1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "riscv-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
45                                          const RISCVSubtarget &STI)
46     : TargetLowering(TM), Subtarget(STI) {
47 
48   if (Subtarget.isRV32E())
49     report_fatal_error("Codegen not yet implemented for RV32E");
50 
51   RISCVABI::ABI ABI = Subtarget.getTargetABI();
52   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
53 
54   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
55       !Subtarget.hasStdExtF()) {
56     errs() << "Hard-float 'f' ABI can't be used for a target that "
57                 "doesn't support the F instruction set extension (ignoring "
58                           "target-abi)\n";
59     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
60   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
61              !Subtarget.hasStdExtD()) {
62     errs() << "Hard-float 'd' ABI can't be used for a target that "
63               "doesn't support the D instruction set extension (ignoring "
64               "target-abi)\n";
65     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
66   }
67 
68   switch (ABI) {
69   default:
70     report_fatal_error("Don't know how to lower this ABI");
71   case RISCVABI::ABI_ILP32:
72   case RISCVABI::ABI_ILP32F:
73   case RISCVABI::ABI_ILP32D:
74   case RISCVABI::ABI_LP64:
75   case RISCVABI::ABI_LP64F:
76   case RISCVABI::ABI_LP64D:
77     break;
78   }
79 
80   MVT XLenVT = Subtarget.getXLenVT();
81 
82   // Set up the register classes.
83   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
84 
85   if (Subtarget.hasStdExtF())
86     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
87   if (Subtarget.hasStdExtD())
88     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
89 
90   // Compute derived properties from the register classes.
91   computeRegisterProperties(STI.getRegisterInfo());
92 
93   setStackPointerRegisterToSaveRestore(RISCV::X2);
94 
95   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
96     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
97 
98   // TODO: add all necessary setOperationAction calls.
99   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
100 
101   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
102   setOperationAction(ISD::BR_CC, XLenVT, Expand);
103   setOperationAction(ISD::SELECT, XLenVT, Custom);
104   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
105 
106   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
107   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
108 
109   setOperationAction(ISD::VASTART, MVT::Other, Custom);
110   setOperationAction(ISD::VAARG, MVT::Other, Expand);
111   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
112   setOperationAction(ISD::VAEND, MVT::Other, Expand);
113 
114   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
115     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
116 
117   if (Subtarget.is64Bit()) {
118     setOperationAction(ISD::ADD, MVT::i32, Custom);
119     setOperationAction(ISD::SUB, MVT::i32, Custom);
120     setOperationAction(ISD::SHL, MVT::i32, Custom);
121     setOperationAction(ISD::SRA, MVT::i32, Custom);
122     setOperationAction(ISD::SRL, MVT::i32, Custom);
123   }
124 
125   if (!Subtarget.hasStdExtM()) {
126     setOperationAction(ISD::MUL, XLenVT, Expand);
127     setOperationAction(ISD::MULHS, XLenVT, Expand);
128     setOperationAction(ISD::MULHU, XLenVT, Expand);
129     setOperationAction(ISD::SDIV, XLenVT, Expand);
130     setOperationAction(ISD::UDIV, XLenVT, Expand);
131     setOperationAction(ISD::SREM, XLenVT, Expand);
132     setOperationAction(ISD::UREM, XLenVT, Expand);
133   }
134 
135   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
136     setOperationAction(ISD::MUL, MVT::i32, Custom);
137     setOperationAction(ISD::SDIV, MVT::i32, Custom);
138     setOperationAction(ISD::UDIV, MVT::i32, Custom);
139     setOperationAction(ISD::UREM, MVT::i32, Custom);
140   }
141 
142   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
143   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
144   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
145   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
146 
147   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
148   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
149   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
150 
151   if (!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp())) {
152     setOperationAction(ISD::ROTL, XLenVT, Expand);
153     setOperationAction(ISD::ROTR, XLenVT, Expand);
154   }
155 
156   if (!Subtarget.hasStdExtZbp())
157     setOperationAction(ISD::BSWAP, XLenVT, Expand);
158 
159   if (!Subtarget.hasStdExtZbb()) {
160     setOperationAction(ISD::CTTZ, XLenVT, Expand);
161     setOperationAction(ISD::CTLZ, XLenVT, Expand);
162     setOperationAction(ISD::CTPOP, XLenVT, Expand);
163   }
164 
165   if (Subtarget.hasStdExtZbp())
166     setOperationAction(ISD::BITREVERSE, XLenVT, Legal);
167 
168   if (Subtarget.hasStdExtZbt()) {
169     setOperationAction(ISD::FSHL, XLenVT, Legal);
170     setOperationAction(ISD::FSHR, XLenVT, Legal);
171   }
172 
173   ISD::CondCode FPCCToExtend[] = {
174       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
175       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
176       ISD::SETGE,  ISD::SETNE};
177 
178   ISD::NodeType FPOpToExtend[] = {
179       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
180       ISD::FP_TO_FP16};
181 
182   if (Subtarget.hasStdExtF()) {
183     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
184     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
185     for (auto CC : FPCCToExtend)
186       setCondCodeAction(CC, MVT::f32, Expand);
187     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
188     setOperationAction(ISD::SELECT, MVT::f32, Custom);
189     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
190     for (auto Op : FPOpToExtend)
191       setOperationAction(Op, MVT::f32, Expand);
192     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
193     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
194   }
195 
196   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
197     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
198 
199   if (Subtarget.hasStdExtD()) {
200     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
201     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
202     for (auto CC : FPCCToExtend)
203       setCondCodeAction(CC, MVT::f64, Expand);
204     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
205     setOperationAction(ISD::SELECT, MVT::f64, Custom);
206     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
207     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
208     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
209     for (auto Op : FPOpToExtend)
210       setOperationAction(Op, MVT::f64, Expand);
211     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
212     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
213   }
214 
215   if (Subtarget.is64Bit()) {
216     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
217     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
218     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
219     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
220   }
221 
222   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
223   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
224   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
225 
226   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
227 
228   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
229   // Unfortunately this can't be determined just from the ISA naming string.
230   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
231                      Subtarget.is64Bit() ? Legal : Custom);
232 
233   setOperationAction(ISD::TRAP, MVT::Other, Legal);
234   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
235   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
236 
237   if (Subtarget.hasStdExtA()) {
238     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
239     setMinCmpXchgSizeInBits(32);
240   } else {
241     setMaxAtomicSizeInBitsSupported(0);
242   }
243 
244   setBooleanContents(ZeroOrOneBooleanContent);
245 
246   // Function alignments.
247   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
248   setMinFunctionAlignment(FunctionAlignment);
249   setPrefFunctionAlignment(FunctionAlignment);
250 
251   // Effectively disable jump table generation.
252   setMinimumJumpTableEntries(INT_MAX);
253 
254   // Jumps are expensive, compared to logic
255   setJumpIsExpensive();
256 
257   // We can use any register for comparisons
258   setHasMultipleConditionRegisters();
259 }
260 
261 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
262                                             EVT VT) const {
263   if (!VT.isVector())
264     return getPointerTy(DL);
265   return VT.changeVectorElementTypeToInteger();
266 }
267 
268 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
269                                              const CallInst &I,
270                                              MachineFunction &MF,
271                                              unsigned Intrinsic) const {
272   switch (Intrinsic) {
273   default:
274     return false;
275   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
276   case Intrinsic::riscv_masked_atomicrmw_add_i32:
277   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
278   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
279   case Intrinsic::riscv_masked_atomicrmw_max_i32:
280   case Intrinsic::riscv_masked_atomicrmw_min_i32:
281   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
282   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
283   case Intrinsic::riscv_masked_cmpxchg_i32:
284     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
285     Info.opc = ISD::INTRINSIC_W_CHAIN;
286     Info.memVT = MVT::getVT(PtrTy->getElementType());
287     Info.ptrVal = I.getArgOperand(0);
288     Info.offset = 0;
289     Info.align = Align(4);
290     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
291                  MachineMemOperand::MOVolatile;
292     return true;
293   }
294 }
295 
296 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
297                                                 const AddrMode &AM, Type *Ty,
298                                                 unsigned AS,
299                                                 Instruction *I) const {
300   // No global is ever allowed as a base.
301   if (AM.BaseGV)
302     return false;
303 
304   // Require a 12-bit signed offset.
305   if (!isInt<12>(AM.BaseOffs))
306     return false;
307 
308   switch (AM.Scale) {
309   case 0: // "r+i" or just "i", depending on HasBaseReg.
310     break;
311   case 1:
312     if (!AM.HasBaseReg) // allow "r+i".
313       break;
314     return false; // disallow "r+r" or "r+r+i".
315   default:
316     return false;
317   }
318 
319   return true;
320 }
321 
322 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
323   return isInt<12>(Imm);
324 }
325 
326 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
327   return isInt<12>(Imm);
328 }
329 
330 // On RV32, 64-bit integers are split into their high and low parts and held
331 // in two different registers, so the trunc is free since the low register can
332 // just be used.
333 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
334   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
335     return false;
336   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
337   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
338   return (SrcBits == 64 && DestBits == 32);
339 }
340 
341 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
342   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
343       !SrcVT.isInteger() || !DstVT.isInteger())
344     return false;
345   unsigned SrcBits = SrcVT.getSizeInBits();
346   unsigned DestBits = DstVT.getSizeInBits();
347   return (SrcBits == 64 && DestBits == 32);
348 }
349 
350 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
351   // Zexts are free if they can be combined with a load.
352   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
353     EVT MemVT = LD->getMemoryVT();
354     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
355          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
356         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
357          LD->getExtensionType() == ISD::ZEXTLOAD))
358       return true;
359   }
360 
361   return TargetLowering::isZExtFree(Val, VT2);
362 }
363 
364 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
365   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
366 }
367 
368 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
369                                        bool ForCodeSize) const {
370   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
371     return false;
372   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
373     return false;
374   if (Imm.isNegZero())
375     return false;
376   return Imm.isZero();
377 }
378 
379 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
380   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
381          (VT == MVT::f64 && Subtarget.hasStdExtD());
382 }
383 
384 // Changes the condition code and swaps operands if necessary, so the SetCC
385 // operation matches one of the comparisons supported directly in the RISC-V
386 // ISA.
387 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
388   switch (CC) {
389   default:
390     break;
391   case ISD::SETGT:
392   case ISD::SETLE:
393   case ISD::SETUGT:
394   case ISD::SETULE:
395     CC = ISD::getSetCCSwappedOperands(CC);
396     std::swap(LHS, RHS);
397     break;
398   }
399 }
400 
401 // Return the RISC-V branch opcode that matches the given DAG integer
402 // condition code. The CondCode must be one of those supported by the RISC-V
403 // ISA (see normaliseSetCC).
404 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
405   switch (CC) {
406   default:
407     llvm_unreachable("Unsupported CondCode");
408   case ISD::SETEQ:
409     return RISCV::BEQ;
410   case ISD::SETNE:
411     return RISCV::BNE;
412   case ISD::SETLT:
413     return RISCV::BLT;
414   case ISD::SETGE:
415     return RISCV::BGE;
416   case ISD::SETULT:
417     return RISCV::BLTU;
418   case ISD::SETUGE:
419     return RISCV::BGEU;
420   }
421 }
422 
423 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
424                                             SelectionDAG &DAG) const {
425   switch (Op.getOpcode()) {
426   default:
427     report_fatal_error("unimplemented operand");
428   case ISD::GlobalAddress:
429     return lowerGlobalAddress(Op, DAG);
430   case ISD::BlockAddress:
431     return lowerBlockAddress(Op, DAG);
432   case ISD::ConstantPool:
433     return lowerConstantPool(Op, DAG);
434   case ISD::GlobalTLSAddress:
435     return lowerGlobalTLSAddress(Op, DAG);
436   case ISD::SELECT:
437     return lowerSELECT(Op, DAG);
438   case ISD::VASTART:
439     return lowerVASTART(Op, DAG);
440   case ISD::FRAMEADDR:
441     return lowerFRAMEADDR(Op, DAG);
442   case ISD::RETURNADDR:
443     return lowerRETURNADDR(Op, DAG);
444   case ISD::SHL_PARTS:
445     return lowerShiftLeftParts(Op, DAG);
446   case ISD::SRA_PARTS:
447     return lowerShiftRightParts(Op, DAG, true);
448   case ISD::SRL_PARTS:
449     return lowerShiftRightParts(Op, DAG, false);
450   case ISD::BITCAST: {
451     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
452            "Unexpected custom legalisation");
453     SDLoc DL(Op);
454     SDValue Op0 = Op.getOperand(0);
455     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
456       return SDValue();
457     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
458     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
459     return FPConv;
460   }
461   case ISD::INTRINSIC_WO_CHAIN:
462     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
463   }
464 }
465 
466 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
467                              SelectionDAG &DAG, unsigned Flags) {
468   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
469 }
470 
471 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
472                              SelectionDAG &DAG, unsigned Flags) {
473   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
474                                    Flags);
475 }
476 
477 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
478                              SelectionDAG &DAG, unsigned Flags) {
479   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
480                                    N->getOffset(), Flags);
481 }
482 
483 template <class NodeTy>
484 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
485                                      bool IsLocal) const {
486   SDLoc DL(N);
487   EVT Ty = getPointerTy(DAG.getDataLayout());
488 
489   if (isPositionIndependent()) {
490     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
491     if (IsLocal)
492       // Use PC-relative addressing to access the symbol. This generates the
493       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
494       // %pcrel_lo(auipc)).
495       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
496 
497     // Use PC-relative addressing to access the GOT for this symbol, then load
498     // the address from the GOT. This generates the pattern (PseudoLA sym),
499     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
500     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
501   }
502 
503   switch (getTargetMachine().getCodeModel()) {
504   default:
505     report_fatal_error("Unsupported code model for lowering");
506   case CodeModel::Small: {
507     // Generate a sequence for accessing addresses within the first 2 GiB of
508     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
509     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
510     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
511     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
512     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
513   }
514   case CodeModel::Medium: {
515     // Generate a sequence for accessing addresses within any 2GiB range within
516     // the address space. This generates the pattern (PseudoLLA sym), which
517     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
518     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
519     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
520   }
521   }
522 }
523 
524 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
525                                                 SelectionDAG &DAG) const {
526   SDLoc DL(Op);
527   EVT Ty = Op.getValueType();
528   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
529   int64_t Offset = N->getOffset();
530   MVT XLenVT = Subtarget.getXLenVT();
531 
532   const GlobalValue *GV = N->getGlobal();
533   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
534   SDValue Addr = getAddr(N, DAG, IsLocal);
535 
536   // In order to maximise the opportunity for common subexpression elimination,
537   // emit a separate ADD node for the global address offset instead of folding
538   // it in the global address node. Later peephole optimisations may choose to
539   // fold it back in when profitable.
540   if (Offset != 0)
541     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
542                        DAG.getConstant(Offset, DL, XLenVT));
543   return Addr;
544 }
545 
546 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
547                                                SelectionDAG &DAG) const {
548   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
549 
550   return getAddr(N, DAG);
551 }
552 
553 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
554                                                SelectionDAG &DAG) const {
555   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
556 
557   return getAddr(N, DAG);
558 }
559 
560 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
561                                               SelectionDAG &DAG,
562                                               bool UseGOT) const {
563   SDLoc DL(N);
564   EVT Ty = getPointerTy(DAG.getDataLayout());
565   const GlobalValue *GV = N->getGlobal();
566   MVT XLenVT = Subtarget.getXLenVT();
567 
568   if (UseGOT) {
569     // Use PC-relative addressing to access the GOT for this TLS symbol, then
570     // load the address from the GOT and add the thread pointer. This generates
571     // the pattern (PseudoLA_TLS_IE sym), which expands to
572     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
573     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
574     SDValue Load =
575         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
576 
577     // Add the thread pointer.
578     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
579     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
580   }
581 
582   // Generate a sequence for accessing the address relative to the thread
583   // pointer, with the appropriate adjustment for the thread pointer offset.
584   // This generates the pattern
585   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
586   SDValue AddrHi =
587       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
588   SDValue AddrAdd =
589       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
590   SDValue AddrLo =
591       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
592 
593   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
594   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
595   SDValue MNAdd = SDValue(
596       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
597       0);
598   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
599 }
600 
601 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
602                                                SelectionDAG &DAG) const {
603   SDLoc DL(N);
604   EVT Ty = getPointerTy(DAG.getDataLayout());
605   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
606   const GlobalValue *GV = N->getGlobal();
607 
608   // Use a PC-relative addressing mode to access the global dynamic GOT address.
609   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
610   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
611   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
612   SDValue Load =
613       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
614 
615   // Prepare argument list to generate call.
616   ArgListTy Args;
617   ArgListEntry Entry;
618   Entry.Node = Load;
619   Entry.Ty = CallTy;
620   Args.push_back(Entry);
621 
622   // Setup call to __tls_get_addr.
623   TargetLowering::CallLoweringInfo CLI(DAG);
624   CLI.setDebugLoc(DL)
625       .setChain(DAG.getEntryNode())
626       .setLibCallee(CallingConv::C, CallTy,
627                     DAG.getExternalSymbol("__tls_get_addr", Ty),
628                     std::move(Args));
629 
630   return LowerCallTo(CLI).first;
631 }
632 
633 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
634                                                    SelectionDAG &DAG) const {
635   SDLoc DL(Op);
636   EVT Ty = Op.getValueType();
637   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
638   int64_t Offset = N->getOffset();
639   MVT XLenVT = Subtarget.getXLenVT();
640 
641   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
642 
643   SDValue Addr;
644   switch (Model) {
645   case TLSModel::LocalExec:
646     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
647     break;
648   case TLSModel::InitialExec:
649     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
650     break;
651   case TLSModel::LocalDynamic:
652   case TLSModel::GeneralDynamic:
653     Addr = getDynamicTLSAddr(N, DAG);
654     break;
655   }
656 
657   // In order to maximise the opportunity for common subexpression elimination,
658   // emit a separate ADD node for the global address offset instead of folding
659   // it in the global address node. Later peephole optimisations may choose to
660   // fold it back in when profitable.
661   if (Offset != 0)
662     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
663                        DAG.getConstant(Offset, DL, XLenVT));
664   return Addr;
665 }
666 
667 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
668   SDValue CondV = Op.getOperand(0);
669   SDValue TrueV = Op.getOperand(1);
670   SDValue FalseV = Op.getOperand(2);
671   SDLoc DL(Op);
672   MVT XLenVT = Subtarget.getXLenVT();
673 
674   // If the result type is XLenVT and CondV is the output of a SETCC node
675   // which also operated on XLenVT inputs, then merge the SETCC node into the
676   // lowered RISCVISD::SELECT_CC to take advantage of the integer
677   // compare+branch instructions. i.e.:
678   // (select (setcc lhs, rhs, cc), truev, falsev)
679   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
680   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
681       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
682     SDValue LHS = CondV.getOperand(0);
683     SDValue RHS = CondV.getOperand(1);
684     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
685     ISD::CondCode CCVal = CC->get();
686 
687     normaliseSetCC(LHS, RHS, CCVal);
688 
689     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
690     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
691     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
692     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
693   }
694 
695   // Otherwise:
696   // (select condv, truev, falsev)
697   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
698   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
699   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
700 
701   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
702   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
703 
704   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
705 }
706 
707 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
708   MachineFunction &MF = DAG.getMachineFunction();
709   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
710 
711   SDLoc DL(Op);
712   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
713                                  getPointerTy(MF.getDataLayout()));
714 
715   // vastart just stores the address of the VarArgsFrameIndex slot into the
716   // memory location argument.
717   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
718   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
719                       MachinePointerInfo(SV));
720 }
721 
722 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
723                                             SelectionDAG &DAG) const {
724   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
725   MachineFunction &MF = DAG.getMachineFunction();
726   MachineFrameInfo &MFI = MF.getFrameInfo();
727   MFI.setFrameAddressIsTaken(true);
728   Register FrameReg = RI.getFrameRegister(MF);
729   int XLenInBytes = Subtarget.getXLen() / 8;
730 
731   EVT VT = Op.getValueType();
732   SDLoc DL(Op);
733   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
734   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
735   while (Depth--) {
736     int Offset = -(XLenInBytes * 2);
737     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
738                               DAG.getIntPtrConstant(Offset, DL));
739     FrameAddr =
740         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
741   }
742   return FrameAddr;
743 }
744 
745 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
746                                              SelectionDAG &DAG) const {
747   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
748   MachineFunction &MF = DAG.getMachineFunction();
749   MachineFrameInfo &MFI = MF.getFrameInfo();
750   MFI.setReturnAddressIsTaken(true);
751   MVT XLenVT = Subtarget.getXLenVT();
752   int XLenInBytes = Subtarget.getXLen() / 8;
753 
754   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
755     return SDValue();
756 
757   EVT VT = Op.getValueType();
758   SDLoc DL(Op);
759   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
760   if (Depth) {
761     int Off = -XLenInBytes;
762     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
763     SDValue Offset = DAG.getConstant(Off, DL, VT);
764     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
765                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
766                        MachinePointerInfo());
767   }
768 
769   // Return the value of the return address register, marking it an implicit
770   // live-in.
771   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
772   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
773 }
774 
775 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
776                                                  SelectionDAG &DAG) const {
777   SDLoc DL(Op);
778   SDValue Lo = Op.getOperand(0);
779   SDValue Hi = Op.getOperand(1);
780   SDValue Shamt = Op.getOperand(2);
781   EVT VT = Lo.getValueType();
782 
783   // if Shamt-XLEN < 0: // Shamt < XLEN
784   //   Lo = Lo << Shamt
785   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
786   // else:
787   //   Lo = 0
788   //   Hi = Lo << (Shamt-XLEN)
789 
790   SDValue Zero = DAG.getConstant(0, DL, VT);
791   SDValue One = DAG.getConstant(1, DL, VT);
792   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
793   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
794   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
795   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
796 
797   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
798   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
799   SDValue ShiftRightLo =
800       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
801   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
802   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
803   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
804 
805   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
806 
807   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
808   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
809 
810   SDValue Parts[2] = {Lo, Hi};
811   return DAG.getMergeValues(Parts, DL);
812 }
813 
814 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
815                                                   bool IsSRA) const {
816   SDLoc DL(Op);
817   SDValue Lo = Op.getOperand(0);
818   SDValue Hi = Op.getOperand(1);
819   SDValue Shamt = Op.getOperand(2);
820   EVT VT = Lo.getValueType();
821 
822   // SRA expansion:
823   //   if Shamt-XLEN < 0: // Shamt < XLEN
824   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
825   //     Hi = Hi >>s Shamt
826   //   else:
827   //     Lo = Hi >>s (Shamt-XLEN);
828   //     Hi = Hi >>s (XLEN-1)
829   //
830   // SRL expansion:
831   //   if Shamt-XLEN < 0: // Shamt < XLEN
832   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
833   //     Hi = Hi >>u Shamt
834   //   else:
835   //     Lo = Hi >>u (Shamt-XLEN);
836   //     Hi = 0;
837 
838   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
839 
840   SDValue Zero = DAG.getConstant(0, DL, VT);
841   SDValue One = DAG.getConstant(1, DL, VT);
842   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
843   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
844   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
845   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
846 
847   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
848   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
849   SDValue ShiftLeftHi =
850       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
851   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
852   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
853   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
854   SDValue HiFalse =
855       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
856 
857   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
858 
859   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
860   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
861 
862   SDValue Parts[2] = {Lo, Hi};
863   return DAG.getMergeValues(Parts, DL);
864 }
865 
866 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
867                                                      SelectionDAG &DAG) const {
868   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
869   SDLoc DL(Op);
870   switch (IntNo) {
871   default:
872     return SDValue();    // Don't custom lower most intrinsics.
873   case Intrinsic::thread_pointer: {
874     EVT PtrVT = getPointerTy(DAG.getDataLayout());
875     return DAG.getRegister(RISCV::X4, PtrVT);
876   }
877   }
878 }
879 
880 // Returns the opcode of the target-specific SDNode that implements the 32-bit
881 // form of the given Opcode.
882 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
883   switch (Opcode) {
884   default:
885     llvm_unreachable("Unexpected opcode");
886   case ISD::SHL:
887     return RISCVISD::SLLW;
888   case ISD::SRA:
889     return RISCVISD::SRAW;
890   case ISD::SRL:
891     return RISCVISD::SRLW;
892   case ISD::SDIV:
893     return RISCVISD::DIVW;
894   case ISD::UDIV:
895     return RISCVISD::DIVUW;
896   case ISD::UREM:
897     return RISCVISD::REMUW;
898   }
899 }
900 
901 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
902 // Because i32 isn't a legal type for RV64, these operations would otherwise
903 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
904 // later one because the fact the operation was originally of type i32 is
905 // lost.
906 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
907   SDLoc DL(N);
908   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
909   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
910   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
911   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
912   // ReplaceNodeResults requires we maintain the same type for the return value.
913   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
914 }
915 
916 // Converts the given 32-bit operation to a i64 operation with signed extension
917 // semantic to reduce the signed extension instructions.
918 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
919   SDLoc DL(N);
920   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
921   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
922   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
923   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
924                                DAG.getValueType(MVT::i32));
925   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
926 }
927 
928 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
929                                              SmallVectorImpl<SDValue> &Results,
930                                              SelectionDAG &DAG) const {
931   SDLoc DL(N);
932   switch (N->getOpcode()) {
933   default:
934     llvm_unreachable("Don't know how to custom type legalize this operation!");
935   case ISD::STRICT_FP_TO_SINT:
936   case ISD::STRICT_FP_TO_UINT:
937   case ISD::FP_TO_SINT:
938   case ISD::FP_TO_UINT: {
939     bool IsStrict = N->isStrictFPOpcode();
940     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
941            "Unexpected custom legalisation");
942     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
943     // If the FP type needs to be softened, emit a library call using the 'si'
944     // version. If we left it to default legalization we'd end up with 'di'. If
945     // the FP type doesn't need to be softened just let generic type
946     // legalization promote the result type.
947     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
948         TargetLowering::TypeSoftenFloat)
949       return;
950     RTLIB::Libcall LC;
951     if (N->getOpcode() == ISD::FP_TO_SINT ||
952         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
953       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
954     else
955       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
956     MakeLibCallOptions CallOptions;
957     EVT OpVT = Op0.getValueType();
958     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
959     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
960     SDValue Result;
961     std::tie(Result, Chain) =
962         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
963     Results.push_back(Result);
964     if (IsStrict)
965       Results.push_back(Chain);
966     break;
967   }
968   case ISD::READCYCLECOUNTER: {
969     assert(!Subtarget.is64Bit() &&
970            "READCYCLECOUNTER only has custom type legalization on riscv32");
971 
972     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
973     SDValue RCW =
974         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
975 
976     Results.push_back(
977         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
978     Results.push_back(RCW.getValue(2));
979     break;
980   }
981   case ISD::ADD:
982   case ISD::SUB:
983   case ISD::MUL:
984     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
985            "Unexpected custom legalisation");
986     if (N->getOperand(1).getOpcode() == ISD::Constant)
987       return;
988     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
989     break;
990   case ISD::SHL:
991   case ISD::SRA:
992   case ISD::SRL:
993     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
994            "Unexpected custom legalisation");
995     if (N->getOperand(1).getOpcode() == ISD::Constant)
996       return;
997     Results.push_back(customLegalizeToWOp(N, DAG));
998     break;
999   case ISD::SDIV:
1000   case ISD::UDIV:
1001   case ISD::UREM:
1002     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1003            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
1004     if (N->getOperand(0).getOpcode() == ISD::Constant ||
1005         N->getOperand(1).getOpcode() == ISD::Constant)
1006       return;
1007     Results.push_back(customLegalizeToWOp(N, DAG));
1008     break;
1009   case ISD::BITCAST: {
1010     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
1011            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
1012     SDValue Op0 = N->getOperand(0);
1013     if (Op0.getValueType() != MVT::f32)
1014       return;
1015     SDValue FPConv =
1016         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
1017     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
1018     break;
1019   }
1020   }
1021 }
1022 
1023 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
1024                                                DAGCombinerInfo &DCI) const {
1025   SelectionDAG &DAG = DCI.DAG;
1026 
1027   switch (N->getOpcode()) {
1028   default:
1029     break;
1030   case RISCVISD::SplitF64: {
1031     SDValue Op0 = N->getOperand(0);
1032     // If the input to SplitF64 is just BuildPairF64 then the operation is
1033     // redundant. Instead, use BuildPairF64's operands directly.
1034     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
1035       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
1036 
1037     SDLoc DL(N);
1038 
1039     // It's cheaper to materialise two 32-bit integers than to load a double
1040     // from the constant pool and transfer it to integer registers through the
1041     // stack.
1042     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
1043       APInt V = C->getValueAPF().bitcastToAPInt();
1044       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
1045       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
1046       return DCI.CombineTo(N, Lo, Hi);
1047     }
1048 
1049     // This is a target-specific version of a DAGCombine performed in
1050     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1051     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1052     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1053     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1054         !Op0.getNode()->hasOneUse())
1055       break;
1056     SDValue NewSplitF64 =
1057         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
1058                     Op0.getOperand(0));
1059     SDValue Lo = NewSplitF64.getValue(0);
1060     SDValue Hi = NewSplitF64.getValue(1);
1061     APInt SignBit = APInt::getSignMask(32);
1062     if (Op0.getOpcode() == ISD::FNEG) {
1063       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
1064                                   DAG.getConstant(SignBit, DL, MVT::i32));
1065       return DCI.CombineTo(N, Lo, NewHi);
1066     }
1067     assert(Op0.getOpcode() == ISD::FABS);
1068     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
1069                                 DAG.getConstant(~SignBit, DL, MVT::i32));
1070     return DCI.CombineTo(N, Lo, NewHi);
1071   }
1072   case RISCVISD::SLLW:
1073   case RISCVISD::SRAW:
1074   case RISCVISD::SRLW: {
1075     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
1076     SDValue LHS = N->getOperand(0);
1077     SDValue RHS = N->getOperand(1);
1078     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
1079     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
1080     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
1081         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
1082       if (N->getOpcode() != ISD::DELETED_NODE)
1083         DCI.AddToWorklist(N);
1084       return SDValue(N, 0);
1085     }
1086     break;
1087   }
1088   case RISCVISD::FMV_X_ANYEXTW_RV64: {
1089     SDLoc DL(N);
1090     SDValue Op0 = N->getOperand(0);
1091     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1092     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1093     // of the FMV_W_X_RV64 operand.
1094     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1095       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
1096              "Unexpected value type!");
1097       return Op0.getOperand(0);
1098     }
1099 
1100     // This is a target-specific version of a DAGCombine performed in
1101     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1102     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1103     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1104     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1105         !Op0.getNode()->hasOneUse())
1106       break;
1107     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1108                                  Op0.getOperand(0));
1109     APInt SignBit = APInt::getSignMask(32).sext(64);
1110     if (Op0.getOpcode() == ISD::FNEG)
1111       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1112                          DAG.getConstant(SignBit, DL, MVT::i64));
1113 
1114     assert(Op0.getOpcode() == ISD::FABS);
1115     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1116                        DAG.getConstant(~SignBit, DL, MVT::i64));
1117   }
1118   }
1119 
1120   return SDValue();
1121 }
1122 
1123 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1124     const SDNode *N, CombineLevel Level) const {
1125   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1126   // materialised in fewer instructions than `(OP _, c1)`:
1127   //
1128   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1129   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1130   SDValue N0 = N->getOperand(0);
1131   EVT Ty = N0.getValueType();
1132   if (Ty.isScalarInteger() &&
1133       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1134     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1135     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1136     if (C1 && C2) {
1137       APInt C1Int = C1->getAPIntValue();
1138       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1139 
1140       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1141       // and the combine should happen, to potentially allow further combines
1142       // later.
1143       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1144           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1145         return true;
1146 
1147       // We can materialise `c1` in an add immediate, so it's "free", and the
1148       // combine should be prevented.
1149       if (C1Int.getMinSignedBits() <= 64 &&
1150           isLegalAddImmediate(C1Int.getSExtValue()))
1151         return false;
1152 
1153       // Neither constant will fit into an immediate, so find materialisation
1154       // costs.
1155       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1156                                               Subtarget.is64Bit());
1157       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1158           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1159 
1160       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1161       // combine should be prevented.
1162       if (C1Cost < ShiftedC1Cost)
1163         return false;
1164     }
1165   }
1166   return true;
1167 }
1168 
1169 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1170     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1171     unsigned Depth) const {
1172   switch (Op.getOpcode()) {
1173   default:
1174     break;
1175   case RISCVISD::SLLW:
1176   case RISCVISD::SRAW:
1177   case RISCVISD::SRLW:
1178   case RISCVISD::DIVW:
1179   case RISCVISD::DIVUW:
1180   case RISCVISD::REMUW:
1181     // TODO: As the result is sign-extended, this is conservatively correct. A
1182     // more precise answer could be calculated for SRAW depending on known
1183     // bits in the shift amount.
1184     return 33;
1185   }
1186 
1187   return 1;
1188 }
1189 
1190 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1191                                                   MachineBasicBlock *BB) {
1192   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1193 
1194   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1195   // Should the count have wrapped while it was being read, we need to try
1196   // again.
1197   // ...
1198   // read:
1199   // rdcycleh x3 # load high word of cycle
1200   // rdcycle  x2 # load low word of cycle
1201   // rdcycleh x4 # load high word of cycle
1202   // bne x3, x4, read # check if high word reads match, otherwise try again
1203   // ...
1204 
1205   MachineFunction &MF = *BB->getParent();
1206   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1207   MachineFunction::iterator It = ++BB->getIterator();
1208 
1209   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1210   MF.insert(It, LoopMBB);
1211 
1212   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1213   MF.insert(It, DoneMBB);
1214 
1215   // Transfer the remainder of BB and its successor edges to DoneMBB.
1216   DoneMBB->splice(DoneMBB->begin(), BB,
1217                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1218   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1219 
1220   BB->addSuccessor(LoopMBB);
1221 
1222   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1223   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1224   Register LoReg = MI.getOperand(0).getReg();
1225   Register HiReg = MI.getOperand(1).getReg();
1226   DebugLoc DL = MI.getDebugLoc();
1227 
1228   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1229   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1230       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1231       .addReg(RISCV::X0);
1232   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1233       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1234       .addReg(RISCV::X0);
1235   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1236       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1237       .addReg(RISCV::X0);
1238 
1239   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1240       .addReg(HiReg)
1241       .addReg(ReadAgainReg)
1242       .addMBB(LoopMBB);
1243 
1244   LoopMBB->addSuccessor(LoopMBB);
1245   LoopMBB->addSuccessor(DoneMBB);
1246 
1247   MI.eraseFromParent();
1248 
1249   return DoneMBB;
1250 }
1251 
1252 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1253                                              MachineBasicBlock *BB) {
1254   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1255 
1256   MachineFunction &MF = *BB->getParent();
1257   DebugLoc DL = MI.getDebugLoc();
1258   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1259   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1260   Register LoReg = MI.getOperand(0).getReg();
1261   Register HiReg = MI.getOperand(1).getReg();
1262   Register SrcReg = MI.getOperand(2).getReg();
1263   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1264   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
1265 
1266   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1267                           RI);
1268   MachineMemOperand *MMO =
1269       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1270                               MachineMemOperand::MOLoad, 8, Align(8));
1271   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1272       .addFrameIndex(FI)
1273       .addImm(0)
1274       .addMemOperand(MMO);
1275   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1276       .addFrameIndex(FI)
1277       .addImm(4)
1278       .addMemOperand(MMO);
1279   MI.eraseFromParent(); // The pseudo instruction is gone now.
1280   return BB;
1281 }
1282 
1283 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1284                                                  MachineBasicBlock *BB) {
1285   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1286          "Unexpected instruction");
1287 
1288   MachineFunction &MF = *BB->getParent();
1289   DebugLoc DL = MI.getDebugLoc();
1290   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1291   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1292   Register DstReg = MI.getOperand(0).getReg();
1293   Register LoReg = MI.getOperand(1).getReg();
1294   Register HiReg = MI.getOperand(2).getReg();
1295   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1296   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
1297 
1298   MachineMemOperand *MMO =
1299       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1300                               MachineMemOperand::MOStore, 8, Align(8));
1301   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1302       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1303       .addFrameIndex(FI)
1304       .addImm(0)
1305       .addMemOperand(MMO);
1306   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1307       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1308       .addFrameIndex(FI)
1309       .addImm(4)
1310       .addMemOperand(MMO);
1311   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1312   MI.eraseFromParent(); // The pseudo instruction is gone now.
1313   return BB;
1314 }
1315 
1316 static bool isSelectPseudo(MachineInstr &MI) {
1317   switch (MI.getOpcode()) {
1318   default:
1319     return false;
1320   case RISCV::Select_GPR_Using_CC_GPR:
1321   case RISCV::Select_FPR32_Using_CC_GPR:
1322   case RISCV::Select_FPR64_Using_CC_GPR:
1323     return true;
1324   }
1325 }
1326 
1327 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1328                                            MachineBasicBlock *BB) {
1329   // To "insert" Select_* instructions, we actually have to insert the triangle
1330   // control-flow pattern.  The incoming instructions know the destination vreg
1331   // to set, the condition code register to branch on, the true/false values to
1332   // select between, and the condcode to use to select the appropriate branch.
1333   //
1334   // We produce the following control flow:
1335   //     HeadMBB
1336   //     |  \
1337   //     |  IfFalseMBB
1338   //     | /
1339   //    TailMBB
1340   //
1341   // When we find a sequence of selects we attempt to optimize their emission
1342   // by sharing the control flow. Currently we only handle cases where we have
1343   // multiple selects with the exact same condition (same LHS, RHS and CC).
1344   // The selects may be interleaved with other instructions if the other
1345   // instructions meet some requirements we deem safe:
1346   // - They are debug instructions. Otherwise,
1347   // - They do not have side-effects, do not access memory and their inputs do
1348   //   not depend on the results of the select pseudo-instructions.
1349   // The TrueV/FalseV operands of the selects cannot depend on the result of
1350   // previous selects in the sequence.
1351   // These conditions could be further relaxed. See the X86 target for a
1352   // related approach and more information.
1353   Register LHS = MI.getOperand(1).getReg();
1354   Register RHS = MI.getOperand(2).getReg();
1355   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1356 
1357   SmallVector<MachineInstr *, 4> SelectDebugValues;
1358   SmallSet<Register, 4> SelectDests;
1359   SelectDests.insert(MI.getOperand(0).getReg());
1360 
1361   MachineInstr *LastSelectPseudo = &MI;
1362 
1363   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1364        SequenceMBBI != E; ++SequenceMBBI) {
1365     if (SequenceMBBI->isDebugInstr())
1366       continue;
1367     else if (isSelectPseudo(*SequenceMBBI)) {
1368       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1369           SequenceMBBI->getOperand(2).getReg() != RHS ||
1370           SequenceMBBI->getOperand(3).getImm() != CC ||
1371           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1372           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1373         break;
1374       LastSelectPseudo = &*SequenceMBBI;
1375       SequenceMBBI->collectDebugValues(SelectDebugValues);
1376       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1377     } else {
1378       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1379           SequenceMBBI->mayLoadOrStore())
1380         break;
1381       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1382             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1383           }))
1384         break;
1385     }
1386   }
1387 
1388   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1389   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1390   DebugLoc DL = MI.getDebugLoc();
1391   MachineFunction::iterator I = ++BB->getIterator();
1392 
1393   MachineBasicBlock *HeadMBB = BB;
1394   MachineFunction *F = BB->getParent();
1395   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1396   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1397 
1398   F->insert(I, IfFalseMBB);
1399   F->insert(I, TailMBB);
1400 
1401   // Transfer debug instructions associated with the selects to TailMBB.
1402   for (MachineInstr *DebugInstr : SelectDebugValues) {
1403     TailMBB->push_back(DebugInstr->removeFromParent());
1404   }
1405 
1406   // Move all instructions after the sequence to TailMBB.
1407   TailMBB->splice(TailMBB->end(), HeadMBB,
1408                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1409   // Update machine-CFG edges by transferring all successors of the current
1410   // block to the new block which will contain the Phi nodes for the selects.
1411   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1412   // Set the successors for HeadMBB.
1413   HeadMBB->addSuccessor(IfFalseMBB);
1414   HeadMBB->addSuccessor(TailMBB);
1415 
1416   // Insert appropriate branch.
1417   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1418 
1419   BuildMI(HeadMBB, DL, TII.get(Opcode))
1420     .addReg(LHS)
1421     .addReg(RHS)
1422     .addMBB(TailMBB);
1423 
1424   // IfFalseMBB just falls through to TailMBB.
1425   IfFalseMBB->addSuccessor(TailMBB);
1426 
1427   // Create PHIs for all of the select pseudo-instructions.
1428   auto SelectMBBI = MI.getIterator();
1429   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1430   auto InsertionPoint = TailMBB->begin();
1431   while (SelectMBBI != SelectEnd) {
1432     auto Next = std::next(SelectMBBI);
1433     if (isSelectPseudo(*SelectMBBI)) {
1434       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1435       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1436               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1437           .addReg(SelectMBBI->getOperand(4).getReg())
1438           .addMBB(HeadMBB)
1439           .addReg(SelectMBBI->getOperand(5).getReg())
1440           .addMBB(IfFalseMBB);
1441       SelectMBBI->eraseFromParent();
1442     }
1443     SelectMBBI = Next;
1444   }
1445 
1446   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1447   return TailMBB;
1448 }
1449 
1450 MachineBasicBlock *
1451 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1452                                                  MachineBasicBlock *BB) const {
1453   switch (MI.getOpcode()) {
1454   default:
1455     llvm_unreachable("Unexpected instr type to insert");
1456   case RISCV::ReadCycleWide:
1457     assert(!Subtarget.is64Bit() &&
1458            "ReadCycleWrite is only to be used on riscv32");
1459     return emitReadCycleWidePseudo(MI, BB);
1460   case RISCV::Select_GPR_Using_CC_GPR:
1461   case RISCV::Select_FPR32_Using_CC_GPR:
1462   case RISCV::Select_FPR64_Using_CC_GPR:
1463     return emitSelectPseudo(MI, BB);
1464   case RISCV::BuildPairF64Pseudo:
1465     return emitBuildPairF64Pseudo(MI, BB);
1466   case RISCV::SplitF64Pseudo:
1467     return emitSplitF64Pseudo(MI, BB);
1468   }
1469 }
1470 
1471 // Calling Convention Implementation.
1472 // The expectations for frontend ABI lowering vary from target to target.
1473 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1474 // details, but this is a longer term goal. For now, we simply try to keep the
1475 // role of the frontend as simple and well-defined as possible. The rules can
1476 // be summarised as:
1477 // * Never split up large scalar arguments. We handle them here.
1478 // * If a hardfloat calling convention is being used, and the struct may be
1479 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1480 // available, then pass as two separate arguments. If either the GPRs or FPRs
1481 // are exhausted, then pass according to the rule below.
1482 // * If a struct could never be passed in registers or directly in a stack
1483 // slot (as it is larger than 2*XLEN and the floating point rules don't
1484 // apply), then pass it using a pointer with the byval attribute.
1485 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1486 // word-sized array or a 2*XLEN scalar (depending on alignment).
1487 // * The frontend can determine whether a struct is returned by reference or
1488 // not based on its size and fields. If it will be returned by reference, the
1489 // frontend must modify the prototype so a pointer with the sret annotation is
1490 // passed as the first argument. This is not necessary for large scalar
1491 // returns.
1492 // * Struct return values and varargs should be coerced to structs containing
1493 // register-size fields in the same situations they would be for fixed
1494 // arguments.
1495 
1496 static const MCPhysReg ArgGPRs[] = {
1497   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1498   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1499 };
1500 static const MCPhysReg ArgFPR32s[] = {
1501   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1502   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1503 };
1504 static const MCPhysReg ArgFPR64s[] = {
1505   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1506   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1507 };
1508 
1509 // Pass a 2*XLEN argument that has been split into two XLEN values through
1510 // registers or the stack as necessary.
1511 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1512                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1513                                 MVT ValVT2, MVT LocVT2,
1514                                 ISD::ArgFlagsTy ArgFlags2) {
1515   unsigned XLenInBytes = XLen / 8;
1516   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1517     // At least one half can be passed via register.
1518     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1519                                      VA1.getLocVT(), CCValAssign::Full));
1520   } else {
1521     // Both halves must be passed on the stack, with proper alignment.
1522     Align StackAlign =
1523         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
1524     State.addLoc(
1525         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1526                             State.AllocateStack(XLenInBytes, StackAlign),
1527                             VA1.getLocVT(), CCValAssign::Full));
1528     State.addLoc(CCValAssign::getMem(
1529         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1530         LocVT2, CCValAssign::Full));
1531     return false;
1532   }
1533 
1534   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1535     // The second half can also be passed via register.
1536     State.addLoc(
1537         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1538   } else {
1539     // The second half is passed via the stack, without additional alignment.
1540     State.addLoc(CCValAssign::getMem(
1541         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
1542         LocVT2, CCValAssign::Full));
1543   }
1544 
1545   return false;
1546 }
1547 
1548 // Implements the RISC-V calling convention. Returns true upon failure.
1549 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1550                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1551                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1552                      bool IsRet, Type *OrigTy) {
1553   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1554   assert(XLen == 32 || XLen == 64);
1555   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1556 
1557   // Any return value split in to more than two values can't be returned
1558   // directly.
1559   if (IsRet && ValNo > 1)
1560     return true;
1561 
1562   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1563   // variadic argument, or if no F32 argument registers are available.
1564   bool UseGPRForF32 = true;
1565   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1566   // variadic argument, or if no F64 argument registers are available.
1567   bool UseGPRForF64 = true;
1568 
1569   switch (ABI) {
1570   default:
1571     llvm_unreachable("Unexpected ABI");
1572   case RISCVABI::ABI_ILP32:
1573   case RISCVABI::ABI_LP64:
1574     break;
1575   case RISCVABI::ABI_ILP32F:
1576   case RISCVABI::ABI_LP64F:
1577     UseGPRForF32 = !IsFixed;
1578     break;
1579   case RISCVABI::ABI_ILP32D:
1580   case RISCVABI::ABI_LP64D:
1581     UseGPRForF32 = !IsFixed;
1582     UseGPRForF64 = !IsFixed;
1583     break;
1584   }
1585 
1586   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1587     UseGPRForF32 = true;
1588   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1589     UseGPRForF64 = true;
1590 
1591   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1592   // variables rather than directly checking against the target ABI.
1593 
1594   if (UseGPRForF32 && ValVT == MVT::f32) {
1595     LocVT = XLenVT;
1596     LocInfo = CCValAssign::BCvt;
1597   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1598     LocVT = MVT::i64;
1599     LocInfo = CCValAssign::BCvt;
1600   }
1601 
1602   // If this is a variadic argument, the RISC-V calling convention requires
1603   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1604   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1605   // be used regardless of whether the original argument was split during
1606   // legalisation or not. The argument will not be passed by registers if the
1607   // original type is larger than 2*XLEN, so the register alignment rule does
1608   // not apply.
1609   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1610   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
1611       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1612     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1613     // Skip 'odd' register if necessary.
1614     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1615       State.AllocateReg(ArgGPRs);
1616   }
1617 
1618   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1619   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1620       State.getPendingArgFlags();
1621 
1622   assert(PendingLocs.size() == PendingArgFlags.size() &&
1623          "PendingLocs and PendingArgFlags out of sync");
1624 
1625   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1626   // registers are exhausted.
1627   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1628     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1629            "Can't lower f64 if it is split");
1630     // Depending on available argument GPRS, f64 may be passed in a pair of
1631     // GPRs, split between a GPR and the stack, or passed completely on the
1632     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1633     // cases.
1634     Register Reg = State.AllocateReg(ArgGPRs);
1635     LocVT = MVT::i32;
1636     if (!Reg) {
1637       unsigned StackOffset = State.AllocateStack(8, Align(8));
1638       State.addLoc(
1639           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1640       return false;
1641     }
1642     if (!State.AllocateReg(ArgGPRs))
1643       State.AllocateStack(4, Align(4));
1644     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1645     return false;
1646   }
1647 
1648   // Split arguments might be passed indirectly, so keep track of the pending
1649   // values.
1650   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1651     LocVT = XLenVT;
1652     LocInfo = CCValAssign::Indirect;
1653     PendingLocs.push_back(
1654         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1655     PendingArgFlags.push_back(ArgFlags);
1656     if (!ArgFlags.isSplitEnd()) {
1657       return false;
1658     }
1659   }
1660 
1661   // If the split argument only had two elements, it should be passed directly
1662   // in registers or on the stack.
1663   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1664     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1665     // Apply the normal calling convention rules to the first half of the
1666     // split argument.
1667     CCValAssign VA = PendingLocs[0];
1668     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1669     PendingLocs.clear();
1670     PendingArgFlags.clear();
1671     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1672                                ArgFlags);
1673   }
1674 
1675   // Allocate to a register if possible, or else a stack slot.
1676   Register Reg;
1677   if (ValVT == MVT::f32 && !UseGPRForF32)
1678     Reg = State.AllocateReg(ArgFPR32s);
1679   else if (ValVT == MVT::f64 && !UseGPRForF64)
1680     Reg = State.AllocateReg(ArgFPR64s);
1681   else
1682     Reg = State.AllocateReg(ArgGPRs);
1683   unsigned StackOffset =
1684       Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
1685 
1686   // If we reach this point and PendingLocs is non-empty, we must be at the
1687   // end of a split argument that must be passed indirectly.
1688   if (!PendingLocs.empty()) {
1689     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1690     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1691 
1692     for (auto &It : PendingLocs) {
1693       if (Reg)
1694         It.convertToReg(Reg);
1695       else
1696         It.convertToMem(StackOffset);
1697       State.addLoc(It);
1698     }
1699     PendingLocs.clear();
1700     PendingArgFlags.clear();
1701     return false;
1702   }
1703 
1704   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1705          "Expected an XLenVT at this stage");
1706 
1707   if (Reg) {
1708     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1709     return false;
1710   }
1711 
1712   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1713   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1714     LocVT = ValVT;
1715     LocInfo = CCValAssign::Full;
1716   }
1717   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1718   return false;
1719 }
1720 
1721 void RISCVTargetLowering::analyzeInputArgs(
1722     MachineFunction &MF, CCState &CCInfo,
1723     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1724   unsigned NumArgs = Ins.size();
1725   FunctionType *FType = MF.getFunction().getFunctionType();
1726 
1727   for (unsigned i = 0; i != NumArgs; ++i) {
1728     MVT ArgVT = Ins[i].VT;
1729     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1730 
1731     Type *ArgTy = nullptr;
1732     if (IsRet)
1733       ArgTy = FType->getReturnType();
1734     else if (Ins[i].isOrigArg())
1735       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1736 
1737     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1738     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1739                  ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) {
1740       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1741                         << EVT(ArgVT).getEVTString() << '\n');
1742       llvm_unreachable(nullptr);
1743     }
1744   }
1745 }
1746 
1747 void RISCVTargetLowering::analyzeOutputArgs(
1748     MachineFunction &MF, CCState &CCInfo,
1749     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1750     CallLoweringInfo *CLI) const {
1751   unsigned NumArgs = Outs.size();
1752 
1753   for (unsigned i = 0; i != NumArgs; i++) {
1754     MVT ArgVT = Outs[i].VT;
1755     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1756     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1757 
1758     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1759     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1760                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1761       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1762                         << EVT(ArgVT).getEVTString() << "\n");
1763       llvm_unreachable(nullptr);
1764     }
1765   }
1766 }
1767 
1768 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1769 // values.
1770 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1771                                    const CCValAssign &VA, const SDLoc &DL) {
1772   switch (VA.getLocInfo()) {
1773   default:
1774     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1775   case CCValAssign::Full:
1776     break;
1777   case CCValAssign::BCvt:
1778     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1779       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1780       break;
1781     }
1782     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1783     break;
1784   }
1785   return Val;
1786 }
1787 
1788 // The caller is responsible for loading the full value if the argument is
1789 // passed with CCValAssign::Indirect.
1790 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1791                                 const CCValAssign &VA, const SDLoc &DL) {
1792   MachineFunction &MF = DAG.getMachineFunction();
1793   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1794   EVT LocVT = VA.getLocVT();
1795   SDValue Val;
1796   const TargetRegisterClass *RC;
1797 
1798   switch (LocVT.getSimpleVT().SimpleTy) {
1799   default:
1800     llvm_unreachable("Unexpected register type");
1801   case MVT::i32:
1802   case MVT::i64:
1803     RC = &RISCV::GPRRegClass;
1804     break;
1805   case MVT::f32:
1806     RC = &RISCV::FPR32RegClass;
1807     break;
1808   case MVT::f64:
1809     RC = &RISCV::FPR64RegClass;
1810     break;
1811   }
1812 
1813   Register VReg = RegInfo.createVirtualRegister(RC);
1814   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1815   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1816 
1817   if (VA.getLocInfo() == CCValAssign::Indirect)
1818     return Val;
1819 
1820   return convertLocVTToValVT(DAG, Val, VA, DL);
1821 }
1822 
1823 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1824                                    const CCValAssign &VA, const SDLoc &DL) {
1825   EVT LocVT = VA.getLocVT();
1826 
1827   switch (VA.getLocInfo()) {
1828   default:
1829     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1830   case CCValAssign::Full:
1831     break;
1832   case CCValAssign::BCvt:
1833     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1834       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1835       break;
1836     }
1837     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1838     break;
1839   }
1840   return Val;
1841 }
1842 
1843 // The caller is responsible for loading the full value if the argument is
1844 // passed with CCValAssign::Indirect.
1845 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1846                                 const CCValAssign &VA, const SDLoc &DL) {
1847   MachineFunction &MF = DAG.getMachineFunction();
1848   MachineFrameInfo &MFI = MF.getFrameInfo();
1849   EVT LocVT = VA.getLocVT();
1850   EVT ValVT = VA.getValVT();
1851   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1852   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1853                                  VA.getLocMemOffset(), /*Immutable=*/true);
1854   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1855   SDValue Val;
1856 
1857   ISD::LoadExtType ExtType;
1858   switch (VA.getLocInfo()) {
1859   default:
1860     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1861   case CCValAssign::Full:
1862   case CCValAssign::Indirect:
1863   case CCValAssign::BCvt:
1864     ExtType = ISD::NON_EXTLOAD;
1865     break;
1866   }
1867   Val = DAG.getExtLoad(
1868       ExtType, DL, LocVT, Chain, FIN,
1869       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1870   return Val;
1871 }
1872 
1873 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1874                                        const CCValAssign &VA, const SDLoc &DL) {
1875   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1876          "Unexpected VA");
1877   MachineFunction &MF = DAG.getMachineFunction();
1878   MachineFrameInfo &MFI = MF.getFrameInfo();
1879   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1880 
1881   if (VA.isMemLoc()) {
1882     // f64 is passed on the stack.
1883     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1884     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1885     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1886                        MachinePointerInfo::getFixedStack(MF, FI));
1887   }
1888 
1889   assert(VA.isRegLoc() && "Expected register VA assignment");
1890 
1891   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1892   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1893   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1894   SDValue Hi;
1895   if (VA.getLocReg() == RISCV::X17) {
1896     // Second half of f64 is passed on the stack.
1897     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1898     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1899     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1900                      MachinePointerInfo::getFixedStack(MF, FI));
1901   } else {
1902     // Second half of f64 is passed in another GPR.
1903     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1904     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1905     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1906   }
1907   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1908 }
1909 
1910 // FastCC has less than 1% performance improvement for some particular
1911 // benchmark. But theoretically, it may has benenfit for some cases.
1912 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1913                             CCValAssign::LocInfo LocInfo,
1914                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1915 
1916   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1917     // X5 and X6 might be used for save-restore libcall.
1918     static const MCPhysReg GPRList[] = {
1919         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1920         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1921         RISCV::X29, RISCV::X30, RISCV::X31};
1922     if (unsigned Reg = State.AllocateReg(GPRList)) {
1923       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1924       return false;
1925     }
1926   }
1927 
1928   if (LocVT == MVT::f32) {
1929     static const MCPhysReg FPR32List[] = {
1930         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1931         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1932         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1933         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1934     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1935       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1936       return false;
1937     }
1938   }
1939 
1940   if (LocVT == MVT::f64) {
1941     static const MCPhysReg FPR64List[] = {
1942         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1943         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1944         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1945         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1946     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1947       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1948       return false;
1949     }
1950   }
1951 
1952   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1953     unsigned Offset4 = State.AllocateStack(4, Align(4));
1954     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1955     return false;
1956   }
1957 
1958   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1959     unsigned Offset5 = State.AllocateStack(8, Align(8));
1960     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1961     return false;
1962   }
1963 
1964   return true; // CC didn't match.
1965 }
1966 
1967 // Transform physical registers into virtual registers.
1968 SDValue RISCVTargetLowering::LowerFormalArguments(
1969     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1970     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1971     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1972 
1973   switch (CallConv) {
1974   default:
1975     report_fatal_error("Unsupported calling convention");
1976   case CallingConv::C:
1977   case CallingConv::Fast:
1978     break;
1979   }
1980 
1981   MachineFunction &MF = DAG.getMachineFunction();
1982 
1983   const Function &Func = MF.getFunction();
1984   if (Func.hasFnAttribute("interrupt")) {
1985     if (!Func.arg_empty())
1986       report_fatal_error(
1987         "Functions with the interrupt attribute cannot have arguments!");
1988 
1989     StringRef Kind =
1990       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1991 
1992     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1993       report_fatal_error(
1994         "Function interrupt attribute argument not supported!");
1995   }
1996 
1997   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1998   MVT XLenVT = Subtarget.getXLenVT();
1999   unsigned XLenInBytes = Subtarget.getXLen() / 8;
2000   // Used with vargs to acumulate store chains.
2001   std::vector<SDValue> OutChains;
2002 
2003   // Assign locations to all of the incoming arguments.
2004   SmallVector<CCValAssign, 16> ArgLocs;
2005   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2006 
2007   if (CallConv == CallingConv::Fast)
2008     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
2009   else
2010     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
2011 
2012   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2013     CCValAssign &VA = ArgLocs[i];
2014     SDValue ArgValue;
2015     // Passing f64 on RV32D with a soft float ABI must be handled as a special
2016     // case.
2017     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
2018       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
2019     else if (VA.isRegLoc())
2020       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
2021     else
2022       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
2023 
2024     if (VA.getLocInfo() == CCValAssign::Indirect) {
2025       // If the original argument was split and passed by reference (e.g. i128
2026       // on RV32), we need to load all parts of it here (using the same
2027       // address).
2028       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
2029                                    MachinePointerInfo()));
2030       unsigned ArgIndex = Ins[i].OrigArgIndex;
2031       assert(Ins[i].PartOffset == 0);
2032       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
2033         CCValAssign &PartVA = ArgLocs[i + 1];
2034         unsigned PartOffset = Ins[i + 1].PartOffset;
2035         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
2036                                       DAG.getIntPtrConstant(PartOffset, DL));
2037         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
2038                                      MachinePointerInfo()));
2039         ++i;
2040       }
2041       continue;
2042     }
2043     InVals.push_back(ArgValue);
2044   }
2045 
2046   if (IsVarArg) {
2047     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
2048     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
2049     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
2050     MachineFrameInfo &MFI = MF.getFrameInfo();
2051     MachineRegisterInfo &RegInfo = MF.getRegInfo();
2052     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
2053 
2054     // Offset of the first variable argument from stack pointer, and size of
2055     // the vararg save area. For now, the varargs save area is either zero or
2056     // large enough to hold a0-a7.
2057     int VaArgOffset, VarArgsSaveSize;
2058 
2059     // If all registers are allocated, then all varargs must be passed on the
2060     // stack and we don't need to save any argregs.
2061     if (ArgRegs.size() == Idx) {
2062       VaArgOffset = CCInfo.getNextStackOffset();
2063       VarArgsSaveSize = 0;
2064     } else {
2065       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
2066       VaArgOffset = -VarArgsSaveSize;
2067     }
2068 
2069     // Record the frame index of the first variable argument
2070     // which is a value necessary to VASTART.
2071     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2072     RVFI->setVarArgsFrameIndex(FI);
2073 
2074     // If saving an odd number of registers then create an extra stack slot to
2075     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
2076     // offsets to even-numbered registered remain 2*XLEN-aligned.
2077     if (Idx % 2) {
2078       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
2079       VarArgsSaveSize += XLenInBytes;
2080     }
2081 
2082     // Copy the integer registers that may have been used for passing varargs
2083     // to the vararg save area.
2084     for (unsigned I = Idx; I < ArgRegs.size();
2085          ++I, VaArgOffset += XLenInBytes) {
2086       const Register Reg = RegInfo.createVirtualRegister(RC);
2087       RegInfo.addLiveIn(ArgRegs[I], Reg);
2088       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
2089       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
2090       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2091       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
2092                                    MachinePointerInfo::getFixedStack(MF, FI));
2093       cast<StoreSDNode>(Store.getNode())
2094           ->getMemOperand()
2095           ->setValue((Value *)nullptr);
2096       OutChains.push_back(Store);
2097     }
2098     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
2099   }
2100 
2101   // All stores are grouped in one node to allow the matching between
2102   // the size of Ins and InVals. This only happens for vararg functions.
2103   if (!OutChains.empty()) {
2104     OutChains.push_back(Chain);
2105     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2106   }
2107 
2108   return Chain;
2109 }
2110 
2111 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2112 /// for tail call optimization.
2113 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2114 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2115     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2116     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2117 
2118   auto &Callee = CLI.Callee;
2119   auto CalleeCC = CLI.CallConv;
2120   auto &Outs = CLI.Outs;
2121   auto &Caller = MF.getFunction();
2122   auto CallerCC = Caller.getCallingConv();
2123 
2124   // Exception-handling functions need a special set of instructions to
2125   // indicate a return to the hardware. Tail-calling another function would
2126   // probably break this.
2127   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2128   // should be expanded as new function attributes are introduced.
2129   if (Caller.hasFnAttribute("interrupt"))
2130     return false;
2131 
2132   // Do not tail call opt if the stack is used to pass parameters.
2133   if (CCInfo.getNextStackOffset() != 0)
2134     return false;
2135 
2136   // Do not tail call opt if any parameters need to be passed indirectly.
2137   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2138   // passed indirectly. So the address of the value will be passed in a
2139   // register, or if not available, then the address is put on the stack. In
2140   // order to pass indirectly, space on the stack often needs to be allocated
2141   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2142   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2143   // are passed CCValAssign::Indirect.
2144   for (auto &VA : ArgLocs)
2145     if (VA.getLocInfo() == CCValAssign::Indirect)
2146       return false;
2147 
2148   // Do not tail call opt if either caller or callee uses struct return
2149   // semantics.
2150   auto IsCallerStructRet = Caller.hasStructRetAttr();
2151   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2152   if (IsCallerStructRet || IsCalleeStructRet)
2153     return false;
2154 
2155   // Externally-defined functions with weak linkage should not be
2156   // tail-called. The behaviour of branch instructions in this situation (as
2157   // used for tail calls) is implementation-defined, so we cannot rely on the
2158   // linker replacing the tail call with a return.
2159   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2160     const GlobalValue *GV = G->getGlobal();
2161     if (GV->hasExternalWeakLinkage())
2162       return false;
2163   }
2164 
2165   // The callee has to preserve all registers the caller needs to preserve.
2166   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2167   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2168   if (CalleeCC != CallerCC) {
2169     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2170     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2171       return false;
2172   }
2173 
2174   // Byval parameters hand the function a pointer directly into the stack area
2175   // we want to reuse during a tail call. Working around this *is* possible
2176   // but less efficient and uglier in LowerCall.
2177   for (auto &Arg : Outs)
2178     if (Arg.Flags.isByVal())
2179       return false;
2180 
2181   return true;
2182 }
2183 
2184 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2185 // and output parameter nodes.
2186 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2187                                        SmallVectorImpl<SDValue> &InVals) const {
2188   SelectionDAG &DAG = CLI.DAG;
2189   SDLoc &DL = CLI.DL;
2190   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2191   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2192   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2193   SDValue Chain = CLI.Chain;
2194   SDValue Callee = CLI.Callee;
2195   bool &IsTailCall = CLI.IsTailCall;
2196   CallingConv::ID CallConv = CLI.CallConv;
2197   bool IsVarArg = CLI.IsVarArg;
2198   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2199   MVT XLenVT = Subtarget.getXLenVT();
2200 
2201   MachineFunction &MF = DAG.getMachineFunction();
2202 
2203   // Analyze the operands of the call, assigning locations to each operand.
2204   SmallVector<CCValAssign, 16> ArgLocs;
2205   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2206 
2207   if (CallConv == CallingConv::Fast)
2208     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2209   else
2210     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2211 
2212   // Check if it's really possible to do a tail call.
2213   if (IsTailCall)
2214     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2215 
2216   if (IsTailCall)
2217     ++NumTailCalls;
2218   else if (CLI.CB && CLI.CB->isMustTailCall())
2219     report_fatal_error("failed to perform tail call elimination on a call "
2220                        "site marked musttail");
2221 
2222   // Get a count of how many bytes are to be pushed on the stack.
2223   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2224 
2225   // Create local copies for byval args
2226   SmallVector<SDValue, 8> ByValArgs;
2227   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2228     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2229     if (!Flags.isByVal())
2230       continue;
2231 
2232     SDValue Arg = OutVals[i];
2233     unsigned Size = Flags.getByValSize();
2234     Align Alignment = Flags.getNonZeroByValAlign();
2235 
2236     int FI =
2237         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
2238     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2239     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2240 
2241     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
2242                           /*IsVolatile=*/false,
2243                           /*AlwaysInline=*/false, IsTailCall,
2244                           MachinePointerInfo(), MachinePointerInfo());
2245     ByValArgs.push_back(FIPtr);
2246   }
2247 
2248   if (!IsTailCall)
2249     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2250 
2251   // Copy argument values to their designated locations.
2252   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2253   SmallVector<SDValue, 8> MemOpChains;
2254   SDValue StackPtr;
2255   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2256     CCValAssign &VA = ArgLocs[i];
2257     SDValue ArgValue = OutVals[i];
2258     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2259 
2260     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2261     bool IsF64OnRV32DSoftABI =
2262         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2263     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2264       SDValue SplitF64 = DAG.getNode(
2265           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2266       SDValue Lo = SplitF64.getValue(0);
2267       SDValue Hi = SplitF64.getValue(1);
2268 
2269       Register RegLo = VA.getLocReg();
2270       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2271 
2272       if (RegLo == RISCV::X17) {
2273         // Second half of f64 is passed on the stack.
2274         // Work out the address of the stack slot.
2275         if (!StackPtr.getNode())
2276           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2277         // Emit the store.
2278         MemOpChains.push_back(
2279             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2280       } else {
2281         // Second half of f64 is passed in another GPR.
2282         assert(RegLo < RISCV::X31 && "Invalid register pair");
2283         Register RegHigh = RegLo + 1;
2284         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2285       }
2286       continue;
2287     }
2288 
2289     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2290     // as any other MemLoc.
2291 
2292     // Promote the value if needed.
2293     // For now, only handle fully promoted and indirect arguments.
2294     if (VA.getLocInfo() == CCValAssign::Indirect) {
2295       // Store the argument in a stack slot and pass its address.
2296       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2297       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2298       MemOpChains.push_back(
2299           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2300                        MachinePointerInfo::getFixedStack(MF, FI)));
2301       // If the original argument was split (e.g. i128), we need
2302       // to store all parts of it here (and pass just one address).
2303       unsigned ArgIndex = Outs[i].OrigArgIndex;
2304       assert(Outs[i].PartOffset == 0);
2305       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2306         SDValue PartValue = OutVals[i + 1];
2307         unsigned PartOffset = Outs[i + 1].PartOffset;
2308         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2309                                       DAG.getIntPtrConstant(PartOffset, DL));
2310         MemOpChains.push_back(
2311             DAG.getStore(Chain, DL, PartValue, Address,
2312                          MachinePointerInfo::getFixedStack(MF, FI)));
2313         ++i;
2314       }
2315       ArgValue = SpillSlot;
2316     } else {
2317       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2318     }
2319 
2320     // Use local copy if it is a byval arg.
2321     if (Flags.isByVal())
2322       ArgValue = ByValArgs[j++];
2323 
2324     if (VA.isRegLoc()) {
2325       // Queue up the argument copies and emit them at the end.
2326       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2327     } else {
2328       assert(VA.isMemLoc() && "Argument not register or memory");
2329       assert(!IsTailCall && "Tail call not allowed if stack is used "
2330                             "for passing parameters");
2331 
2332       // Work out the address of the stack slot.
2333       if (!StackPtr.getNode())
2334         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2335       SDValue Address =
2336           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2337                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2338 
2339       // Emit the store.
2340       MemOpChains.push_back(
2341           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2342     }
2343   }
2344 
2345   // Join the stores, which are independent of one another.
2346   if (!MemOpChains.empty())
2347     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2348 
2349   SDValue Glue;
2350 
2351   // Build a sequence of copy-to-reg nodes, chained and glued together.
2352   for (auto &Reg : RegsToPass) {
2353     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2354     Glue = Chain.getValue(1);
2355   }
2356 
2357   // Validate that none of the argument registers have been marked as
2358   // reserved, if so report an error. Do the same for the return address if this
2359   // is not a tailcall.
2360   validateCCReservedRegs(RegsToPass, MF);
2361   if (!IsTailCall &&
2362       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2363     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2364         MF.getFunction(),
2365         "Return address register required, but has been reserved."});
2366 
2367   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2368   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2369   // split it and then direct call can be matched by PseudoCALL.
2370   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2371     const GlobalValue *GV = S->getGlobal();
2372 
2373     unsigned OpFlags = RISCVII::MO_CALL;
2374     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2375       OpFlags = RISCVII::MO_PLT;
2376 
2377     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2378   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2379     unsigned OpFlags = RISCVII::MO_CALL;
2380 
2381     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2382                                                  nullptr))
2383       OpFlags = RISCVII::MO_PLT;
2384 
2385     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2386   }
2387 
2388   // The first call operand is the chain and the second is the target address.
2389   SmallVector<SDValue, 8> Ops;
2390   Ops.push_back(Chain);
2391   Ops.push_back(Callee);
2392 
2393   // Add argument registers to the end of the list so that they are
2394   // known live into the call.
2395   for (auto &Reg : RegsToPass)
2396     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2397 
2398   if (!IsTailCall) {
2399     // Add a register mask operand representing the call-preserved registers.
2400     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2401     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2402     assert(Mask && "Missing call preserved mask for calling convention");
2403     Ops.push_back(DAG.getRegisterMask(Mask));
2404   }
2405 
2406   // Glue the call to the argument copies, if any.
2407   if (Glue.getNode())
2408     Ops.push_back(Glue);
2409 
2410   // Emit the call.
2411   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2412 
2413   if (IsTailCall) {
2414     MF.getFrameInfo().setHasTailCall();
2415     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2416   }
2417 
2418   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2419   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2420   Glue = Chain.getValue(1);
2421 
2422   // Mark the end of the call, which is glued to the call itself.
2423   Chain = DAG.getCALLSEQ_END(Chain,
2424                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2425                              DAG.getConstant(0, DL, PtrVT, true),
2426                              Glue, DL);
2427   Glue = Chain.getValue(1);
2428 
2429   // Assign locations to each value returned by this call.
2430   SmallVector<CCValAssign, 16> RVLocs;
2431   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2432   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2433 
2434   // Copy all of the result registers out of their specified physreg.
2435   for (auto &VA : RVLocs) {
2436     // Copy the value out
2437     SDValue RetValue =
2438         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2439     // Glue the RetValue to the end of the call sequence
2440     Chain = RetValue.getValue(1);
2441     Glue = RetValue.getValue(2);
2442 
2443     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2444       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2445       SDValue RetValue2 =
2446           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2447       Chain = RetValue2.getValue(1);
2448       Glue = RetValue2.getValue(2);
2449       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2450                              RetValue2);
2451     }
2452 
2453     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2454 
2455     InVals.push_back(RetValue);
2456   }
2457 
2458   return Chain;
2459 }
2460 
2461 bool RISCVTargetLowering::CanLowerReturn(
2462     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2463     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2464   SmallVector<CCValAssign, 16> RVLocs;
2465   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2466   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2467     MVT VT = Outs[i].VT;
2468     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2469     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2470     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2471                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2472       return false;
2473   }
2474   return true;
2475 }
2476 
2477 SDValue
2478 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2479                                  bool IsVarArg,
2480                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2481                                  const SmallVectorImpl<SDValue> &OutVals,
2482                                  const SDLoc &DL, SelectionDAG &DAG) const {
2483   const MachineFunction &MF = DAG.getMachineFunction();
2484   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2485 
2486   // Stores the assignment of the return value to a location.
2487   SmallVector<CCValAssign, 16> RVLocs;
2488 
2489   // Info about the registers and stack slot.
2490   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2491                  *DAG.getContext());
2492 
2493   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2494                     nullptr);
2495 
2496   SDValue Glue;
2497   SmallVector<SDValue, 4> RetOps(1, Chain);
2498 
2499   // Copy the result values into the output registers.
2500   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2501     SDValue Val = OutVals[i];
2502     CCValAssign &VA = RVLocs[i];
2503     assert(VA.isRegLoc() && "Can only return in registers!");
2504 
2505     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2506       // Handle returning f64 on RV32D with a soft float ABI.
2507       assert(VA.isRegLoc() && "Expected return via registers");
2508       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2509                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2510       SDValue Lo = SplitF64.getValue(0);
2511       SDValue Hi = SplitF64.getValue(1);
2512       Register RegLo = VA.getLocReg();
2513       assert(RegLo < RISCV::X31 && "Invalid register pair");
2514       Register RegHi = RegLo + 1;
2515 
2516       if (STI.isRegisterReservedByUser(RegLo) ||
2517           STI.isRegisterReservedByUser(RegHi))
2518         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2519             MF.getFunction(),
2520             "Return value register required, but has been reserved."});
2521 
2522       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2523       Glue = Chain.getValue(1);
2524       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2525       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2526       Glue = Chain.getValue(1);
2527       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2528     } else {
2529       // Handle a 'normal' return.
2530       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2531       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2532 
2533       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2534         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2535             MF.getFunction(),
2536             "Return value register required, but has been reserved."});
2537 
2538       // Guarantee that all emitted copies are stuck together.
2539       Glue = Chain.getValue(1);
2540       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2541     }
2542   }
2543 
2544   RetOps[0] = Chain; // Update chain.
2545 
2546   // Add the glue node if we have it.
2547   if (Glue.getNode()) {
2548     RetOps.push_back(Glue);
2549   }
2550 
2551   // Interrupt service routines use different return instructions.
2552   const Function &Func = DAG.getMachineFunction().getFunction();
2553   if (Func.hasFnAttribute("interrupt")) {
2554     if (!Func.getReturnType()->isVoidTy())
2555       report_fatal_error(
2556           "Functions with the interrupt attribute must have void return type!");
2557 
2558     MachineFunction &MF = DAG.getMachineFunction();
2559     StringRef Kind =
2560       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2561 
2562     unsigned RetOpc;
2563     if (Kind == "user")
2564       RetOpc = RISCVISD::URET_FLAG;
2565     else if (Kind == "supervisor")
2566       RetOpc = RISCVISD::SRET_FLAG;
2567     else
2568       RetOpc = RISCVISD::MRET_FLAG;
2569 
2570     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2571   }
2572 
2573   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2574 }
2575 
2576 void RISCVTargetLowering::validateCCReservedRegs(
2577     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2578     MachineFunction &MF) const {
2579   const Function &F = MF.getFunction();
2580   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2581 
2582   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2583         return STI.isRegisterReservedByUser(Reg.first);
2584       }))
2585     F.getContext().diagnose(DiagnosticInfoUnsupported{
2586         F, "Argument register required, but has been reserved."});
2587 }
2588 
2589 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2590   return CI->isTailCall();
2591 }
2592 
2593 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2594   switch ((RISCVISD::NodeType)Opcode) {
2595   case RISCVISD::FIRST_NUMBER:
2596     break;
2597   case RISCVISD::RET_FLAG:
2598     return "RISCVISD::RET_FLAG";
2599   case RISCVISD::URET_FLAG:
2600     return "RISCVISD::URET_FLAG";
2601   case RISCVISD::SRET_FLAG:
2602     return "RISCVISD::SRET_FLAG";
2603   case RISCVISD::MRET_FLAG:
2604     return "RISCVISD::MRET_FLAG";
2605   case RISCVISD::CALL:
2606     return "RISCVISD::CALL";
2607   case RISCVISD::SELECT_CC:
2608     return "RISCVISD::SELECT_CC";
2609   case RISCVISD::BuildPairF64:
2610     return "RISCVISD::BuildPairF64";
2611   case RISCVISD::SplitF64:
2612     return "RISCVISD::SplitF64";
2613   case RISCVISD::TAIL:
2614     return "RISCVISD::TAIL";
2615   case RISCVISD::SLLW:
2616     return "RISCVISD::SLLW";
2617   case RISCVISD::SRAW:
2618     return "RISCVISD::SRAW";
2619   case RISCVISD::SRLW:
2620     return "RISCVISD::SRLW";
2621   case RISCVISD::DIVW:
2622     return "RISCVISD::DIVW";
2623   case RISCVISD::DIVUW:
2624     return "RISCVISD::DIVUW";
2625   case RISCVISD::REMUW:
2626     return "RISCVISD::REMUW";
2627   case RISCVISD::FMV_W_X_RV64:
2628     return "RISCVISD::FMV_W_X_RV64";
2629   case RISCVISD::FMV_X_ANYEXTW_RV64:
2630     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2631   case RISCVISD::READ_CYCLE_WIDE:
2632     return "RISCVISD::READ_CYCLE_WIDE";
2633   }
2634   return nullptr;
2635 }
2636 
2637 /// getConstraintType - Given a constraint letter, return the type of
2638 /// constraint it is for this target.
2639 RISCVTargetLowering::ConstraintType
2640 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2641   if (Constraint.size() == 1) {
2642     switch (Constraint[0]) {
2643     default:
2644       break;
2645     case 'f':
2646       return C_RegisterClass;
2647     case 'I':
2648     case 'J':
2649     case 'K':
2650       return C_Immediate;
2651     case 'A':
2652       return C_Memory;
2653     }
2654   }
2655   return TargetLowering::getConstraintType(Constraint);
2656 }
2657 
2658 std::pair<unsigned, const TargetRegisterClass *>
2659 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2660                                                   StringRef Constraint,
2661                                                   MVT VT) const {
2662   // First, see if this is a constraint that directly corresponds to a
2663   // RISCV register class.
2664   if (Constraint.size() == 1) {
2665     switch (Constraint[0]) {
2666     case 'r':
2667       return std::make_pair(0U, &RISCV::GPRRegClass);
2668     case 'f':
2669       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2670         return std::make_pair(0U, &RISCV::FPR32RegClass);
2671       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2672         return std::make_pair(0U, &RISCV::FPR64RegClass);
2673       break;
2674     default:
2675       break;
2676     }
2677   }
2678 
2679   // Clang will correctly decode the usage of register name aliases into their
2680   // official names. However, other frontends like `rustc` do not. This allows
2681   // users of these frontends to use the ABI names for registers in LLVM-style
2682   // register constraints.
2683   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
2684                                .Case("{zero}", RISCV::X0)
2685                                .Case("{ra}", RISCV::X1)
2686                                .Case("{sp}", RISCV::X2)
2687                                .Case("{gp}", RISCV::X3)
2688                                .Case("{tp}", RISCV::X4)
2689                                .Case("{t0}", RISCV::X5)
2690                                .Case("{t1}", RISCV::X6)
2691                                .Case("{t2}", RISCV::X7)
2692                                .Cases("{s0}", "{fp}", RISCV::X8)
2693                                .Case("{s1}", RISCV::X9)
2694                                .Case("{a0}", RISCV::X10)
2695                                .Case("{a1}", RISCV::X11)
2696                                .Case("{a2}", RISCV::X12)
2697                                .Case("{a3}", RISCV::X13)
2698                                .Case("{a4}", RISCV::X14)
2699                                .Case("{a5}", RISCV::X15)
2700                                .Case("{a6}", RISCV::X16)
2701                                .Case("{a7}", RISCV::X17)
2702                                .Case("{s2}", RISCV::X18)
2703                                .Case("{s3}", RISCV::X19)
2704                                .Case("{s4}", RISCV::X20)
2705                                .Case("{s5}", RISCV::X21)
2706                                .Case("{s6}", RISCV::X22)
2707                                .Case("{s7}", RISCV::X23)
2708                                .Case("{s8}", RISCV::X24)
2709                                .Case("{s9}", RISCV::X25)
2710                                .Case("{s10}", RISCV::X26)
2711                                .Case("{s11}", RISCV::X27)
2712                                .Case("{t3}", RISCV::X28)
2713                                .Case("{t4}", RISCV::X29)
2714                                .Case("{t5}", RISCV::X30)
2715                                .Case("{t6}", RISCV::X31)
2716                                .Default(RISCV::NoRegister);
2717   if (XRegFromAlias != RISCV::NoRegister)
2718     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2719 
2720   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2721   // TableGen record rather than the AsmName to choose registers for InlineAsm
2722   // constraints, plus we want to match those names to the widest floating point
2723   // register type available, manually select floating point registers here.
2724   //
2725   // The second case is the ABI name of the register, so that frontends can also
2726   // use the ABI names in register constraint lists.
2727   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2728     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
2729                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
2730                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
2731                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
2732                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
2733                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
2734                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
2735                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
2736                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
2737                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
2738                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
2739                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
2740                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
2741                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
2742                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
2743                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
2744                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
2745                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
2746                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
2747                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
2748                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
2749                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
2750                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
2751                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
2752                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
2753                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
2754                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
2755                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
2756                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
2757                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
2758                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
2759                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
2760                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
2761                         .Default(RISCV::NoRegister);
2762     if (FReg != RISCV::NoRegister) {
2763       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
2764       if (Subtarget.hasStdExtD()) {
2765         unsigned RegNo = FReg - RISCV::F0_F;
2766         unsigned DReg = RISCV::F0_D + RegNo;
2767         return std::make_pair(DReg, &RISCV::FPR64RegClass);
2768       }
2769       return std::make_pair(FReg, &RISCV::FPR32RegClass);
2770     }
2771   }
2772 
2773   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2774 }
2775 
2776 unsigned
2777 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2778   // Currently only support length 1 constraints.
2779   if (ConstraintCode.size() == 1) {
2780     switch (ConstraintCode[0]) {
2781     case 'A':
2782       return InlineAsm::Constraint_A;
2783     default:
2784       break;
2785     }
2786   }
2787 
2788   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2789 }
2790 
2791 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2792     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2793     SelectionDAG &DAG) const {
2794   // Currently only support length 1 constraints.
2795   if (Constraint.length() == 1) {
2796     switch (Constraint[0]) {
2797     case 'I':
2798       // Validate & create a 12-bit signed immediate operand.
2799       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2800         uint64_t CVal = C->getSExtValue();
2801         if (isInt<12>(CVal))
2802           Ops.push_back(
2803               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2804       }
2805       return;
2806     case 'J':
2807       // Validate & create an integer zero operand.
2808       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2809         if (C->getZExtValue() == 0)
2810           Ops.push_back(
2811               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2812       return;
2813     case 'K':
2814       // Validate & create a 5-bit unsigned immediate operand.
2815       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2816         uint64_t CVal = C->getZExtValue();
2817         if (isUInt<5>(CVal))
2818           Ops.push_back(
2819               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2820       }
2821       return;
2822     default:
2823       break;
2824     }
2825   }
2826   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2827 }
2828 
2829 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2830                                                    Instruction *Inst,
2831                                                    AtomicOrdering Ord) const {
2832   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2833     return Builder.CreateFence(Ord);
2834   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2835     return Builder.CreateFence(AtomicOrdering::Release);
2836   return nullptr;
2837 }
2838 
2839 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2840                                                     Instruction *Inst,
2841                                                     AtomicOrdering Ord) const {
2842   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2843     return Builder.CreateFence(AtomicOrdering::Acquire);
2844   return nullptr;
2845 }
2846 
2847 TargetLowering::AtomicExpansionKind
2848 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2849   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2850   // point operations can't be used in an lr/sc sequence without breaking the
2851   // forward-progress guarantee.
2852   if (AI->isFloatingPointOperation())
2853     return AtomicExpansionKind::CmpXChg;
2854 
2855   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2856   if (Size == 8 || Size == 16)
2857     return AtomicExpansionKind::MaskedIntrinsic;
2858   return AtomicExpansionKind::None;
2859 }
2860 
2861 static Intrinsic::ID
2862 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2863   if (XLen == 32) {
2864     switch (BinOp) {
2865     default:
2866       llvm_unreachable("Unexpected AtomicRMW BinOp");
2867     case AtomicRMWInst::Xchg:
2868       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2869     case AtomicRMWInst::Add:
2870       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2871     case AtomicRMWInst::Sub:
2872       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2873     case AtomicRMWInst::Nand:
2874       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2875     case AtomicRMWInst::Max:
2876       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2877     case AtomicRMWInst::Min:
2878       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2879     case AtomicRMWInst::UMax:
2880       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2881     case AtomicRMWInst::UMin:
2882       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2883     }
2884   }
2885 
2886   if (XLen == 64) {
2887     switch (BinOp) {
2888     default:
2889       llvm_unreachable("Unexpected AtomicRMW BinOp");
2890     case AtomicRMWInst::Xchg:
2891       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2892     case AtomicRMWInst::Add:
2893       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2894     case AtomicRMWInst::Sub:
2895       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2896     case AtomicRMWInst::Nand:
2897       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2898     case AtomicRMWInst::Max:
2899       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2900     case AtomicRMWInst::Min:
2901       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2902     case AtomicRMWInst::UMax:
2903       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2904     case AtomicRMWInst::UMin:
2905       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2906     }
2907   }
2908 
2909   llvm_unreachable("Unexpected XLen\n");
2910 }
2911 
2912 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2913     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2914     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2915   unsigned XLen = Subtarget.getXLen();
2916   Value *Ordering =
2917       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2918   Type *Tys[] = {AlignedAddr->getType()};
2919   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2920       AI->getModule(),
2921       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2922 
2923   if (XLen == 64) {
2924     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2925     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2926     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2927   }
2928 
2929   Value *Result;
2930 
2931   // Must pass the shift amount needed to sign extend the loaded value prior
2932   // to performing a signed comparison for min/max. ShiftAmt is the number of
2933   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2934   // is the number of bits to left+right shift the value in order to
2935   // sign-extend.
2936   if (AI->getOperation() == AtomicRMWInst::Min ||
2937       AI->getOperation() == AtomicRMWInst::Max) {
2938     const DataLayout &DL = AI->getModule()->getDataLayout();
2939     unsigned ValWidth =
2940         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2941     Value *SextShamt =
2942         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2943     Result = Builder.CreateCall(LrwOpScwLoop,
2944                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2945   } else {
2946     Result =
2947         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2948   }
2949 
2950   if (XLen == 64)
2951     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2952   return Result;
2953 }
2954 
2955 TargetLowering::AtomicExpansionKind
2956 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2957     AtomicCmpXchgInst *CI) const {
2958   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2959   if (Size == 8 || Size == 16)
2960     return AtomicExpansionKind::MaskedIntrinsic;
2961   return AtomicExpansionKind::None;
2962 }
2963 
2964 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2965     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2966     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2967   unsigned XLen = Subtarget.getXLen();
2968   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2969   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2970   if (XLen == 64) {
2971     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2972     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2973     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2974     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2975   }
2976   Type *Tys[] = {AlignedAddr->getType()};
2977   Function *MaskedCmpXchg =
2978       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2979   Value *Result = Builder.CreateCall(
2980       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2981   if (XLen == 64)
2982     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2983   return Result;
2984 }
2985 
2986 Register RISCVTargetLowering::getExceptionPointerRegister(
2987     const Constant *PersonalityFn) const {
2988   return RISCV::X10;
2989 }
2990 
2991 Register RISCVTargetLowering::getExceptionSelectorRegister(
2992     const Constant *PersonalityFn) const {
2993   return RISCV::X11;
2994 }
2995 
2996 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2997   // Return false to suppress the unnecessary extensions if the LibCall
2998   // arguments or return value is f32 type for LP64 ABI.
2999   RISCVABI::ABI ABI = Subtarget.getTargetABI();
3000   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
3001     return false;
3002 
3003   return true;
3004 }
3005 
3006 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
3007                                                  SDValue C) const {
3008   // Check integral scalar types.
3009   if (VT.isScalarInteger()) {
3010     // Do not perform the transformation on riscv32 with the M extension.
3011     if (!Subtarget.is64Bit() && Subtarget.hasStdExtM())
3012       return false;
3013     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
3014       if (ConstNode->getAPIntValue().getBitWidth() > 8 * sizeof(int64_t))
3015         return false;
3016       int64_t Imm = ConstNode->getSExtValue();
3017       if (isPowerOf2_64(Imm + 1) || isPowerOf2_64(Imm - 1) ||
3018           isPowerOf2_64(1 - Imm) || isPowerOf2_64(-1 - Imm))
3019         return true;
3020     }
3021   }
3022 
3023   return false;
3024 }
3025 
3026 #define GET_REGISTER_MATCHER
3027 #include "RISCVGenAsmMatcher.inc"
3028 
3029 Register
3030 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
3031                                        const MachineFunction &MF) const {
3032   Register Reg = MatchRegisterAltName(RegName);
3033   if (Reg == RISCV::NoRegister)
3034     Reg = MatchRegisterName(RegName);
3035   if (Reg == RISCV::NoRegister)
3036     report_fatal_error(
3037         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
3038   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
3039   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
3040     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
3041                              StringRef(RegName) + "\"."));
3042   return Reg;
3043 }
3044