1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "riscv-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
45                                          const RISCVSubtarget &STI)
46     : TargetLowering(TM), Subtarget(STI) {
47 
48   if (Subtarget.isRV32E())
49     report_fatal_error("Codegen not yet implemented for RV32E");
50 
51   RISCVABI::ABI ABI = Subtarget.getTargetABI();
52   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
53 
54   switch (ABI) {
55   default:
56     report_fatal_error("Don't know how to lower this ABI");
57   case RISCVABI::ABI_ILP32:
58   case RISCVABI::ABI_ILP32F:
59   case RISCVABI::ABI_ILP32D:
60   case RISCVABI::ABI_LP64:
61   case RISCVABI::ABI_LP64F:
62   case RISCVABI::ABI_LP64D:
63     break;
64   }
65 
66   MVT XLenVT = Subtarget.getXLenVT();
67 
68   // Set up the register classes.
69   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
70 
71   if (Subtarget.hasStdExtF())
72     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
73   if (Subtarget.hasStdExtD())
74     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
75 
76   // Compute derived properties from the register classes.
77   computeRegisterProperties(STI.getRegisterInfo());
78 
79   setStackPointerRegisterToSaveRestore(RISCV::X2);
80 
81   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
82     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
83 
84   // TODO: add all necessary setOperationAction calls.
85   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
86 
87   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
88   setOperationAction(ISD::BR_CC, XLenVT, Expand);
89   setOperationAction(ISD::SELECT, XLenVT, Custom);
90   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
91 
92   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
93   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
94 
95   setOperationAction(ISD::VASTART, MVT::Other, Custom);
96   setOperationAction(ISD::VAARG, MVT::Other, Expand);
97   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
98   setOperationAction(ISD::VAEND, MVT::Other, Expand);
99 
100   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
101     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
102 
103   if (Subtarget.is64Bit()) {
104     setOperationAction(ISD::ADD, MVT::i32, Custom);
105     setOperationAction(ISD::SUB, MVT::i32, Custom);
106     setOperationAction(ISD::SHL, MVT::i32, Custom);
107     setOperationAction(ISD::SRA, MVT::i32, Custom);
108     setOperationAction(ISD::SRL, MVT::i32, Custom);
109   }
110 
111   if (!Subtarget.hasStdExtM()) {
112     setOperationAction(ISD::MUL, XLenVT, Expand);
113     setOperationAction(ISD::MULHS, XLenVT, Expand);
114     setOperationAction(ISD::MULHU, XLenVT, Expand);
115     setOperationAction(ISD::SDIV, XLenVT, Expand);
116     setOperationAction(ISD::UDIV, XLenVT, Expand);
117     setOperationAction(ISD::SREM, XLenVT, Expand);
118     setOperationAction(ISD::UREM, XLenVT, Expand);
119   }
120 
121   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
122     setOperationAction(ISD::MUL, MVT::i32, Custom);
123     setOperationAction(ISD::SDIV, MVT::i32, Custom);
124     setOperationAction(ISD::UDIV, MVT::i32, Custom);
125     setOperationAction(ISD::UREM, MVT::i32, Custom);
126   }
127 
128   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
129   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
130   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
131   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
132 
133   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
134   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
135   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
136 
137   setOperationAction(ISD::ROTL, XLenVT, Expand);
138   setOperationAction(ISD::ROTR, XLenVT, Expand);
139   setOperationAction(ISD::BSWAP, XLenVT, Expand);
140   setOperationAction(ISD::CTTZ, XLenVT, Expand);
141   setOperationAction(ISD::CTLZ, XLenVT, Expand);
142   setOperationAction(ISD::CTPOP, XLenVT, Expand);
143 
144   ISD::CondCode FPCCToExtend[] = {
145       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
146       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
147       ISD::SETGE,  ISD::SETNE};
148 
149   ISD::NodeType FPOpToExtend[] = {
150       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
151       ISD::FP_TO_FP16};
152 
153   if (Subtarget.hasStdExtF()) {
154     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
155     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
156     for (auto CC : FPCCToExtend)
157       setCondCodeAction(CC, MVT::f32, Expand);
158     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
159     setOperationAction(ISD::SELECT, MVT::f32, Custom);
160     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
161     for (auto Op : FPOpToExtend)
162       setOperationAction(Op, MVT::f32, Expand);
163     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
164     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
165   }
166 
167   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
168     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
169 
170   if (Subtarget.hasStdExtD()) {
171     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
172     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
173     for (auto CC : FPCCToExtend)
174       setCondCodeAction(CC, MVT::f64, Expand);
175     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
176     setOperationAction(ISD::SELECT, MVT::f64, Custom);
177     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
178     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
179     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
180     for (auto Op : FPOpToExtend)
181       setOperationAction(Op, MVT::f64, Expand);
182     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
183     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
184   }
185 
186   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
187   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
188   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
189 
190   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
191 
192   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
193   // Unfortunately this can't be determined just from the ISA naming string.
194   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
195                      Subtarget.is64Bit() ? Legal : Custom);
196 
197   setOperationAction(ISD::TRAP, MVT::Other, Legal);
198   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
199 
200   if (Subtarget.hasStdExtA()) {
201     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
202     setMinCmpXchgSizeInBits(32);
203   } else {
204     setMaxAtomicSizeInBitsSupported(0);
205   }
206 
207   setBooleanContents(ZeroOrOneBooleanContent);
208 
209   // Function alignments.
210   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
211   setMinFunctionAlignment(FunctionAlignment);
212   setPrefFunctionAlignment(FunctionAlignment);
213 
214   // Effectively disable jump table generation.
215   setMinimumJumpTableEntries(INT_MAX);
216 }
217 
218 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
219                                             EVT VT) const {
220   if (!VT.isVector())
221     return getPointerTy(DL);
222   return VT.changeVectorElementTypeToInteger();
223 }
224 
225 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
226                                              const CallInst &I,
227                                              MachineFunction &MF,
228                                              unsigned Intrinsic) const {
229   switch (Intrinsic) {
230   default:
231     return false;
232   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
233   case Intrinsic::riscv_masked_atomicrmw_add_i32:
234   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
235   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
236   case Intrinsic::riscv_masked_atomicrmw_max_i32:
237   case Intrinsic::riscv_masked_atomicrmw_min_i32:
238   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
239   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
240   case Intrinsic::riscv_masked_cmpxchg_i32:
241     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
242     Info.opc = ISD::INTRINSIC_W_CHAIN;
243     Info.memVT = MVT::getVT(PtrTy->getElementType());
244     Info.ptrVal = I.getArgOperand(0);
245     Info.offset = 0;
246     Info.align = Align(4);
247     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
248                  MachineMemOperand::MOVolatile;
249     return true;
250   }
251 }
252 
253 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
254                                                 const AddrMode &AM, Type *Ty,
255                                                 unsigned AS,
256                                                 Instruction *I) const {
257   // No global is ever allowed as a base.
258   if (AM.BaseGV)
259     return false;
260 
261   // Require a 12-bit signed offset.
262   if (!isInt<12>(AM.BaseOffs))
263     return false;
264 
265   switch (AM.Scale) {
266   case 0: // "r+i" or just "i", depending on HasBaseReg.
267     break;
268   case 1:
269     if (!AM.HasBaseReg) // allow "r+i".
270       break;
271     return false; // disallow "r+r" or "r+r+i".
272   default:
273     return false;
274   }
275 
276   return true;
277 }
278 
279 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
280   return isInt<12>(Imm);
281 }
282 
283 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
284   return isInt<12>(Imm);
285 }
286 
287 // On RV32, 64-bit integers are split into their high and low parts and held
288 // in two different registers, so the trunc is free since the low register can
289 // just be used.
290 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
291   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
292     return false;
293   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
294   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
295   return (SrcBits == 64 && DestBits == 32);
296 }
297 
298 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
299   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
300       !SrcVT.isInteger() || !DstVT.isInteger())
301     return false;
302   unsigned SrcBits = SrcVT.getSizeInBits();
303   unsigned DestBits = DstVT.getSizeInBits();
304   return (SrcBits == 64 && DestBits == 32);
305 }
306 
307 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
308   // Zexts are free if they can be combined with a load.
309   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
310     EVT MemVT = LD->getMemoryVT();
311     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
312          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
313         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
314          LD->getExtensionType() == ISD::ZEXTLOAD))
315       return true;
316   }
317 
318   return TargetLowering::isZExtFree(Val, VT2);
319 }
320 
321 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
322   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
323 }
324 
325 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
326   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
327          (VT == MVT::f64 && Subtarget.hasStdExtD());
328 }
329 
330 // Changes the condition code and swaps operands if necessary, so the SetCC
331 // operation matches one of the comparisons supported directly in the RISC-V
332 // ISA.
333 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
334   switch (CC) {
335   default:
336     break;
337   case ISD::SETGT:
338   case ISD::SETLE:
339   case ISD::SETUGT:
340   case ISD::SETULE:
341     CC = ISD::getSetCCSwappedOperands(CC);
342     std::swap(LHS, RHS);
343     break;
344   }
345 }
346 
347 // Return the RISC-V branch opcode that matches the given DAG integer
348 // condition code. The CondCode must be one of those supported by the RISC-V
349 // ISA (see normaliseSetCC).
350 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
351   switch (CC) {
352   default:
353     llvm_unreachable("Unsupported CondCode");
354   case ISD::SETEQ:
355     return RISCV::BEQ;
356   case ISD::SETNE:
357     return RISCV::BNE;
358   case ISD::SETLT:
359     return RISCV::BLT;
360   case ISD::SETGE:
361     return RISCV::BGE;
362   case ISD::SETULT:
363     return RISCV::BLTU;
364   case ISD::SETUGE:
365     return RISCV::BGEU;
366   }
367 }
368 
369 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
370                                             SelectionDAG &DAG) const {
371   switch (Op.getOpcode()) {
372   default:
373     report_fatal_error("unimplemented operand");
374   case ISD::GlobalAddress:
375     return lowerGlobalAddress(Op, DAG);
376   case ISD::BlockAddress:
377     return lowerBlockAddress(Op, DAG);
378   case ISD::ConstantPool:
379     return lowerConstantPool(Op, DAG);
380   case ISD::GlobalTLSAddress:
381     return lowerGlobalTLSAddress(Op, DAG);
382   case ISD::SELECT:
383     return lowerSELECT(Op, DAG);
384   case ISD::VASTART:
385     return lowerVASTART(Op, DAG);
386   case ISD::FRAMEADDR:
387     return lowerFRAMEADDR(Op, DAG);
388   case ISD::RETURNADDR:
389     return lowerRETURNADDR(Op, DAG);
390   case ISD::SHL_PARTS:
391     return lowerShiftLeftParts(Op, DAG);
392   case ISD::SRA_PARTS:
393     return lowerShiftRightParts(Op, DAG, true);
394   case ISD::SRL_PARTS:
395     return lowerShiftRightParts(Op, DAG, false);
396   case ISD::BITCAST: {
397     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
398            "Unexpected custom legalisation");
399     SDLoc DL(Op);
400     SDValue Op0 = Op.getOperand(0);
401     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
402       return SDValue();
403     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
404     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
405     return FPConv;
406   }
407   }
408 }
409 
410 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
411                              SelectionDAG &DAG, unsigned Flags) {
412   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
413 }
414 
415 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
416                              SelectionDAG &DAG, unsigned Flags) {
417   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
418                                    Flags);
419 }
420 
421 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
422                              SelectionDAG &DAG, unsigned Flags) {
423   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
424                                    N->getOffset(), Flags);
425 }
426 
427 template <class NodeTy>
428 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
429                                      bool IsLocal) const {
430   SDLoc DL(N);
431   EVT Ty = getPointerTy(DAG.getDataLayout());
432 
433   if (isPositionIndependent()) {
434     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
435     if (IsLocal)
436       // Use PC-relative addressing to access the symbol. This generates the
437       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
438       // %pcrel_lo(auipc)).
439       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
440 
441     // Use PC-relative addressing to access the GOT for this symbol, then load
442     // the address from the GOT. This generates the pattern (PseudoLA sym),
443     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
444     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
445   }
446 
447   switch (getTargetMachine().getCodeModel()) {
448   default:
449     report_fatal_error("Unsupported code model for lowering");
450   case CodeModel::Small: {
451     // Generate a sequence for accessing addresses within the first 2 GiB of
452     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
453     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
454     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
455     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
456     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
457   }
458   case CodeModel::Medium: {
459     // Generate a sequence for accessing addresses within any 2GiB range within
460     // the address space. This generates the pattern (PseudoLLA sym), which
461     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
462     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
463     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
464   }
465   }
466 }
467 
468 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
469                                                 SelectionDAG &DAG) const {
470   SDLoc DL(Op);
471   EVT Ty = Op.getValueType();
472   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
473   int64_t Offset = N->getOffset();
474   MVT XLenVT = Subtarget.getXLenVT();
475 
476   const GlobalValue *GV = N->getGlobal();
477   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
478   SDValue Addr = getAddr(N, DAG, IsLocal);
479 
480   // In order to maximise the opportunity for common subexpression elimination,
481   // emit a separate ADD node for the global address offset instead of folding
482   // it in the global address node. Later peephole optimisations may choose to
483   // fold it back in when profitable.
484   if (Offset != 0)
485     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
486                        DAG.getConstant(Offset, DL, XLenVT));
487   return Addr;
488 }
489 
490 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
491                                                SelectionDAG &DAG) const {
492   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
493 
494   return getAddr(N, DAG);
495 }
496 
497 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
498                                                SelectionDAG &DAG) const {
499   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
500 
501   return getAddr(N, DAG);
502 }
503 
504 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
505                                               SelectionDAG &DAG,
506                                               bool UseGOT) const {
507   SDLoc DL(N);
508   EVT Ty = getPointerTy(DAG.getDataLayout());
509   const GlobalValue *GV = N->getGlobal();
510   MVT XLenVT = Subtarget.getXLenVT();
511 
512   if (UseGOT) {
513     // Use PC-relative addressing to access the GOT for this TLS symbol, then
514     // load the address from the GOT and add the thread pointer. This generates
515     // the pattern (PseudoLA_TLS_IE sym), which expands to
516     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
517     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
518     SDValue Load =
519         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
520 
521     // Add the thread pointer.
522     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
523     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
524   }
525 
526   // Generate a sequence for accessing the address relative to the thread
527   // pointer, with the appropriate adjustment for the thread pointer offset.
528   // This generates the pattern
529   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
530   SDValue AddrHi =
531       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
532   SDValue AddrAdd =
533       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
534   SDValue AddrLo =
535       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
536 
537   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
538   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
539   SDValue MNAdd = SDValue(
540       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
541       0);
542   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
543 }
544 
545 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
546                                                SelectionDAG &DAG) const {
547   SDLoc DL(N);
548   EVT Ty = getPointerTy(DAG.getDataLayout());
549   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
550   const GlobalValue *GV = N->getGlobal();
551 
552   // Use a PC-relative addressing mode to access the global dynamic GOT address.
553   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
554   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
555   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
556   SDValue Load =
557       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
558 
559   // Prepare argument list to generate call.
560   ArgListTy Args;
561   ArgListEntry Entry;
562   Entry.Node = Load;
563   Entry.Ty = CallTy;
564   Args.push_back(Entry);
565 
566   // Setup call to __tls_get_addr.
567   TargetLowering::CallLoweringInfo CLI(DAG);
568   CLI.setDebugLoc(DL)
569       .setChain(DAG.getEntryNode())
570       .setLibCallee(CallingConv::C, CallTy,
571                     DAG.getExternalSymbol("__tls_get_addr", Ty),
572                     std::move(Args));
573 
574   return LowerCallTo(CLI).first;
575 }
576 
577 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
578                                                    SelectionDAG &DAG) const {
579   SDLoc DL(Op);
580   EVT Ty = Op.getValueType();
581   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
582   int64_t Offset = N->getOffset();
583   MVT XLenVT = Subtarget.getXLenVT();
584 
585   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
586 
587   SDValue Addr;
588   switch (Model) {
589   case TLSModel::LocalExec:
590     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
591     break;
592   case TLSModel::InitialExec:
593     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
594     break;
595   case TLSModel::LocalDynamic:
596   case TLSModel::GeneralDynamic:
597     Addr = getDynamicTLSAddr(N, DAG);
598     break;
599   }
600 
601   // In order to maximise the opportunity for common subexpression elimination,
602   // emit a separate ADD node for the global address offset instead of folding
603   // it in the global address node. Later peephole optimisations may choose to
604   // fold it back in when profitable.
605   if (Offset != 0)
606     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
607                        DAG.getConstant(Offset, DL, XLenVT));
608   return Addr;
609 }
610 
611 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
612   SDValue CondV = Op.getOperand(0);
613   SDValue TrueV = Op.getOperand(1);
614   SDValue FalseV = Op.getOperand(2);
615   SDLoc DL(Op);
616   MVT XLenVT = Subtarget.getXLenVT();
617 
618   // If the result type is XLenVT and CondV is the output of a SETCC node
619   // which also operated on XLenVT inputs, then merge the SETCC node into the
620   // lowered RISCVISD::SELECT_CC to take advantage of the integer
621   // compare+branch instructions. i.e.:
622   // (select (setcc lhs, rhs, cc), truev, falsev)
623   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
624   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
625       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
626     SDValue LHS = CondV.getOperand(0);
627     SDValue RHS = CondV.getOperand(1);
628     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
629     ISD::CondCode CCVal = CC->get();
630 
631     normaliseSetCC(LHS, RHS, CCVal);
632 
633     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
634     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
635     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
636     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
637   }
638 
639   // Otherwise:
640   // (select condv, truev, falsev)
641   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
642   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
643   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
644 
645   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
646   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
647 
648   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
649 }
650 
651 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
652   MachineFunction &MF = DAG.getMachineFunction();
653   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
654 
655   SDLoc DL(Op);
656   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
657                                  getPointerTy(MF.getDataLayout()));
658 
659   // vastart just stores the address of the VarArgsFrameIndex slot into the
660   // memory location argument.
661   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
662   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
663                       MachinePointerInfo(SV));
664 }
665 
666 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
667                                             SelectionDAG &DAG) const {
668   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
669   MachineFunction &MF = DAG.getMachineFunction();
670   MachineFrameInfo &MFI = MF.getFrameInfo();
671   MFI.setFrameAddressIsTaken(true);
672   Register FrameReg = RI.getFrameRegister(MF);
673   int XLenInBytes = Subtarget.getXLen() / 8;
674 
675   EVT VT = Op.getValueType();
676   SDLoc DL(Op);
677   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
678   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
679   while (Depth--) {
680     int Offset = -(XLenInBytes * 2);
681     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
682                               DAG.getIntPtrConstant(Offset, DL));
683     FrameAddr =
684         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
685   }
686   return FrameAddr;
687 }
688 
689 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
690                                              SelectionDAG &DAG) const {
691   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
692   MachineFunction &MF = DAG.getMachineFunction();
693   MachineFrameInfo &MFI = MF.getFrameInfo();
694   MFI.setReturnAddressIsTaken(true);
695   MVT XLenVT = Subtarget.getXLenVT();
696   int XLenInBytes = Subtarget.getXLen() / 8;
697 
698   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
699     return SDValue();
700 
701   EVT VT = Op.getValueType();
702   SDLoc DL(Op);
703   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
704   if (Depth) {
705     int Off = -XLenInBytes;
706     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
707     SDValue Offset = DAG.getConstant(Off, DL, VT);
708     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
709                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
710                        MachinePointerInfo());
711   }
712 
713   // Return the value of the return address register, marking it an implicit
714   // live-in.
715   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
716   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
717 }
718 
719 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
720                                                  SelectionDAG &DAG) const {
721   SDLoc DL(Op);
722   SDValue Lo = Op.getOperand(0);
723   SDValue Hi = Op.getOperand(1);
724   SDValue Shamt = Op.getOperand(2);
725   EVT VT = Lo.getValueType();
726 
727   // if Shamt-XLEN < 0: // Shamt < XLEN
728   //   Lo = Lo << Shamt
729   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
730   // else:
731   //   Lo = 0
732   //   Hi = Lo << (Shamt-XLEN)
733 
734   SDValue Zero = DAG.getConstant(0, DL, VT);
735   SDValue One = DAG.getConstant(1, DL, VT);
736   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
737   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
738   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
739   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
740 
741   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
742   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
743   SDValue ShiftRightLo =
744       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
745   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
746   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
747   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
748 
749   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
750 
751   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
752   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
753 
754   SDValue Parts[2] = {Lo, Hi};
755   return DAG.getMergeValues(Parts, DL);
756 }
757 
758 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
759                                                   bool IsSRA) const {
760   SDLoc DL(Op);
761   SDValue Lo = Op.getOperand(0);
762   SDValue Hi = Op.getOperand(1);
763   SDValue Shamt = Op.getOperand(2);
764   EVT VT = Lo.getValueType();
765 
766   // SRA expansion:
767   //   if Shamt-XLEN < 0: // Shamt < XLEN
768   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
769   //     Hi = Hi >>s Shamt
770   //   else:
771   //     Lo = Hi >>s (Shamt-XLEN);
772   //     Hi = Hi >>s (XLEN-1)
773   //
774   // SRL expansion:
775   //   if Shamt-XLEN < 0: // Shamt < XLEN
776   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
777   //     Hi = Hi >>u Shamt
778   //   else:
779   //     Lo = Hi >>u (Shamt-XLEN);
780   //     Hi = 0;
781 
782   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
783 
784   SDValue Zero = DAG.getConstant(0, DL, VT);
785   SDValue One = DAG.getConstant(1, DL, VT);
786   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
787   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
788   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
789   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
790 
791   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
792   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
793   SDValue ShiftLeftHi =
794       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
795   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
796   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
797   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
798   SDValue HiFalse =
799       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
800 
801   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
802 
803   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
804   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
805 
806   SDValue Parts[2] = {Lo, Hi};
807   return DAG.getMergeValues(Parts, DL);
808 }
809 
810 // Returns the opcode of the target-specific SDNode that implements the 32-bit
811 // form of the given Opcode.
812 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
813   switch (Opcode) {
814   default:
815     llvm_unreachable("Unexpected opcode");
816   case ISD::SHL:
817     return RISCVISD::SLLW;
818   case ISD::SRA:
819     return RISCVISD::SRAW;
820   case ISD::SRL:
821     return RISCVISD::SRLW;
822   case ISD::SDIV:
823     return RISCVISD::DIVW;
824   case ISD::UDIV:
825     return RISCVISD::DIVUW;
826   case ISD::UREM:
827     return RISCVISD::REMUW;
828   }
829 }
830 
831 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
832 // Because i32 isn't a legal type for RV64, these operations would otherwise
833 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
834 // later one because the fact the operation was originally of type i32 is
835 // lost.
836 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
837   SDLoc DL(N);
838   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
839   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
840   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
841   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
842   // ReplaceNodeResults requires we maintain the same type for the return value.
843   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
844 }
845 
846 // Converts the given 32-bit operation to a i64 operation with signed extension
847 // semantic to reduce the signed extension instructions.
848 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
849   SDLoc DL(N);
850   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
851   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
852   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
853   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
854                                DAG.getValueType(MVT::i32));
855   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
856 }
857 
858 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
859                                              SmallVectorImpl<SDValue> &Results,
860                                              SelectionDAG &DAG) const {
861   SDLoc DL(N);
862   switch (N->getOpcode()) {
863   default:
864     llvm_unreachable("Don't know how to custom type legalize this operation!");
865   case ISD::READCYCLECOUNTER: {
866     assert(!Subtarget.is64Bit() &&
867            "READCYCLECOUNTER only has custom type legalization on riscv32");
868 
869     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
870     SDValue RCW =
871         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
872 
873     Results.push_back(RCW);
874     Results.push_back(RCW.getValue(1));
875     Results.push_back(RCW.getValue(2));
876     break;
877   }
878   case ISD::ADD:
879   case ISD::SUB:
880   case ISD::MUL:
881     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
882            "Unexpected custom legalisation");
883     if (N->getOperand(1).getOpcode() == ISD::Constant)
884       return;
885     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
886     break;
887   case ISD::SHL:
888   case ISD::SRA:
889   case ISD::SRL:
890     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
891            "Unexpected custom legalisation");
892     if (N->getOperand(1).getOpcode() == ISD::Constant)
893       return;
894     Results.push_back(customLegalizeToWOp(N, DAG));
895     break;
896   case ISD::SDIV:
897   case ISD::UDIV:
898   case ISD::UREM:
899     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
900            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
901     if (N->getOperand(0).getOpcode() == ISD::Constant ||
902         N->getOperand(1).getOpcode() == ISD::Constant)
903       return;
904     Results.push_back(customLegalizeToWOp(N, DAG));
905     break;
906   case ISD::BITCAST: {
907     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
908            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
909     SDLoc DL(N);
910     SDValue Op0 = N->getOperand(0);
911     if (Op0.getValueType() != MVT::f32)
912       return;
913     SDValue FPConv =
914         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
915     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
916     break;
917   }
918   }
919 }
920 
921 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
922                                                DAGCombinerInfo &DCI) const {
923   SelectionDAG &DAG = DCI.DAG;
924 
925   switch (N->getOpcode()) {
926   default:
927     break;
928   case RISCVISD::SplitF64: {
929     SDValue Op0 = N->getOperand(0);
930     // If the input to SplitF64 is just BuildPairF64 then the operation is
931     // redundant. Instead, use BuildPairF64's operands directly.
932     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
933       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
934 
935     SDLoc DL(N);
936 
937     // It's cheaper to materialise two 32-bit integers than to load a double
938     // from the constant pool and transfer it to integer registers through the
939     // stack.
940     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
941       APInt V = C->getValueAPF().bitcastToAPInt();
942       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
943       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
944       return DCI.CombineTo(N, Lo, Hi);
945     }
946 
947     // This is a target-specific version of a DAGCombine performed in
948     // DAGCombiner::visitBITCAST. It performs the equivalent of:
949     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
950     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
951     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
952         !Op0.getNode()->hasOneUse())
953       break;
954     SDValue NewSplitF64 =
955         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
956                     Op0.getOperand(0));
957     SDValue Lo = NewSplitF64.getValue(0);
958     SDValue Hi = NewSplitF64.getValue(1);
959     APInt SignBit = APInt::getSignMask(32);
960     if (Op0.getOpcode() == ISD::FNEG) {
961       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
962                                   DAG.getConstant(SignBit, DL, MVT::i32));
963       return DCI.CombineTo(N, Lo, NewHi);
964     }
965     assert(Op0.getOpcode() == ISD::FABS);
966     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
967                                 DAG.getConstant(~SignBit, DL, MVT::i32));
968     return DCI.CombineTo(N, Lo, NewHi);
969   }
970   case RISCVISD::SLLW:
971   case RISCVISD::SRAW:
972   case RISCVISD::SRLW: {
973     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
974     SDValue LHS = N->getOperand(0);
975     SDValue RHS = N->getOperand(1);
976     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
977     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
978     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
979         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
980       return SDValue();
981     break;
982   }
983   case RISCVISD::FMV_X_ANYEXTW_RV64: {
984     SDLoc DL(N);
985     SDValue Op0 = N->getOperand(0);
986     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
987     // conversion is unnecessary and can be replaced with an ANY_EXTEND
988     // of the FMV_W_X_RV64 operand.
989     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
990       SDValue AExtOp =
991           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
992       return DCI.CombineTo(N, AExtOp);
993     }
994 
995     // This is a target-specific version of a DAGCombine performed in
996     // DAGCombiner::visitBITCAST. It performs the equivalent of:
997     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
998     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
999     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1000         !Op0.getNode()->hasOneUse())
1001       break;
1002     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1003                                  Op0.getOperand(0));
1004     APInt SignBit = APInt::getSignMask(32).sext(64);
1005     if (Op0.getOpcode() == ISD::FNEG) {
1006       return DCI.CombineTo(N,
1007                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1008                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1009     }
1010     assert(Op0.getOpcode() == ISD::FABS);
1011     return DCI.CombineTo(N,
1012                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1013                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1014   }
1015   }
1016 
1017   return SDValue();
1018 }
1019 
1020 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1021     const SDNode *N, CombineLevel Level) const {
1022   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1023   // materialised in fewer instructions than `(OP _, c1)`:
1024   //
1025   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1026   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1027   SDValue N0 = N->getOperand(0);
1028   EVT Ty = N0.getValueType();
1029   if (Ty.isScalarInteger() &&
1030       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1031     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1032     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1033     if (C1 && C2) {
1034       APInt C1Int = C1->getAPIntValue();
1035       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1036 
1037       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1038       // and the combine should happen, to potentially allow further combines
1039       // later.
1040       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1041           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1042         return true;
1043 
1044       // We can materialise `c1` in an add immediate, so it's "free", and the
1045       // combine should be prevented.
1046       if (C1Int.getMinSignedBits() <= 64 &&
1047           isLegalAddImmediate(C1Int.getSExtValue()))
1048         return false;
1049 
1050       // Neither constant will fit into an immediate, so find materialisation
1051       // costs.
1052       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1053                                               Subtarget.is64Bit());
1054       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1055           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1056 
1057       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1058       // combine should be prevented.
1059       if (C1Cost < ShiftedC1Cost)
1060         return false;
1061     }
1062   }
1063   return true;
1064 }
1065 
1066 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1067     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1068     unsigned Depth) const {
1069   switch (Op.getOpcode()) {
1070   default:
1071     break;
1072   case RISCVISD::SLLW:
1073   case RISCVISD::SRAW:
1074   case RISCVISD::SRLW:
1075   case RISCVISD::DIVW:
1076   case RISCVISD::DIVUW:
1077   case RISCVISD::REMUW:
1078     // TODO: As the result is sign-extended, this is conservatively correct. A
1079     // more precise answer could be calculated for SRAW depending on known
1080     // bits in the shift amount.
1081     return 33;
1082   }
1083 
1084   return 1;
1085 }
1086 
1087 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1088                                                   MachineBasicBlock *BB) {
1089   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1090 
1091   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1092   // Should the count have wrapped while it was being read, we need to try
1093   // again.
1094   // ...
1095   // read:
1096   // rdcycleh x3 # load high word of cycle
1097   // rdcycle  x2 # load low word of cycle
1098   // rdcycleh x4 # load high word of cycle
1099   // bne x3, x4, read # check if high word reads match, otherwise try again
1100   // ...
1101 
1102   MachineFunction &MF = *BB->getParent();
1103   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1104   MachineFunction::iterator It = ++BB->getIterator();
1105 
1106   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1107   MF.insert(It, LoopMBB);
1108 
1109   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1110   MF.insert(It, DoneMBB);
1111 
1112   // Transfer the remainder of BB and its successor edges to DoneMBB.
1113   DoneMBB->splice(DoneMBB->begin(), BB,
1114                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1115   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1116 
1117   BB->addSuccessor(LoopMBB);
1118 
1119   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1120   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1121   Register LoReg = MI.getOperand(0).getReg();
1122   Register HiReg = MI.getOperand(1).getReg();
1123   DebugLoc DL = MI.getDebugLoc();
1124 
1125   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1126   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1127       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1128       .addReg(RISCV::X0);
1129   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1130       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1131       .addReg(RISCV::X0);
1132   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1133       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1134       .addReg(RISCV::X0);
1135 
1136   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1137       .addReg(HiReg)
1138       .addReg(ReadAgainReg)
1139       .addMBB(LoopMBB);
1140 
1141   LoopMBB->addSuccessor(LoopMBB);
1142   LoopMBB->addSuccessor(DoneMBB);
1143 
1144   MI.eraseFromParent();
1145 
1146   return DoneMBB;
1147 }
1148 
1149 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1150                                              MachineBasicBlock *BB) {
1151   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1152 
1153   MachineFunction &MF = *BB->getParent();
1154   DebugLoc DL = MI.getDebugLoc();
1155   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1156   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1157   Register LoReg = MI.getOperand(0).getReg();
1158   Register HiReg = MI.getOperand(1).getReg();
1159   Register SrcReg = MI.getOperand(2).getReg();
1160   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1161   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1162 
1163   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1164                           RI);
1165   MachineMemOperand *MMO =
1166       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1167                               MachineMemOperand::MOLoad, 8, 8);
1168   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1169       .addFrameIndex(FI)
1170       .addImm(0)
1171       .addMemOperand(MMO);
1172   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1173       .addFrameIndex(FI)
1174       .addImm(4)
1175       .addMemOperand(MMO);
1176   MI.eraseFromParent(); // The pseudo instruction is gone now.
1177   return BB;
1178 }
1179 
1180 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1181                                                  MachineBasicBlock *BB) {
1182   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1183          "Unexpected instruction");
1184 
1185   MachineFunction &MF = *BB->getParent();
1186   DebugLoc DL = MI.getDebugLoc();
1187   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1188   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1189   Register DstReg = MI.getOperand(0).getReg();
1190   Register LoReg = MI.getOperand(1).getReg();
1191   Register HiReg = MI.getOperand(2).getReg();
1192   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1193   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1194 
1195   MachineMemOperand *MMO =
1196       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1197                               MachineMemOperand::MOStore, 8, 8);
1198   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1199       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1200       .addFrameIndex(FI)
1201       .addImm(0)
1202       .addMemOperand(MMO);
1203   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1204       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1205       .addFrameIndex(FI)
1206       .addImm(4)
1207       .addMemOperand(MMO);
1208   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1209   MI.eraseFromParent(); // The pseudo instruction is gone now.
1210   return BB;
1211 }
1212 
1213 static bool isSelectPseudo(MachineInstr &MI) {
1214   switch (MI.getOpcode()) {
1215   default:
1216     return false;
1217   case RISCV::Select_GPR_Using_CC_GPR:
1218   case RISCV::Select_FPR32_Using_CC_GPR:
1219   case RISCV::Select_FPR64_Using_CC_GPR:
1220     return true;
1221   }
1222 }
1223 
1224 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1225                                            MachineBasicBlock *BB) {
1226   // To "insert" Select_* instructions, we actually have to insert the triangle
1227   // control-flow pattern.  The incoming instructions know the destination vreg
1228   // to set, the condition code register to branch on, the true/false values to
1229   // select between, and the condcode to use to select the appropriate branch.
1230   //
1231   // We produce the following control flow:
1232   //     HeadMBB
1233   //     |  \
1234   //     |  IfFalseMBB
1235   //     | /
1236   //    TailMBB
1237   //
1238   // When we find a sequence of selects we attempt to optimize their emission
1239   // by sharing the control flow. Currently we only handle cases where we have
1240   // multiple selects with the exact same condition (same LHS, RHS and CC).
1241   // The selects may be interleaved with other instructions if the other
1242   // instructions meet some requirements we deem safe:
1243   // - They are debug instructions. Otherwise,
1244   // - They do not have side-effects, do not access memory and their inputs do
1245   //   not depend on the results of the select pseudo-instructions.
1246   // The TrueV/FalseV operands of the selects cannot depend on the result of
1247   // previous selects in the sequence.
1248   // These conditions could be further relaxed. See the X86 target for a
1249   // related approach and more information.
1250   Register LHS = MI.getOperand(1).getReg();
1251   Register RHS = MI.getOperand(2).getReg();
1252   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1253 
1254   SmallVector<MachineInstr *, 4> SelectDebugValues;
1255   SmallSet<Register, 4> SelectDests;
1256   SelectDests.insert(MI.getOperand(0).getReg());
1257 
1258   MachineInstr *LastSelectPseudo = &MI;
1259 
1260   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1261        SequenceMBBI != E; ++SequenceMBBI) {
1262     if (SequenceMBBI->isDebugInstr())
1263       continue;
1264     else if (isSelectPseudo(*SequenceMBBI)) {
1265       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1266           SequenceMBBI->getOperand(2).getReg() != RHS ||
1267           SequenceMBBI->getOperand(3).getImm() != CC ||
1268           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1269           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1270         break;
1271       LastSelectPseudo = &*SequenceMBBI;
1272       SequenceMBBI->collectDebugValues(SelectDebugValues);
1273       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1274     } else {
1275       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1276           SequenceMBBI->mayLoadOrStore())
1277         break;
1278       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1279             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1280           }))
1281         break;
1282     }
1283   }
1284 
1285   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1286   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1287   DebugLoc DL = MI.getDebugLoc();
1288   MachineFunction::iterator I = ++BB->getIterator();
1289 
1290   MachineBasicBlock *HeadMBB = BB;
1291   MachineFunction *F = BB->getParent();
1292   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1293   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1294 
1295   F->insert(I, IfFalseMBB);
1296   F->insert(I, TailMBB);
1297 
1298   // Transfer debug instructions associated with the selects to TailMBB.
1299   for (MachineInstr *DebugInstr : SelectDebugValues) {
1300     TailMBB->push_back(DebugInstr->removeFromParent());
1301   }
1302 
1303   // Move all instructions after the sequence to TailMBB.
1304   TailMBB->splice(TailMBB->end(), HeadMBB,
1305                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1306   // Update machine-CFG edges by transferring all successors of the current
1307   // block to the new block which will contain the Phi nodes for the selects.
1308   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1309   // Set the successors for HeadMBB.
1310   HeadMBB->addSuccessor(IfFalseMBB);
1311   HeadMBB->addSuccessor(TailMBB);
1312 
1313   // Insert appropriate branch.
1314   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1315 
1316   BuildMI(HeadMBB, DL, TII.get(Opcode))
1317     .addReg(LHS)
1318     .addReg(RHS)
1319     .addMBB(TailMBB);
1320 
1321   // IfFalseMBB just falls through to TailMBB.
1322   IfFalseMBB->addSuccessor(TailMBB);
1323 
1324   // Create PHIs for all of the select pseudo-instructions.
1325   auto SelectMBBI = MI.getIterator();
1326   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1327   auto InsertionPoint = TailMBB->begin();
1328   while (SelectMBBI != SelectEnd) {
1329     auto Next = std::next(SelectMBBI);
1330     if (isSelectPseudo(*SelectMBBI)) {
1331       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1332       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1333               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1334           .addReg(SelectMBBI->getOperand(4).getReg())
1335           .addMBB(HeadMBB)
1336           .addReg(SelectMBBI->getOperand(5).getReg())
1337           .addMBB(IfFalseMBB);
1338       SelectMBBI->eraseFromParent();
1339     }
1340     SelectMBBI = Next;
1341   }
1342 
1343   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1344   return TailMBB;
1345 }
1346 
1347 MachineBasicBlock *
1348 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1349                                                  MachineBasicBlock *BB) const {
1350   switch (MI.getOpcode()) {
1351   default:
1352     llvm_unreachable("Unexpected instr type to insert");
1353   case RISCV::ReadCycleWide:
1354     assert(!Subtarget.is64Bit() &&
1355            "ReadCycleWrite is only to be used on riscv32");
1356     return emitReadCycleWidePseudo(MI, BB);
1357   case RISCV::Select_GPR_Using_CC_GPR:
1358   case RISCV::Select_FPR32_Using_CC_GPR:
1359   case RISCV::Select_FPR64_Using_CC_GPR:
1360     return emitSelectPseudo(MI, BB);
1361   case RISCV::BuildPairF64Pseudo:
1362     return emitBuildPairF64Pseudo(MI, BB);
1363   case RISCV::SplitF64Pseudo:
1364     return emitSplitF64Pseudo(MI, BB);
1365   }
1366 }
1367 
1368 // Calling Convention Implementation.
1369 // The expectations for frontend ABI lowering vary from target to target.
1370 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1371 // details, but this is a longer term goal. For now, we simply try to keep the
1372 // role of the frontend as simple and well-defined as possible. The rules can
1373 // be summarised as:
1374 // * Never split up large scalar arguments. We handle them here.
1375 // * If a hardfloat calling convention is being used, and the struct may be
1376 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1377 // available, then pass as two separate arguments. If either the GPRs or FPRs
1378 // are exhausted, then pass according to the rule below.
1379 // * If a struct could never be passed in registers or directly in a stack
1380 // slot (as it is larger than 2*XLEN and the floating point rules don't
1381 // apply), then pass it using a pointer with the byval attribute.
1382 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1383 // word-sized array or a 2*XLEN scalar (depending on alignment).
1384 // * The frontend can determine whether a struct is returned by reference or
1385 // not based on its size and fields. If it will be returned by reference, the
1386 // frontend must modify the prototype so a pointer with the sret annotation is
1387 // passed as the first argument. This is not necessary for large scalar
1388 // returns.
1389 // * Struct return values and varargs should be coerced to structs containing
1390 // register-size fields in the same situations they would be for fixed
1391 // arguments.
1392 
1393 static const MCPhysReg ArgGPRs[] = {
1394   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1395   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1396 };
1397 static const MCPhysReg ArgFPR32s[] = {
1398   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1399   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1400 };
1401 static const MCPhysReg ArgFPR64s[] = {
1402   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1403   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1404 };
1405 
1406 // Pass a 2*XLEN argument that has been split into two XLEN values through
1407 // registers or the stack as necessary.
1408 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1409                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1410                                 MVT ValVT2, MVT LocVT2,
1411                                 ISD::ArgFlagsTy ArgFlags2) {
1412   unsigned XLenInBytes = XLen / 8;
1413   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1414     // At least one half can be passed via register.
1415     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1416                                      VA1.getLocVT(), CCValAssign::Full));
1417   } else {
1418     // Both halves must be passed on the stack, with proper alignment.
1419     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
1420     State.addLoc(
1421         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1422                             State.AllocateStack(XLenInBytes, StackAlign),
1423                             VA1.getLocVT(), CCValAssign::Full));
1424     State.addLoc(CCValAssign::getMem(
1425         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1426         CCValAssign::Full));
1427     return false;
1428   }
1429 
1430   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1431     // The second half can also be passed via register.
1432     State.addLoc(
1433         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1434   } else {
1435     // The second half is passed via the stack, without additional alignment.
1436     State.addLoc(CCValAssign::getMem(
1437         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1438         CCValAssign::Full));
1439   }
1440 
1441   return false;
1442 }
1443 
1444 // Implements the RISC-V calling convention. Returns true upon failure.
1445 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1446                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1447                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1448                      bool IsRet, Type *OrigTy) {
1449   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1450   assert(XLen == 32 || XLen == 64);
1451   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1452 
1453   // Any return value split in to more than two values can't be returned
1454   // directly.
1455   if (IsRet && ValNo > 1)
1456     return true;
1457 
1458   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1459   // variadic argument, or if no F32 argument registers are available.
1460   bool UseGPRForF32 = true;
1461   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1462   // variadic argument, or if no F64 argument registers are available.
1463   bool UseGPRForF64 = true;
1464 
1465   switch (ABI) {
1466   default:
1467     llvm_unreachable("Unexpected ABI");
1468   case RISCVABI::ABI_ILP32:
1469   case RISCVABI::ABI_LP64:
1470     break;
1471   case RISCVABI::ABI_ILP32F:
1472   case RISCVABI::ABI_LP64F:
1473     UseGPRForF32 = !IsFixed;
1474     break;
1475   case RISCVABI::ABI_ILP32D:
1476   case RISCVABI::ABI_LP64D:
1477     UseGPRForF32 = !IsFixed;
1478     UseGPRForF64 = !IsFixed;
1479     break;
1480   }
1481 
1482   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1483     UseGPRForF32 = true;
1484   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1485     UseGPRForF64 = true;
1486 
1487   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1488   // variables rather than directly checking against the target ABI.
1489 
1490   if (UseGPRForF32 && ValVT == MVT::f32) {
1491     LocVT = XLenVT;
1492     LocInfo = CCValAssign::BCvt;
1493   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1494     LocVT = MVT::i64;
1495     LocInfo = CCValAssign::BCvt;
1496   }
1497 
1498   // If this is a variadic argument, the RISC-V calling convention requires
1499   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1500   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1501   // be used regardless of whether the original argument was split during
1502   // legalisation or not. The argument will not be passed by registers if the
1503   // original type is larger than 2*XLEN, so the register alignment rule does
1504   // not apply.
1505   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1506   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
1507       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1508     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1509     // Skip 'odd' register if necessary.
1510     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1511       State.AllocateReg(ArgGPRs);
1512   }
1513 
1514   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1515   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1516       State.getPendingArgFlags();
1517 
1518   assert(PendingLocs.size() == PendingArgFlags.size() &&
1519          "PendingLocs and PendingArgFlags out of sync");
1520 
1521   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1522   // registers are exhausted.
1523   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1524     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1525            "Can't lower f64 if it is split");
1526     // Depending on available argument GPRS, f64 may be passed in a pair of
1527     // GPRs, split between a GPR and the stack, or passed completely on the
1528     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1529     // cases.
1530     Register Reg = State.AllocateReg(ArgGPRs);
1531     LocVT = MVT::i32;
1532     if (!Reg) {
1533       unsigned StackOffset = State.AllocateStack(8, 8);
1534       State.addLoc(
1535           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1536       return false;
1537     }
1538     if (!State.AllocateReg(ArgGPRs))
1539       State.AllocateStack(4, 4);
1540     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1541     return false;
1542   }
1543 
1544   // Split arguments might be passed indirectly, so keep track of the pending
1545   // values.
1546   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1547     LocVT = XLenVT;
1548     LocInfo = CCValAssign::Indirect;
1549     PendingLocs.push_back(
1550         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1551     PendingArgFlags.push_back(ArgFlags);
1552     if (!ArgFlags.isSplitEnd()) {
1553       return false;
1554     }
1555   }
1556 
1557   // If the split argument only had two elements, it should be passed directly
1558   // in registers or on the stack.
1559   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1560     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1561     // Apply the normal calling convention rules to the first half of the
1562     // split argument.
1563     CCValAssign VA = PendingLocs[0];
1564     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1565     PendingLocs.clear();
1566     PendingArgFlags.clear();
1567     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1568                                ArgFlags);
1569   }
1570 
1571   // Allocate to a register if possible, or else a stack slot.
1572   Register Reg;
1573   if (ValVT == MVT::f32 && !UseGPRForF32)
1574     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1575   else if (ValVT == MVT::f64 && !UseGPRForF64)
1576     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1577   else
1578     Reg = State.AllocateReg(ArgGPRs);
1579   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
1580 
1581   // If we reach this point and PendingLocs is non-empty, we must be at the
1582   // end of a split argument that must be passed indirectly.
1583   if (!PendingLocs.empty()) {
1584     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1585     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1586 
1587     for (auto &It : PendingLocs) {
1588       if (Reg)
1589         It.convertToReg(Reg);
1590       else
1591         It.convertToMem(StackOffset);
1592       State.addLoc(It);
1593     }
1594     PendingLocs.clear();
1595     PendingArgFlags.clear();
1596     return false;
1597   }
1598 
1599   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1600          "Expected an XLenVT at this stage");
1601 
1602   if (Reg) {
1603     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1604     return false;
1605   }
1606 
1607   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1608   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1609     LocVT = ValVT;
1610     LocInfo = CCValAssign::Full;
1611   }
1612   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1613   return false;
1614 }
1615 
1616 void RISCVTargetLowering::analyzeInputArgs(
1617     MachineFunction &MF, CCState &CCInfo,
1618     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1619   unsigned NumArgs = Ins.size();
1620   FunctionType *FType = MF.getFunction().getFunctionType();
1621 
1622   for (unsigned i = 0; i != NumArgs; ++i) {
1623     MVT ArgVT = Ins[i].VT;
1624     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1625 
1626     Type *ArgTy = nullptr;
1627     if (IsRet)
1628       ArgTy = FType->getReturnType();
1629     else if (Ins[i].isOrigArg())
1630       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1631 
1632     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1633     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1634                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
1635       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1636                         << EVT(ArgVT).getEVTString() << '\n');
1637       llvm_unreachable(nullptr);
1638     }
1639   }
1640 }
1641 
1642 void RISCVTargetLowering::analyzeOutputArgs(
1643     MachineFunction &MF, CCState &CCInfo,
1644     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1645     CallLoweringInfo *CLI) const {
1646   unsigned NumArgs = Outs.size();
1647 
1648   for (unsigned i = 0; i != NumArgs; i++) {
1649     MVT ArgVT = Outs[i].VT;
1650     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1651     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1652 
1653     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1654     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1655                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1656       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1657                         << EVT(ArgVT).getEVTString() << "\n");
1658       llvm_unreachable(nullptr);
1659     }
1660   }
1661 }
1662 
1663 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1664 // values.
1665 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1666                                    const CCValAssign &VA, const SDLoc &DL) {
1667   switch (VA.getLocInfo()) {
1668   default:
1669     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1670   case CCValAssign::Full:
1671     break;
1672   case CCValAssign::BCvt:
1673     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1674       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1675       break;
1676     }
1677     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1678     break;
1679   }
1680   return Val;
1681 }
1682 
1683 // The caller is responsible for loading the full value if the argument is
1684 // passed with CCValAssign::Indirect.
1685 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1686                                 const CCValAssign &VA, const SDLoc &DL) {
1687   MachineFunction &MF = DAG.getMachineFunction();
1688   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1689   EVT LocVT = VA.getLocVT();
1690   SDValue Val;
1691   const TargetRegisterClass *RC;
1692 
1693   switch (LocVT.getSimpleVT().SimpleTy) {
1694   default:
1695     llvm_unreachable("Unexpected register type");
1696   case MVT::i32:
1697   case MVT::i64:
1698     RC = &RISCV::GPRRegClass;
1699     break;
1700   case MVT::f32:
1701     RC = &RISCV::FPR32RegClass;
1702     break;
1703   case MVT::f64:
1704     RC = &RISCV::FPR64RegClass;
1705     break;
1706   }
1707 
1708   Register VReg = RegInfo.createVirtualRegister(RC);
1709   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1710   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1711 
1712   if (VA.getLocInfo() == CCValAssign::Indirect)
1713     return Val;
1714 
1715   return convertLocVTToValVT(DAG, Val, VA, DL);
1716 }
1717 
1718 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1719                                    const CCValAssign &VA, const SDLoc &DL) {
1720   EVT LocVT = VA.getLocVT();
1721 
1722   switch (VA.getLocInfo()) {
1723   default:
1724     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1725   case CCValAssign::Full:
1726     break;
1727   case CCValAssign::BCvt:
1728     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1729       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1730       break;
1731     }
1732     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1733     break;
1734   }
1735   return Val;
1736 }
1737 
1738 // The caller is responsible for loading the full value if the argument is
1739 // passed with CCValAssign::Indirect.
1740 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1741                                 const CCValAssign &VA, const SDLoc &DL) {
1742   MachineFunction &MF = DAG.getMachineFunction();
1743   MachineFrameInfo &MFI = MF.getFrameInfo();
1744   EVT LocVT = VA.getLocVT();
1745   EVT ValVT = VA.getValVT();
1746   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1747   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1748                                  VA.getLocMemOffset(), /*Immutable=*/true);
1749   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1750   SDValue Val;
1751 
1752   ISD::LoadExtType ExtType;
1753   switch (VA.getLocInfo()) {
1754   default:
1755     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1756   case CCValAssign::Full:
1757   case CCValAssign::Indirect:
1758   case CCValAssign::BCvt:
1759     ExtType = ISD::NON_EXTLOAD;
1760     break;
1761   }
1762   Val = DAG.getExtLoad(
1763       ExtType, DL, LocVT, Chain, FIN,
1764       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1765   return Val;
1766 }
1767 
1768 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1769                                        const CCValAssign &VA, const SDLoc &DL) {
1770   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1771          "Unexpected VA");
1772   MachineFunction &MF = DAG.getMachineFunction();
1773   MachineFrameInfo &MFI = MF.getFrameInfo();
1774   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1775 
1776   if (VA.isMemLoc()) {
1777     // f64 is passed on the stack.
1778     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1779     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1780     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1781                        MachinePointerInfo::getFixedStack(MF, FI));
1782   }
1783 
1784   assert(VA.isRegLoc() && "Expected register VA assignment");
1785 
1786   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1787   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1788   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1789   SDValue Hi;
1790   if (VA.getLocReg() == RISCV::X17) {
1791     // Second half of f64 is passed on the stack.
1792     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1793     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1794     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1795                      MachinePointerInfo::getFixedStack(MF, FI));
1796   } else {
1797     // Second half of f64 is passed in another GPR.
1798     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1799     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1800     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1801   }
1802   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1803 }
1804 
1805 // FastCC has less than 1% performance improvement for some particular
1806 // benchmark. But theoretically, it may has benenfit for some cases.
1807 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1808                             CCValAssign::LocInfo LocInfo,
1809                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1810 
1811   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1812     // X5 and X6 might be used for save-restore libcall.
1813     static const MCPhysReg GPRList[] = {
1814         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1815         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1816         RISCV::X29, RISCV::X30, RISCV::X31};
1817     if (unsigned Reg = State.AllocateReg(GPRList)) {
1818       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1819       return false;
1820     }
1821   }
1822 
1823   if (LocVT == MVT::f32) {
1824     static const MCPhysReg FPR32List[] = {
1825         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1826         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1827         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1828         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1829     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1830       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1831       return false;
1832     }
1833   }
1834 
1835   if (LocVT == MVT::f64) {
1836     static const MCPhysReg FPR64List[] = {
1837         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1838         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1839         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1840         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1841     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1842       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1843       return false;
1844     }
1845   }
1846 
1847   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1848     unsigned Offset4 = State.AllocateStack(4, 4);
1849     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1850     return false;
1851   }
1852 
1853   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1854     unsigned Offset5 = State.AllocateStack(8, 8);
1855     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1856     return false;
1857   }
1858 
1859   return true; // CC didn't match.
1860 }
1861 
1862 // Transform physical registers into virtual registers.
1863 SDValue RISCVTargetLowering::LowerFormalArguments(
1864     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1865     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1866     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1867 
1868   switch (CallConv) {
1869   default:
1870     report_fatal_error("Unsupported calling convention");
1871   case CallingConv::C:
1872   case CallingConv::Fast:
1873     break;
1874   }
1875 
1876   MachineFunction &MF = DAG.getMachineFunction();
1877 
1878   const Function &Func = MF.getFunction();
1879   if (Func.hasFnAttribute("interrupt")) {
1880     if (!Func.arg_empty())
1881       report_fatal_error(
1882         "Functions with the interrupt attribute cannot have arguments!");
1883 
1884     StringRef Kind =
1885       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1886 
1887     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1888       report_fatal_error(
1889         "Function interrupt attribute argument not supported!");
1890   }
1891 
1892   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1893   MVT XLenVT = Subtarget.getXLenVT();
1894   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1895   // Used with vargs to acumulate store chains.
1896   std::vector<SDValue> OutChains;
1897 
1898   // Assign locations to all of the incoming arguments.
1899   SmallVector<CCValAssign, 16> ArgLocs;
1900   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1901 
1902   if (CallConv == CallingConv::Fast)
1903     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
1904   else
1905     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1906 
1907   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1908     CCValAssign &VA = ArgLocs[i];
1909     SDValue ArgValue;
1910     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1911     // case.
1912     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1913       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1914     else if (VA.isRegLoc())
1915       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1916     else
1917       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1918 
1919     if (VA.getLocInfo() == CCValAssign::Indirect) {
1920       // If the original argument was split and passed by reference (e.g. i128
1921       // on RV32), we need to load all parts of it here (using the same
1922       // address).
1923       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1924                                    MachinePointerInfo()));
1925       unsigned ArgIndex = Ins[i].OrigArgIndex;
1926       assert(Ins[i].PartOffset == 0);
1927       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1928         CCValAssign &PartVA = ArgLocs[i + 1];
1929         unsigned PartOffset = Ins[i + 1].PartOffset;
1930         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1931                                       DAG.getIntPtrConstant(PartOffset, DL));
1932         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1933                                      MachinePointerInfo()));
1934         ++i;
1935       }
1936       continue;
1937     }
1938     InVals.push_back(ArgValue);
1939   }
1940 
1941   if (IsVarArg) {
1942     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1943     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1944     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1945     MachineFrameInfo &MFI = MF.getFrameInfo();
1946     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1947     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1948 
1949     // Offset of the first variable argument from stack pointer, and size of
1950     // the vararg save area. For now, the varargs save area is either zero or
1951     // large enough to hold a0-a7.
1952     int VaArgOffset, VarArgsSaveSize;
1953 
1954     // If all registers are allocated, then all varargs must be passed on the
1955     // stack and we don't need to save any argregs.
1956     if (ArgRegs.size() == Idx) {
1957       VaArgOffset = CCInfo.getNextStackOffset();
1958       VarArgsSaveSize = 0;
1959     } else {
1960       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1961       VaArgOffset = -VarArgsSaveSize;
1962     }
1963 
1964     // Record the frame index of the first variable argument
1965     // which is a value necessary to VASTART.
1966     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1967     RVFI->setVarArgsFrameIndex(FI);
1968 
1969     // If saving an odd number of registers then create an extra stack slot to
1970     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1971     // offsets to even-numbered registered remain 2*XLEN-aligned.
1972     if (Idx % 2) {
1973       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
1974       VarArgsSaveSize += XLenInBytes;
1975     }
1976 
1977     // Copy the integer registers that may have been used for passing varargs
1978     // to the vararg save area.
1979     for (unsigned I = Idx; I < ArgRegs.size();
1980          ++I, VaArgOffset += XLenInBytes) {
1981       const Register Reg = RegInfo.createVirtualRegister(RC);
1982       RegInfo.addLiveIn(ArgRegs[I], Reg);
1983       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1984       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1985       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1986       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1987                                    MachinePointerInfo::getFixedStack(MF, FI));
1988       cast<StoreSDNode>(Store.getNode())
1989           ->getMemOperand()
1990           ->setValue((Value *)nullptr);
1991       OutChains.push_back(Store);
1992     }
1993     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1994   }
1995 
1996   // All stores are grouped in one node to allow the matching between
1997   // the size of Ins and InVals. This only happens for vararg functions.
1998   if (!OutChains.empty()) {
1999     OutChains.push_back(Chain);
2000     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2001   }
2002 
2003   return Chain;
2004 }
2005 
2006 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2007 /// for tail call optimization.
2008 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2009 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2010     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2011     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2012 
2013   auto &Callee = CLI.Callee;
2014   auto CalleeCC = CLI.CallConv;
2015   auto &Outs = CLI.Outs;
2016   auto &Caller = MF.getFunction();
2017   auto CallerCC = Caller.getCallingConv();
2018 
2019   // Do not tail call opt functions with "disable-tail-calls" attribute.
2020   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
2021     return false;
2022 
2023   // Exception-handling functions need a special set of instructions to
2024   // indicate a return to the hardware. Tail-calling another function would
2025   // probably break this.
2026   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2027   // should be expanded as new function attributes are introduced.
2028   if (Caller.hasFnAttribute("interrupt"))
2029     return false;
2030 
2031   // Do not tail call opt if the stack is used to pass parameters.
2032   if (CCInfo.getNextStackOffset() != 0)
2033     return false;
2034 
2035   // Do not tail call opt if any parameters need to be passed indirectly.
2036   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2037   // passed indirectly. So the address of the value will be passed in a
2038   // register, or if not available, then the address is put on the stack. In
2039   // order to pass indirectly, space on the stack often needs to be allocated
2040   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2041   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2042   // are passed CCValAssign::Indirect.
2043   for (auto &VA : ArgLocs)
2044     if (VA.getLocInfo() == CCValAssign::Indirect)
2045       return false;
2046 
2047   // Do not tail call opt if either caller or callee uses struct return
2048   // semantics.
2049   auto IsCallerStructRet = Caller.hasStructRetAttr();
2050   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2051   if (IsCallerStructRet || IsCalleeStructRet)
2052     return false;
2053 
2054   // Externally-defined functions with weak linkage should not be
2055   // tail-called. The behaviour of branch instructions in this situation (as
2056   // used for tail calls) is implementation-defined, so we cannot rely on the
2057   // linker replacing the tail call with a return.
2058   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2059     const GlobalValue *GV = G->getGlobal();
2060     if (GV->hasExternalWeakLinkage())
2061       return false;
2062   }
2063 
2064   // The callee has to preserve all registers the caller needs to preserve.
2065   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2066   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2067   if (CalleeCC != CallerCC) {
2068     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2069     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2070       return false;
2071   }
2072 
2073   // Byval parameters hand the function a pointer directly into the stack area
2074   // we want to reuse during a tail call. Working around this *is* possible
2075   // but less efficient and uglier in LowerCall.
2076   for (auto &Arg : Outs)
2077     if (Arg.Flags.isByVal())
2078       return false;
2079 
2080   return true;
2081 }
2082 
2083 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2084 // and output parameter nodes.
2085 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2086                                        SmallVectorImpl<SDValue> &InVals) const {
2087   SelectionDAG &DAG = CLI.DAG;
2088   SDLoc &DL = CLI.DL;
2089   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2090   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2091   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2092   SDValue Chain = CLI.Chain;
2093   SDValue Callee = CLI.Callee;
2094   bool &IsTailCall = CLI.IsTailCall;
2095   CallingConv::ID CallConv = CLI.CallConv;
2096   bool IsVarArg = CLI.IsVarArg;
2097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2098   MVT XLenVT = Subtarget.getXLenVT();
2099 
2100   MachineFunction &MF = DAG.getMachineFunction();
2101 
2102   // Analyze the operands of the call, assigning locations to each operand.
2103   SmallVector<CCValAssign, 16> ArgLocs;
2104   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2105 
2106   if (CallConv == CallingConv::Fast)
2107     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2108   else
2109     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2110 
2111   // Check if it's really possible to do a tail call.
2112   if (IsTailCall)
2113     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2114 
2115   if (IsTailCall)
2116     ++NumTailCalls;
2117   else if (CLI.CS && CLI.CS.isMustTailCall())
2118     report_fatal_error("failed to perform tail call elimination on a call "
2119                        "site marked musttail");
2120 
2121   // Get a count of how many bytes are to be pushed on the stack.
2122   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2123 
2124   // Create local copies for byval args
2125   SmallVector<SDValue, 8> ByValArgs;
2126   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2127     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2128     if (!Flags.isByVal())
2129       continue;
2130 
2131     SDValue Arg = OutVals[i];
2132     unsigned Size = Flags.getByValSize();
2133     unsigned Align = Flags.getByValAlign();
2134 
2135     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
2136     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2137     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2138 
2139     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
2140                           /*IsVolatile=*/false,
2141                           /*AlwaysInline=*/false,
2142                           IsTailCall, MachinePointerInfo(),
2143                           MachinePointerInfo());
2144     ByValArgs.push_back(FIPtr);
2145   }
2146 
2147   if (!IsTailCall)
2148     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2149 
2150   // Copy argument values to their designated locations.
2151   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2152   SmallVector<SDValue, 8> MemOpChains;
2153   SDValue StackPtr;
2154   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2155     CCValAssign &VA = ArgLocs[i];
2156     SDValue ArgValue = OutVals[i];
2157     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2158 
2159     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2160     bool IsF64OnRV32DSoftABI =
2161         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2162     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2163       SDValue SplitF64 = DAG.getNode(
2164           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2165       SDValue Lo = SplitF64.getValue(0);
2166       SDValue Hi = SplitF64.getValue(1);
2167 
2168       Register RegLo = VA.getLocReg();
2169       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2170 
2171       if (RegLo == RISCV::X17) {
2172         // Second half of f64 is passed on the stack.
2173         // Work out the address of the stack slot.
2174         if (!StackPtr.getNode())
2175           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2176         // Emit the store.
2177         MemOpChains.push_back(
2178             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2179       } else {
2180         // Second half of f64 is passed in another GPR.
2181         assert(RegLo < RISCV::X31 && "Invalid register pair");
2182         Register RegHigh = RegLo + 1;
2183         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2184       }
2185       continue;
2186     }
2187 
2188     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2189     // as any other MemLoc.
2190 
2191     // Promote the value if needed.
2192     // For now, only handle fully promoted and indirect arguments.
2193     if (VA.getLocInfo() == CCValAssign::Indirect) {
2194       // Store the argument in a stack slot and pass its address.
2195       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2196       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2197       MemOpChains.push_back(
2198           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2199                        MachinePointerInfo::getFixedStack(MF, FI)));
2200       // If the original argument was split (e.g. i128), we need
2201       // to store all parts of it here (and pass just one address).
2202       unsigned ArgIndex = Outs[i].OrigArgIndex;
2203       assert(Outs[i].PartOffset == 0);
2204       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2205         SDValue PartValue = OutVals[i + 1];
2206         unsigned PartOffset = Outs[i + 1].PartOffset;
2207         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2208                                       DAG.getIntPtrConstant(PartOffset, DL));
2209         MemOpChains.push_back(
2210             DAG.getStore(Chain, DL, PartValue, Address,
2211                          MachinePointerInfo::getFixedStack(MF, FI)));
2212         ++i;
2213       }
2214       ArgValue = SpillSlot;
2215     } else {
2216       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2217     }
2218 
2219     // Use local copy if it is a byval arg.
2220     if (Flags.isByVal())
2221       ArgValue = ByValArgs[j++];
2222 
2223     if (VA.isRegLoc()) {
2224       // Queue up the argument copies and emit them at the end.
2225       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2226     } else {
2227       assert(VA.isMemLoc() && "Argument not register or memory");
2228       assert(!IsTailCall && "Tail call not allowed if stack is used "
2229                             "for passing parameters");
2230 
2231       // Work out the address of the stack slot.
2232       if (!StackPtr.getNode())
2233         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2234       SDValue Address =
2235           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2236                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2237 
2238       // Emit the store.
2239       MemOpChains.push_back(
2240           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2241     }
2242   }
2243 
2244   // Join the stores, which are independent of one another.
2245   if (!MemOpChains.empty())
2246     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2247 
2248   SDValue Glue;
2249 
2250   // Build a sequence of copy-to-reg nodes, chained and glued together.
2251   for (auto &Reg : RegsToPass) {
2252     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2253     Glue = Chain.getValue(1);
2254   }
2255 
2256   // Validate that none of the argument registers have been marked as
2257   // reserved, if so report an error. Do the same for the return address if this
2258   // is not a tailcall.
2259   validateCCReservedRegs(RegsToPass, MF);
2260   if (!IsTailCall &&
2261       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2262     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2263         MF.getFunction(),
2264         "Return address register required, but has been reserved."});
2265 
2266   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2267   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2268   // split it and then direct call can be matched by PseudoCALL.
2269   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2270     const GlobalValue *GV = S->getGlobal();
2271 
2272     unsigned OpFlags = RISCVII::MO_CALL;
2273     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2274       OpFlags = RISCVII::MO_PLT;
2275 
2276     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2277   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2278     unsigned OpFlags = RISCVII::MO_CALL;
2279 
2280     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2281                                                  nullptr))
2282       OpFlags = RISCVII::MO_PLT;
2283 
2284     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2285   }
2286 
2287   // The first call operand is the chain and the second is the target address.
2288   SmallVector<SDValue, 8> Ops;
2289   Ops.push_back(Chain);
2290   Ops.push_back(Callee);
2291 
2292   // Add argument registers to the end of the list so that they are
2293   // known live into the call.
2294   for (auto &Reg : RegsToPass)
2295     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2296 
2297   if (!IsTailCall) {
2298     // Add a register mask operand representing the call-preserved registers.
2299     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2300     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2301     assert(Mask && "Missing call preserved mask for calling convention");
2302     Ops.push_back(DAG.getRegisterMask(Mask));
2303   }
2304 
2305   // Glue the call to the argument copies, if any.
2306   if (Glue.getNode())
2307     Ops.push_back(Glue);
2308 
2309   // Emit the call.
2310   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2311 
2312   if (IsTailCall) {
2313     MF.getFrameInfo().setHasTailCall();
2314     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2315   }
2316 
2317   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2318   Glue = Chain.getValue(1);
2319 
2320   // Mark the end of the call, which is glued to the call itself.
2321   Chain = DAG.getCALLSEQ_END(Chain,
2322                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2323                              DAG.getConstant(0, DL, PtrVT, true),
2324                              Glue, DL);
2325   Glue = Chain.getValue(1);
2326 
2327   // Assign locations to each value returned by this call.
2328   SmallVector<CCValAssign, 16> RVLocs;
2329   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2330   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2331 
2332   // Copy all of the result registers out of their specified physreg.
2333   for (auto &VA : RVLocs) {
2334     // Copy the value out
2335     SDValue RetValue =
2336         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2337     // Glue the RetValue to the end of the call sequence
2338     Chain = RetValue.getValue(1);
2339     Glue = RetValue.getValue(2);
2340 
2341     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2342       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2343       SDValue RetValue2 =
2344           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2345       Chain = RetValue2.getValue(1);
2346       Glue = RetValue2.getValue(2);
2347       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2348                              RetValue2);
2349     }
2350 
2351     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2352 
2353     InVals.push_back(RetValue);
2354   }
2355 
2356   return Chain;
2357 }
2358 
2359 bool RISCVTargetLowering::CanLowerReturn(
2360     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2361     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2362   SmallVector<CCValAssign, 16> RVLocs;
2363   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2364   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2365     MVT VT = Outs[i].VT;
2366     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2367     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2368     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2369                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2370       return false;
2371   }
2372   return true;
2373 }
2374 
2375 SDValue
2376 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2377                                  bool IsVarArg,
2378                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2379                                  const SmallVectorImpl<SDValue> &OutVals,
2380                                  const SDLoc &DL, SelectionDAG &DAG) const {
2381   const MachineFunction &MF = DAG.getMachineFunction();
2382   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2383 
2384   // Stores the assignment of the return value to a location.
2385   SmallVector<CCValAssign, 16> RVLocs;
2386 
2387   // Info about the registers and stack slot.
2388   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2389                  *DAG.getContext());
2390 
2391   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2392                     nullptr);
2393 
2394   SDValue Glue;
2395   SmallVector<SDValue, 4> RetOps(1, Chain);
2396 
2397   // Copy the result values into the output registers.
2398   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2399     SDValue Val = OutVals[i];
2400     CCValAssign &VA = RVLocs[i];
2401     assert(VA.isRegLoc() && "Can only return in registers!");
2402 
2403     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2404       // Handle returning f64 on RV32D with a soft float ABI.
2405       assert(VA.isRegLoc() && "Expected return via registers");
2406       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2407                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2408       SDValue Lo = SplitF64.getValue(0);
2409       SDValue Hi = SplitF64.getValue(1);
2410       Register RegLo = VA.getLocReg();
2411       assert(RegLo < RISCV::X31 && "Invalid register pair");
2412       Register RegHi = RegLo + 1;
2413 
2414       if (STI.isRegisterReservedByUser(RegLo) ||
2415           STI.isRegisterReservedByUser(RegHi))
2416         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2417             MF.getFunction(),
2418             "Return value register required, but has been reserved."});
2419 
2420       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2421       Glue = Chain.getValue(1);
2422       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2423       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2424       Glue = Chain.getValue(1);
2425       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2426     } else {
2427       // Handle a 'normal' return.
2428       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2429       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2430 
2431       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2432         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2433             MF.getFunction(),
2434             "Return value register required, but has been reserved."});
2435 
2436       // Guarantee that all emitted copies are stuck together.
2437       Glue = Chain.getValue(1);
2438       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2439     }
2440   }
2441 
2442   RetOps[0] = Chain; // Update chain.
2443 
2444   // Add the glue node if we have it.
2445   if (Glue.getNode()) {
2446     RetOps.push_back(Glue);
2447   }
2448 
2449   // Interrupt service routines use different return instructions.
2450   const Function &Func = DAG.getMachineFunction().getFunction();
2451   if (Func.hasFnAttribute("interrupt")) {
2452     if (!Func.getReturnType()->isVoidTy())
2453       report_fatal_error(
2454           "Functions with the interrupt attribute must have void return type!");
2455 
2456     MachineFunction &MF = DAG.getMachineFunction();
2457     StringRef Kind =
2458       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2459 
2460     unsigned RetOpc;
2461     if (Kind == "user")
2462       RetOpc = RISCVISD::URET_FLAG;
2463     else if (Kind == "supervisor")
2464       RetOpc = RISCVISD::SRET_FLAG;
2465     else
2466       RetOpc = RISCVISD::MRET_FLAG;
2467 
2468     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2469   }
2470 
2471   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2472 }
2473 
2474 void RISCVTargetLowering::validateCCReservedRegs(
2475     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2476     MachineFunction &MF) const {
2477   const Function &F = MF.getFunction();
2478   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2479 
2480   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2481         return STI.isRegisterReservedByUser(Reg.first);
2482       }))
2483     F.getContext().diagnose(DiagnosticInfoUnsupported{
2484         F, "Argument register required, but has been reserved."});
2485 }
2486 
2487 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2488   switch ((RISCVISD::NodeType)Opcode) {
2489   case RISCVISD::FIRST_NUMBER:
2490     break;
2491   case RISCVISD::RET_FLAG:
2492     return "RISCVISD::RET_FLAG";
2493   case RISCVISD::URET_FLAG:
2494     return "RISCVISD::URET_FLAG";
2495   case RISCVISD::SRET_FLAG:
2496     return "RISCVISD::SRET_FLAG";
2497   case RISCVISD::MRET_FLAG:
2498     return "RISCVISD::MRET_FLAG";
2499   case RISCVISD::CALL:
2500     return "RISCVISD::CALL";
2501   case RISCVISD::SELECT_CC:
2502     return "RISCVISD::SELECT_CC";
2503   case RISCVISD::BuildPairF64:
2504     return "RISCVISD::BuildPairF64";
2505   case RISCVISD::SplitF64:
2506     return "RISCVISD::SplitF64";
2507   case RISCVISD::TAIL:
2508     return "RISCVISD::TAIL";
2509   case RISCVISD::SLLW:
2510     return "RISCVISD::SLLW";
2511   case RISCVISD::SRAW:
2512     return "RISCVISD::SRAW";
2513   case RISCVISD::SRLW:
2514     return "RISCVISD::SRLW";
2515   case RISCVISD::DIVW:
2516     return "RISCVISD::DIVW";
2517   case RISCVISD::DIVUW:
2518     return "RISCVISD::DIVUW";
2519   case RISCVISD::REMUW:
2520     return "RISCVISD::REMUW";
2521   case RISCVISD::FMV_W_X_RV64:
2522     return "RISCVISD::FMV_W_X_RV64";
2523   case RISCVISD::FMV_X_ANYEXTW_RV64:
2524     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2525   case RISCVISD::READ_CYCLE_WIDE:
2526     return "RISCVISD::READ_CYCLE_WIDE";
2527   }
2528   return nullptr;
2529 }
2530 
2531 /// getConstraintType - Given a constraint letter, return the type of
2532 /// constraint it is for this target.
2533 RISCVTargetLowering::ConstraintType
2534 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2535   if (Constraint.size() == 1) {
2536     switch (Constraint[0]) {
2537     default:
2538       break;
2539     case 'f':
2540       return C_RegisterClass;
2541     case 'I':
2542     case 'J':
2543     case 'K':
2544       return C_Immediate;
2545     case 'A':
2546       return C_Memory;
2547     }
2548   }
2549   return TargetLowering::getConstraintType(Constraint);
2550 }
2551 
2552 std::pair<unsigned, const TargetRegisterClass *>
2553 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2554                                                   StringRef Constraint,
2555                                                   MVT VT) const {
2556   // First, see if this is a constraint that directly corresponds to a
2557   // RISCV register class.
2558   if (Constraint.size() == 1) {
2559     switch (Constraint[0]) {
2560     case 'r':
2561       return std::make_pair(0U, &RISCV::GPRRegClass);
2562     case 'f':
2563       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2564         return std::make_pair(0U, &RISCV::FPR32RegClass);
2565       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2566         return std::make_pair(0U, &RISCV::FPR64RegClass);
2567       break;
2568     default:
2569       break;
2570     }
2571   }
2572 
2573   // Clang will correctly decode the usage of register name aliases into their
2574   // official names. However, other frontends like `rustc` do not. This allows
2575   // users of these frontends to use the ABI names for registers in LLVM-style
2576   // register constraints.
2577   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2578                                .Case("{zero}", RISCV::X0)
2579                                .Case("{ra}", RISCV::X1)
2580                                .Case("{sp}", RISCV::X2)
2581                                .Case("{gp}", RISCV::X3)
2582                                .Case("{tp}", RISCV::X4)
2583                                .Case("{t0}", RISCV::X5)
2584                                .Case("{t1}", RISCV::X6)
2585                                .Case("{t2}", RISCV::X7)
2586                                .Cases("{s0}", "{fp}", RISCV::X8)
2587                                .Case("{s1}", RISCV::X9)
2588                                .Case("{a0}", RISCV::X10)
2589                                .Case("{a1}", RISCV::X11)
2590                                .Case("{a2}", RISCV::X12)
2591                                .Case("{a3}", RISCV::X13)
2592                                .Case("{a4}", RISCV::X14)
2593                                .Case("{a5}", RISCV::X15)
2594                                .Case("{a6}", RISCV::X16)
2595                                .Case("{a7}", RISCV::X17)
2596                                .Case("{s2}", RISCV::X18)
2597                                .Case("{s3}", RISCV::X19)
2598                                .Case("{s4}", RISCV::X20)
2599                                .Case("{s5}", RISCV::X21)
2600                                .Case("{s6}", RISCV::X22)
2601                                .Case("{s7}", RISCV::X23)
2602                                .Case("{s8}", RISCV::X24)
2603                                .Case("{s9}", RISCV::X25)
2604                                .Case("{s10}", RISCV::X26)
2605                                .Case("{s11}", RISCV::X27)
2606                                .Case("{t3}", RISCV::X28)
2607                                .Case("{t4}", RISCV::X29)
2608                                .Case("{t5}", RISCV::X30)
2609                                .Case("{t6}", RISCV::X31)
2610                                .Default(RISCV::NoRegister);
2611   if (XRegFromAlias != RISCV::NoRegister)
2612     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2613 
2614   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2615   // TableGen record rather than the AsmName to choose registers for InlineAsm
2616   // constraints, plus we want to match those names to the widest floating point
2617   // register type available, manually select floating point registers here.
2618   //
2619   // The second case is the ABI name of the register, so that frontends can also
2620   // use the ABI names in register constraint lists.
2621   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2622     std::pair<Register, Register> FReg =
2623         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2624             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2625             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2626             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2627             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2628             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2629             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2630             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2631             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2632             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2633             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2634             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2635             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2636             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2637             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2638             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2639             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2640             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2641             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2642             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2643             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2644             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2645             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2646             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2647             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2648             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2649             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2650             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2651             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2652             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2653             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2654             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2655             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2656             .Default({RISCV::NoRegister, RISCV::NoRegister});
2657     if (FReg.first != RISCV::NoRegister)
2658       return Subtarget.hasStdExtD()
2659                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2660                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2661   }
2662 
2663   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2664 }
2665 
2666 unsigned
2667 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2668   // Currently only support length 1 constraints.
2669   if (ConstraintCode.size() == 1) {
2670     switch (ConstraintCode[0]) {
2671     case 'A':
2672       return InlineAsm::Constraint_A;
2673     default:
2674       break;
2675     }
2676   }
2677 
2678   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2679 }
2680 
2681 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2682     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2683     SelectionDAG &DAG) const {
2684   // Currently only support length 1 constraints.
2685   if (Constraint.length() == 1) {
2686     switch (Constraint[0]) {
2687     case 'I':
2688       // Validate & create a 12-bit signed immediate operand.
2689       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2690         uint64_t CVal = C->getSExtValue();
2691         if (isInt<12>(CVal))
2692           Ops.push_back(
2693               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2694       }
2695       return;
2696     case 'J':
2697       // Validate & create an integer zero operand.
2698       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2699         if (C->getZExtValue() == 0)
2700           Ops.push_back(
2701               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2702       return;
2703     case 'K':
2704       // Validate & create a 5-bit unsigned immediate operand.
2705       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2706         uint64_t CVal = C->getZExtValue();
2707         if (isUInt<5>(CVal))
2708           Ops.push_back(
2709               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2710       }
2711       return;
2712     default:
2713       break;
2714     }
2715   }
2716   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2717 }
2718 
2719 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2720                                                    Instruction *Inst,
2721                                                    AtomicOrdering Ord) const {
2722   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2723     return Builder.CreateFence(Ord);
2724   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2725     return Builder.CreateFence(AtomicOrdering::Release);
2726   return nullptr;
2727 }
2728 
2729 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2730                                                     Instruction *Inst,
2731                                                     AtomicOrdering Ord) const {
2732   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2733     return Builder.CreateFence(AtomicOrdering::Acquire);
2734   return nullptr;
2735 }
2736 
2737 TargetLowering::AtomicExpansionKind
2738 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2739   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2740   // point operations can't be used in an lr/sc sequence without breaking the
2741   // forward-progress guarantee.
2742   if (AI->isFloatingPointOperation())
2743     return AtomicExpansionKind::CmpXChg;
2744 
2745   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2746   if (Size == 8 || Size == 16)
2747     return AtomicExpansionKind::MaskedIntrinsic;
2748   return AtomicExpansionKind::None;
2749 }
2750 
2751 static Intrinsic::ID
2752 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2753   if (XLen == 32) {
2754     switch (BinOp) {
2755     default:
2756       llvm_unreachable("Unexpected AtomicRMW BinOp");
2757     case AtomicRMWInst::Xchg:
2758       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2759     case AtomicRMWInst::Add:
2760       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2761     case AtomicRMWInst::Sub:
2762       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2763     case AtomicRMWInst::Nand:
2764       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2765     case AtomicRMWInst::Max:
2766       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2767     case AtomicRMWInst::Min:
2768       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2769     case AtomicRMWInst::UMax:
2770       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2771     case AtomicRMWInst::UMin:
2772       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2773     }
2774   }
2775 
2776   if (XLen == 64) {
2777     switch (BinOp) {
2778     default:
2779       llvm_unreachable("Unexpected AtomicRMW BinOp");
2780     case AtomicRMWInst::Xchg:
2781       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2782     case AtomicRMWInst::Add:
2783       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2784     case AtomicRMWInst::Sub:
2785       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2786     case AtomicRMWInst::Nand:
2787       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2788     case AtomicRMWInst::Max:
2789       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2790     case AtomicRMWInst::Min:
2791       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2792     case AtomicRMWInst::UMax:
2793       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2794     case AtomicRMWInst::UMin:
2795       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2796     }
2797   }
2798 
2799   llvm_unreachable("Unexpected XLen\n");
2800 }
2801 
2802 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2803     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2804     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2805   unsigned XLen = Subtarget.getXLen();
2806   Value *Ordering =
2807       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2808   Type *Tys[] = {AlignedAddr->getType()};
2809   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2810       AI->getModule(),
2811       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2812 
2813   if (XLen == 64) {
2814     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2815     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2816     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2817   }
2818 
2819   Value *Result;
2820 
2821   // Must pass the shift amount needed to sign extend the loaded value prior
2822   // to performing a signed comparison for min/max. ShiftAmt is the number of
2823   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2824   // is the number of bits to left+right shift the value in order to
2825   // sign-extend.
2826   if (AI->getOperation() == AtomicRMWInst::Min ||
2827       AI->getOperation() == AtomicRMWInst::Max) {
2828     const DataLayout &DL = AI->getModule()->getDataLayout();
2829     unsigned ValWidth =
2830         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2831     Value *SextShamt =
2832         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2833     Result = Builder.CreateCall(LrwOpScwLoop,
2834                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2835   } else {
2836     Result =
2837         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2838   }
2839 
2840   if (XLen == 64)
2841     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2842   return Result;
2843 }
2844 
2845 TargetLowering::AtomicExpansionKind
2846 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2847     AtomicCmpXchgInst *CI) const {
2848   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2849   if (Size == 8 || Size == 16)
2850     return AtomicExpansionKind::MaskedIntrinsic;
2851   return AtomicExpansionKind::None;
2852 }
2853 
2854 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2855     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2856     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2857   unsigned XLen = Subtarget.getXLen();
2858   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2859   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2860   if (XLen == 64) {
2861     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2862     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2863     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2864     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2865   }
2866   Type *Tys[] = {AlignedAddr->getType()};
2867   Function *MaskedCmpXchg =
2868       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2869   Value *Result = Builder.CreateCall(
2870       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2871   if (XLen == 64)
2872     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2873   return Result;
2874 }
2875 
2876 unsigned RISCVTargetLowering::getExceptionPointerRegister(
2877     const Constant *PersonalityFn) const {
2878   return RISCV::X10;
2879 }
2880 
2881 unsigned RISCVTargetLowering::getExceptionSelectorRegister(
2882     const Constant *PersonalityFn) const {
2883   return RISCV::X11;
2884 }
2885 
2886 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2887   // Return false to suppress the unnecessary extensions if the LibCall
2888   // arguments or return value is f32 type for LP64 ABI.
2889   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2890   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2891     return false;
2892 
2893   return true;
2894 }
2895 
2896 #define GET_REGISTER_MATCHER
2897 #include "RISCVGenAsmMatcher.inc"
2898 
2899 Register
2900 RISCVTargetLowering::getRegisterByName(const char *RegName, EVT VT,
2901                                        const MachineFunction &MF) const {
2902   Register Reg = MatchRegisterAltName(RegName);
2903   if (Reg == RISCV::NoRegister)
2904     Reg = MatchRegisterName(RegName);
2905   if (Reg == RISCV::NoRegister)
2906     report_fatal_error(
2907         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2908   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
2909   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
2910     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
2911                              StringRef(RegName) + "\"."));
2912   return Reg;
2913 }
2914