register VA assignment"); 9157 9158 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9159 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9160 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9161 SDValue Hi; 9162 if (VA.getLocReg() == RISCV::X17) { 9163 // Second half of f64 is passed on the stack. 9164 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9165 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9166 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9167 MachinePointerInfo::getFixedStack(MF, FI)); 9168 } else { 9169 // Second half of f64 is passed in another GPR. 9170 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9171 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9172 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9173 } 9174 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9175 } 9176 9177 // FastCC has less than 1% performance improvement for some particular 9178 // benchmark. But theoretically, it may has benenfit for some cases. 9179 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9180 unsigned ValNo, MVT ValVT, MVT LocVT, 9181 CCValAssign::LocInfo LocInfo, 9182 ISD::ArgFlagsTy ArgFlags, CCState &State, 9183 bool IsFixed, bool IsRet, Type *OrigTy, 9184 const RISCVTargetLowering &TLI, 9185 Optional<unsigned> FirstMaskArgument) { 9186 9187 // X5 and X6 might be used for save-restore libcall. 9188 static const MCPhysReg GPRList[] = { 9189 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9190 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9191 RISCV::X29, RISCV::X30, RISCV::X31}; 9192 9193 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9194 if (unsigned Reg = State.AllocateReg(GPRList)) { 9195 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9196 return false; 9197 } 9198 } 9199 9200 if (LocVT == MVT::f16) { 9201 static const MCPhysReg FPR16List[] = { 9202 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9203 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9204 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9205 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9206 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9207 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9208 return false; 9209 } 9210 } 9211 9212 if (LocVT == MVT::f32) { 9213 static const MCPhysReg FPR32List[] = { 9214 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9215 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9216 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9217 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9218 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9219 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9220 return false; 9221 } 9222 } 9223 9224 if (LocVT == MVT::f64) { 9225 static const MCPhysReg FPR64List[] = { 9226 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9227 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9228 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9229 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9230 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9231 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9232 return false; 9233 } 9234 } 9235 9236 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9237 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9238 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9239 return false; 9240 } 9241 9242 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9243 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9244 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9245 return false; 9246 } 9247 9248 if (LocVT.isVector()) { 9249 if (unsigned Reg = 9250 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9251 // Fixed-length vectors are located in the corresponding scalable-vector 9252 // container types. 9253 if (ValVT.isFixedLengthVector()) 9254 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9255 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9256 } else { 9257 // Try and pass the address via a "fast" GPR. 9258 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9259 LocInfo = CCValAssign::Indirect; 9260 LocVT = TLI.getSubtarget().getXLenVT(); 9261 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9262 } else if (ValVT.isFixedLengthVector()) { 9263 auto StackAlign = 9264 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9265 unsigned StackOffset = 9266 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9267 State.addLoc( 9268 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9269 } else { 9270 // Can't pass scalable vectors on the stack. 9271 return true; 9272 } 9273 } 9274 9275 return false; 9276 } 9277 9278 return true; // CC didn't match. 9279 } 9280 9281 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9282 CCValAssign::LocInfo LocInfo, 9283 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9284 9285 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9286 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9287 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9288 static const MCPhysReg GPRList[] = { 9289 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9290 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9291 if (unsigned Reg = State.AllocateReg(GPRList)) { 9292 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9293 return false; 9294 } 9295 } 9296 9297 if (LocVT == MVT::f32) { 9298 // Pass in STG registers: F1, ..., F6 9299 // fs0 ... fs5 9300 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9301 RISCV::F18_F, RISCV::F19_F, 9302 RISCV::F20_F, RISCV::F21_F}; 9303 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9304 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9305 return false; 9306 } 9307 } 9308 9309 if (LocVT == MVT::f64) { 9310 // Pass in STG registers: D1, ..., D6 9311 // fs6 ... fs11 9312 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9313 RISCV::F24_D, RISCV::F25_D, 9314 RISCV::F26_D, RISCV::F27_D}; 9315 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9316 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9317 return false; 9318 } 9319 } 9320 9321 report_fatal_error("No registers left in GHC calling convention"); 9322 return true; 9323 } 9324 9325 // Transform physical registers into virtual registers. 9326 SDValue RISCVTargetLowering::LowerFormalArguments( 9327 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9328 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9329 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9330 9331 MachineFunction &MF = DAG.getMachineFunction(); 9332 9333 switch (CallConv) { 9334 default: 9335 report_fatal_error("Unsupported calling convention"); 9336 case CallingConv::C: 9337 case CallingConv::Fast: 9338 break; 9339 case CallingConv::GHC: 9340 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9341 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9342 report_fatal_error( 9343 "GHC calling convention requires the F and D instruction set extensions"); 9344 } 9345 9346 const Function &Func = MF.getFunction(); 9347 if (Func.hasFnAttribute("interrupt")) { 9348 if (!Func.arg_empty()) 9349 report_fatal_error( 9350 "Functions with the interrupt attribute cannot have arguments!"); 9351 9352 StringRef Kind = 9353 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9354 9355 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9356 report_fatal_error( 9357 "Function interrupt attribute argument not supported!"); 9358 } 9359 9360 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9361 MVT XLenVT = Subtarget.getXLenVT(); 9362 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9363 // Used with vargs to acumulate store chains. 9364 std::vector<SDValue> OutChains; 9365 9366 // Assign locations to all of the incoming arguments. 9367 SmallVector<CCValAssign, 16> ArgLocs; 9368 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9369 9370 if (CallConv == CallingConv::GHC) 9371 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9372 else 9373 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9374 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9375 : CC_RISCV); 9376 9377 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9378 CCValAssign &VA = ArgLocs[i]; 9379 SDValue ArgValue; 9380 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9381 // case. 9382 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9383 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9384 else if (VA.isRegLoc()) 9385 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9386 else 9387 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9388 9389 if (VA.getLocInfo() == CCValAssign::Indirect) { 9390 // If the original argument was split and passed by reference (e.g. i128 9391 // on RV32), we need to load all parts of it here (using the same 9392 // address). Vectors may be partly split to registers and partly to the 9393 // stack, in which case the base address is partly offset and subsequent 9394 // stores are relative to that. 9395 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9396 MachinePointerInfo())); 9397 unsigned ArgIndex = Ins[i].OrigArgIndex; 9398 unsigned ArgPartOffset = Ins[i].PartOffset; 9399 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9400 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9401 CCValAssign &PartVA = ArgLocs[i + 1]; 9402 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9403 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9404 if (PartVA.getValVT().isScalableVector()) 9405 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9406 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9407 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9408 MachinePointerInfo())); 9409 ++i; 9410 } 9411 continue; 9412 } 9413 InVals.push_back(ArgValue); 9414 } 9415 9416 if (IsVarArg) { 9417 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9418 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9419 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9420 MachineFrameInfo &MFI = MF.getFrameInfo(); 9421 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9422 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9423 9424 // Offset of the first variable argument from stack pointer, and size of 9425 // the vararg save area. For now, the varargs save area is either zero or 9426 // large enough to hold a0-a7. 9427 int VaArgOffset, VarArgsSaveSize; 9428 9429 // If all registers are allocated, then all varargs must be passed on the 9430 // stack and we don't need to save any argregs. 9431 if (ArgRegs.size() == Idx) { 9432 VaArgOffset = CCInfo.getNextStackOffset(); 9433 VarArgsSaveSize = 0; 9434 } else { 9435 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9436 VaArgOffset = -VarArgsSaveSize; 9437 } 9438 9439 // Record the frame index of the first variable argument 9440 // which is a value necessary to VASTART. 9441 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9442 RVFI->setVarArgsFrameIndex(FI); 9443 9444 // If saving an odd number of registers then create an extra stack slot to 9445 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9446 // offsets to even-numbered registered remain 2*XLEN-aligned. 9447 if (Idx % 2) { 9448 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9449 VarArgsSaveSize += XLenInBytes; 9450 } 9451 9452 // Copy the integer registers that may have been used for passing varargs 9453 // to the vararg save area. 9454 for (unsigned I = Idx; I < ArgRegs.size(); 9455 ++I, VaArgOffset += XLenInBytes) { 9456 const Register Reg = RegInfo.createVirtualRegister(RC); 9457 RegInfo.addLiveIn(ArgRegs[I], Reg); 9458 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9459 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9460 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9461 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9462 MachinePointerInfo::getFixedStack(MF, FI)); 9463 cast<StoreSDNode>(Store.getNode()) 9464 ->getMemOperand() 9465 ->setValue((Value *)nullptr); 9466 OutChains.push_back(Store); 9467 } 9468 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9469 } 9470 9471 // All stores are grouped in one node to allow the matching between 9472 // the size of Ins and InVals. This only happens for vararg functions. 9473 if (!OutChains.empty()) { 9474 OutChains.push_back(Chain); 9475 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9476 } 9477 9478 return Chain; 9479 } 9480 9481 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9482 /// for tail call optimization. 9483 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9484 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9485 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9486 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9487 9488 auto &Callee = CLI.Callee; 9489 auto CalleeCC = CLI.CallConv; 9490 auto &Outs = CLI.Outs; 9491 auto &Caller = MF.getFunction(); 9492 auto CallerCC = Caller.getCallingConv(); 9493 9494 // Exception-handling functions need a special set of instructions to 9495 // indicate a return to the hardware. Tail-calling another function would 9496 // probably break this. 9497 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9498 // should be expanded as new function attributes are introduced. 9499 if (Caller.hasFnAttribute("interrupt")) 9500 return false; 9501 9502 // Do not tail call opt if the stack is used to pass parameters. 9503 if (CCInfo.getNextStackOffset() != 0) 9504 return false; 9505 9506 // Do not tail call opt if any parameters need to be passed indirectly. 9507 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9508 // passed indirectly. So the address of the value will be passed in a 9509 // register, or if not available, then the address is put on the stack. In 9510 // order to pass indirectly, space on the stack often needs to be allocated 9511 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9512 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9513 // are passed CCValAssign::Indirect. 9514 for (auto &VA : ArgLocs) 9515 if (VA.getLocInfo() == CCValAssign::Indirect) 9516 return false; 9517 9518 // Do not tail call opt if either caller or callee uses struct return 9519 // semantics. 9520 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9521 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9522 if (IsCallerStructRet || IsCalleeStructRet) 9523 return false; 9524 9525 // Externally-defined functions with weak linkage should not be 9526 // tail-called. The behaviour of branch instructions in this situation (as 9527 // used for tail calls) is implementation-defined, so we cannot rely on the 9528 // linker replacing the tail call with a return. 9529 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9530 const GlobalValue *GV = G->getGlobal(); 9531 if (GV->hasExternalWeakLinkage()) 9532 return false; 9533 } 9534 9535 // The callee has to preserve all registers the caller needs to preserve. 9536 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9537 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9538 if (CalleeCC != CallerCC) { 9539 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9540 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9541 return false; 9542 } 9543 9544 // Byval parameters hand the function a pointer directly into the stack area 9545 // we want to reuse during a tail call. Working around this *is* possible 9546 // but less efficient and uglier in LowerCall. 9547 for (auto &Arg : Outs) 9548 if (Arg.Flags.isByVal()) 9549 return false; 9550 9551 return true; 9552 } 9553 9554 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9555 return DAG.getDataLayout().getPrefTypeAlign( 9556 VT.getTypeForEVT(*DAG.getContext())); 9557 } 9558 9559 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9560 // and output parameter nodes. 9561 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9562 SmallVectorImpl<SDValue> &InVals) const { 9563 SelectionDAG &DAG = CLI.DAG; 9564 SDLoc &DL = CLI.DL; 9565 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9566 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9567 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9568 SDValue Chain = CLI.Chain; 9569 SDValue Callee = CLI.Callee; 9570 bool &IsTailCall = CLI.IsTailCall; 9571 CallingConv::ID CallConv = CLI.CallConv; 9572 bool IsVarArg = CLI.IsVarArg; 9573 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9574 MVT XLenVT = Subtarget.getXLenVT(); 9575 9576 MachineFunction &MF = DAG.getMachineFunction(); 9577 9578 // Analyze the operands of the call, assigning locations to each operand. 9579 SmallVector<CCValAssign, 16> ArgLocs; 9580 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9581 9582 if (CallConv == CallingConv::GHC) 9583 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9584 else 9585 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9586 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9587 : CC_RISCV); 9588 9589 // Check if it's really possible to do a tail call. 9590 if (IsTailCall) 9591 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9592 9593 if (IsTailCall) 9594 ++NumTailCalls; 9595 else if (CLI.CB && CLI.CB->isMustTailCall()) 9596 report_fatal_error("failed to perform tail call elimination on a call " 9597 "site marked musttail"); 9598 9599 // Get a count of how many bytes are to be pushed on the stack. 9600 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9601 9602 // Create local copies for byval args 9603 SmallVector<SDValue, 8> ByValArgs; 9604 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9605 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9606 if (!Flags.isByVal()) 9607 continue; 9608 9609 SDValue Arg = OutVals[i]; 9610 unsigned Size = Flags.getByValSize(); 9611 Align Alignment = Flags.getNonZeroByValAlign(); 9612 9613 int FI = 9614 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9615 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9616 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9617 9618 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9619 /*IsVolatile=*/false, 9620 /*AlwaysInline=*/false, IsTailCall, 9621 MachinePointerInfo(), MachinePointerInfo()); 9622 ByValArgs.push_back(FIPtr); 9623 } 9624 9625 if (!IsTailCall) 9626 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9627 9628 // Copy argument values to their designated locations. 9629 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9630 SmallVector<SDValue, 8> MemOpChains; 9631 SDValue StackPtr; 9632 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9633 CCValAssign &VA = ArgLocs[i]; 9634 SDValue ArgValue = OutVals[i]; 9635 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9636 9637 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9638 bool IsF64OnRV32DSoftABI = 9639 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9640 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9641 SDValue SplitF64 = DAG.getNode( 9642 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9643 SDValue Lo = SplitF64.getValue(0); 9644 SDValue Hi = SplitF64.getValue(1); 9645 9646 Register RegLo = VA.getLocReg(); 9647 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9648 9649 if (RegLo == RISCV::X17) { 9650 // Second half of f64 is passed on the stack. 9651 // Work out the address of the stack slot. 9652 if (!StackPtr.getNode()) 9653 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9654 // Emit the store. 9655 MemOpChains.push_back( 9656 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9657 } else { 9658 // Second half of f64 is passed in another GPR. 9659 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9660 Register RegHigh = RegLo + 1; 9661 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9662 } 9663 continue; 9664 } 9665 9666 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9667 // as any other MemLoc. 9668 9669 // Promote the value if needed. 9670 // For now, only handle fully promoted and indirect arguments. 9671 if (VA.getLocInfo() == CCValAssign::Indirect) { 9672 // Store the argument in a stack slot and pass its address. 9673 Align StackAlign = 9674 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9675 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9676 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9677 // If the original argument was split (e.g. i128), we need 9678 // to store the required parts of it here (and pass just one address). 9679 // Vectors may be partly split to registers and partly to the stack, in 9680 // which case the base address is partly offset and subsequent stores are 9681 // relative to that. 9682 unsigned ArgIndex = Outs[i].OrigArgIndex; 9683 unsigned ArgPartOffset = Outs[i].PartOffset; 9684 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9685 // Calculate the total size to store. We don't have access to what we're 9686 // actually storing other than performing the loop and collecting the 9687 // info. 9688 SmallVector<std::pair<SDValue, SDValue>> Parts; 9689 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9690 SDValue PartValue = OutVals[i + 1]; 9691 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9692 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9693 EVT PartVT = PartValue.getValueType(); 9694 if (PartVT.isScalableVector()) 9695 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9696 StoredSize += PartVT.getStoreSize(); 9697 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9698 Parts.push_back(std::make_pair(PartValue, Offset)); 9699 ++i; 9700 } 9701 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9702 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9703 MemOpChains.push_back( 9704 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9705 MachinePointerInfo::getFixedStack(MF, FI))); 9706 for (const auto &Part : Parts) { 9707 SDValue PartValue = Part.first; 9708 SDValue PartOffset = Part.second; 9709 SDValue Address = 9710 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9711 MemOpChains.push_back( 9712 DAG.getStore(Chain, DL, PartValue, Address, 9713 MachinePointerInfo::getFixedStack(MF, FI))); 9714 } 9715 ArgValue = SpillSlot; 9716 } else { 9717 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9718 } 9719 9720 // Use local copy if it is a byval arg. 9721 if (Flags.isByVal()) 9722 ArgValue = ByValArgs[j++]; 9723 9724 if (VA.isRegLoc()) { 9725 // Queue up the argument copies and emit them at the end. 9726 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9727 } else { 9728 assert(VA.isMemLoc() && "Argument not register or memory"); 9729 assert(!IsTailCall && "Tail call not allowed if stack is used " 9730 "for passing parameters"); 9731 9732 // Work out the address of the stack slot. 9733 if (!StackPtr.getNode()) 9734 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9735 SDValue Address = 9736 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9737 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9738 9739 // Emit the store. 9740 MemOpChains.push_back( 9741 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9742 } 9743 } 9744 9745 // Join the stores, which are independent of one another. 9746 if (!MemOpChains.empty()) 9747 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9748 9749 SDValue Glue; 9750 9751 // Build a sequence of copy-to-reg nodes, chained and glued together. 9752 for (auto &Reg : RegsToPass) { 9753 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9754 Glue = Chain.getValue(1); 9755 } 9756 9757 // Validate that none of the argument registers have been marked as 9758 // reserved, if so report an error. Do the same for the return address if this 9759 // is not a tailcall. 9760 validateCCReservedRegs(RegsToPass, MF); 9761 if (!IsTailCall && 9762 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9763 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9764 MF.getFunction(), 9765 "Return address register required, but has been reserved."}); 9766 9767 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9768 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9769 // split it and then direct call can be matched by PseudoCALL. 9770 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9771 const GlobalValue *GV = S->getGlobal(); 9772 9773 unsigned OpFlags = RISCVII::MO_CALL; 9774 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9775 OpFlags = RISCVII::MO_PLT; 9776 9777 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9778 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9779 unsigned OpFlags = RISCVII::MO_CALL; 9780 9781 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9782 nullptr)) 9783 OpFlags = RISCVII::MO_PLT; 9784 9785 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9786 } 9787 9788 // The first call operand is the chain and the second is the target address. 9789 SmallVector<SDValue, 8> Ops; 9790 Ops.push_back(Chain); 9791 Ops.push_back(Callee); 9792 9793 // Add argument registers to the end of the list so that they are 9794 // known live into the call. 9795 for (auto &Reg : RegsToPass) 9796 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9797 9798 if (!IsTailCall) { 9799 // Add a register mask operand representing the call-preserved registers. 9800 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9801 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9802 assert(Mask && "Missing call preserved mask for calling convention"); 9803 Ops.push_back(DAG.getRegisterMask(Mask)); 9804 } 9805 9806 // Glue the call to the argument copies, if any. 9807 if (Glue.getNode()) 9808 Ops.push_back(Glue); 9809 9810 // Emit the call. 9811 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9812 9813 if (IsTailCall) { 9814 MF.getFrameInfo().setHasTailCall(); 9815 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9816 } 9817 9818 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9819 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9820 Glue = Chain.getValue(1); 9821 9822 // Mark the end of the call, which is glued to the call itself. 9823 Chain = DAG.getCALLSEQ_END(Chain, 9824 DAG.getConstant(NumBytes, DL, PtrVT, true), 9825 DAG.getConstant(0, DL, PtrVT, true), 9826 Glue, DL); 9827 Glue = Chain.getValue(1); 9828 9829 // Assign locations to each value returned by this call. 9830 SmallVector<CCValAssign, 16> RVLocs; 9831 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9832 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9833 9834 // Copy all of the result registers out of their specified physreg. 9835 for (auto &VA : RVLocs) { 9836 // Copy the value out 9837 SDValue RetValue = 9838 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9839 // Glue the RetValue to the end of the call sequence 9840 Chain = RetValue.getValue(1); 9841 Glue = RetValue.getValue(2); 9842 9843 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9844 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9845 SDValue RetValue2 = 9846 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9847 Chain = RetValue2.getValue(1); 9848 Glue = RetValue2.getValue(2); 9849 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9850 RetValue2); 9851 } 9852 9853 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9854 9855 InVals.push_back(RetValue); 9856 } 9857 9858 return Chain; 9859 } 9860 9861 bool RISCVTargetLowering::CanLowerReturn( 9862 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9863 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9864 SmallVector<CCValAssign, 16> RVLocs; 9865 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9866 9867 Optional<unsigned> FirstMaskArgument; 9868 if (Subtarget.hasVInstructions()) 9869 FirstMaskArgument = preAssignMask(Outs); 9870 9871 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9872 MVT VT = Outs[i].VT; 9873 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9874 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9875 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9876 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9877 *this, FirstMaskArgument)) 9878 return false; 9879 } 9880 return true; 9881 } 9882 9883 SDValue 9884 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9885 bool IsVarArg, 9886 const SmallVectorImpl<ISD::OutputArg> &Outs, 9887 const SmallVectorImpl<SDValue> &OutVals, 9888 const SDLoc &DL, SelectionDAG &DAG) const { 9889 const MachineFunction &MF = DAG.getMachineFunction(); 9890 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9891 9892 // Stores the assignment of the return value to a location. 9893 SmallVector<CCValAssign, 16> RVLocs; 9894 9895 // Info about the registers and stack slot. 9896 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9897 *DAG.getContext()); 9898 9899 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9900 nullptr, CC_RISCV); 9901 9902 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9903 report_fatal_error("GHC functions return void only"); 9904 9905 SDValue Glue; 9906 SmallVector<SDValue, 4> RetOps(1, Chain); 9907 9908 // Copy the result values into the output registers. 9909 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9910 SDValue Val = OutVals[i]; 9911 CCValAssign &VA = RVLocs[i]; 9912 assert(VA.isRegLoc() && "Can only return in registers!"); 9913 9914 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9915 // Handle returning f64 on RV32D with a soft float ABI. 9916 assert(VA.isRegLoc() && "Expected return via registers"); 9917 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9918 DAG.getVTList(MVT::i32, MVT::i32), Val); 9919 SDValue Lo = SplitF64.getValue(0); 9920 SDValue Hi = SplitF64.getValue(1); 9921 Register RegLo = VA.getLocReg(); 9922 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9923 Register RegHi = RegLo + 1; 9924 9925 if (STI.isRegisterReservedByUser(RegLo) || 9926 STI.isRegisterReservedByUser(RegHi)) 9927 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9928 MF.getFunction(), 9929 "Return value register required, but has been reserved."}); 9930 9931 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9932 Glue = Chain.getValue(1); 9933 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9934 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9935 Glue = Chain.getValue(1); 9936 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9937 } else { 9938 // Handle a 'normal' return. 9939 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9940 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9941 9942 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9943 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9944 MF.getFunction(), 9945 "Return value register required, but has been reserved."}); 9946 9947 // Guarantee that all emitted copies are stuck together. 9948 Glue = Chain.getValue(1); 9949 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9950 } 9951 } 9952 9953 RetOps[0] = Chain; // Update chain. 9954 9955 // Add the glue node if we have it. 9956 if (Glue.getNode()) { 9957 RetOps.push_back(Glue); 9958 } 9959 9960 unsigned RetOpc = RISCVISD::RET_FLAG; 9961 // Interrupt service routines use different return instructions. 9962 const Function &Func = DAG.getMachineFunction().getFunction(); 9963 if (Func.hasFnAttribute("interrupt")) { 9964 if (!Func.getReturnType()->isVoidTy()) 9965 report_fatal_error( 9966 "Functions with the interrupt attribute must have void return type!"); 9967 9968 MachineFunction &MF = DAG.getMachineFunction(); 9969 StringRef Kind = 9970 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9971 9972 if (Kind == "user") 9973 RetOpc = RISCVISD::URET_FLAG; 9974 else if (Kind == "supervisor") 9975 RetOpc = RISCVISD::SRET_FLAG; 9976 else 9977 RetOpc = RISCVISD::MRET_FLAG; 9978 } 9979 9980 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9981 } 9982 9983 void RISCVTargetLowering::validateCCReservedRegs( 9984 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9985 MachineFunction &MF) const { 9986 const Function &F = MF.getFunction(); 9987 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9988 9989 if (llvm::any_of(Regs, [&STI](auto Reg) { 9990 return STI.isRegisterReservedByUser(Reg.first); 9991 })) 9992 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9993 F, "Argument register required, but has been reserved."}); 9994 } 9995 9996 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9997 return CI->isTailCall(); 9998 } 9999 10000 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10001 #define NODE_NAME_CASE(NODE) \ 10002 case RISCVISD::NODE: \ 10003 return "RISCVISD::" #NODE; 10004 // clang-format off 10005 switch ((RISCVISD::NodeType)Opcode) { 10006 case RISCVISD::FIRST_NUMBER: 10007 break; 10008 NODE_NAME_CASE(RET_FLAG) 10009 NODE_NAME_CASE(URET_FLAG) 10010 NODE_NAME_CASE(SRET_FLAG) 10011 NODE_NAME_CASE(MRET_FLAG) 10012 NODE_NAME_CASE(CALL) 10013 NODE_NAME_CASE(SELECT_CC) 10014 NODE_NAME_CASE(BR_CC) 10015 NODE_NAME_CASE(BuildPairF64) 10016 NODE_NAME_CASE(SplitF64) 10017 NODE_NAME_CASE(TAIL) 10018 NODE_NAME_CASE(MULHSU) 10019 NODE_NAME_CASE(SLLW) 10020 NODE_NAME_CASE(SRAW) 10021 NODE_NAME_CASE(SRLW) 10022 NODE_NAME_CASE(DIVW) 10023 NODE_NAME_CASE(DIVUW) 10024 NODE_NAME_CASE(REMUW) 10025 NODE_NAME_CASE(ROLW) 10026 NODE_NAME_CASE(RORW) 10027 NODE_NAME_CASE(CLZW) 10028 NODE_NAME_CASE(CTZW) 10029 NODE_NAME_CASE(FSLW) 10030 NODE_NAME_CASE(FSRW) 10031 NODE_NAME_CASE(FSL) 10032 NODE_NAME_CASE(FSR) 10033 NODE_NAME_CASE(FMV_H_X) 10034 NODE_NAME_CASE(FMV_X_ANYEXTH) 10035 NODE_NAME_CASE(FMV_W_X_RV64) 10036 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10037 NODE_NAME_CASE(FCVT_X) 10038 NODE_NAME_CASE(FCVT_XU) 10039 NODE_NAME_CASE(FCVT_W_RV64) 10040 NODE_NAME_CASE(FCVT_WU_RV64) 10041 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10042 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10043 NODE_NAME_CASE(READ_CYCLE_WIDE) 10044 NODE_NAME_CASE(GREV) 10045 NODE_NAME_CASE(GREVW) 10046 NODE_NAME_CASE(GORC) 10047 NODE_NAME_CASE(GORCW) 10048 NODE_NAME_CASE(SHFL) 10049 NODE_NAME_CASE(SHFLW) 10050 NODE_NAME_CASE(UNSHFL) 10051 NODE_NAME_CASE(UNSHFLW) 10052 NODE_NAME_CASE(BFP) 10053 NODE_NAME_CASE(BFPW) 10054 NODE_NAME_CASE(BCOMPRESS) 10055 NODE_NAME_CASE(BCOMPRESSW) 10056 NODE_NAME_CASE(BDECOMPRESS) 10057 NODE_NAME_CASE(BDECOMPRESSW) 10058 NODE_NAME_CASE(VMV_V_X_VL) 10059 NODE_NAME_CASE(VFMV_V_F_VL) 10060 NODE_NAME_CASE(VMV_X_S) 10061 NODE_NAME_CASE(VMV_S_X_VL) 10062 NODE_NAME_CASE(VFMV_S_F_VL) 10063 NODE_NAME_CASE(SPLAT_VECTOR_I64) 10064 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10065 NODE_NAME_CASE(READ_VLENB) 10066 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10067 NODE_NAME_CASE(VSLIDEUP_VL) 10068 NODE_NAME_CASE(VSLIDE1UP_VL) 10069 NODE_NAME_CASE(VSLIDEDOWN_VL) 10070 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10071 NODE_NAME_CASE(VID_VL) 10072 NODE_NAME_CASE(VFNCVT_ROD_VL) 10073 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10074 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10075 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10076 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10077 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10078 NODE_NAME_CASE(VECREDUCE_AND_VL) 10079 NODE_NAME_CASE(VECREDUCE_OR_VL) 10080 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10081 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10082 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10083 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10084 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10085 NODE_NAME_CASE(ADD_VL) 10086 NODE_NAME_CASE(AND_VL) 10087 NODE_NAME_CASE(MUL_VL) 10088 NODE_NAME_CASE(OR_VL) 10089 NODE_NAME_CASE(SDIV_VL) 10090 NODE_NAME_CASE(SHL_VL) 10091 NODE_NAME_CASE(SREM_VL) 10092 NODE_NAME_CASE(SRA_VL) 10093 NODE_NAME_CASE(SRL_VL) 10094 NODE_NAME_CASE(SUB_VL) 10095 NODE_NAME_CASE(UDIV_VL) 10096 NODE_NAME_CASE(UREM_VL) 10097 NODE_NAME_CASE(XOR_VL) 10098 NODE_NAME_CASE(SADDSAT_VL) 10099 NODE_NAME_CASE(UADDSAT_VL) 10100 NODE_NAME_CASE(SSUBSAT_VL) 10101 NODE_NAME_CASE(USUBSAT_VL) 10102 NODE_NAME_CASE(FADD_VL) 10103 NODE_NAME_CASE(FSUB_VL) 10104 NODE_NAME_CASE(FMUL_VL) 10105 NODE_NAME_CASE(FDIV_VL) 10106 NODE_NAME_CASE(FNEG_VL) 10107 NODE_NAME_CASE(FABS_VL) 10108 NODE_NAME_CASE(FSQRT_VL) 10109 NODE_NAME_CASE(FMA_VL) 10110 NODE_NAME_CASE(FCOPYSIGN_VL) 10111 NODE_NAME_CASE(SMIN_VL) 10112 NODE_NAME_CASE(SMAX_VL) 10113 NODE_NAME_CASE(UMIN_VL) 10114 NODE_NAME_CASE(UMAX_VL) 10115 NODE_NAME_CASE(FMINNUM_VL) 10116 NODE_NAME_CASE(FMAXNUM_VL) 10117 NODE_NAME_CASE(MULHS_VL) 10118 NODE_NAME_CASE(MULHU_VL) 10119 NODE_NAME_CASE(FP_TO_SINT_VL) 10120 NODE_NAME_CASE(FP_TO_UINT_VL) 10121 NODE_NAME_CASE(SINT_TO_FP_VL) 10122 NODE_NAME_CASE(UINT_TO_FP_VL) 10123 NODE_NAME_CASE(FP_EXTEND_VL) 10124 NODE_NAME_CASE(FP_ROUND_VL) 10125 NODE_NAME_CASE(VWMUL_VL) 10126 NODE_NAME_CASE(VWMULU_VL) 10127 NODE_NAME_CASE(VWADDU_VL) 10128 NODE_NAME_CASE(SETCC_VL) 10129 NODE_NAME_CASE(VSELECT_VL) 10130 NODE_NAME_CASE(VP_MERGE_VL) 10131 NODE_NAME_CASE(VMAND_VL) 10132 NODE_NAME_CASE(VMOR_VL) 10133 NODE_NAME_CASE(VMXOR_VL) 10134 NODE_NAME_CASE(VMCLR_VL) 10135 NODE_NAME_CASE(VMSET_VL) 10136 NODE_NAME_CASE(VRGATHER_VX_VL) 10137 NODE_NAME_CASE(VRGATHER_VV_VL) 10138 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10139 NODE_NAME_CASE(VSEXT_VL) 10140 NODE_NAME_CASE(VZEXT_VL) 10141 NODE_NAME_CASE(VCPOP_VL) 10142 NODE_NAME_CASE(VLE_VL) 10143 NODE_NAME_CASE(VSE_VL) 10144 NODE_NAME_CASE(READ_CSR) 10145 NODE_NAME_CASE(WRITE_CSR) 10146 NODE_NAME_CASE(SWAP_CSR) 10147 } 10148 // clang-format on 10149 return nullptr; 10150 #undef NODE_NAME_CASE 10151 } 10152 10153 /// getConstraintType - Given a constraint letter, return the type of 10154 /// constraint it is for this target. 10155 RISCVTargetLowering::ConstraintType 10156 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10157 if (Constraint.size() == 1) { 10158 switch (Constraint[0]) { 10159 default: 10160 break; 10161 case 'f': 10162 return C_RegisterClass; 10163 case 'I': 10164 case 'J': 10165 case 'K': 10166 return C_Immediate; 10167 case 'A': 10168 return C_Memory; 10169 case 'S': // A symbolic address 10170 return C_Other; 10171 } 10172 } else { 10173 if (Constraint == "vr" || Constraint == "vm") 10174 return C_RegisterClass; 10175 } 10176 return TargetLowering::getConstraintType(Constraint); 10177 } 10178 10179 std::pair<unsigned, const TargetRegisterClass *> 10180 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10181 StringRef Constraint, 10182 MVT VT) const { 10183 // First, see if this is a constraint that directly corresponds to a 10184 // RISCV register class. 10185 if (Constraint.size() == 1) { 10186 switch (Constraint[0]) { 10187 case 'r': 10188 // TODO: Support fixed vectors up to XLen for P extension? 10189 if (VT.isVector()) 10190 break; 10191 return std::make_pair(0U, &RISCV::GPRRegClass); 10192 case 'f': 10193 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10194 return std::make_pair(0U, &RISCV::FPR16RegClass); 10195 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10196 return std::make_pair(0U, &RISCV::FPR32RegClass); 10197 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10198 return std::make_pair(0U, &RISCV::FPR64RegClass); 10199 break; 10200 default: 10201 break; 10202 } 10203 } else if (Constraint == "vr") { 10204 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10205 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10206 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10207 return std::make_pair(0U, RC); 10208 } 10209 } else if (Constraint == "vm") { 10210 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10211 return std::make_pair(0U, &RISCV::VMV0RegClass); 10212 } 10213 10214 // Clang will correctly decode the usage of register name aliases into their 10215 // official names. However, other frontends like `rustc` do not. This allows 10216 // users of these frontends to use the ABI names for registers in LLVM-style 10217 // register constraints. 10218 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10219 .Case("{zero}", RISCV::X0) 10220 .Case("{ra}", RISCV::X1) 10221 .Case("{sp}", RISCV::X2) 10222 .Case("{gp}", RISCV::X3) 10223 .Case("{tp}", RISCV::X4) 10224 .Case("{t0}", RISCV::X5) 10225 .Case("{t1}", RISCV::X6) 10226 .Case("{t2}", RISCV::X7) 10227 .Cases("{s0}", "{fp}", RISCV::X8) 10228 .Case("{s1}", RISCV::X9) 10229 .Case("{a0}", RISCV::X10) 10230 .Case("{a1}", RISCV::X11) 10231 .Case("{a2}", RISCV::X12) 10232 .Case("{a3}", RISCV::X13) 10233 .Case("{a4}", RISCV::X14) 10234 .Case("{a5}", RISCV::X15) 10235 .Case("{a6}", RISCV::X16) 10236 .Case("{a7}", RISCV::X17) 10237 .Case("{s2}", RISCV::X18) 10238 .Case("{s3}", RISCV::X19) 10239 .Case("{s4}", RISCV::X20) 10240 .Case("{s5}", RISCV::X21) 10241 .Case("{s6}", RISCV::X22) 10242 .Case("{s7}", RISCV::X23) 10243 .Case("{s8}", RISCV::X24) 10244 .Case("{s9}", RISCV::X25) 10245 .Case("{s10}", RISCV::X26) 10246 .Case("{s11}", RISCV::X27) 10247 .Case("{t3}", RISCV::X28) 10248 .Case("{t4}", RISCV::X29) 10249 .Case("{t5}", RISCV::X30) 10250 .Case("{t6}", RISCV::X31) 10251 .Default(RISCV::NoRegister); 10252 if (XRegFromAlias != RISCV::NoRegister) 10253 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10254 10255 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10256 // TableGen record rather than the AsmName to choose registers for InlineAsm 10257 // constraints, plus we want to match those names to the widest floating point 10258 // register type available, manually select floating point registers here. 10259 // 10260 // The second case is the ABI name of the register, so that frontends can also 10261 // use the ABI names in register constraint lists. 10262 if (Subtarget.hasStdExtF()) { 10263 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10264 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10265 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10266 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10267 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10268 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10269 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10270 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10271 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10272 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10273 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10274 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10275 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10276 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10277 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10278 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10279 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10280 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10281 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10282 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10283 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10284 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10285 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10286 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10287 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10288 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10289 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10290 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10291 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10292 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10293 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10294 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10295 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10296 .Default(RISCV::NoRegister); 10297 if (FReg != RISCV::NoRegister) { 10298 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10299 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10300 unsigned RegNo = FReg - RISCV::F0_F; 10301 unsigned DReg = RISCV::F0_D + RegNo; 10302 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10303 } 10304 if (VT == MVT::f32 || VT == MVT::Other) 10305 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10306 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10307 unsigned RegNo = FReg - RISCV::F0_F; 10308 unsigned HReg = RISCV::F0_H + RegNo; 10309 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10310 } 10311 } 10312 } 10313 10314 if (Subtarget.hasVInstructions()) { 10315 Register VReg = StringSwitch<Register>(Constraint.lower()) 10316 .Case("{v0}", RISCV::V0) 10317 .Case("{v1}", RISCV::V1) 10318 .Case("{v2}", RISCV::V2) 10319 .Case("{v3}", RISCV::V3) 10320 .Case("{v4}", RISCV::V4) 10321 .Case("{v5}", RISCV::V5) 10322 .Case("{v6}", RISCV::V6) 10323 .Case("{v7}", RISCV::V7) 10324 .Case("{v8}", RISCV::V8) 10325 .Case("{v9}", RISCV::V9) 10326 .Case("{v10}", RISCV::V10) 10327 .Case("{v11}", RISCV::V11) 10328 .Case("{v12}", RISCV::V12) 10329 .Case("{v13}", RISCV::V13) 10330 .Case("{v14}", RISCV::V14) 10331 .Case("{v15}", RISCV::V15) 10332 .Case("{v16}", RISCV::V16) 10333 .Case("{v17}", RISCV::V17) 10334 .Case("{v18}", RISCV::V18) 10335 .Case("{v19}", RISCV::V19) 10336 .Case("{v20}", RISCV::V20) 10337 .Case("{v21}", RISCV::V21) 10338 .Case("{v22}", RISCV::V22) 10339 .Case("{v23}", RISCV::V23) 10340 .Case("{v24}", RISCV::V24) 10341 .Case("{v25}", RISCV::V25) 10342 .Case("{v26}", RISCV::V26) 10343 .Case("{v27}", RISCV::V27) 10344 .Case("{v28}", RISCV::V28) 10345 .Case("{v29}", RISCV::V29) 10346 .Case("{v30}", RISCV::V30) 10347 .Case("{v31}", RISCV::V31) 10348 .Default(RISCV::NoRegister); 10349 if (VReg != RISCV::NoRegister) { 10350 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10351 return std::make_pair(VReg, &RISCV::VMRegClass); 10352 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10353 return std::make_pair(VReg, &RISCV::VRRegClass); 10354 for (const auto *RC : 10355 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10356 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10357 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10358 return std::make_pair(VReg, RC); 10359 } 10360 } 10361 } 10362 } 10363 10364 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10365 } 10366 10367 unsigned 10368 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10369 // Currently only support length 1 constraints. 10370 if (ConstraintCode.size() == 1) { 10371 switch (ConstraintCode[0]) { 10372 case 'A': 10373 return InlineAsm::Constraint_A; 10374 default: 10375 break; 10376 } 10377 } 10378 10379 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10380 } 10381 10382 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10383 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10384 SelectionDAG &DAG) const { 10385 // Currently only support length 1 constraints. 10386 if (Constraint.length() == 1) { 10387 switch (Constraint[0]) { 10388 case 'I': 10389 // Validate & create a 12-bit signed immediate operand. 10390 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10391 uint64_t CVal = C->getSExtValue(); 10392 if (isInt<12>(CVal)) 10393 Ops.push_back( 10394 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10395 } 10396 return; 10397 case 'J': 10398 // Validate & create an integer zero operand. 10399 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10400 if (C->getZExtValue() == 0) 10401 Ops.push_back( 10402 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10403 return; 10404 case 'K': 10405 // Validate & create a 5-bit unsigned immediate operand. 10406 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10407 uint64_t CVal = C->getZExtValue(); 10408 if (isUInt<5>(CVal)) 10409 Ops.push_back( 10410 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10411 } 10412 return; 10413 case 'S': 10414 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10415 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10416 GA->getValueType(0))); 10417 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10418 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10419 BA->getValueType(0))); 10420 } 10421 return; 10422 default: 10423 break; 10424 } 10425 } 10426 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10427 } 10428 10429 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10430 Instruction *Inst, 10431 AtomicOrdering Ord) const { 10432 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10433 return Builder.CreateFence(Ord); 10434 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10435 return Builder.CreateFence(AtomicOrdering::Release); 10436 return nullptr; 10437 } 10438 10439 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10440 Instruction *Inst, 10441 AtomicOrdering Ord) const { 10442 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10443 return Builder.CreateFence(AtomicOrdering::Acquire); 10444 return nullptr; 10445 } 10446 10447 TargetLowering::AtomicExpansionKind 10448 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10449 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10450 // point operations can't be used in an lr/sc sequence without breaking the 10451 // forward-progress guarantee. 10452 if (AI->isFloatingPointOperation()) 10453 return AtomicExpansionKind::CmpXChg; 10454 10455 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10456 if (Size == 8 || Size == 16) 10457 return AtomicExpansionKind::MaskedIntrinsic; 10458 return AtomicExpansionKind::None; 10459 } 10460 10461 static Intrinsic::ID 10462 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10463 if (XLen == 32) { 10464 switch (BinOp) { 10465 default: 10466 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10467 case AtomicRMWInst::Xchg: 10468 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10469 case AtomicRMWInst::Add: 10470 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10471 case AtomicRMWInst::Sub: 10472 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10473 case AtomicRMWInst::Nand: 10474 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10475 case AtomicRMWInst::Max: 10476 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10477 case AtomicRMWInst::Min: 10478 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10479 case AtomicRMWInst::UMax: 10480 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10481 case AtomicRMWInst::UMin: 10482 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10483 } 10484 } 10485 10486 if (XLen == 64) { 10487 switch (BinOp) { 10488 default: 10489 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10490 case AtomicRMWInst::Xchg: 10491 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10492 case AtomicRMWInst::Add: 10493 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10494 case AtomicRMWInst::Sub: 10495 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10496 case AtomicRMWInst::Nand: 10497 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10498 case AtomicRMWInst::Max: 10499 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10500 case AtomicRMWInst::Min: 10501 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10502 case AtomicRMWInst::UMax: 10503 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10504 case AtomicRMWInst::UMin: 10505 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10506 } 10507 } 10508 10509 llvm_unreachable("Unexpected XLen\n"); 10510 } 10511 10512 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10513 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10514 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10515 unsigned XLen = Subtarget.getXLen(); 10516 Value *Ordering = 10517 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10518 Type *Tys[] = {AlignedAddr->getType()}; 10519 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10520 AI->getModule(), 10521 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10522 10523 if (XLen == 64) { 10524 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10525 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10526 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10527 } 10528 10529 Value *Result; 10530 10531 // Must pass the shift amount needed to sign extend the loaded value prior 10532 // to performing a signed comparison for min/max. ShiftAmt is the number of 10533 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10534 // is the number of bits to left+right shift the value in order to 10535 // sign-extend. 10536 if (AI->getOperation() == AtomicRMWInst::Min || 10537 AI->getOperation() == AtomicRMWInst::Max) { 10538 const DataLayout &DL = AI->getModule()->getDataLayout(); 10539 unsigned ValWidth = 10540 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10541 Value *SextShamt = 10542 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10543 Result = Builder.CreateCall(LrwOpScwLoop, 10544 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10545 } else { 10546 Result = 10547 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10548 } 10549 10550 if (XLen == 64) 10551 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10552 return Result; 10553 } 10554 10555 TargetLowering::AtomicExpansionKind 10556 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10557 AtomicCmpXchgInst *CI) const { 10558 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10559 if (Size == 8 || Size == 16) 10560 return AtomicExpansionKind::MaskedIntrinsic; 10561 return AtomicExpansionKind::None; 10562 } 10563 10564 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10565 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10566 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10567 unsigned XLen = Subtarget.getXLen(); 10568 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10569 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10570 if (XLen == 64) { 10571 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10572 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10573 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10574 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10575 } 10576 Type *Tys[] = {AlignedAddr->getType()}; 10577 Function *MaskedCmpXchg = 10578 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10579 Value *Result = Builder.CreateCall( 10580 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10581 if (XLen == 64) 10582 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10583 return Result; 10584 } 10585 10586 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10587 return false; 10588 } 10589 10590 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10591 EVT VT) const { 10592 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10593 return false; 10594 10595 switch (FPVT.getSimpleVT().SimpleTy) { 10596 case MVT::f16: 10597 return Subtarget.hasStdExtZfh(); 10598 case MVT::f32: 10599 return Subtarget.hasStdExtF(); 10600 case MVT::f64: 10601 return Subtarget.hasStdExtD(); 10602 default: 10603 return false; 10604 } 10605 } 10606 10607 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10608 // If we are using the small code model, we can reduce size of jump table 10609 // entry to 4 bytes. 10610 if (Subtarget.is64Bit() && !isPositionIndependent() && 10611 getTargetMachine().getCodeModel() == CodeModel::Small) { 10612 return MachineJumpTableInfo::EK_Custom32; 10613 } 10614 return TargetLowering::getJumpTableEncoding(); 10615 } 10616 10617 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10618 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10619 unsigned uid, MCContext &Ctx) const { 10620 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10621 getTargetMachine().getCodeModel() == CodeModel::Small); 10622 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10623 } 10624 10625 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10626 EVT VT) const { 10627 VT = VT.getScalarType(); 10628 10629 if (!VT.isSimple()) 10630 return false; 10631 10632 switch (VT.getSimpleVT().SimpleTy) { 10633 case MVT::f16: 10634 return Subtarget.hasStdExtZfh(); 10635 case MVT::f32: 10636 return Subtarget.hasStdExtF(); 10637 case MVT::f64: 10638 return Subtarget.hasStdExtD(); 10639 default: 10640 break; 10641 } 10642 10643 return false; 10644 } 10645 10646 Register RISCVTargetLowering::getExceptionPointerRegister( 10647 const Constant *PersonalityFn) const { 10648 return RISCV::X10; 10649 } 10650 10651 Register RISCVTargetLowering::getExceptionSelectorRegister( 10652 const Constant *PersonalityFn) const { 10653 return RISCV::X11; 10654 } 10655 10656 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10657 // Return false to suppress the unnecessary extensions if the LibCall 10658 // arguments or return value is f32 type for LP64 ABI. 10659 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10660 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10661 return false; 10662 10663 return true; 10664 } 10665 10666 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10667 if (Subtarget.is64Bit() && Type == MVT::i32) 10668 return true; 10669 10670 return IsSigned; 10671 } 10672 10673 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10674 SDValue C) const { 10675 // Check integral scalar types. 10676 if (VT.isScalarInteger()) { 10677 // Omit the optimization if the sub target has the M extension and the data 10678 // size exceeds XLen. 10679 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10680 return false; 10681 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10682 // Break the MUL to a SLLI and an ADD/SUB. 10683 const APInt &Imm = ConstNode->getAPIntValue(); 10684 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10685 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10686 return true; 10687 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10688 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10689 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10690 (Imm - 8).isPowerOf2())) 10691 return true; 10692 // Omit the following optimization if the sub target has the M extension 10693 // and the data size >= XLen. 10694 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10695 return false; 10696 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10697 // a pair of LUI/ADDI. 10698 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10699 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10700 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10701 (1 - ImmS).isPowerOf2()) 10702 return true; 10703 } 10704 } 10705 } 10706 10707 return false; 10708 } 10709 10710 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10711 const SDValue &AddNode, const SDValue &ConstNode) const { 10712 // Let the DAGCombiner decide for vectors. 10713 EVT VT = AddNode.getValueType(); 10714 if (VT.isVector()) 10715 return true; 10716 10717 // Let the DAGCombiner decide for larger types. 10718 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10719 return true; 10720 10721 // It is worse if c1 is simm12 while c1*c2 is not. 10722 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10723 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10724 const APInt &C1 = C1Node->getAPIntValue(); 10725 const APInt &C2 = C2Node->getAPIntValue(); 10726 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10727 return false; 10728 10729 // Default to true and let the DAGCombiner decide. 10730 return true; 10731 } 10732 10733 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10734 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10735 bool *Fast) const { 10736 if (!VT.isVector()) 10737 return false; 10738 10739 EVT ElemVT = VT.getVectorElementType(); 10740 if (Alignment >= ElemVT.getStoreSize()) { 10741 if (Fast) 10742 *Fast = true; 10743 return true; 10744 } 10745 10746 return false; 10747 } 10748 10749 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10750 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10751 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10752 bool IsABIRegCopy = CC.hasValue(); 10753 EVT ValueVT = Val.getValueType(); 10754 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10755 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10756 // and cast to f32. 10757 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10758 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10759 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10760 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10761 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10762 Parts[0] = Val; 10763 return true; 10764 } 10765 10766 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10767 LLVMContext &Context = *DAG.getContext(); 10768 EVT ValueEltVT = ValueVT.getVectorElementType(); 10769 EVT PartEltVT = PartVT.getVectorElementType(); 10770 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10771 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10772 if (PartVTBitSize % ValueVTBitSize == 0) { 10773 assert(PartVTBitSize >= ValueVTBitSize); 10774 // If the element types are different, bitcast to the same element type of 10775 // PartVT first. 10776 // Give an example here, we want copy a <vscale x 1 x i8> value to 10777 // <vscale x 4 x i16>. 10778 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10779 // subvector, then we can bitcast to <vscale x 4 x i16>. 10780 if (ValueEltVT != PartEltVT) { 10781 if (PartVTBitSize > ValueVTBitSize) { 10782 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10783 assert(Count != 0 && "The number of element should not be zero."); 10784 EVT SameEltTypeVT = 10785 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10786 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10787 DAG.getUNDEF(SameEltTypeVT), Val, 10788 DAG.getVectorIdxConstant(0, DL)); 10789 } 10790 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10791 } else { 10792 Val = 10793 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10794 Val, DAG.getVectorIdxConstant(0, DL)); 10795 } 10796 Parts[0] = Val; 10797 return true; 10798 } 10799 } 10800 return false; 10801 } 10802 10803 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10804 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10805 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10806 bool IsABIRegCopy = CC.hasValue(); 10807 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10808 SDValue Val = Parts[0]; 10809 10810 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10811 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10812 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10813 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10814 return Val; 10815 } 10816 10817 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10818 LLVMContext &Context = *DAG.getContext(); 10819 SDValue Val = Parts[0]; 10820 EVT ValueEltVT = ValueVT.getVectorElementType(); 10821 EVT PartEltVT = PartVT.getVectorElementType(); 10822 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10823 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10824 if (PartVTBitSize % ValueVTBitSize == 0) { 10825 assert(PartVTBitSize >= ValueVTBitSize); 10826 EVT SameEltTypeVT = ValueVT; 10827 // If the element types are different, convert it to the same element type 10828 // of PartVT. 10829 // Give an example here, we want copy a <vscale x 1 x i8> value from 10830 // <vscale x 4 x i16>. 10831 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10832 // then we can extract <vscale x 1 x i8>. 10833 if (ValueEltVT != PartEltVT) { 10834 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10835 assert(Count != 0 && "The number of element should not be zero."); 10836 SameEltTypeVT = 10837 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10838 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10839 } 10840 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10841 DAG.getVectorIdxConstant(0, DL)); 10842 return Val; 10843 } 10844 } 10845 return SDValue(); 10846 } 10847 10848 SDValue 10849 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10850 SelectionDAG &DAG, 10851 SmallVectorImpl<SDNode *> &Created) const { 10852 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10853 if (isIntDivCheap(N->getValueType(0), Attr)) 10854 return SDValue(N, 0); // Lower SDIV as SDIV 10855 10856 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10857 "Unexpected divisor!"); 10858 10859 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10860 if (!Subtarget.hasStdExtZbt()) 10861 return SDValue(); 10862 10863 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10864 // Besides, more critical path instructions will be generated when dividing 10865 // by 2. So we keep using the original DAGs for these cases. 10866 unsigned Lg2 = Divisor.countTrailingZeros(); 10867 if (Lg2 == 1 || Lg2 >= 12) 10868 return SDValue(); 10869 10870 // fold (sdiv X, pow2) 10871 EVT VT = N->getValueType(0); 10872 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10873 return SDValue(); 10874 10875 SDLoc DL(N); 10876 SDValue N0 = N->getOperand(0); 10877 SDValue Zero = DAG.getConstant(0, DL, VT); 10878 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10879 10880 // Add (N0 < 0) ? Pow2 - 1 : 0; 10881 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10882 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10883 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10884 10885 Created.push_back(Cmp.getNode()); 10886 Created.push_back(Add.getNode()); 10887 Created.push_back(Sel.getNode()); 10888 10889 // Divide by pow2. 10890 SDValue SRA = 10891 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10892 10893 // If we're dividing by a positive value, we're done. Otherwise, we must 10894 // negate the result. 10895 if (Divisor.isNonNegative()) 10896 return SRA; 10897 10898 Created.push_back(SRA.getNode()); 10899 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10900 } 10901 10902 #define GET_REGISTER_MATCHER 10903 #include "RISCVGenAsmMatcher.inc" 10904 10905 Register 10906 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10907 const MachineFunction &MF) const { 10908 Register Reg = MatchRegisterAltName(RegName); 10909 if (Reg == RISCV::NoRegister) 10910 Reg = MatchRegisterName(RegName); 10911 if (Reg == RISCV::NoRegister) 10912 report_fatal_error( 10913 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10914 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10915 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10916 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10917 StringRef(RegName) + "\".")); 10918 return Reg; 10919 } 10920 10921 namespace llvm { 10922 namespace RISCVVIntrinsicsTable { 10923 10924 #define GET_RISCVVIntrinsicsTable_IMPL 10925 #include "RISCVGenSearchableTables.inc" 10926 10927 } // namespace RISCVVIntrinsicsTable 10928 10929 } // namespace llvm 10930